Powered by Deep Web Technologies
Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

2

Hanford Tank Waste Treatment and Immobilization Plant (WTP) Waste Feed Qualification Program Development Approach - 13114  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is a nuclear waste treatment facility being designed and constructed for the U.S. Department of Energy by Bechtel National, Inc. and subcontractor URS Corporation (under contract DE-AC27-01RV14136 [1]) to process and vitrify radioactive waste that is currently stored in underground tanks at the Hanford Site. A wide range of planning is in progress to prepare for safe start-up, commissioning, and operation. The waste feed qualification program is being developed to protect the WTP design, safety basis, and technical basis by assuring acceptance requirements can be met before the transfer of waste. The WTP Project has partnered with Savannah River National Laboratory to develop the waste feed qualification program. The results of waste feed qualification activities will be implemented using a batch processing methodology, and will establish an acceptable range of operator controllable parameters needed to treat the staged waste. Waste feed qualification program development is being implemented in three separate phases. Phase 1 required identification of analytical methods and gaps. This activity has been completed, and provides the foundation for a technically defensible approach for waste feed qualification. Phase 2 of the program development is in progress. The activities in this phase include the closure of analytical methodology gaps identified during Phase 1, design and fabrication of laboratory-scale test apparatus, and determination of the waste feed qualification sample volume. Phase 3 will demonstrate waste feed qualification testing in support of Cold Commissioning. (authors)

Markillie, Jeffrey R.; Arakali, Aruna V.; Benson, Peter A.; Halverson, Thomas G. [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States)] [Hanford Tank Waste Treatment and Immobilization Plant Project, Richland, WA 99354 (United States); Adamson, Duane J.; Herman, Connie C.; Peeler, David K. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

3

DNFSB Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant WTP  

NLE Websites -- All DOE Office Websites (Extended Search)

DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 i Department of Energy Plan to Address Waste Treatment and Immobilization Plant Vessel Mixing Issues Revision 0 Implementation Plan for Defense Nuclear Safety Board Recommendation 2010-2 November 10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 ii EXECUTIVE SUMMARY On December 17, 2010, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant. The recommendation addressed the need for the U.S. Department of Energy (DOE) to ensure that the Hanford Waste Treatment and Immobilization Plant (WTP), in conjunction with the Hanford tank farm waste feed delivery system, will operate safely and effectively during a

4

Process Testing Results and Scaling for the Hanford Waste Treatment and Immobilization Plant (WTP) Pretreatment Engineering Platform - 10173  

SciTech Connect

The U.S. Department of Energy-Office of River Protection’s Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks at Richland, Washington. In support of this effort, engineering-scale tests at the Pretreatment Engineering Platform (PEP) have been completed to confirm the process design and provide improved projections of system capacity. The PEP is a 1/4.5-scale facility designed, constructed, and operated to test the integrated leaching and ultrafiltration processes being deployed at the WTP. The PEP replicates the WTP leaching processes with prototypic equipment and control strategies and non-prototypic ancillary equipment to support the core processing. The testing approach used a nonradioactive aqueous slurry simulant to demonstrate the unit operations of caustic and oxidative leaching, cross-flow ultrafiltration solids concentration, and solids washing. Parallel tests conducted at the laboratory scale with identical simulants provided results that allow scale-up factors to be developed between the laboratory and PEP performance. This paper presents the scale-up factors determined between the laboratory and engineering-scale results and presents arguments that extend these results to the full-scale process.

Kurath, Dean E.; Daniel, Richard C.; Baldwin, David L.; Rapko, Brian M.; Barnes, Steven M.; Gilbert, Robert A.; Mahoney, Lenna A.; Huckaby, James L.

2010-01-14T23:59:59.000Z

5

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE (WTP-SW) BY FLUIDIZED BED STEAM REFORMING (FBSR) USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect

The U.S. Department of Energy’s Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford’s tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150°C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750°C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford’s WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing. The granular products (both simulant and radioactive) were tested and a subset of the granular material (both simulant and radioactive) were stabilized in a geopolymer matrix. Extensive testing and characterization of the granular and monolith material were made including the following: ? ASTM C1285 (Product Consistency Test) testing of granular and monolith; ? ASTM C1308 accelerated leach testing of the radioactive monolith; ? ASTM C192 compression testing of monoliths; and ? EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP) testing. The significant findings of the testing completed on simulant and radioactive WTP-SW are given below: ? Data indicates {sup 99}Tc, Re, Cs, and I

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, G.; Jantzen, C.; Missimer, D.

2014-08-21T23:59:59.000Z

6

INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM  

SciTech Connect

Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

KRUGER AA; FENG Z; GAN H; PEGG IL

2009-11-05T23:59:59.000Z

7

Hanford Waste Treatment Plant Construction Quality Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPT-WTP-2011-002 ARPT-WTP-2011-002 Site: DOE Hanford Waste Treatment Plant Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Hanford Waste Treatment Plant Construction Quality Review Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer Joseph Lenahan Activity Description/Purpose: The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. The Office of Health, Safety and Security (HSS) attended several Bechtel National Incorporated (BNI) project meetings, reviewed the WTP project quality assurance program, reviewed DOE-WTP inspection reports completed by the DOE-WTP

8

Safety Culture at the WTP White Paper: Potential Attachment for...  

NLE Websites -- All DOE Office Websites (Extended Search)

292011 Page 1 of 6 Safety Culture at the WTP White Paper: Potential Attachment for Advice on Waste Treatment Plant Safety Culture Introduction This white paper provides context...

9

Microsoft PowerPoint - 10-04 Sundar Technology Needs for WTP Simulants - PSSundar.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Needs for WTP Simulants Needs for WTP Simulants P. S. Sundar Process Technology - Plant Operations Div Waste Treatment Plant Project November 17, 2010 Bechtel National, Inc. Print Close Technology Needs for WTP Simulants 2 Agenda * Major simulant requirements of WTP Project and the associated challenges Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 3 Simplified Process Flowsheet IHLW ILAW LAW Feed HLW Feed HLW Recycles LAW Recycles Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 4 Simulant Needs * Commissioning Simulants - As received and pretreated LAW supernatants - As received HLW sludge - Pretreated HLW sludge - Vitrification recycle streams

10

Independent Activity Report, Hanford Waste Treatment Plant - February 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Hanford Waste Treatment Plant - Activity Report, Hanford Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review [ARPT-WTP-2011-002] The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. Independent Activity Report, Hanford Waste Treatment Plant - February 2011 More Documents & Publications Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant -

11

Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013  

Energy.gov (U.S. Department of Energy (DOE))

Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

12

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – March 31 – April 10, 2014  

Energy.gov (U.S. Department of Energy (DOE))

Observation of the Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Hazards Analysis Activities [IAR-WTP-2014-03-31

13

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant- June 2013  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13

14

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Reagents Systems Hazards Analysis Activity Observation (EA-WTP-LAW-2014-06-02)

15

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – October 2013  

Energy.gov (U.S. Department of Energy (DOE))

Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21

16

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – February 2014  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Low Activity Waste Facility Off-gas Systems Hazards Analysis Activities [HIAR-WTP-2014-01-27

17

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – July 2013  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31

18

Environmental Solutions, A Summary of Contributions for CY04: Battelle Contributions to the Waste Treatment Plant  

SciTech Connect

In support of the Waste Treatment Plant (WTP), Battelle conducted tests on mixing specific wastes within the plant, removing troublesome materials from the waste before treatment, and determining if the final waste forms met the established criteria. In addition, several Battelle experts filled full-time positions in WTP's Research and Testing and Process and Operations departments.

Beeman, Gordon H.

2005-03-08T23:59:59.000Z

19

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment and Immobilization Treatment and Immobilization Plant - November 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - November 2011 November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Plant Project (WTP). The independent oversight review, which was performed September 12-15, 2011, was the latest in a series of ongoing quarterly assessments of construction quality at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant -

20

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

2012-03-06T23:59:59.000Z

22

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 October 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed August 6-10, 2012, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant -

23

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2013 March 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed November 26-30, 2012, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013

24

Summary - Flowsheet for the Hanford Waste Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Waste Treatment Plant ETR Report Date: March 2006 ETR-1 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Flowsheet for the Hanford Waste Treatment Plant (WTP) Why DOE-EM Did This Review The Hanford Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 53 million gallons of radioactive waste, separate it into high- and low-activity fractions, and produce canisters of high-level (HLW) glass (left) and containers of low-activity waste (LAW) glass (right). At the time of this review, the Plant was at approximately 70% design and 30% construction completion. The external review objective was to determine how well the WTP would meet its throughput capacities based on the current design,

25

Independent Oversight Assessment, Waste Treatment and Immobilization Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment at the DOE Waste Treatment and Immobilization Plant (WTP) to evaluate the current status of the nuclear safety culture and the effectiveness of DOE and contractor management in addressing nuclear safety concerns at WTP. This assessment provides DOE management with a follow-up on the October 2010 HSS review of the WTP

26

Independent Activity Report, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18] The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach implemented by Bechtel National, Inc. (BNI), the contractor responsible for the design and construction of WTP for the U.S. Department of Energy (DOE) Office of

27

Waste Treatment Plant - 12508  

SciTech Connect

The Waste Treatment Plant (WTP) will immobilize millions of gallons of Hanford's tank waste into solid glass using a proven technology called vitrification. The vitrification process will turn the waste into a stable glass form that is safe for long-term storage. Our discussion of the WTP will include a description of the ongoing design and construction of this large, complex, first-of-a-kind project. The concept for the operation of the WTP is to separate high-level and low-activity waste fractions, and immobilize those fractions in glass using vitrification. The WTP includes four major nuclear facilities and various support facilities. Waste from the Tank Farms is first pumped to the Pretreatment Facility at the WTP through an underground pipe-in-pipe system. When construction is complete, the Pretreatment Facility will be 12 stories high, 540 feet long and 215 feet wide, making it the largest of the four major nuclear facilities that compose the WTP. The total size of this facility will be more than 490,000 square feet. More than 8.2 million craft hours are required to construct this facility. Currently, the Pretreatment Facility is 51 percent complete. At the Pretreatment Facility the waste is pumped to the interior waste feed receipt vessels. Each of these four vessels is 55-feet tall and has a 375,000 gallon capacity, which makes them the largest vessels inside the Pretreatment Facility. These vessels contain a series of internal pulse-jet mixers to keep incoming waste properly mixed. The vessels are inside the black-cell areas, completely enclosed behind thick steel-laced, high strength concrete walls. The black cells are designed to be maintenance free with no moving parts. Once hot operations commence the black-cell area will be inaccessible. Surrounded by black cells, is the 'hot cell canyon'. The hot cell contains all the moving and replaceable components to remove solids and extract liquids. In this area, there is ultrafiltration equipment, cesium-ion exchange columns, evaporator boilers and recirculation pumps, and various mechanical process pumps for transferring process fluids. During the first phase of pretreatment, the waste will be concentrated using an evaporation process. Solids will be filtered out, and the remaining soluble, highly radioactive isotopes will be removed using an ion-exchange process. The high-level solids will be sent to the High-Level Waste (HLW) Vitrification Facility, and the low activity liquids will be sent to the Low-Activity Waste (LAW) Vitrification Facility for further processing. The high-level waste will be transferred via underground pipes to the HLW Facility from the Pretreatment Facility. The waste first arrives at the wet cell, which rests inside a black-cell area. The pretreated waste is transferred through shielded pipes into a series of melter preparation and feed vessels before reaching the melters. Liquids from various facility processes also return to the wet cell for interim storage before recycling back to the Pretreatment Facility. (authors)

Harp, Benton; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

28

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Review, Waste Treatment and Immobilization Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 August 2011 Hanford Waste Treatment and Immobilization Plant Construction Quality The Office of Safety and Emergency Management Evaluations (Independent Oversight) within the Office of Health, Safety and Security (HSS) conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Project (WTP). The review, which was performed May 9-12, 2011, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. HSS determined that construction quality at WTP was adequate in the areas

29

Summary - WTP Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Block Block D DOE is Immob site's t facilitie purpos techno Facility to be i The as CTEs, Readin * C * C * W * Tr * U * Pu * W * H * Pl The as require The Ele Site: H roject: W Report Date: M ited States Wast Why DOE Diagram of Cesiu s constructing bilization Plant tank wastes. T es including a P se of this asses ology elements y and determin ncorporated in What th ssessment team along with eac ness Level (TR s Nitric Acid Re s Ion Exchang Waste Feed Eva reated LAW Ev ltrafiltration Pro ulse Jet Mixer Waste Feed Rec LW Lag Storag lant Wash and ssessment team ed maturity prio To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen te Treatm E-EM Did This um Nitric Acid R a Waste Treat (WTP) at Hanf The WTP is com Pretreatment F ssment was to s (CTEs) in the

30

Developer Installed Treatment Plants  

E-Print Network (OSTI)

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

31

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

32

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))

33

Enterprise Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant – December 2014  

Energy.gov (U.S. Department of Energy (DOE))

Operational Awareness Record for the Waste Treatment and Immobilization Plant Low Activity Waste Facility Waste Handling Systems Hazard Analysis Activities Observation (EA-WTP-LAW-2014-08-18(b))

34

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed November 14-17, 2011, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight determined that construction quality at WTP was adequate in the areas reviewed. BNI Engineering has developed appropriate

35

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2012 August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted independent reviews of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Project (WTP). The reviews for this report were performed on site during February 6-10, 2012 and April 30 - May 4, 2012, and were the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP. Independent Oversight determined that construction quality at WTP is

36

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-047 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facilities L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-047 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental Management (EM), Office of Project Recovery has completed a Technology Readiness

37

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted independent reviews of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Project (WTP). The reviews for this report were performed on site during February 6-10, 2012 and April 30 - May 4, 2012, and were the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP.

38

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2013 January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted a concurrent independent review with the U.S. Department of Energy (DOE) Office of River Protection (ORP) of selected aspects of the Bechtel National, Inc. (BNI) Hanford Site Waste Treatment and Immobilization Plant (WTP) procurement processes for WTP black-cell (BC) and hard-to-reach (HtR) pipe spools. The Independent Oversight review was performed by the HSS Office of Safety and

39

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2013 January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted a concurrent independent review with the U.S. Department of Energy (DOE) Office of River Protection (ORP) of selected aspects of the Bechtel National, Inc. (BNI) Hanford Site Waste Treatment and Immobilization Plant (WTP) procurement processes for WTP black-cell (BC) and hard-to-reach (HtR) pipe spools. The Independent Oversight review was performed by the HSS Office of Safety and

40

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Environmental Management (EM)

Treatment and Immobilization Plant Low Activity Waste Facility Heating, Ventilation, and Air Conditioning Systems Hazards Analysis Activities HIAR-WTP-2014-01-27 This...

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Enterprise Assessments Operational Awareness Record, Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Observation of Waste Treatment and Immobilization Plant High Level Waste Facility Radioactive Liquid Waste Disposal System Hazards Analysis Activities (EA-WTP-HLW-2014-08-18(a))...

42

Laboratory Tests on Post-Filtration Precipitation in the WTP Pretreatment Process  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes," of the External Flowsheet Review Team (EFRT) issue response plan (Barnes et al. 2006). The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. A simplified flow diagram of the PEP system is shown in Figure 1.1. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF).

Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.; Crum, Jarrod V.

2009-11-20T23:59:59.000Z

43

Recent Improvements In Interface Management For Hanfords Waste Treatment And Immobilization Plant - 13263  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

Arm, Stuart T. [Washington River Protection Solutions, Richland, WA (United States); Pell, Michael J. [Bechtel National, Inc., Richland, WA (United States); Van Meighem, Jeffery S. [Washington River Protection Solutions, Richland, WA (United States); Duncan, Garth M. [Bechtel National, Inc., Richland, WA (United States); Harrington, Christopher C. [Department of Energy, Office of River Protection, Richland, Washington (United States)

2012-11-20T23:59:59.000Z

44

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

45

Advice: Safety at the WTP  

NLE Websites -- All DOE Office Websites (Extended Search)

Advice: 1. Define and communicate clearly to management, workers and the public what "safety culture" means 2. ISM at WTP should be implemented over the entire project 3. We...

46

Activity Report for Hanford WTP LAW Melter HA Development, July 31 - August 5, 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report HSS Independent Activity Report Report Number: HIAR-WTP-2013-07-31 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Dates of Activity : 07/31/13 - 08/05/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the hazards analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and

47

Activity Report for Hanford WTP LAW Melter HA Development, July 31 - August 5, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report HSS Independent Activity Report Report Number: HIAR-WTP-2013-07-31 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Dates of Activity : 07/31/13 - 08/05/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the hazards analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and

48

GLASS FORMULATION FOR THE HANFORD TANK WASTE TREATMENT AND IMMOBILIZATION PLANT (WTP)  

SciTech Connect

A computational method for formulating Hanford HLW glasses was developed that is based on empirical glass composition-property models, accounts for all associated uncertainties, and can be solved in Excel{sup R} in minutes. Calculations for all waste form processing and compliance requirements included. Limited experimental validation performed.

KRUGER AA; VIENNA JD; KIM DS; JAIN V

2009-05-27T23:59:59.000Z

49

Recent Improvements in Interface Management for Hanford's Waste Treatment and Immobilization Plant - 13263  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which includes the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number of technical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. Partly in response to a DNFSB recommendation, the WTP interface management process managing these technical services has recently been improved through changes in organization and issue management. The changes are documented in an Interface Management Plan. The organizational improvement is embodied in the One System Integrated Project Team that was formed by integrating WTP and tank farms staff representing interfacing functional areas into a single organization. A number of improvements were made to the issue management process but most notable was the formal appointment of technical, regulatory and safety subject matter experts to ensure accurate identification of issues and open items. Ten of the thirteen active WTP Interface Control Documents have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule and accurately identify technical, regulatory and safety issues and open items. (authors)

Arm, Stuart T.; Van Meighem, Jeffery S. [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States)] [Washington River Protection Solutions, P.O. Box 850, Richland, Washington, 99352 (United States); Duncan, Garth M.; Pell, Michael J. [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States)] [Bechtel National Inc., 2435 Stevens Center Place, Richland, Washington, 99352 (United States); Harrington, Christopher C. [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)] [Department of Energy - Office of River Protection, 2440 Stevens Center Place, Richland, Washington, 99352 (United States)

2013-07-01T23:59:59.000Z

50

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996  

SciTech Connect

This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

2007-01-28T23:59:59.000Z

51

Independent Oversight Review, Waste Treatment and Immobilization Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant Project - October 2010 Independent Oversight Review, Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project The U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS) conducted an independent review of the nuclear safety culture at the Waste Treatment and Immobilization Plant (WTP) project at the Hanford Site during August and September 2010. The HSS team performed the review in response to a request in a July 30, 2010, memorandum from the Assistant Secretary for the DOE Headquarters Office of Environmental Management (EM), which referred to nuclear safety concerns raised by a contractor employee

52

Hanford Waste Treatment Plant Support Task Order Modified | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Support Task Order Modified Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value of the task order to $1.6 million from $833,499. The task order modification has a one-year performance period and two one-year option periods. The Task Order was awarded under an Indefinite Delivery/Indefinite Quantity (ID/IQ) master Contract. Aspen Resources Limited, Inc. is a small-disadvantaged business under the Small Business Administration's

53

Aqueous Waste Treatment Plant at Aldermaston  

SciTech Connect

For over half a century the Pangbourne Pipeline formed part of AWE's liquid waste management system. Since 1952 the 11.5 mile pipeline carried pre-treated wastewater from the Aldermaston site for safe dispersal in the River Thames. Such discharges were in strict compliance with the exacting conditions demanded by all regulatory authorities, latterly, those of the Environment Agency. In March 2005 AWE plc closed the Pangbourne Pipeline and ceased discharges of treated active aqueous waste to the River Thames via this route. The ability to effectively eliminate active liquid discharges to the environment is thanks to an extensive programme of waste minimization on the Aldermaston site, together with the construction of a new Waste Treatment Plant (WTP). Waste minimization measures have reduced the effluent arisings by over 70% in less than four years. The new WTP has been built using best available technology (evaporation followed by reverse osmosis) to remove trace levels of radioactivity from wastewater to exceptionally stringent standards. Active operation has confirmed early pilot scale trials, with the plant meeting throughput and decontamination performance targets, and final discharges being at or below limits of detection. The performance of the plant allows the treated waste to be discharged safely as normal industrial effluent from the AWE site. Although the project has had a challenging schedule, the project was completed on programme, to budget and with an exemplary safety record (over 280,000 hours in construction with no lost time events) largely due to a pro-active partnering approach between AWE plc and RWE NUKEM and its sub-contractors. (authors)

Keene, D. [RWE NUKEM, Ltd, 424 Harwell, Didcot, Oxfordshire, OX 110GJ (United Kingdom); Fowler, J.; Frier, S. [AWE plc, Aldermaston, Berkshire RG7 4PR (United Kingdom)

2006-07-01T23:59:59.000Z

54

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comprehensive Review of the Hanford Tank Waste Treatment and Immobilization Plant Estimate at Completion Assessment Conducted by an Independent Team of External Experts March 2006 Comprehensive Review of the Hanford Waste Treatment Plant Estimate at Completion Page i of vi Executive Summary Following an August 2005 corporate commitment to the Secretary of Energy, Bechtel National, Inc. chartered a team of industry experts to review the technical, cost, and schedule aspects of the Waste Treatment and Immobilization Plant (WTP) project. This summary reflects the observations and recommendations of the EAC Review Team (ERT), comprised of six senior industry consultants, six retired Bechtel employees, one current Bechtel employee, three employees of Bechtel's competitors, and

55

SRNL Review And Assessment Of WTP UFP-02 Sparger Design And Testing  

SciTech Connect

During aerosol testing conducted by Parsons Constructors and Fabricators, Inc. (PCFI), air sparger plugging was observed in small-scale and medium-scale testing. Because of this observation, personnel identified a concern that the steam spargers in Pretreatment Facility vessel UFP-02 could plug during Waste Treatment and Immobilization Plant (WTP) operation. The U. S. Department of Energy (DOE) requested that Savannah River National Laboratory (SRNL) provide consultation on the evaluation of known WTP bubbler, and air and steam sparger issues. The authors used the following approach for this task: reviewed previous test reports (including smallscale testing, medium-scale testing, and Pretreatment Engineering Platform [PEP] testing), met with Bechtel National, Inc. (BNI) personnel to discuss sparger design, reviewed BNI documents supporting the sparger design, discussed sparger experience with Savannah River Site Defense Waste Processing Facility (DWPF) and Sellafield personnel, talked to sparger manufacturers about relevant operating experience and design issues, and reviewed UFP-02 vessel and sparger drawings.

Poirier, M. R.; Duignan, M. R.; Fink, S. D.; Steimke, J. L.

2014-03-24T23:59:59.000Z

56

Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project  

SciTech Connect

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

Reidel, Steve P.

2006-05-26T23:59:59.000Z

57

Report: EM Tank Waste Subcommittee Full Report for Waste Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY 1000 INDEPENDENCE AVENUE SW WASHINGTON DC 20585 September 30, 2010 Dr. Inés R. Triay Assistant Secretary for Environmental Management 1000 Independence Avenue SW Washington, DC 20585 Dear Dr. Triay: As discussed during our September 15th public meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment Plant; Report Number EMAB EM-TWS WTP-001, September 30, 2010, in accordance with the Work Plan directive dated May 10, 2010. This report covers the work plan observations and recommendations concerning the Waste Treatment and Immobilization Plant at Hanford (WTP). The charge is summarized below. Charge 1: Verification of closure of Waste Treatment and Immobilization

58

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wa Wa Schem DOE is Immob site's t facilitie Balanc Activity of this techno facilitie are su WTP d Readin The as along w Level ( * Tw 1. 2. The Ele Site: H roject: W Report Date: M ited States aste Trea Labo Why DOE matic of Laser Ab s constructing bilization Plant tank wastes. T es including an ces of Facilities y Waste (LAW assessment w ology elements es (LAB, BOF, fficiently matur design, which n ness Level of 6 What th ssessment team with each elem (TRL) for the L wo LAB system . Autosamplin Laser ablati AES/LA-ICP To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen atment a oratory, B E-EM Did This blation Analytical a Waste Treat (WTP) at Hanf The WTP is com n Analytical Lab s (BOF) operat ) Vitrification F was to identify t s (CTEs) in the

59

Summary - WTP HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W W HLW W DOE is Immob site's t facilitie Facility to iden the HL to be i norma The as along w Level ( * H * H * H Sy * Pu D The Ele Site: H roject: W Report Date: M ited States Waste T Why DOE Waste Vitrificatio s constructing bilization Plant tank wastes. T es including a H y (HLW). The ntify the critical LW and determ ncorporated in ally requires a T What th ssessment team with each elem (TRL) for the H LW Melter Fee LW Melter Pro LW Melter Offg ystem/Process ulse Jet Mixer isposal System To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen Treatmen W E-EM Did This n Facility a Waste Treat (WTP) at Hanf The WTP is com High-Level Wa purpose of this technology ele mine if these are to the final WT Technology Re he TRA Team m identified the

60

Waste Treatment And Immobilization Plant U. S. Department Of Energy Office Of River Protection Submerged Bed Scrubber Condensate Disposition Project - Abstract # 13460  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

Yanochko, Ronald M [Washington River Protection Solutions, Richland, WA (United States); Corcoran, Connie [AEM Consulting, LLC, Richland, WA (United States)

2012-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fate of Tc99 at WTP and Current Work on Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fate of Tc Fate of Tc 99 at WTP and Current Work on Capture DOE EM High-Level Waste Corporate Board and as seen at the DOE EM Construction Project Review November 2010 Bechtel National, Inc. Albert A. Kruger, DOE-WED Glass Scientist John Olson, BNI Manager, Process Engineering Design 2 Fate of Tc 99 During Waste Processing A.Technical Basis for planned retention of Tc 99 in LAW and HLW glass B.Overall process mass balance C.Role of recycle, secondary waste and other disposition pathways D.Distribution of Tc 99 amongst tanks and tank waste fractions 3 Overview WTP effluents meet all waste and emissions requirements † Of all Tc 99 sent to WTP ‡ , approximately: - 77% goes to Supplemental LAW (no recycle to WTP)  Treatment technology not specified - 23% goes to WTP effluents (HLW/LAW glass, secondary effluents). On

62

Production rates associated with WTP Britney Hebert, Bijeta Prasai and Henry Foust* Nicholls State University, Thibodaux, LA  

NLE Websites -- All DOE Office Websites (Extended Search)

As As known, the U.S. Department of Energy contracted Betchel National, Inc. to build the world's largest waste treatment plant (WTP). See [1] for more details. The performance of this facility in terms of solids and sodium production is still in question and a pinch-point of the WTP is an ultrafiltration process where the intended goal of this study was to determine if treating with smaller batch volumes can improve the production rates of both sodium and solids. This study included considerations of the effects of changing viscosity due to changing concentrations of sodium and an appropriate model for permeate rates. The findings of this study are that smaller batch sizes do increase production of both sodium and solids irregardless of end point concentration of solids or sodium. But there is a trade-off condition between solids and sodium production. Problem Statement The benefit of this research was to increase the mass rates of solids and

63

Dynamic (G2) Model Design Document, 24590-WTP-MDD-PR-01-002, Rev. 12  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamic (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.

Deng, Yueying; Kruger, Albert A.

2013-12-16T23:59:59.000Z

64

Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.  

SciTech Connect

This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

Brouns, Thomas M.

2007-07-15T23:59:59.000Z

65

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993  

SciTech Connect

A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

2007-02-28T23:59:59.000Z

66

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

67

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

68

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

69

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality...

70

One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant  

SciTech Connect

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

2012-12-20T23:59:59.000Z

71

Downhole Measurements of Shear- and Compression-Wave Velocities in Boreholes C4993, C4996, C4997 and C4998 at the Waste Treatment Plant DOE Hanford Site.  

SciTech Connect

This report describes the procedures and the results of a series of downhole measurements of shear- and compression-wave velocities performed as part of the Seismic Boreholes Project at the site of the Waste Treatment Plant (WTP). The measurements were made in several stages from October 2006 through early February 2007. Although some fieldwork was carried out in conjunction with the University of Texas at Austin (UT), all data acquired by UT personnel are reported separately by that organization.

Redpath, Bruce B.

2007-04-27T23:59:59.000Z

72

Laboratory Evaporation Testing Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream, LAW Off-Gas Condensate, from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of canistered glass waste forms. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to be within acceptable concentration ranges in the LAW glass. Diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the impact of potential future disposition of this stream in the Hanford tank farms, and investigates auxiliary evaporation to enable another disposition path. Unless an auxiliary evaporator is used, returning the stream to the tank farms would require evaporation in the 242-A evaporator. This stream is expected to be unusual because it will be very high in corrosive species that are volatile in the melter (chloride, fluoride, sulfur), will have high ammonia, and will contain carryover particulates of glass-former chemicals. These species have potential to cause corrosion of tanks and equipment, precipitation of solids, release of ammonia gas vapors, and scale in the tank farm evaporator. Routing this stream to the tank farms does not permanently divert it from recycling into the WTP, only temporarily stores it prior to reprocessing. Testing is normally performed to demonstrate acceptable conditions and limits for these compounds in wastes sent to the tank farms. The primary parameter of this phase of the test program was measuring the formation of solids during evaporation in order to assess the compatibility of the stream with the evaporator and transfer and storage equipment. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW facility melter offgas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and, thus, the composition will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. This report discusses results of evaporation testing of the simulant. Two conditions were tested, one with the simulant at near neutral pH, and a second at alkaline pH. The neutral pH test is comparable to the conditions in the Hanford Effluent Treatment Facility (ETF) evaporator, although that evaporator operates at near atmospheric pressure and tests were done under vacuum. For the alkaline test, the target pH was based on the tank farm corrosion control program requirements, and the test protocol and equipment was comparable to that used for routine evaluation of feed compatibility studies for the 242-A evaporator. One of the

Adamson, Duane J.; Nash, Charles A.; McCabe, Daniel J.; Crawford, Charles L.; Wilmarth, William R.

2014-01-27T23:59:59.000Z

73

Waste Treatment and Immobilation Plant Pretreatment Facility...  

Office of Environmental Management (EM)

Treatment and Immobilation Plant Pretreatment Facility Waste Treatment and Immobilation Plant Pretreatment Facility Full Document and Summary Versions are available for download...

74

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Treatment and Hanford Waste Treatment and Immobilization Plant - June 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - June 2013 June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from May 13 - June 28, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to observe and

75

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from July 31 - August 5, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the hazards analysis (HA) for WTP Low Activity Waste (LAW) Melter Process system. The primary purpose of this HSS field activity was to observe and

76

Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant  

SciTech Connect

The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated spray releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not accurately represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate of droplets suspended in a test chamber and droplet size distribution from a range of prototypic sprays. A novel test method was developed to allow measurement of sprays from small to very large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the aerosol generation rate increases with increasing the orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 ?m and increases the release fraction below this droplet size.

Gauglitz, Phillip A.; Mahoney, Lenna A.; Schonewill, Philip P.; Bontha, Jagannadha R.; Blanchard, Jeremy; Kurath, Dean E.; Daniel, Richard C.; Song, Chen

2013-03-05T23:59:59.000Z

77

WTP Safety Culture Advice Joint Topic (HSEP/TWC)  

NLE Websites -- All DOE Office Websites (Extended Search)

should not be considered a substitute for full HAB consensus on any particular issue. WTP Safety Culture Advice Joint Topic (HSEPTWC) Framing questions for discussion regarding...

78

Waste Treatment Technology Process Development Plan For Hanford Waste Treatment Plant Low Activity Waste Recycle  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242-A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evaluat

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

79

LABORATORY OPTIMIZATION TESTS OF TECHNETIUM DECONTAMINATION OF HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE OFF-GAS CONDENSATE SIMULANT  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task examines the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in greatest abundance in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are low but are also expected to be in measurable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, {sup 241}Pu, and {sup 241}Am. These are present due to their partial volatility and some entrainment in the off-gas system. This report discusses results of optimized {sup 99}Tc decontamination testing of the simulant. Testing examined use of inorganic reducing agents for {sup 99}Tc. Testing focused on minimizing the quantity of sorbents/reactants added, and minimizing mixing time to reach the decontamination targets in this simulant formulation. Stannous chloride and ferrous sulfate were tested as reducing agents to determine the minimum needed to convert soluble pertechnetate to the insoluble technetium dioxide. The reducing agents were tried with and without sorbents.

Taylor-Pashow, K.; Nash, C.; McCabe, D.

2014-09-29T23:59:59.000Z

80

Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture 9 2.1 Background 9 2.2 Scope and Methods 10 2.3 ORP (including DOE-WTP) 11 2.4 BNI 11 2.5 WTP Project 12 3.0 ORP Management of Safety Concerns 15 3.1 Corrective Actions for the 2010 HSS Review 15 3.2 Processes for Managing Issues 16

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture 9 2.1 Background 9 2.2 Scope and Methods 10 2.3 ORP (including DOE-WTP) 11 2.4 BNI 11 2.5 WTP Project 12 3.0 ORP Management of Safety Concerns 15 3.1 Corrective Actions for the 2010 HSS Review 15 3.2 Processes for Managing Issues 16

82

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

83

Preliminary Assessment of the Impact of 2014 Seismic Study on WTP Design  

Energy.gov (U.S. Department of Energy (DOE))

Preliminary Assessment of the Impact of 2014 Seismic Study on WTP Design Carl Costantino, Consultant to DOE Raman Venkata, DOE-WTP-WED,Richland,WA Farhang Ostadan, BNI

84

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2013 October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from October 21-31, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff reviewing the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the WTP Low Activity Waste (LAW) Melter and Off-gas systems, observed a limited portion of the HA for the

85

Development Of A Macro-Batch Qualification Strategy For The Hanford Tank Waste Treatment And Immobilization Plant  

SciTech Connect

The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: Limitations of mixing/blending capability of the Hanford Tank Farm; The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

Herman, Connie C.

2013-09-30T23:59:59.000Z

86

Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant - 13183  

SciTech Connect

The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate, and the release fraction which is the ratio of generation rate to spray flow rate, of droplets suspended in a test chamber and droplet size distribution from prototypic sprays. A novel test method was developed to allow measurement of sprays from small to large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the release fraction decreases with increasing orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 ?m and increases the release fraction below this droplet size. (authors)

Gauglitz, P.A.; Mahoney, L.A.; Schonewill, P.P.; Bontha, J.R.; Blanchard, J.; Kurath, D.E.; Daniel, R.C.; Song, C. [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)

2013-07-01T23:59:59.000Z

87

Management Alert - The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant, IG-0871  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The 2020 Vision One System Proposal The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant DOE/IG-0871 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 3, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert on "The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant" IMMEDIATE CONCERN The Department of Energy is considering a proposal known at the 2020 Vision One System (2020 Vision) that would implement a phased approach to commissioning the $12.2 billion Waste Treatment and Immobilization Plant (WTP). As part of the phased approach, the Low-

88

Department of EneDepartment of Energy Quality Assurance: Design Control for the Waste Treatment and Immobilization Plant at the Hanford Sitergy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Quality Department of Energy Quality Assurance: Design Control for the Waste Treatment and Immobilization Plant at the Hanford Site DOE/IG-0894 September 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Department of Energy Quality Assurance: Design Control for the Waste Treatment and Immobilization Plant at the Hanford Site" INTRODUCTION AND OBJECTIVE The Department of Energy is constructing the $12.2 billion Waste Treatment and Immobilization Plant (WTP) to vitrify approximately 56 million gallons of radioactive and chemically hazardous

89

Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.  

SciTech Connect

This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

Youngs, Robert R.

2007-06-29T23:59:59.000Z

90

ENERGY STAR Score for Wastewater Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

!! !! July 2013 ENERGY STAR Score for Wastewater Treatment Plants in the United States Page 1 ENERGY STAR Score for Wastewater Treatment Plants in the United States Technical Reference OVERVIEW ! The ENERGY STAR Score for Wastewater Treatment Plants applies to primary, secondary, and advanced treatment facilities with or without nutrient removal capacity. The objective of the ENERGY STAR score is to provide a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. To identify the aspects of building activity that are significant drivers of energy

91

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

92

Application of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities  

Energy.gov (U.S. Department of Energy (DOE))

Application of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Farhang Ostadan (BNI) & Raman Venkata (DOE-WTP-WED) Presented by Lisa Anderson (BNI) US DOE NPH Workshop October 25, 2011

93

Independent Oversight Review, Hanford Site Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant, August 2013 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant, August 2013 August 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security (HSS) conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed June 10-14, 2013, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. The scope of this quarterly assessment of construction quality review

94

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are...

95

Giardia Cysts in Wastewater Treatment Plants in Italy  

Science Journals Connector (OSTI)

...global level. The recycling of treated wastewaters...investigation in four wastewater treatment plants in...Giardia cysts in wastewater treatment plants in...global level. The recycling of treated wastewaters...investigation in four wastewater treatment plants in...

Simone M. Cacciò; Marzia De Giacomo; Francesca A. Aulicino; Edoardo Pozio

2003-06-01T23:59:59.000Z

96

CHP and Bioenergy for Landfills and Wastewater Treatment Plants...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Landfills and Wastewater Treatment Plants: Market Opportunities CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities This document explores...

97

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Office of Environmental Management (EM)

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Full Document and Summary Versions...

98

Development And Initial Testing Of Off-Gas Recycle Liquid From The WTP Low Activity Waste Vitrification Process - 14333  

SciTech Connect

The Waste Treatment and Immobilization Plant (WTP) process flow was designed to pre-treat feed from the Hanford tank farms, separate it into a High Level Waste (HLW) and Low Activity Waste (LAW) fraction and vitrify each fraction in separate facilities. Vitrification of the waste generates an aqueous condensate stream from the off-gas processes. This stream originates from two off-gas treatment unit operations, the Submerged Bed Scrubber (SBS) and the Wet Electrospray Precipitator (WESP). Currently, the baseline plan for disposition of the stream from the LAW melter is to recycle it to the Pretreatment facility where it gets evaporated and processed into the LAW melter again. If the Pretreatment facility is not available, the baseline disposition pathway is not viable. Additionally, some components in the stream are volatile at melter temperatures, thereby accumulating to high concentrations in the scrubbed stream. It would be highly beneficial to divert this stream to an alternate disposition path to alleviate the close-coupled operation of the LAW vitrification and Pretreatment facilities, and to improve long-term throughput and efficiency of the WTP system. In order to determine an alternate disposition path for the LAW SBS/WESP Recycle stream, a range of options are being studied. A simulant of the LAW Off-Gas Condensate was developed, based on the projected composition of this stream, and comparison with pilot-scale testing. The primary radionuclide that vaporizes and accumulates in the stream is Tc-99, but small amounts of several other radionuclides are also projected to be present in this stream. The processes being investigated for managing this stream includes evaporation and radionuclide removal via precipitation and adsorption. During evaporation, it is of interest to investigate the formation of insoluble solids to avoid scaling and plugging of equipment. Key parameters for radionuclide removal include identifying effective precipitation or ion adsorption chemicals, solid-liquid separation methods, and achievable decontamination factors. Results of the radionuclide removal testing indicate that the radionuclides, including Tc-99, can be removed with inorganic sorbents and precipitating agents. Evaporation test results indicate that the simulant can be evaporated to fairly high concentration prior to formation of appreciable solids, but corrosion has not yet been examined.

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.; Taylor-Pashow, Kathryn M.; Adamson, Duane J.; Crawford, Charles L.; Morse, Megan M.

2014-01-07T23:59:59.000Z

99

Independent Activity Report, Office of River Protection Waste Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection Waste Office of River Protection Waste Treatment Plant and Tank Farms - February 2013 Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms - February 2013 February 2013 Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25] The Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (HS-45) assigned a new Site Lead to provide continuous oversight of activities at the Office of River Protection (ORP) Waste Treatment Plant (WTP) and tank farms. To gain familiarity with the site programs and personnel, the new Site Lead made two trips to the site, which included tours of the WTP construction site

100

Microsoft Word - WTP Report 4-27-07.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report Quality Assurance Standards for the Integrated Control Network at the Hanford Site's Waste Treatment Plant DOE/IG-0764 May 2007 Departmsrrt of Energy Washington, DC 20585 M a y 4, 2007 MEMORANDUM FOR THE SECRETARY FROM: & * Greg ry H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Quality Assurance Standards for the Integrated Coiltrol Network at the Hanford Site's Waste Treatment Plant" Ii1 one of Ihe lai-gcst and illost impoi-krit of its environmental remediation projects, the Department of Energy is constructing a Waste Treatment Plant at its Hanford, Washington site. The $12.2 billion Plant is designed to treat and prepare for disposal 53 million gallons of radioactive and chemically hazardous waste. In December 2000, the

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Calicivirus Removal in a Membrane Bioreactor Wastewater Treatment Plant  

Science Journals Connector (OSTI)

...Membrane Bioreactor Wastewater Treatment Plant Laura C. Sima...capacity of the plant, as the NoV...to calculate a mass balance, which would...activated sludge treatment alone can be...November, when plant operators reported...

Laura C. Sima; Julien Schaeffer; Jean-Claude Le Saux; Sylvain Parnaudeau; Menachem Elimelech; Françoise S. Le Guyader

2011-06-10T23:59:59.000Z

102

Laboratory Scoping Tests Of Decontamination Of Hanford Waste Treatment Plant Low Activity Waste Off-Gas Condensate Simulant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Off-Gas Condensate) from the off-gas system. The baseline plan for disposition of this stream is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility again. Alternate disposition of this stream would eliminate recycling of problematic components, and would enable de-coupled operation of the LAW melter and the Pretreatment Facilities. Eliminating this stream from recycling within WTP would also decrease the LAW vitrification mission duration and quantity of glass waste. This LAW Off-Gas Condensate stream contains components that are volatile at melter temperatures and are problematic for the glass waste form. Because this stream recycles within WTP, these components accumulate in the Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and diverting the stream reduces the halides in the recycled Condensate and is a key outcome of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, identifying a disposition path becomes vitally important. This task seeks to examine the potential treatment of this stream to remove radionuclides and subsequently disposition the decontaminated stream elsewhere, such as the Effluent Treatment Facility (ETF), for example. The treatment process envisioned is very similar to that used for the Actinide Removal Process (ARP) that has been operating for years at the Savannah River Site (SRS), and focuses on using mature radionuclide removal technologies that are also compatible with longterm tank storage and immobilization methods. For this new application, testing is needed to demonstrate acceptable treatment sorbents and precipitating agents and measure decontamination factors for additional radionuclides in this unique waste stream. The origin of this LAW Off-Gas Condensate stream will be the liquids from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover. The soluble components are expected to be mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet and will not be available until the WTP begins operation, but a simulant has been produced based on models, calculations, and comparison with pilot-scale tests. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Off-Gas Condensate stream is Technetium-99 ({sup 99}Tc). Technetium will not be removed from the aqueous waste in the Hanford WTP, and will primarily end up immobilized in the LAW glass by repeated recycle of the off-gas condensate into the LAW melter. Other radionuclides that are also expected to be in appreciable concentration in the LAW Off-Gas Condensate are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. This report discusses results of preliminary radionuclide decontamination testing of the simulant. Testing examined use of Monosodium Titanate (MST) to remove {sup 90}Sr and actinides, inorganic reducing agents for {sup 99}Tc, and zeolites for {sup 137}Cs. Test results indicate that excellent removal of {sup 99}Tc was achieved using Sn(II)Cl{sub 2} as a reductant, coupled with sorption onto hydroxyapatite, even in the presence of air and at room temperature. This process was very effective at neutral pH, with a Decontamination Factor (DF) >577 in two hours. It was less effective at alkaline pH. Conversely, removal of the cesium was more effective at alka

Taylor-Pashow, Kathryn M.; Nash, Charles A.; Crawford, Charles L.; McCabe, Daniel J.; Wilmarth, William R.

2014-01-21T23:59:59.000Z

103

Summary - System Planning for Low-Activity Waste Treatment at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford EM Project: WTP ETR Report Date: November 2008 ETR-18 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's Waste Treatment Plant (WTP) are scheduled for completion in 2017, with radioactive waste processing scheduled to begin in 2019. An estimated 23 to 35 years will then be required to complete high-level waste (HLW) vitrification. However, vitrification of low-activity waste (LAW) may extend the WTP mission duration by decades more if supplemental LAW processing beyond the capacity of the present facility is not incorporated. The purpose of this independent review was to

104

EECBG Success Story: Missouri Water Treatment Plant Upgraded...  

Energy Savers (EERE)

Missouri Water Treatment Plant Upgraded EECBG Success Story: Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water...

105

December 27, 2011, Department letter transmitting the Implementation Plan for Board Recommendation 2011-1, Safety Culture at the Waste Treatment and Immobilization Plant.  

NLE Websites -- All DOE Office Websites (Extended Search)

December 27,2011 December 27,2011 The Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, DC 20004 Dear Mr. Chairman: Enclosed is the Depmiment of Energy's (DOE's) Implementation Plan (IP) for Defense Nuclear Facilities Safety Board (Board) Recommendation 2011-1, Safety Culture at the Waste Treatment and Immobilization Plant (WTP). On June 30, 20 II, the Department accepted Recommendation 20 Il-l in a letter to the Board, which was published in the Federal Register. On August 12,2011, the Board sought additional clarification about this acceptance, and on September 19,2011, I transmitted clarification to the Board, which was also published in the Federal Register. The IP provides DOE's approach to address the Board's three sub-recommendations

106

Independent Oversight Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design, November 18, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Number: HIAR-VSL-2013-11-18 Site: Catholic University of America - Vitreous State Laboratory (VSL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design Date of Activity : 11/18/13 Report Preparer: James O. Low Activity Description/Purpose: Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is

107

Applicaiton of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Farhang Ostadan (BNI) & Raman Venkata (DOE-WTP-WED) Presented by Lisa Anderson (BNI) US DOE NPH Workshop October 25, 2011 Application of the Computer Program SASSI for Seismic SSI Analysis for WTP Facilities, Farhang Ostadan & Raman Venkata, October 25, 2011, Page-2 Background *SASSI computer code was developed in the early 1980's to solve Soil-Structure-Interaction (SSI) problems * Original version of SASSI was based on the direct solution method for embedded structures * Requires that each soil node in the excavated soil volume be an interaction node * Subtraction solution method was introduced in 1998

108

Waste Treatment Plant and Tank Farm Program | Department of Energy  

Office of Environmental Management (EM)

Plant and Tank Farm Program Waste Treatment Plant and Tank Farm Program This photo shows the Pretreatment Facility control room building pad at the Office of River Protection at...

109

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm Going Strong at Water Treatment Plant in Pennsylvania Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram’s Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram's Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE It takes a lot of energy to run a water treatment plant round-the-clock. And pumping 35 million gallons of water a day to hundreds of thousands businesses and residents can get expensive.

110

Iowa's first electrodialysis reversal water treatment plant  

Science Journals Connector (OSTI)

In 1979 the City of Washington was notified by the Iowa Department of Natural Resources (IDNR) that the City was in violation of the radium standard for drinking water. The City of Washington authorized an engineering study to determine the most cost-effective and practical way to remove radium and, at the same time, improve overall water quality. Several possible treatment alternatives were evaluated. It was finally decided to utilize electrodialysis reversal (EDR). Washington obtains its water from three deep wells ranging in capacity from 600–780 gpm. The untreated water withdrawn from the wells first passes through the EDR units. There are three EDR units, each able to produce 285 gpm of finished water. In the future, another EDR unit can be easily added to the other three units, since the new plant was built and plumbed for an additional EDR unit if water demand increased. The Jordan aquifer supply is adequate for current and future needs. The average daily water usage in 1993 was 818,000 gal/d. In order to meet peak flows, it is possible to bypass the EDR units with part of the untreated water and then blend treated and untreated water. The treated water meets IDNR standards of 5.0 pC/L. After the EDR units, the water flows through an aerator where odor-causing gases and carbon dioxide are removed. Aeration reduces the amount of caustic soda and chlorine used in the finished water. The hydrogen sulfide gas leaves the water as it passes through the aerator, and this loss of gas creates less chlorine demand. Total and free chlorine residuals are now detected in every water main of the town, whereas before, the residuals would not be detected in certain area of Washington. Phosphates have been cut back from 7 pounds per day to one pound per day. Better water quality is now being achieved with fewer chemicals added to the finished water. Washington's water treatment plant is the first municipal EDR plant in the State of Iowa and one of the largest municipal installations in the United States.

John Hays

2000-01-01T23:59:59.000Z

111

Independent Oversight Assessment, Waste Treatment and Immobilization Plant- January 2012  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant

112

A New Path Forward for WTP AL Boldt and RI Smith  

NLE Websites -- All DOE Office Websites (Extended Search)

Dick Smith and Al Boldt - thoughts to share with the Tank Waste Committee Not a committee work product A New Path Forward for WTP AL Boldt and RI Smith February 3, 2014...

113

Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants  

E-Print Network (OSTI)

230 D.1.a.8. Activated Sludge Area of Plant 1………………………………….D.2.a.4. Activated Sludge Area of Plant 2………………………………..there were not activated sludge organisms present in the

Abraham, Samantha Margaret

2014-01-01T23:59:59.000Z

114

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

115

ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS  

E-Print Network (OSTI)

ADAPTIVE MODEL BASED CONTROL FOR WASTEWATER TREATMENT PLANTS Arie de Niet1 , Maartje van de Vrugt2.j.boucherie@utwente.nl Abstract In biological wastewater treatment, nitrogen and phosphorous are removed by activated sludge considerably to the increase of energy-efficiency in wastewater treatment. To this end, we introduce

Boucherie, Richard J.

116

Life-cycle assessment of wastewater treatment plants  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

117

Independent Oversight Review, Waste Treatment and Immobilization Plant- January 2013  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process

118

JOINT OPTIMISATION OF SEWER SYSTEM AND TREATMENT PLANT CONTROL  

Science Journals Connector (OSTI)

Large cities in most of the cases are equipped with combined sewer systems discharging to waste water treatment plants. This is also the case for the City of Vienna. This city has just extended its Main Treatm...

HELMUT KROISS

2006-01-01T23:59:59.000Z

119

West Point Treatment Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Point Treatment Plant Biomass Facility Point Treatment Plant Biomass Facility Jump to: navigation, search Name West Point Treatment Plant Biomass Facility Facility West Point Treatment Plant Sector Biomass Facility Type Non-Fossil Waste Location King County, Washington Coordinates 47.5480339°, -121.9836029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5480339,"lon":-121.9836029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

120

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms, February 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HIAR-HANFORD-2013-02-25 HIAR-HANFORD-2013-02-25 Site: Hanford - Office of River Production Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead Dates of Activity : 02/25/13 - 03/07/13 and 03/18-28/13 Report Preparer: Robert E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (HS-45) assigned a new Site Lead to provide continuous oversight of activities at the Office of River Protection (ORP) Waste Treatment Plant (WTP) and tank farms. To gain familiarity with the site programs and personnel, the new Site Lead made

122

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms, February 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIAR-HANFORD-2013-02-25 HIAR-HANFORD-2013-02-25 Site: Hanford - Office of River Production Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead Dates of Activity : 02/25/13 - 03/07/13 and 03/18-28/13 Report Preparer: Robert E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (HS-45) assigned a new Site Lead to provide continuous oversight of activities at the Office of River Protection (ORP) Waste Treatment Plant (WTP) and tank farms. To gain familiarity with the site programs and personnel, the new Site Lead made

123

Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants  

Science Journals Connector (OSTI)

...Removal in Full-Scale Wastewater Treatment Plants Julie L. Zilles Jordan...organisms in two full-scale wastewater treatment plants were estimated to represent...successfully in full-scale wastewater treatment plants (WWTPs), identification...

Julie L. Zilles; Jordan Peccia; Myeong-Woon Kim; Chun-Hsiung Hung; Daniel R. Noguera

2002-06-01T23:59:59.000Z

124

Prediction of wastewater treatment plant performance using artificial neural networks  

Science Journals Connector (OSTI)

Artificial neural networks (ANN) models were developed to predict the performance of a wastewater treatment plant (WWTP) based on past information. The data used in this work were obtained from a major conventional treatment plant in the Greater Cairo district, Egypt, with an average flow rate of 1 million m3/day. Daily records of biochemical oxygen demand (BOD) and suspended solids (SS) concentrations through various stages of the treatment process over 10 months were obtained from the plant laboratory. Exploratory data analysis was used to detect relationships in the data and evaluate data dependence. Two ANN-based models for prediction of BOD and SS concentrations in plant effluent are presented. The appropriate architecture of the neural network models was determined through several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting WWTP performance.

Maged M Hamed; Mona G Khalafallah; Ezzat A Hassanien

2004-01-01T23:59:59.000Z

125

Independent Oversight Review, Hanford Waste Treatment and Immobilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - December 2013 Independent Oversight Review, Hanford Waste Treatment and Immobilization Plant - December 2013 December 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the results of an independent oversight review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed September 9-13, 2013, was the latest in a series of ongoing quarterly assessments of construction quality performed by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS). The scope of this quarterly assessment of construction quality review included observations

126

Independent Oversight Review, Waste Treatment and Immobilization Plant Project- October 2010  

Energy.gov (U.S. Department of Energy (DOE))

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project

127

CHP and Bioenergy for Landfills and Wastewater Treatment Plants: Market Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

Overview of market opportunities for CHP and bioenergy for landfills and wastewater treatment plants

128

Integrated plant for treatment of liquid radwaste  

SciTech Connect

In the early 1980`s, AECL Research, at its Chalk River Laboratories (CRL) site, built a Waste Treatment Centre for managing low-level radioactive aqueous liquid wastes. At present, two industrial liquid waste streams are being routinely treated. One stream originates from the central Decontamination Centre (DC), where reactor components, protective plastic clothing, and respirators are cleaned. The other Active Drain (AD) stream is produced from a large and diverse number of research laboratories and radioisotope production facilities. The two waste streams, totalling about 2500 m per year (0.66 million US gallons), are volume reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO), and tubular reverse osmosis (TRO) membrane technologies; two thin-film evaporators (TFE) are employed for (i) the final volume reduction step, and (ii) the subsequent solidification of evaporator bottom with bitumen for containment of the radioactivity.

Sen Gupta, S.K. [Chalk River Laboratories, Ontario (Canada)

1995-05-01T23:59:59.000Z

129

Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant  

E-Print Network (OSTI)

Training Field, 2004) 6 Figure 2. Layout of the Fire Training Field (Map of Brayton Fire Training Field and Disaster City, 2004 ) 7 TREATMENT PLANT UNITS The wastewater treatment plant consists of four basic units, namely...-Blaze contains several strains of non-pathogenic, spore forming, facultative bacteria, Bacillus, along with a surfactant and nutrients sufficient for biodegradation. The physical characteristics listed for the product (Micro Blaze Spill Control, 2004...

Basu, Pradipta Ranjan

2005-08-29T23:59:59.000Z

130

Radiological Monitoring of Waste Treatment Plant  

SciTech Connect

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M. [Physics Dept, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nik, H. W. [Asialab (Malaysia) Sdn Bhd, 14 Jalan Industri USJ 1, 47600 Subang Jaya (Malaysia)

2011-03-30T23:59:59.000Z

131

Hanford Waste Treatment and Immobilization Plant Construction Quality, August 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Review Report Independent Review Report Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1 4.0 Results .................................................................................................................................................. 2

132

EIS-0224: Southeast Regional Wastewater Treatment Plant Facilities Improvements  

Energy.gov (U.S. Department of Energy (DOE))

"This EIS analyzes the Lake County Sanitation District joint venture with the geothermal industry, specifically the Northern California Power Agency, Calpine Corporation (Calpine), and Pacific Gas and Electric Company, to develop a plan for disposal of secondary-treated effluent from the Southeast Regional Wastewater Treatment Plant near the City of Clearlake, California, in the Southeast Geysers Geothermal Steam Field."

133

Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains  

E-Print Network (OSTI)

Treated wastewater discharged from municipal wastewater treatment plants (WWTPs) contains to provide rapid, field-ready, inexpen- sive testing of these chemicals in wastewater is also needed estrogenic chemicals, and 2) develop sensor technology for the rapid measure- ment in wastewater of two key

Fay, Noah

134

Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal  

Science Journals Connector (OSTI)

A pilot plant had been built to test the behaviour of ultrafiltration (UF), reverse osmosis (RO), and electrodialysis reversal (EDR) in order to improve the quality of the water supplied to Barcelona metropolitan area from the Llobregat River. This paper presents results from two studies to reduce natural radioactivity. The results from the pilot plant with four different scenarios were used to design the full-scale treatment plant built (SJD WTP). The samples taken at different steps of the treatment were analysed to determine gross alpha, gross beta and uranium activity. The results obtained revealed a significant improvement in the radiological water quality provided by both membrane techniques (RO and EDR showed removal rates higher than 60%). However, UF did not show any significant removal capacity for gross alpha, gross beta or uranium activities. RO was better at reducing the radiological parameters studied and this treatment was selected and applied at the full scale treatment plant. The RO treatment used at the SJD WTP reduced the concentration of both gross alpha and gross beta activities and also produced water of high quality with an average removal of 95% for gross alpha activity and almost 93% for gross beta activity at the treatment plant.

M. Montaña; A. Camacho; I. Serrano; R. Devesa; L. Matia; I. Vallés

2013-01-01T23:59:59.000Z

135

Microsoft PowerPoint - 6- 02 final - Next generation melter deploymet at WTP - Nov10.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ron Calmus, WRPS Ron Calmus, WRPS Ron Calmus, WRPS Terry Sams, WRPS Terry Sams, WRPS Deployment Plan Overview for Next Deployment Plan Overview for Next Generation Melter at WTP Generation Melter at WTP November 17, 2010 November 17, 2010 Print Close Tank Operations Contract 2 Presentation Outline  Introduction and Background  Project Goals and Objectives  Key Programmatic Decisions  New Generation Melters (NGM) Development and Deployment Planning (AJHCM & CCIM)  NGM Development and Deployment Activities and Interfaces  Near-Term NGM Development Costs  Summary - Focus Areas Next Generation Melters 2 Print Close Tank Operations Contract 3 Introduction and Background  National Academy of Sciences (NAS) Recommendations - In 2009 the NAS stated in it's report that:

136

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Facility * LAW - low-activity waste * SSTs -- single-shell tanks * WTP - Waste Treatment and Immobilization Plant 8 Phased Construction and Startup of the WTP...

137

Process waste treatment system upgrades: Clarifier startup at the nonradiological wastewater treatment plant  

SciTech Connect

The Waste Management Operations Division at Oak Ridge National Laboratory recently modified the design of a reactor/clarifier at the Nonradiological Wastewater Treatment Plant, which is now referred to as the Process Waste Treatment Complex--Building 3608, to replace the sludge-blanket softener/clarifier at the Process Waste Treatment Plant, now referred to as the Process Waste Treatment Complex-Building 3544 (PWTC-3544). This work was conducted because periodic hydraulic overloads caused poor water-softening performance in the PWTC-3544 softener, which was detrimental to the performance and operating costs of downstream ion-exchange operations. Over a 2-month time frame, the modified reactor/clarifier was tested with nonradiological wastewater and then with radioactive wastewater to optimize softening performance. Based on performance to date, the new system has operated more effectively than the former one, with reduced employee radiological exposure, less downtime, lower costs, and improved effluent quality.

Lucero, A.J.; McTaggart, D.R.; Van Essen, D.C.; Kent, T.E.; West, G.D.; Taylor, P.A.

1998-07-01T23:59:59.000Z

138

Hanford Waste Treatment Plant Sets Massive Protective Shield door in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Sets Massive Protective Shield door Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The 102-ton shield door measures 52 feet wide and 15 feet tall The 102-ton shield door measures 52 feet wide and 15 feet tall The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December.

139

Control of Sludge Recycle Flow in Wastewater Treatment Plants Using Fuzzy Logic Controller  

Science Journals Connector (OSTI)

Sludge recycling system is an important part of wastewater treatment plants, because the lack of control ... almost all of the sludge return system with wastewater treatment plants is simply the ratio by ... appl...

Wangyani

2013-01-01T23:59:59.000Z

140

Involvement of Rhodocyclus-Related Organisms in Phosphorus Removal in Full-Scale Wastewater Treatment Plants  

Science Journals Connector (OSTI)

...removal of phosphorus from the wastewater. Although this process...successfully in full-scale wastewater treatment plants (WWTPs...process plant without nitrate recycling, represented a traditional...the plants treated municipal wastewater with phosphorus concentrations...

Julie L. Zilles; Jordan Peccia; Myeong-Woon Kim; Chun-Hsiung Hung; Daniel R. Noguera

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm – January 2014  

Energy.gov (U.S. Department of Energy (DOE))

Hanford Waste Treatment and Immobilization Plant Engineering Activities and Tank Farm Operations [HIAR-HANFORD-2014-01-13

142

Site-Specific Velocity and Density Model for the Waste Treatment Plant, Hanford, Washington.  

SciTech Connect

This report documents the work conducted under the SBP to develop a shear wave and compressional wave velocity and density model specific to the WTP site. Section 2 provides detailed background information on the WTP site and its underlying geology as well as on the Seismic Boreholes Project activities leading up to the Vs and Vp measurements. In Section 3, methods employed and results obtained are documented for measurements of Vs and Vp velocities in basalts and interbeds. Section 4 provides details on velocity measurements in the sediments underlying the WTP. Borehole gravity measurements of density of the subsurface basalt and sediments are described in Section 5. Section 6 describes the analysis of data presented in section 3-5, and presents the overall velocity and density model for the WTP site.

Rohay, Alan C.; Brouns, Thomas M.

2007-06-27T23:59:59.000Z

143

Energy efficiency in municipal wastewater treatment plants: Technology assessment  

SciTech Connect

The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

NONE

1995-11-01T23:59:59.000Z

144

Degradation of Estrogens by Rhodococcus zopfii and Rhodococcus equi Isolates from Activated Sludge in Wastewater Treatment Plants  

Science Journals Connector (OSTI)

...chromatography-mass spectrometry...flows into wastewater treatment plants. As some...treatment plants, and loss of ecological balance is causing...disruptors at 47 wastewater treatment plants in 13 districts...chromatography-mass spectrometry...

Takeshi Yoshimoto; Fumiko Nagai; Junji Fujimoto; Koichi Watanabe; Harumi Mizukoshi; Takashi Makino; Kazumasa Kimura; Hideyuki Saino; Haruji Sawada; Hiroshi Omura

2004-09-01T23:59:59.000Z

145

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2013 November 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 December 2013 Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations on November 18, 2013, at the Catholic University of America Vitreous State Laboratory (VSL). Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the

146

Voluntary Protection Program Onsite Review, Waste Treatment Plant Hanford Site- June 2010  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether the Waste Treatment Plant Hanford Site is continuing to perform at a level deserving DOE-VPP Star recognition.

147

Voluntary Protection Program Onsite Review, Waste Treatment Plant Construction Project- June 2010  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Waste Treatment Plant Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

148

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network (OSTI)

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500… (more)

Guo, Chenghong

2011-01-01T23:59:59.000Z

149

Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction Site – November 2013  

Energy.gov (U.S. Department of Energy (DOE))

Evaluation to determine whether Bechtel National Inc., Waste Treatment Plant Construction Site is performing at a level deserving DOE-VPP Star recognition.

150

Modification of Norfloxacin by a Microbacterium sp. Strain Isolated from a Wastewater Treatment Plant  

Science Journals Connector (OSTI)

...Microbacterium sp. Strain Isolated from a Wastewater Treatment Plant Dae-Wi Kim 1 Thomas...antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res. 41 :4164-4176...

Dae-Wi Kim; Thomas M. Heinze; Bong-Soo Kim; Laura K. Schnackenberg; Kellie A. Woodling; John B. Sutherland

2011-07-01T23:59:59.000Z

151

Management of NORM-containing processing residuals from hydrocarbons extraction and treatment plants  

Science Journals Connector (OSTI)

......quantity of waste produced...1995, integrated and corrected...model for treatment, storage...and Display System (READY...extraction and treatment plants. | Eni...Industrial Waste 0 Radioisotopes...prevention & control Industry......

F. Devecchi; G. Colombo; R. Fresca Fantoni; S. De Zolt; F. Trotti; C. Zampieri

2009-12-01T23:59:59.000Z

152

ACCEPTED BY WATER ENVIRONMENT RESEARCH ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT  

E-Print Network (OSTI)

of their high rates of chemical consumption. Additionally, chemical scrubbers are ineffective for the removalACCEPTED BY WATER ENVIRONMENT RESEARCH _______ ODOR AND VOC REMOVAL FROM WASTEWATER TREATMENT PLANT of biofilters for sequential removal of H2S and VOCs from wastewater treatment plant waste air. The biofilter

153

Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

Norm Stanley

2011-02-01T23:59:59.000Z

154

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

155

Saving Energy at 24/7 Wastewater Treatment Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy at 24/7 Wastewater Treatment Plant Energy at 24/7 Wastewater Treatment Plant Saving Energy at 24/7 Wastewater Treatment Plant July 29, 2010 - 4:11pm Addthis How does it work? Longview, Texas received $781,900 in Recovery Act funding. Co-generation power plant to save 16,571 kWh annually. Local utility to provide the city $150 rebate for every kW of peak demand reduced. In the city of Longview, Texas, the wastewater treatment facility uses more electricity than any other public building. Making investments to permanently cut energy costs at the plant is important for this East Texas city of approximately 77,000. "Our city has felt the effects of the recession. Several companies have laid 100-200 folks off and many are still waiting to be hired back," said Shawn Raney, a safety specialist with the Longview city government. "The

156

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31T23:59:59.000Z

157

Emergence of Competitive Dominant Ammonia-Oxidizing Bacterial Populations in a Full-Scale Industrial Wastewater Treatment Plant  

Science Journals Connector (OSTI)

...wastewater treatment plants (WWTPs) to...industrial WWTPs to balance the high organic...under normal plant operating conditions...may lead to treatment performance...gallons of wastewater daily, containing...Waltham, Mass.) under the...

Alice C. Layton; Hebe Dionisi; H.-W. Kuo; Kevin G. Robinson; Victoria M. Garrett; Arthur Meyers; Gary S. Sayler

2005-02-01T23:59:59.000Z

158

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010  

Energy.gov (U.S. Department of Energy (DOE))

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010

159

The Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy-Water Nexus: State and Local Roles in Efficiency & Water and Wastewater Treatment Plants.

160

Cost-effective wastewater treatment and recycling in mini-plants using mass integration  

Science Journals Connector (OSTI)

This work illustrates the use of a mass integration approach to cost-effectively reduce wastewater treatment and discharge in mini-industrial plants. The approach focuses on the use of functional analysis, gr...

Ahmad Hamad; Ahmed Aidan; Muataz Douboni

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant – November 2013  

Energy.gov (U.S. Department of Energy (DOE))

Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18

162

Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013  

Energy.gov (U.S. Department of Energy (DOE))

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

163

Water/Wastewater Treatment Plant Field Device Wiring Method Decision Analysis  

E-Print Network (OSTI)

The choice of field device wiring method for water and wastewater treatment plant design is extremely complex and contains many variables. The choice not only affects short-term startup and equipment costs, but also long-term operations...

Dicus, Scott C.

2011-12-16T23:59:59.000Z

164

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

165

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

166

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, November 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

167

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, November 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

168

Accepted Manuscript High occurrence of Hepatitis E virus in samples from wastewater treatment plants in  

E-Print Network (OSTI)

Accepted Manuscript High occurrence of Hepatitis E virus in samples from wastewater treatment-Bianchi, D., Oppliger, A., High occurrence of Hepatitis E virus in samples from wastewater treatment plants MANUSCRIPT Highlights Hepatitis E virus (HEV) was searched in raw and treated wastewater in Switzerland

Alvarez, Nadir

169

Chemical Dust Treatment of Cottonseed for Planting Purposes.  

E-Print Network (OSTI)

... nelilltccl Cottonseecl. Year 1930 1931 1934 ' 1935 Av. ---- 1934 1935 Av. - Fuzzy See -- Acid Delinted Se .L~,.,L.L,,,,J Delinted S W s No. plants in 50 ft. of row Acre yield of lint -# 315 197 269 -- 2 60 Untreated 46 ... 370... 366 232 285 294 Treated 100 ... 458 586 ----- 38 1 ----- 229 578 404 -- 92 300 302 231 -- Untreated ... $24 588 65 6 422 554 488 ---- ... ... ... ... t' Acre yield of M lint -# 2 ... ... ... ----- Av. Treated...

Smith, H. P. (Harris Pearson)

1936-01-01T23:59:59.000Z

170

Hanford Supplemental Treatment: Literature and Modeling Review of SRS HLW Salt Dissolution and Fractional Crystallization  

SciTech Connect

In order to accelerate waste treatment and disposal of Hanford tank waste by 2028, the Department of Energy (DOE) and CH2M Hill Hanford Group (CHG), Inc. are evaluating alternative technologies which will be used in conjunction with the Waste Treatment Plant (WTP) to safely pretreat and immobilize the tank waste. Several technologies (Bulk Vitrification and Steam Reforming) are currently being evaluated for immobilizing the pretreated waste. Since the WTP does not have sufficient capacity to pretreat all the waste going to supplemental treatment by the 2028 milestone, two technologies (Selective Dissolution and Fractional Crystallization) are being considered for pretreatment of salt waste. The scope of this task was to: (1) evaluate the recent Savannah River Site (SRS) Tank 41 dissolution campaign and other literature to provide a more complete understanding of selective dissolution, (2) provide an update on the progress of salt dissolution and modeling activities at SRS, (3) investigate SRS experience and outside literature sources on industrial equipment and experimental results of previous fractional crystallization processes, and (4) evaluate recent Hanford AP104 boildown experiments and modeling results and recommend enhancements to the Environmental Simulation Program (ESP) to improve its predictive capabilities. This report provides a summary of this work and suggested recommendations.

Choi, A. S.; Flach, G. P.; Martino, C. J.; Zamecnik, J. R.; Harris, M. K.; Wilmarth, W. R.; Calloway, T. B.

2005-03-23T23:59:59.000Z

171

Demonstration of membrane aeration panels: City of Geneva Wastewater Treatment Plant. Final report  

SciTech Connect

This report describes the design, construction, and testing of membrane aeration panels at the Marsh Creek wastewater treatment plant (WWTP) in Geneva, NY. The operators at the Geneva plant have undertaken a long-term program to upgrade wastewater treatment processes and lower operating costs. The aging mechanical surface aerators at the Marsh Creek treatment plant were replaced by a state-of-the-art membrane panel system. This fine-bubble diffused air system offers higher oxygen transfer efficiency than surface aerators or other types of fine-bubble diffused-air systems. The project had four objectives: to decrease the amount of electricity used at the plant for aeration; to enable the plant`s existing aeration basins to accommodate higher organic loads and/or nitrify the wastewater should the need arise; to provide an even distribution of dissolved oxygen within the aeration basins to enhance biological wastewater treatment activity; and to provide technical data to assess the performance of the membrane panel system versus other forms of wastewater aeration.

NONE

1995-01-01T23:59:59.000Z

172

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

173

Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control  

Science Journals Connector (OSTI)

Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

Steven J. Balogh; Yabing H. Nollet

2008-01-01T23:59:59.000Z

174

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect

In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-07-06T23:59:59.000Z

175

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect

In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-07-06T23:59:59.000Z

176

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.  

SciTech Connect

In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

177

The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's $12.2 Billion The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels DOE/IG-0863 April 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 25, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels" INTRODUCTION The Office of Inspector General received allegations concerning aspects of the quality assurance program at the Department of Energy's $12.2 billion Waste Treatment and Immobilization Plant

178

Office of River Protection Waste Treatment and Immobilizatin Project Construction Site, Nov. 16-18, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tour and Review of the Office of River Tour and Review of the Office of River Protection Waste Treatment and Immobilization Project Construction Site, November 16-18, 2010 The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit on November 16-18, 2010, at the Office of River Protection Waste Treatment Immobilization Project (WTP) at the Department of Energy (DOE) Hanford Site. The purposes of the visit were to plan and coordinate future HSS oversight activities and to review corrective actions to the most recent HSS review at WTP. The WTP is an industrial complex for separating and vitrifying millions of gallons of radioactive and chemical waste stored at the Hanford site. The WTP complex consists of five major

179

Hanford Waste Treatment Plant places first complex piping module in Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE))

Crews at the Hanford Waste Treatment Plant, also known as the "Vit Plant," placed a 19-ton piping module inside the Pretreatment Facility. The module was lifted over 98-foot-tall walls and lowered into a space that provided less than two inches of clearance on each side and just a few feet on each end. It was set 56 feet above the ground.

180

Gas treatment and by-products recovery of Thailand`s first coke plant  

SciTech Connect

Coke is needed in the blast furnace as the main fuel and chemical reactant and the main product of a coke plant. The second main product of the coke plant is coke oven gas. During treatment of the coke oven gas some coal chemicals like tar, ammonia, sulphur and benzole can be recovered as by-products. Since the market prices for these by-products are rather low and often erratic it does not in most cases justify the investment to recover these products. This is the reason why modern gas treatment plants only remove those impurities from the crude gas which must be removed for technical and environmental reasons. The cleaned gas, however, is a very valuable product as it replaces natural gas in steel work furnaces and can be used by other consumers. The surplus can be combusted in the boiler of a power plant. A good example for an optimal plant layout is the new coke oven facility of Thai Special Steel Industry (TSSI) in Rayong. The paper describes the TSSI`s coke oven gas treatment plant.

Diemer, P.E.; Seyfferth, W. [Krupp Uhde GmbH, Dortmund (Germany)

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ENERGY STAR Score for Wastewater Treatment Plants | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Wastewater Treatment Plants Wastewater Treatment Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

182

Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA  

Science Journals Connector (OSTI)

Wastewater treatment plants (WWTPs) are a potential of source of polycyclic musks in the aquatic environment. In this study, contamination profiles and mass flow of polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[?]-2-benzopyran (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), and HHCB-lactone (oxidation product of HHCB), in two WWTPs, one located in Kentucky (Plant A, rural area) and the other in Georgia (Plant B, urban), USA, were determined. HHCB, AHTN and HHCB-lactone were detected in the influent, effluent, and sludge samples analyzed. The concentrations in wastewater samples varied widely, from 10 to 7030 ng/l, 13 to 5400 ng/l, and 66 to 790 ng/l, for HHCB, AHTN, and HHCB-lactone, respectively. Sludge samples contained HHCB at Plant A and 31 g/day from Plant B. Mass balance analysis suggested that only 30% of HHCB and AHTN entering the plants was accounted for in the effluent and the sludge. Removal efficiencies of HHCB and AHTN in the two \\{WWTPs\\} ranged from 72% to 98%. In contrast, HHCB-lactone concentrations increased following the treatment. Concentrations of polycyclic musks in sludge were on the order of several parts per million. Incineration of sludge at one plant reduced the concentration of polycyclic musks.

Yuichi Horii; Jessica L. Reiner; Bommanna G. Loganathan; Kurunthachalam Senthil Kumar; Kenneth Sajwan; Kurunthachalam Kannan

2007-01-01T23:59:59.000Z

183

Development and Application of a Model to Estimate Wastewater Treatment Plant Prescription Pharmaceutical Influent Loadings and Concentrations  

Science Journals Connector (OSTI)

A mass balance model was developed to estimate prescription pharmaceutical loadings to municipal wastewater treatment plants via computation of influent concentrations (C IN). Model estimates of C

Karl J. Ottmar; Lisa M. Colosi…

2010-05-01T23:59:59.000Z

184

Determining the Viability of a Hybrid Experiential and Distance Learning Educational Model for Water Treatment Plant Operators in Kentucky.  

E-Print Network (OSTI)

?? Drinking water and wastewater industries are facing a nationwide workforce shortfall of qualified treatment plant operators due to factors including the en masse retirement… (more)

Fattic, Jana R.

2011-01-01T23:59:59.000Z

185

Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry – Modeling and simulation  

Science Journals Connector (OSTI)

Abstract Greenhouse gas (GHG) emission and energy consumption in wastewater treatment plants (WWTPs) of the pulp and paper industry were modeled and estimated. Aerobic, anaerobic, and hybrid biological processes were used for the removal of contaminants. In addition to the removal of carbonaceous compounds, anaerobic digestion of the produced sludge and the removal of excess nitrogen in the effluent of treatment plants by nitrification/denitrification processes were incorporated in the model. Carbon dioxide, methane, and nitrous oxide were the major \\{GHGs\\} generated during the biological treatment, combustion, energy generation, and transportation. The generated biogas from the anaerobic processes was assumed to be recovered and used as a source of energy for the treatment plant, in an effort to reduce GHG emissions while decreasing the total energy needs of the WWTP. The established kinetic relationships of wastewater treatment processes along with mass and energy balances were employed for the simulation of different treatment systems and estimation of GHG emissions. Various sources of GHG emission were divided into on-site and off-site sources to simplify the modeling and simulation procedure. The overall GHG generation in the presence of biogas recovery was equal to 1.576, 3.026, and 3.271 kg CO2-equivalent/kg BOD by the three examined systems. The energy produced by the recovery and combustion of biogas could exceed the energy demands of all different treatment plants examined in this study and reduce off-site GHG emission. The generation of \\{GHGs\\} from aerobic and hybrid processes increased by 27% and 33.2%, respectively, when N2O emission from nitrogen removal processes was taken into consideration.

Omid Ashrafi; Laleh Yerushalmi; Fariborz Haghighat

2013-01-01T23:59:59.000Z

186

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 1 4.0 Methodology ........................................................................................................................................

187

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

188

Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, December 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant Construction Quality December 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope .................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

189

EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE))

In the city of Longview, Texas, the wastewater treatment facility uses more electricity than any other public building. City officials were able to fund a new co-generation power plant and energy efficiency upgrades at the facility through a $781,900 Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

190

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network (OSTI)

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater Carlos García-Diéguez 1 , Olivier Bernard 2 , Enrique Roca 1, * 1 USC ­ PRODES for winery effluent wastewater. A new reduced stoichiometric matrix was identified and the kinetic parameters

Boyer, Edmond

191

Modeling and analysis of pumps in a wastewater treatment plant: A data-mining approach  

E-Print Network (OSTI)

Modeling and analysis of pumps in a wastewater treatment plant: A data-mining approach Andrew Available online 28 April 2013 Keywords: Data mining Pump modeling Multi-layer perceptron neural network Time series Pump scheduling and controlling Energy consumption a b s t r a c t A data-mining approach

Kusiak, Andrew

192

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 1 4.0 Methodology ........................................................................................................................................

193

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, March 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 March 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

194

A comprehensive substance flow analysis of a municipal wastewater and sludge treatment plant  

Science Journals Connector (OSTI)

Abstract The fate of total organic carbon, 32 elements (Al, Ag, As, Ba, Be, Br, Ca, Cd, Cl, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, N, Na, Ni, P, Pb, S, Sb, Se, Sn, Sr, Ti, V, and Zn) and 4 groups of organic pollutants (linear alkylbenzene sulfonates, bis(2-ethylhexyl)phthalate, polychlorinated biphenyl and polycyclic aromatic hydrocarbons) in a conventional wastewater treatment plant were assessed. Mass balances showed reasonable closures for most of the elements. However, gaseous emissions were accompanied by large uncertainties and show the limitation of mass balance based substance flow analysis. Based on the assessment, it is evident that both inorganic and organic elements accumulated in the sewage sludge, with the exception of elements that are highly soluble or degradable by wastewater and sludge treatment processes. The majority of metals and metalloids were further accumulated in the incineration ash, while the organic pollutants were effectively destroyed by both biological and thermal processes. Side streams from the sludge treatment process (dewatering and incineration) back to the wastewater treatment represented less than 1% of the total volume entering the wastewater treatment processes, but represented significant substance flows. In contrast, the contribution by spent water from the flue gas treatment process was almost negligible. Screening of human and eco-toxicity by applying the consensus-based environmental impact assessment method \\{USEtox\\} addressing 15 inorganic constituents showed that removal of inorganic constituents by the wastewater treatment plant reduced the toxic impact potential by 87–92%.

H. Yoshida; T.H. Christensen; T. Guildal; C. Scheutz

2013-01-01T23:59:59.000Z

195

Characterisation and Evaluation of Wastes for Treatment in the Batch Pyrolysis Plant in Studsvik, Sweden - 13586  

SciTech Connect

The new batch pyrolysis plant in Studsvik is built primarily for treatment of uranium containing dry active waste, 'DAW'. Several other waste types have been identified that are considered or assumed suitable for treatment in the pyrolysis plant because of the possibility to carefully control the atmosphere and temperature of the thermal treatment. These waste types must be characterised and an evaluation must be made with a BAT perspective. Studsvik have performed or plan to perform lab scale pyrolysis tests on a number of different waste types. These include: - Pyrophoric materials (uranium shavings), - Uranium chemicals that must be oxidised prior to being deposited in repository, - Sludges and oil soaks (this category includes NORM-materials), - Ion exchange resins (both 'free' and solidified/stabilised), - Bitumen solidified waste. Methodology and assessment criteria for various waste types, together with results obtained for the lab scale tests that have been performed, are described. (authors)

Lindberg, Maria; Oesterberg, Carl; Vernersson, Thomas [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, Studsvik Nuclear AB, 611 82 Nykoeping (Sweden)

2013-07-01T23:59:59.000Z

196

Independent Oversight Activity Report for the Observation of...  

Office of Environmental Management (EM)

Report Number: IAR-WTP-2014-03-31 HIAR-WTP-2013-05-13, Activity Report for Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System...

197

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

SciTech Connect

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

198

Fossil organic carbon in wastewater and its fate in treatment plants  

Science Journals Connector (OSTI)

Abstract This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes (13C and 14C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4–14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88–98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39–65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29–50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4–6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.

Yingyu Law; Geraldine E. Jacobsen; Andrew M. Smith; Zhiguo Yuan; Paul Lant

2013-01-01T23:59:59.000Z

199

Optimization of diclofenac quantification from wastewater treatment plant sludge by ultrasonication assisted extraction  

Science Journals Connector (OSTI)

Abstract A rapid quantification method of diclofenac from sludge samples through ultrasonication assisted extraction and solid phase extraction (SPE) was developed and used for the quantification of diclofenac concentrations in sludge samples with liquid chromatography/tandem mass spectrometry (LC–MS/MS). Although the concentration of diclofenac in sludge samples taken from different units of wastewater treatment plants in Istanbul was below the limit of quantification (LOQ; 5 ng/g), an optimized method for sludge samples along with the total mass balances in a wastewater treatment plant can be used to determine the phase with which diclofenac is mostly associated. Hence, the results will provide information on fate and transport of diclofenac, as well as on the necessity of alternative removal processes. In addition, since the optimization procedure is provided in detail, it is possible for other researchers to use this procedure as a starting point for the determination of other emerging pollutants in wastewater sludge samples.

Emel Topuz; Sevgi Sari; Gamze Ozdemir; Egemen Aydin; Elif Pehlivanoglu-Mantas; Didem Okutman Tas

2014-01-01T23:59:59.000Z

200

Perceived Risk and the Siting of a Controversial Wastewater Treatment Plant in Central Texas  

E-Print Network (OSTI)

PERCEIVED RISK AND THE SITING OF A CONTROVERSIAL WASTEWATER TREATMENT PLANT IN CENTRAL TEXAS A Thesis by PAT MORRISON KULTGEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... and guidance during times of confusion and stress. Finally, I am very thankful for the technical help and patient explanations I received from Dr. Li regarding wastewater and watershed management; he always greeted me with a friendly hello that calmed my self...

Kultgen, Pat Morrison

2013-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report  

SciTech Connect

The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

NONE

1995-01-01T23:59:59.000Z

202

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

203

Effect of Wastewater Treatment Plant Effluent on Microbial Function and Community Structure in the Sediment of a Freshwater Stream with Variable Seasonal Flow  

Science Journals Connector (OSTI)

...effects on the oxygen balance. J. Water Pollut...influence of untreated wastewater to aquatic communities...2006. Effects of wastewater treatment plant discharge on ecosystem...bacteria in a municipal wastewater treatment plant. Environ. Sci...

Steven A. Wakelin; Matt J. Colloff; Rai S. Kookana

2008-03-14T23:59:59.000Z

204

Variations in AOC and microbial diversity in an advanced water treatment plant  

Science Journals Connector (OSTI)

Summary The objective of this study was to evaluate the variations in assimilable organic carbon (AOC) and microbial diversities in an advanced water treatment plant. The efficiency of biofiltration on AOC removal using anthracite and granular activated carbon (GAC) as the media was also evaluated through a pilot-scale column experiment. Effects of hydrological factors (seasonal effects and river flow) on AOC concentrations in raw water samples and hydraulic retention time (HRT) of biofiltration on AOC treatment were also evaluated. Results show that AOC concentrations in raw water and clear water of the plant were about 138 and 27 ?g acetate-C/L, respectively. Higher AOC concentrations were observed in wet seasons probably due to the resuspension of organic-contained sediments and discharges of non-point source (NPS) pollutants from the upper catchment. This reveals that seasonal effect played an important role in the variations in influent AOC concentrations. Approximately 82% and 70% of AOC removal efficiencies were observed in GAC and anthracite columns, respectively. Results from column experiment reveal that the applied treatment processes in the plant and biofiltration system were able to remove AOC effectively. Microbial colonization on GAC and anthracite were detected via the observation of scanning electron microscopic (SEM) images. Results of polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and nucleotide sequence analysis reveal significant decrease in microbial diversities after the ozonation process. Higher HRT caused higher microbial contact time, and thus, more microbial colonies and higher microbial diversity were observed in the latter part of the biofilters. Some of the dominant microbial species in the biofiltration columns belonged to the beta-proteobacterium, which might contribute to the AOC degradation. Results of this study provide us insight into the variations in AOC and microbial diversity in the advanced water treatment processes.

B.M. Yang; J.K. Liu; C.C. Chien; R.Y. Surampalli; C.M. Kao

2011-01-01T23:59:59.000Z

205

Estimation of nitrous oxide emissions (GHG) from wastewater treatment plants using closed-loop mass balance and data reconciliation  

Science Journals Connector (OSTI)

The amount of greenhouse gases (GHG), especially, nitrous oxide (N2O) emitted from wastewater treatment plants (WWTP) using data reconciliation and closed-loop mass balance was estimated. This study is based on a...

JungJin Lim; Boddupalli Sankarrao; TaeSeok Oh…

2012-09-01T23:59:59.000Z

206

A case study of mercury and methylmercury dynamics in a Hg-contaminated municipal wastewater treatment plant  

Science Journals Connector (OSTI)

A study of total Hg (Hg) and methylmercury (MeHg) was performed in a 40 mgd capacity municipal sewage treatment plant in which elemental Hg was used as ... the Hg seals with mechanical seals. A mass balance condu...

C. C. Gilmour; N. S. Bloom

1995-02-01T23:59:59.000Z

207

A Case Study of Mercury and Methylmercury Dynamics in a Hg-Contaminated Municipal Wastewater Treatment Plant  

Science Journals Connector (OSTI)

A study of total Hg (Hg) and methylmercury (MeHg) was performed in a 40 mgd capacity municipal sewage treatment plant in which elemental Hg was used as ... the Hg seals with mechanical seals. A mass balance condu...

C. C. Gilmour; N. S. Bloom

1995-01-01T23:59:59.000Z

208

Polycyclic aromatic hydrocarbons in the centralized wastewater treatment plant of a chemical industry zone: Removal, mass balance and source analysis  

Science Journals Connector (OSTI)

Increased attention has been given to the fate of pollutants such as polycyclic aromatic hydrocarbons (PAHs) introduced to the wastewater treatment plants. Dissolved and adsorbed PAHs were detected in the central...

Min Yao; XingWang Zhang; LeCheng Lei

2012-03-01T23:59:59.000Z

209

Occurrence of pharmaceuticals in a municipal wastewater treatment plant: Mass balance and removal processes  

Science Journals Connector (OSTI)

Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals.

Pin Gao; Yunjie Ding; Hui Li; Irene Xagoraraki

2012-01-01T23:59:59.000Z

210

LCA as a Decision Support Tool for the Environmental Improvement of the Operation of a Municipal Wastewater Treatment Plant  

Science Journals Connector (OSTI)

LCA as a Decision Support Tool for the Environmental Improvement of the Operation of a Municipal Wastewater Treatment Plant ... Environmental diagnosis and improvement assessment (based on LCA) of sludge final disposal and biogas use alternatives for a municipal wastewater treatment plant. ... Life cycle assessment (LCA) methodology is used to evaluate the environmental profile of a product or process from its origin to its final destination. ...

Jorgelina C. Pasqualino; Montse Meneses; Montserrat Abella; Francesc Castells

2009-04-06T23:59:59.000Z

211

Abatement efficiency of municipal wastewater treatment plants using different technologies (Orbetello Lagoon, Italy)  

Science Journals Connector (OSTI)

Two small-scale municipal wastewater treatment plants (Neghelli and Terrarossa) discharging effluents into a lagoon of great environmental interest and highly stressed by tourism (Orbetello, Italy) were monitored over the year 2001. We evaluated plants' performances developing a general efficiency indicator of removal to select the suitable purification technology (activated sludge, Neghelli vs. rotating biodisc reactor, Terrarossa). Unexpected, conventional technologies (activated sludge) had best performances (84% vs. 62%) with higher removal efficiencies for dissolved nutrients producing, on average, better final effluents. Even if Terrarossa showed a great improvement in summertime, during winter it seemed to be considerably affected by sea aerosol. Before the final discharge in lagoon, effluents were phytodepurated in a pond to reduce their nutrient load. Although data showed that the pond had further abatement efficiency over 80%, final outlet water represented a dangerous input for the lagoon ecosystem.

Monia Renzi; Guido Perra; Cristiana Guerranti; Enrica Franchi; Silvia Focardi

2009-01-01T23:59:59.000Z

212

Control System Development for Integrated Biological Waste Water Treatment Process of a Paper Production Plant  

Science Journals Connector (OSTI)

Abstract A bioreactor, integrated with an anoxic reactor and a settler for waste water treatment from a paper production plant is under investigation to implement a control system for enhancing effluent quality. In order to reveal the operation of the integrated process to achieve a specific goal, a methodology for control system development is proposed. In this paper, preliminary results of some steps of the methodology are presented, in order to address the oxygen uptake rate control. A dynamic model is developed for future analysis for the conceptual design of different generated control configurations.

Alicia Román-Martínez; Pastor Lanuza-Perez; Margarito Cepeda-Rodríguez; Elvia M. Mata-Padrón

2013-01-01T23:59:59.000Z

213

Data evaluation of full-scale wastewater treatment plants by mass balance  

Science Journals Connector (OSTI)

Measured data of wastewater treatment plants (WWTPs) often contains errors. These errors can prohibit the use of WWTP data for process evaluation, process design, benchmarking or modelling purposes. In this paper a practical stepwise methodology is presented to check WWTP data using mass balances. The presented results show that poor WWTP data quality leads to large errors when calculating key operational conditions such as the solids retention time (SRT), oxygen consumption (OC) and the different internal conversions rates. By improving WWTP data quality using mass balance calculations useful new information becomes available for process evaluation, \\{WWTPs\\} design and benchmarking.

S. Puig; M.C.M. van Loosdrecht; J. Colprim; S.C.F. Meijer

2008-01-01T23:59:59.000Z

214

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume IV S-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect

In this volume (IV), all S-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. S-wave measurements were performed over the depth range of 370 to 1300 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Shear (S) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition, a second average shear wave record was recorded by reversing the polarity of the motion of the T-Rex base plate. In this sense, all the signals recorded in the field were averaged signals. In all cases, the base plate was moving perpendicular to a radial line between the base plate and the borehole which is in and out of the plane of the figure shown in Figure 1.1. The definition of “in-line”, “cross-line”, “forward”, and “reversed” directions in items 2 and 3 of Section 2 was based on the moving direction of the base plate. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas (UT) was embedded near the borehole at about 1.5 ft below the ground surface. The Redpath geophone and the UT geophone were properly aligned so that one of the horizontal components in each geophone was aligned with the direction of horizontal shaking of the T-Rex base plate. This volume is organized into 12 sections as follows. Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vs Profile at Borehole C4993, Sections 4 to 6: Unfiltered S-wave records of lower horizontal receiver, reaction mass, and reference receiver, respectively, Sections 7 to 9: Filtered S-wave signals of lower horizontal receiver, reaction mass and reference receiver, respectively, Section 10: Expanded and filtered S-wave signals of lower horizontal receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower horizontal receiver signals, respectively.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

215

Recommendations for damping and treatment of modeling uncertainty in seismic analysis of CANDU nuclear power plant  

SciTech Connect

The seismic analysis of the CANDU nuclear power plant is governed by Canadian Standard series N289. However, the dynamic analysis of some equipment and system such as the CANDU reactor and fueling machine must treat unique components not directly covered by the broad recommendations of these standards. This paper looks at the damping values and treatment of modeling uncertainty recommended by CSA N289.3, the current state of knowledge and expert opinion as reflected in several current standards, testing results, and the unique aspects of the CANDU system. Damping values are recommended for the component parts of the CANDU reactor and fueling machine system: reactor building, calandria vault, calandria, fuel channel, pressure tube, fueling machine and support structure. Recommendations for treatment of modeling and other uncertainties are also presented.

Usmani, S.A. [Atomic Energy of Canada, Ltd., Mississauga, Ontario (Canada); Baughman, P.D. [EQE International, Stratham, NH (United States)

1996-12-01T23:59:59.000Z

216

In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant  

E-Print Network (OSTI)

wastewater treatment plant Fei Zhang a , Zheng Ge a , Julien Grimaud b , Jim Hurst b , Zhen He a: Microbial fuel cells Wastewater treatment Organic removal Aeration Activated sludge a b s t r a c of wastewater quality, and other operating conditions. Unlike prior lab stud- ies by others, the results

217

Cs-137 in the Savannah River and the Beaufort-Jasper and Port Wentworth water-treatment plants  

SciTech Connect

Cesium-137 concentration measurements made in 1965 are reported for the Savannah River above and below the Savannah River Plant (SRP) and for the Beaufort-Jasper and Port Wentworth water treatment plants down river. These concentrations, measured when four SRP reactors (C, K, L, and P) were operating, were used to estimate Cs-137 reduction ratios for transport in the Savannah River and across each water treatment plant. In 1965 there was a 48% reduction in the Cs-137 concentration in the Savannah River between Highway 301 and the water treatment plant inlet points. Measured Cs-137 values in the finished water from Port Wentworth and the Beaufort-Jasper water treatment plants showed an 80% and 98% reduction in concentration level, respectively, when compared to Cs-137 concentration at Highway 301. The lower Cs-137 concentration (0.04 pCi/l) in the Beaufort-Jasper finished water is attributed to dilution in the canal from inflow of surface water (40%) and sediment cleanup processes that take place in the open portions of the canal (about 17 to 18 miles). Using the 1965 data, maximum Cs-137 concentrations expected in finished water in the Beaufort-Jasper and Port Wentworth water treatment plants following L-Reactor startup were recalculated. The recalculated values are 0.01 and 0.09 pCi/l for Beaufort-Jasper and Port Wentworth, respectively, compared to the 1.05 pCi/l value in the Environmental Assessment.

Hayes, D.W.; Boni, A.L.

1983-01-10T23:59:59.000Z

218

Fate of anthropogenic cyclic volatile methylsiloxanes in a wastewater treatment plant  

Science Journals Connector (OSTI)

Abstract The fate of cyclic volatile methylsiloxanes (cVMS) – octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) – was evaluated in a typical secondary activated sludge wastewater treatment plant (WWTP). Water samples (influent, primary effluent, and final effluent) and sludge (primary sludge and waste activated sludge) samples were collected at overnight low, morning high, afternoon low, and evening high flows. Concentrations of cVMS in influents fluctuated with the influent flows, ranging from 0.166 to 1.13 ?g L?1, 3.47–19.3 ?g L?1, and 0.446–3.87 ?g L?1 for D4, D5, and D6, respectively. Mass balance analysis of cVMS showed the average mass of D4, D5, and D6 entering and exiting the plant in influent and effluent, respectively, were 109 g d?1, 2050 g d?1, 280 g d?1, and 1.41 g d?1, 27.0 g d?1, 1.90 g d?1. The total removal efficiency of cVMS was >96%. To elucidate their detailed removal mechanisms, Mackay's fugacity-based treatment plant model was used to simulate the fate of cVMS through the WWTP. Due to the unusual combination of high hydrophobicity and volatility of cVMS, volatilization in the aeration tank and adsorption to sludge were the two main pathways of cVMS removal from water in this WWTP based on the experimental and modeled results. The morning and evening high influent mass flows contributed almost equally at approximately 40% of the total daily cVMS mass, with D5 accounting for the majority of this daily loading.

De-Gao Wang; Monica Aggarwal; Tara Tait; Samantha Brimble; Grazina Pacepavicius; Laura Kinsman; Mike Theocharides; Shirley Anne Smyth; Mehran Alaee

2014-01-01T23:59:59.000Z

219

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.  

SciTech Connect

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

2010-10-01T23:59:59.000Z

220

CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45)  

Office of Legacy Management (LM)

CERTIFICATION DOCKET CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45) AND THE EFFLUENT RECEIVING AREAS OF ACID, PUEBLO, AND LOS ALAMOS CANYOM, LOS ALAMOS, NEW MEXICO DEPARTMENT OF ENERGY Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects -. CONTENTS A Page - Introduction to the Certification Docket for the Former Site of the Radioactive Liquid Waste Treatment Plant (TA-45) and the Effluent Receiving Areas of Acid, Pueblo, and Los Alamos Canyons, Los Alamos, New Mexico Description of the Formeriy Utilized Sites Program at the Former Site of the T.4-45 Treatment Plant and Acid, Pueblo, and Los Alamos Canyons Purpose Property Identification Docket Contents

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The behaviors and fate of polycyclic aromatic hydrocarbons (PAHs) in a coking wastewater treatment plant  

Science Journals Connector (OSTI)

The occurrence, behaviors and fate of 18 \\{PAHs\\} were investigated in a coking wastewater treatment plant in Songshan coking plant, located in Shaoguan, Guangdong Province of China. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent, sludge and gas samples. In raw coking wastewater, high molecular weight (MW) \\{PAHs\\} were the dominant compounds, while 3–6 ring \\{PAHs\\} predominated in the final effluent. The dominant compounds in gas samples were phenathrene, fluoranthene and pyrene, while they were fluoranthene, pyrene, chrysene and benzo[k]fluoranthene for sludge. The process achieved over 97% removal for all the PAHs, 47–92% of eliminations of these target compounds in liquid phase were achieved in biological stage. Different behaviors of \\{PAHs\\} were observed in the primary tank, anaerobic tank, aerobic tank, hydrolytic tank and coagulation tank units, while heavier and lower ones were mainly removed in anaerobic tank and aerobic tanks, respectively. Regarding the fate of PAHs, calculated fractions of mass losses for low MW \\{PAHs\\} due to transformation and adsorption to sludge accounted for 15–50% and 24–49%, respectively, while the rest was less than 1%. For high MW PAHs, the mass losses were mainly due to adsorption to sludge and separation with tar (contributing 56–76% and 22–39%, respectively), and the removal through transformation was less.

Wanhui Zhang; Chaohai Wei; Xinsheng Chai; Jingying He; Ying Cai; Man Ren; Bo Yan; Pingan Peng; Jiamo Fu

2012-01-01T23:59:59.000Z

222

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

SciTech Connect

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

223

Wastewater treatment and energy : an analysis on the feasibility of using renewable energy to power wastewater treatment plants in Singapore  

E-Print Network (OSTI)

Wastewater treatment is a very energy intensive industry. Singapore has a state-of-the-art wastewater treatment system that uses a number of sustainable techniques that greatly improve its overall efficiency. The centralized ...

Foley, Kevin John

2010-01-01T23:59:59.000Z

224

Effectiveness of purification processes in removing algae from Vaal Dam water at the Rand Water Zuikerbosch treatment plant in Vereeniging / H. Ewerts.  

E-Print Network (OSTI)

??The aim of this study was to investigate the efficacy of purification processes at the Rand Water Zuikerbosch treatment plant near Vereeniging. Raw water is… (more)

Ewerts, Hendrik

2010-01-01T23:59:59.000Z

225

Bechtel National Inc. Consent Order NCO-2010-03  

Office of Environmental Management (EM)

contractor for the Waste Treatment and Immobilization Plant (WTP) located at the Hanford Site. BNI uses many vendors to supply the project with nuclear safety-related...

226

Department of Energy Releases Proposal to Amend the Hanford Consent...  

Energy Savers (EERE)

of radioactive and chemical wastes, which are currently stored in 177 underground tanks. The Waste Treatment and Immobilization Plant (WTP) is a massive and complex...

227

United States Government Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and deploy technologies to support Waste Treatment and Immobilization Plant (WTP) operations in FY 2019; *conduct Pretreatment Engineering Platform (PEP) Phase 11 testing;...

228

Microsoft Word - FINAL_TWC_Feb08_summary.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

system would provide acceptable low activity waste feed for the early operations of the Waste Treatment Plant (WTP) andor the operation of the supplemental low activity waste...

229

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal Facility * LAW - low-activity waste * SSTs -- single-shell tanks * WTP - Waste Treatment and Immobilization Plant "DraftPreliminary Analysis" - "Confidential...

230

Microsoft Word - FINAL_Feb08HAB_Summary.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

job. Among other responsibilities, Jane said the section covers permitting for the Waste Treatment and Immobilization Plant (WTP), permitting and operation of Integrated Disposal...

231

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

SciTech Connect

The results of the feasibility study for utilizing low temperature geothermal heat in the City of San Bernardino Wastewater Treatment Plant are summarized. The study is presented in terms of preliminary engineering design, economic analysis, institutional issues, environmental impacts, resource development, and system implementation.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

232

A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system  

SciTech Connect

At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K. [Power and Industrial Research and Development Center, Toshiba Corporation Power Systems Company, 4-1 Ukishima-cho, Kawasaki-ku, Kawasaki 210-0862 (Japan); Oomori, T. [Chemical System Design and Engineering Department, Toshiba Corporation Power Systems Company, 8 Shinsugita-cho, Isogo-ku, Yokohama 235-8523 (Japan)

2013-07-01T23:59:59.000Z

233

Treatment of effluents from wool dyeing process by photo-Fenton at solar pilot plant  

Science Journals Connector (OSTI)

Abstract The decolourization and mineralization of simulated wastewaters from wool dyeing tanks were investigated by Fenton and photo-Fenton processes. Yellow, red and blue dyebaths with azo-type and anthraquinone dyes and additives were selected as colored effluents. Photo-Fenton reaction was much more efficient than the respective dark reaction under identical experimental conditions. The effect of H2O2 and Fe(II) dosage and fractional or initial addition of these reagents on the photo-mineralization processes were studied and the optimal conditions found. Experiments at a pilot plant based on compound parabolic collectors (CPCs) confirmed that, under optimal conditions, 100% of color removal was obtained requiring low accumulated energy. No toxic effects on marine bacteria Vibrio fischeri were observed at the end of photo-Fenton treatment for all studied effluents. High concentrations of sodium acetate are used as additive in the wool dying process. HPLC and TOC analysis of the effluents after photo-Fenton process confirmed that the remaining organic carbon is due to the presence of acetates. The obtained results showed the feasibility of photo-Fenton process to achieve suitable water qualities for internal reuse.

M.J. Hernández-Rodríguez; C. Fernández-Rodríguez; J.M. Doña-Rodríguez; O.M. González-Díaz; D. Zerbani; J. Pérez Peña

2014-01-01T23:59:59.000Z

234

A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants  

SciTech Connect

The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

2012-11-15T23:59:59.000Z

235

Advanced Feed Water and Cooling Water Treatment at Combined Cycle Power Plant  

Science Journals Connector (OSTI)

Tokyo Gas Yokosuka Power Station is an IPP combined cycle power plant supplied by Fuji Electric Systems...

Ryo Takeishi; Kunihiko Hamada; Ichiro Myogan…

2007-01-01T23:59:59.000Z

236

A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site  

SciTech Connect

This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energy’s (DOE’s) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratory’s (PNNL’s) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

2010-12-01T23:59:59.000Z

237

2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

Mike Lewis

2014-02-01T23:59:59.000Z

238

Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater  

SciTech Connect

TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

Terry Yost; Paul Pier; Gregory Brodie

2007-12-31T23:59:59.000Z

239

Chernobyl NPP: Completion of LRW Treatment Plant and LRW Management on Site - 12568  

SciTech Connect

Since a beginning of ChNPP operation, and after a tragedy in 1986, a few thousands m3 of LRW have been collected in a storage tanks. In 2004 ChNPP started the new project on creation of LRW treatment plant (LRWTP) financed from EBRD fund. But it was stopped in 2008 because of financial and contract problems. In 2010 SIA RADON jointly with Ukrainian partners has won a tender on completion of LRWTP, in particular I and C system. The purpose of LRTP is to process liquid rad-wastes from SSE 'Chernobyl NPP' site and those liquids stored in the LRWS and SLRWS tanks as well as the would-be wastes after ChNPP Power Units 1, 2 and 3 decommissioning. The LRTP design lifetime - 20 years. Currently, the LRTP is getting ready to perform the following activities: 1. retrieval of waste from tanks stored at ChNPP LWS using waste retrieval system with existing equipment involved; 2. transfer of retrieved waste into LRTP reception tanks with partial use of existing transfer pipelines; 3. laboratory chemical and radiochemical analysis of reception tanks contest to define the full spectrum of characteristics before processing, to acknowledge the necessity of preliminary processing and to select end product recipe; 4. preliminary processing of the waste to meet the requirements for further stages of the process; 5. shrinkage (concentrating) of preliminary processed waste; 6. solidification of preliminary processed waste with concrete to make a solid-state (end product) and load of concrete compound into 200-l drums; 7. curing of end product drums in LRTP curing hall; 8. radiologic monitoring of end product drums and their loading into special overpacks; 9. overpack radiological monitoring; 10. send for disposal (ICSRM Lot 3); The current technical decisions allow to control and return to ChNPP of process media and supporting systems outputs until they satisfy the following quality norms: salt content: < 100 g/l; pH: 1 - 11; anionic surface-active agent: < 25 mg/l; oil dissipated in the liquid: < 2 mg/l; overall gamma-activity: < 3,7 x10{sup 5} Bq/l. (authors)

Fedorov, Denis; Adamovich, Dmitry [SIA 'RADON', Moscow (Russian Federation); Klimenko, I.; Taranenko, L. [IVL Engineering, Kiev (Ukraine)

2012-07-01T23:59:59.000Z

240

Plant reestablishment after soil disturbance: Effects of soils, treatment, and time  

SciTech Connect

The Pacific Northwest Laboratory examined plant growth and establishment on 16 sites where severe land disturbance had taken place. The purpose of the study was to evaluate the relative effectiveness of the different methods in term of their effects on establishment of native and alien plants. Disturbances ranged from 1 to 50 years in age. Revegetation using native plants had been attempted at 14 of the sites; the remainder were abandoned without any further management. Revegetation efforts variously included seeding, fertilizer application, mulching with various organic sources, compost application, application of Warden silt loam topsoil over sand and gravel soils, and moderate irrigation.

Brandt, C.A.; Alford, K.; McIlveny, G.; Tijerina, A.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China  

Science Journals Connector (OSTI)

Abstract Wastewater treatment plants (WWTPs) are regarded as one of the most important sources of antibiotics in the environment. Two sampling campaigns over a period of one year in two wastewater treatment plants (plant A: activated sludge with chlorination, and plant B: oxidation ditch with UV) of Guangdong Province, China were carried out to assess the occurrence and fate of 11 classes of 50 antibiotics. The wastewater samples were extracted by Oasis HLB cartridges (6 mL, 500 mg), while the solid samples (sludge and suspended solid matter) were extracted by ultrasonic-assisted extraction with solvents (acetonitrile and citric acid buffer), followed by an enrichment and clean-up step with solid-phase extraction using SAX-HLB cartridges in tandem. The results showed the presence of 20 and 17 target compounds in the influents and effluents, respectively, at the concentrations ranging from low ng/L to a few ?g/L. Sulfamethoxazole, norfloxacin, ofloxacin, anhydro erythromycin and trimethoprim were most frequently detected in the \\{WWTPs\\} wastewaters. Twenty-one antibiotics were found in the sewage sludge from the two \\{WWTPs\\} at the concentrations up to 5800 ng/g, with tetracycline, oxytetracycline, norfloxacin and ofloxacin being the predominant antibiotics. The total mass loads of antibiotics per capita in the two plants ranged from 494 to 901 ?g/d/inhabitant (672 ± 182 ?g/d/inhabitant) in the influents, from 130 to 238 ?g/d/inhabitant (175 ± 45 ?g/d/inhabitant) in the effluents and from 107 to 307 ?g/d/inhabitant (191 ± 87.9 ?g/d/inhabitant) in the dewatered sludge, respectively. The aqueous removals for sulfonamides, macrolides, trimethoprim, lincomycin and chloramphenicol in the \\{WWTPs\\} were mainly attributed to the degradation processes, while those for tetracyclines and fluoroquinolones were mainly due to the adsorption onto sludge.

Li-Jun Zhou; Guang-Guo Ying; Shan Liu; Jian-Liang Zhao; Bin Yang; Zhi-Feng Chen; Hua-Jie Lai

2013-01-01T23:59:59.000Z

242

Effectiveness of wind-blown sands on treatment of wastewater from coal-fired power plants  

Science Journals Connector (OSTI)

Untreated disposal of wastewater from coal-fired power plants has environmental and public health concerns in ... situ experiment was conducted in the easily accessible wind-blown sands to study their efficiency ...

Yunfeng Li; Weifeng Wan; Wanfang Zhou; Juan Xie; Yaoguo Wu…

2011-11-01T23:59:59.000Z

243

Bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream and effects of triclosan on algal lipid synthesis.  

E-Print Network (OSTI)

??Triclosan (TCS) and triclocarban (TCC), widely used antimicrobial agents found in numerous consumer products, are incompletely removed by wastewater treatment plant (WWTP) processing. Methyl-triclosan (M-TCS)… (more)

Coogan, Melinda Ann

2007-01-01T23:59:59.000Z

244

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

245

Integrated Fault Detection and Isolation: Application to a Winery's Wastewater Treatment Plant  

Science Journals Connector (OSTI)

In this paper, an integrated object-oriented fuzzy logic fault detection and isolation (FDI) module for a biological wastewater treatment process is presented. The defined FDI strategy and the software implementation are detailed. Using experimental ... Keywords: anaerobic digestion, fuzzy logic, object-oriented programming, on-line fault detection and isolation (FDI), wastewater treatment

Antoine Genovesi; Jérôme Harmand; Jean-Philippe Steyer

2000-07-01T23:59:59.000Z

246

Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant Supplemental Volume Table of Contents Foreword ...................................................................................................................................................... iii Acronyms ...................................................................................................................................................... v

247

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

Science Journals Connector (OSTI)

Fossil fuel combustion leads to acidic pollutants like SO2 NOx HCl emission. Different control technologies are proposed however the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First using lime or limestone slurry leads to SO2 capture and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan the USA Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world nowadays. Description of the plant and results obtained has been presented in the paper.

Andrzej G. Chmielewski; Bogdan Tyminski; Zbigniew Zimek; Andrzej Pawelec; Janusz Licki

2003-01-01T23:59:59.000Z

248

Plant species as a significant factor in wastewater treatment in constructed wetlands  

E-Print Network (OSTI)

) in microcosms fed rural septic influent. The water parameters studied were water usage, ammonium-nitrogen, phosphorus, coliforms, suspended solids, BOD, pH, and turbidity. The BOD for all plants was reduced below the standard levels but none were significantly...

Varvel, Tracey W

2013-02-22T23:59:59.000Z

249

Fate of Triclosan and Triclosan-Methyl in Sewage TreatmentPlants and Surface Waters  

Science Journals Connector (OSTI)

The fate of triclosan in diverse stages of two sewage treatment ... two-stage biologic (activated sludge) process removed triclosan more efficiently than the STP with a ... not very effective. The elimination rat...

Kai Bester

2005-07-01T23:59:59.000Z

250

Assessment of sludge management options in a waste water treatment plant  

E-Print Network (OSTI)

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

251

Assessment of an ultrafiltration pre-treatment system for a seawater reverse osmosis plant  

Science Journals Connector (OSTI)

The seawater reverse osmosis system requires extensive pre-treatment in order to ensure reliable performance. The conventional pre-treatment system involves dosing of chemicals, which requires frequent monitoring of raw water quality, and also involves adjusting the dosage. Besides being cumbersome, there is a lot of time lag involved in carrying out these measures. This calls for pre-treatment systems based on physicochemical mechanisms. During the last few years, Ultrafiltration (UF) has emerged as a leading unit operation in order to render raw seawater compatible with reverse osmosis operations. In this context, the Desalination Division of BARC has already installed an operational UF pre-treatment system. In this paper, we examine the role of UF in the overall operations of the seawater reverse osmosis system.

S.A. Tiwari; D. Goswami; S. Prabhakar; P.K. Tewari

2006-01-01T23:59:59.000Z

252

An Exploration of Mercury Soils Treatment Technologies for the Y-12 Plant - 13217  

SciTech Connect

There are a number of areas at the Y-12 National Security Complex (Y-12) that have been contaminated with mercury due to historical mercury use and storage. Remediation of these areas is expected to generate large volumes of waste that are Resource Conservation and Recovery Act (RCRA) characteristically hazardous. These soils will require treatment to meet RCRA Land Disposal Restrictions (LDR) prior to disposal. URS - CH2M Oak Ridge LLC (UCOR) performed a feasibility assessment to evaluate on-site and off-site options for the treatment and disposal of mercury-contaminated soil from the Y-12 Site. The focus of the feasibility assessment was on treatment for disposal at the Environmental Management Waste Management Facility (EMWMF) located on the Oak Ridge Reservation. A two-phase approach was used in the evaluation process of treatment technologies. Phase 1 involved the selection of three vendors to perform treatability studies using their stabilization treatment technology on actual Y-12 soil. Phase II involved a team of waste management specialists performing an in-depth literature review of all available treatment technologies for treating mercury contaminated soil using the following evaluation criteria: effectiveness, feasibility of implementation, and cost. The result of the treatability study and the literature review revealed several viable on-site and off-site treatment options. This paper presents the methodology used by the team in the evaluation of technologies especially as related to EMWMF waste acceptance criteria, the results of the physical treatability studies, and a regulatory analysis for obtaining regulator approval for the treatment/disposal at the EMWMF. (authors)

Wrapp, John [UCOR, P.O. Box 4699, Oak Ridge, TN 37831 (United States)] [UCOR, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Julius, Jonathon [DOE Oak Ridge (United States)] [DOE Oak Ridge (United States); Browning, Debbie [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN, 37932 (United States)] [Strata-G, LLC, 2027 Castaic Lane, Knoxville, TN, 37932 (United States); Kane, Michael [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States)] [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Whaley, Katherine [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States)] [RSI, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Estes, Chuck [EnergySolutions, P.O. Box 4699, Oak Ridge, TN 37831 (United States)] [EnergySolutions, P.O. Box 4699, Oak Ridge, TN 37831 (United States); Witzeman, John [RSI, P.O. Box 4699, Oak Ridge, TN, 37831 (United States)] [RSI, P.O. Box 4699, Oak Ridge, TN, 37831 (United States)

2013-07-01T23:59:59.000Z

253

Quantification of Nitrosomonas oligotropha-Like Ammonia-Oxidizing Bacteria and Nitrospira spp. from Full-Scale Wastewater Treatment Plants by Competitive PCR  

Science Journals Connector (OSTI)

...of these organisms from a wastewater treatment system. Chemolithotrophic...to NO3 via NO2 (6). In wastewater treatment plants (WWTPs...sludge process (with biomass recycling). The bioreactors were operated...compositions of the influent wastewater, in addition to various operational...

Hebe M. Dionisi; Alice C. Layton; Gerda Harms; Igrid R. Gregory; Kevin G. Robinson; Gary S. Sayler

2002-01-01T23:59:59.000Z

254

Proceedings ASCE EWRI World Water and Environmental Resources Congress 2005 May 15-19, 2005 Modeling and evaluating temperature dynamics in wastewater treatment plants  

E-Print Network (OSTI)

Modeling and evaluating temperature dynamics in wastewater treatment plants Scott A. Wells1 , Dmitriy into receiving waters, there is much interest in providing a model of temperature dynamics in wastewater using detailed temperature data from a Washington County, Oregon, USA wastewater treatment facility

Wells, Scott A.

255

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

SciTech Connect

A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

256

Thermal treatment of high explosives at Mason & Hanger/Pantex Plant  

SciTech Connect

The Pantex plant presently processes about 45,000 kg (100,000 lb) of high explosives annually by outdoor burning. About half of the explosives are weapon components weighing over 5 kg (10 lb) which come directly out of nuclear weapons being removed from the stockpile. The other half is generated from various support processes, special tests, etc. Burning serves the three-fold purpose of demilitarizing, removing all classified characteristics, and eliminating the severe hazard posed by the explosives themselves. Transporting such large quantities of classified high explosives for such processing at another site would be prohibitive. Computerized atmospheric modelling of the burning process was conducted during the past year. The results were somewhat surprising in that oxides of nitrogen and carbon monoxide, two ``criteria pollutants,`` were not of great concern even though it is known that high explosives contain significant amounts of nitrogen and they generate measureable amounts of carbon monoxide when they are burned. Rather, it was determined that hydrogen fluoride gas is of much greater concern, and stringent controls on the burning operation have been implemented to address this concern. Although the amount of fluorine-containing explosive must be restricted, other kinds of air emissions are not a great concern. This favorable situation is largely due to the flat, featureless, sparsely inhabited terrain, the distance to the nearest plant boundary, the wind, the lack of stagnant atmospheric conditions, and the tremendous rate of heat release.

Patterson, W.E.; Phelan, P.F.

1993-12-31T23:59:59.000Z

257

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

SciTech Connect

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

258

Optimizing a Modular Expansion of a Wastewater Treatment Plant Using Option Theory and Moment Matching Approximation Abstract  

E-Print Network (OSTI)

We consider a municipality faced with the question of how big to make their new wastewater treatment facility to meet the demand of 10 % expected growth in the number of new connections. Previously, we developed a real options framework for determining optimal plant size and showed that the model takes on the form of an Asian option. Furthermore, it was shown that if the connection rate growths are closely correlated with the market growth, then the penalty costs associated with having insufficient capacity to treat the wastewater can be effectively hedged, significantly reducing overall expected costs. In this study, we introduce an approximate analytical solution and optimize the plant size of a staged / modular expansion. Based on the given construction cost estimates, we show that a staged expansion has a minimal (expected) savings when connection growth rates are closely correlated to the market growth rates. However, as the correlation decreases to zero, or, alternatively, no attempt is made to hedge the penalty costs, a staged expansion has an expected savings of 20%.

Yuri Lawryshyn; Sebastian Jaimungal

259

POWDERED ACTIVATED CARBON FROM NORTH DAKOTA LIGNITE: AN OPTION FOR DISINFECTION BY-PRODUCT CONTROL IN WATER TREATMENT PLANTS  

SciTech Connect

New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will further affect public water suppliers with respect to DBPs. Powdered activated carbon (PAC) has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. This project, a cooperative effort between the Energy & Environmental Research Center (EERC), the Grand Forks Water Treatment Plant, and the University of North Dakota Department of Civil Engineering, consists of several interrelated tasks. The objective of the research was to evaluate a cost-effective PAC produced from North Dakota lignite for removing NOM from water and reducing trihalomethane formation potential. The research approach was to develop a statistically valid testing protocol that can be used to compare dose-response relationships between North Dakota lignite-derived PAC and commercially available PAC products. A statistical analysis was performed to determine whether significant correlations exist between operating conditions, water properties, PAC properties, and dose-response behavior. Pertinent physical and chemical properties were also measured for each of the waters and each of the PACs.

Daniel J. Stepan; Thomas A. Moe; Melanie D. Hetland; Margaret L. Laumb

2001-06-01T23:59:59.000Z

260

FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00  

SciTech Connect

This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and increased plenum temperatures due to increased thermal radiation from the melt surface (which mayor may not be desirable but the flexibility to choose may be lost). Increased volatilization is an issue both in terms of the increased challenge to the off-gas system as well as for the ability to effectively close the recycle loops for volatile species that must be immobilized in the glass product, most notably technetium and cesium. For these reasons, improved information is needed on the specific glass production rates of RPP-WTP HLW streams in DuraMelterJ systems over a range of operating conditions. Unlike the RPP-WTP LAW program, for which a pilot melter system to provide large-scale throughout information is already in operation, there is no comparable HLW activity; the results of the present study are therefore especially important. This information will reduce project risk by reducing the uncertainty associated with the amount of conservatism that mayor may not be associated with the baseline RPP-WTP HLW melter sizing decision. After the submission of the first Test Plan for this work, the RPP-WTP requested revisions to include tests to determine the processing rates that are achievable without bubbling, which was driven by the potential advantages of omitting bubblers from the HLW melter design in terms of reduced maintenance. A further objective of this effort became the determination of whether the basis of design processing rate could be achieved without bubbling. Ideally, processing rate tests would be conducted on a full-scale RPP-WTP melter system with actual HLW materials, but that is clearly unrealistic during Part B1. As a practical compromise the processing rate determinations were made with HL W simulants on a DuraMelter J system at as close to full scale as possible and the DM 1000 system at VSL was selected for that purpose. That system has a melt surface area of 1.2 m{sup 2}, which corresponds to about one-third scale based on the specific glass processing rate of 0.4 MT/m{sup 2}/d assumed in the RPP-WTP HLW conceptual design, but would correspon

KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

2011-12-29T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Utilization of municipal wastewater for cooling in thermoelectric power plants: Evaluation of the combined cost of makeup water treatment and increased condenser fouling  

SciTech Connect

A methodology is presented to calculate the total combined cost (TCC) of water sourcing, water treatment and condenser fouling in the recirculating cooling systems of thermoelectric power plants. The methodology is employed to evaluate the economic viability of using treated municipal wastewater (MWW) to replace the use of freshwater as makeup water to power plant cooling systems. Cost analyses are presented for a reference power plant and five different tertiary treatment scenarios to reduce the scaling tendencies of MWW. Results indicate that a 550 MW sub-critical coal fired power plant with a makeup water requirement of 29.3 ML/day has a TCC of $3.0 - 3.2 million/yr associated with the use of treated MWW for cooling. (All costs USD 2009). This translates to a freshwater conservation cost of $0.29/kL, which is considerably lower than that of dry air cooling technology, $1.5/kL, as well as the 2020 conservation cost target set by the U.S. Department of Energy, $0.74/kL. Results also show that if the available price of freshwater exceeds that of secondarytreated MWW by more than $0.13-0.14/kL, it can be economically advantageous to purchase secondary MWW and treat it for utilization in the recirculating cooling system of a thermoelectric power plant.

Walker, Michael E.; Theregowda, Ranjani B.; Safari, Iman; Abbasian, Javad; Arastoopour, Hamid; Dzombak, David A.; Hsieh, Ming-Kai; Miller, David C.

2013-10-01T23:59:59.000Z

262

Office of River Protection Looks Back on 2014 Achievements, Including Tank Retrieval Progress  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, Wash. – In 2014, EM’s Office of River Protection (ORP) marked several accomplishments at the Hanford site, including continuing efforts to resolve remaining technical issues with the Waste Treatment and Immobilization Plant (WTP); restarting operations of the 242-A Evaporator; establishing waste acceptance limits for WTP; and continuing progress in waste tank retrievals.

263

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

264

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

265

^--'^ Poster session : 4st confrence on Small Wastewater Treatment Plants. Stratford-upon-Avon, April 18-21, 1999 f . Contact e-mail : catherine.boutin@cemagref.fr  

E-Print Network (OSTI)

^--'^ Poster session : 4st conférence on Small Wastewater Treatment Plants. Stratford a large number of communities with less than 2 000 inhabitants. The adjustment of wastewater treatment is to describe the five wastewater treatment Systems called "attached-growth cultures on fine média". A high

Paris-Sud XI, Université de

266

Treatment of wastewater effluents from paper-recycling plants by coagulation process and optimization of treatment conditions with response surface methodology  

Science Journals Connector (OSTI)

In the present study, a coagulation process was used to treat paper-recycling wastewater with alum coupled with poly aluminum chloride ... optimum conditions for high treatment efficiency of paper-recycling wastewater

Noushin Birjandi; Habibollah Younesi; Nader Bahramifar

2014-09-01T23:59:59.000Z

267

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

268

Environmental Assessment and Finding of No Significant Impact: Wastewater Treatment Capability Upgrade, Project NO. 96-D-122 Pantex Plant Amarillo, Texas  

SciTech Connect

This Environmental Assessment (EA) addresses the U.S. Department of Energy (DOE) proposed action regarding an upgrade of the Pantex Plant Wastewater Treatment Facility (WWTF). Potential environmental consequences associated with the proposed action and alternative actions are provided. DOE proposes to design, build, and operate a new WWTF, consistent with the requirements of Title 30 of the Texas Administrative Code (TAC), Chapter 317, ''Design Criteria for Sewage Systems,'' capable of supporting current and future wastewater treatment requirements of the Plant. Wastewater treatment at Pantex must provide sufficient operational flexibility to meet Pantex Plant's anticipated future needs, including potential Plant mission changes, alternative effluent uses, and wastewater discharge permit requirements. Treated wastewater effluent and non-regulated water maybe used for irrigation on DOE-owned agricultural land. Five factors support the need for DOE action: (1) The current WWTF operation has the potential for inconsistent permit compliance. (2) The existing WWTF lies completely within the 100-year floodplain. (3) The Pantex Plant mission has the potential to change, requiring infrastructure changes to the facility. (4) The life expectancy of the existing facility would be nearing its end by the time a new facility is constructed. (5) The treated wastewater effluent and non-regulated water would have a beneficial agricultural use through irrigation. Evaluation during the internal scoping led to the conclusion that the following factors are present and of concern at the proposed action site on Pantex Plant: (1) Periodic wastewater effluent permit exceedances; (2) Wetlands protection and floodplain management; (3) Capability of the existing facility to meet anticipated future needs of Pantex (4) Existing facility design life; and (5) Use of treated wastewater effluent and non-regulated water for irrigation. Evaluation during the internal scoping led to the conclusion that the following conditions are not present, nor of concern at the proposed site on Pantex Plant, and no further analysis was conducted: (1) State or national parks, forests, or other conservation areas; (2) Wild and scenic rivers; (3) Natural resources, such as timber, range, soils, minerals; (4) Properties of historic, archeological, or architectural significance; (5) Native American concerns; (6) Minority and low-income populations; and (7) Prime or unique farmland. In this document, DOE describes the proposed action and a reasonable range of alternatives to the proposed action, including the ''No-Action'' alternative. The proposed action cited in the ''U.S. Department of Energy Application for a Texas Pollutant Discharge Elimination System Permit Modifying Permit to Dispose of Waste, No. 02296,'' December 1998, included the construction of a new wastewater treatment facility, a new irrigation storage pond, and the conversion of the current wastewater treatment facility into an irrigation storage pond. Although a permit modification application has been filed, if a decision on this EA necessitates it, an amendment to the permit application would be made. The permit application would be required for any of the alternatives and the filing does not preclude or predetermine selection of an alternative considered by this EA. This permit change would allow Pantex to land-dispose treated wastewater by irrigating agricultural land. This construction for the proposed action would include designing two new lagoons for wastewater treatment. One of the lagoons could function as a facultative lagoon for treatment of wastewater. The second lagoon would serve as an irrigation storage impoundment (storage pond), with the alternative use as a facultative lagoon if the first lagoon is out of service for any reason. The new facultative lagoon and irrigation water storage pond would be sited outside of the 100-year flood plain. The existing WWTF lagoon would be used as a storage pond for treated wastewater effluent for irrigation water, as needed. The two new lagoons would be li

N /A

1999-05-27T23:59:59.000Z

269

Yellow: Pre-DOE Implementation Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Yellow: Pre-DOE Implementation Plan 192012 Page 1 of 3 Waste Treatment Plant (WTP) Safety Culture Background: A chain of events involving the design and construction of the...

270

Microsoft Word - TOC_Section B_Conformed thru_Mod 304.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

2.1: Single-Shell Tank Retrieval; and b. Sub-CLIN 2.2: Single-Shell Tank Farm (Waste Management Area) Closure. (3) CLIN 3 - Waste Treatment and Immobilization Plant (WTP)...

271

Independent Oversight Activity Report for Catholic University...  

Office of Environmental Management (EM)

Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is focused on developing the Low Activity Waste (LAW)...

272

News Flash - HPMC Occupational Health Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Roughly 765 linear feet of pipe have been replaced which carry waste from underground storage tanks in 200 West to the new Waste Treatment Plant (WTP). August 29, 2011 News...

273

Hanford Blog Archive - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Roughly 765 linear feet of pipe have been replaced which carry waste from underground storage tanks in 200 West to the new Waste Treatment Plant (WTP). August 29, 2011 News...

274

Artificial Neural Networks Modelling of PID and Model Predictive Controlled Waste Water Treatment Plant Based on the Benchmark Simulation Model No.1  

Science Journals Connector (OSTI)

The paper presents techniques for the design and training of Artificial Neural Networks (ANN) models for the dynamic simulation of the controlled Benchmark Simulation Model no. 1 (BSM1) Waste Water Treatment Plant (WWTP). The developed ANN model of the WWTP and its associated control system is used for the assessment of the plant behaviour in integrated urban waste water system simulations. Both embedded PID (Proportional-Integral-Derivative) control and Model Predictive Control (MPC) structures for the WWTP are investigated. The control of the Dissolved Oxygen (DO) mass concentration in the aerated reactors and nitrate (NO) mass concentration in the anoxic compartments are presented. The ANN based simulators reveal good accuracy for predicting important process variables and an important reduction of the simulation time, compared to the first principle WWTP simulator.

Vasile-Mircea Cristea; Cristian Pop; Paul Serban Agachi

2009-01-01T23:59:59.000Z

275

Fate and removal of pharmaceuticals and illicit drugs in conventional and membrane bioreactor wastewater treatment plants and by riverbank filtration  

Science Journals Connector (OSTI)

...chemical contaminants in water and wastewater' compiled and edited by Michael...antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Res. 41, 4164-4176...

2009-01-01T23:59:59.000Z

276

Long-term trends of PBDEs, triclosan, and triclocarban in biosolids from a wastewater treatment plant in the Mid-Atlantic region of the US  

Science Journals Connector (OSTI)

Abstract In the US, land application of biosolids has been utilized in government-regulated programs to recycle valuable nutrients and organic carbon that would otherwise be incinerated or buried in landfills. While many benefits have been reported, there are concerns that these practices represent a source of organic micropollutants to the environment. In this study, biosolids samples from a wastewater treatment plant in the Mid-Atlantic region of the US were collected approximately every 2 months over a 7-year period and analyzed for brominated diphenyl ethers (BDE-47, BDE-99, and BDE-209), triclosan, and triclocarban. During the collection period of 2005–2011, concentrations of the brominated diphenyl ethers BDE-47 + BDE-99 decreased by 42%, triclocarban decreased by 47%, but BDE-209 and triclosan remained fairly constant. Observed reductions in contaminant concentrations could not be explained by different seasons or by volumetric changes of wastewaters arriving at the treatment plant and instead may be the result of the recent phaseout of BDE-47 and BDE-99 as well as potential reductions in the use of triclocarban.

Natasha A. Andrade; Nuria Lozano; Laura L. McConnell; Alba Torrents; Clifford P. Rice; Mark Ramirez

2015-01-01T23:59:59.000Z

277

Economic–environmental analysis of handling biogas from sewage sludge digesters in \\{WWTPs\\} (wastewater treatment plants) for energy recovery: Case study of Bekkelaget WWTP in Oslo (Norway)  

Science Journals Connector (OSTI)

Abstract This paper outlines a methodology for a systematic economic–environmental analysis of realistic and realisable options for recovering and utilising energy from biogas produced in sewage sludge digesters in \\{WWTPs\\} (wastewater treatment plants). Heat, electricity and transport fuel can be produced from biogas, consumed in-plant or even sold to external end-users. The paper initially considers global warming as the environmental impact of concern, but later also stresses on the necessity of avoiding problem shifting by factoring in other environmental impact categories as well. The methodology is subsequently applied to the Bekkelaget WWTP in Oslo (Norway). Five different options for handling biogas are considered, in addition to the status quo – the business-as-usual in year-2012, and a baseline case, where it is assumed that all biogas generated is flared completely and not utilised for energy recovery of any kind. Seven different cost scenarios – for electricity, natural gas, wood pellets, bio-methane and diesel – are constructed. This gives a total of 49 combinations, for each of which the net costs and net environmental impacts (global warming, eutrophication and acidification) are determined for the 10-year period 2012–2021. The changes (in percentages) with respect to the corresponding values for the baseline case, are recorded; suitable weighting factors are considered after interaction with experts and personnel associated with the plant, and the options are evaluated using this double-bottom-line approach (economic and environmental).

G. Venkatesh; Rashid Abdi Elmi

2013-01-01T23:59:59.000Z

278

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality This...

279

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report...

280

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report...

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Treatment and Immobilization Plant - November 2011 November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality This...

282

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S....

283

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy Savers (EERE)

January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant...

284

Independent Oversight Assessment, Waste Treatment and Immobilization...  

Office of Environmental Management (EM)

Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the...

285

Independent Oversight Review, Waste Treatment and Immobilization...  

Office of Environmental Management (EM)

Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant...

286

Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immobilization Plant (LBL Facilities), April 23, 2013 (HSS CRAD 45-58, Rev. 0)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of U.S. Department of Energy Subject: Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immob ilization Plant (LBL Facilities) - C riteria and Review Approach D oc um~ HS: HSS CRAD 45-58 Rev: 0 Eff. Date: April 23, 2013 Office of Safety and Emergency Management Evaluations Acting Di rec or, Office of Safety and Emergency Nltanagement Evaluations Date: Apri l 23 , 20 13 Criteria and Review Approach Document ~~ trd,James Low Date: April 23 , 20 13 1.0 PURPOSE Within the Office of H.ealth, Safety and Security (HSS), the Office of Enforcement and Overs ight, Office of Safety and Emergency Management Evaluations (HS-45) miss io n is to assess the effectiveness of the environment, safety, health, and emergency management systems and practices used by line and

287

The biogenic content of process streams from mechanical–biological treatment plants producing solid recovered fuel. Do the manual sorting and selective dissolution determination methods correlate?  

Science Journals Connector (OSTI)

The carbon emissions trading market has created a need for standard methods for the determination of biogenic content (?B) in solid recovered fuels (SRF). We compare the manual sorting (MSM) and selective dissolution methods (SDM), as amended by recent research, for a range of process streams from a mechanical–biological treatment (MBT) plant. The two methods provide statistically different biogenic content values, as expressed on a dry mass basis, uncorrected for ash content. However, they correlate well (r2 > 0.9) and the relative difference between them was <5% for ?B between 21% w/wd and 72% w/wd (uncorrected for ash content). This range includes the average SRF biogenic content of ca. 68% w/wd. Methodological improvements are discussed in light of recent studies. The repeatability of the SDM is characterised by relative standard deviations on triplicates of <2.5% for the studied population.

Mélanie Séverin; Costas A. Velis; Phil J. Longhurst; Simon J.T. Pollard

2010-01-01T23:59:59.000Z

288

Estimating odour impact range of a selected wastewater treatment plant for winter and summer seasons in Polish conditions using CALPUFF model  

Science Journals Connector (OSTI)

Odour emission from wastewater treatment plants (WWTP) is a common cause of odour nuisance to neighbouring areas. The analysed object was mechanical biological WWTP designed for 1,200,000 population equivalent. Collection of the samples was carried out in accordance with the methodology described in VDI 3880 and PN-EN 13725 during the rainless weather. Odour concentration measurement was made using the method of dynamic olfactometry, in accordance with the procedures described in EN:13725 'Air Quality: Determination of odour concentration by dynamic olfactometry'. For selected emission sources model calculations were conducted using CALPUFF dispersion model for neighbouring residential areas, which are exceptionally exposed to odours. This study presents results of modelling in local scale, for different meteorological scenarios, respectively for winter and summer seasons.

Izabela Sówka; Maria SkrÄ?towicz; Piotr SobczyÅ?ski; Jerzy Zwoździak

2014-01-01T23:59:59.000Z

289

BULKING SLUDGE TREATMENT BY MICROSCOPIC OBSERVATION AND MECHANICAL TREATMENT  

E-Print Network (OSTI)

for the operation of the biological stage of waste water treatment plants. If the threatening extensive growth of wastewater treatment plants often need a complex control for the optimal processing. The measurement status and for the regulation of biological parts in waste water treatment plants. Furthermore, e

290

Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area  

Science Journals Connector (OSTI)

Abstract The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from “negative removal” to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (< 500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment.

Qing Yan; Xu Gao; You-Peng Chen; Xu-Ya Peng; Yi-Xin Zhang; Xiu-Mei Gan; Cheng-Fang Zi; Jin-Song Guo

2014-01-01T23:59:59.000Z

291

Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington  

SciTech Connect

PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.; Taira, Randal Y.

2000-12-11T23:59:59.000Z

292

COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS  

SciTech Connect

The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

JACKSON VL

2011-08-31T23:59:59.000Z

293

PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS  

SciTech Connect

The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revision includes information on additional feed tanks.

MAY TH

2008-08-12T23:59:59.000Z

294

Onsite Wastewater Treatment Systems: Aerobic Treatment Unit  

E-Print Network (OSTI)

wastewater treatment systems use. They remove 85 to 98 percent of the organic matter and solids from the wastewater, producing effluent as clean as that from munici- pal wastewater treatment plants, and cleaner than that from conventional septic tanks.... Onsite wastewater treatment systems Single-compartment trash tank Chlorinator Aerobic treatment unit Spray heads Pump tank Bruce Lesikar Professor and Extension Agricultural Engineer The Texas A&M System Aerobic treatment units, which are certified...

Lesikar, Bruce J.

2008-10-31T23:59:59.000Z

295

Independent Oversight Review, Hanford Site Waste Treatment and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hanford Site Waste Treatment and Immobilization Plant - June 2014 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant - June 2014 June 2014 Review...

296

CHP and Bioenergy Systems for Landfills and Wastewater Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems for Landfills and Wastewater Treatment Plants CHP and Bioenergy Systems for Landfills and Wastewater Treatment Plants There are important issues to consider when selecting...

297

Power Plant Power Plant  

E-Print Network (OSTI)

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

298

Occurrence and fate of pharmaceutically active compounds in the largest municipal wastewater treatment plant in Southwest China: Mass balance analysis and consumption back-calculated model  

Science Journals Connector (OSTI)

Abstract The occurrence and fate of twenty-one pharmaceutically active compounds (PhACs) were investigated in different steps of the largest wastewater treatment plant (WWTP) in Southwest China. Concentrations of these PhACs were determined in both wastewater and sludge phases by a high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Results showed that 21 target PhACs were present in wastewater and 18 in sludge. The calculated total mass load of PhACs per capita to the influent, the receiving water and sludge were 4.95 mg d?1 person?1, 889.94 ?g d?1 person?1 and 78.57 ?g d?1 person?1, respectively. The overall removal efficiency of the individual PhACs ranged from “negative removal” to almost complete removal. Mass balance analysis revealed that biodegradation is believed to be the predominant removal mechanism, and sorption onto sludge was a relevant removal pathway for quinolone antibiotics, azithromycin and simvastatin, accounting for 9.35–26.96% of the initial loadings. However, the sorption of the other selected PhACs was negligible. The overall pharmaceutical consumption in Chongqing, China, was back-calculated based on influent concentration by considering the pharmacokinetics of PhACs in humans. The back-estimated usage was in good agreement with usage of ofloxacin (agreement ratio: 72.5%). However, the back-estimated usage of PhACs requires further verification. Generally, the average influent mass loads and back-calculated annual per capita consumption of the selected antibiotics were comparable to or higher than those reported in developed countries, while the case of other target PhACs was opposite.

Qing Yan; Xu Gao; Lei Huang; Xiu-Mei Gan; Yi-Xin Zhang; You-Peng Chen; Xu-Ya Peng; Jin-Song Guo

2014-01-01T23:59:59.000Z

299

Water Resources Water Quality and Water Treatment  

E-Print Network (OSTI)

Water Resources TD 603 Lecture 1: Water Quality and Water Treatment CTARA Indian Institute of Technology, Bombay 2nd November, 2011 #12;OVERVIEW Water Quality WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TREATMENT PLANTS WATER TRE OVERVIEW OF THE LECTURE 1. Water Distribution Schemes Hand Pump

Sohoni, Milind

300

Boiler feed water treatment using electrodialysis.  

E-Print Network (OSTI)

??Water treatment is the most important part of any power plant. Water from natural reservoir is fetched into plant and treated to reduce impurity level,… (more)

Patel, Ankit

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Concentrations of Triclosan in the City of Denton Wastewater Treatment Plant, Pecan Creek, and the Influent and Effluent of an Experimental Constructed Wetland.  

E-Print Network (OSTI)

??The Pecan Creek Waste Reclamation Plant in Denton, Texas, an activated sludge WWTP, was sampled monthly for ten months to determine seasonal and site variation… (more)

Waltman, Elise Lyn

2004-01-01T23:59:59.000Z

302

Riparian plant composition, abundance, and structure responses to different harvesting approaches in riparian management zones nine years after treatment in Northern Minnesota, U.S.A.  

E-Print Network (OSTI)

??I compared riparian plant responses to different harvesting approaches over nine years in Riparian Management Zones (RMZ) in Northern Minnesota. In Chapter 1, I found… (more)

Martin, Michelle Amber

2010-01-01T23:59:59.000Z

303

Compilation of TRA Summaries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2011 September 2011 Technology Readiness Assessment Summary Number Title Report Date TRA-1 Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory, Balance of Facilities and LAW Waste Vitrification Facilities at Hanford March 2007 TRA-2 Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility at Hanford March 2007 TRA-3 Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility at Hanford March 2007 TRA-4 K Basins Sludge Treatment Process at Hanford August 2007 TRA-5 Savannah River Site Tank 48H Waste Treatment Project at SRS July 2007 TRA-6 233Uranium Downblending and Disposition Project at Oak Ridge/ORNL September 2008 TRA-7 SRS Salt Waste Processing Facility at SRS July 2009

304

Energy Department Announces New Technical Review to Assess Black Cells at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Technical Review to Assess Black Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:00pm Addthis Media Contact 202-586-4940 WASHINGTON, D.C. - The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant (WTP), specifically as it relates to the facility's "black cells." The review involves the plant's capability, as designed, to detect equipment failure and to repair failed equipment inside the WTP's black cells. Black cells are enclosed concrete rooms within the WTP Pretreatment

305

Energy Department Announces New Technical Review to Assess Black Cells at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Technical Review to Assess Black Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant (WTP), specifically as it relates to the facility's "black cells." The review involves the plant's capability, as designed, to detect equipment failure and to repair failed equipment inside the WTP's black cells. Black cells are enclosed concrete rooms within the WTP Pretreatment facility that contain tanks and piping. Due to high levels of

306

Energy Department Announces New Technical Review to Assess Black Cells at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Technical Review to Assess Black Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:00pm Addthis Media Contact 202-586-4940 WASHINGTON, D.C. - The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant (WTP), specifically as it relates to the facility's "black cells." The review involves the plant's capability, as designed, to detect equipment failure and to repair failed equipment inside the WTP's black cells. Black cells are enclosed concrete rooms within the WTP Pretreatment

307

Energy Department Announces New Technical Review to Assess Black Cells at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Review to Assess Black Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant (WTP), specifically as it relates to the facility's "black cells." The review involves the plant's capability, as designed, to detect equipment failure and to repair failed equipment inside the WTP's black cells. Black cells are enclosed concrete rooms within the WTP Pretreatment facility that contain tanks and piping. Due to high levels of

308

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization...

309

Independent Oversight Activity Report, Hanford Waste Treatment...  

Energy Savers (EERE)

October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization...

310

Plant pathogen resistance  

DOE Patents (OSTI)

Azelaic acid or its derivatives or analogs induce a robust and a speedier defense response against pathogens in plants. Azelaic acid treatment alone does not induce many of the known defense-related genes but activates a plant's defense signaling upon pathogen exposure.

Greenberg, Jean T; Jung, Ho Won; Tschaplinski, Timothy

2012-11-27T23:59:59.000Z

311

Research on Performance of Wastewater Purification Unit and Recycling of Wastewater and sludge Dewatering of In-Site in Feng Shan Wate Treatment Plant.  

E-Print Network (OSTI)

??During the water treatment process, each processing unit releases the sludge from the sedimentation process, and the wastewater from the rapid sand wash and filtration… (more)

Chen, Hsin-hung

2008-01-01T23:59:59.000Z

312

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to...

313

Secondary Waste Form Development and Optimization—Cast Stone  

SciTech Connect

Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

2011-07-14T23:59:59.000Z

314

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

315

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford WTP HLW Canister Decontamination Process Stream Simulant Development Hanford WTP HLW Canister Decontamination Process Stream Simulant Development Savannah River Site Aiken/Aiken/South Carolina A simulant will be developed of the canister decontamination process stream for the Hanford Waste Treatment Plant (WTP) High Level Waste Facility. This simulant will be developed to support the Full Scale Vessel Testing (FSVT) program which involves evaluations of Pulsed Jet Mixing equipment performance in actual WTP vessels. B3.6 - Small-scale research and development, laboratory operations, and pilot projects Andrew R. Grainger Digitally signed by Andrew R. Grainger DN: cn=Andrew R. Grainger, o=DOE-SR, ou=EQMD, email=drew.grainger@srs.gov, c=US Date: 2013.07.02 14:40:30 -04'00' 06/27/2013 Submit by E-mail TC-W-2013-0094

316

Technical Basis of Scaling Relationships for the Pretreatment Engineering Platform  

SciTech Connect

Pacific Northwest National Laboratory has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities. The Pretreatment Engineering Platform (PEP) is being designed and constructed as part of a plan to respond to an issue raised by the WTP External Flowsheet Review Team (EFRT) entitled “Undemonstrated Leaching Processes” and numbered M12. The PEP replicates the WTP leaching process using prototypic equipment and control strategies. The approach for scaling PEP performance data to predict WTP performance is critical to the successful resolution of the EFRT issue. This report describes the recommended PEP scaling approach, PEP data interpretation and provides recommendations on test conduct and data requirements.

Kuhn, William L.; Arm, Stuart T.; Huckaby, James L.; Kurath, Dean E.; Rassat, Scot D.

2008-07-15T23:59:59.000Z

317

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume V S-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect

Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (V), all S-wave measurements are presented that were performed in Borehole C4996 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

318

Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume VI S-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted S-Wave Velocity Profile.  

SciTech Connect

Velocity measurements in shallow sediments from ground surface to approximately 370 to 400 feet bgs were collected by Redpath Geophysics using impulsive S- and P-wave seismic sources (Redpath 2007). Measurements below this depth within basalt and sedimentary interbeds were made by UTA between October and December 2006 using the T-Rex vibratory seismic source in each of the three boreholes. Results of these measurements including seismic records, wave-arrival identifications and interpreted velocity profiles are presented in the following six volumes: I. P-Wave Measurements in Borehole C4993 II. P-Wave Measurements in Borehole C4996 III. P-Wave Measurements in Borehole C4997 IV. S-Wave Measurements in Borehole C4993 V. S-Wave Measurements in Borehole C4996 VI. S-Wave Measurements in Borehole C4997 In this volume (VI), all S-wave measurements are presented that were performed in Borehole C4997 at the WTP with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver.

Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

2007-06-06T23:59:59.000Z

319

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

Thien, Mike G. [Washington River Protection Solutions, LLC, Richland, WA (United States); Barnes, Steve M. [URS, Richland, WA (United States)

2013-01-17T23:59:59.000Z

320

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests - 13342  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described. (authors)

Thien, Mike G. [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States)] [Washington River Protection Solutions, LLC, P.O Box 850, Richland WA, 99352 (United States); Barnes, Steve M. [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)] [Waste Treatment Plant, 2435 Stevens Center Place, Richland WA 99354 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results  

SciTech Connect

The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 × 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

2010-09-22T23:59:59.000Z

322

EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

323

E-Print Network 3.0 - anaerobic wastewater treatment Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater... production and treatment of a paper recycling plant wastewater...

324

Monitoring Precursor 16S rRNAs ofAcinetobacter spp. in Activated Sludge Wastewater Treatment Systems  

Science Journals Connector (OSTI)

...Sanitary District, Northeast Wastewater Treatment Plant (UCSD, NEWWTP), and...gallons/day) of municipal wastewater. The treatment plant reduces the average influent...community structure of wastewater treatment plants: a comparison of old...

Daniel B. Oerther; Jakob Pernthaler; Andreas Schramm; Rudolf Amann; Lutgarde Raskin

2000-05-01T23:59:59.000Z

325

Mobilization of plasmid pHSV106 from Escherichia coli HB101 in a laboratory-scale waste treatment facility.  

Science Journals Connector (OSTI)

...approximating that of an actual wastewater treatment plant) did not prevent plas...proportionally) those of an actual wastewater treatment plant, which suggests that there...R-plasmid transfer in wastewater treatment plant. Appl. Environ. Microbiol...

P Mancini; S Fertels; D Nave; M A Gealt

1987-04-01T23:59:59.000Z

326

Secondary Sewage Treatment Versus Ocean Outfalls: An Assessment  

Science Journals Connector (OSTI)

...the energy balance, the system...Secondary Sewage Treatment Versus Ocean...treatment of wastewater is unneeded...secondary sewage treatment plants are estimated...secondary sewage treatment biologically...organic matter in wastewater. This action...

Charles B. Officer; John H. Ryther

1977-09-09T23:59:59.000Z

327

Report: Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMAB Tank Waste Subcommittee Summary Report 1 EMAB Tank Waste Subcommittee Summary Report 1 Report of Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project (WTP) at Hanford Submitted by the Environmental Management Advisory Board Tank Waste Subcommittee September 15, 2010 Introduction In May 2010, the Department of Energy established the Environmental Management Tank Waste Subcommittee (EM-TWS). The EM-TWS was charged with conducting an independent technical review of liquid waste capital and operations projects related to the Office of Environmental Management (EM) tank waste cleanup programs at Hanford, Washington; the Savannah River Site in South Carolina; the Idaho National Laboratory; and the West Valley Demonstration Project in New York. The EM-TWS's review focused on the facilities being

328

SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY  

SciTech Connect

This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

2009-12-28T23:59:59.000Z

329

 

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Currently, cross flow filtration is deployed at both Waste Treatment Plant (WTP) and Salt Waste Processing Facility (SWPF). However, there is no Currently, cross flow filtration is deployed at both Waste Treatment Plant (WTP) and Salt Waste Processing Facility (SWPF). However, there is no strategy for determining the cleaning or backpulsing requirements for these facilities. The frequency of cleaning will significantly impact both process throughput as well as the Na demand (through acid neutralization). This activity would develop the understanding of filter fouling to allow development of a cleaning/backpulsing strategy. Development of the cleaning/backpulsing requirements will produce much more efficient operations for both WTP and SWPF. The increased efficiency is anticipated to produce a significant increase in pretreatment throughput by limiting cleaning cycles. Cross-Flow

330

CX-010867: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Categorical Exclusion Determination 7: Categorical Exclusion Determination CX-010867: Categorical Exclusion Determination Hanford Waste Treatment Plant (WTP) High Level Waste Canister Decontamination Process Stream Simulant Development CX(s) Applied: B3.6 Date: 06/27/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office A simulant will be developed of the canister decontamination process stream for the Hanford Waste Treatment Plant (WTP) High Level Waste Facility. This simulant will be developed to support the Full Scale Vessel Testing (FSVT) program which involves evaluations of Pulsed Jet Mixing equipment performance in actual WTP vessels. CX-010867.pdf More Documents & Publications CX-010673: Categorical Exclusion Determination CX-009110: Categorical Exclusion Determination

331

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network (OSTI)

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 £ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

332

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS METHOD DEVELOPMENT  

SciTech Connect

The x-ray fluorescence laboratory (XRF) in the Analytical Development Directorate (ADD) of the Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop an XRF analytical method that provides rapid turnaround time (<8 hours), while providing sufficient accuracy and precision to determine variations in waste.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2007-08-08T23:59:59.000Z

333

Enterprise Assessments Review, Hanford Site Waste Treatment and...  

Office of Environmental Management (EM)

Enterprise Assessments Review, Hanford Site Waste Treatment and Immobilization Plant - September 2014 Enterprise Assessments Review, Hanford Site Waste Treatment and Immobilization...

334

Independent Oversight Review, Hanford Waste Treatment and Immobilizati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

December 2013 Independent Oversight Review, Hanford Waste Treatment and Immobilization Plant - December 2013 December 2013 Review of the Hanford Site Waste Treatment and...

335

Independent Oversight Review, Hanford Waste Treatment and Immobilizati...  

Office of Environmental Management (EM)

March 2014 Independent Oversight Review, Hanford Waste Treatment and Immobilization Plant - March 2014 March 2014 Review of the Hanford Site Waste Treatment and Immobilization...

336

Summary - Demonstration Bulk Vitrification System (DBVS) for Low-Actvity Waste at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DBVS DBVS ETR Report Date: September 2006 ETR-3 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe retrieval, treatment and disposal of 53 million gallons of Hanford radioactive waste. The Waste Treatment Plant (WTP) is being designed to treat and vitrify the High Level Waste (HLW) fraction in 20-25 years. The WTP is undersized for vitrifying the LAW fraction over the same time frame. The DOE is evaluating Bulk Vitrification as an alternative to increasing the size of the WTP LAW treatment process. Bulk vitrification is an in-container melting

337

Independent Oversight Activity Report, Hanford Waste Treatment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Tank Farm - January 2014 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant and Tank Farm - January 2014 January 2014 Hanford Waste...

338

Independent Oversight Activity Report, Hanford Waste Treatment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 31 - April 10, 2014 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - March 31 - April 10, 2014 March 31 - April 10, 2014 Observation...

339

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy Savers (EERE)

May 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight...

340

Design/Installation and Structural Integrity Assessment of the Bethel Valley Low-Level Waste Collection and Transfer System Upgrade for Building 3544 (Process Waste Treatment Plant) at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This document describes and assesses planned modifications to be made to the Building 3544 Process Waste Treatment Plant of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of the Federal Facility Agreement (FFA) relating to environmental protection requirements for tank systems. The modifications include the provision of a new double contained LLW line replacing an existing buried line that does not provide double containment. This new above ground, double contained pipeline is provided to permit discharge of treated process waste fluid to an outside truck loading station. The new double contained discharge line is provided with leak detection and provisions to remove accumulated liquid. An existing LLW transfer pump, concentrated waste tank, piping and accessories are being utilized, with the addition of a secondary containment system comprised of a dike, a chemically resistant internal coating on the diked area surfaces and operator surveillance on a daily basis for the diked area leak detection. This assessment concludes that the planned modifications comply with applicable requirements of Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation.

NONE

1996-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

342

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

343

Measurement and Treatment of Nuisance Odors at Wastewater Treatment Plants  

E-Print Network (OSTI)

Methylthiophene, Tetrahydrothiophene, 2,5-Dimethylthiophene,3-Methylthiophene Tetrahydrothiophene 2,5-Dimethylthiophene

Abraham, Samantha Margaret

2014-01-01T23:59:59.000Z

344

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling  

E-Print Network (OSTI)

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling wastewater production and treatment of a paper recycling plant wastewater using microbial fuel cells. Treatment. Keywords Microbial fuel cell . Paper recycling wastewater. Cellulose . Solution conductivity. Power

345

Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities  

E-Print Network (OSTI)

"Depending on the level and type of treatment, municipal wastewater treatment (WWT) can be an energy intensive process, constituting a major cost for the municipal governments. According to a 1993 study wastewater treatment plants consume close to 1...

Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

346

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network (OSTI)

consistent ones and nuclear accidents are the least frequentto the Fukushima nuclear accident. Journal of Environmentalto the Fukushima nuclear accident. Journal of Environmental

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

347

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network (OSTI)

Comments on the Presence of Chernobyl Derived Cs and Tc inRadiological Impact of the Chernobyl Debris Compared with42 5.3- CHERNOBYL…………………………………………………………… 43 v   5.4-

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

348

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network (OSTI)

nuclear programs including plutonium recovery and Idaho Falls facility mostly served navy and research

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

349

Waste Treatment and Immobilation Plant Pretreatment Facility  

Office of Environmental Management (EM)

System (PWD): Vessels FRP-VSL-00002ABCD overflow to vessel PWD-VSL-00033. Transfer pipeline flushes drain to vessel PWD-VSL-00043. 07-DESIGN-047 2-63 * Treated LAW...

350

Fate of Radionuclides in Wastewater Treatment Plants  

E-Print Network (OSTI)

Radioactive Plume from Fukushima: Is There a Correlation?France due to the Fukushima nuclear accident. Journal ofGreece due to the Fukushima nuclear accident. Journal of

Shabani Samgh Abadi, Farzaneh

2013-01-01T23:59:59.000Z

351

P9 Summary Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Learned Learned WTP Prototypic Mixing and Sampling System Vijay Jain Manager, Research & Technology (Vitrification) May 18-21, 2009 Waste Treatment & Immobilization Plant Project Presented at EM-21 Technical Exchange Denver, CO Jain 04102009 2 Outline Background Test requirements and system design Test status Technical issues during testing Test results Summary Jain 04102009 3 Highlights Testing system is prototypic Major technical and design issues resolved LAW report (3 simulants) - issued HLW & LAW tests - complete Data analyses - 08/09 Reports - 12/09 Jain 04102009 4 Background Compliance to waste specifications is critical to the success of WTP vitrification operations: - Mixing and sampling of waste and melter feed is an integral part

352

EA-2006-03.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2006 6, 2006 Mr. Jim Henschel Project Director Bechtel National Incorporated 2435 Stevens Center Place Richland, WA 99354 EA-2006-03 Subject: Preliminary Notice of Violation and Proposed Civil Penalty - $198,000 Dear Mr. Henschel: This letter refers to the Department of Energy's (DOE) Office of Price-Anderson Enforcement's (OE) recent investigation at the Waste Treatment and Immobilization Plant (WTP). The issues at WTP involved (1) inconsistencies between design documents and the authorization basis, (2) deficiencies in black cell vessel non- destructive evaluation requirements, (3) quality level inconsistencies, and (4) structural steel design deficiencies. An Investigation Summary Report describing the results of that investigation was

353

Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review of Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project October 2010 Office of Health, Safety and Security Office of Health, Safety and Security HSS Independent Oversight Abbreviations i Executive Summary iii 1 Introduction 1 2 Background on Technical Issues 3 3 WTP Contractor Nuclear Safety Culture 7 4 ORP Nuclear Safety Culture 17 5 Conclusions and Recommendations 21 Appendix A - Supplemental Information 25 Appendix B - WTP Nuclear Safety Issue Reporting and Resolution Processes 27 Appendix C - Technical Issues Management 33 | table Of cOntents table of contents Independent Oversight ATS Action Tracking System BNI Bechtel National Incorporated CARB Corrective Action Review Board

354

TECHNICAL ARTICLES PLANTS USED IN CONSTRUCTED WETLANDS AND THEIR  

E-Print Network (OSTI)

TECHNICAL ARTICLES #12;2 PLANTS USED IN CONSTRUCTED WETLANDS AND THEIR FUNCTIONS Hans Brix Risskov, Denmark ABSTRACT Vegetation plays an important role in wastewater treatment wetlands. Plants treatment systems aesthetically pleasing. Wetland species of all growth forms have been used in treatment

Brix, Hans

355

Operational Awareness Visit at the Office of River Protection  

NLE Websites -- All DOE Office Websites (Extended Search)

HAIR-HANFORD-2013-05-13 HAIR-HANFORD-2013-05-13 Site: HANFORD - Office of River Protection Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness at the Office of River Protection Dates of Activity : 05/13-23/2013 Report Preparer: Robert. E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to observe contractor efforts to develop a hazards analysis for the Low Activity Waste facility of the Waste Treatment and Immobilization Plant (WTP), tour the WTP construction site, observe ORP's quality assurance audit of the WTP contractor (Bechtel National, Inc.), tour the

356

Independent Oversight Activity Report, Office of River Protection - May  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection - Office of River Protection - May 2013 Independent Oversight Activity Report, Office of River Protection - May 2013 May 2013 Operational Awareness Visit at the Office of River Protection [HAIR-HANFORD-2013-05-13] The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to observe contractor efforts to develop a hazards analysis for the Low Activity Waste facility of the Waste Treatment and Immobilization Plant (WTP), tour the WTP construction site, observe ORP's quality assurance audit of the WTP contractor (Bechtel National, Inc.), tour the Hanford Tank Farms, and observe tank waste retrieval operations. Independent Oversight Activity Report, Office of River Protection - May

357

Operational Awareness Visit at the Office of River Protection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HAIR-HANFORD-2013-05-13 HAIR-HANFORD-2013-05-13 Site: HANFORD - Office of River Protection Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness at the Office of River Protection Dates of Activity : 05/13-23/2013 Report Preparer: Robert. E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to observe contractor efforts to develop a hazards analysis for the Low Activity Waste facility of the Waste Treatment and Immobilization Plant (WTP), tour the WTP construction site, observe ORP's quality assurance audit of the WTP contractor (Bechtel National, Inc.), tour the

358

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IL-City-Waukegan IL-City-Waukegan Location: City Waukegan IL American Recovery and Reinvestment Act: Proposed Action or Project Description: 1) Develop energy efficiency and conservation strategy and conduct engineering studies for energy efficiency, 2) replace pumps and/or motors at the Water Treatment Plant (WTP), 3) install wind turbines (up to six 1 kW) at the WTP, and 4) replace two boilers at the WTP Conditions: Historic preservation clause applies to this application Categorical Exclusion(s) Applied: A9, A11, B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health,

359

EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

Rapko, Brian M.; Schonewill, Philip P.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

2010-01-01T23:59:59.000Z

360

Pretreatment Engineering Platform (PEP) Integrated Test B Run Report--Caustic and Oxidative Leaching in UFP-VSL-T02A  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

Geeting, John GH; Bredt, Ofelia P.; Burns, Carolyn A.; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Aaberg, Rosanne L.

2009-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EFRT M-12 Issue Resolution: Comparison of Filter Performance at PEP and CUF Scale  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.(a) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

Daniel, Richard C.; Billing, Justin M.; Bontha, Jagannadha R.; Brown, Christopher F.; Eslinger, Paul W.; Hanson, Brady D.; Huckaby, James L.; Karri, Naveen K.; Kimura, Marcia L.; Kurath, Dean E.; Minette, Michael J.

2010-01-22T23:59:59.000Z

362

Scale-Up, Production, and Procurement of PEP Simulants  

SciTech Connect

Pacific Northwest National Laboratory has been tasked by Bechtel National Inc. on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility. The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. This report provides the lessons learned regarding the manufacture and delivery of simulated feeds for PEP testing.

Scheele, Randall D.; Brown, Garrett N.; Kurath, Dean E.

2009-10-29T23:59:59.000Z

363

PEP Run Report for Integrated Test A, Caustic Leaching in UFP-VSL-T01A, Oxidative Leaching in UFP-VSL-T02A  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed and constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.”(a) The PEP, located in the Process Engineering Laboratory-West (PDLW) located in Richland, Washington, is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

Guzman-Leong, Consuelo E.; Bredt, Ofelia P.; Burns, Carolyn A.; Daniel, Richard C.; Su, Yin-Fong; Geeting, John GH; Golovich, Elizabeth C.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Smith, Dennese M.; Valdez, Patrick LJ; Yokuda, Satoru T.; Young, Joan K.

2009-12-04T23:59:59.000Z

364

Audit Report: OAS-L-12-09 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Audit Report: OAS-L-12-09 August 23, 2012 Tank Waste Feed Delivery System Readiness at the Hanford Site The Department of Energy (Department) made progress in completing the waste feed delivery system to support operations of the Waste Treatment Plant (WTP). We found that the Department had completed a number of waste feed delivery subprojects earlier than planned and was on track to complete other critical path activities. We noted, however, that a number of challenges remain for completing the construction and operation of the waste feed delivery system. Specifically, the Waste Acceptance Criteria (WAC) that defines the specific WTP waste feed criteria and associated controls had not yet been finalized. Uncertainties with tank waste mixing and sampling could also impact the delivery of waste to the WTP. The

365

Statistical Methods and Tools for Hanford Staged Feed Tank Sampling  

SciTech Connect

This report summarizes work conducted by Pacific Northwest National Laboratory to technically evaluate the current approach to staged feed sampling of high-level waste (HLW) sludge to meet waste acceptance criteria (WAC) for transfer from tank farms to the Hanford Waste Treatment and Immobilization Plant (WTP). The current sampling and analysis approach is detailed in the document titled Initial Data Quality Objectives for WTP Feed Acceptance Criteria, 24590-WTP-RPT-MGT-11-014, Revision 0 (Arakali et al. 2011). The goal of this current work is to evaluate and provide recommendations to support a defensible, technical and statistical basis for the staged feed sampling approach that meets WAC data quality objectives (DQOs).

Fountain, Matthew S.; Brigantic, Robert T.; Peterson, Reid A.

2013-10-01T23:59:59.000Z

366

Microsoft Word - M-2 WTP Contract Section H - Conformed Thru...  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be subject to the technical direction of U.S. Department of Energy (DOE) Contracting Officer's Representative (COR). The term "technical direction" is defined to...

367

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

CERTA PJ

2008-07-10T23:59:59.000Z

368

E-Print Network 3.0 - automated remote plant Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Energy-saving through remote control of a wastewater treatment plant Summary: Energy-saving through remote control of a wastewater treatment plant...

369

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

370

Oversight Reports - Hanford | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 13, 2013 December 13, 2013 Independent Oversight Review, Hanford Waste Treatment and Immobilization Plant - December 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality September 26, 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31] September 23, 2013 Independent Oversight Review, Hanford Site - September 2013 Review of Preparedness for Severe Natural Phenomena Events at the Hanford Site August 30, 2013 Independent Oversight Activity Report, Office of River Protection - May 2013 Operational Awareness Visit at the Office of River Protection

371

Vit Plant receives and sets key air filtration equipment for Low Activity Waste Facility  

Energy.gov (U.S. Department of Energy (DOE))

WTP lifted a nearly 100-ton carbon bed absorber into the Low-Activity Waste Facility. This key piece of air-filtration equipment will remove mercury and acidic gases before air is channeled through...

372

STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES  

E-Print Network (OSTI)

CHAPTER 1 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES O. Bernard1 , B. Chachuat2 , and J sensors (also called observers) for wastewater treatment plants (WWTPs). We give an overview in "Wastewater Quality Monitoring and Wastewater Quality Monitoring and Treatment, Philippe Quevauviller (Ed

Paris-Sud XI, Université de

373

STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES  

E-Print Network (OSTI)

CHAPTER 1 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES O. Bernard1 , B. Chachuat2 , and J sensors (also called observers) for wastewater treatment plants (WWTPs). We give an overview model description (e.g., the 1 #12;2 STATE ESTIMATION FOR WASTEWATER TREATMENT PROCESSES extended Kalman

Bernard, Olivier

374

B&W Y-12 names Kevin Corbett Vice President of Quality Assurance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant (WTP), the Pueblo and Blue Grass Chemical Agent-Destruction Pilot Plants, the Chernobyl New Safe Confinement Project, Kwajalein Range Services, the Sellafield Waste...

375

Microsoft Word - Vit Plant Large Scale Testing_20110901.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Sept. 1, 2011 Hanford Waste Treatment Plant awards large-scale testing subcontract to local engineering firm Testing will enable project to finalize safe mixing design MEDIA...

376

E-Print Network 3.0 - area effluent treatment Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Nature and Transformation of Dissolved Organic Matter in Summary: . As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes...

377

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

378

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

379

EECBG Success Story: Saving Energy at 24/7 Wastewater Treatment...  

Energy Savers (EERE)

Saving Energy at 247 Wastewater Treatment Plant EECBG Success Story: Saving Energy at 247 Wastewater Treatment Plant July 29, 2010 - 4:11pm Addthis In the city of Longview,...

380

Plutonium finishing plant dangerous waste training plan  

SciTech Connect

This training plan describes general requirements, worker categories, and provides course descriptions for operation of the Plutonium Finish Plant (PFP) waste generation facilities, permitted treatment, storage and disposal (TSD) units, and the 90-Day Accumulation Areas.

ENTROP, G.E.

1999-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermal treatment  

Science Journals Connector (OSTI)

Thermal treatment can be regarded as either a pre-treatment of waste prior to final disposal, or as a means of valorising waste by recovering energy. It includes both the burning of mixed MSW in municipal inciner...

Dr. P. White; Dr. M. Franke; P. Hindle

1995-01-01T23:59:59.000Z

382

Microsoft PowerPoint - 12-03 Peterson-Filtration.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Parameters Impacting Parameters Impacting Crossflow Filter Performance of Hanford Tank Waste Simulants Reid Peterson Justin Billings, Carolyn Burns, Richard Daniel, Phil Schonewill, Rick Shimskey November 2010 Pacific Northwest National Laboratory 1 Print Close High-temperature melters Underground waste tank Pretreatment Plant Low-activity radioactive waste High-level radioactive waste PRETREATMENT VITRIFICATION/ PROCESSING Hanford Waste Treatment Plant (WTP) 2 The Waste Treatment Plant (WTP) is being designed and built to process the approximately 55 million gallons of radioactive waste sludge generated by defense activities at the Hanford Site in Richland, Washington. The planned waste treatment strategy is: 1.transfer the waste from the tank farms, where the waste is currently stored in 177 underground

383

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

384

Enterprise Assessments Review, Hanford Waste Treatment and Immobilizat...  

Office of Environmental Management (EM)

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality January 2015 Office of Nuclear Safety and Environmental Assessments Office of Environment,...

385

Independent Oversight Review, Hanford Site Waste Treatment and...  

Energy Savers (EERE)

Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of...

386

Organic Separation Test Results  

SciTech Connect

Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations, could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.

Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

2014-09-22T23:59:59.000Z

387

Bagdad Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

388

Microsoft PowerPoint - 9-03 Jantzen FBSR EM TECH EX SLIDES-JANTZEN-PIERCE.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Reformer (FBSR) Na-Al-Si (NAS) Waste Reformer (FBSR) Na-Al-Si (NAS) Waste Form For Hanford LAW and Secondary Waste C.M. Jantzen and E.M. Pierce November 17, 2010 Print Close 2 FY10: Participating Organizations Print Close 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW and/or Waste Treatment Plant Secondary Waste (WTP-SW) Objectives:

389

Salmonellae in the Environment Around a Chicken Processing Plant  

Science Journals Connector (OSTI)

...chicken processing plant handling between 75,000 and...chicken processing plant handling between 75,000 and...yielded salmonellae. MATERIALS AND METHODS Description...chicken processing plant handling between 75,000 and...FIG. 1. Schematic diagram of treatment facilities...

A. W. Hoadley; W. M. Kemp; A. C. Firmin; G. T. Smith; P. Schelhorn

1974-05-01T23:59:59.000Z

390

Characterisation of radioactive waste products associated with plant decommissioning  

Science Journals Connector (OSTI)

......the results integrated over selected...deposited on the system and equipment...operating plant data and...residual waste activities...coolant pH controls. Shut-down...Surface treatments (e.g...Component-system decontamination...varies from plant to plant...radioactive waste due to activation...internals and control rod drive......

J. Sejvar; A. H. Fero; C. Gil; R. J. Hagler; J. L. Santiago; A. Holgado; R. Swenson

2005-12-20T23:59:59.000Z

391

Water_Treatment.cdr  

Office of Legacy Management (LM)

Since dewatering at the Weldon Spring site began in Since dewatering at the Weldon Spring site began in 1992, more than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. On September 30, 1999, dewatering efforts at the Chemical Plant site were completed, meeting one of the most substantial milestones of the project and bringing to an end a part of history that was started nearly 5 decades ago. From 1955 to 1966, uranium materials were processed at the U.S. Atomic Energy Commission's Uranium Feed Materials Plant. The ore was processed in a nitric acid solution that separated the uranium from other chemicals. The by-product, called raffinate, was neutralized with lime, then placed in four settling basins,

392

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Plant Databases News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan...

393

Plant Rosettes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

394

CX-004825: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Categorical Exclusion Determination 5: Categorical Exclusion Determination CX-004825: Categorical Exclusion Determination Toledo City American Recovery and Reinvestment Act- Energy Efficiency and Conservation Block Grant Act 1-Collins Park Solar Photovoltaic Project - 1 Megawatt CX(s) Applied: B3.6, B5.1 Date: 12/22/2010 Location(s): Toledo City, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Energy Efficiency and Conservation Block Grant Project. The Project Activity Sheet titled -Photovoltaic Electric Generation System at the Collins Park Water Treatment Plant submitted by the City of Toledo, Ohio, involves the purchase and installation of a ground-mounted 1 megawatt (MW) photovoltaic (PV) electric generation system at the 125-acre Collins Park Water Treatment Plant (WTP). The Collins Park WTP uses in excess of 5 MW of

395

CX-001617: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Categorical Exclusion Determination 7: Categorical Exclusion Determination CX-001617: Categorical Exclusion Determination Toledo City American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant -Act 1 Collins Park Solar Photovoltaic Project CX(s) Applied: B3.6, B5.1 Date: 04/07/2010 Location(s): Toledo, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Energy Efficiency and Conservation Block Grant (EECBG) fund. The Project Activity Sheet titled "Photovoltaic (PV) Electric Generation System at the Collins Park Water Treatment Plant" submitted by the City of Toledo, Ohio, involves the purchase and installation of a ground-mounted 250 kilowatt (kW) PV electric generation system at the 125-acre Collins Park Water Treatment Plant (WTP). The Collins Park WTP uses in excess of 5 megawatts

396

Audit Report: IG-0863 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Audit Report: IG-0863 April 25, 2012 The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels The Office of Inspector General received allegations concerning aspects of the quality assurance program at the Department of Energy's (Department) $12.2 billion Waste Treatment and Immobilization Plant (WTP) project in Hanford, Washington. Our review substantiated the allegation. In short, we found that the Department had procured and installed vessels in WTP that did not always meet quality assurance and/or contract requirements. For the vessels that we reviewed, we identified multiple instances where quality assurance records were either missing or were not traceable to the specific area or

397

Preliminary Notice of Violation, Bechtel National Inc. - EA-2006-03 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Inc. - EA-2006-03 National Inc. - EA-2006-03 Preliminary Notice of Violation, Bechtel National Inc. - EA-2006-03 March 16, 2006 Preliminary Notice of Violation issued to Bechtel National Inc., related to Multiple Deficiencies at the Waste Treatment and Immobilization Plant at the Hanford Site This letter refers to the Department of Energy's (DOE) Office of Price-Anderson Enforcement's (OE) recent investigation at the Waste Treatment and Immobilization Plant (WTP). The issues at WTP involved (1) inconsistencies between design documents and the authorization basis, (2) deficiencies in black cell vessel nondestructive evaluation requirements, (3) quality level inconsistencies, and (4) structural steel design deficiencies. Preliminary Notice of Violation, Bechtel National Inc. - EA-2006-03

398

May 15, 2012, Federal Technical Capability Program Face to Face Meeting … Speech: Safety Culture And Training and Competency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Safety Culture Safety Culture And Training and Competency Joseph F. Bader Board Member Board Member Defense Nuclear Facilities Safety Board Thanks to Tim Hunt and Doug Minnema Objectives * Discuss the Board's approach to staff training * Review the Board's concerns about safety culture at the Waste Treatment and Immobilization Plant (WTP) Waste Treatment and Immobilization Plant (WTP) * Understand what group culture is and why it is an g p y important part of nuclear operations * Explore the linkage between safety culture and training and competency June 2012 DOE FTCP Meeting 2 The Board's Technical Staff * Currently about 85 Technical Staff members. * Essentially all of the Technical Staff members have at least one technical master's degree, ~20% have a PhD. * Extensive experience in nuclear, mechanical, electrical,

399

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 6610 of 31,917 results. 01 - 6610 of 31,917 results. Download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download http://energy.gov/em/downloads/waste-treatment-and-immobilization-plant-wtp-analytical-laboratory Download Audit Report: IG-0607 Plutonium-238 Production http://energy.gov/ig/downloads/audit-report-ig-0607 Download Inquiry Report: I01IG001 Review of Alleged Conflicts of Interest Involving a Legal Services Contract for the Yucca Mountain Project http://energy.gov/ig/downloads/inquiry-report-i01ig001-0 Page Publications on Hawaii Find publications on deploying energy efficiency and renewable energy in Hawaii.

400

Audit Report: IG-0863 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IG-0863 IG-0863 Audit Report: IG-0863 April 25, 2012 The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels The Office of Inspector General received allegations concerning aspects of the quality assurance program at the Department of Energy's (Department) $12.2 billion Waste Treatment and Immobilization Plant (WTP) project in Hanford, Washington. Our review substantiated the allegation. In short, we found that the Department had procured and installed vessels in WTP that did not always meet quality assurance and/or contract requirements. For the vessels that we reviewed, we identified multiple instances where quality assurance records were either missing or were not traceable to the specific area or

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Department Announces New Technical Review to Assess Black...  

Energy Savers (EERE)

cells are enclosed concrete rooms within the WTP Pretreatment facility that contain tanks and piping. Due to high levels of radioactivity once the plant begins operations, the...

402

Message The  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2012 June 2012 HSS Independent Oversight Evaluates the Extent of Safety Culture Concerns The Department of Energy (DOE) Office of Health, Safety and Security (HSS) independent oversight program is conducting a safety culture evaluation of four design/build projects for new nuclear facilities at four sites. Building on the HSS safety culture review at the Hanford Site Waste Treatment and Immobilization Plant (WTP) in 2011, HSS will identify positive observations, areas

403

HANFORD MEDIUM & LOW CURIE WASTE PRETREATMENT PROJECT PHASE 1 LAB REPORT  

SciTech Connect

A fractional crystallization (FC) process is being developed to supplement tank waste pretreatment capabilities provided by the Waste Treatment and Immobilization Plant (WTP). FC can process many tank wastes, separating wastes into a low-activity fraction (LAW) and high-activity fraction (HLW). The low-activity fraction can be immobilized in a glass waste form by processing in the bulk vitrification (BV) system.

HAMILTON, D.W.

2006-01-30T23:59:59.000Z

404

Aquatic plant control research  

SciTech Connect

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

405

Seafood Plant Sanitation  

Science Journals Connector (OSTI)

A hygienically designed plant can improve the wholesomeness of seafood and the sanitation program. The location of the seafood plant can contribute to the sanitation of...

2006-01-01T23:59:59.000Z

406

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS  

SciTech Connect

Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to land disposal restrictions. The long term precision (24-hr) also was good with percent relative standard deviations (%RSDs) < 10 % for most elements in filtered solution. There were some issues with a few elements precipitating out of solution over time affecting the long term precision of the method. Additional research will need to be performed to resolve this sample stability problem. Activities related to methodology optimization in the Phase 1b portion of the study were eliminated as a result of WTP request to discontinue remaining activities due to funding reduction. These preliminary studies demonstrate that developing an XRF method to support the LAW vitrification plant is feasible. When funding is restored for the WTP, it is recommended that optimization of this technology should be pursued.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2006-05-08T23:59:59.000Z

407

Independent Activity Report, Hanford - November 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- November 2010 - November 2010 Independent Activity Report, Hanford - November 2010 November 2010 Hanford Tour and Review of the Office of River Protection Waste Treatment Immobilization Project Construction Site The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit on November 16-18, 2010, at the Office of River Protection Waste Treatment Immobilization Project (WTP) at the Department of Energy (DOE) Hanford Site. The purposes of the visit were to plan and coordinate future HSS oversight activities and to review corrective actions to the most recent HSS review at WTP. Independent Activity Report, Hanford - November 2010 More Documents & Publications Independent Activity Report, Hanford Waste Treatment Plant - February 2011

408

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of River Office of River Protection Update Billie Mauss May19, 2009 2009 Technical Exchange Tank Operations Contract 2 Hanford Site 200 East and West Area Tank Operations Contract 3 ORP Objectives * Maintain safe Tank Farm operations in SSTs and DSTs until retrieved/treated * Complete WTP construction and start operations by FY 2019 * Ensure TF infrastructure and facility upgrades/new facilities to support FY 2019 WTP operations * Enhance SST integrity program * Continue to develop retrieval technology and retrieve tank waste * Reduce treatment timeline by developing new technologies and enhancing current baseline Tank Operations Contract 4 April 2009 4 ORP Flow Sheet Waste Treatment Plant 242-A SST Tanks ILAW IHLW Retrieval LAW Supplemental Treatment Integrated Disposal Facility

409

System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584  

SciTech Connect

The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)] [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)] [Washington River Protection Solutions, Richland, Washington 99354 (United States)

2013-07-01T23:59:59.000Z

410

HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS  

SciTech Connect

The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

THIEN MG; WELLS BE; ADAMSON DJ

2010-01-14T23:59:59.000Z

411

Waste feed delivery planning at Hanford  

SciTech Connect

The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades.

Certa, Paul J.; West, Elizha B.; Rodriguez, Juissepp S.; Hohl, Ted M.; Larsen, Douglas C.; Ritari, Jaakob S.; Kelly, James W.

2013-01-10T23:59:59.000Z

412

Waste Feed Delivery Planning at Hanford - 13232  

SciTech Connect

The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades. (authors)

Certa, Paul J.; Hohl, Ted M.; Kelly, James W.; Larsen, Douglas C.; West, Elizha B.; Ritari, Jaakob S.; Rodriguez, Juissepp S. [Washington River Protection Solutions, LLC, P.O. 850, Richland, WA 99352 (United States)] [Washington River Protection Solutions, LLC, P.O. 850, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

413

System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584  

SciTech Connect

The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of ?14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS’ System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP.

Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

2013-06-01T23:59:59.000Z

414

To appear in Proceedings of ECSCW99 Dynamics in Wastewater Treatment  

E-Print Network (OSTI)

To appear in Proceedings of ECSCW99 Dynamics in Wastewater Treatment: A Framework for Understanding on the study of unskilled work in a Danish wastewater treatment plant, the problem of formalisation of work at the expense of the other tend to fail. Wastewater treatment plants are highly-distributed technical settings

Bertelsen, Olav W.

415

Polyhydroxyalkanoate synthesis in plants  

DOE Patents (OSTI)

Novel transgenic plants and plant cells are capable of biosynthesis of polyhydroxyalkanoate (PHA). Heterologous enzymes involved in PHA biosynthesis, particularly PHA polymerase, are targeted to the peroxisome of a transgenic plant. Transgenic plant materials that biosynthesize short chain length monomer PHAs in the absence of heterologous .beta.-ketothiolase and acetoacetyl-CoA reductase are also disclosed.

Srienc, Friedrich (Lake Elmo, MN); Somers, David A. (Roseville, MN); Hahn, J. J. (New Brighton, MN); Eschenlauer, Arthur C. (Circle Pines, MN)

2000-01-01T23:59:59.000Z

416

Ethylene insensitive plants  

SciTech Connect

Nucleic acid and polypeptide sequences are described which relate to an EIN6 gene, a gene involved in the plant ethylene response. Plant transformation vectors and transgenic plants are described which display an altered ethylene-dependent phenotype due to altered expression of EIN6 in transformed plants.

Ecker, Joseph R. (Carlsbad, CA); Nehring, Ramlah (La Jolla, CA); McGrath, Robert B. (Philadelphia, PA)

2007-05-22T23:59:59.000Z

417

Determination of Baselines for Evaluation and Promotion of Energy Efficiency in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Wastewater treatment plants are one of the largest energy consumers managed by the public sector. As plants expand in the future to accommodate population growth, energy requirements will substantially increase. Thus, implementation of energy...

Chow, S. A.; Ganji, A. R.; Fok, S.

418

E-Print Network 3.0 - arsenic pilot plant Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Sediments Jason Murnock, Master of Science Candidate, Summary: conflicting. The Erie wastewater treatment plant sludge incinerator flue gas contains arsenic but pilot tests......

419

Fuel Cell Power Plants Biofuel Case Study- Tulare, CA  

Energy.gov (U.S. Department of Energy (DOE))

Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

420

H-02 Constructed Wetland Studies: Amphibians and Plants | SREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

treefrogs (Hyla cinerea) on planted bulrush stems Construction of the H-02 treatment wetlands adjacent to H-Area on the Savannah River Site (SRS) began during FY-2007. The...

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Sandia National Laboratories (SNL) is conducting a study on the use of nanofiltration (NF) treatment options to enable use of non-traditional water sources as an alternative to freshwater make-up for thermoelectric power plants. The project includes a technical and economic evaluation of NF for two types of water that contain moderate to high levels of total dissolved solids (TDS): (1) cooling tower recirculating water and (2) produced waters from oil & gas extraction operations. Reverse osmosis (RO) is the most mature and commonly considered option for high TDS water treatment. However, RO is generally considered to be too expensive to make treatment of produced waters for power plant use a feasible application. Therefore, SNL is investigating the use of NF, which could be a more cost effective treatment option than RO. Similar to RO, NF is a membrane-based process. Although NF is not as effective as RO for the removal of TDS (typical salt rejection is ~85 percent, compared to >95 percent for RO), its performance should be sufficient for typical power plant applications. In addition to its lower capital cost, an NF system should have lower operating costs because it requires less pressure to achieve an equivalent flux of product water.

422

Microsoft Word - EMAB TWS Summary Report FINAL.docx  

Office of Environmental Management (EM)

EMAB Tank Waste Subcommittee Summary Report 1 Report of Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project (WTP) at Hanford...

423

Radioactive waste treatment technologies and environment  

SciTech Connect

The radioactive waste treatment and conditioning are the most important steps in radioactive waste management. At the Slovak Electric, plc, a range of technologies are used for the processing of radioactive waste into a form suitable for disposal in near surface repository. These technologies operated by JAVYS, PLc. Nuclear and Decommissioning Company, PLc. Jaslovske Bohunice are described. Main accent is given to the Bohunice Radwaste Treatment and Conditioning Centre, Bituminization plant, Vitrification plant, and Near surface repository of radioactive waste in Mochovce and their operation. Conclusions to safe and effective management of radioactive waste in the Slovak Republic are presented. (authors)

HORVATH, Jan; KRASNY, Dusan [JAVYS, PLc. - Nuclear and Decommisioning Company, PLc. (Slovakia)

2007-07-01T23:59:59.000Z

424

SRO -NERP-1 THE SAVANNAH RIVER PLANT  

E-Print Network (OSTI)

AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

Georgia, University of

425

USDA Orange County Invasive Plant Management (OCIM)  

E-Print Network (OSTI)

(Treatments) No Action Passive Restoration Intermediate Restoration Active Restoration Exotic plant management type of CSS and 22% grasslands. 16 Control 53 Passive 37 Intermediate 25 Active · 21% had the goal of increasing California Gnatcatcher habitat. · 39% of the restorations were in house and 44% were contracted

Kimball, Sarah

426

Land treatment for seafood processing waste  

SciTech Connect

The purpose of this paper is twofold. The first is to describe selected waste water parameters at two small seafood processing plants in the eastern part of North Carolina. The second is to describe the land treatment system serving these industries and to characterize the quality of the shallow ground water exiting these systems. One of the seafood processing plants is a flounder fileting operation and the other processes crabs. Both plants employ between 10 and 40 individuals, and the processing operation is done mostly by hand.

Rubin, A.R.; McClease, J.D.; Morgan, C.B.

1983-12-01T23:59:59.000Z

427

Integrated Plant for the Municipal Solid Waste of Madrid  

E-Print Network (OSTI)

such as steam- boiler water treatment, compressed-air, control and instrumentation, etc. The incinerator of the project was to recover the energy content of RDF generated by the recycling plant of the city of Madrid and Composting Plant The MSW is brought by the collecting trucks which unload in the storage area with a two

Columbia University

428

Plant immune systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant immune systems Plant immune systems Name: stephanie Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Do plants have an immune system? How does it work? Are plants able to "fight off" infections such as Dutch Elm disease? Replies: In the broadest sense, an immune system is any method an organism has protect itself from succeeding to another organism's efforts to undermine its health and integrity. In this sense, yes, plants have immune systems. Plants do NOT have "active" immune systems, like humans, including macrophages, lymls, antibodies, complements, interferon, etc., which help us ward off infection. Rather, plants have "passive" mechanisms of protection. For instance, the waxy secretion of some plants (cuticle) functions to help hold in moisture and keep out microorganisms. Plants can also secrete irritating juices that prevent insects and animals from eating it. The thick bark of woody plants is another example of a defensive adaptation, that protects the more delicate tissues inside. The chemical secretions of some plants are downright poisonous to many organisms, which greatly enhance the chances of survival for the plant. Fruits of plants contain large amounts of vitamin C and bioflavonoids, compounds which have been shown in the lab to be anti-bacterial and antiviral. So in these ways, plants can improve their chances of survival. Hundreds of viruses and bacteria attack plants each year, and the cost to agriculture is enormous. I would venture to guess that once an organism establishes an infection in a plant, the plant will not be able to "fight" it. However, exposure to the sun's UV light may help control an infection, possibly even defeat it, but the plant does not have any inherent "active" way to fight the infection

429

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment...  

Energy Savers (EERE)

Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project, October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste...

430

E-Print Network 3.0 - activated sludge treatment Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

on the activated sludge... the in this way with the operating conditions of the wastewater treatment plant. Images of activated sludge... Figure 9 shows the influences of...

431

E-Print Network 3.0 - alternative wastewater treatment Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geosciences ; Environmental Sciences and Ecology 59 Sustainable Use of Resources Recycling of Sewage Treatment Plant Water in Concrete Summary: of knowledge of the use of...

432

E-Print Network 3.0 - aerox waste treatment Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities that could be modified to generate hydrogen Fuel... from organic waste Wastewater treatment plants ... Source: DOE Office of Energy Efficiency and Renewable...

433

A STELLA Model for Integrated Algal Biofuel Production and Wastewater Treatment.  

E-Print Network (OSTI)

??Based on a municipal wastewater treatment plant (WWTP) in Tampa, FL, a dynamic multiple-systems model was developed on the STELLA software platform to explore algae… (more)

Cormier, Ivy

2010-01-01T23:59:59.000Z

434

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

435

Plant Phenotype Characterization System  

SciTech Connect

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

436

Technology Data for Energy Plants June 2010  

E-Print Network (OSTI)

............................................................................................... 79 13 Centralised Biogas Plants

437

Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II  

SciTech Connect

This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

2011-09-26T23:59:59.000Z

438

Plant Biology 2001  

Science Journals Connector (OSTI)

...Park, PA b Graduate Research Assistant Michigan...University-Department of Energy Plant Research Laboratory East Lansing...complete listing of abstracts can be found at http...University-Department of Energy Plant Research Laboratory, East...

Nancy A. Eckardt; Hyung-Taeg Cho; Robyn M. Perrin; Matthew R. Willmann

439

Types of Hydropower Plants  

Energy.gov (U.S. Department of Energy (DOE))

There are three types of hydropower facilities: impoundment, diversion, and pumped storage. Some hydropower plants use dams and some do not. The images below show both types of hydropower plants.

440

kansas city plant  

National Nuclear Security Administration (NNSA)

0%2A en Kansas City Plant http:nnsa.energy.govaboutusourlocationskansas-city-plant

Page...

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Plants & Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants & Animals Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. April 12, 2012 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other plants and animals not considered food sources. What plants and animals do we monitor? LANL monitors both edible and non-edible plants and animals to determine whether Laboratory operations are impacting human health via the food chain, or to find contaminants that indicate they are being moved in the

442

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone  

E-Print Network (OSTI)

Pilot Scale Study of Excess Sludge Production Reduction in Wastewater Treatment by Ozone Yuan Ma-scale reactors were operated at the LaPrairie Wastewater Treatment plant (one control and one ozonated

Barthelat, Francois

443

Revamp of Ukraine VCM plant will boost capacity, reduce emissions  

SciTech Connect

Oriana Concern (formerly P.O. Chlorvinyl) is revamping its 250,000 metric ton/year (mty) vinyl chloride monomer (VCM) plant at Kalusch, Ukraine. At the core of the project area new ethylene dichloride (EDC) cracking furnace and direct chlorination unit, and revamp of an oxychlorination unit to use oxygen rather than air. The plant expansion and modernization will boost capacity to 370,000 mty. New facilities for by-product recycling and recovery, waste water treatment, and emissions reduction will improve the plant`s environmental performance. This paper shows expected feedstock and utility consumption for VCM production. Techmashimport and P.O. Chlorvinyl commissioned the Kalusch plant in 1975. The plant was built by Uhde GmbH, Dortmund, Germany. The paper also provides a schematic of the Hoechst/Uhde VCM process being used for the plant revamp. The diagram is divided into processing sections.

NONE

1996-05-13T23:59:59.000Z

444

Plant design: Integrating Plant and Equipment Models  

SciTech Connect

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process Engineering–Open), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

445

Preliminary Assessment of the Hanford Tank Waste Feed Acceptance and Product Qualification Programs  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management (EM) is engaging the national laboratories to provide the scientific and technological rigor to support EM program and project planning, technology development and deployment, project execution, and assessment of program outcomes. As an early demonstration of this new responsibility, Savannah River National Laboratory (SRNL) and Pacific Northwest National Laboratory (PNNL) have been chartered to implement a science and technology program addressing Hanford Tank waste feed acceptance and product qualification. As a first step, the laboratories examined the technical risks and uncertainties associated with the planned waste feed acceptance and qualification testing for Hanford tank wastes. Science and technology gaps were identified for work associated with 1) feed criteria development with emphasis on identifying the feed properties and the process requirements, 2) the Tank Waste Treatment and Immobilization Plant (WTP) process qualification program, and 3) the WTP HLW glass product qualification program. Opportunities for streamlining the accetpance and qualification programs were also considered in the gap assessment. Technical approaches to address the science and technology gaps and/or implement the opportunities were identified. These approaches will be further refined and developed as strong integrated teams of researchers from national laboratories, contractors, industry, and academia are brought together to provide the best science and technology solutions. Pursuing the identified approaches will have immediate and long-term benefits to DOE in reducing risks and uncertainties associated with tank waste removal and preparation, transfers from the tank farm to the WTP, processing within the WTP Pretreatment Facility, and in producing qualified HLW glass products. Additionally, implementation of the identified opportunities provides the potential for long-term cost savings given the anticipated facility life of WTP.

Herman, C. C.; Adamson, Duane J.; Herman, D. T.; Peeler, David K.; Poirier, Micheal R.; Reboul, S. H.; Stone, M. E.; Peterson, Reid A.; Chun, Jaehun; Fort, James A.; Vienna, John D.; Wells, Beric E.

2013-04-01T23:59:59.000Z

446

Power Plant Cycling Costs  

SciTech Connect

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

447

NUCLEAR PLANT AND CONTROL  

E-Print Network (OSTI)

for the digital protection systems of a nuclear power plant. When spec- ifying requirements for software and CRSA processes are described using shutdown system 2 of the Wolsong nuclear power plants as the digital, the missiles, and the digital protection systems embed- ded in nuclear power plants. Obviously, safety

448

Economic Analysis of Wastewater Treatment Alternatives in Rural Texas Communities.  

E-Print Network (OSTI)

of size across capital. operation. and maintenance costs. Keywords: wastewater, rural communities, costs. treatment plants. 1 INTRODUCTION Public concern for the quality of water discharged into the nation's waterways contributed to the passage..., 1968. United States Environmental Protection Agency. Construction Costs for Municipal Waste Treatment Plants: 1973-1977. Washington, D.C .? January 1978. ___ . Needs Survey (1980): Cost Estimates for Construction of Publicly Owned Wastewater...

Victurine, Raymond F.; Goodwin, H.L. Jr; Lacewell, Ronald D.

1985-01-01T23:59:59.000Z

449

Making wastewater environmentally sustainable: Innovative technology offers new possibilities for wastewater treatment  

E-Print Network (OSTI)

Story by Katie Heinrich 16 tx H2O Summer 2013 Making wastewater environmentally sustainable Innovative technology o#30;ers new possibilities for wastewater treatment Municipal wastewater treatment plants may soon become more sustainable... in their treatment of wastewater by pursuing new electron beam (e-beam) technology being researched at a Texas A&M AgriLife Research center in College Station. To help these plants in their move to increased sustainability in wastewater treatment, the National...

Heinrich, Katie

2013-01-01T23:59:59.000Z

450

Alternatives for sodium-potassium alloy treatment  

SciTech Connect

Sodium-potassium alloy (NaK) is currently treated at the Y-12 Plant by open burning. Due to uncertainties with future permits for this process alternative treatment methods were investigated, revealing that two treatment processes are feasible. One process reacts the NaK with water in a highly concentrated molten caustic solution (sodium and potassium hydroxide). The final waste is a caustic that may be used elsewhere in the plant. This process has two safety concerns: Hot corrosive materials used throughout the process present handling difficulties and the process must be carefully controlled (temperature and water content) to avoid explosive NaK reactions. To avoid these problems a second process was developed that dissolves NaK in a mixture of propylene glycol and water at room temperature. While this process is safer, it generates more waste than the caustic process. The waste may possibly be used as a carbon food source in biological waste treatment operations at the Y-12 Plant. Experiments were conducted to demonstrate both processes, and they showed that both processes are feasible alternatives for NaK treatment. Process flow sheets with mass balances were generated for both processes and compared. While the caustic process generates less waste, the propylene glycol process is safer in several ways (temperature, material handling, and reaction control). The authors recommend that the propylene glycol alternative be pursued further as an alternative for NaK treatment. To optimize this process for a larger scale several experiments should be conducted. The amount of NaK dissolved in propylene glycol and subsequent waste generated should be optimized. The offgas processes should be optimized. The viability of using this waste as a carbon food source at one of the Y-12 Plant treatment facilities should be investigated. If the state accepts this process as an alternative, design and construction of a pilot-scale treatment system should begin.

Takacs, T.J.; Johnson, M.E.

1993-04-08T23:59:59.000Z

451

prairie plant list  

NLE Websites -- All DOE Office Websites (Extended Search)

List of Native Prairie Plant Illustrations List of Native Prairie Plant Illustrations Select the common name of the plant you want to view. Common Name Scientific Name Grasses BIG BLUESTEM Andropogon gerardii INDIAN GRASS Sorghastrum nutans LITTLE BLUESTEM Andropogon scoparius SWITCH GRASS Panicum virgatum CORD GRASS Spartina pectinata NEEDLEGRASS Stipa spartea PRAIRIE DROPSEED Sporobolus pectinata SIDE-OATS GRAMA Bouteloua curtipendula FORBS ROSINWEED Silphium integrifolium SAW-TOOTHED SUNFLOWER Helianthus grossesserratus WILD BERGAMOT Monarda fistulosa YELLOW CONEFLOWER Ratibida pinnata BLACK-EYED SUSAN Rudbeckia hirta COMPASS PLANT Silphium lactiniatum CUP PLANT Silphium perfoliatum NEW ENGLAND ASTER Aster novae-angilae PRAIRIE DOCK Silphium terebinthinaceum RATTLESNAKE MASTER Eryngium yuccifolium STIFF GOLDENROD Solidaga rigida

452

Prep plant population rebounds  

SciTech Connect

Demand and higher prices allows more operators to build and upgrade plants. The 2005 US Prep Plant Census found that the number of coal preparation plants has grown from 212 to 265 in five years - a 53 plant gain or a 20% increase over that reported by Coal Age in 2000. The number of bituminous coal washing facilities grew by 43 to 250. The article discusses the survey and the companies involved and presents a table giving key details of plants arranged by state. 6 tabs.

Fiscor, S.

2005-10-01T23:59:59.000Z

453

Host Plants and Their Diseases  

Science Journals Connector (OSTI)

The information telescoped into this section is taken in large part from the records of the Plant Disease Survey as given in the Plant Disease Reporter, Plant Diseases and from the Index of Plant Diseases in the ...

R. Kenneth Horst Ph.D.

2001-01-01T23:59:59.000Z