Powered by Deep Web Technologies
Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

2

DNFSB Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant WTP  

NLE Websites -- All DOE Office Websites (Extended Search)

DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 i Department of Energy Plan to Address Waste Treatment and Immobilization Plant Vessel Mixing Issues Revision 0 Implementation Plan for Defense Nuclear Safety Board Recommendation 2010-2 November 10, 2011 DNFSB Rec. 2010-2, Rev.0, Nov.10, 2011 ii EXECUTIVE SUMMARY On December 17, 2010, the Defense Nuclear Facilities Safety Board (DNFSB) issued Recommendation 2010-2, Pulse Jet Mixing at the Waste Treatment and Immobilization Plant. The recommendation addressed the need for the U.S. Department of Energy (DOE) to ensure that the Hanford Waste Treatment and Immobilization Plant (WTP), in conjunction with the Hanford tank farm waste feed delivery system, will operate safely and effectively during a

3

Final Report: RPP-WTP Semi-Integrated Pilot Plant  

Science Conference Proceedings (OSTI)

In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was the subject of the issued Campaign I interim report (Duignan et al., 2004a or Appendix I-1). The streams created in Campaign I were used for Campaign II, and during Campaign II more of the same recycle streams were produced, with the addition of recycle streams created during the pilot-scale ion exchange unit operation (Duignan et al., 2004b or Appendix I-2). Campaign III used the recycles from Campaign II and was the first campaign to use all the recycle streams (Duignan et al., 2004c or Appendix I-3). The operation of each of the subsequent campaigns, i.e., II, III, and IV, while different from Campaign I, are very similar to each other, and can be best understood as the process of operating a series of Pretreatment Unit Operations in a somewhat prototypic manner. That is, while Campaign I studied the operation of a single, albeit important, Pretreatment Unit Operation, i.e., Ultrafiltration, subsequent campaigns were to study the four major unit operations that make-up the RPP-WTP Pretreatment Facility. They are: Waste Feed Evaporation Process (FEP), Ultrafiltration Process (UFP), Cesium Ion Exchange Process (CIX), and the Treated LAW Evaporation Process (TLP). Each of the campaigns operated basically as a separate subtask, but as with Campaign I, the recycle streams produced in one campaign were fed into the subsequent campaign. Therefore, all four campaigns were chemically connected through these recycle streams, which carry over effects of the preceding campaign. The results of Campaign IV operations are the subject of this fourth and final report. Separate reports were issued after each of the previous campaigns, but they were treated as interim because of being limited to the results obtained from a single campaign (or past campaigns) and further limited to only highlights of that single campaign. This final report not only discusses the Campaign IV results but compares those with the previous campaigns. Also included is a more comprehensive discussion of the overall task activities, as well as abridged versions of the full databases of the accumulated

Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

2005-06-01T23:59:59.000Z

4

Final Report: RPP-WTP Semi-Integrated Pilot Plant  

SciTech Connect

In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was the subject of the issued Campaign I interim report (Duignan et al., 2004a or Appendix I-1). The streams created in Campaign I were used for Campaign II, and during Campaign II more of the same recycle streams were produced, with the addition of recycle streams created during the pilot-scale ion exchange unit operation (Duignan et al., 2004b or Appendix I-2). Campaign III used the recycles from Campaign II and was the first campaign to use all the recycle streams (Duignan et al., 2004c or Appendix I-3). The operation of each of the subsequent campaigns, i.e., II, III, and IV, while different from Campaign I, are very similar to each other, and can be best understood as the process of operating a series of Pretreatment Unit Operations in a somewhat prototypic manner. That is, while Campaign I studied the operation of a single, albeit important, Pretreatment Unit Operation, i.e., Ultrafiltration, subsequent campaigns were to study the four major unit operations that make-up the RPP-WTP Pretreatment Facility. They are: Waste Feed Evaporation Process (FEP), Ultrafiltration Process (UFP), Cesium Ion Exchange Process (CIX), and the Treated LAW Evaporation Process (TLP). Each of the campaigns operated basically as a separate subtask, but as with Campaign I, the recycle streams produced in one campaign were fed into the subsequent campaign. Therefore, all four campaigns were chemically connected through these recycle streams, which carry over effects of the preceding campaign. The results of Campaign IV operations are the subject of this fourth and final report. Separate reports were issued after each of the previous campaigns, but they were treated as interim because of being limited to the results obtained from a single campaign (or past campaigns) and further limited to only highlights of that single campaign. This final report not only discusses the Campaign IV results but compares those with the previous campaigns. Also included is a more comprehensive discussion of the overall task activities, as well as abridged versions of the full databases of the accumulated

Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

2005-06-01T23:59:59.000Z

5

INCONEL 690 CORROSION IN WTP (WASTE TREATMENT PLANT) HLW (HIGH LEVEL WASTE) GLASS MELTS RICH IN ALUMINUM & BISMUTH & CHROMIUM OR ALUMINUM/SODIUM  

SciTech Connect

Metal corrosion tests were conducted with four high waste loading non-Fe-limited HLW glass compositions. The results at 1150 C (the WTP nominal melter operating temperature) show corrosion performance for all four glasses that is comparable to that of other typical borosilicate waste glasses, including HLW glass compositions that have been developed for iron-limited WTP streams. Of the four glasses tested, the Bi-limited composition shows the greatest extent of corrosion, which may be related to its higher phosphorus content. Tests at higher suggest that a moderate elevation of the melter operating temperature (up to 1200 C) should not result in any significant increase in Inconel corrosion. However, corrosion rates did increase significantly at yet higher temperatures (1230 C). Very little difference was observed with and without the presence of an electric current density of 6 A/inch{sup 2}, which is the typical upper design limit for Inconel electrodes. The data show a roughly linear relationship between the thickness of the oxide scale on the coupon and the Cr-depletion depth, which is consistent with the chromium depletion providing the material source for scale growth. Analysis of the time dependence of the Cr depletion profiles measured at 1200 C suggests that diffusion of Cr in the Ni-based Inconel alloy controls the depletion depth of Cr inside the alloy. The diffusion coefficient derived from the experimental data agrees within one order of magnitude with the published diffusion coefficient data for Cr in Ni matrices; the difference is likely due to the contribution from faster grain boundary diffusion in the tested Inconel alloy. A simple diffusion model based on these data predicts that Inconel 690 alloy will suffer Cr depletion damage to a depth of about 1 cm over a five year service life at 1200 C in these glasses.

KRUGER AA; FENG Z; GAN H; PEGG IL

2009-11-05T23:59:59.000Z

6

Independent Activity Report, Hanford Waste Treatment Plant -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review ARPT-WTP-2011-002...

7

Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet  

SciTech Connect

The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].

Arlin Olson

2012-02-28T23:59:59.000Z

8

Hanford Waste Treatment Plant Construction Quality Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPT-WTP-2011-002 ARPT-WTP-2011-002 Site: DOE Hanford Waste Treatment Plant Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Hanford Waste Treatment Plant Construction Quality Review Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer Joseph Lenahan Activity Description/Purpose: The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. The Office of Health, Safety and Security (HSS) attended several Bechtel National Incorporated (BNI) project meetings, reviewed the WTP project quality assurance program, reviewed DOE-WTP inspection reports completed by the DOE-WTP

9

Hanford Waste Treatment Plant Construction Quality Review  

NLE Websites -- All DOE Office Websites (Extended Search)

ARPT-WTP-2011-002 Site: DOE Hanford Waste Treatment Plant Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the...

10

Microsoft PowerPoint - 10-04 Sundar Technology Needs for WTP Simulants - PSSundar.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Needs for WTP Simulants Needs for WTP Simulants P. S. Sundar Process Technology - Plant Operations Div Waste Treatment Plant Project November 17, 2010 Bechtel National, Inc. Print Close Technology Needs for WTP Simulants 2 Agenda * Major simulant requirements of WTP Project and the associated challenges Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 3 Simplified Process Flowsheet IHLW ILAW LAW Feed HLW Feed HLW Recycles LAW Recycles Bechtel National, Inc. Close Print Technology Needs for WTP Simulants 4 Simulant Needs * Commissioning Simulants - As received and pretreated LAW supernatants - As received HLW sludge - Pretreated HLW sludge - Vitrification recycle streams

11

HIGH ALUMINUM HLW (HIGH LEVEL WASTE ) GLASSES FOR HANFORDS WTP (WASTE TREATMENT PROJECT)  

Science Conference Proceedings (OSTI)

This paper presents the results of glass formulation development and melter testing to identify high waste loading glasses to treat high-Al high level waste (HLW) at Hanford. Previous glass formulations developed for this HLW had high waste loadings but their processing rates were lower that desired. The present work was aimed at improving the glass processing rate while maintaining high waste loadings. Glass formulations were designed, prepared at crucible-scale and characterized to determine their properties relevant to processing and product quality. Glass formulations that met these requirements were screened for melt rates using small-scale tests. The small-scale melt rate screening included vertical gradient furnace (VGF) and direct feed consumption (DFC) melter tests. Based on the results of these tests, modified glass formulations were developed and selected for larger scale melter tests to determine their processing rate. Melter tests were conducted on the DuraMelter 100 (DMIOO) with a melt surface area of 0.11 m{sup 2} and the DuraMelter 1200 (DMI200) HLW Pilot Melter with a melt surface area of 1.2 m{sup 2}. The newly developed glass formulations had waste loadings as high as 50 wt%, with corresponding Al{sub 2}O{sub 3} concentration in the glass of 26.63 wt%. The new glass formulations showed glass production rates as high as 1900 kg/(m{sup 2}.day) under nominal melter operating conditions. The demonstrated glass production rates are much higher than the current requirement of 800 kg/(m{sup 2}.day) and anticipated future enhanced Hanford Tank Waste Treatment and Immobilization Plant (WTP) requirement of 1000 kg/(m{sup 2}.day).

KRUGER AA; BOWAN BW; JOSEPH I; GAN H; KOT WK; MATLACK KS; PEGG IL

2010-01-04T23:59:59.000Z

12

Independent Activity Report, Hanford Waste Treatment Plant - February 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activity Report, Hanford Waste Treatment Plant - Activity Report, Hanford Waste Treatment Plant - February 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review [ARPT-WTP-2011-002] The purpose of the visit was to perform a review of construction quality assurance at the Waste Treatment Plant (WTP) site activities concurrently with the Department of Energy (DOE) WTP staff. One focus area for this visit was piping and pipe support installations. Independent Activity Report, Hanford Waste Treatment Plant - February 2011 More Documents & Publications Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant -

13

Independent Activity Report, Waste Treatment and Immobilization Plant- March 2013  

Energy.gov (U.S. Department of Energy (DOE))

Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18

14

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plasma Atomic Emission Spectrometry (LA-ICP-MSLA-ICP-AES) subsystems of the Analytical Hot Cell Laboratory System (AHL), which provide the analytical equipment systems for the...

15

SRNL PHASE 1 ASSESSMENT OF THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Project is currently transitioning its emphasis from an engineering design and construction phase toward facility completion, start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements that must be met during the actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program. In general, the waste qualification program involves testing and analysis to demonstrate compliance with waste acceptance criteria, determine waste processability, and demonstrate laboratory-scale unit operations to support WTP operations. The testing and analysis are driven by data quality objectives (DQO) requirements necessary for meeting waste acceptance criteria for transfer of high-level wastes from the tank farms to the WTP, and for ensuring waste processability including proper glass formulations during processing within the WTP complex. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS) which were based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested subject matter experts (SMEs) from SRNL to support a technology exchange with respect to waste qualification programs in which a critical review of the WTP program could be initiated and lessons learned could be shared. The technology exchange was held on July 18-20, 2011 in Richland, Washington, and was the initial step in a multi-phased approach to support development and implementation of a successful waste qualification program at the WTP. The 3-day workshop was hosted by WTP with representatives from the Tank Operations Contractor (TOC) and SRNL in attendance as well as representatives from the US DOE Office of River Protection (ORP) and the Defense Nuclear Facility Safety Board (DNFSB) Site Representative office. The purpose of the workshop was to share lessons learned and provide a technology exchange to support development of a technically defensible waste qualification program. The objective of this report is to provide a review, from SRNL's perspective, of the WTP waste qualification program as presented during the workshop. In addition to SRNL's perspective on the general approach to the waste qualification program, more detailed insight into the specific unit operations presented by WTP during the workshop is provided. This report also provides a general overview of the SRS qualification program which serves as a basis for a comparison between the two programs. Recommendations regarding specific steps are made based on the review and SRNL's lessons learned from qualification of SRS low-activity waste (LAW) and high-level waste (HLW) to support maturation of the waste qualification program leading to WTP implementation.

Peeler, D.; Hansen, E.; Herman, C.; Marra, S.; Wilmarth, B.

2012-03-06T23:59:59.000Z

16

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment and Immobilization Treatment and Immobilization Plant - November 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - November 2011 November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Plant Project (WTP). The independent oversight review, which was performed September 12-15, 2011, was the latest in a series of ongoing quarterly assessments of construction quality at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant -

17

Waste Treatment Plant Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site, located in southeastern Washington state, Hanford Site, located in southeastern Washington state, was the largest of three defense production sites in the U.S. Over the span of 40 years, it was used to produce 64 metric tons of plutonium, helping end World War II and playing a major role in military defense efforts during the Cold War. As a result, 56 million gallons of radioactive and chemical wastes are now stored in 177 underground tanks on the Hanford Site. To address this challenge, the U.S. Department of Energy contracted Bechtel National, Inc., to design and build the world's largest radioactive waste treatment plant. The Waste Treatment and Immobilization Plant (WTP), also known as the "Vit Plant," will use vitrification to immobilize most of Hanford's dangerous tank waste.

18

HIGH ALUMINUM HLW GLASSES FOR HANFORDS WTP  

Science Conference Proceedings (OSTI)

The world's largest radioactive waste vitrification facility is now under construction at the United State Department of Energy's (DOE's) Hanford site. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is designed to treat nearly 53 million gallons of mixed hazardous and radioactive waste now residing in 177 underground storage tanks. This multi-decade processing campaign will be one of the most complex ever undertaken because of the wide chemical and physical variability of the waste compositions generated during the cold war era that are stored at Hanford. The DOE Office of River Protection (ORP) has initiated a program to improve the long-term operating efficiency of the WTP vitrification plants with the objective of reducing the overall cost of tank waste treatment and disposal and shortening the duration of plant operations. Due to the size, complexity and duration of the WTP mission, the lifecycle operating and waste disposal costs are substantial. As a result, gains in High Level Waste (HLW) and Low Activity Waste (LAW) waste loadings, as well as increases in glass production rate, which can reduce mission duration and glass volumes for disposal, can yield substantial overall cost savings. EnergySolutions and its long-term research partner, the Vitreous State Laboratory (VSL) of the Catholic University of America, have been involved in a multi-year ORP program directed at optimizing various aspects of the HLW and LAW vitrification flow sheets. A number of Hanford HLW streams contain high concentrations of aluminum, which is challenging with respect to both waste loading and processing rate. Therefore, a key focus area of the ORP vitrification process optimization program at EnergySolutions and VSL has been development of HLW glass compositions that can accommodate high Al{sub 2}O{sub 3} concentrations while maintaining high processing rates in the Joule Heated Ceramic Melters (JHCMs) used for waste vitrification at the WTP. This paper, reviews the achievements of this program with emphasis on the recent enhancements in Al{sub 2}O{sub 3} loadings in HLW glass and its processing characteristics. Glass formulation development included crucible-scale preparation and characterization of glass samples to assess compliance with all melt processing and product quality requirements, followed by small-scale screening tests to estimate processing rates. These results were used to down-select formulations for subsequent engineering-scale melter testing. Finally, further testing was performed on the DM1200 vitrification system installed at VSL, which is a one-third scale (1.20 m{sup 2}) pilot melter for the WTP HLW melters and which is fitted with a fully prototypical off-gas treatment system. These tests employed glass formulations with high waste loadings and Al{sub 2}O{sub 3} contents of {approx}25 wt%, which represents a near-doubling of the present WTP baseline maximum Al{sub 2}O{sub 3} loading. In addition, these formulations were processed successfully at glass production rates that exceeded the present requirements for WTP HLW vitrification by up to 88%. The higher aluminum loading in the HLW glass has an added benefit in that the aluminum leaching requirements in pretreatment are reduced, thus allowing less sodium addition in pretreatment, which in turn reduces the amount of LAW glass to be produced at the WTP. The impact of the results from this ORP program in reducing the overall cost and schedule for the Hanford waste treatment mission will be discussed.

KRUGER AA; JOSEPH I; BOWMAN BW; GAN H; KOT W; MATLACK KS; PEGG IL

2009-08-19T23:59:59.000Z

19

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 2013 March 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed November 26-30, 2012, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2013

20

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2012 October 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed August 6-10, 2012, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight Review, Waste Treatment and Immobilization Plant -

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Summary - WTP Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Block Block D DOE is Immob site's t facilitie purpos techno Facility to be i The as CTEs, Readin * C * C * W * Tr * U * Pu * W * H * Pl The as require The Ele Site: H roject: W Report Date: M ited States Wast Why DOE Diagram of Cesiu s constructing bilization Plant tank wastes. T es including a P se of this asses ology elements y and determin ncorporated in What th ssessment team along with eac ness Level (TR s Nitric Acid Re s Ion Exchang Waste Feed Eva reated LAW Ev ltrafiltration Pro ulse Jet Mixer Waste Feed Rec LW Lag Storag lant Wash and ssessment team ed maturity prio To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen te Treatm E-EM Did This um Nitric Acid R a Waste Treat (WTP) at Hanf The WTP is com Pretreatment F ssment was to s (CTEs) in the

22

Summary - Flowsheet for the Hanford Waste Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Waste Treatment Plant ETR Report Date: March 2006 ETR-1 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Flowsheet for the Hanford Waste Treatment Plant (WTP) Why DOE-EM Did This Review The Hanford Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 53 million gallons of radioactive waste, separate it into high- and low-activity fractions, and produce canisters of high-level (HLW) glass (left) and containers of low-activity waste (LAW) glass (right). At the time of this review, the Plant was at approximately 70% design and 30% construction completion. The external review objective was to determine how well the WTP would meet its throughput capacities based on the current design,

23

Independent Oversight Assessment, Waste Treatment and Immobilization Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - January 2012 Independent Oversight Assessment, Waste Treatment and Immobilization Plant - January 2012 January 2012 Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment at the DOE Waste Treatment and Immobilization Plant (WTP) to evaluate the current status of the nuclear safety culture and the effectiveness of DOE and contractor management in addressing nuclear safety concerns at WTP. This assessment provides DOE management with a follow-up on the October 2010 HSS review of the WTP

24

Independent Activity Report, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - March 2013 Independent Activity Report, Waste Treatment and Immobilization Plant - March 2013 March 2013 Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review [HIAR-WTP-2013-03-18] The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach implemented by Bechtel National, Inc. (BNI), the contractor responsible for the design and construction of WTP for the U.S. Department of Energy (DOE) Office of

25

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Review, Waste Treatment and Immobilization Oversight Review, Waste Treatment and Immobilization Plant - August 2011 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2011 August 2011 Hanford Waste Treatment and Immobilization Plant Construction Quality The Office of Safety and Emergency Management Evaluations (Independent Oversight) within the Office of Health, Safety and Security (HSS) conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Project (WTP). The review, which was performed May 9-12, 2011, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. HSS determined that construction quality at WTP was adequate in the areas

26

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Independent Oversight Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed November 14-17, 2011, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. Independent Oversight determined that construction quality at WTP was adequate in the areas reviewed. BNI Engineering has developed appropriate

27

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

28

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 2012 August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted independent reviews of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Project (WTP). The reviews for this report were performed on site during February 6-10, 2012 and April 30 - May 4, 2012, and were the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP. Independent Oversight determined that construction quality at WTP is

29

Review of the Hanford Site Waste Treatment and Immobilization...  

NLE Websites -- All DOE Office Websites (Extended Search)

WTP Waste Treatment and Immobilization Plant ii Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality 1.0 PURPOSE The U....

30

Review of the Hanford Site Waste Treatment and Immobilization...  

NLE Websites -- All DOE Office Websites (Extended Search)

WTP Waste Treatment and Immobilization Plant ii Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality 1.0 PURPOSE The...

31

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-047 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facilities L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-047 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental Management (EM), Office of Project Recovery has completed a Technology Readiness

32

& Immobilization Plant Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the current mixing, erosion, corrosion, instrumentation and monitoring challenges at the Waste Treatment Plant (WTP) in Hanford. The "black cell" design concept and the use of...

33

Hanford Waste Treatment and Immobilization Plant Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

conducted an independent review of selected aspects of construction quality at the Hanford Waste Treatment and Immobilization Project (WTP). The review, which was performed May...

34

Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers  

DOE Green Energy (OSTI)

The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables.

HASSAN, NEGUIB

2004-06-29T23:59:59.000Z

35

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant - August 2012 Independent Oversight Review, Waste Treatment and Immobilization Plant - August 2012 August 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted independent reviews of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Project (WTP). The reviews for this report were performed on site during February 6-10, 2012 and April 30 - May 4, 2012, and were the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP.

36

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2013 January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted a concurrent independent review with the U.S. Department of Energy (DOE) Office of River Protection (ORP) of selected aspects of the Bechtel National, Inc. (BNI) Hanford Site Waste Treatment and Immobilization Plant (WTP) procurement processes for WTP black-cell (BC) and hard-to-reach (HtR) pipe spools. The Independent Oversight review was performed by the HSS Office of Safety and

37

Independent Oversight Review, Waste Treatment and Immobilization Plant -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 2013 January 2013 Independent Oversight Review, Waste Treatment and Immobilization Plant - January 2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River Protection Audit of That Process The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted a concurrent independent review with the U.S. Department of Energy (DOE) Office of River Protection (ORP) of selected aspects of the Bechtel National, Inc. (BNI) Hanford Site Waste Treatment and Immobilization Plant (WTP) procurement processes for WTP black-cell (BC) and hard-to-reach (HtR) pipe spools. The Independent Oversight review was performed by the HSS Office of Safety and

38

Independent Oversight Activity Report, Hanford Waste Treatment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(VSL). Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the...

39

SRNL PHASE 1 ASSESSMENT OF THE WAC/DQO AND UNIT OPERATIONS FOR THE WTP WASTE QUALIFICATION PROGRAM  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is currently transitioning its emphasis from a design and construction phase toward start-up and commissioning. With this transition, the WTP Project has initiated more detailed assessments of the requirements related to actual processing of the Hanford Site tank waste. One particular area of interest is the waste qualification program to be implemented to support the WTP. Given the successful implementation of similar waste qualification efforts at the Savannah River Site (SRS), based on critical technical support and guidance from the Savannah River National Laboratory (SRNL), WTP requested the utilization of subject matter experts from SRNL to support a technology exchange to perform a review of the WTP waste qualification program, discuss the general qualification approach at SRS, and to identify critical lessons learned through the support of DWPF's sludge batch qualification efforts. As part of Phase 1, SRNL subject matter experts in critical technical and/or process areas reviewed specific WTP waste qualification information. The Phase 1 review was a collaborative, interactive, and iterative process between the two organizations. WTP provided specific analytical procedures, descriptions of equipment, and general documentation as baseline review material. SRNL subject matter experts reviewed the information and, as appropriate, requested follow-up information or clarification to specific areas of interest. This process resulted in multiple teleconferences with key technical contacts from both organizations resolving technical issues that lead to the results presented in this report. This report provides the results of SRNL's Phase 1 review of the WAC-DQO waste acceptance criteria and processability parameters, and the specific unit operations which are required to support WTP waste qualification efforts. The review resulted in SRNL providing concurrence, alternative methods, or gap identification for the proposed WTP analytical methods or approaches. For the unit operations, the SRNL subject matter experts reviewed WTP concepts compared to what is used at SRS and provided thoughts on the outlined tasks with respect to waste qualification. Also documented in this report are recommendations and an outline on what would be required for the next phase to further mature the WTP waste qualification program.

Peeler, D.; Adamson, D.; Bannochie, C.; Cozzi, A.; Eibling, R.; Hay, M.; Hansen, E.; Herman, D.; Martino, C.; Nash, C.; Pennebaker, F.; Poirier, M.; Reboul, S.; Stone, M.; Taylor-Pashow, K.; White, T.; Wilmarth, B.

2012-05-16T23:59:59.000Z

40

RECENT IMPROVEMENTS IN INTERFACE MANAGEMENT FOR HANFORDS WASTE TREATMENT AND IMMOBILIZATION PLANT - 13263  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) is responsible for management and completion of the River Protection Project (RPP) mission, which comprises both the Hanford Site tank farms operations and the Waste Treatment and Immobilization Plant (WTP). The RPP mission is to store, retrieve and treat Hanford's tank waste; store and dispose of treated wastes; and close the tank farm waste management areas and treatment facilities by 2047. The WTP is currently being designed and constructed by Bechtel National Inc. (BNI) for DOE-ORP. BNI relies on a number oftechnical services from other Hanford contractors for WTP's construction and commissioning. These same services will be required of the future WTP operations contractor. The WTP interface management process has recently been improved through changes in organization and technical issue management documented in an Interface Management Plan. Ten of the thirteen active WTP Interface Control Documents (ICDs) have been revised in 2012 using the improved process with the remaining three in progress. The value of the process improvements is reflected by the ability to issue these documents on schedule.

ARM ST; PELL MJ; VAN MEIGHEM JS; DUNCAN GM; HARRINGTON C

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

42

Waste Treatment Plant Support Program: Summaries of Reports Produced During Fiscal Years 1999-2010  

Science Conference Proceedings (OSTI)

The Waste Treatment Plant (WTP) being built on the U.S. Department of Energy (DOE) Hanford Site will be the largest chemical processing plant in the United States. Bechtel National Inc. (BNI) is the designer and constructor for the WTP. The Pacific Northwest National Laboratory (PNNL) has provided significant research and testing support to the WTP. This report provides a summary of reports developed initially under PNNLs 1831 use agreement and later PNNLs 1830 prime contract with DOE in support of the WTP. In March 2001, PNNL under its 1831 use agreement entered into a contract with BNI to support their research and testing activities. However, PNNL support to the WTP predates BNI involvement. Prior to March 2001, PNNL supported British Nuclear Fuels Ltd. in its role as overall designer and constructor. In February 2007, execution of PNNLs support to the WTP was moved under its 1830 prime contract with DOE. Documents numbered PNWD-XXXX were issued under PNNLs 1831 use agreement. Documents numbered PNNL-XXXX were issued under PNNLs 1830 prime contract with DOE. The documents are sorted by fiscal year and categorized as follows: ? Characterization ? HLW (High Level Waste) ? Material Characterization ? Pretreatment ? Simulant Development ? Vitrification ? Waste Form Qualification. This report is intended to provide a compendium of reports issued by PNWD/PNNL in support of the Waste Treatment Plant. Copies of all reports can be obtained by clicking on http://www.pnl.gov/rpp-wtp/ and downloading the .pdf file(s) to your computer.

Beeman, Gordon H.

2010-08-12T23:59:59.000Z

43

Activity Report for Hanford WTP LAW Melter HA Development, July 31 - August 5, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report HSS Independent Activity Report Report Number: HIAR-WTP-2013-07-31 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Dates of Activity : 07/31/13 - 08/05/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the hazards analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and

44

Activity Report for Hanford WTP LAW Melter HA Development, July 31 - August 5, 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report HSS Independent Activity Report Report Number: HIAR-WTP-2013-07-31 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Dates of Activity : 07/31/13 - 08/05/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the hazards analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and

45

Evaluation of Foaming and Antifoam Effectiveness During the WTP Oxidative Leaching Process  

Science Conference Proceedings (OSTI)

The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using a Hanford waste simulant subjected to air sparging during oxidative leaching. The foaminess of Hanford tank waste solutions was previously demonstrated by SRNL during WTP evaporator foaming studies and in small scale air sparger studies. The commercial antifoam, Dow Corning Q2-3183A was recommended to mitigate the foam in the evaporators and in vessel equipped with pulse jet mixers and air spargers. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels (HLP-VSL-00027A/B), the Ultrafiltration Vessels (UFP-VSL-00002A&B), and the HLW Feed Blend Vessel (HLPVSL-00028) to assist the performance of the Pulse Jet Mixers (PJM). The previous air sparger antifoam studies conducted by SRNL researchers did not evaluate the hydrogen generation rate expected from antifoam additions or the effectiveness of the antifoam during caustic leaching or oxidative leaching. The fate of the various antifoam components and breakdown products in the WTP process under prototypic process conditions (temperature & radiation) was also not investigated. The effectiveness of the antifoam during caustic leaching, expected hydrogen generation rate associated with antifoam addition, and the fate of various antifoam components are being conducted under separate SRNL research tasks.

Burket, P. R.; Jones, T. M.; White, T. L.; Crawford, C. L.; Calloway, T. B

2005-10-11T23:59:59.000Z

46

GLASS FORMULATION FOR THE HANFORD TANK WASTE TREATMENT AND IMMOBILIZATION PLANT (WTP)  

SciTech Connect

A computational method for formulating Hanford HLW glasses was developed that is based on empirical glass composition-property models, accounts for all associated uncertainties, and can be solved in Excel{sup R} in minutes. Calculations for all waste form processing and compliance requirements included. Limited experimental validation performed.

KRUGER AA; VIENNA JD; KIM DS; JAIN V

2009-05-27T23:59:59.000Z

47

Waste Treatment and Immobilation Plant HLW Waste Vitrification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

compounds VSL Vitreous State Laboratory of the Catholic University of America WESP Wet Electrostatic Precipitator WGI Washington Group International WTP Waste Treatment and...

48

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996  

Science Conference Proceedings (OSTI)

This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

2007-01-28T23:59:59.000Z

49

Independent Oversight Review, Waste Treatment and Immobilization Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Waste Treatment and Immobilization Plant Project - October 2010 Independent Oversight Review, Waste Treatment and Immobilization Plant Project - October 2010 October 2010 Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project The U.S. Department of Energy (DOE) Office of Health, Safety and Security (HSS) conducted an independent review of the nuclear safety culture at the Waste Treatment and Immobilization Plant (WTP) project at the Hanford Site during August and September 2010. The HSS team performed the review in response to a request in a July 30, 2010, memorandum from the Assistant Secretary for the DOE Headquarters Office of Environmental Management (EM), which referred to nuclear safety concerns raised by a contractor employee

50

Hanford Waste Treatment Plant Support Task Order Modified | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Support Task Order Modified Waste Treatment Plant Support Task Order Modified Hanford Waste Treatment Plant Support Task Order Modified March 11, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a modification to a task order to Aspen Resources Limited, Inc. of Boulder, Colorado for support of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site. The modification increased the value of the task order to $1.6 million from $833,499. The task order modification has a one-year performance period and two one-year option periods. The Task Order was awarded under an Indefinite Delivery/Indefinite Quantity (ID/IQ) master Contract. Aspen Resources Limited, Inc. is a small-disadvantaged business under the Small Business Administration's

51

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wa Wa Schem DOE is Immob site's t facilitie Balanc Activity of this techno facilitie are su WTP d Readin The as along w Level ( * Tw 1. 2. The Ele Site: H roject: W Report Date: M ited States aste Trea Labo Why DOE matic of Laser Ab s constructing bilization Plant tank wastes. T es including an ces of Facilities y Waste (LAW assessment w ology elements es (LAB, BOF, fficiently matur design, which n ness Level of 6 What th ssessment team with each elem (TRL) for the L wo LAB system . Autosamplin Laser ablati AES/LA-ICP To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen atment a oratory, B E-EM Did This blation Analytical a Waste Treat (WTP) at Hanf The WTP is com n Analytical Lab s (BOF) operat ) Vitrification F was to identify t s (CTEs) in the

52

Summary - WTP HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

W W HLW W DOE is Immob site's t facilitie Facility to iden the HL to be i norma The as along w Level ( * H * H * H Sy * Pu D The Ele Site: H roject: W Report Date: M ited States Waste T Why DOE Waste Vitrificatio s constructing bilization Plant tank wastes. T es including a H y (HLW). The ntify the critical LW and determ ncorporated in ally requires a T What th ssessment team with each elem (TRL) for the H LW Melter Fee LW Melter Pro LW Melter Offg ystem/Process ulse Jet Mixer isposal System To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen Treatmen W E-EM Did This n Facility a Waste Treat (WTP) at Hanf The WTP is com High-Level Wa purpose of this technology ele mine if these are to the final WT Technology Re he TRA Team m identified the

53

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comprehensive Review of the Hanford Tank Waste Treatment and Immobilization Plant Estimate at Completion Assessment Conducted by an Independent Team of External Experts March 2006 Comprehensive Review of the Hanford Waste Treatment Plant Estimate at Completion Page i of vi Executive Summary Following an August 2005 corporate commitment to the Secretary of Energy, Bechtel National, Inc. chartered a team of industry experts to review the technical, cost, and schedule aspects of the Waste Treatment and Immobilization Plant (WTP) project. This summary reflects the observations and recommendations of the EAC Review Team (ERT), comprised of six senior industry consultants, six retired Bechtel employees, one current Bechtel employee, three employees of Bechtel's competitors, and

54

Report: EM Tank Waste Subcommittee Full Report for Waste Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DEPARTMENT OF ENERGY U.S. DEPARTMENT OF ENERGY 1000 INDEPENDENCE AVENUE SW WASHINGTON DC 20585 September 30, 2010 Dr. Inés R. Triay Assistant Secretary for Environmental Management 1000 Independence Avenue SW Washington, DC 20585 Dear Dr. Triay: As discussed during our September 15th public meeting, enclosed please find the Environmental Management Advisory Board EM Tank Waste Subcommittee Report for Waste Treatment Plant; Report Number EMAB EM-TWS WTP-001, September 30, 2010, in accordance with the Work Plan directive dated May 10, 2010. This report covers the work plan observations and recommendations concerning the Waste Treatment and Immobilization Plant at Hanford (WTP). The charge is summarized below. Charge 1: Verification of closure of Waste Treatment and Immobilization

55

Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.  

SciTech Connect

During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

Gardner, Martin G.; Price, Randall K.

2007-02-01T23:59:59.000Z

56

Fate of Tc99 at WTP and Current Work on Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fate of Tc Fate of Tc 99 at WTP and Current Work on Capture DOE EM High-Level Waste Corporate Board and as seen at the DOE EM Construction Project Review November 2010 Bechtel National, Inc. Albert A. Kruger, DOE-WED Glass Scientist John Olson, BNI Manager, Process Engineering Design 2 Fate of Tc 99 During Waste Processing A.Technical Basis for planned retention of Tc 99 in LAW and HLW glass B.Overall process mass balance C.Role of recycle, secondary waste and other disposition pathways D.Distribution of Tc 99 amongst tanks and tank waste fractions 3 Overview WTP effluents meet all waste and emissions requirements † Of all Tc 99 sent to WTP ‡ , approximately: - 77% goes to Supplemental LAW (no recycle to WTP)  Treatment technology not specified - 23% goes to WTP effluents (HLW/LAW glass, secondary effluents). On

57

Cesium Ion Exchange Program at the Hanford River Protection Project Waste Treatment Plant  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) will use cesium ion exchange to remove Cs-137 from Low Activity Waste (LAW) down to a maximum activity of 0.3 Ci/m3 in the Immobilized LAW (ILAW) product. The WTP Project baseline for cesium ion exchange is the elutable SuperLig(R) 644 (SL-644) resin (registered trademark of IBC Advanced Technologies, Inc., American Fork, UT) or a U. S. Department of Energy (DOE) approved equivalent. SL-644 is solely available through IBC Advanced Technologies. The WTP Project is conducting a three-stage process for selecting and qualifying an alternative ion exchange resin. Resorcinol formaldehyde (RF) is being pursued as a potential alternative to SL-644, to provide a backup resin supply. Resin cost relative to SL-644 is a primary driver. Phase I of the testing plan examined the viability of RF resin and recommended that a spherical form of RF resin be examined further. Phases II and III, now underway, include batch testing to determine the isotherm of this resin, kinetics to address the impacts of bead diameter and high sodium feed levels on processing Hanford waste with the resin, and multicycle column testing to determine how temperature and chemical cycling affects waste processing. Phases II and III also examine resin performance against simulated WTP feeds, radiolytic and thermal stability, and scale-up to pilot scale performance. We will discuss early results obtained from Phase II testing here.

CHARLES, NASH

2005-02-27T23:59:59.000Z

58

Production rates associated with WTP Britney Hebert, Bijeta Prasai and Henry Foust* Nicholls State University, Thibodaux, LA  

NLE Websites -- All DOE Office Websites (Extended Search)

As As known, the U.S. Department of Energy contracted Betchel National, Inc. to build the world's largest waste treatment plant (WTP). See [1] for more details. The performance of this facility in terms of solids and sodium production is still in question and a pinch-point of the WTP is an ultrafiltration process where the intended goal of this study was to determine if treating with smaller batch volumes can improve the production rates of both sodium and solids. This study included considerations of the effects of changing viscosity due to changing concentrations of sodium and an appropriate model for permeate rates. The findings of this study are that smaller batch sizes do increase production of both sodium and solids irregardless of end point concentration of solids or sodium. But there is a trade-off condition between solids and sodium production. Problem Statement The benefit of this research was to increase the mass rates of solids and

59

WASTE TREATMENT AND IMMOBILIZATION PLANT U. S. DEPARTMENT OF ENERGY OFFICE OF RIVER PROTECTION SUBMERGED BED SCRUBBER CONDENSATE DISPOSITION PROJECT - ABSTRACT # 13460  

SciTech Connect

The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, which mitigates potential issues associated with recycling.

YANOCHO RM; CORCORAN C

2012-11-15T23:59:59.000Z

60

Dynamic (G2) Model Design Document, 24590-WTP-MDD-PR-01-002, Rev. 12  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) Statement of Work (Department of Energy Contract DE-AC27-01RV14136, Section C) requires the contractor to develop and use process models for flowsheet analyses and pre-operational planning assessments. The Dynamic (G2) Flowsheet is a discrete-time process model that enables the project to evaluate impacts to throughput from eventdriven activities such as pumping, sampling, storage, recycle, separation, and chemical reactions. The model is developed by the Process Engineering (PE) department, and is based on the Flowsheet Bases, Assumptions, and Requirements Document (24590-WTP-RPT-PT-02-005), commonly called the BARD. The terminologies of Dynamic (G2) Flowsheet and Dynamic (G2) Model are interchangeable in this document. The foundation of this model is a dynamic material balance governed by prescribed initial conditions, boundary conditions, and operating logic. The dynamic material balance is achieved by tracking the storage and material flows within the plant as time increments. The initial conditions include a feed vector that represents the waste compositions and delivery sequence of the Tank Farm batches, and volumes and concentrations of solutions in process equipment before startup. The boundary conditions are the physical limits of the flowsheet design, such as piping, volumes, flowrates, operation efficiencies, and physical and chemical environments that impact separations, phase equilibriums, and reaction extents. The operating logic represents the rules and strategies of running the plant.

Deng, Yueying; Kruger, Albert A.

2013-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Water Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

to see the operation than have us explain it. Basically, most treatment plants remove the solid material and use living organisms and chlorine to clean up the water. Steve Sample...

62

Scaled Testing to Evaluate Pulse Jet Mixer Performance in Waste Treatment Plant Mixing Vessels  

Science Conference Proceedings (OSTI)

The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pre-treat and vitrify the waste in Hanfords 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. These vessels have pulse jet mixer (PJM) systems. A test program was developed to evaluate the adequacy of mixing system designs in the solids-containing vessels in the WTP. The program focused mainly on non-cohesive solids behavior. Specifically, the program addressed the effectiveness of the mixing systems to suspend settled solids off the vessel bottom, and distribute the solids vertically. Experiments were conducted at three scales using various particulate simulants. A range of solids loadings and operational parameters were evaluated, including jet velocity, pulse volume, and duty cycle. In place of actual PJMs, the tests used direct injection from tubes with suction at the top of the tank fluid. This gave better control over the discharge duration and duty cycle and simplified the facility requirements. The mixing system configurations represented in testing varied from 4 to 12 PJMs with various jet nozzle sizes. In this way the results collected could be applied to the broad range of WTP vessels with varying geometrical configurations and planned operating conditions. Data for just-suspended velocity, solids cloud height, and solids concentration vertical profile were collected, analyzed, and correlated. The correlations were successfully benchmarked against previous large-scale test results, then applied to the WTP vessels using reasonable assumptions of anticipated waste properties to evaluate adequacy of the existing mixing system designs.

Fort, James A.; Meyer, Perry A.; Bamberger, Judith A.; Enderlin, Carl W.; Scott, Paul A.; Minette, Michael J.; Gauglitz, Phillip A.

2010-03-07T23:59:59.000Z

63

Geology of the Waste Treatment Plant Seismic Boreholes  

Science Conference Proceedings (OSTI)

In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

2007-02-28T23:59:59.000Z

64

PROPERTIES IMPORTANT TO MIXING FOR WTP LARGE SCALE INTEGRATED TESTING  

Science Conference Proceedings (OSTI)

Large Scale Integrated Testing (LSIT) is being planned by Bechtel National, Inc. to address uncertainties in the full scale mixing performance of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. External review boards have raised questions regarding the overall representativeness of simulants used in previous mixing tests. Accordingly, WTP requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in LSIT. Among the first tasks assigned to SRNL was to develop a list of waste properties that matter to pulse-jet mixer (PJM) mixing of WTP tanks. This report satisfies Commitment 5.2.3.1 of the Department of Energy Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2010-2: physical properties important to mixing and scaling. In support of waste simulant development, the following two objectives are the focus of this report: (1) Assess physical and chemical properties important to the testing and development of mixing scaling relationships; (2) Identify the governing properties and associated ranges for LSIT to achieve the Newtonian and non-Newtonian test objectives. This includes the properties to support testing of sampling and heel management systems. The test objectives for LSIT relate to transfer and pump out of solid particles, prototypic integrated operations, sparger operation, PJM controllability, vessel level/density measurement accuracy, sampling, heel management, PJM restart, design and safety margin, Computational Fluid Dynamics (CFD) Verification and Validation (V and V) and comparison, performance testing and scaling, and high temperature operation. The slurry properties that are most important to Performance Testing and Scaling depend on the test objective and rheological classification of the slurry (i.e., Newtonian or non-Newtonian). The most important properties for testing with Newtonian slurries are the Archimedes number distribution and the particle concentration. For some test objectives, the shear strength is important. In the testing to collect data for CFD V and V and CFD comparison, the liquid density and liquid viscosity are important. In the high temperature testing, the liquid density and liquid viscosity are important. The Archimedes number distribution combines effects of particle size distribution, solid-liquid density difference, and kinematic viscosity. The most important properties for testing with non-Newtonian slurries are the slurry yield stress, the slurry consistency, and the shear strength. The solid-liquid density difference and the particle size are also important. It is also important to match multiple properties within the same simulant to achieve behavior representative of the waste. Other properties such as particle shape, concentration, surface charge, and size distribution breadth, as well as slurry cohesiveness and adhesiveness, liquid pH and ionic strength also influence the simulant properties either directly or through other physical properties such as yield stress.

Koopman, D.; Martino, C.; Poirier, M.

2012-04-26T23:59:59.000Z

65

Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993  

SciTech Connect

A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measurement. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

2007-02-28T23:59:59.000Z

66

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

67

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

68

Followup of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process Systems Hazards Analysis Activity Review, March 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Follow-up of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity Review Dates of Activity : 03/18/13 - 03/21/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff observed a limited portion of the restart of the Hazard Analysis (HA) for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter Process (LMP) System. The primary purpose of this HSS field activity, on March 18-21, 2013, was to observe and understand the revised approach

69

Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases - 14137  

SciTech Connect

A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Fanns) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved.

Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

2013-11-07T23:59:59.000Z

70

Overview of Pulse Jet Mixer/Hybrid Mixing System Development to Support the Hanford Waste Treatment Plant  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of River Protection's Waste Treatment Plant (WTP) will process and treat radioactive waste that is stored in underground tanks at the Hanford Site. Pulse jet mixer (PJM) technology was selected for mixing the contents of many of the process vessels. Several of the tanks are expected to contain concentrated slurries that exhibit a non-Newtonian rheology and the understanding required to apply this technology to mobilize the non-Newtonian slurries was not mature. Consequently, an experimental testing effort was undertaken to investigate PJM performance in several scaled versions of WTP vessels and to develop mixing system configurations that met WTP requirements. This effort evolved into a large, multifaceted test program involving many different test facilities. Elements of the test program included theoretical analysis, development and characterization of simulants, development of instrumentation and measurement techniques, hundreds of tests at various scales in numerous test stands, and data analysis and application. This program provided the technical basis for the selection of pulse jet mixers along with air spargers and steady jets generated by recirculation pumps to provide mixing systems for several of the vessels with non-Newtonian slurries. This paper provides an overview of the testing program and a summary of the key technical results that formed the technical basis of the final mixing system configurations to be used in the WTP.

Kurath, Dean E.; Meyer, Perry A.; Stewart, Charles W.; Barnes, Steven M.

2006-03-02T23:59:59.000Z

71

Geology of the Waste Treatment Plant Seismic Boreholes  

Science Conference Proceedings (OSTI)

In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

2007-05-11T23:59:59.000Z

72

ONE SYSTEM INTEGRATED PROJECT TEAM: RETRIEVAL AND DELIVERY OF THE HANFORD TANK WASTES FOR VITRIFICATION IN THE WASTE TREATMENT PLANT  

SciTech Connect

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant Foundation-Configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

HARP BJ; KACICH RM; SKWAREK RJ

2012-12-20T23:59:59.000Z

73

One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant  

Science Conference Proceedings (OSTI)

The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank wastes and for building and operating the WTP. The tank wastes are the result of Hanford's nearly fifty (50) years of plutonium production. In the intervening years, waste characteristics have been increasingly better understood. However, waste characteristics that are uncertain and will remain as such represent a significant technical challenge in terms of retrieval, transport, and treatment, as well as for design and construction ofWTP. What also is clear is that the longer the waste remains in the tanks, the greater the risk to the environment and the people of the Pacific Northwest. The goal of both projects - tank operations and waste treatment - is to diminish the risks posed by the waste in the tanks at the earliest possible date. About two hundred (200) WTP and TOC employees comprise the IPT. Individual work groups within One System include Technical, Project Integration & Controls, Front-End Design & Project Definition, Commissioning, Nuclear Safety & Engineering Systems Integration, and Environmental Safety and Health and Quality Assurance (ESH&QA). Additional functions and team members will be added as the WTP approaches the operational phase. The team has undertaken several initiatives since its formation to collaborate on issues: (1) alternate scenarios for delivery of wastes from the tank farms to WTP; (2) improvements in managing Interface Control Documents; (3) coordination on various technical issues, including the Defense Nuclear Facilities Nuclear Safety Board's Recommendation 2010-2; (4) deployment of the SmartPlant? Foundation-configuration Management System; and (5) preparation of the joint contract deliverable of the Operational Readiness Support Plan.

Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

2012-12-20T23:59:59.000Z

74

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Waste Treatment and Hanford Waste Treatment and Immobilization Plant - June 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - June 2013 June 2013 Hanford Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process System Hazards Analysis Activity Observation [HIAR-WTP-2013-05-13] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from May 13 - June 28, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the start of the hazard analysis (HA) for WTP Low Activity Waste (LAW) Primary Off-gas System. The primary purpose of this HSS field activity was to observe and

75

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - July 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 July 2013 Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from July 31 - August 5, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff observing a limited portion of the hazards analysis (HA) for WTP Low Activity Waste (LAW) Melter Process system. The primary purpose of this HSS field activity was to observe and

76

WASTE TREATMENT TECHNOLOGY PROCESS DEVELOPMENT PLAN FOR HANFORD WASTE TREATMENT PLANT LOW ACTIVITY WASTE RECYCLE  

SciTech Connect

The purpose of this Process Development Plan is to summarize the objectives and plans for the technology development activities for an alternative path for disposition of the recycle stream that will be generated in the Hanford Waste Treatment Plant Low Activity Waste (LAW) vitrification facility (LAW Recycle). This plan covers the first phase of the development activities. The baseline plan for disposition of this stream is to recycle it to the WTP Pretreatment Facility, where it will be concentrated by evaporation and returned to the LAW vitrification facility. Because this stream contains components that are volatile at melter temperatures and are also problematic for the glass waste form, they accumulate in the Recycle stream, exacerbating their impact on the number of LAW glass containers. Approximately 32% of the sodium in Supplemental LAW comes from glass formers used to make the extra glass to dilute the halides to acceptable concentrations in the LAW glass, and reducing the halides in the Recycle is a key component of this work. Additionally, under possible scenarios where the LAW vitrification facility commences operation prior to the WTP Pretreatment facility, this stream does not have a proven disposition path, and resolving this gap becomes vitally important. This task seeks to examine the impact of potential future disposition of this stream in the Hanford tank farms, and to develop a process that will remove radionuclides from this stream and allow its diversion to another disposition path, greatly decreasing the LAW vitrification mission duration and quantity of glass waste. The origin of this LAW Recycle stream will be from the Submerged Bed Scrubber (SBS) and the Wet Electrostatic Precipitator (WESP) from the LAW melter off-gas system. The stream is expected to be a dilute salt solution with near neutral pH, and will likely contain some insoluble solids from melter carryover or precipitates of scrubbed components (e.g. carbonates). The soluble components are mostly sodium and ammonium salts of nitrate, chloride, and fluoride. This stream has not been generated yet, and will not be available until the WTP begins operation, causing uncertainty in its composition, particularly the radionuclide content. This plan will provide an estimate of the likely composition and the basis for it, assess likely treatment technologies, identify potential disposition paths, establish target treatment limits, and recommend the testing needed to show feasibility. Two primary disposition options are proposed for investigation, one is concentration for storage in the tank farms, and the other is treatment prior to disposition in the Effluent Treatment Facility. One of the radionuclides that is volatile and expected to be in high concentration in this LAW Recycle stream is Technetium-99 ({sup 99}Tc), a long-lived radionuclide with a half-life of 210,000 years. Technetium will not be removed from the aqueous waste in the Hanford Waste Treatment and Immobilization Plant (WTP), and will primarily end up immobilized in the LAW glass, which will be disposed in the Integrated Disposal Facility (IDF). Because {sup 99}Tc has a very long half-life and is highly mobile, it is the largest dose contributor to the Performance Assessment (PA) of the IDF. Other radionuclides that are also expected to be in appreciable concentration in the LAW Recycle are {sup 129}I, {sup 90}Sr, {sup 137}Cs, and {sup 241}Am. The concentrations of these radionuclides in this stream will be much lower than in the LAW, but they will still be higher than limits for some of the other disposition pathways currently available. Although the baseline process will recycle this stream to the Pretreatment Facility, if the LAW facility begins operation first, this stream will not have a disposition path internal to WTP. One potential solution is to return the stream to the tank farms where it can be evaporated in the 242- A evaporator, or perhaps deploy an auxiliary evaporator to concentrate it prior to return to the tank farms. In either case, testing is needed to evalua

McCabe, Daniel J.; Wilmarth, William R.; Nash, Charles A.

2013-08-29T23:59:59.000Z

77

Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture 9 2.1 Background 9 2.2 Scope and Methods 10 2.3 ORP (including DOE-WTP) 11 2.4 BNI 11 2.5 WTP Project 12 3.0 ORP Management of Safety Concerns 15 3.1 Corrective Actions for the 2010 HSS Review 15 3.2 Processes for Managing Issues 16

78

Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety and Security HSS Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Enforcement and Oversight Abbreviations Used in this Report i Executive Summary iii Recommendations xi 1.0 Introduction 1 1.1 Background 2 1.2 Scope and Methodology 6 2.0 Current Safety Culture 9 2.1 Background 9 2.2 Scope and Methods 10 2.3 ORP (including DOE-WTP) 11 2.4 BNI 11 2.5 WTP Project 12 3.0 ORP Management of Safety Concerns 15 3.1 Corrective Actions for the 2010 HSS Review 15 3.2 Processes for Managing Issues 16

79

Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant LAW Melter and Melter Off-gas Process System Hazards Analysis _Oct 21-31  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HSS Independent Activity Report - HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-10-21 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities Dates of Activity : 10/21/13 - 10/31/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS), Office of Safety and Emergency Management Evaluations (Independent Oversight) reviewed the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) Melter and Off-gas systems, observed a

80

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 2013 October 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - October 2013 October 2013 Observation of Waste Treatment and Immobilization Plant Low Activity Waste Melter and Melter Off-gas Process System Hazards Analysis Activities [HIAR-WTP-2013-10-21] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations from October 21-31, 2013, at the Hanford Waste Treatment and Immobilization Plant (WTP). The activity consisted of HSS staff reviewing the Insight software hazard evaluation (HE) tables for hazard analysis (HA) generated to date for the WTP Low Activity Waste (LAW) Melter and Off-gas systems, observed a limited portion of the HA for the

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DEVELOPMENT OF A MACRO-BATCH QUALIFICATION STRATEGY FOR THE HANFORD TANK WASTE TREATMENT AND IMMOBILIZATION PLANT  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) has evaluated the existing waste feed qualification strategy for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) based on experience from the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) waste qualification program. The current waste qualification programs for each of the sites are discussed in the report to provide a baseline for comparison. Recommendations on strategies are then provided that could be implemented at Hanford based on the successful Macrobatch qualification strategy utilized at SRS to reduce the risk of processing upsets or the production of a staged waste campaign that does not meet the processing requirements of the WTP. Considerations included the baseline WTP process, as well as options involving Direct High Level Waste (HLW) and Low Activity Waste (LAW) processing, and the potential use of a Tank Waste Characterization and Staging Facility (TWCSF). The main objectives of the Hanford waste feed qualification program are to demonstrate compliance with the Waste Acceptance Criteria (WAC), determine waste processability, and demonstrate unit operations at a laboratory scale. Risks to acceptability and successful implementation of this program, as compared to the DWPF Macro-Batch qualification strategy, include: ? Limitations of mixing/blending capability of the Hanford Tank Farm; ? The complexity of unit operations (i.e., multiple chemical and mechanical separations processes) involved in the WTP pretreatment qualification process; ? The need to account for effects of blending of LAW and HLW streams, as well as a recycle stream, within the PT unit operations; and ? The reliance on only a single set of unit operations demonstrations with the radioactive qualification sample. This later limitation is further complicated because of the 180-day completion requirement for all of the necessary waste feed qualification steps. The primary recommendations/changes include the following: ? Collection and characterization of samples for relevant process analytes from the tanks to be blended during the staging process; ? Initiation of qualification activities earlier in the staging process to optimize the campaign composition through evaluation from both a processing and glass composition perspective; ? Definition of the parameters that are important for processing in the WTP facilities (unit operations) across the anticipated range of wastes and as they relate to qualification-scale equipment; ? Performance of limited testing with simulants ahead of the waste feed qualification sample demonstration as needed to determine the available processing window for that campaign; and ? Demonstration of sufficient mixing in the staging tank to show that the waste qualification sample chemical and physical properties are representative of the transfers to be made to WTP. Potential flowcharts for derivatives of the Hanford waste feed qualification process are also provided in this report. While these recommendations are an extension of the existing WTP waste qualification program, they are more in line with the processes currently performed for SRS. The implementation of these processes at SRS has been shown to offer flexibility for processing, having identified potential processing issues ahead of the qualification or facility processing, and having provided opportunity to optimize waste loading and throughput in the DWPF.

Herman, C.

2013-09-30T23:59:59.000Z

82

Management Alert - The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant, IG-0871  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The 2020 Vision One System Proposal The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant DOE/IG-0871 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 3, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Management Alert on "The 2020 Vision One System Proposal for Commissioning and Startup of the Waste Treatment and Immobilization Plant" IMMEDIATE CONCERN The Department of Energy is considering a proposal known at the 2020 Vision One System (2020 Vision) that would implement a phased approach to commissioning the $12.2 billion Waste Treatment and Immobilization Plant (WTP). As part of the phased approach, the Low-

83

Department of EneDepartment of Energy Quality Assurance: Design Control for the Waste Treatment and Immobilization Plant at the Hanford Sitergy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Quality Department of Energy Quality Assurance: Design Control for the Waste Treatment and Immobilization Plant at the Hanford Site DOE/IG-0894 September 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Department of Energy Quality Assurance: Design Control for the Waste Treatment and Immobilization Plant at the Hanford Site" INTRODUCTION AND OBJECTIVE The Department of Energy is constructing the $12.2 billion Waste Treatment and Immobilization Plant (WTP) to vitrify approximately 56 million gallons of radioactive and chemically hazardous

84

Oak Ridge Reservation Invasive Plant Treatment Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Oak Ridge Reservation Invasive Plant Treatment Update All 33,000 acres of the ORR All 33,000 acres of the ORR ORR Invasive Plant Management Plan Surveys and Monitoring ...

85

Automated Sampling and Sample Pneumatic Transport of High Level Tank Wastes at the Hanford Waste Treatment Plant  

Science Conference Proceedings (OSTI)

This paper describes the development work, and design and engineering tasks performed, to provide a fully automated sampling system for the Waste Treatment Plant (WTP) project at the Hanford Site in southeastern Washington State, USA. WTP is being built to enable the emptying and immobilization of highly active waste resulting from processing of irradiated nuclear fuel since the 1940's. The Hanford Tank Wastes are separated into Highly Level Waste (HLW), and Low Active Waste (LAW) fractions, which are separately immobilized by vitrification into borosilicate glass. Liquid samples must be taken of the waste and Glass Forming Chemicals (GFCs) before vitrification, and analyzed to insure the glass products will comply with specifications established in the WTP contract. This paper describes the non-radioactive testing of the sampling of the HLW and LAW melter feed simulants that was performed ahead of final equipment design. These trials were essential to demonstrate the effectiveness and repeatability of the integrated sampling system to collect representative samples, free of cross-contamination. Based on existing tried and proven equipment, the system design is tailored to meet the WTP project's specific needs. The design provides sampling capabilities from 47 separate sampling points and includes a pneumatic transport system to move the samples from the 3 separate facilities to the centralized analytical laboratory. The physical and rheological compositions of the waste simulants provided additional challenges in terms of the sample delivery, homogenization, and sample capture equipment design requirements. The activity levels of the actual waste forms, specified as 486 E9 Bq/liter (Cs-137), 1.92 E9 Bq/liter (Co-60), and 9.67 E9 Bq/liter (Eu-154), influenced the degree of automation provided, and justified the minimization of manual intervention needed to obtain and deliver samples from the process facilities to the analytical laboratories. Maintaining high integrity primary and secondary confinement, including during the cross-site transportation of the samples, is a key requirement that is achieved and assured at all times. (authors)

Phillips, C.; Richardson, J. E. [BNG America, 2345 Stevens Drive, Richland, WA, 99354 (United States)

2006-07-01T23:59:59.000Z

86

Updated Site Response Analyses for the Waste Treatment Plant, DOE Hanford, Site, Washington.  

Science Conference Proceedings (OSTI)

This document describes the calculations performed to develop updated relative amplification functions for the Waste Treatment and Immobilization Plant (WTP) facility at the DOE Hanford Site, Washington State. The original 2,000-year return period design spectra for the WTP were based on the results of a probabilistic seismic hazard analysis (PSHA) performed for the DOE Hanford Site by Geomatrix (1996). Geomatrix (1996) performed the PSHA using empirical soil-site ground motion models based primarily on recordings from California. As part of that study, site response analyses were performed to evaluate ground motions at the Hanford sites and California deep soil sites. As described in Appendix A of Geomatrix (1996), characteristic site profiles and dynamic soil properties representative of conditions at various Hanford sites and California deep soil strong motion recording stations were defined. Relative site responses of the Hanford profiles and California profiles were then compared. Based on the results of those site response analyses, it was concluded that ground motions at the Hanford sites underlain by deep soil deposits are similar in character to those on California deep soil sites and it was judged appropriate to use empirical deep soil site attenuation relationships based primarily on California ground motion data to develop design spectra for the Hanford sites. In a subsequent analysis, Geomatrix (2003) updated the site response analyses of Geomatrix (1996, Appendix A) to incorporate randomization of the California and Hanford profiles. The results of that analysis also led to the conclusion that the response of the Hanford profiles was similar to the response of deep soil sites in California.

Youngs, Robert R.

2007-06-29T23:59:59.000Z

87

ENERGY STAR Score for Wastewater Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

1 to 100 percentile ranking of performance, relative to the national population. Property Types. The ENERGY STAR score for wastewater treatment plants applies to primary,...

88

Power Plant Wastewater Treatment Technology Review Report  

Science Conference Proceedings (OSTI)

Assessing power plant water management options means screening an increasing number of wastewater treatment technologies. This report provides engineers with detailed information on treatment process performance, economics, and applications to complete rapid, yet meaningful, technology screening evaluations.

1997-01-01T23:59:59.000Z

89

ENERGY STAR Score for Wastewater Treatment Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

!! !! July 2013 ENERGY STAR Score for Wastewater Treatment Plants in the United States Page 1 ENERGY STAR Score for Wastewater Treatment Plants in the United States Technical Reference OVERVIEW ! The ENERGY STAR Score for Wastewater Treatment Plants applies to primary, secondary, and advanced treatment facilities with or without nutrient removal capacity. The objective of the ENERGY STAR score is to provide a fair assessment of the energy performance of a property relative to its peers, taking into account the climate, weather, and business activities at the property. To identify the aspects of building activity that are significant drivers of energy

90

Independent Oversight Review, Hanford Site Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant, August 2013 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant, August 2013 August 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight) within the Office of Health, Safety and Security (HSS) conducted an independent review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed June 10-14, 2013, was the latest in a series of ongoing quarterly assessments of construction quality performed by Independent Oversight at the WTP construction site. The scope of this quarterly assessment of construction quality review

91

Microsoft Word - WTP Report 4-27-07.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit Report Audit Report Quality Assurance Standards for the Integrated Control Network at the Hanford Site's Waste Treatment Plant DOE/IG-0764 May 2007 Departmsrrt of Energy Washington, DC 20585 M a y 4, 2007 MEMORANDUM FOR THE SECRETARY FROM: & * Greg ry H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Quality Assurance Standards for the Integrated Coiltrol Network at the Hanford Site's Waste Treatment Plant" Ii1 one of Ihe lai-gcst and illost impoi-krit of its environmental remediation projects, the Department of Energy is constructing a Waste Treatment Plant at its Hanford, Washington site. The $12.2 billion Plant is designed to treat and prepare for disposal 53 million gallons of radioactive and chemically hazardous waste. In December 2000, the

92

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

93

Summary - Flowsheet for the Hanford Waste Treatment Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or potential issues that would prevent the WTP from meeting contract rates with commissioning and future needs. What the ETR Team Recommended The ETR Team recommends that the...

94

Independent Activity Report, Office of River Protection Waste Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection Waste Office of River Protection Waste Treatment Plant and Tank Farms - February 2013 Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms - February 2013 February 2013 Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25] The Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (HS-45) assigned a new Site Lead to provide continuous oversight of activities at the Office of River Protection (ORP) Waste Treatment Plant (WTP) and tank farms. To gain familiarity with the site programs and personnel, the new Site Lead made two trips to the site, which included tours of the WTP construction site

95

Missouri Water Treatment Plant Upgraded | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Treatment Plant Upgraded Missouri Water Treatment Plant Upgraded July 13, 2010 - 11:30am Addthis The high service pumps at the St. Peters Water Treatment Plant are almost 30...

96

Summary - System Planning for Low-Activity Waste Treatment at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford EM Project: WTP ETR Report Date: November 2008 ETR-18 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of System Planning for Low-Activity Waste Treatment at Hanford Why DOE-EM Did This Review Construction of the facilities of the Hanford site's Waste Treatment Plant (WTP) are scheduled for completion in 2017, with radioactive waste processing scheduled to begin in 2019. An estimated 23 to 35 years will then be required to complete high-level waste (HLW) vitrification. However, vitrification of low-activity waste (LAW) may extend the WTP mission duration by decades more if supplemental LAW processing beyond the capacity of the present facility is not incorporated. The purpose of this independent review was to

97

Wastewater treatment plant instrumentation handbook. Final report  

Science Conference Proceedings (OSTI)

Instruments are required for proper operation of wastewater plants. To be of use the instruments must be operable and maintainable. This requires care in the selection, application and installation of instruments and control equipment. Contents of the handbook address the how-to of designing and applying instrumentation and controls for waste treatment operations. Special focus is given to problems, causes and solutions. The handbook covers instruments, valves and pumps commonly used in wastewater plants.

Manross, R.C.

1985-09-01T23:59:59.000Z

98

Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington  

SciTech Connect

The seismic design basis for the Waste Treatment Plant (WTP) at the Department of Energy's Hanford Site near Richland, Washington, was established in 1999 based on an extensive probabilistic seismic hazard analysis completed in 1996 by Geomatrix Consultants, Inc. In subsequent years, the Defense Nuclear Facilities Safety Board (DNFSB) staff questioned the some of the assumptions used in developing the seismic design basis, particularly the adequacy of the site geotechnical surveys. Existing site-specific shear wave velocity data were considered insufficient to reliably use California earthquake response data to directly predict ground motions at the Hanford Site. To address this concern, the Department of Energy's Office of River Protection (ORP) and Pacific Northwest National Laboratory (PNNL) developed and executed a plan for acquiring site-specific soil data down to approximately 500 feet, and for reanalyzing the effects of deeper layers of sediments interbedded with basalt. New geophysical data were acquired, analyzed, and interpreted with respect to existing geologic information gathered from other Hanford-related projects in the WTP area. Existing data from deep boreholes were assembled and interpreted to produce a model of the deeper rock layers consisting of inter-layered basalts and sedimentary interbeds. These data were analyzed statistically to determine the variability of seismic velocities. The earthquake ground motion response was simulated on a large number of models resulting from a weighted logic tree approach that addressed the geologic and geophysical uncertainties. Weights in the logic tree were chosen by a working group based on the strength or weakness of the available data for each combination of logic tree parameters. Finally, interim design ground motion spectra were developed to envelope the remaining uncertainties. The results of this study demonstrate that the site-specific soil structure (Hanford and Ringold formations) beneath the WTP is thinner than was assumed in the 1996 Hanford Site-wide model. This thinness produces peaks in the response spectra (relative to those in 1996) near 2 Hz and 5 Hz. The soil geophysical properties, shear wave velocity, and nonlinear response to the earthquake ground motions are known sufficiently, and alternative interpretations consistent with this data did not have a strong influence on the results. The structure of the upper four basalt flows (Saddle Mountains Basalt), which are inter-layered with sedimentary interbeds (Ellensburg Formation), produces strong reductions in the earthquake ground motions that propagate through them to reach the surface. Uncertainty in the strength of velocity contrasts between these basalts and interbeds resulted from an absence of measured shear wave velocities (Vs) in the interbeds. For this study, Vs in the interbeds was estimated from older, limited compressional wave (Vp) data using estimated ranges for the ratio of the two velocities (Vp/Vs) based on analogues in similar materials. The Vs for the basalts, where Vp/Vs is well defined, still is limited by the quality and quantity of the Vp data. A range of possible Vs for the interbeds and basalts was included in the logic trees that produced additional uncertainty in the resulting response spectra. The uncertainties in these response spectra were enveloped at approximately the 84. percentile (based on the logic tree) to produce conservative design spectra. This conservatism increased the seismic design basis by up to 40% compared to the 1999 values. Because of the sensitivity of the calculated response spectra to the velocity contrasts between the basalts and interbedded sediments, additional boreholes and direct Vs measurements through these layers are now being planned. The new measurements are expected to reduce the uncertainty in the site response that is caused by the lack of direct knowledge of the Vs contrasts within these layers. (authors)

Rohay, A.C.; Reidel, S.P. [Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352 (United States)

2006-07-01T23:59:59.000Z

99

Followup of Waste Treatment and Immobilization Plant Low Activity...  

NLE Websites -- All DOE Office Websites (Extended Search)

HSS Independent Activity Report - Rev. 0 Report Number: HIAR-WTP-2013-03-18 Site: Hanford Site Subject: Office of Enforcement and Oversight's Office of Safety and Emergency...

100

Applicaiton of the Computer Program SASSI for Seismic SSI Analysis of WTP Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Computer Program SASSI for Seismic SSI Analysis of WTP Facilities Farhang Ostadan (BNI) & Raman Venkata (DOE-WTP-WED) Presented by Lisa Anderson (BNI) US DOE NPH Workshop October 25, 2011 Application of the Computer Program SASSI for Seismic SSI Analysis for WTP Facilities, Farhang Ostadan & Raman Venkata, October 25, 2011, Page-2 Background *SASSI computer code was developed in the early 1980's to solve Soil-Structure-Interaction (SSI) problems * Original version of SASSI was based on the direct solution method for embedded structures * Requires that each soil node in the excavated soil volume be an interaction node * Subtraction solution method was introduced in 1998

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

December 27, 2011, Department letter transmitting the Implementation Plan for Board Recommendation 2011-1, Safety Culture at the Waste Treatment and Immobilization Plant.  

NLE Websites -- All DOE Office Websites (Extended Search)

December 27,2011 December 27,2011 The Honorable Peter S. Winokur Chairman Defense Nuclear Facilities Safety Board 625 Indiana Avenue, NW, Suite 700 Washington, DC 20004 Dear Mr. Chairman: Enclosed is the Depmiment of Energy's (DOE's) Implementation Plan (IP) for Defense Nuclear Facilities Safety Board (Board) Recommendation 2011-1, Safety Culture at the Waste Treatment and Immobilization Plant (WTP). On June 30, 20 II, the Department accepted Recommendation 20 Il-l in a letter to the Board, which was published in the Federal Register. On August 12,2011, the Board sought additional clarification about this acceptance, and on September 19,2011, I transmitted clarification to the Board, which was also published in the Federal Register. The IP provides DOE's approach to address the Board's three sub-recommendations

102

Assessment of Waste Treatment Plant Lab C3V (LB-S1) Stack Sampling Probe Location for Compliance with ANSI/HPS N13.1-1999  

SciTech Connect

This report documents a series of tests used to assess the proposed air sampling location in the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Lab C3V (LB-S1) exhaust stack with respect to the applicable criteria regarding the placement of an air sampling probe. Federal regulations require that an air sampling probe be located in the exhaust stack in accordance with the criteria of American National Standards Institute/Health Physics Society (ANSI/HPS) N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that represents the effluent stream.

Glissmeyer, John A.; Geeting, John GH

2013-02-01T23:59:59.000Z

103

Independent Oversight Review, Waste Treatment and Immobilization Plant- December 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity

104

Independent Oversight Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design, November 18, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Number: HIAR-VSL-2013-11-18 Site: Catholic University of America - Vitreous State Laboratory (VSL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design Date of Activity : 11/18/13 Report Preparer: James O. Low Activity Description/Purpose: Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the U.S. Department of Energy (DOE) Office of River Protection. BNI is

105

One System Integreated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant - 14214  

SciTech Connect

The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration, and; Further development of the waste acceptance criteria.

Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

2013-12-18T23:59:59.000Z

106

Plant for the treatment of waste  

SciTech Connect

A plant is described that is comprised of a post combustion chamber connected to the combustion chamber of a household rubbish incineration furnace whose hot gases it uses in order, by means of suitable berners to heat sewage sludges and industrial liquids and a circuit for the treatment of the smoke and residues coming from the post combustion. This circuit, which is held under vacuum by a blower, comprises a dry cooling tower employing semi-liquid sludges as cooling agent, an absorption tower employing a solution adapted to ombine the predominantly acid gases of the smoke, and a separating tower in which the liquids in suspension are removed. A recycle circuit for the solution and liquid separated and means of recovering metallic particles and compounds complete this plant.

Barkhuus, P.W.; Faldt, I.

1980-09-23T23:59:59.000Z

107

Solar Farm Going Strong at Water Treatment Plant in Pennsylvania |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farm Going Strong at Water Treatment Plant in Pennsylvania Farm Going Strong at Water Treatment Plant in Pennsylvania Solar Farm Going Strong at Water Treatment Plant in Pennsylvania October 8, 2010 - 10:39am Addthis Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram’s Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Aqua Pennsylvania, Inc. installed a 1 MW solar farm at its Ingram's Mill Water Treatment Plant in East Bradford, Pa. The solar project is saving the water company $77,000 a year. | File photo Stephen Graff Former Writer & editor for Energy Empowers, EERE It takes a lot of energy to run a water treatment plant round-the-clock. And pumping 35 million gallons of water a day to hundreds of thousands businesses and residents can get expensive.

108

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(the percentage of actual operating time). 1 Comprehensive Review of the Hanford Waste Treatment Plant Flowsheet and Throughput Specifically, the following questions were...

109

Activity Report for Waste Treatment and Immobilizationi Plant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Waste Treatment and Immobilization Plant Low Activity Waste Melter Off-gas Process...

110

Energy recovery at Chi?in?u wastewater treatment plant.  

E-Print Network (OSTI)

?? Possibilities for energy recovery from sludge at Chi?in?u wastewater treatment plant have been investigated and evaluated. One way of recovering energy from sludge is (more)

Graan, Daniel

2010-01-01T23:59:59.000Z

111

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING AS A SUPPLEMENTARY TREATMENT FOR HANFORD'S LOW ACTIVITY WASTE AND SECONDARY WASTES  

SciTech Connect

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO4 that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the Savannah River National Laboratory (SRNL) to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of I-125/129 and Tc-99 to chemically resemble WTP-SW. Ninety six grams of radioactive product were made for testing. The second campaign commenced using SRS LAW chemically trimmed to look like Hanford's LAW. Six hundred grams of radioactive product were made for extensive testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Jantzen, C.; Crawford, C.; Cozzi, A.; Bannochie, C.; Burket, P.; Daniel, G.

2011-02-24T23:59:59.000Z

112

Model-based optimisation of Wastewater Treatment Plants design  

Science Conference Proceedings (OSTI)

This paper presents the mathematical basis and some illustrative examples of a model-based decision-making method for the automatic calculation of optimum design parameters in modern Wastewater Treatment Plants (WWTP). The starting point of the proposed ... Keywords: Mathematical modelling, Optimum design, Wastewater Treatment Plants

A. Rivas; I. Irizar; E. Ayesa

2008-04-01T23:59:59.000Z

113

Arsenic and Selenium Treatment Technology Summary for Power Plant Wastewaters  

Science Conference Proceedings (OSTI)

This report summarizes the most suitable technologies available for the removal of arsenic and selenium from power plant wastewaters. The information stems from literature searches and the authors' experience in wastewater treatment systems from generally non-power plant sources since there are limited operating experiences for power plant applications. The report lists existing and potential technologies that meet the treatment goals of reducing arsenic and selenium to the levels set for U.S. En...

2004-11-03T23:59:59.000Z

114

WTP: Challenges and Major Breakthroughs in High Level Waste ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The US DOE has developed glass property-composition models to control glass compositions for HLW vitrification at Hanford Waste Treatment...

115

TECHNETIUM RETENTION IN WTP LAW GLASS WITH RECYCLE FLOW-SHEET DM10 MELTER TESTING VSL-12R2640-1 REV 0  

SciTech Connect

Melter tests were conducted to determine the retention of technetium and other volatiles in glass while processing simulated Low Activity Waste (LAW) streams through a DM10 melter equipped with a prototypical off-gas system that concentrates and recycles fluid effiuents back to the melter feed. To support these tests, an existing DM10 system installed at Vitreous State Laboratory (VSL) was modified to add the required recycle loop. Based on the Hanford Tank Waste Treatment and Immobilization Plant (WTP) LAW off-gas system design, suitably scaled versions of the Submerged Bed Scrubber (SBS), Wet Electrostatic Precipitator (WESP), and TLP vacuum evaporator were designed, built, and installed into the DM10 system. Process modeling was used to support this design effort and to ensure that issues associated with the short half life of the {sup 99m}Tc radioisotope that was used in this work were properly addressed and that the system would be capable of meeting the test objectives. In particular, this required that the overall time constant for the system was sufficiently short that a reasonable approach to steady state could be achieved before the {sup 99m}Tc activity dropped below the analytical limits of detection. The conceptual design, detailed design, flow sheet development, process model development, Piping and Instrumentation Diagram (P&ID) development, control system design, software design and development, system fabrication, installation, procedure development, operator training, and Test Plan development for the new system were all conducted during this project. The new system was commissioned and subjected to a series of shake-down tests before embarking on the planned test program. Various system performance issues that arose during testing were addressed through a series of modifications in order to improve the performance and reliability of the system. The resulting system provided a robust and reliable platform to address the test objectives.

Abramowitz, Howard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Brandys, Marek [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Cecil, Richard [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; D'Angelo, Nicholas [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Matlack, Keith S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Muller, Isabelle S. [Catholic Univ. of America, Washington, DC (United States). Vitreous State Lab.; Pegg, Ian L. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Callow, Richard A. [Energy Solutions, Federal EPC, Inc., Columbia, MD (United States); Joseph, Innocent

2012-12-11T23:59:59.000Z

116

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms, February 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

HIAR-HANFORD-2013-02-25 HIAR-HANFORD-2013-02-25 Site: Hanford - Office of River Production Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead Dates of Activity : 02/25/13 - 03/07/13 and 03/18-28/13 Report Preparer: Robert E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (HS-45) assigned a new Site Lead to provide continuous oversight of activities at the Office of River Protection (ORP) Waste Treatment Plant (WTP) and tank farms. To gain familiarity with the site programs and personnel, the new Site Lead made

117

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms, February 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIAR-HANFORD-2013-02-25 HIAR-HANFORD-2013-02-25 Site: Hanford - Office of River Production Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead Dates of Activity : 02/25/13 - 03/07/13 and 03/18-28/13 Report Preparer: Robert E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations (HS-45) assigned a new Site Lead to provide continuous oversight of activities at the Office of River Protection (ORP) Waste Treatment Plant (WTP) and tank farms. To gain familiarity with the site programs and personnel, the new Site Lead made

118

Hanford Tank Waste - Near Source Treatment of Low Activity Waste  

SciTech Connect

Treatment and disposition of Hanford Site waste as currently planned consists of I 00+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory ofthis waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most ofthe leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper describes the potential near source treatment and waste disposition options as well as the impact these options could have on reducing infrastructure requirements, project cost and mission schedule.

Ramsey, William Gene

2013-08-15T23:59:59.000Z

119

Life-cycle assessment of wastewater treatment plants  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprints analysis of wastewater treatment plants (WWTPs), using a life cycle assessment (LCA) approach. In previous research, the issue of global warming is often related ...

Dong, Bo, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

120

West Point Treatment Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Point Treatment Plant Biomass Facility Point Treatment Plant Biomass Facility Jump to: navigation, search Name West Point Treatment Plant Biomass Facility Facility West Point Treatment Plant Sector Biomass Facility Type Non-Fossil Waste Location King County, Washington Coordinates 47.5480339°, -121.9836029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5480339,"lon":-121.9836029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microsoft PowerPoint - 6- 02 final - Next generation melter deploymet at WTP - Nov10.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

Ron Calmus, WRPS Ron Calmus, WRPS Ron Calmus, WRPS Terry Sams, WRPS Terry Sams, WRPS Deployment Plan Overview for Next Deployment Plan Overview for Next Generation Melter at WTP Generation Melter at WTP November 17, 2010 November 17, 2010 Print Close Tank Operations Contract 2 Presentation Outline  Introduction and Background  Project Goals and Objectives  Key Programmatic Decisions  New Generation Melters (NGM) Development and Deployment Planning (AJHCM & CCIM)  NGM Development and Deployment Activities and Interfaces  Near-Term NGM Development Costs  Summary - Focus Areas Next Generation Melters 2 Print Close Tank Operations Contract 3 Introduction and Background  National Academy of Sciences (NAS) Recommendations - In 2009 the NAS stated in it's report that:

122

Independent Oversight Review, Hanford Waste Treatment and Immobilization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant - December 2013 Independent Oversight Review, Hanford Waste Treatment and Immobilization Plant - December 2013 December 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report documents the results of an independent oversight review of selected aspects of construction quality at the Hanford Site Waste Treatment and Immobilization Plant (WTP). The review, which was performed September 9-13, 2013, was the latest in a series of ongoing quarterly assessments of construction quality performed by the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS). The scope of this quarterly assessment of construction quality review included observations

123

Radiological Monitoring of Waste Treatment Plant  

Science Conference Proceedings (OSTI)

Scheduled waste in West Malaysia is handled by Concession Company and is stored and then is incinerated. It is known that incineration process may result in naturally occurring radioactive materials (NORM) to be concentrated. In this study we have measured three samples consist of by-product from the operation process such as slag, filter cake and fly ash. Other various environmental media such as air, surface water, groundwater and soil within and around the plant have also been analysed for their radioactivity levels. The concentration of Ra-226, Ac-228 and K-40 in slag are 0.062 Bq/g, 0.016 Bq/g and 0.19 Bq/g respectively. The total activity (Ra{sub eq}) in slag is 99.5 Bq/kg. The concentration in fly ash is 0.032 Bq/g, 0.16 Bq/g and 0.34 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 287.0 Bq/kg. For filter cake, the concentration is 0.13 Bq/g, 0.031 Bq/g and 0.33 Bq/g for Ra-226, Ac-228 and K-40 respectively resulting in Raeq of 199.7 Bq/kg. The external radiation level ranges from 0.08 {mu}Sv/h (Administrative building) to 0.35 {mu}Sv/h (TENORM storage area). The concentration level of radon and thoron progeny varies from 0.0001 to 0.0016 WL and 0.0006 WL to 0.002 WL respectively. For soil samples, the activity ranges from 0.11 Bq/g to 0.29 Bq/g, 0.06 Bq/g to 0.18 Bq/g and 0.065 Bq/g to 0.38 Bq/g for Ra-226, Ac-228 and K-40 respectively. While activity in water, except for a trace of K-40, it is non-detectable.

Amin, Y. M. [Physics Dept, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nik, H. W. [Asialab (Malaysia) Sdn Bhd, 14 Jalan Industri USJ 1, 47600 Subang Jaya (Malaysia)

2011-03-30T23:59:59.000Z

124

Hanford Waste Treatment and Immobilization Plant Construction Quality, August 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Review Report Independent Review Report Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2011 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1 4.0 Results .................................................................................................................................................. 2

125

Construction of Industrial Electron Beam Plant for Wastewater Treatment  

Science Conference Proceedings (OSTI)

A pilot plant for treating 1,000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with electron beam in this plant, and it gave rise to elaborate the optimal technology of the electron beam treatment of wastewater with increased reliability at instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable to reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

Han, B.; Kim, J.; Kim, Y.; Kim, S.; Lee, M.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

2004-10-06T23:59:59.000Z

126

MOLTEN CARBONATE FUEL CELL POWER PLANT LOCATED AT TERMINAL ISLAND WASTEWATER TREATMENT PLANT  

DOE Green Energy (OSTI)

The Los Angeles Department of Water and Power (LADWP) has developed one of the most recognized fuel cell demonstration programs in the United States. In addition to their high efficiencies and superior environmental performance, fuel cells and other generating technologies that can be located at or near the load, offers several electric utility benefits. Fuel cells can help further reduce costs by reducing peak electricity demand, thereby deferring or avoiding expenses for additional electric utility infrastructure. By locating generators near the load, higher reliability of service is possible and the losses that occur during delivery of electricity from remote generators are avoided. The potential to use renewable and locally available fuels, such as landfill or sewage treatment waste gases, provides another attractive outlook. In Los Angeles, there are also many oil producing areas where the gas by-product can be utilized. In June 2000, the LADWP contracted with FCE to install and commission the precommercial 250kW MCFC power plant. The plant was delivered, installed, and began power production at the JFB in August 2001. The plant underwent manufacturer's field trials up for 18 months and was replace with a commercial plant in January 2003. In January 2001, the LADWP contracted with FCE to provide two additional 250kW MCFC power plants. These commercial plants began operations during mid-2003. The locations of these plants are at the Terminal Island Sewage Treatment Plant at the Los Angeles Harbor (for eventual operation on digester gas) and at the LADWP Main Street Service Center east of downtown Los Angeles. All three carbonate fuel cell plants received partial funding through the Department of Defense's Climate Change Fuel Cell Buydown Program. This report covers the technical evaluation and benefit-cost evaluation of the Terminal Island 250kW MCFC power plant during its first year of operation from June 2003 to July 2004.

William W. Glauz

2004-09-01T23:59:59.000Z

127

Hanford Waste Treatment Plant Sets Massive Protective Shield door in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Plant Sets Massive Protective Shield door Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility Hanford Waste Treatment Plant Sets Massive Protective Shield door in Pretreatment Facility January 12, 2011 - 12:00pm Addthis The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December. The 102-ton shield door measures 52 feet wide and 15 feet tall The 102-ton shield door measures 52 feet wide and 15 feet tall The carbon steel doors come together to form an upside-down L-shape. The 102-ton door was set on top of the 85-ton door that was installed at the end of December.

128

REPORT ON QUALITATIVE VALIDATION EXPERIMENTS USING LITHIUM-ALUMINUM LAYERED DOUBLE-HYDROXIDES FOR THE REDUCTION OF ALUMINUM FROM THE WASTE TREATMENT PLANT FEEDSTOCK  

SciTech Connect

A process for removing aluminum from tank waste simulants by adding lithium and precipitating Li-Al-dihydroxide (Lithiumhydrotalcite, [LiAl{sub 2}(OH){sub 6}]{sup +}X{sup -}) has been verified. The tests involved a double-shell tank (DST) simulant and a single-shell tank (SST) simulant. In the case of the DST simulant, the product was the anticipated Li-hydrotalcite. For the SST simulant, the product formed was primarily Li-phosphate. However, adding excess Li to the solution did result in the formation of traces of Li-hydrotalcite. The Li-hydrotalcite from the DST supernate was an easily filterable solid. After four water washes the filter cake was a fluffy white material made of < 100 {micro}m particles made of smaller spheres. These spheres are agglomerates of {approx} 5 {micro}m diameter platelets with < 1 {micro}m thickness. Chemical and mineralogical analyses of the filtrate, filter cake, and wash waters indicate a removal of 90+ wt% of the dissolved Al for the DST simulant. For the SST simulant, the main competing reaction to the formation of lithium hydrotalcite appears to be the formation of lithium phosphate. In case of the DST simulant, phosphorus co-precipitated with the hydrotalcite. This would imply the added benefit of the removal of phosphorus along with aluminum in the pre-treatment part of the waste treatment and immobilization plant (WTP). For this endeavor to be successful, a serious effort toward process parameter optimization is necessary. Among the major issues to be addressed are the dependency of the reaction yield on the solution chemistry, as well as residence times, temperatures, and an understanding of particle growth.

HUBER HJ; DUNCAN JB; COOKE GA

2010-05-11T23:59:59.000Z

129

B Plant treatment, storage, and disposal (TSD) units inspection plan  

Science Conference Proceedings (OSTI)

This inspection plan is written to meet the requirements of WAC 173-303 for operations of a TSD facility. Owners/operators of TSD facilities are required to inspection their facility and active waste management units to prevent and/or detect malfunctions, discharges and other conditions potentially hazardous to human health and the environment. A written plan detailing these inspection efforts must be maintained at the facility in accordance with Washington Administrative Code (WAC), Chapter 173-303, ``Dangerous Waste Regulations`` (WAC 173-303), a written inspection plan is required for the operation of a treatment, storage and disposal (TSD) facility and individual TSD units. B Plant is a permitted TSD facility currently operating under interim status with an approved Part A Permit. Various operational systems and locations within or under the control of B Plant have been permitted for waste management activities. Included are the following TSD units: Cell 4 Container Storage Area; B Plant Containment Building; Low Level Waste Tank System; Organic Waste Tank System; Neutralized Current Acid Waste (NCAW) Tank System; Low Level Waste Concentrator Tank System. This inspection plan complies with the requirements of WAC 173-303. It addresses both general TSD facility and TSD unit-specific inspection requirements. Sections on each of the TSD units provide a brief description of the system configuration and the permitted waste management activity, a summary of the inspection requirements, and details on the activities B Plant uses to maintain compliance with those requirements.

Beam, T.G.

1996-04-26T23:59:59.000Z

130

Independent Oversight Activity Report, Hanford Waste Treatment and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 2013 November 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - November 2013 December 2013 Catholic University of America Vitreous State Laboratory Tour and Discussion of Experiments Conducted in Support of Hanford Site Waste Treatment and Immobilization Plant Select Systems Design [HIAR-VSL-2013-11-18] This Independent Activity Report documents an oversight activity conducted by the Office of Health, Safety and Security's (HSS) Office of Safety and Emergency Management Evaluations on November 18, 2013, at the Catholic University of America Vitreous State Laboratory (VSL). Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the

131

Energy efficiency in municipal wastewater treatment plants: Technology assessment  

SciTech Connect

The New York State Energy Research and Development Authority (NYSERDA) estimates that municipal wastewater treatment plants (WWTPs) in New York State consume about 1.5 billion kWh of electricity each year for sewage treatment and sludge management based on the predominant types of treatment plants, the results of an energy use survey, and recent trends in the amounts of electricity WWTPs use nationwide. Electric utilities in New York State have encouraged demand-side management (DSM) to help control or lower energy costs and make energy available for new customers without constructing additional facilities. This report describes DSM opportunities for WWTPs in New York State; discusses the costs and benefits of several DSM measures; projects energy impact statewide of the DSM technologies; identifies the barrier to implementing DSM at WWTPs; and outlines one possible incentive that could stimulate widespread adoption of DSM by WWTP operators. The DSM technologies discussed are outfall hydropower, on-site generation, aeration efficiency, time-of-day electricity pricing, and storing wastewater.

1995-11-01T23:59:59.000Z

132

Functionalized Silicates for Tc Retention  

Thermal treatment systems planned for the Hanford Waste Treatment Plant (WTP) ... and other Resource Conservation and Recovery Act ... cement pore ...

133

Evaluation of biological treatment for the degradation of petroleum hydrocarbons in a wastewater treatment plant  

E-Print Network (OSTI)

Biodegradation of petroleum hydrocarbon can be an effective treatment method applied to control oil pollution in both fresh water and marine environments. Hydrocarbon degraders, both indigenous and exogenous, are responsible for utilizing petroleum hydrocarbon as their substrate for growth and energy, thereby degrading them. Biodegradation of hydrocarbons is often enhanced by bioaugmentation and biostimulation depending on the contaminated environment and the competence of the hydrocarbon degraders present. An evaluation of the performance of the biological treatment of petroleum hydrocarbon by the hydrocarbon degrading microbes at the Brayton Fire School??s 4 million gallon per day (MGD) wastewater treatment plant was the main research objective. Samples were taken for two seasons, winter (Nov 03 ?? Jan 03) and summer (Jun 04 ?? Aug 04), from each of the four treatment units: the inlet tank, equalization tank, aeration tank and the outfall tank. The population of aliphatic hydrocarbon degraders were enumerated and nutrient availability in the system were used to evaluate the effectiveness of on-going bioaugmentation and biostimulation. Monitoring of general effluent parameters was conducted to evaluate the treatment plant??s removal efficiency and to determine if effluent discharge was in compliance with the TCEQ permit. The aeration tank is an activated sludge system with no recycling. Hydrocarbon degraders are supplied at a constant rate with additional nutrient supplement. There was a significant decrease in the population of microbes that was originally fed to the system and the quantity resident in the aeration tank. Nutrient levels in the aeration tank were insufficient for the concentration of hydrocarbon degraders, even after the application of dog food as a biostimulant. The use of dog food is not recommended as a nutrient supplement. Adding dog food increases the nitrogen and phosphorus concentration in the aeration tank but the amount of carbon being added with the dog food increases the total chemical oxygen demand (COD) and biochemical oxygen demand (BOD). An increase in the concentration of total COD and BOD further increases the nitrogen and phosphorus requirement in the system. The main objective of supplying adequate nutrients to the hydrocarbon degraders would never be achieved as there would be an additional demand of nutrients to degrade the added carbon source. This research study was conducted to identify the drawbacks in the treatment plant which needs further investigation to improve efficiency.

Basu, Pradipta Ranjan

2006-05-01T23:59:59.000Z

134

An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet  

E-Print Network (OSTI)

and manages the problem. Keywords Anaerobic digestion, automation, control, fault detection and isolationAn integrated system to remote monitor and control anaerobic wastewater treatment plants through of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment

Bernard, Olivier

135

Initial Selection of Supplemental Treatment Technologies for Hanford's Low-Activity Tank Waste  

Science Conference Proceedings (OSTI)

In 2002, the U.S. Department of Energy (DOE) documented a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years (DOE 2002). A key element of the accelerated cleanup plan was a strategic initiative for acceleration of the tank waste program and completion of "tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (ETP) and using supplemental technologies for waste treatment and immobilization." The plan identified specific technologies to be evaluated for supplemental treatment of as much as 70% of the low-activity waste (LAW). The objective was to complete required testing and evaluation that would "...bring an appropriate combination of the above technologies to deployment to supplement LAW treatment and immobilization in the WTP to achieve the completion of tank waste treatment by 2028." In concert with this acceleration plan, DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology have proposed to accelerate from 2012 to 2005 the Hanford Federal Facility Compliance Agreement (Tri-Party Agreement) milestone (M-62-08) associated with a final decision on treatment of the balance of tank waste that is beyond the capacity of the currently designed WTP.

Raymond, Richard E.; Powell, Roger W.; Hamilton, Dennis W.; Kitchen, William A.; Mauss, Billie M.; Brouns, Thomas M.

2004-07-15T23:59:59.000Z

136

Treatability of emerging contaminants in wastewater treatment plants during wet weather flows.  

E-Print Network (OSTI)

??Municipal wastewater treatment plants have traditionally been designed to treat conventional pollutants found in sanitary wastewaters. However, many synthetic pollutants, such as pharmaceuticals and personal (more)

Goodson, Kenya L.

2013-01-01T23:59:59.000Z

137

Removal of nitrogen and phosphorus from reject water of municipal wastewater treatment plant.  

E-Print Network (OSTI)

??Reject water, the liquid fraction produced after dewatering of anaerobically digested activated sludge on a municipal wastewater treatment plant (MWWTP), contains from 750 to 1500 (more)

Guo, Chenghong.

2011-01-01T23:59:59.000Z

138

Remote handling equipment at the hanford waste treatment plant  

Science Conference Proceedings (OSTI)

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's Hanford Waste Treatment Plant. The storage tanks could potentially leak into the ground water and into the Columbia River. The solution for this risk of the leaking waste is vitrification. Vitrification is a process of mixing molten glass with radioactive waste to form a stable condition for storage. The Department of Energy has contracted Bechtel National, Inc. to build facilities at the Hanford site to process the waste. The waste will be separated into high and low level waste. Four major systems will process the waste, two pretreatment and two high level. Due to the high radiation levels, high integrity custom cranes have been designed to remotely maintain the hot cells. Several critical design parameters were implemented into the remote machinery design, including radiation limitations, remote operations, Important to Safety features, overall equipment effectiveness, minimum wall approaches, seismic constraints, and recovery requirements. Several key pieces of equipment were designed to meet these design requirements - high integrity crane bridges, trolleys, main hoists, mast hoists, slewing hoists, a monorail hoist, and telescoping mast deployed tele-robotic manipulator arms. There were unique and challenging design features and equipment needed to provide the remotely operated high integrity crane/manipulator systems for the Hanford Waste Treatment Plant. The cranes consist of a double girder bridge with various main hoist capacities ranging from one to thirty ton and are used for performing routine maintenance. A telescoping mast mounted tele-robotic manipulator arm with a one-ton hook is deployed from the trolley to perform miscellaneous operations in-cell. A dual two-ton slewing jib hoist is mounted to the bottom of the trolley and rotates 360 degrees around the mast allowing the closest hook wall approaches. Each of the two hoists on this slewer is mounted 180 degrees opposite each other. Another system utilizes a single one-ton slewing jib hoist that can extend and retract as well as rotate 270 degrees around the mast. Yet, another system utilizes an under-hung monorail trolley with one-ton hoist capacity mounted to the bottom of the bridge girder. The main, slewer and monorail hoists each have power-rotating hooks for installing and removing equipment in the hot cell. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN, (United States); Roach, J.D. [Bechtel National, Inc., Richland, WA (United States)

2007-07-01T23:59:59.000Z

139

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING WITH ACUTAL HANFORD LOW ACTIVITY WASTES VERIFYING FBSR AS A SUPPLEMENTARY TREATMENT  

SciTech Connect

The U.S. Department of Energy's Office of River Protection is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the cleanup mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA). Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. Fluidized Bed Steam Reforming (FBSR) is one of the supplementary treatments being considered. FBSR offers a moderate temperature (700-750 C) continuous method by which LAW and other secondary wastes can be processed irrespective of whether they contain organics, nitrates/nitrites, sulfates/sulfides, chlorides, fluorides, and/or radio-nuclides like I-129 and Tc-99. Radioactive testing of Savannah River LAW (Tank 50) shimmed to resemble Hanford LAW and actual Hanford LAW (SX-105 and AN-103) have produced a ceramic (mineral) waste form which is the same as the non-radioactive waste simulants tested at the engineering scale. The radioactive testing demonstrated that the FBSR process can retain the volatile radioactive components that cannot be contained at vitrification temperatures. The radioactive and nonradioactive mineral waste forms that were produced by co-processing waste with kaolin clay in an FBSR process are shown to be as durable as LAW glass.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-01-12T23:59:59.000Z

140

Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

Norm Stanley

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Forecast of total nitrogen in wastewater treatment plants by means techniques of soft computing  

Science Conference Proceedings (OSTI)

Prediction in Wastewater Treatment Plants is an important purpose for decision-making. The complexity of the biological processes happening and, on the other hand, the uncertainty and incompleteness of the real data lead us to treat this problem modelling ... Keywords: environmental modelling, fuzzy systems, genetic algoritms, neural networks, soft computing, total nitrogen, wastewater treatment plant

Narcis Clara

2008-07-01T23:59:59.000Z

142

Saving Energy at 24/7 Wastewater Treatment Plant | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy at 24/7 Wastewater Treatment Plant Energy at 24/7 Wastewater Treatment Plant Saving Energy at 24/7 Wastewater Treatment Plant July 29, 2010 - 4:11pm Addthis How does it work? Longview, Texas received $781,900 in Recovery Act funding. Co-generation power plant to save 16,571 kWh annually. Local utility to provide the city $150 rebate for every kW of peak demand reduced. In the city of Longview, Texas, the wastewater treatment facility uses more electricity than any other public building. Making investments to permanently cut energy costs at the plant is important for this East Texas city of approximately 77,000. "Our city has felt the effects of the recession. Several companies have laid 100-200 folks off and many are still waiting to be hired back," said Shawn Raney, a safety specialist with the Longview city government. "The

143

Independent Activity Report, Office of River Protection Waste Treatment Plant and Tank Farms- February 2013  

Energy.gov (U.S. Department of Energy (DOE))

Site Familiarization and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms [HIAR-HANFORD-2013-02-25

144

Multi-criteria analysis of wastewater treatment plant design and control scenarios under uncertainty  

Science Conference Proceedings (OSTI)

Wastewater treatment plant control and monitoring can help to achieve good effluent quality, in a complex, highly non-linear process. The Benchmark Simulation Model no. 2 (BSM2) is a useful tool to competitively evaluate plant-wide control on a long-term ... Keywords: Activated sludge model, Anaerobic digestion, Anoxic volume, BSM2, Cascade controller, Monte Carlo simulation, Multi-criteria assessment

L. Benedetti; B. De Baets; I. Nopens; P. A. Vanrolleghem

2010-05-01T23:59:59.000Z

145

Office of River Protection Waste Treatment and Immobilizatin Project Construction Site, Nov. 16-18, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tour and Review of the Office of River Tour and Review of the Office of River Protection Waste Treatment and Immobilization Project Construction Site, November 16-18, 2010 The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit on November 16-18, 2010, at the Office of River Protection Waste Treatment Immobilization Project (WTP) at the Department of Energy (DOE) Hanford Site. The purposes of the visit were to plan and coordinate future HSS oversight activities and to review corrective actions to the most recent HSS review at WTP. The WTP is an industrial complex for separating and vitrifying millions of gallons of radioactive and chemical waste stored at the Hanford site. The WTP complex consists of five major

146

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, November 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

147

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, November 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 November 2011 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

148

Review: Data-derived soft-sensors for biological wastewater treatment plants: An overview  

Science Conference Proceedings (OSTI)

This paper surveys and discusses the application of data-derived soft-sensing techniques in biological wastewater treatment plants. Emphasis is given to an extensive overview of the current status and to the specific challenges and potential that allow ... Keywords: Data-driven models, Soft-sensors, Wastewater treatment, Water quality monitoring

Henri Haimi, Michela Mulas, Francesco Corona, Riku Vahala

2013-09-01T23:59:59.000Z

149

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

150

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, August 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Hanford Site Waste Treatment and Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

151

Biomass, Leaf Area, and Resource Availability of Kudzu Dominated Plant Communities Following Herbicide Treatment  

DOE Green Energy (OSTI)

Kudzu is an exotic vine that threatens the forests of the southern U.S. Five herbicides were tested with regard to their efficacy in controlling kudzu, community recover was monitored, and interactions with planted pines were studied. The sites selected were old farm sites dominated by kudzu.These were burned following herbicide treatment. The herbicides included triclopyr, clopyralid, metsulfuron, tebuthiuron, and picloram plus 2,4-D. Pine seedlings were planted the following year. Regression equations were developed for predicting biomass and leaf area. Four distinct plant communities resulted from the treatments. The untreated check continued to be kudzu dominated. Blackberry dominated the clopyradid treatment. Metsulfron, trychlopyr and picloram treated sites resulted in herbaceous dominated communities. The tebuthiuron treatment maintained all vegetation low.

L.T. Rader

2001-10-01T23:59:59.000Z

152

Oversight Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 1, 2011 Independent Activity Report, Hanford Waste Treatment Plant - February 2011 Hanford Waste Treatment Plant Construction Quality Assurance Review ARPT-WTP-2011-002...

153

Interim Guidance - Amine Treatments in Fossil Power Plants  

Science Conference Proceedings (OSTI)

The use of neutralizing amines has been the subject of an evaluation focused on the improvement of the pH conditions in the low-pressure (LP) evaporators and economizers of heat recovery steam generators (HRSGs), the phase transition zone (PTZ) of the LP steam turbine, the condensing steam in air-cooled condensers (ACCs), and the pH conditions at two-phase flow-accelerated corrosion (FAC) locations such as in feedwater heater drains. This report examines actual field use of amine treatments and the therm...

2010-12-23T23:59:59.000Z

154

Treatment Technology Summary For Critical Pollutants of Concern in Power Plant Wastewaters  

Science Conference Proceedings (OSTI)

This report summarizes the most promising technologies available for the removal of aluminum, arsenic, boron, copper, mercury and selenium from power plant FGD wastewaters. Remediation of the high chloride levels in FGD waters is also discussed. The information for this technology summary stems from literature searches, technology supplier and vendor interviews and the authors' experience in power plant and other wastewater treatment systems. The report lists existing and potential technologies that meet...

2007-01-30T23:59:59.000Z

155

The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Department of Energy's $12.2 Billion The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels DOE/IG-0863 April 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 April 25, 2012 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels" INTRODUCTION The Office of Inspector General received allegations concerning aspects of the quality assurance program at the Department of Energy's $12.2 billion Waste Treatment and Immobilization Plant

156

Membrane filtration waste treatment technology comes of age in battery manufacturing plants  

SciTech Connect

A new waste treatment system from MEMTEK Corporation incorporates membrane filtration, and makes possible the effective treatment of waste streams containing a number of toxic heavy metals. Using this membrane technology, MEMTEK is capable of treating the wastewater in battery manufacturing plants to meet even the strictest limits imposed by local regulatory agencies and the Environmental Protection Agency (EPA). Lead and zinc in the treated effluent are typically below 0.1 ppm. The typical battery manufacturing processes introduce metals, primarily lead, into plant effluents, especially from formation, battery wash, and laundry operation. Due to the high usage of acid in the plant, the wastewater is also usually of a low pH, typically 2 or less. The dissolved and particulate contaminants in this effluent must be removed to very low levels before the water can be released to the sewer or the environment. The waste treatment process is described.

1986-09-01T23:59:59.000Z

157

Municipal wastewater treatment with special reference to the central wastewater treatment plant in Poznan, Poland.  

E-Print Network (OSTI)

??Wastewater treatment is becoming a more critical topic due to diminishing water resources, increasing cost of disposing wastewater and also stricter measures and legislations set (more)

Orukpe, Otaigbe Stephen

2010-01-01T23:59:59.000Z

158

The Hanford waste feed delivery operational research model  

Science Conference Proceedings (OSTI)

The Hanford cleanup mission is to vitrify 56 million gallons of nuclear waste, currently stored in 177 underground tanks, at the Waste Treatment and Immobilization Plant (WTP). The WTP operations begin in 2019. Waste transfers from the Tank Farms to ...

Joanne Berry; Vishvas Patel; Karthik Vasudevan

2011-12-01T23:59:59.000Z

159

ENERGY STAR Score for Wastewater Treatment Plants | ENERGY STAR Buildings &  

NLE Websites -- All DOE Office Websites (Extended Search)

Wastewater Treatment Plants Wastewater Treatment Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

160

Preliminary analysis of treatment strategies for transuranic wastes from reprocessing plants  

Science Conference Proceedings (OSTI)

This document provides a comparison of six treatment options for transuranic wastes (TRUW) resulting from the reprocessing of commercial spent fuel. Projected transuranic waste streams from the Barnwell Nuclear Fuel Plant (BNFP), the reference fuel reprocessing plant in this report, were grouped into the five categories of hulls and hardware, failed equipment, filters, fluorinator solids, and general process trash (GPT) and sample and analytical cell (SAC) wastes. Six potential treatment options were selected for the five categories of waste. These options represent six basic treatment objectives: (1) no treatment, (2) minimum treatment (compaction), (3) minimum number of processes and products (cementing or grouting), (4) maximum volume reduction without decontamination (melting, incinerating, hot pressing), (5) maximum volume reduction with decontamination (decontamination, treatment of residues), and (6) noncombustible waste forms (melting, incinerating, cementing). Schemes for treatment of each waste type were selected and developed for each treatment option and each type of waste. From these schemes, transuranic waste volumes were found to vary from 1 m/sup 3//MTU for no treatment to as low as 0.02 m/sup 3//MTU. Based on conceptual design requirements, life-cycle costs were estimated for treatment plus on-site storage, transportation, and disposal of both high-level and transuranic wastes (and incremental low-level wastes) from 70,000 MTU. The study concludes that extensive treatment is warranted from both cost and waste form characteristics considerations, and that the characteristics of most of the processing systems used are acceptable. The study recommends that additional combinations of treatment methods or strategies be evaluated and that in the interim, melting, incineration, and cementing be further developed for commercial TRUW. 45 refs., 9 figs., 32 tabs.

Ross, W.A.; Schneider, K.J.; Swanson, J.L.; Yasutake, K.M.; Allen, R.P.

1985-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, May 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Hanford Site Waste Treatment and Immobilization Plant Construction Quality May 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1 4.0 Methodology ....................................................................................................................................... 2

162

Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, December 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant Construction Quality December 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Scope .................................................................................................................................................... 1 3.0 Background .......................................................................................................................................... 1

163

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 1 4.0 Methodology ........................................................................................................................................

164

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network (OSTI)

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 Abstract The Anaerobic Digestion Model N°1 (ADM1., 2005). Anaerobic digestion process involves many interactions between species that may not all have

165

Borehole Summary Report for Core Hole C4998 Waste Treatment Plant Seismic Boreholes Project  

Science Conference Proceedings (OSTI)

Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

Barnett, D. BRENT; Garcia, Benjamin J.

2006-12-15T23:59:59.000Z

166

Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality, October 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Site Waste Treatment and Immobilization Plant Construction Quality May 2011 October 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope.................................................................................................................................................... 1 4.0 Methodology ........................................................................................................................................

167

Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality, March 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Site Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality May 2011 March 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background .......................................................................................................................................... 1 3.0 Scope .................................................................................................................................................... 1

168

Injection with seawater: problems in the operation of a seawater treatment plant  

Science Conference Proceedings (OSTI)

Reservoir pressure elevation by means of water injection in the production formation is a technique that improves production efficiency. In offshore activities, seawater is available for injection, but it has a high level of solids in suspension and also ions and dissolved gases that may cause problems in the water injection system. Therefore, a seawater treatment plant is necessary for preparation of the injection water. The treatment system has the following components for physical treatment: colander, which prevents the intake of large objects to the system; filters, which include flocculation for coagulation means for the removal of microscopic particles that can pass through the colander; deaerator; and system controls.

Garbis, S.J.

1982-05-01T23:59:59.000Z

169

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

Science Conference Proceedings (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

170

INITIAL SELECTION OF SUPPLEMENTAL TREATMENT TECHNOLOGIES FOR HANFORDS LOW ACTIVITY TANK WASTE  

SciTech Connect

In 2002, the U.S. Department of Energy (DOE) documented a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified specific technologies to be evaluated for supplemental treatment of as much as 70% of the low-activity waste (LAW). In concert with this acceleration plan, DOE, the U.S. Environmental Protection Agency, and the Washington State Department of Ecology proposed to accelerate--from 2014 to 2006--the Hanford Federal Facility Agreement and Consent Order milestone (M-62-11) associated with a final decision on the balance of tank waste that is beyond the capacity of the WTP. The DOE Office of River Protection tank farm contractor, CH2M HILL Hanford Group, Inc. (CH2M HILL), was tasked with testing and evaluating selected supplemental technologies to support final decisions on tank waste treatment. Three technologies and corresponding vendors were selected to support an initial technology selection in 2003. The three technologies were containerized grout called cast stone (Fluor Federal Services); bulk vitrification (AMEC Earth and Environmental, Inc.); and steam reforming (THOR Treatment Technologies, LLC.). The cast stone process applies an effective grout waste formulation to the LAW and places the cement-based product in a large container for solidification and disposal. Unlike the WTP LAW treatment, which applies vitrification within continuous-fed joule-heated ceramic melters, bulk vitrification produces a glass waste form using batch melting within the disposal container. Steam reforming produces a granular denitrified mineral waste form using a high-temperature fluidized bed process. An initial supplemental technology selection was completed in December 2003, enabling DOE and CH2M HILL to focus investments in 2004 on the testing and production-scale demonstrations needed to support the 2006 milestone.

RAYMOND, R.E.

2004-02-20T23:59:59.000Z

171

Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3  

Science Conference Proceedings (OSTI)

This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

Sullivan, N.

1995-05-02T23:59:59.000Z

172

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

DOE Green Energy (OSTI)

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

173

Transition Plan for the K-1203 Sewage Treatment Plant, East Tennessee Technology Park, Oak Ridge, Tennessee  

SciTech Connect

The K-1203 Sewage Treatment Plant (STP) was previously used to treat and process all sanitary sewage waste from the East Tennessee Technology Park (ETTP). The plant was shut down on May 29, 2008 as a result of the transition of sewage treatment for ETTP to the City of Oak Ridge. The City of Oak Ridge expanded the Rarity Ridge Sewage Treatment Plant (RRSTP) to include capacity to treat the waste from the ETTP and the Community Reuse Organization of East Tennessee (CROET) constructed a new ETTP lift station and force main to RRSTP. In preparation for the shutdown of K-1203, the US Department of Energy (DOE) in conjunction with Operation Management International (OMI) developed a shut down plan to outline actions that need to occur prior to the transition of the facility to Bechtel Jacob Company, LLC (BJC) for decontamination and demolition (D and D). This plan outlines the actions, roles, and responsibilities for BJC in order to support the transition of the K-1203 STP from OMI to the BJC Surveillance and Maintenance (S and M) and D and D programs. The D and D of the K-1203 Facilities is planned under the Comprehensive Environmental Response, Compensation, and Liability Act Remaining Facilities D and D Action Memorandum in the Balance of Site-Utilities D and D Subproject in fiscal year (FY) 2014.

Hoffmeister J.

2008-10-05T23:59:59.000Z

174

Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report  

DOE Green Energy (OSTI)

The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

NONE

1995-01-01T23:59:59.000Z

175

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

Science Conference Proceedings (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

176

Emissions of volatile and potentially toxic organic compounds from waste-water treatment plants and collection systems (Phase 2). Volume 3. Waste-water treatment-plant emissions. Experimental phase. Final report  

SciTech Connect

Volume 3 describes the measurements and experimental data obtained to assess emissions from various points within a POTW. Included are a discussion of sampling methods development, emissions studies of activated carbon bed odor control units located at various points of a large municipal wastewater treatment plant and its collection system, upwind/downwind sampling from an activated sludge aeration basins at a large municipal wastewater treatment plant, and preliminary studies of haloform formation as a result of chlorination of wastewater.

Chang, D.P.Y.; Guensler, R.; Kim, J.O.; Chou, T.L.; Uyeminami, D.

1991-08-01T23:59:59.000Z

177

Volatile organic compound emissions from usaf wastewater treatment plants in ozone nonattainment areas. Master's thesis  

Science Conference Proceedings (OSTI)

In accordance with the 1990 Clean Air Act Amendments (CAAA), this research conducts an evaluation of the potential emission of volatile organic compounds (VOCs) from selected Air Force wastewater treatment plants. Using a conservative mass balance analysis and process specific simulation models, volatile organic emission estimates are calculated for four individual facilities--Edwards AFB, Luke AFB, McGuire AFB, and McClellan AFB--which represent a cross section of the current inventory of USAF wastewater plants in ozone nonattainment areas. From these calculations, maximum facility emissions are determined which represent the upper limit for the potential VOC emissions from these wastewater plants. Based on the calculated emission estimates, each selected wastewater facility is evaluated as a potential major stationary source of volatile organic emissions under both Title I of the 1990 CAAA and the plant's governing Clean Air Act state implementation plan. Next, the potential impact of the specific volatile organics being emitted is discussed in terms of their relative reactivity and individual contribution to tropospheric ozone formation. Finally, a relative comparison is made between the estimated VOC emissions for the selected wastewater facilities and the total VOC emissions for their respective host installations.

Ouellette, B.A.

1994-09-01T23:59:59.000Z

178

Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant  

SciTech Connect

This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

Not Available

2005-12-01T23:59:59.000Z

179

Effluent Quality Prediction of Wastewater Treatment Plant Based on Fuzzy-Rough Sets and Artificial Neural Networks  

Science Conference Proceedings (OSTI)

Effluent ammonia-nitrogen (NH3-N), chemical oxygen demand (COD) and total nitrogen (TN) removals are the most common environmental and process performance indicator for all types of wastewater treatment plants (WWTPs). In this paper, a soft computing ... Keywords: neural network, fuzzy rough sets, input variable selection, wastewater treatment, prediction, soft computing

Fei Luo; Ren-hui Yu; Yu-ge Xu; Yan Li

2009-08-01T23:59:59.000Z

180

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.  

SciTech Connect

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

2010-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Department of Energy Categorical Exclusion ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulant Studies for Hanford Recycle Solutions Savannah River Site AikenAikenSouth Carolina The Hanford Waste Treatment Plant (WTP) Low Activity Waste (LAW) melter will generate...

182

December 5, 2008, Board Public Hearing and Meeting regarding...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal projects, the Waste Treatment Plant (WTP) project and the Chemistry and Metallurgy Research Replacement (CMRR) project . This fourth public hearing and meeting will...

183

Independent Oversight Activity Report for Catholic University...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Purpose: Bechtel National, Inc. (BNI) is the contractor responsible for the design and construction of the Hanford Site Waste Treatment and Immobilization Plant (WTP) for the...

184

Role of Anti Foam Agent in Gas Retention and Release in Waste ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The Hanford Tank Waste Treatment and Immobilization Plant ( WTP), which is being designed and constructed for the U.S. Department of Energy...

185

The Impact of Advanced Wastewater Treatment Technologies and Wastewater Strength on the Energy Consumption of Large Wastewater Treatment Plants.  

E-Print Network (OSTI)

??Wastewater treatment is an energy intensive process often requiring the use of advanced treatment technologies. Stricter effluent standards have resulted in an increase in the (more)

Newell, Timothy Stephen

2012-01-01T23:59:59.000Z

186

Pyrochemical treatment of Idaho Chemical Processing Plant high-level waste calcine  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP), located at the Idaho National Engineering Laboratory (INEL), has reprocessed irradiated nuclear fuels for the US Department of Energy (DOE) since 1951 to recover uranium, krypton-85, and isolated fission products for interim treatment and immobilization. The acidic radioactive high-level liquid waste (HLLW) is routinely stored in stainless steel tanks and then, since 1963, calcined to form a dry granular solid. The resulting high-level waste (HLW) calcine is stored in seismically hardened stainless steel bins that are housed in underground concrete vaults. A research and development program has been established to determine the feasibility of treating ICPP HLW calcine using pyrochemical technology.This technology is described.

Todd, T.A.; DelDebbio, J.A.; Nelson, L.O.; Sharpsten, M.R.

1993-06-01T23:59:59.000Z

187

Federal involvement in: municipal wastewater treatment plant sludge energy recovery and conservation  

DOE Green Energy (OSTI)

The results are presented of a study concerning federal involvement in municipal wastewater treatment plant (MWWTP) sludge energy recovery and conservation. The objectives of the study were to: determine and report the major agency programs and related MWWTP sludge energy recovery and conservation projects; determine and summarize the coordination efforts between federal agencies involved in MWWTP sludge; and recommend future U.S. Energy Research and Development Administration (ERDA) involvement in MWWTP sludge energy recovery and conservation projects. Specific federal agencies designated for surveying include ERDA, EPA, USDA, Bureau of Mines, National Science Foundation, and National Commission on Water Quality. Past (post-1966), present, and planned federal involvement in MWWTP sludge energy recovery and conservation, research and development, demonstration, and study projects were considered.

None

1977-06-01T23:59:59.000Z

188

Evaluation of cooling tower and wastewater treatment operations at the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The objective of this study was to provide a technical assessment of the Great Plains Coal Gasification Plant Wastewater Treatment System. This Scope of Work consisted of five primary tasks described as follows: Task 1 - Determine the quantity of hydantoins in the stripped gas liquor (SGL), their precursors, and the kinetics of their formation in condensed liquor for the Great Plains Gasification Associates (GPGA) gasification facility. The University of North Dakota Energy Research Center (UNDERC) has measured a high concentration of hydantoins in the gas liquor from their slagging gasifier. UNDERC has tested the use of SGL in a pilot cooling tower and they witnessed some adverse effects in the cooling tower and heat exchanger systems. Task 2 - Investigate the adverse Department of Energy (DOE) findings at UNDERC with regard to corrosion, foaming, biological and organic fouling, chemical attack on concrete and organic emissions resulting from the use of SGL in a pilot plant cooling tower. Task 3 - Validate the heat load on the cooling tower for both summer and winter operation and determine the adequacy of the surge pond to store the maximum predicted amount of excess water accumulated during winter operation. Task 4 - Assess potential fouling, foaming and organic carry-over problems associated with operability of the multiple-effect evaporator and develop recommendations on possible alternate use of evaporator condensate to alleviate possible problems in disposing of excess wastewater. Task 5 - Provide DOE with recommendations on the wastewater treatment backup design and test program already committed to by GPGA. This paper presents Fluor's findings regarding the five primary tasks. 12 refs., 4 figs., 15 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

189

CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45)  

Office of Legacy Management (LM)

CERTIFICATION DOCKET CERTIFICATION DOCKET FOR THE F0RhqE.R SITE OF THE RADIOACTIVE LIQUID WASTE TREATMENT PLANT (TA-45) AND THE EFFLUENT RECEIVING AREAS OF ACID, PUEBLO, AND LOS ALAMOS CANYOM, LOS ALAMOS, NEW MEXICO DEPARTMENT OF ENERGY Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial Action Projects -. CONTENTS A Page - Introduction to the Certification Docket for the Former Site of the Radioactive Liquid Waste Treatment Plant (TA-45) and the Effluent Receiving Areas of Acid, Pueblo, and Los Alamos Canyons, Los Alamos, New Mexico Description of the Formeriy Utilized Sites Program at the Former Site of the T.4-45 Treatment Plant and Acid, Pueblo, and Los Alamos Canyons Purpose Property Identification Docket Contents

190

Technical Basis for Radiological Emergency Plan Annex for WTD Emergency Response Plan: West Point Treatment Plant  

Science Conference Proceedings (OSTI)

Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways and water supply systems. This document, Volume 3 of PNNL-15163 is the technical basis for the Annex to the West Point Treatment Plant (WPTP) Emergency Response Plan related to responding to a radiological emergency at the WPTP. The plan primarily considers response to radioactive material that has been introduced in the other combined sanitary and storm sewer system from a radiological dispersion device, but is applicable to any accidental or deliberate introduction of materials into the system.

Hickey, Eva E.; Strom, Daniel J.

2005-08-01T23:59:59.000Z

191

2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Michael G. Lewis

2012-02-01T23:59:59.000Z

192

2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: Site description Facility and system description Permit required monitoring data and loading rates Status of special compliance conditions Discussion of the facilitys environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Mike lewis

2011-02-01T23:59:59.000Z

193

2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: Site description Facility and system description Permit required monitoring data and loading rates Status of compliance conditions and activities Discussion of the facilitys environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

Mike Lewis

2013-02-01T23:59:59.000Z

194

Wastewater treatment and energy : an analysis on the feasibility of using renewable energy to power wastewater treatment plants in Singapore  

E-Print Network (OSTI)

Wastewater treatment is a very energy intensive industry. Singapore has a state-of-the-art wastewater treatment system that uses a number of sustainable techniques that greatly improve its overall efficiency. The centralized ...

Foley, Kevin John

2010-01-01T23:59:59.000Z

195

Hanford Waste Simulants Created to Support the Research and Development on the River Protection Project - Waste Treatment Plant  

Science Conference Proceedings (OSTI)

The development of nonradioactive waste simulants to support the River Protection Project - Waste Treatment Plant bench and pilot-scale testing is crucial to the design of the facility. The report documents the simulants development to support the SRTC programs and the strategies used to produce the simulants.

Eibling, R.E.

2001-07-26T23:59:59.000Z

196

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

DOE Green Energy (OSTI)

The results of the feasibility study for utilizing low temperature geothermal heat in the City of San Bernardino Wastewater Treatment Plant are summarized. The study is presented in terms of preliminary engineering design, economic analysis, institutional issues, environmental impacts, resource development, and system implementation.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

197

Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB  

Science Conference Proceedings (OSTI)

This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility. Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to RHA.

PRIGNANO, A.L.

2003-06-25T23:59:59.000Z

198

A Brief Review of Filtration Studies for Waste Treatment at the Hanford Site  

Science Conference Proceedings (OSTI)

This document completes the requirements of Milestone 1-2, PNNL Draft Literature Review, discussed in the scope of work outlined in the EM-31 Support Project task plan WP-2.3.6-2010-1. The focus of task WP 2.3.6 is to improve the U.S. Department of Energys (DOEs) understanding of filtration operations for high-level waste (HLW) to enhance filtration and cleaning efficiencies, thereby increasing process throughput and reducing the sodium demand (through acid neutralization). Developing the processes for fulfilling the cleaning/backpulsing requirements will result in more efficient operations for both the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Savannah River Site (SRS), thereby increasing throughput by limiting cleaning cycles. The purpose of this document is to summarize Pacific Northwest National Laboratorys (PNNLs) literature review of historical filtration testing at the laboratory and of testing found in peer-reviewed journals. Eventually, the contents of this document will be merged with a literature review by SRS to produce a summary report for DOE of the results of previous filtration testing at the laboratories and the types of testing that still need to be completed to address the questions about improved filtration performance at WTP and SRS. To this end, this report presents 1) a review of the current state of crossflow filtration knowledge available in the peer-reviewed literature, 2) a detailed review of PNNL-related filtration studies specific to the Hanford site, and 3) an overview of current waste filtration models developed by PNNL and suggested avenues for future model development.

Daniel, Richard C.; Schonewill, Philip P.; Shimskey, Rick W.; Peterson, Reid A.

2010-12-01T23:59:59.000Z

199

A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants  

SciTech Connect

The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity use and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.

Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Hospido, A., E-mail: almudena.hospido@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Bagley, D.M., E-mail: bagley@uwyo.edu [Department of Chemical and Petroleum Engineering, University of Wyoming, 82072 Laramie, WY (United States); Moreira, M.T., E-mail: maite.moreira@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain); Feijoo, G., E-mail: gumersindo.feijoo@usc.es [Department of Chemical Engineering, University of Santiago de Compostela, Rua Lope Gomez de Marzoa, S/N, 15782, Santiago de Compostela (Spain)

2012-11-15T23:59:59.000Z

200

Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant  

Science Conference Proceedings (OSTI)

The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

Maranon, E. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain)]. E-mail: emara@uniovi.es; Castrillon, L. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain); Fernandez, Y. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain); Fernandez, E. [COGERSA, 33697 Serin, Gijon (Spain)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CHALLENGES AND OPPORTUNITIES--INTEGRATED LIFE-CYCLE OPTIMIZATION INITIATIVES FOR THE HANFORD RIVER PROTECTION PROJECT--WASTE TREATMENT PLANT  

Science Conference Proceedings (OSTI)

This paper describes the ongoing integrated life-cycle optimization efforts to achieve both design flexibility and design stability for activities associated with the Waste Treatment Plant at Hanford. Design flexibility is required to support the Department of Energy Office of River Protection Balance of Mission objectives, and design stability to meet the Waste Treatment Plant construction and commissioning requirements in order to produce first glass in 2007. The Waste Treatment Plant is a large complex project that is driven by both technology and contractual requirements. It is also part of a larger overall mission, as a component of the River Protection Project, which is driven by programmatic requirements and regulatory, legal, and fiscal constraints. These issues are further complicated by the fact that both of the major contractors involved have a different contract type with DOE, and neither has a contract with the other. This combination of technical and programmatic drivers, constraints, and requirements will continue to provide challenges and opportunities for improvement and optimization. The Bechtel National, Inc. team is under contract to engineer, procure, construct, commission and test the Waste Treatment Plant on or ahead of schedule, at or under cost, and with a throughput capacity equal to or better than specified. The Department of Energy is tasked with the long term mission of waste retrieval, treatment, and disposal. While each mission is a compliment and inextricably linked to one another, they are also at opposite ends of the spectrum, in terms of expectations of one another. These mission requirements, that are seemingly in opposition to one another, pose the single largest challenge and opportunity for optimization: one of balance. While it is recognized that design maturation and optimization are the normal responsibility of any engineering firm responsible for any given project, the aspects of integrating requirements and the management of issues across contract boundaries is a more difficult matter. This aspect, one of a seamless systems approach to the treatment of tank wastes at the Hanford site, is the focus of the Optimization Studies. This ''big O''Optimization of Life-Cycle operations is what is meant when the term ''optimization'' is used on the River Protection Project and initiatives cited in this paper. From the early contractor centric methods and processes used to move toward an integrated solution, through extensive partnering approaches, to the current quality initiatives with multi-organizational participation, significant progress is being made towards achieving the goal of truly integrated life-cycle optimization for the Department of Energy's River Protection Project and Waste Treatment Plant.

Auclair, K. D.

2002-02-25T23:59:59.000Z

202

PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION  

Science Conference Proceedings (OSTI)

Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

JOHNSTON GA

2008-01-15T23:59:59.000Z

203

Biologically induced concrete deterioration in a wastewater treatment plant assessed by combining microstructural analysis with thermodynamic modeling  

SciTech Connect

In the nitrification basins of wastewater treatment plants, deterioration of the concrete surface can occur due to acid attack caused by a nitrifying biofilm covering the concrete. To identify the mechanism of deterioration, concrete cubes of different composition were suspended in an aerated nitrification basin of a wastewater treatment plant for two years and analyzed afterwards. The microstructural investigation reveals that not only dissolution of hydrates takes place, but that calcite precipitation close to the surface occurs leading to the formation of a dense layer. The degree of deterioration of the different cubes correlates with the CaO content of the different cements used. Cements which contain a high fraction of CaO form more calcite offering a better protection against the acid attack. The presence of slag, which lowers the amount CaO in the cement, leads to a faster deterioration of the concrete than observed for samples produced with pure OPC.

Leemann, A., E-mail: andreas.leemann@empa.c [Empa, Duebendorf (Switzerland); Lothenbach, B.; Hoffmann, C. [Empa, Duebendorf (Switzerland)

2010-08-15T23:59:59.000Z

204

Fate of As, Se, and Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater  

SciTech Connect

TVA is collaborating with EPRI and DOE to demonstrate a passive treatment system for removing SCR-derived ammonia and trace elements from a coal-fired power plant wastewater stream. The components of the integrated system consist of trickling filters for ammonia oxidation, reaction cells containing zero-valent iron (ZVI) for trace contaminant removal, a settling basin for storage of iron hydroxide floc, and anaerobic vertical-flow wetlands for biological denitrification. The passive integrated treatment system will treat up to 0.25 million gallons per day (gpd) of flue gas desulfurization (FGD) pond effluent, with a configuration requiring only gravity flow to obviate the need for pumps. The design of the system will enable a comparative evaluation of two parallel treatment trains, with and without the ZVI extraction trench and settling/oxidation basin components. One of the main objectives is to gain a better understanding of the chemical transformations that species of trace elements such as arsenic, selenium, and mercury undergo as they are treated in passive treatment system components with differing environmental conditions. This progress report details the design criteria for the passive integrated system for treating fossil power plant wastewater as well as performance results from the first several months of operation. Engineering work on the project has been completed, and construction took place during the summer of 2005. Monitoring of the passive treatment system was initiated in October 2005 and continued until May 18 2006. The results to date indicate that the treatment system is effective in reducing levels of nitrogen compounds and trace metals. Concentrations of both ammonia and trace metals were lower than expected in the influent FGD water, and additions to increase these concentrations will be done in the future to further test the removal efficiency of the treatment system. In May 2006, the wetland cells were drained of FGD water, refilled with less toxic ash pond water, and replanted due to low survival rates from the first planting the previous summer. The goals of the TVA-EPRI-DOE collaboration include building a better understanding of the chemical transformations that trace elements such as arsenic, selenium, and mercury undergo as they are treated in a passive treatment system, and to evaluate the performance of a large-scale replicated passive treatment system to provide additional design criteria and economic factors.

Terry Yost; Paul Pier; Gregory Brodie

2007-12-31T23:59:59.000Z

205

Population dynamics of iron-oxidizing communities in pilot plants for the treatment of acid mine waters  

Science Conference Proceedings (OSTI)

The iron-oxidizing microbial community in two pilot plants for the treatment of acid mine water was monitored to investigate the influence of different process parameters such as pH, iron concentration, and retention time on the stability of the system to evaluate the applicability of this treatment technology on an industrial scale. The dynamics of the microbial populations were followed using T-RFLP (terminal restriction fragment length polymorphism) over a period of several months. For a more precise quantification, two TaqMan assays specific for the two prominent groups were developed and the relative abundance of these taxa in the iron-oxidizing community was verified by real-time PCR. The investigations revealed that the iron-oxidizing community was clearly dominated by two groups of Betaproteobacteria affiliated with the poorly known and not yet recognized species 'Ferrovum myxofaciens' and with strains related to Gallionella ferruginea, respectively. These taxa dominated the microbial community during the whole investigation period and accelerated the oxidation of ferrous iron despite the changing characteristics of mine waters flowing into the plants. Thus, it is assumed that the treatment technology can also be applied to other mine sites and that these organisms play a crucial role in such treatment systems. 32 refs., 4 figs. 1 tab.

Elke Heinzel; Eberhard Janneck; Franz Glombitza; Michael Schlmann; Jana Seifert [TU Bergakademie Freiberg, Freiberg (Germany). Interdisciplinary Ecological Center

2009-08-15T23:59:59.000Z

206

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

SciTech Connect

This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions of 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.

Thompson, Lisa; Lekov, Alex; McKane, Aimee; Piette, Mary Ann

2010-08-20T23:59:59.000Z

207

Ozone Alternative Disinfection Study for a Large-Scale Wastewater Treatment Plant  

Science Conference Proceedings (OSTI)

This report describes a feasibility study for the use of an ozonation disinfection system for the treatment of wastewater in the Passaic Valley.

1999-12-06T23:59:59.000Z

208

EA-2006-03.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant EA-2006-03 As a result of a Department of Energy (DOE) evaluation of issues at the Waste Treatment and Immobilization Plant (WTP),...

209

The carbon footprint analysis of wastewater treatment plants and nitrous oxide emissions from full-scale biological nitrogen removal processes in Spain  

E-Print Network (OSTI)

This thesis presents a general model for the carbon footprint analysis of advanced wastewater treatment plants (WWTPs) with biological nitrogen removal processes, using a life cycle assessment (LCA) approach. Literature ...

Xu, Xin, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

210

Integrated Fault Detection and Isolation: Application to a Winery's Wastewater Treatment Plant  

Science Conference Proceedings (OSTI)

In this paper, an integrated object-oriented fuzzy logic fault detection and isolation (FDI) module for a biological wastewater treatment process is presented. The defined FDI strategy and the software implementation are detailed. Using experimental ... Keywords: anaerobic digestion, fuzzy logic, object-oriented programming, on-line fault detection and isolation (FDI), wastewater treatment

Antoine Genovesi; Jrme Harmand; Jean-Philippe Steyer

2000-07-01T23:59:59.000Z

211

Selective ensemble extreme learning machine modeling of effluent quality in wastewater treatment plants  

Science Conference Proceedings (OSTI)

Real-time and reliable measurements of the effluent quality are essential to improve operating efficiency and reduce energy consumption for the wastewater treatment process. Due to the low accuracy and unstable performance of the traditional effluent ... Keywords: Wastewater treatment process, effluent quality prediction, extreme learning machine, genetic algorithm, selective ensemble model

Li-Jie Zhao; Tian-You Chai; De-Cheng Yuan

2012-12-01T23:59:59.000Z

212

Expanding the potential for saline formations : modeling carbon dioxide storage, water extraction and treatment for power plant cooling.  

Science Conference Proceedings (OSTI)

The National Water, Energy and Carbon Sequestration simulation model (WECSsim) is being developed to address the question, 'Where in the current and future U.S. fossil fuel based electricity generation fleet are there opportunities to couple CO{sub 2} storage and extracted water use, and what are the economic and water demand-related impacts of these systems compared to traditional power systems?' The WECSsim collaborative team initially applied this framework to a test case region in the San Juan Basin, New Mexico. Recently, the model has been expanded to incorporate the lower 48 states of the U.S. Significant effort has been spent characterizing locations throughout the U.S. where CO{sub 2} might be stored in saline formations including substantial data collection and analysis efforts to supplement the incomplete brine data offered in the NatCarb database. WECSsim calculates costs associated with CO{sub 2} capture and storage (CCS) for the power plant to saline formation combinations including parasitic energy costs of CO{sub 2} capture, CO{sub 2} pipelines, water treatment options, and the net benefit of water treatment for power plant cooling. Currently, the model can identify the least-cost deep saline formation CO{sub 2} storage option for any current or proposed coal or natural gas-fired power plant in the lower 48 states. Initial results suggest that additional, cumulative water withdrawals resulting from national scale CCS may range from 676 million gallons per day (MGD) to 30,155 MGD depending on the makeup power and cooling technologies being utilized. These demands represent 0.20% to 8.7% of the U.S. total fresh water withdrawals in the year 2000, respectively. These regional and ultimately nation-wide, bottom-up scenarios coupling power plants and saline formations throughout the U.S. can be used to support state or national energy development plans and strategies.

Not Available

2011-04-01T23:59:59.000Z

213

Supplemnental Volume - Independent Oversight Assessment of the Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant, January 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volume Volume Independent Oversight Assessment of Nuclear Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant January 2012 Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Office of Health, Safety and Security HSS i Independent Oversight Assessment of Safety Culture and Management of Nuclear Safety Concerns at the Hanford Site Waste Treatment and Immobilization Plant Supplemental Volume Table of Contents Foreword ...................................................................................................................................................... iii Acronyms ...................................................................................................................................................... v

214

Industrial Plant for Flue Gas Treatment with High Power Electron Accelerators  

SciTech Connect

Fossil fuel combustion leads to acidic pollutants, like SO2, NOx, HCl emission. Different control technologies are proposed however, the most popular method is combination of wet FGD (flue gas desulfurization) and SCR (selective catalytic reduction). First, using lime or limestone slurry leads to SO2 capture, and gypsum is a product. The second process where ammonia is used as reagent and nitrogen oxides are reduced over catalyst surface to gaseous nitrogen removes NOx. New advanced method using electron accelerators for simultaneous SO2 and NOx removal has been developed in Japan, the USA, Germany and Poland. Both pollutants are removed with high efficiency and byproduct can be applied as fertilizer. Two industrial plants have been already constructed. One in China and second in Poland, third one is under construction in Japan. Information on the Polish plant is presented in the paper. Plant has been constructed at Power Station Pomorzany, Szczecin (Dolna Odra Electropower Stations Group) and treats flue gases from two Benson boilers 60 MWe and 100 MWth each. Flow rate of the flue gas stream is equal to 270 000 Nm3/h. Four transformer accelerators, 700 keV electron energy and 260 kW beam power each were applied. With its 1.05 MW total beam power installed it is a biggest radiation facility over the world, nowadays. Description of the plant and results obtained has been presented in the paper.

Chmielewski, Andrzej G. [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); University of technology, faculty of Process and Chemical Engineering, Warsaw (Poland); Tyminski, Bogdan; Zimek, Zbigniew; Pawelec, Andrzej [Institute of Nuclear Chemistry and Technology, Warsaw (Poland); Licki, Janusz [Institute of Atomic Energy, Swierk (Poland)

2003-08-26T23:59:59.000Z

215

Use of ion exchange for the treatment of liquids in nuclear power plants  

SciTech Connect

The current and future use of ion exchange (demineralization) as a method for treating liquid radioactive streams at nuclear power plants was investigated. Pertinent data were obtained by contacting utility companies, nuclear-steam-supply system vendors, selected AEC-operated facilities, as well as ion exchange resin and equipment manufacturers. Principal emphasis was on obtaining data concerning the decontamination of aqueous solutions characterized by levels of radioactivity that range from 10/sup -7/ to 1 mu Ci/ml. Ion exchange media commonly used in nuclear power plants are synthetic organic resins of polystyrene matrix. They are utilized primarily in the mixed-bed (deep-bed) ion exchange system. Powdered resin (mixed) systems (so-called filter- demineralizer'') are also used in several recent boiling-water-reactor plants. The term decontamination factor (DF), the ratio of the feed to effluent concentration, is widely used and is assumed by designers and operators of the plants to express the ion exchange system performance. In some cases, such DF values may not represent the true system performance. To achieve a desired DF, the feed and effiuent must be sampled for the nuclides of interest and the processing discontinued when the desired effluent concentration is exceeded. Average DF values that can be obtained for various ion-exchange systems and various groups of radionuclides if good engineering practice is used in the design and operation of these systems are listed. These values are based on ion- exchange fundamentals, literature data, laboratory experiments, and plant operating experience. They represent time-average values expected under normal operating conditions rather than maximum values attainable under optimum conditions. (auth)

Lin, K.H.

1973-12-01T23:59:59.000Z

216

WTP R&D Plans  

EFRT M-12 Testing Program Simulant Development Develop and test gibbsite, boehmite, and filtration component simulants Blend and test component simulants

217

Technology Needs for WTP Simulants  

Hanford waste feed chemistry. Developed for leaching and filtration process demonstration in the Pretreatment Engineering Platform (PEP).

218

Regional factors governing performance and sustainability of wastewater treatment plants in Honduras : Lake Yojoa Subwatershed  

E-Print Network (OSTI)

Lake Yojoa, the largest natural lake in Honduras, is currently experiencing eutrophication from overloading of nutrients, in part due to inadequate wastewater treatment throughout the Lake Yojoa Subwatershed. Some efforts ...

Walker, Kent B. (Kent Bramwell)

2011-01-01T23:59:59.000Z

219

Assessment of sludge management options in a waste water treatment plant  

E-Print Network (OSTI)

This thesis is part of a larger project which began in response to a request by the Spanish water agengy, Cadagua, for advice on life cycle assessment (LCA) and environmental impacts of Cadagua operated wastewater treatment ...

Lim, Jong hyun, M. Eng. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

220

Compatibility of the ultraviolet light-ozone system for laundry waste water treatment in nuclear power plants  

SciTech Connect

As an alternative treatment system for laundry waste water in nuclear power plants, a system was chosen in which such organic compounds as surfactant would be oxidized by ultraviolet (UV) light and ozone. The system compatibility, UV light source, and dissolved ozone concentration were examined through experiments. First, ozone gas was absorbed in the waste water. After the dissolved ozone concentration equilibrated at the desired value, the waste water was irradiated by a mercury lamp. Then, the time dependence of the concentrations of the organic compounds, the dissolved ozone, and the hydrogen peroxide were measured to estimate the treatment rate of the system. The mercury lamp with a 10{sup 5}-Pa vapor pressure achieved large UV radiation and a treatment rate increase, leading to a compatible system without secondary waste generation. The effect of the dissolved ozone concentration on the treatment rate was saturated when concentration was >3.3 {times} 10{sup {minus}4} mol/10{sup {minus}3} m{sup 3} at the time UV radiation was started. Numerical results indicated the saturation was due to hydrogen peroxide generation, which prevents hydroxyl radical generation.

Matsuo, Toshiaki; Nishi, Takashi; Matsuda, Masami; Izumida, Tatsuo [Hitachi, Ltd. (Japan)

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981  

DOE Green Energy (OSTI)

A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. The environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.

Racine, W.C.; Larson, T.C.; Stewart, C.A.; Wessel, H.B.

1981-06-01T23:59:59.000Z

222

Liquid Waste Processing Facilities (LWPF) Reliability and Availability and Maintainability (RAM) Analysis  

SciTech Connect

A reliability, availability, and maintainability (RAM) analysis was prepared for the liquid effluents support being provided to the River Protection Project Waste Treatment Plant (WTP). The availability of liquid effluents services to the WTP was determined. Recommendations are provided on improvements and upgrades to increase the availability of the Liquid Waste Processing Facilities treatment and disposal systems.

LOWE, S.S.

2001-02-20T23:59:59.000Z

223

FINAL REPORT DETERMINATION OF THE PROCESSING RATE OF RPP WTP HLW SIMULANTS USING A DURAMELTER J 1000 VITRIFICATION SYSTEM VSL-00R2590-2 REV 0 8/21/00  

Science Conference Proceedings (OSTI)

This report provides data, analysis, and conclusions from a series of tests that were conducted at the Vitreous State Laboratory of The Catholic University of America (VSL) to determine the melter processing rates that are achievable with RPP-WTP HLW simulants. The principal findings were presented earlier in a summary report (VSL-00R2S90-l) but the present report provides additional details. One of the most critical pieces of information in determining the required size of the RPP-WTP HLW melter is the specific glass production rate in terms of the mass of glass that can be produced per unit area of melt surface per unit time. The specific glass production rate together with the waste loading (essentially, the ratio of waste-in to glass-out, which is determined from glass formulation activities) determines the melt area that is needed to achieve a given waste processing rate with due allowance for system availability. As a consequence of the limited amount of relevant information, there exists, for good reasons, a significant disparity between design-base specific glass production rates for the RPP-WTP LAW and HLW conceptual designs (1.0 MT/m{sup 2}/d and 0.4 MT/m{sup 2}/d, respectively); furthermore, small-scale melter tests with HLW simulants that were conducted during Part A indicated typical processing rates with bubbling of around 2.0 MT/m{sup 2}/d. This range translates into more than a factor of five variation in the resultant surface area of the HLW melter, which is clearly not without significant consequence. It is clear that an undersized melter is undesirable in that it will not be able to support the required waste processing rates. It is less obvious that there are potential disadvantages associated with an oversized melter, over and above the increased capital costs. A melt surface that is consistently underutilized will have poor cold cap coverage, which will result in increased volatilization from the melt (which is generally undesirable) and increased plenum temperatures due to increased thermal radiation from the melt surface (which mayor may not be desirable but the flexibility to choose may be lost). Increased volatilization is an issue both in terms of the increased challenge to the off-gas system as well as for the ability to effectively close the recycle loops for volatile species that must be immobilized in the glass product, most notably technetium and cesium. For these reasons, improved information is needed on the specific glass production rates of RPP-WTP HLW streams in DuraMelterJ systems over a range of operating conditions. Unlike the RPP-WTP LAW program, for which a pilot melter system to provide large-scale throughout information is already in operation, there is no comparable HLW activity; the results of the present study are therefore especially important. This information will reduce project risk by reducing the uncertainty associated with the amount of conservatism that mayor may not be associated with the baseline RPP-WTP HLW melter sizing decision. After the submission of the first Test Plan for this work, the RPP-WTP requested revisions to include tests to determine the processing rates that are achievable without bubbling, which was driven by the potential advantages of omitting bubblers from the HLW melter design in terms of reduced maintenance. A further objective of this effort became the determination of whether the basis of design processing rate could be achieved without bubbling. Ideally, processing rate tests would be conducted on a full-scale RPP-WTP melter system with actual HLW materials, but that is clearly unrealistic during Part B1. As a practical compromise the processing rate determinations were made with HL W simulants on a DuraMelter J system at as close to full scale as possible and the DM 1000 system at VSL was selected for that purpose. That system has a melt surface area of 1.2 m{sup 2}, which corresponds to about one-third scale based on the specific glass processing rate of 0.4 MT/m{sup 2}/d assumed in the RPP-WTP HLW conceptual design, but would correspon

KRUGER AA; MATLACK KS; KOT WK; PEREZ-CARDENAS F; PEGG IL

2011-12-29T23:59:59.000Z

224

HYDROTHERMAL TREATMENT OF WHEAT STRAW ON PILOT PLANT SCALE Anders Thygesena  

E-Print Network (OSTI)

solid material is one of the most important factors for production of bioethanol. Conversion for production of sugars for bio ethanol and an alkali free solid material for combustion in an incineration). After combined hydrothermal treatment and enzymatic hydrolysis the maximum sugar, yields were 30 g

225

A Pilot Study for the Extraction and Treatment of Groundwater From a Manufactured Gas Plant Site  

Science Conference Proceedings (OSTI)

This report describes a pilot study of groundwater remediation at a former MGP site. The project included hydrogeologic investigations, bench- and pilot-scale treatability studies, and a cost analysis. The report documents influent and effluent levels of contaminants in groundwaters classified as high-strength, medium-strength, and low-strength, depending on the degree of contamination. Detailed descriptions of the treatment systems and practical observations are also included.

1997-12-19T23:59:59.000Z

226

Combustion testing and heat recovery study: Frank E. Van Lare Wastewater Treatment Plant, Monroe County. Final report  

DOE Green Energy (OSTI)

The objectives of the study were to record and analyze sludge management operations data and sludge incinerator combustion data; ascertain instrumentation and control needs; calculate heat balances for the incineration system; and determine the feasibility of different waste-heat recovery technologies for the Frank E. Van Lare (FEV) Wastewater Treatment Plant. As an integral part of this study, current and pending federal and state regulations were evaluated to establish their impact on furnace operation and subsequent heat recovery. Of significance is the effect of the recently promulgated Federal 40 CFR Part 503 regulations on the FEV facility. Part 503 regulations were signed into law in November 1992, and, with some exceptions, affected facilities must be in compliance by February 19, 1994. Those facilities requiring modifications or upgrades to their incineration or air pollution control equipment to meet Part 503 regulations must be in compliance by February 19, 1995.

NONE

1995-01-01T23:59:59.000Z

227

Interim report VII, production test IP-549-A half-plant low alum feed water treatment at F Reactor  

SciTech Connect

A half-plant low alum water treatment test began at F Reactor on January 16, 1963. The test, which had been prompted by the analysis of ledge corrosion attack on fuel elements, will demonstrate whether or not high alum feed is responsible for increasing the frequency of ledge and groove corrosion attack on fuel element surfaces. The effect will be evaluated by comparing visual examination results obtained from the normal production fuel irradiated in process water treated with two different alum feed rates. Six 20-column fuel discharges, ten columns from each side of the reactor, have been taken during the test as follows: (1) One discharge prior to the start of the test. (2) One discharge such that the test side was exposed to coolant treated with both high and low alum feed. (3) Four discharges under test conditions. This report discusses the results obtained from the fifth discharge under test conditions.

Geier, R.G.

1964-03-18T23:59:59.000Z

228

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

A.D. Cozzi and J.D. Newell Technical Need * Thermal treatment systems planned for the Hanford Waste Treatment Plant (WTP) immobilization of High-Level Waste (HLW), Low Activity...

229

Emissions of volatile and potentially toxic organic compounds from waste-water treatment plants and collection systems (Phase 2). Volume 1. Project summaries. Final report  

SciTech Connect

The objectives of the Phase II research project on emission of potentially toxic organic compounds (PTOCs) from wastewater treatment plants were fivefold: (1) assessment of the importance of gaseous emissions from municipal wastewater collection systems; (2) resolution of the discrepancy between the measured and estimated emissions (Phase I), from the Joint Water Pollution Control Plant (JWPCP) operated by the County Sanitation Districts of Los Angeles County (CSDLAC); (3) determination of airborne concentrations of PTOCS immediately downwind of an activated sludge aeration process at the City of Los Angeles' Hyperion Treatment Plant (HTP); (4) a modeling assessment of the effects of transient loading on emissions during preliminary and primary treatment at a typical municipal wastewater treatment plant (MWTP); (5) a preliminary investigation of effects of chlorination practices on haloform production. Volume 1, for which the abstract was prepared, contains a summary of results from each project; Volume 2 contains the discussion regarding the modeling of collection system emissions; Volume 3 addresses methods development and field sampling efforts at the JWPCP and HTP, data on emissions from a mechanically ventilated sewer and results of some preliminary haloform formation studies in wastewaters; and Volume 4 discusses aspects of the emissions modeling problem.

Chang, D.P.Y.; Schroeder, E.D.; Corsi, R.L.; Guensler, R.; Meyerhofer, J.A.

1991-08-01T23:59:59.000Z

230

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

E-Print Network (OSTI)

anaerobic digestion is biogas which contains 5070 percentPlant collects this biogas and uses it in the cogeneration

Thompson, Lisa

2010-01-01T23:59:59.000Z

231

Review of the Hanford Site Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy DOE-WTP ORP WTP Project Office HLW High-Level Waste Facility HVAC Heating, Ventilation, and Air Conditioning LAB Analytical Laboratory LAW Low-Activity...

232

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

233

Review of the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity, December 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Hanford Site the Hanford Site Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity December 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background.......................................................................................................................................... 1 3.0 Scope and Methodology... ................................................................................................................... 1

234

TBH-0042 - In the Matter of Curtis Hall | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Richland, Washington. From January 10, 2005 until July 28, 2005, he was employed as a Controls & Instrumentation (C&I) Engineer to work at the Waste Treatment Plant (WTP) being...

235

High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant  

SciTech Connect

Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification. Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)

Bardal, M.A. [PaR Systems, Inc., Shoreview, MN (United States); Darwen, N.J. [Bechtel National, Inc., Richland, WA (United States)

2008-07-01T23:59:59.000Z

236

Environmental Assessment and Finding of No Significant Impact: Wastewater Treatment Capability Upgrade, Project NO. 96-D-122 Pantex Plant Amarillo, Texas  

Science Conference Proceedings (OSTI)

This Environmental Assessment (EA) addresses the U.S. Department of Energy (DOE) proposed action regarding an upgrade of the Pantex Plant Wastewater Treatment Facility (WWTF). Potential environmental consequences associated with the proposed action and alternative actions are provided. DOE proposes to design, build, and operate a new WWTF, consistent with the requirements of Title 30 of the Texas Administrative Code (TAC), Chapter 317, ''Design Criteria for Sewage Systems,'' capable of supporting current and future wastewater treatment requirements of the Plant. Wastewater treatment at Pantex must provide sufficient operational flexibility to meet Pantex Plant's anticipated future needs, including potential Plant mission changes, alternative effluent uses, and wastewater discharge permit requirements. Treated wastewater effluent and non-regulated water maybe used for irrigation on DOE-owned agricultural land. Five factors support the need for DOE action: (1) The current WWTF operation has the potential for inconsistent permit compliance. (2) The existing WWTF lies completely within the 100-year floodplain. (3) The Pantex Plant mission has the potential to change, requiring infrastructure changes to the facility. (4) The life expectancy of the existing facility would be nearing its end by the time a new facility is constructed. (5) The treated wastewater effluent and non-regulated water would have a beneficial agricultural use through irrigation. Evaluation during the internal scoping led to the conclusion that the following factors are present and of concern at the proposed action site on Pantex Plant: (1) Periodic wastewater effluent permit exceedances; (2) Wetlands protection and floodplain management; (3) Capability of the existing facility to meet anticipated future needs of Pantex (4) Existing facility design life; and (5) Use of treated wastewater effluent and non-regulated water for irrigation. Evaluation during the internal scoping led to the conclusion that the following conditions are not present, nor of concern at the proposed site on Pantex Plant, and no further analysis was conducted: (1) State or national parks, forests, or other conservation areas; (2) Wild and scenic rivers; (3) Natural resources, such as timber, range, soils, minerals; (4) Properties of historic, archeological, or architectural significance; (5) Native American concerns; (6) Minority and low-income populations; and (7) Prime or unique farmland. In this document, DOE describes the proposed action and a reasonable range of alternatives to the proposed action, including the ''No-Action'' alternative. The proposed action cited in the ''U.S. Department of Energy Application for a Texas Pollutant Discharge Elimination System Permit Modifying Permit to Dispose of Waste, No. 02296,'' December 1998, included the construction of a new wastewater treatment facility, a new irrigation storage pond, and the conversion of the current wastewater treatment facility into an irrigation storage pond. Although a permit modification application has been filed, if a decision on this EA necessitates it, an amendment to the permit application would be made. The permit application would be required for any of the alternatives and the filing does not preclude or predetermine selection of an alternative considered by this EA. This permit change would allow Pantex to land-dispose treated wastewater by irrigating agricultural land. This construction for the proposed action would include designing two new lagoons for wastewater treatment. One of the lagoons could function as a facultative lagoon for treatment of wastewater. The second lagoon would serve as an irrigation storage impoundment (storage pond), with the alternative use as a facultative lagoon if the first lagoon is out of service for any reason. The new facultative lagoon and irrigation water storage pond would be sited outside of the 100-year flood plain. The existing WWTF lagoon would be used as a storage pond for treated wastewater effluent for irrigation water, as needed. The two new lagoons would be li

N /A

1999-05-27T23:59:59.000Z

237

Use of Treated Municipal Wastewater as Power Plant Cooling System Makeup Water: Tertiary Treatment versus Expanded Chemical Regimen for Recirculating Water Quality Management  

SciTech Connect

Treated municipal wastewater is a common, widely available alternative source of cooling water for thermoelectric power plants across the U.S. However, the biodegradable organic matter, ammonia-nitrogen, carbonate and phosphates in the treated wastewater pose challenges with respect to enhanced biofouling, corrosion, and scaling, respectively. The overall objective of this study was to evaluate the benefits and life cycle costs of implementing tertiary treatment of secondary treated municipal wastewater prior to use in recirculating cooling systems. The study comprised bench- and pilot-scale experimental studies with three different tertiary treated municipal wastewaters, and life cycle costing and environmental analyses of various tertiary treatment schemes. Sustainability factors and metrics for reuse of treated wastewater in power plant cooling systems were also evaluated. The three tertiary treated wastewaters studied were: secondary treated municipal wastewater subjected to acid addition for pH control (MWW_pH); secondary treated municipal wastewater subjected to nitrification and sand filtration (MWW_NF); and secondary treated municipal wastewater subjected nitrification, sand filtration, and GAC adsorption (MWW_NFG). Tertiary treatment was determined to be essential to achieve appropriate corrosion, scaling, and biofouling control for use of secondary treated municipal wastewater in power plant cooling systems. The ability to control scaling, in particular, was found to be significantly enhanced with tertiary treated wastewater compared to secondary treated wastewater. MWW_pH treated water (adjustment to pH 7.8) was effective in reducing scale formation, but increased corrosion and the amount of biocide required to achieve appropriate biofouling control. Corrosion could be adequately controlled with tolytriazole addition (4-5 ppm TTA), however, which was the case for all of the tertiary treated waters. For MWW_NF treated water, the removal of ammonia by nitrification helped to reduce the corrosivity and biocide demand. Also, the lower pH and alkalinity resulting from nitrification reduced the scaling to an acceptable level, without the addition of anti-scalant chemicals. Additional GAC adsorption treatment, MWW_NFG, yielded no net benefit. Removal of organic matter resulted in pitting corrosion in copper and cupronickel alloys. Negligible improvement was observed in scaling control and biofouling control. For all of the tertiary treatments, biofouling control was achievable, and most effectively with pre-formed monochloramine (2-3 ppm) in comparison with NaOCl and ClO2. Life cycle cost (LCC) analyses were performed for the tertiary treatment systems studied experimentally and for several other treatment options. A public domain conceptual costing tool (LC3 model) was developed for this purpose. MWW_SF (lime softening and sand filtration) and MWW_NF were the most cost-effective treatment options among the tertiary treatment alternatives considered because of the higher effluent quality with moderate infrastructure costs and the relatively low doses of conditioning chemicals required. Life cycle inventory (LCI) analysis along with integration of external costs of emissions with direct costs was performed to evaluate relative emissions to the environment and external costs associated with construction and operation of tertiary treatment alternatives. Integrated LCI and LCC analysis indicated that three-tiered treatment alternatives such as MWW_NSF and MWW_NFG, with regular chemical addition for treatment and conditioning and/or regeneration, tend to increase the impact costs and in turn the overall costs of tertiary treatment. River water supply and MWW_F alternatives with a single step of tertiary treatment were associated with lower impact costs, but the contribution of impact costs to overall annual costs was higher than all other treatment alternatives. MWW_NF and MWW_SF alternatives exhibited moderate external impact costs with moderate infrastructure and chemical conditioner dosing, which makes them (especially

David Dzombak; Radisav Vidic; Amy Landis

2012-06-30T23:59:59.000Z

238

Selection of Pretreatment Processes for Removal of Radionuclides from Hanford Tank Waste  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's (DOE's), Office of River Protection (ORP) located at Hanford Washington has established a contract (1) to design, construct, and commission a new Waste Treatment and Immobilization Plant (WTP) that will treat and immobilize the Hanford tank wastes for ultimate disposal. The WTP is comprised of four major elements, pretreatment, LAW immobilization, HLW immobilization, and balance of plant facilities. This paper describes the technologies selected for pretreatment of the LAW and HLW tank wastes, how these technologies were selected, and identifies the major technology testing activities being conducted to finalize the design of the WTP.

Carreon, R.; Mauss, B. M.; Johnson, M. E.; Holton, L. K.; Wright, G. T.; Peterson, R. A.; Rueter, K. J.

2002-02-26T23:59:59.000Z

239

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Waste Treatment and Immobilization Plant - May 2013 May 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S....

240

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Waste Treatment and Immobilization Plant - March 2013 March 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U.S....

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant - October 2012 October 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality The U. S....

242

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review, Waste Treatment and Immobilization Plant - March 2012 March 2012 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The...

243

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant - November 2011 November 2011 Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality The...

244

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight Review, Waste Treatment and Immobilization Plant - August 2011 August 2011 Hanford Waste Treatment and Immobilization Plant Construction Quality The Office of Safety...

245

Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immobilization Plant (LBL Facilities), April 23, 2013 (HSS CRAD 45-58, Rev. 0)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of U.S. Department of Energy Subject: Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immob ilization Plant (LBL Facilities) - C riteria and Review Approach D oc um~ HS: HSS CRAD 45-58 Rev: 0 Eff. Date: April 23, 2013 Office of Safety and Emergency Management Evaluations Acting Di rec or, Office of Safety and Emergency Nltanagement Evaluations Date: Apri l 23 , 20 13 Criteria and Review Approach Document ~~ trd,James Low Date: April 23 , 20 13 1.0 PURPOSE Within the Office of H.ealth, Safety and Security (HSS), the Office of Enforcement and Overs ight, Office of Safety and Emergency Management Evaluations (HS-45) miss io n is to assess the effectiveness of the environment, safety, health, and emergency management systems and practices used by line and

246

Technical progress and community relations activities for the fluidized bed thermal treatment process at the Rocky Flats Plant  

SciTech Connect

A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970's and 1980's in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed incinerators. Rocky Flat's fluidized bed system operates at low temperatures ([approximately]525--600[degrees]C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The bed makes use of in situ neutralization of acidic off-gases by incorporating either sodium carbonate or a mixture of sodium carbonate and bicarbonate (Trona) in the bed media. This obviates using wet scrubbers to treat the off-gas. It is expected that once in production, the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste feed. The current development program for the full-scale system is a nationwide effort incorporating input from national laboratories, universities, regulatory agencies, and private companies to assure the most current technology is utilized and that regulatory concerns are addressed. In addition to resolving technological issues, the fluidized bed program is addressing public concerns with a proactive community relations program.

Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

1993-01-01T23:59:59.000Z

247

Technical progress and community relations activities for the fluidized bed thermal treatment process at the Rocky Flats Plant  

SciTech Connect

A fluidized bed system is being developed at Rocky Flats for the treatment of mixed waste (a mixture of radioactive and chemically hazardous waste). The current program builds on experience gained in the 1970`s and 1980`s in tests with bench-scale, pilot-scale, and demonstration-scale fluidized bed incinerators. Rocky Flat`s fluidized bed system operates at low temperatures ({approximately}525--600{degrees}C) which eliminates many of the disadvantages associated with high temperature thermal treatment processes. The bed makes use of in situ neutralization of acidic off-gases by incorporating either sodium carbonate or a mixture of sodium carbonate and bicarbonate (Trona) in the bed media. This obviates using wet scrubbers to treat the off-gas. It is expected that once in production, the fluidized bed process will yield up to a 40:1 reduction in the volume of the waste feed. The current development program for the full-scale system is a nationwide effort incorporating input from national laboratories, universities, regulatory agencies, and private companies to assure the most current technology is utilized and that regulatory concerns are addressed. In addition to resolving technological issues, the fluidized bed program is addressing public concerns with a proactive community relations program.

Semones, G.B.; Williams, P.M.; Stiefvater, S.P.; Mitchell, D.L.; Roecker, B.D.

1993-01-01T23:59:59.000Z

248

Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida  

DOE Green Energy (OSTI)

A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

Starr, R.C.; Green, T.S.; Hull, L.C.

2001-02-28T23:59:59.000Z

249

Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida  

Science Conference Proceedings (OSTI)

A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles

2001-02-01T23:59:59.000Z

250

COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS  

SciTech Connect

The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

JACKSON VL

2011-08-31T23:59:59.000Z

251

PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS  

SciTech Connect

The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revision includes information on additional feed tanks.

MAY TH

2008-08-12T23:59:59.000Z

252

Decision Document for the Storm Water Outfalls/Industrial Wastewater Treatment Plant, Pesticide Rinse Area, Old Fire Fighting Training Pit, Illicit PCB Dump Site, and the Battery Acid Pit Fort Lewis, Washington  

SciTech Connect

PNNL conducted independent site evaluations for four sites at Fort Lewis, Washington, to determine their suitability for closure on behalf of the installation. These sites were recommended for "No Further Action" by previous invesitgators and included the Storm Water Outfalls/Industrial Waste Water Treatment Plant (IWTP), the Pesticide Rinse Area, the Old Fire Fighting Training Pit, and the Illicit PCB Dump Site.

Cantrell, Kirk J.; Liikala, Terry L.; Strenge, Dennis L.; Taira, Randal Y.

2000-12-11T23:59:59.000Z

253

MINERALIZING, STEAM REFORMING TREATMENT OF HANFORD LOW-ACTIVITY WASTE (a.k.a. INEEL/EXT-05-02526)  

SciTech Connect

The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 25, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.4 hours of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

A. L. Olson; N. R. Soelberg; D. W. Marshall; G. L. Anderson

2005-02-01T23:59:59.000Z

254

DEMONSTRATION OF SIMULATED WASTE TRANSFERS FROM TANK AY-102 TO THE HANFORD WASTE TREATMENT FACILITY  

SciTech Connect

In support of Hanford's AY-102 Tank waste certification and delivery of the waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring the waste in the Double Shell Tank (DST) to the WTP Receipt Tank. This work is a follow-on to the previous 'Demonstration of Internal Structures Impacts on Double Shell Tank Mixing Effectiveness' task conducted at SRNL 1. The objective of these transfers was to qualitatively demonstrate how well waste can be transferred out of a mixed DST tank and to provide insights into the consistency between the batches being transferred. Twelve (12) different transfer demonstrations were performed, varying one parameter at a time, in the Batch Transfer Demonstration System. The work focused on visual comparisons of the results from transferring six batches of slurry from a 1/22nd scale (geometric by diameter) Mixing Demonstration Tank (MDT) to six Receipt Tanks, where the consistency of solids in each batch could be compared. The simulant used in this demonstration was composed of simulated Hanford Tank AZ-101 supernate, gibbsite particles, and silicon carbide particles, the same simulant/solid particles used in the previous mixing demonstration. Changing a test parameter may have had a small impact on total solids transferred from the MDT on a given test, but the data indicates that there is essentially no impact on the consistency of solids transferred batch to batch. Of the multiple parameters varied during testing, it was found that changing the nozzle velocity of the Mixer Jet Pumps (MJPs) had the biggest impact on the amount of solids transferred. When the MJPs were operating at 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s), the solid particles were more effectively suspended, thus producing a higher volume of solids transferred. When the MJP flow rate was reduced to 5 gpm (14 ft/s nozzle velocity, U{sub o}D = 0.315 ft{sup 2}/s) to each pump, dead zones formed in the tank, resulting in fewer solids being transferred in each batch to the Receipt Tanks. The larger, denser particles were displaced (preferentially to the smaller particles) to one of the two dead zones and not re-suspended for the duration of the test. As the liquid level dropped in the MDT, re-suspending the particles became less effective (6th batch). The poor consistency of the solids transferred in the 6th batch was due to low liquid level in the MDT, thus poor mixing by the MJPs. Of the twelve tests conducted the best transfer of solids occurred during Test 6 and 8 where the MJP rotation was reduced to 1.0 rpm.

Adamson, D.; Poirier, M.; Steeper, T.

2009-12-03T23:59:59.000Z

255

Compilation of TRA Summaries  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 2011 September 2011 Technology Readiness Assessment Summary Number Title Report Date TRA-1 Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory, Balance of Facilities and LAW Waste Vitrification Facilities at Hanford March 2007 TRA-2 Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility at Hanford March 2007 TRA-3 Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility at Hanford March 2007 TRA-4 K Basins Sludge Treatment Process at Hanford August 2007 TRA-5 Savannah River Site Tank 48H Waste Treatment Project at SRS July 2007 TRA-6 233Uranium Downblending and Disposition Project at Oak Ridge/ORNL September 2008 TRA-7 SRS Salt Waste Processing Facility at SRS July 2009

256

Energy Department Announces New Technical Review to Assess Black Cells at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Review to Assess Black Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant (WTP), specifically as it relates to the facility's "black cells." The review involves the plant's capability, as designed, to detect equipment failure and to repair failed equipment inside the WTP's black cells. Black cells are enclosed concrete rooms within the WTP Pretreatment facility that contain tanks and piping. Due to high levels of

257

Energy Department Announces New Technical Review to Assess Black Cells at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Technical Review to Assess Black Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:00pm Addthis Media Contact 202-586-4940 WASHINGTON, D.C. - The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant (WTP), specifically as it relates to the facility's "black cells." The review involves the plant's capability, as designed, to detect equipment failure and to repair failed equipment inside the WTP's black cells. Black cells are enclosed concrete rooms within the WTP Pretreatment

258

Energy Department Announces New Technical Review to Assess Black Cells at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Technical Review to Assess Black Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:15pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant (WTP), specifically as it relates to the facility's "black cells." The review involves the plant's capability, as designed, to detect equipment failure and to repair failed equipment inside the WTP's black cells. Black cells are enclosed concrete rooms within the WTP Pretreatment facility that contain tanks and piping. Due to high levels of

259

Energy Department Announces New Technical Review to Assess Black Cells at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Announces New Technical Review to Assess Black Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant Energy Department Announces New Technical Review to Assess Black Cells at Hanford's Waste Treatment Plant August 2, 2012 - 12:00pm Addthis Media Contact 202-586-4940 WASHINGTON, D.C. - The U.S. Department of Energy announced today that Secretary of Energy Steven Chu has assembled a group of independent technical experts to assess the Hanford Site's Waste Treatment Plant (WTP), specifically as it relates to the facility's "black cells." The review involves the plant's capability, as designed, to detect equipment failure and to repair failed equipment inside the WTP's black cells. Black cells are enclosed concrete rooms within the WTP Pretreatment

260

Independent Oversight Review, Hanford Waste Treatment and Immobilizati...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant - December 2013 December 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality This report...

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Independent Oversight Review, Hanford Site Waste Treatment and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment and Immobilization Plant, August 2013 Independent Oversight Review, Hanford Site Waste Treatment and Immobilization Plant, August 2013 August 2013 Review of the...

262

Review of the Hanford Site Waste Treatment and Immobilization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste Treatment and Immobilization Plant Project 1 Independent Oversight Review of the Hanford Site Waste Treatment and Immobilization Plant Project Construction Quality 1.0...

263

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

264

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford WTP HLW Canister Decontamination Process Stream Simulant Development Hanford WTP HLW Canister Decontamination Process Stream Simulant Development Savannah River Site Aiken/Aiken/South Carolina A simulant will be developed of the canister decontamination process stream for the Hanford Waste Treatment Plant (WTP) High Level Waste Facility. This simulant will be developed to support the Full Scale Vessel Testing (FSVT) program which involves evaluations of Pulsed Jet Mixing equipment performance in actual WTP vessels. B3.6 - Small-scale research and development, laboratory operations, and pilot projects Andrew R. Grainger Digitally signed by Andrew R. Grainger DN: cn=Andrew R. Grainger, o=DOE-SR, ou=EQMD, email=drew.grainger@srs.gov, c=US Date: 2013.07.02 14:40:30 -04'00' 06/27/2013 Submit by E-mail TC-W-2013-0094

265

Technical Basis of Scaling Relationships for the Pretreatment Engineering Platform  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities. The Pretreatment Engineering Platform (PEP) is being designed and constructed as part of a plan to respond to an issue raised by the WTP External Flowsheet Review Team (EFRT) entitled Undemonstrated Leaching Processes and numbered M12. The PEP replicates the WTP leaching process using prototypic equipment and control strategies. The approach for scaling PEP performance data to predict WTP performance is critical to the successful resolution of the EFRT issue. This report describes the recommended PEP scaling approach, PEP data interpretation and provides recommendations on test conduct and data requirements.

Kuhn, William L.; Arm, Stuart T.; Huckaby, James L.; Kurath, Dean E.; Rassat, Scot D.

2008-07-15T23:59:59.000Z

266

Water treatment on wheels  

Science Conference Proceedings (OSTI)

Design options and combinations of fixed and mobile demineralization equipment give power plant operators the flexibility to continually optimize their water treatment system to meet rapidly changing needs. The article classifies water treatment service contracts for demineralized water into four categories and presents associated design, economic and operational advantages to power plant designers, constructors, owners and operators. 1 tab.

Taylor, R.T.

2005-09-01T23:59:59.000Z

267

Secondary Waste Form Development and OptimizationCast Stone  

SciTech Connect

Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.; Pitman, Stan G.; Chun, Jaehun; Chung, Chul-Woo; Kimura, Marcia L.; Burns, Carolyn A.; Um, Wooyong; Westsik, Joseph H.

2011-07-14T23:59:59.000Z

268

A One System Integrated Approach to Simulant Selection for Hanford High Level Waste Mixing and Sampling Tests  

SciTech Connect

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capabilities using simulated Hanford High-Level Waste (HLW) formulations. This represents one of the largest remaining technical issues with the high-level waste treatment mission at Hanford. Previous testing has focused on very specific TOC or WTP test objectives and consequently the simulants were narrowly focused on those test needs. A key attribute in the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2010-2 is to ensure testing is performed with a simulant that represents the broad spectrum of Hanford waste. The One System Integrated Project Team is a new joint TOC and WTP organization intended to ensure technical integration of specific TOC and WTP systems and testing. A new approach to simulant definition has been mutually developed that will meet both TOC and WTP test objectives for the delivery and receipt of HLW. The process used to identify critical simulant characteristics, incorporate lessons learned from previous testing, and identify specific simulant targets that ensure TOC and WTP testing addresses the broad spectrum of Hanford waste characteristics that are important to mixing, sampling, and transfer performance are described.

Thien, Mike G. [Washington River Protection Solutions, LLC, Richland, WA (United States); Barnes, Steve M. [URS, Richland, WA (United States)

2013-01-17T23:59:59.000Z

269

Resource Conservation and Recovery Act (RCRA) General Contingency Plan for Hazardous Waste Treatment, Storage, and Disposal Units at the Oak Ridge Y-12 Plant  

SciTech Connect

This contingency plan provides a description of the Y-12 plant and its waste units and prescribes control procedures and emergency response procedures. It lists emergency and spill response equipment, provides information on coordination agreements with local agencies, and describes the evacuation plan and reporting requirements.

1999-04-01T23:59:59.000Z

270

Removing Phosphate from Hanford High-Phosphate Tank Wastes: FY 2010 Results  

SciTech Connect

The U.S. Department of Energy (DOE) is responsible for environmental remediation at the Hanford Site in Washington State, a former nuclear weapons production site. Retrieving, processing, immobilizing, and disposing of the 2.2 105 m3 of radioactive wastes stored in the Hanford underground storage tanks dominates the overall environmental remediation effort at Hanford. The cornerstone of the tank waste remediation effort is the Hanford Tank Waste Treatment and Immobilization Plant (WTP). As currently designed, the capability of the WTP to treat and immobilize the Hanford tank wastes in the expected lifetime of the plant is questionable. For this reason, DOE has been pursuing supplemental treatment options for selected wastes. If implemented, these supplemental treatments will route certain waste components to processing and disposition pathways outside of WTP and thus will accelerate the overall Hanford tank waste remediation mission.

Lumetta, Gregg J.; Braley, Jenifer C.; Edwards, Matthew K.; Qafoku, Odeta; Felmy, Andrew R.; Carter, Jennifer C.; MacFarlan, Paul J.

2010-09-22T23:59:59.000Z

271

Membrane Filtration and Ozonation of Poultry Chiller Overflow Water: Study of Membrane Treatment To Reduce Water Use and Ozonation for Sanitation at a Poultry Processing Plant in California  

Science Conference Proceedings (OSTI)

Poultry processing plants use large volume of water and the cost of obtaining and disposal of water is increasing rapidly. HACCP quality control procedures introduced recently have increased the water and compounded the situation. Chlorine is widely used in sanitation of poultry operations. Chlorine generates several byproducts that are proven to be harmful from food safety and environmental points of view. The search for alternatives to chlorine in poultry operations, particularly in the chiller, is of ...

1999-12-01T23:59:59.000Z

272

Plant Operational Status - Pantex Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Status Plant Operational Status Page Content Operational Status Shift 1 - Day The Pantex Plant is open for normal operations. All personnel are to report for duty according to...

273

 

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Currently, cross flow filtration is deployed at both Waste Treatment Plant (WTP) and Salt Waste Processing Facility (SWPF). However, there is no Currently, cross flow filtration is deployed at both Waste Treatment Plant (WTP) and Salt Waste Processing Facility (SWPF). However, there is no strategy for determining the cleaning or backpulsing requirements for these facilities. The frequency of cleaning will significantly impact both process throughput as well as the Na demand (through acid neutralization). This activity would develop the understanding of filter fouling to allow development of a cleaning/backpulsing strategy. Development of the cleaning/backpulsing requirements will produce much more efficient operations for both WTP and SWPF. The increased efficiency is anticipated to produce a significant increase in pretreatment throughput by limiting cleaning cycles. Cross-Flow

274

CX-010867: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Categorical Exclusion Determination 7: Categorical Exclusion Determination CX-010867: Categorical Exclusion Determination Hanford Waste Treatment Plant (WTP) High Level Waste Canister Decontamination Process Stream Simulant Development CX(s) Applied: B3.6 Date: 06/27/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office A simulant will be developed of the canister decontamination process stream for the Hanford Waste Treatment Plant (WTP) High Level Waste Facility. This simulant will be developed to support the Full Scale Vessel Testing (FSVT) program which involves evaluations of Pulsed Jet Mixing equipment performance in actual WTP vessels. CX-010867.pdf More Documents & Publications CX-010673: Categorical Exclusion Determination CX-009110: Categorical Exclusion Determination

275

Environmental Assessment for the Operation of the Glass Melter Thermal Treatment Unit at the US Department of Energy`s Mound Plant, Miamisburg, Ohio  

SciTech Connect

The glass melter would thermally treat mixed waste (hazardous waste contaminated with radioactive constituents largely tritium, Pu-238, and/or Th-230) that was generated at the Mound Plant and is now in storage, by stabilizing the waste in glass blocks. Depending on the radiation level of the waste, the glass melter may operate for 1 to 6 years. Two onsite alternatives and seven offsite alternatives were considered. This environmental assessment indicates that the proposed action does not constitute a major Federal action significantly affecting the human environment according to NEPA, and therefore the finding of no significant impact is made, obviating the need for an environmental impact statement.

NONE

1995-06-01T23:59:59.000Z

276

Formal verification of wastewater treatment processes using events detected from continuous signals by means of artificial neural networks. Case study: SBR plant  

Science Conference Proceedings (OSTI)

This paper proposes a modular architecture for the analysis and the validation of wastewater treatment processes. An algorithm using neural networks is used to extract the relevant qualitative patterns, such as ''apexes'', ''knees'' and ''steps'', from ... Keywords: Artificial neural networks, Business process management, Event detection, Intelligent systems, Rule-based management system, SBR

Luca Luccarini; Gianni Luigi Bragadin; Gabriele Colombini; Maurizio Mancini; Paola Mello; Marco Montali; Davide Sottara

2010-05-01T23:59:59.000Z

277

Report: Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EMAB Tank Waste Subcommittee Summary Report 1 EMAB Tank Waste Subcommittee Summary Report 1 Report of Findings, Conclusions, and Recommendations Concerning the Waste Treatment and Immobilization Project (WTP) at Hanford Submitted by the Environmental Management Advisory Board Tank Waste Subcommittee September 15, 2010 Introduction In May 2010, the Department of Energy established the Environmental Management Tank Waste Subcommittee (EM-TWS). The EM-TWS was charged with conducting an independent technical review of liquid waste capital and operations projects related to the Office of Environmental Management (EM) tank waste cleanup programs at Hanford, Washington; the Savannah River Site in South Carolina; the Idaho National Laboratory; and the West Valley Demonstration Project in New York. The EM-TWS's review focused on the facilities being

278

SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY  

Science Conference Proceedings (OSTI)

This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

2009-12-28T23:59:59.000Z

279

Summary - Demonstration Bulk Vitrification System (DBVS) for Low-Actvity Waste at Hanford  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DBVS DBVS ETR Report Date: September 2006 ETR-3 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of the Demonstration Bulk Vitrification System (DBVS) for Low Activity Waste (LAW) at Hanford Why DOE-EM Did This Review The Department of Energy (DOE) is charged with the safe retrieval, treatment and disposal of 53 million gallons of Hanford radioactive waste. The Waste Treatment Plant (WTP) is being designed to treat and vitrify the High Level Waste (HLW) fraction in 20-25 years. The WTP is undersized for vitrifying the LAW fraction over the same time frame. The DOE is evaluating Bulk Vitrification as an alternative to increasing the size of the WTP LAW treatment process. Bulk vitrification is an in-container melting

280

Vitrification and Product Testing of C-104 and AZ-102 Pretreated Sludge Mixed with Flowsheet Quantities of Secondary Wastes  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of River Protection (ORP) has acquired Hanford tank waste treatment services at a demonstration scale. The River Protection Project Waste Treatment Plant (RPP-WTP) team is responsible for producing an immobilized (vitrified) high-level waste (IHLW) waste form. Pacific Northwest National Laboratory, hereafter referred to as PNNL, has been contracted to produce and test a vitrified IHLW waste form from two Envelope D high-level waste (HLW) samples previously supplied to the RPP-WTP project by DOE.

Smith, Gary L.; Bates, Derrick J.; Goles, Ronald W.; Greenwood, Lawrence R.; Lettau, Ralph C.; Piepel, Gregory F.; Schweiger, Michael J.; Smith, Harry D.; Urie, Michael W.; Wagner, Jerome J.

2001-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

in Cooling Towers GE Global Research will develop treatment technologies to enable power plant use of non-traditional waters. Using effective treatment methods to make...

282

EA-1190: Wastewater Treatment Capability Upgrade, Amarillo, Texas  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed upgrade of the U.S. Department of Energy Pantex Plant Wastewater Treatment Plant in Amarillo, Texas.

283

Existing systems review of treatment media for the Bear Creek Valley treatability study, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

In situ treatment has been proposed as a remediation alternative for surface water and groundwater contaminated with uranium and nitrate as a result of former waste disposal practices in the S-3 Ponds. Interceptor trenches containing reactive media have been proposed to treat groundwater, and constructed wetlands and/or algal mats are potential alternatives for treating surface water. This report presents the results from testing of ten different reactive media, and combinations of media, that are candidates for use in the proposed interceptor trenches to remove uranium and nitrate from groundwater. It also presents the results of testing and evaluation of algal mats and wetlands for removing uranium and nitrate from surface water.

NONE

1998-01-01T23:59:59.000Z

284

Feed Variability and Bulk Vitrification Glass Performance Assessment  

Science Conference Proceedings (OSTI)

The supplemental treatment (ST) bulk vitrification process will obtain its feed, consisting of low-activity waste (LAW), from more than one source. One purpose of this letter report is to describe the compositional variability of the feed to ST. The other is to support the M-62-08 decision by providing a preliminary assessment of the effectiveness of bulk vitrification (BV), the process that has been selected to perform supplemental treatment, in handling the ST feed envelope. Roughly nine-tenths of the ST LAW feed will come from the Waste Treatment Plant (WTP) pretreatment. This processed waste is expected to combine (1) a portion of the same LAW feed sent to the WTP melters and (2) a dilute stream that is the product of the condensate from the submerged-bed scrubber (SBS) and the drainage from the electrostatic precipitator (WESP), both of which are part of the LAW off-gas system. The manner in which the off-gas-product stream is concentrated to reduce its volume, and the way in which the excess LAW and off-gas product streams are combined, are part of the interface between WTP and ST and have not been determined. This letter report considers only one possible arrangement, in which half of the total LAW is added to the off-gas product stream, giving an estimated ST feed stream from WTP. (Total LAW equals that portion of LAW sent to the WTP LAW vitrification plant (WTP LAW) plus the LAW not currently treatable in the LAW vitrification plant due to capacity limitations (excess)).

Mahoney, Lenna A.; Vienna, John D.

2005-01-10T23:59:59.000Z

285

Frozen plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Frozen plants Frozen plants Name: janicehu Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Why do some plants freeze and others do not? Replies: The main reason some plants freeze and others do not is that some plants do not have much water in them. Pine tree leaves have little water and are therefore difficult to freeze. Another reason is that some plants make chemicals to put into their fluids that reduce the freezing temperature. Salts and oils are some. The polyunsaturated fats found in many plants freeze at a lower temperature than the saturated fats found in many animals. Therefore plant fats are liquid (oils) at room temperature, and animal fats are solid. Plants could not use so many saturated fats as warm blooded animals do or they would freeze up solid at higher temperatures. I know little of plants but many animals can make ethylene glycol to keep themselves from freezing. Ethylene glycol is the active ingredient in car anti-freeze

286

Carnivorous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Carnivorous Plants Carnivorous Plants Nature Bulletin No. 597-A March 27, 1976 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation CARNIVOROUS PLANTS Plants, generally, are eaten by insects or furnish other food for them. But there are a few families of strange plants that, instead, "eat" insects and other small animals. About 500 species are distributed over the world, from the arctic to the tropics. Most of them have peculiar leaves that not only attract insects but are equipped to trap and kill their victims. Even more remarkable is the fact that some have glands which secrete a digestive juice that softens and decomposes the animal until it is absorbed by the plant in much the same way as your stomach digests food.

287

Manual  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Review of Review of Nuclear Safety Culture at the Hanford Site Waste Treatment and Immobilization Plant Project October 2010 Office of Health, Safety and Security Office of Health, Safety and Security HSS Independent Oversight Abbreviations i Executive Summary iii 1 Introduction 1 2 Background on Technical Issues 3 3 WTP Contractor Nuclear Safety Culture 7 4 ORP Nuclear Safety Culture 17 5 Conclusions and Recommendations 21 Appendix A - Supplemental Information 25 Appendix B - WTP Nuclear Safety Issue Reporting and Resolution Processes 27 Appendix C - Technical Issues Management 33 | table Of cOntents table of contents Independent Oversight ATS Action Tracking System BNI Bechtel National Incorporated CARB Corrective Action Review Board

288

P9 Summary Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Learned Learned WTP Prototypic Mixing and Sampling System Vijay Jain Manager, Research & Technology (Vitrification) May 18-21, 2009 Waste Treatment & Immobilization Plant Project Presented at EM-21 Technical Exchange Denver, CO Jain 04102009 2 Outline Background Test requirements and system design Test status Technical issues during testing Test results Summary Jain 04102009 3 Highlights Testing system is prototypic Major technical and design issues resolved LAW report (3 simulants) - issued HLW & LAW tests - complete Data analyses - 08/09 Reports - 12/09 Jain 04102009 4 Background Compliance to waste specifications is critical to the success of WTP vitrification operations: - Mixing and sampling of waste and melter feed is an integral part

289

EA-2006-03.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2006 6, 2006 Mr. Jim Henschel Project Director Bechtel National Incorporated 2435 Stevens Center Place Richland, WA 99354 EA-2006-03 Subject: Preliminary Notice of Violation and Proposed Civil Penalty - $198,000 Dear Mr. Henschel: This letter refers to the Department of Energy's (DOE) Office of Price-Anderson Enforcement's (OE) recent investigation at the Waste Treatment and Immobilization Plant (WTP). The issues at WTP involved (1) inconsistencies between design documents and the authorization basis, (2) deficiencies in black cell vessel non- destructive evaluation requirements, (3) quality level inconsistencies, and (4) structural steel design deficiencies. An Investigation Summary Report describing the results of that investigation was

290

Willingness to Pay Data Potential problems with WTP method  

E-Print Network (OSTI)

enterprise vs. government project? #12;Cost Benefit Analysis · Easy right? · Project definition · Time Scale of project ­ How long will benefits last? ­ How long with costs last? ­ Discounting · Working out all of the costs and benefits in today's terms #12;Cost Benefit Analysis · Easy right? · Project definition · Time

Gottgens, Hans

291

Production rates associated with WTP Britney Hebert, Bijeta ...  

Fluid Mechanics mu 0.005 [kg/m-s] dP 158,027 [Pa] rho(l) 1,000 [Kg/m^3] rho(s) 1,190 [Kg/m^3] nu 5.E-06 [m^2/s] u 4.93 [m/s] Re 12522.2 f 0.045 PSD ...

292

Tank Deployment Plan Overview for Next Generation Melter at WTP  

Primary NGM Decisions (DOE-EM R&D Plan) Time Frame Select NGM Test Platforms for R&D 2011 Down-Select NGM Melter Technologies 2013/14 Select HLW and LAW NGM

293

Activity Report for Hanford WTP LAW Melter HA Development, July...  

NLE Websites -- All DOE Office Websites (Extended Search)

(LMP) system. The primary purpose of this HSS field activity, conducted from July 31 to August 5, 2013, was to observe and understand the evolving approach used by Bechtel...

294

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

an acilities No BOF syst Five LAW sy 1. LAW Me 2. LAW Me 3. LAW Of (TRL6) 4. LAW Co and 5. LAW De e team conclud ature to continu What the e assessment Testing the L Emission Sp...

295

Properties and potential uses of water treatment sludge from the Neches River of southeast Texas  

E-Print Network (OSTI)

Land application of water treatment plant (WTP) sludge has been an unsolved problem. The objectives of this study were (1) to investigate characteristics of organic polymer sludge, and (2) to determine the effects of the sludge on soil properties that influence utilization of the sludge as a soil amendment. Water treatment sludges were obtained from water utilities along the Neches Rivet-near Beaumont, Texas. They were mostly coagulated with organic polymers. Mineralogical composition, cation exchange capacity (CEC), scanning and transmission electron microscopy (SEM and TEM), aggregate stability, Atterberg limits, hydraulic conductivity, dispersion, crust strength, adsorption characteristics, nitrogen content and mineralization potential of the sludge or sludge-amended soil were determined in this study. Mineralogical composition of organic polymer sludge was similar to local Beaumont clay soil. The major fraction of the sludge, the coarse clay, was estimated to be 40% kaolinite, 32% smectite, 20% quartz and 8% mica. However, XRD patterns of the sludge indicated that expansion of the smectite was inhibited by organic polymer coagulant added during water clarification, which also was confirmed by aggregate stability of the sludge. Cation exchange capacity of the bulk sludge samples ranged from 8 to 28 cmol kg-1. Quantitative mineralogical analyses showed that CEC of the sludge was reduced by blockage of cation exchange sites with organic polymers. SEM and TEM results indicated that the sludge was mostly fine aggregates of clay particles. Dried sludge aggregates were not prone to swell, due to their resistance to rewetting. The aggregate stability of dried sludge was above 90% after a 24 hours soaking period in water, compared to 7% aggregate stability of local Beaumont clay soil. Addition of 0 to 10% sludge to Boonville sandy loam soil increased the aggregate stability of the soil from 4 to 13%. Atterberg limit showed that wet sludge had wide ranges of moisture contents in semi-solid and plastic states, and shrunk greatly during drying. Shrinkage limit of the sludges ranged from 16 to 66%; plastic limit from 111 to 138%; and liquid limit from 208 to 320%, which suggested that the sludge was highly plastic and compressible. Addition of 0 to 10% sludge into Boonville sandy loam soil increased the infiltration rate of the soil two orders of magnitudes from 1.4 x 10-4 to 1. I X 10-2 CM / S, and reduced the dispersion of the soil significantly. Moreover, addition of from 0 to 10% sludge into Boonville sandy loam soil greatly reduced the crusting produced by rainfall, and the penetration resistance of the crust decreased from 53.1 to 14.4 kg / cm. Metal adsorbing ability of the Boonville sandy loam soil was reduced by addition of the sludge. Adsorption of Zn+2 decreased from 19.7 to 17.7 ug / g when the sludge was amended from 0 to 10%. Total nitrogen and exchangeable ammonium nitrogen (NH4+) contents of the sludge were four times and twenty times as high, respectively, as those of local Beaumont clay and Lake Charles clay soils. Organic polymer coagulants added during water treatment apparently increased nitrogen content of the sludge. Although the sludge contained considerable total nitrogen, incubation experiment of sludge-amended Beaumont clay or Lake Charles clay soil showed that nitrogen mineralization rate was not affected by the sludge addition. This study indicated that the sludge can improve soil physical properties significantly, e.g. soil aggregation, infiltration, dispersion and crusting. The low nitrogen mineralization rate of the sludge showed that the sludge had little fertility and would not produce a groundwater contamination problem.

Kan, Weiqun

1995-01-01T23:59:59.000Z

296

Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield  

SciTech Connect

Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Colturato, L.F. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Font, X.; Vicent, T. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institut de Ciencia i Tecnologia Ambiental (ICTA) Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

2010-10-15T23:59:59.000Z

297

U.S. Department of Energy NEPA Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IL-City-Waukegan IL-City-Waukegan Location: City Waukegan IL American Recovery and Reinvestment Act: Proposed Action or Project Description: 1) Develop energy efficiency and conservation strategy and conduct engineering studies for energy efficiency, 2) replace pumps and/or motors at the Water Treatment Plant (WTP), 3) install wind turbines (up to six 1 kW) at the WTP, and 4) replace two boilers at the WTP Conditions: Historic preservation clause applies to this application Categorical Exclusion(s) Applied: A9, A11, B2.5, B5.1 *-For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, see Subpart D of 10 CFR10 21 This action would not: threaten a violation of applicable statutory, regulatory, or permit requirements for environment, safety, and health,

298

Operational Awareness Visit at the Office of River Protection  

NLE Websites -- All DOE Office Websites (Extended Search)

HAIR-HANFORD-2013-05-13 HAIR-HANFORD-2013-05-13 Site: HANFORD - Office of River Protection Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness at the Office of River Protection Dates of Activity : 05/13-23/2013 Report Preparer: Robert. E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to observe contractor efforts to develop a hazards analysis for the Low Activity Waste facility of the Waste Treatment and Immobilization Plant (WTP), tour the WTP construction site, observe ORP's quality assurance audit of the WTP contractor (Bechtel National, Inc.), tour the

299

Independent Oversight Activity Report, Office of River Protection - May  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of River Protection - Office of River Protection - May 2013 Independent Oversight Activity Report, Office of River Protection - May 2013 May 2013 Operational Awareness Visit at the Office of River Protection [HAIR-HANFORD-2013-05-13] The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to observe contractor efforts to develop a hazards analysis for the Low Activity Waste facility of the Waste Treatment and Immobilization Plant (WTP), tour the WTP construction site, observe ORP's quality assurance audit of the WTP contractor (Bechtel National, Inc.), tour the Hanford Tank Farms, and observe tank waste retrieval operations. Independent Oversight Activity Report, Office of River Protection - May

300

Operational Awareness Visit at the Office of River Protection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HAIR-HANFORD-2013-05-13 HAIR-HANFORD-2013-05-13 Site: HANFORD - Office of River Protection Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Operational Awareness at the Office of River Protection Dates of Activity : 05/13-23/2013 Report Preparer: Robert. E. Farrell Activity Description/Purpose: The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to observe contractor efforts to develop a hazards analysis for the Low Activity Waste facility of the Waste Treatment and Immobilization Plant (WTP), tour the WTP construction site, observe ORP's quality assurance audit of the WTP contractor (Bechtel National, Inc.), tour the

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Scale-Up, Production, and Procurement of PEP Simulants  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory has been tasked by Bechtel National Inc. on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility. The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, Undemonstrated Leaching Processes. The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. This report provides the lessons learned regarding the manufacture and delivery of simulated feeds for PEP testing.

Scheele, Randall D.; Brown, Garrett N.; Kurath, Dean E.

2009-10-29T23:59:59.000Z

302

EFRT M-12 Issue Resolution: Solids Washing  

SciTech Connect

Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, Undemonstrated Leaching Processes of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

Baldwin, David L.; Schonewill, Philip P.; Toth, James J.; Huckaby, James L.; Eslinger, Paul W.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

2010-01-01T23:59:59.000Z

303

Statistical Methods and Tools for Hanford Staged Feed Tank Sampling  

SciTech Connect

This report summarizes work conducted by Pacific Northwest National Laboratory to technically evaluate the current approach to staged feed sampling of high-level waste (HLW) sludge to meet waste acceptance criteria (WAC) for transfer from tank farms to the Hanford Waste Treatment and Immobilization Plant (WTP). The current sampling and analysis approach is detailed in the document titled Initial Data Quality Objectives for WTP Feed Acceptance Criteria, 24590-WTP-RPT-MGT-11-014, Revision 0 (Arakali et al. 2011). The goal of this current work is to evaluate and provide recommendations to support a defensible, technical and statistical basis for the staged feed sampling approach that meets WAC data quality objectives (DQOs).

Fountain, Matthew S.; Brigantic, Robert T.; Peterson, Reid A.

2013-10-01T23:59:59.000Z

304

Pretreatment Engineering Platform (PEP) Integrated Test B Run Report--Caustic and Oxidative Leaching in UFP-VSL-T02A  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, Undemonstrated Leaching Processes of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

Geeting, John GH; Bredt, Ofelia P.; Burns, Carolyn A.; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Josephson, Gary B.; Kurath, Dean E.; Sevigny, Gary J.; Aaberg, Rosanne L.

2009-12-10T23:59:59.000Z

305

FINAL REPORT - HYBRID-MIXING TESTS SUPPORTING THE CONCENTRATE RECEIPT VESSEL (CRV-VSL-00002A/2B) CONFIGURATION  

Science Conference Proceedings (OSTI)

The Savannah River National Laboratory (SRNL) has performed scaled physical modeling of Pulse Jet Mixing Systems applicable to the Concentrate Receipt Vessel (CRV) of Hanford's Waste Treatment Plant (WTP) as part of the overall effort to validate pulse jet mixer (PJM) mixing in WTP vessels containing non-Newtonian fluids. The strategy developed by the Pulse Jet Mixing Task Team was to construct a quarter-scale model of the CRV, use a clear simulant to understand PJM mixing behavior, and down-select from a number of PJM configurations to a ''best design'' configuration. This ''best design'' would undergo final validation testing using a particulate simulant that has rheological properties closely similar to WTP waste streams. The scaled PJM mixing tests were to provide information on the operating parameters critical for the uniform movement (total mobilization) of these non-Newtonian slurries. Overall, 107 tests were performed during Phase I and Phase II testing.

GUERRERO, HECTORN.

2004-09-01T23:59:59.000Z

306

Audit Report: OAS-L-12-09 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Audit Report: OAS-L-12-09 August 23, 2012 Tank Waste Feed Delivery System Readiness at the Hanford Site The Department of Energy (Department) made progress in completing the waste feed delivery system to support operations of the Waste Treatment Plant (WTP). We found that the Department had completed a number of waste feed delivery subprojects earlier than planned and was on track to complete other critical path activities. We noted, however, that a number of challenges remain for completing the construction and operation of the waste feed delivery system. Specifically, the Waste Acceptance Criteria (WAC) that defines the specific WTP waste feed criteria and associated controls had not yet been finalized. Uncertainties with tank waste mixing and sampling could also impact the delivery of waste to the WTP. The

307

Wastewater treatment: New insight provided by interactive multiobjective optimization  

Science Conference Proceedings (OSTI)

In this paper, we describe a new interactive tool developed for wastewater treatment plant design. The tool is aimed at supporting the designer in designing new wastewater treatment plants as well as optimizing the performance of already available plants. ... Keywords: Decision support, IND-NIMBUS, Interactive methods, Multicriteria optimization, Simulation-based optimization, Wastewater treatment planning

Jussi Hakanen; Kaisa Miettinen; Kristian Sahlstedt

2011-05-01T23:59:59.000Z

308

Research Progress on Perfume Wastewater Treatment Technology  

Science Conference Proceedings (OSTI)

Improvement of Spectrometric Determination of COD by Microwave ... Influence of sewage pipe network on COD reduction efficiency in sewage treatment plant.

309

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

CERTA PJ

2008-07-10T23:59:59.000Z

310

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcom

CERTA PJ

2008-07-10T23:59:59.000Z

311

Waste Treatment Plant and Tank Farm Program  

Energy.gov (U.S. Department of Energy (DOE))

This photo shows the Pretreatment Facility control room building pad at the Office of River Protection at the Hanford site. The Low-Activity Waste Facility is in the background.

312

Waste Treatment Plant River Protection Project  

UFP Equipment in Hot Cell Front/Right View. UFP System Design Issues Flowsheet chemistry must keep aluminum in solution Must add adequate caustic ...

313

Hanford Waste Treatment Plant Construction Quality Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of concrete in the forms, provisions for protection of the concrete from cold weather, and records documenting results of testing performed on the concrete,...

314

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

pressure and vacuum optimum range to minimize air entrainment. - Validation of the TEMPEST CFD model of the PJMs using the data generated in the small tank. A mixing time...

315

NETL Water and Power Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Water and Power Plants Review Water and Power Plants Review A review meeting was held on June 20, 2006 of the NETL Water and Power Plants research program at the Pittsburgh NETL site. Thomas Feeley, Technology Manager for the Innovations for Existing Plants Program, gave background information and an overview of the Innovations for Existing Plants Water Program. Ongoing/Ending Projects Alternative Water Sources Michael DiFilippo, a consultant for EPRI, presented results from the project "Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities". John Rodgers, from Clemson University, presented results from the project "An Innovative System for the Efficient and Effective Treatment of Non-traditional Waters for Reuse in Thermoelectric Power Generation".

316

Bog Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Bog Plants Bog Plants Nature Bulletin No. 385-A June 6, 1970 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation BOG PLANTS Fifty years ago there were probably more different kinds of plants within a 50 mile radius from the Loop than anywhere else in the Temperate Zone. Industrial, commercial and residential developments, plus drainage and fires have erased the habitats where many of the more uncommon kinds flourished, including almost all of the tamarack swamps and quaking bogs. These bogs were a heritage from the last glacier. Its front had advanced in a great curve, from 10 to 20 miles beyond what is now the shoreline of Lake Michigan, before the climate changed and it began to melt back. Apparently the retreat was so rapid that huge blocks of ice were left behind, surrounded by the outwash of boulders, gravel and ground-up rock called "drift". These undrained depressions; became lakes. Sphagnum moss invaded many of them and eventually the thick floating mats of it supported a variety of bog-loving plants including certain shrubs, tamarack, and a small species of birch. Such lakes became bogs.

317

Medicinal Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal Plants Medicinal Plants Nature Bulletin No. 187 April 11, 1981 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation MEDICINAL PLANTS In springtime, many years ago, grandma made her family drink gallons of tea made by boiling roots of the sassafras. That was supposed to thin and purify the blood. Children were sent out to gather dandelion, curly dock, wild mustard, pokeberry and other greens as soon as they appeared -- not only because they added welcome variety to the diet of bread, meat, potatoes and gravy, but because some of them were also laxatives. For a bad "cold on the lungs," she slapped a mustard plaster on the patient's back, and on his chest she put a square of red flannel soaked in goose grease. For whooping cough she used a syrup of red clover blossoms. She made cough medicine from the bloodroot plant, and a tea from the compass plant of the prairies was also used for fevers and coughs. She made a pleasant tea from the blossoms of the linden or basswood tree. For stomach aches she used tea from any of several aromatic herbs such as catnip, fennel, yarrow, peppermint, spearmint, sweetflag, wild ginger, bergamot and splice bush.

318

Final Report - Crystal Settling, Redox, and High Temperature Properties of ORP HLW and LAW Glasses, VSL-09R1510-1, Rev. 0, dated 6/18/09  

Science Conference Proceedings (OSTI)

The radioactive tank waste treatment programs at the U. S. Department of Energy (DOE) have featured joule heated ceramic melter technology for the vitrification of high level waste (HLW). The Hanford Tank Waste Treatment and Immobilization Plant (WTP) employs this same basic technology not only for the vitrification of HLW streams but also for the vitrification of Low Activity Waste (LAW) streams. Because of the much greater throughput rates required of the WTP as compared to the vitrification facilities at the West Valley Demonstration Project (WVDP) or the Defense Waste Processing Facility (DWPF), the WTP employs advanced joule heated melters with forced mixing of the glass pool (bubblers) to improve heat and mass transport and increase melting rates. However, for both HLW and LAW treatment, the ability to increase waste loadings offers the potential to significantly reduce the amount of glass that must be produced and disposed and, therefore, the overall project costs. This report presents the results from a study to investigate several glass property issues related to WTP HLW and LAW vitrification: crystal formation and settling in selected HLW glasses; redox behavior of vanadium and chromium in selected LAW glasses; and key high temperature thermal properties of representative HLW and LAW glasses. The work was conducted according to Test Plans that were prepared for the HLW and LAW scope, respectively. One part of this work thus addresses some of the possible detrimental effects due to considerably higher crystal content in waste glass melts and, in particular, the impact of high crystal contents on the flow property of the glass melt and the settling rate of representative crystalline phases in an environment similar to that of an idling glass melter. Characterization of vanadium redox shifts in representative WTP LAW glasses is the second focal point of this work. The third part of this work focused on key high temperature thermal properties of representative WTP HLW and LAW glasses over a wide range of temperatures, from the melter operating temperature to the glass transition.

Kruger, Albert A.; Wang, C.; Gan, H.; Pegg, I. L.; Chaudhuri, M.; Kot, W.; Feng, Z.; Viragh, C.; McKeown, D. A.; Joseph, I.; Muller, I. S.; Cecil, R.; Zhao, W.

2013-11-13T23:59:59.000Z

319

Oversight Reports - Hanford | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 13, 2013 December 13, 2013 Independent Oversight Review, Hanford Waste Treatment and Immobilization Plant - December 2013 Review of the Hanford Site Waste Treatment and Immobilization Plant Construction Quality September 26, 2013 Independent Oversight Activity Report, Hanford Waste Treatment and Immobilization Plant - July 2013 Operational Awareness of Waste Treatment and Immobilization Plant Low Activity Waste Melter Process System Hazards Analysis Activity [HIAR-WTP-2013-07-31] September 23, 2013 Independent Oversight Review, Hanford Site - September 2013 Review of Preparedness for Severe Natural Phenomena Events at the Hanford Site August 30, 2013 Independent Oversight Activity Report, Office of River Protection - May 2013 Operational Awareness Visit at the Office of River Protection

320

Poisonous Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants Plants Nature Bulletin No. 276 October 1, 1983 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation POISONOUS PLANTS In the autumn of 1818, Nancy Hanks Lincoln died of milk sickness and left her son, Abe, motherless before he was ten years old. Since colonial times, in most of the eastern half of the United States, that dreaded disease has been a hazard in summer and fall, wherever cattle graze in woodlands or along wooded stream banks. In the 1920s it was finally traced to white snakeroot -- an erect branched plant, usually about 3 feet tall, with a slender round stem, sharply-toothed nettle-like leaves and, in late summer, several small heads of tiny white flowers. Cows eating small amounts over a long period develop a disease called "trembles", and their milk may bring death to nursing calves or milk sickness to humans. When larger amounts are eaten the cow, herself, may die.

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microsoft PowerPoint - 12-03 Peterson-Filtration.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Parameters Impacting Parameters Impacting Crossflow Filter Performance of Hanford Tank Waste Simulants Reid Peterson Justin Billings, Carolyn Burns, Richard Daniel, Phil Schonewill, Rick Shimskey November 2010 Pacific Northwest National Laboratory 1 Print Close High-temperature melters Underground waste tank Pretreatment Plant Low-activity radioactive waste High-level radioactive waste PRETREATMENT VITRIFICATION/ PROCESSING Hanford Waste Treatment Plant (WTP) 2 The Waste Treatment Plant (WTP) is being designed and built to process the approximately 55 million gallons of radioactive waste sludge generated by defense activities at the Hanford Site in Richland, Washington. The planned waste treatment strategy is: 1.transfer the waste from the tank farms, where the waste is currently stored in 177 underground

322

Scaling Theory for Pulsed Jet Mixed Vessels, Sparging, and Cyclic Feed Transport Systems for Slurries  

SciTech Connect

This document is a previously unpublished work based on a draft report prepared by Pacific Northwest National Laboratory (PNNL) for the Hanford Waste Treatment and Immobilization Plant (WTP) in 2012. Work on the report stopped when WTPs approach to testing changed. PNNL is issuing a modified version of the document a year later to preserve and disseminate the valuable technical work that was completed. This document establishes technical bases for evaluating the mixing performance of Waste Treatment Plant (WTP) pretreatment process tanks based on data from less-than-full-scale testing, relative to specified mixing requirements. The technical bases include the fluid mechanics affecting mixing for specified vessel configurations, operating parameters, and simulant properties. They address scaling vessel physical performance, simulant physical performance, and scaling down the operating conditions at full scale to define test conditions at reduced scale and scaling up the test results at reduced scale to predict the performance at full scale. Essentially, this document addresses the following questions: Why and how can the mixing behaviors in a smaller vessel represent those in a larger vessel? What information is needed to address the first question? How should the information be used to predict mixing performance in WTP? The design of Large Scale Integrated Testing (LSIT) is being addressed in other, complementary documents.

Kuhn, William L.; Rector, David R.; Rassat, Scot D.; Enderlin, Carl W.; Minette, Michael J.; Bamberger, Judith A.; Josephson, Gary B.; Wells, Beric E.; Berglin, Eric J.

2013-09-27T23:59:59.000Z

323

Bagdad Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bagdad Plant Bagdad Plant 585 Silicon Drive Leechburg, P A 15656 * ATI Allegheny "'I Ludlum e-mail: Raymond.Polinski@ATImetals.com Mr. James Raba U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Program 1000 Independence Avenue SW Washington, DC 205585-0121 Raymond J. Polinski General Manager Grain-Oriented Electrical Steel RE: Distribution Transformers Rulemaking Docket Number EE-2010-STD-0048 RIN 1904-AC04 Submitted 4-10-12 via email Mr. Raba, I was planning to make the following closing comments at the DOE Public Meeting on February 23, 2012, but since the extended building evacuation caused the meeting to run well past the scheduled completion time I decided to submit my comments directly to you for the record.

324

Comprehensive Cycle Chemistry Guidelines for Fossil Plants  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. These guidelines for drum and once-through units provide information on the application of all-volatile treatment (AVT), oxygenated treatment (OT), phosphate treatment (PT), and caustic treatment (CT). The guidelines will help operators reduce corrosion and deposition and thereby achieve significant operation and maintenance cost reductions and greater unit availability. This is the fourth revision t...

2011-12-16T23:59:59.000Z

325

Assessment of Amines for Fossil Plant Applications  

Science Conference Proceedings (OSTI)

The purity and proper chemical treatment of water and steam are central to ensuring fossil and heat recovery steam generator (HRSG) plant component availability and reliability, which are critical to the overall economic performance and profitability of plant unit operations. This report provides a technical assessment of neutralizing amines for application in plant cycles to improve the pH conditions in the low pressure (LP) evaporators and economizers of HRSGs, the phase transition zone (PTZ) of the LP...

2010-03-31T23:59:59.000Z

326

Microsoft PowerPoint - 9-03 Jantzen FBSR EM TECH EX SLIDES-JANTZEN-PIERCE.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Reformer (FBSR) Na-Al-Si (NAS) Waste Reformer (FBSR) Na-Al-Si (NAS) Waste Form For Hanford LAW and Secondary Waste C.M. Jantzen and E.M. Pierce November 17, 2010 Print Close 2 FY10: Participating Organizations Print Close 3 Incentive and Objectives FBSR sodium-aluminosilicate (NAS) waste form has been identified as a promising supplemental treatment technology for Hanford LAW and/or Waste Treatment Plant Secondary Waste (WTP-SW) Objectives:

327

Evaluating Feed Delivery Performance in Scaled Double-Shell Tanks - 14070  

Science Conference Proceedings (OSTI)

The Hanford Tank Operations Contractor (TOC) and the Hanford Waste Treatment and Immobilization Plant (WTP) contractor are both engaged in demonstrating mixing, sampling, and transfer system capability using simulated Hanford High-Level Waste (HLW) formulations. This work represents one of the remaining technical issues with the high-level waste treatment mission at Hanford. The TOCs? ability to adequately mix and sample high-level waste feed to meet the WTP WAC Data Quality Objectives must be demonstrated. The tank mixing and feed delivery must support both TOC and WTP operations. The tank mixing method must be able to remove settled solids from the tank and provide consistent feed to the WTP to facilitate waste treatment operations. Two geometrically scaled tanks were used with a broad spectrum of tank waste simulants to demonstrate that mixing using two rotating mixer jet pumps yields consistent slurry compositions as the tank is emptied in a series of sequential batch transfers. Testing showed that the concentration of slow settling solids in each transfer batch was consistent over a wide range of tank operating conditions. Although testing demonstrated that the concentration of fast settling solids decreased by up to 25% as the tank was emptied, batch-to-batch consistency improved as mixer jet nozzle velocity in the scaled tanks increased.

Lee, Kearn P.; Thien, Michael G.

2013-11-07T23:59:59.000Z

328

Plant Rosettes  

NLE Websites -- All DOE Office Websites (Extended Search)

Rosettes Rosettes Nature Bulletin No. 662 January 13, 1962 Forest Preserve District of Cook County John J. Duffy, President David H. Thompson, Senior Naturalist PLANT ROSETTES In winter our landscape is mostly leafless trees silhouetted against the sky, and the dead stalks of wildflowers, weeds and tall grasses -- with or without a blanket of snow. Some snows lie on the ground for only a few days. Others follow one after another and cover the ground with white for weeks at a time. Soon the eye begins to hunger for a glimpse of something green and growing. Then, in sunny spots where the snow has melted or where youngsters have cleared it away, there appear clusters of fresh green leaves pressed tight to the soil. Whether it is a dandelion in the lawn, a pansy in a flower border, or a thistle in a vacant lot, such a typical leaf cluster -- called a winter rosette -- is a ring of leaves around a short central stem. The leaves are narrow at the base, wider toward the tip, and spread flat on the ground with little or no overlap. This arrangement gives full exposure to sunlight and close contact with the warmer soil beneath. Such plants continue to grow, sometimes faster, sometimes slower, even under snow, throughout winter.

329

Building C-400 Thermal Treatment 90% Remedial Design Report and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Paducah Gaseous Diffusion Plant (PGDP) Review Report: Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, PGDP, Paducah Kentucky...

330

Audit Report: IG-0863 | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Audit Report: IG-0863 April 25, 2012 The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels The Office of Inspector General received allegations concerning aspects of the quality assurance program at the Department of Energy's (Department) $12.2 billion Waste Treatment and Immobilization Plant (WTP) project in Hanford, Washington. Our review substantiated the allegation. In short, we found that the Department had procured and installed vessels in WTP that did not always meet quality assurance and/or contract requirements. For the vessels that we reviewed, we identified multiple instances where quality assurance records were either missing or were not traceable to the specific area or

331

Preliminary Notice of Violation, Bechtel National Inc. - EA-2006-03 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Inc. - EA-2006-03 National Inc. - EA-2006-03 Preliminary Notice of Violation, Bechtel National Inc. - EA-2006-03 March 16, 2006 Preliminary Notice of Violation issued to Bechtel National Inc., related to Multiple Deficiencies at the Waste Treatment and Immobilization Plant at the Hanford Site This letter refers to the Department of Energy's (DOE) Office of Price-Anderson Enforcement's (OE) recent investigation at the Waste Treatment and Immobilization Plant (WTP). The issues at WTP involved (1) inconsistencies between design documents and the authorization basis, (2) deficiencies in black cell vessel nondestructive evaluation requirements, (3) quality level inconsistencies, and (4) structural steel design deficiencies. Preliminary Notice of Violation, Bechtel National Inc. - EA-2006-03

332

CX-004825: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Categorical Exclusion Determination 5: Categorical Exclusion Determination CX-004825: Categorical Exclusion Determination Toledo City American Recovery and Reinvestment Act- Energy Efficiency and Conservation Block Grant Act 1-Collins Park Solar Photovoltaic Project - 1 Megawatt CX(s) Applied: B3.6, B5.1 Date: 12/22/2010 Location(s): Toledo City, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Energy Efficiency and Conservation Block Grant Project. The Project Activity Sheet titled -Photovoltaic Electric Generation System at the Collins Park Water Treatment Plant submitted by the City of Toledo, Ohio, involves the purchase and installation of a ground-mounted 1 megawatt (MW) photovoltaic (PV) electric generation system at the 125-acre Collins Park Water Treatment Plant (WTP). The Collins Park WTP uses in excess of 5 MW of

333

CX-001617: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Categorical Exclusion Determination 7: Categorical Exclusion Determination CX-001617: Categorical Exclusion Determination Toledo City American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant -Act 1 Collins Park Solar Photovoltaic Project CX(s) Applied: B3.6, B5.1 Date: 04/07/2010 Location(s): Toledo, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Energy Efficiency and Conservation Block Grant (EECBG) fund. The Project Activity Sheet titled "Photovoltaic (PV) Electric Generation System at the Collins Park Water Treatment Plant" submitted by the City of Toledo, Ohio, involves the purchase and installation of a ground-mounted 250 kilowatt (kW) PV electric generation system at the 125-acre Collins Park Water Treatment Plant (WTP). The Collins Park WTP uses in excess of 5 megawatts

334

May 15, 2012, Federal Technical Capability Program Face to Face Meeting … Speech: Safety Culture And Training and Competency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Safety Culture Safety Culture And Training and Competency Joseph F. Bader Board Member Board Member Defense Nuclear Facilities Safety Board Thanks to Tim Hunt and Doug Minnema Objectives * Discuss the Board's approach to staff training * Review the Board's concerns about safety culture at the Waste Treatment and Immobilization Plant (WTP) Waste Treatment and Immobilization Plant (WTP) * Understand what group culture is and why it is an g p y important part of nuclear operations * Explore the linkage between safety culture and training and competency June 2012 DOE FTCP Meeting 2 The Board's Technical Staff * Currently about 85 Technical Staff members. * Essentially all of the Technical Staff members have at least one technical master's degree, ~20% have a PhD. * Extensive experience in nuclear, mechanical, electrical,

335

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

01 - 6610 of 31,917 results. 01 - 6610 of 31,917 results. Download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download http://energy.gov/em/downloads/waste-treatment-and-immobilization-plant-wtp-analytical-laboratory Download Audit Report: IG-0607 Plutonium-238 Production http://energy.gov/ig/downloads/audit-report-ig-0607 Download Inquiry Report: I01IG001 Review of Alleged Conflicts of Interest Involving a Legal Services Contract for the Yucca Mountain Project http://energy.gov/ig/downloads/inquiry-report-i01ig001-0 Page Publications on Hawaii Find publications on deploying energy efficiency and renewable energy in Hawaii.

336

Audit Report: IG-0863 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IG-0863 IG-0863 Audit Report: IG-0863 April 25, 2012 The Department of Energy's $12.2 Billion Waste Treatment and Immobilization Plant - Quality Assurance Issues - Black Cell Vessels The Office of Inspector General received allegations concerning aspects of the quality assurance program at the Department of Energy's (Department) $12.2 billion Waste Treatment and Immobilization Plant (WTP) project in Hanford, Washington. Our review substantiated the allegation. In short, we found that the Department had procured and installed vessels in WTP that did not always meet quality assurance and/or contract requirements. For the vessels that we reviewed, we identified multiple instances where quality assurance records were either missing or were not traceable to the specific area or

337

Treated Wood Planted Post Study  

Science Conference Proceedings (OSTI)

This Technical Update describes the interim results of a planted post study currently under way at the Austin Cary Memorial Forest (ACMF), operated by The University of Florida, in Gainesville. The purpose of this research is to examine the effectiveness of commercially available prevention methods to reduce preservative migration from treated wood poles, compare the migration of constituents of various wood treatments, and assess the environmental impacts and performance of untreated chestnut.

2009-11-12T23:59:59.000Z

338

Hanford Waste Vitrification Plant  

SciTech Connect

The Hanford Waste Vitrification Plant (HWVP) is being designed to immobilize pretreated Hanford high-level waste and transuranic waste in borosilicate glass contained in stainless steel canisters. Testing is being conducted in the HWVP Technology Development Project to ensure that adapted technologies are applicable to the candidate Hanford wastes and to generate information for waste form qualification. Empirical modeling is being conducted to define a glass composition range consistent with process and waste form qualification requirements. Laboratory studies are conducted to determine process stream properties, characterize the redox chemistry of the melter feed as a basis for controlling melt foaming and evaluate zeolite sorption materials for process waste treatment. Pilot-scale tests have been performed with simulated melter feed to access filtration for solids removal from process wastes, evaluate vitrification process performance and assess offgas equipment performance. Process equipment construction materials are being selected based on literature review, corrosion testing, and performance in pilot-scale testing. 3 figs., 6 tabs.

Larson, D.E.; Allen, C.R. (Pacific Northwest Lab., Richland, WA (United States)); Kruger, O.L.; Weber, E.T. (Westinghouse Hanford Co., Richland, WA (United States))

1991-10-01T23:59:59.000Z

339

Long-day plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-day plants Name: Ryan S Martin Status: NA Age: NA Location: NA Country: NA Date: NA Question: What are long-day plants? Replies: Long-day plants are those that require a...

340

Water Treatment Strategies: Microorganism Control  

Science Conference Proceedings (OSTI)

This report presents an overview of the fundamental concepts of microorganism control and a discussion about how these concepts can be applied for optimizing current prevention and mitigation strategies in nuclear power plant service water systems. A database has been established to facilitate development of treatment and operation strategies that meet the requirement for preventing microbiological problems while overcoming limitations with current water treatment technologies.

2004-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Independent Oversight Review, Waste Treatment and Immobilization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 January 2013 Review of the Hanford Waste Treatment and Immobilization Plant Black-Cell and Hard-To-Reach Pipe Spools Procurement Process and the Office of River...

342

EA-0821: Operation of the Glass Melter Thermal Treatment Unit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Operation of the Glass Melter Thermal Treatment Unit at the U.S. Department of Energy's Mound Plant, Miamisburg, Ohio EA-0821: Operation of the Glass Melter Thermal Treatment...

343

Gasification Plant Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification Systems Gasification Plant Databases Welcome to the U. S. Department of Energy, National Energy Technology Laboratory's Gasification Plant Databases Within these...

344

Message The  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2012 June 2012 HSS Independent Oversight Evaluates the Extent of Safety Culture Concerns The Department of Energy (DOE) Office of Health, Safety and Security (HSS) independent oversight program is conducting a safety culture evaluation of four design/build projects for new nuclear facilities at four sites. Building on the HSS safety culture review at the Hanford Site Waste Treatment and Immobilization Plant (WTP) in 2011, HSS will identify positive observations, areas

345

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

HAAS CC; KOVACH JL; KELLY SE; TURNER DA

2010-06-24T23:59:59.000Z

346

EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS  

Science Conference Proceedings (OSTI)

This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

KELLY SE; HAASS CC; KOVACH JL; TURNER DA

2010-06-03T23:59:59.000Z

347

HIGH-LEVEL WASTE FEED CERTIFICATION IN HANFORD DOUBLE-SHELL TANKS  

SciTech Connect

The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (l million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing ofHLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch-to-batch operational adjustments that reduce operating efficiency and have the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

THIEN MG; WELLS BE; ADAMSON DJ

2010-01-14T23:59:59.000Z

348

Waste feed delivery planning at Hanford  

Science Conference Proceedings (OSTI)

The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP, which is integrated with the Baseline Case operating scenario, is comprised of three volumes. Volume 1 - Process Strategy provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 - Campaign Plan describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 - Project Plan identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades.

Certa, Paul J.; West, Elizha B.; Rodriguez, Juissepp S.; Hohl, Ted M.; Larsen, Douglas C.; Ritari, Jaakob S.; Kelly, James W.

2013-01-10T23:59:59.000Z

349

High Level Waste Feed Certification in Hanford Double Shell Tanks  

SciTech Connect

The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOEs River Protection Project (RPP) mission modeling and WTP facility modeling assume that individual 3785 cubic meter (1 million gallon) HLW feed tanks are homogenously mixed, representatively sampled, and consistently delivered to the WTP. It has been demonstrated that homogenous mixing of HLW sludge in Hanford DSTs is not likely achievable with the baseline design thereby causing representative sampling and consistent feed delivery to be more difficult. Inconsistent feed to the WTP could cause additional batch to batch operational adjustments that reduces operating efficiency and has the potential to increase the overall mission length. The Hanford mixing and sampling demonstration program will identify DST mixing performance capability, will evaluate representative sampling techniques, and will estimate feed batch consistency. An evaluation of demonstration program results will identify potential mission improvement considerations that will help ensure successful mission completion. This paper will discuss the history, progress, and future activities that will define and mitigate the mission risk.

Thien, Micheal G.; Wells, Beric E.; Adamson, Duane J.

2010-03-01T23:59:59.000Z

350

Date Published  

E-Print Network (OSTI)

Abstract: The Integrated Waste Feed Delivery Plan (IWFDP) describes how waste feed will be delivered to the Waste Treatment and Immobilization Plant (WTP) to safely and efficiently accomplish the River Protection Project (RPP) mission. The IWFDP is integrated with the Baseline Case operating scenario documented in ORP-11242 (Rev. 6), River Protection Project System Plan. Volume 1 Process Strategy (RPP-40149-VOL1) provides an overview of waste feed delivery (WFD) and describes how the WFD system will be used to prepare and deliver feed to the WTP based on the equipment configuration and functional capabilities of the WFD system. Volume 2 Campaign Plan (RPP-40149-VOL2) describes the plans for the first eight campaigns for delivery to the WTP, evaluates projected feed for systematic issues, projects 242-A Evaporator campaigns, and evaluates double-shell tank (DST) space and availability of contingency feed. Volume 3 Project Plan (RPP-40149-VOL3) identifies the scope and timing of the DST and infrastructure upgrade projects necessary to feed the WTP, and coordinates over 30 projectized projects and operational activities that comprise the needed WFD upgrades. Issues or project-specific risks, potential mitigating actions, and future refinements are also identified in each volume of the IWFDP.

E. B. West; P. J. Certa; T. M. Hohl; J. S. Ritari; B. R. Thompson; C. C. Haass; Key Words; P. J. Certa; T. M. Hohl; J. S. Ritari; B. R. Thompson; C. C. Haass

2012-01-01T23:59:59.000Z

351

Water_Treatment.cdr  

Office of Legacy Management (LM)

Since dewatering at the Weldon Spring site began in Since dewatering at the Weldon Spring site began in 1992, more than 290 million gallons of contaminated water have been treated and released into the Missouri River from two similar water treatment facilities at the site and the nearby Quarry. On September 30, 1999, dewatering efforts at the Chemical Plant site were completed, meeting one of the most substantial milestones of the project and bringing to an end a part of history that was started nearly 5 decades ago. From 1955 to 1966, uranium materials were processed at the U.S. Atomic Energy Commission's Uranium Feed Materials Plant. The ore was processed in a nitric acid solution that separated the uranium from other chemicals. The by-product, called raffinate, was neutralized with lime, then placed in four settling basins,

352

Aquatic plant control research  

DOE Green Energy (OSTI)

The Northwest region of the United States contains extensive canal systems that transport water for hydropower generation. Nuisance plants, including algae, that grow in these systems reduce their hydraulic capacity through water displacement and increased surface friction. Most control methods are applied in an ad hoc fashion. The goal of this work is to develop cost-effective, environmentally sound, long-term management strategies to prevent and control nuisance algal growth. This paper reports on a multi-year study, performed in collaboration with the Pacific Gas & Electric Company, to investigate algal growth in their canal systems, and to evaluate various control methodologies. Three types of controls, including mechanical, biological and chemical treatment, were selected for testing and evaluation. As part of this study, water quality data were collected and algal communities were sampled from numerous stations throughout the distribution system at regular intervals. This study resulted in a more comprehensive understanding of conditions leading to the development of nuisance algal growth, a better informed selection of treatment plans, and improved evaluation of the effectiveness for the control strategies selected for testing.

Pryfogle, P.A.; Rinehart, B.N. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Ghio, E.G. [Pacific Gas & Electric Company, San Francisco, CA (United States). Hydro Generation Engineering

1997-05-01T23:59:59.000Z

353

Independent Activity Report, Hanford - November 2010 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- November 2010 - November 2010 Independent Activity Report, Hanford - November 2010 November 2010 Hanford Tour and Review of the Office of River Protection Waste Treatment Immobilization Project Construction Site The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), conducted an orientation visit on November 16-18, 2010, at the Office of River Protection Waste Treatment Immobilization Project (WTP) at the Department of Energy (DOE) Hanford Site. The purposes of the visit were to plan and coordinate future HSS oversight activities and to review corrective actions to the most recent HSS review at WTP. Independent Activity Report, Hanford - November 2010 More Documents & Publications Independent Activity Report, Hanford Waste Treatment Plant - February 2011

354

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of River Office of River Protection Update Billie Mauss May19, 2009 2009 Technical Exchange Tank Operations Contract 2 Hanford Site 200 East and West Area Tank Operations Contract 3 ORP Objectives * Maintain safe Tank Farm operations in SSTs and DSTs until retrieved/treated * Complete WTP construction and start operations by FY 2019 * Ensure TF infrastructure and facility upgrades/new facilities to support FY 2019 WTP operations * Enhance SST integrity program * Continue to develop retrieval technology and retrieve tank waste * Reduce treatment timeline by developing new technologies and enhancing current baseline Tank Operations Contract 4 April 2009 4 ORP Flow Sheet Waste Treatment Plant 242-A SST Tanks ILAW IHLW Retrieval LAW Supplemental Treatment Integrated Disposal Facility

355

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

Not Available

1994-04-01T23:59:59.000Z

356

Secondary Waste Forms and Technetium Management  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 18, 2010 What are Secondary Wastes? Process condensates and scrubber andor off-gas treatment liquids from the pretreatment and ILAW melter facilities at the Hanford WTP....

357

EM Engineering & Technology Roadmap and Major Technology Demonstration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC proprietary FBSR technology (currently under construction for treatment of sodium bearing waste in Idaho) to process early LAW and future WTP recycle streams and to...

358

Waste Treatment  

Science Conference Proceedings (OSTI)

...rates, and batch collection volume requirements Water conservation possibilities What is required to meet discharge limits Availability and type of treatment chemicals How sludge will be dewatered, dried, and disposed...

359

Plant immune systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant immune systems Plant immune systems Name: stephanie Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: Do plants have an immune system? How does it work? Are plants able to "fight off" infections such as Dutch Elm disease? Replies: In the broadest sense, an immune system is any method an organism has protect itself from succeeding to another organism's efforts to undermine its health and integrity. In this sense, yes, plants have immune systems. Plants do NOT have "active" immune systems, like humans, including macrophages, lymls, antibodies, complements, interferon, etc., which help us ward off infection. Rather, plants have "passive" mechanisms of protection. For instance, the waxy secretion of some plants (cuticle) functions to help hold in moisture and keep out microorganisms. Plants can also secrete irritating juices that prevent insects and animals from eating it. The thick bark of woody plants is another example of a defensive adaptation, that protects the more delicate tissues inside. The chemical secretions of some plants are downright poisonous to many organisms, which greatly enhance the chances of survival for the plant. Fruits of plants contain large amounts of vitamin C and bioflavonoids, compounds which have been shown in the lab to be anti-bacterial and antiviral. So in these ways, plants can improve their chances of survival. Hundreds of viruses and bacteria attack plants each year, and the cost to agriculture is enormous. I would venture to guess that once an organism establishes an infection in a plant, the plant will not be able to "fight" it. However, exposure to the sun's UV light may help control an infection, possibly even defeat it, but the plant does not have any inherent "active" way to fight the infection

360

RIVER PROTECTION PROJECT SYSTEM PLAN  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

362

Plant Phenotype Characterization System  

DOE Green Energy (OSTI)

This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

Daniel W McDonald; Ronald B Michaels

2005-09-09T23:59:59.000Z

363

Initial Investigation of Waste Feed Delivery Tank Mixing and Sampling Issues  

SciTech Connect

The Hanford tank farms contractor will deliver waste to the Waste Treatment Plant (WTP) from a staging double-shell tank. The WTP broadly classifies waste it receives in terms of Envelopes, each with different limiting properties and composition ranges. Envelope A, B, and C wastes are liquids that can include up to 4% entrained solids that can be pumped directly from the staging DST without mixing. Envelope D waste contains insoluble solids and must be mixed before transfer. The mixing and sampling issues lie within Envelope D solid-liquid slurries. The question is how effectively these slurries are mixed and how representative the grab samples are that are taken immediately after mixing. This report summarizes the current state of knowledge concerning jet mixing of wastes in underground storage tanks. Waste feed sampling requirements are listed, and their apparent assumption of uniformity by lack of a requirement for sample representativeness is cited as a significant issue. The case is made that there is not an adequate technical basis to provide such a sampling regimen because not enough is known about what can be achieved in mixing and distribution of solids by use of the baseline submersible mixing pump system. A combined mixing-sampling test program is recommended to fill this gap. Historical Pacific Northwest National Laboratory project and tank farms contractor documents are used to make this case. A substantial investment and progress are being made to understand mixing issues at the WTP. A summary of the key WTP activities relevant to this project is presented in this report. The relevant aspects of the WTP mixing work, together with a previously developed scaled test strategy for determining solids suspension with submerged mixer pumps (discussed in Section 3) provide a solid foundation for developing a path forward.

Fort, James A.; Bamberger, Judith A.; Meyer, Perry A.; Stewart, Charles W.

2007-10-01T23:59:59.000Z

364

Chlorine and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine and Plants Name: Paul Location: NA Country: NA Date: NA Question: Is too Much chlorine going to kill or harm plants? I couldn't find information anywhere but I found...

365

Chlorine and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Chlorine and Plants Name: james Location: NA Country: NA Date: NA Question: I am doing project on the effects of chlorine on plant growth and i cant find any info. If you could...

366

PLANT BIOLOGY DEPARTMENT HANDBOOK  

E-Print Network (OSTI)

PLANT BIOLOGY DEPARTMENT HANDBOOK 2012-2013 University of Georgia Athens, GA 30602 Updated: 9/5/12 #12;Plant Biology Handbook Table of Contents General Information and Operating Procedures 1

Arnold, Jonathan

367

Plants producing DHA  

Science Conference Proceedings (OSTI)

CSIRO researchers published results in November 2012 showing that the long-chain n-3 fatty acid docosahexaenoic acid (DHA) can be produced in land plants in commercially valuable quantities. Plants producing DHA inform Magazine algae algal AOCS bi

368

Oil and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Plants Name: Matt Location: NA Country: NA Date: NA Question: If you could please tell me exactly what motor oil (unused) does to plants, and the effects. Does it...

369

Paste Plant Operations  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... It now provides data extraction features that aggregate system ... DUBAL Carbon Plant management team defined and implemented a 3-year strategic ... how to best approach Paste Plant operating and maintenance activities.

370

Plants and Dirt Compaction  

NLE Websites -- All DOE Office Websites (Extended Search)

Dirt Compaction Name: Conor Location: NA Country: NA Date: NA Question: When growing corn and soybean plants does the compaction of dirt effect the growth of the plant? Replies:...

371

Light Wavelength and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Wavelength and Plants Name: John Location: NA Country: NA Date: NA Question: I just was wandering whether plants grow better in artificial light or in sunlight. I am...

372

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2006-06-26T23:59:59.000Z

373

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer (Chicago, IL); Zieler, Helge (Chicago, IL); Jin, James (Chicago, IL); Keith, Kevin (Chicago, IL); Copenhaver, Gregory (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2007-06-05T23:59:59.000Z

374

Plant centromere compositions  

DOE Patents (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach, Jennifer M. (Chicago, IL); Zieler, Helge (Del Mar, CA); Jin, RongGuan (Chesterfield, MO); Keith, Kevin (Three Forks, MT); Copenhaver, Gregory P. (Chapel Hill, NC); Preuss, Daphne (Chicago, IL)

2011-08-02T23:59:59.000Z

375

Plant centromere compositions  

Science Conference Proceedings (OSTI)

The present invention provides for the nucleic acid sequences of plant centromeres. This will permit construction of stably inherited recombinant DNA constructs and minichromosomes which can serve as vectors for the construction of transgenic plant and animal cells.

Mach; Jennifer M. (Chicago, IL), Zieler; Helge (Del Mar, CA), Jin; RongGuan (Chesterfield, MO), Keith; Kevin (Three Forks, MT), Copenhaver; Gregory P. (Chapel Hill, NC), Preuss; Daphne (Chicago, IL)

2011-11-22T23:59:59.000Z

376

Plants & Animals  

NLE Websites -- All DOE Office Websites (Extended Search)

Plants & Animals Plants & Animals Plants & Animals Plant and animal monitoring is performed to determine whether Laboratory operations are impacting human health via the food chain. April 12, 2012 A rabbit on LANL land. A rabbit on LANL land. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We sample many plants and animals, including wild and domestic crops, game animals, fish, and food products from animals, as well as other plants and animals not considered food sources. What plants and animals do we monitor? LANL monitors both edible and non-edible plants and animals to determine whether Laboratory operations are impacting human health via the food chain, or to find contaminants that indicate they are being moved in the

377

INITIAL RESPONSE OF INVASIVE EXOTIC PLANT SPECIES TO TIMBER HARVESTING IN SOUTHEASTERN KENTUCKY FORESTS.  

E-Print Network (OSTI)

??The responses of invasive exotic plant species (IES) to silvicultural treatments one growing season after timber harvesting were examined in the Cumberland Plateau region of (more)

Devine, Kevin Patrick

2011-01-01T23:59:59.000Z

378

Radionuclide Retention Mechanisms in Secondary Waste-Form Testing: Phase II  

SciTech Connect

This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate candidate stabilization technologies that have the potential to successfully treat liquid secondary waste stream effluents produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). WRPS is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF, a multi-waste, treatment-and-storage unit that has been permitted under the Resource Conservation and Recovery Act (RCRA), can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid waste generated during operation of the WTP. The STU will provide the additional capacity needed for ETF to process the increased volume of secondary waste expected to be produced by WTP. This report on radionuclide retention mechanisms describes the testing and characterization results that improve understanding of radionuclide retention mechanisms, especially for pertechnetate, {sup 99}TcO{sub 4}{sup -} in four different waste forms: Cast Stone, DuraLith alkali aluminosilicate geopolymer, encapsulated fluidized bed steam reforming (FBSR) product, and Ceramicrete phosphate bonded ceramic. These data and results will be used to fill existing data gaps on the candidate technologies to support a decision-making process that will identify a subset of the candidate waste forms that are most promising and should undergo further performance testing.

Um, Wooyong; Valenta, Michelle M.; Chung, Chul-Woo; Yang, Jungseok; Engelhard, Mark H.; Serne, R. Jeffrey; Parker, Kent E.; Wang, Guohui; Cantrell, Kirk J.; Westsik, Joseph H.

2011-09-26T23:59:59.000Z

379

Water Conservation with Urban Landscape Plants  

E-Print Network (OSTI)

Water shortages are a common problem in much of the southwest. Increasing urbanization and increasing population places greater demands on dwindling water supplies. Over half of the water used in urban areas of the southwest is used in the irrigation of landscapes. To help cope with increased urban water demands and low water supplies, research was conducted from March 1981 to July 1983 at The Texas Agricultural Experiment Station at Dallas to gain information relative to consumptive water use by native and non-native landscape plants. Twenty weighing lysimeters were constructed and installed and plants established in the lysimeters and adjacent areas. The lysimeters were made from 0.6 X 0.9 m undisturbed cores of Austin silty clay soil. Plants used in the lysimeter study were buffalograss, St. Augustine grass, cenizo, boxwood and Texas barberry. All plants are native to Texas except boxwood and St. Augustine grass. Four lysimeters were planted to each plant type. This allowed two moisture levels and two replications of each plant type. There was no difference in water use by St. Augustine grass and buffalo grass during the year of establishment. Daily water use ranged from 0.49 to 0.08 cm per day but was generally 50% class A pan evaporation. St. Augustine grass used 0.03 cm/day more water than buffalo grass during 1982. -Irrigation treatments used in 1982 did not influence water use by either grass type but buffalo grass retained higher quality under dry treatment (irrigated at 0.40 bar moisture tension) than St. Augustine grass. Water use from May to July 1983 was highest (of all treatments) by St. Augustine grass when irrigated at 0.25 bar soil moisture tension at 76 cm depth and lowest (of all treatments) by buffalograss when irrigated at 0.75 bar soil moisture tension at 76 cm depth. Application of 50% class A pan evaporation each week appears to be an acceptable guideline for irrigation of either turfgrass but research should be conducted over a longer time period to obtain more specific guidelines for each grass species. Water use by shrubs in lysimeters was variable and not influenced by plant type during the period of establishment (Fall 1981). During 1982 water use was influenced more by plant size than by specie or water level. Cenizo had much faster growth rate than the other shrubs in the study. Water use by container grown plants indicated that cenizo had higher water use efficiency than boxwood or Indian Hawthorn. Water use was determined for several native shrubs and of the ones compared, Texas barberry appeared to have the most promise for use in water conserving landscapes.

Hip, B. W.; Giordano, C.; Simpson, B.

1983-08-01T23:59:59.000Z

380

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a tabulation of the results of this magazines survey of current plans for new baseload power plants. The table lists the unit name, capacity, fuel, engineering firm, constructor, suppliers for steam generator, turbine generator and flue gas desulfurization equipment, date due on-line, and any non-utility participants. The table includes fossil-fuel plants, nuclear plants, geothermal, biomass and hydroelectric plants.

Not Available

1993-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cooling Plant Optimization Guide  

Science Conference Proceedings (OSTI)

Central cooling plants or district cooling systems account for 22 percent of energy costs for cooling commercial buildings. Improving the efficiency of central cooling plants will significantly impact peak demand and energy usage for both building owners and utilities. This guide identifies opportunities for optimizing a central cooling plant and provides a simplified optimization procedure. The guide focuses on plant optimization from the standpoint of minimizing energy costs and maximizing efficiencies...

1998-09-29T23:59:59.000Z

382

Plant design: Integrating Plant and Equipment Models  

Science Conference Proceedings (OSTI)

Like power plant engineers, process plant engineers must design generating units to operate efficiently, cleanly, and profitably despite fluctuating costs for raw materials and fuels. To do so, they increasingly create virtual plants to enable evaluation of design concepts without the expense of building pilot-scale or demonstration facilities. Existing computational models describe an entire plant either as a network of simplified equipment models or as a single, very detailed equipment model. The Advanced Process Engineering Co-Simulator (APECS) project (Figure 5) sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (NETL) seeks to bridge the gap between models by integrating plant modeling and equipment modeling software. The goal of the effort is to provide greater insight into the performance of proposed plant designs. The software integration was done using the process-industry standard CAPE-OPEN (Computer Aided Process EngineeringOpen), or CO interface. Several demonstration cases based on operating power plants confirm the viability of this co-simulation approach.

Sloan, David (Alstrom Power); Fiveland, Woody (Alstrom Power); Zitney, S.E.; Osawe, Maxwell (Ansys, Inc.)

2007-08-01T23:59:59.000Z

383

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Nanofiltration Treatment Options for Thermoelectric Power Plant Water Treatment Demands Sandia National Laboratories (SNL) is conducting a study on the use of nanofiltration (NF) treatment options to enable use of non-traditional water sources as an alternative to freshwater make-up for thermoelectric power plants. The project includes a technical and economic evaluation of NF for two types of water that contain moderate to high levels of total dissolved solids (TDS): (1) cooling tower recirculating water and (2) produced waters from oil & gas extraction operations. Reverse osmosis (RO) is the most mature and commonly considered option for high TDS water treatment. However, RO is generally considered to be too expensive to make treatment of produced waters for power plant use a feasible application. Therefore, SNL is investigating the use of NF, which could be a more cost effective treatment option than RO. Similar to RO, NF is a membrane-based process. Although NF is not as effective as RO for the removal of TDS (typical salt rejection is ~85 percent, compared to >95 percent for RO), its performance should be sufficient for typical power plant applications. In addition to its lower capital cost, an NF system should have lower operating costs because it requires less pressure to achieve an equivalent flux of product water.

384

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed--has been benchmarked against measurements.30 At the Ringhals nuclear power plant, this measurement is car a measurement performed at the PWR Unit 4 of the Ring hals Nuclear Power Plant was available to us

Demazière, Christophe

385

NUCLEAR PLANT OPERATIONS AND  

E-Print Network (OSTI)

reactor Unit 4 of the Ringhals Nuclear Power Plant (Sweden) during fuel cycle 16 is analyzed reactivity effects--has been benchmarked against measurements.30 At the Ringhals nuclear power plant a measurement performed at the PWR Unit 4 of the Ring- hals Nuclear Power Plant was available to us

Demazière, Christophe

386

Decisions decisions plant vessels  

Science Conference Proceedings (OSTI)

This paper describes concepts for a family of plant vessels that help users make decisions or reach goals. The concepts use plants to mark time or answer questions for the user, creating a connection between the user and the individual plant. These concepts ...

Jenny Liang

2007-08-01T23:59:59.000Z

387

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

388

Advanced Manufacturing Office: Better Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Plants on Twitter Bookmark Advanced Manufacturing Office: Better Plants on Google Bookmark Advanced Manufacturing Office: Better Plants on Delicious Rank Advanced...

389

Atmospheric Deposition of Tritium at Nuclear Power Plants  

Science Conference Proceedings (OSTI)

Tritium source terms at nuclear power plants consist of several sources that include plant vents and cooling impoundments, cooling towers, and treatment ponds. Cooling lakes and reservoirs can be sources of airborne tritium. Methods are presented for estimating these source terms and predicting resulting deposition of tritium using metrological models and for estimating infiltration of tritium using hydrogeological models.

2010-12-16T23:59:59.000Z

390

prairie plant list  

NLE Websites -- All DOE Office Websites (Extended Search)

List of Native Prairie Plant Illustrations List of Native Prairie Plant Illustrations Select the common name of the plant you want to view. Common Name Scientific Name Grasses BIG BLUESTEM Andropogon gerardii INDIAN GRASS Sorghastrum nutans LITTLE BLUESTEM Andropogon scoparius SWITCH GRASS Panicum virgatum CORD GRASS Spartina pectinata NEEDLEGRASS Stipa spartea PRAIRIE DROPSEED Sporobolus pectinata SIDE-OATS GRAMA Bouteloua curtipendula FORBS ROSINWEED Silphium integrifolium SAW-TOOTHED SUNFLOWER Helianthus grossesserratus WILD BERGAMOT Monarda fistulosa YELLOW CONEFLOWER Ratibida pinnata BLACK-EYED SUSAN Rudbeckia hirta COMPASS PLANT Silphium lactiniatum CUP PLANT Silphium perfoliatum NEW ENGLAND ASTER Aster novae-angilae PRAIRIE DOCK Silphium terebinthinaceum RATTLESNAKE MASTER Eryngium yuccifolium STIFF GOLDENROD Solidaga rigida

391

LASER ABLATION-INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROSCOPY STUDY AT THE 222-S LABORATORY USING HOT-CELL GLOVE BOX PROTOTYPE SYSTEM  

SciTech Connect

This report describes the installation, testing, and acceptance of the Waste Treatment and Immobilization Plant (WTP) procured laser ablation-inductively coupled plasma-atomic emission spectroscopy (LA-ICP-AES) system for remotely analyzing high-level waste (HLW) samples in a hot cell environment. The work was completed by the Analytical Process Development (APD) group in accordance with Task Order 2005-003; ATS MP 1027, Management Plan for Waste Treatment Plant Project Work Performed by Analytical Technical Services. The APD group at the 222-S Laboratory demonstrated acceptable turnaround time (TAT) and provide sufficient data to assess sensitivity, accuracy, and precision of the LA-ICP-AES method.

SEIDEL CM; JAIN J; OWENS JW

2009-02-23T23:59:59.000Z

392

Geothermal waste treatment biotechnology  

DOE Green Energy (OSTI)

Technical feasibility of a biotechnology based on biochemical reactions for detoxification of geothermal brines has been demonstrated. Laboratory-scale studies have shown that the emerging biotechnology is versatile and is applicable to a variety of geothermal sludges and materials with similar geochemical properties. Materials suitable for treatment are those which may contain few or many metals in concentrations exceeding those allowed by regulatory agencies. Comparison of several possible types of bioreactors and processes have led to the conclusion that a number of variables have to be considered in the design and development of a biochemical plant for the detoxification of geothermal type sludges. These include reactor size, effects of agitation, mixed cultures, state of the biomass, pH and dissolved oxygen, concentration of residual sludge, residence time, and temperature. Under optimum conditions, high rates of metal removal can be achieved. Some recent studies, dealing with the process variables and their optimization, will be discussed. 6 refs., 3 figs.

Premuzic, E.T.; Lin, M.S.

1991-05-01T23:59:59.000Z

393

DOE Cites Bechtel National Incorporated for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incorporated for Price-Anderson Incorporated for Price-Anderson Violations DOE Cites Bechtel National Incorporated for Price-Anderson Violations March 16, 2006 - 12:46pm Addthis WASHINGTON, DC - The Department of Energy (DOE) today notified Bechtel National Incorporated (BNI) that it will fine the company $198,000 for violations of the Department's nuclear safety requirements. BNI is the primary design and construction contractor for the Waste Treatment and Immobilization Plant (WTP). The Preliminary Notice of Violation (PNOV) issued today cited a series of violations that occurred during the design and construction of the WTP between May 2002 and September 2005. Violations include failure to abide by design codes documented in facility safety requirements, failure to abide by inspection requirements for waste processing vessels, failure to utilize

394

DOE Cites Bechtel National Incorporated for Price-Anderson Violations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incorporated for Price-Anderson Incorporated for Price-Anderson Violations DOE Cites Bechtel National Incorporated for Price-Anderson Violations October 4, 2007 - 3:14pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today notified Bechtel National Incorporated (BNI) that it will fine the company $165,000 for violations of the Department's nuclear safety requirements. BNI is the primary design and construction contractor for the Waste Treatment and Immobilization Plant (WTP) located at the Hanford Site in Richland, Washington. The Preliminary Notice of Violation (PNOV) issued today cited a series of violations that occurred during the design and construction of the WTP between October 2001 and February 2006. Violations include failures in quality processes to control design changes, and to ensure vendor-supplied

395

High-Level Waste Corporate Board Meeting Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

High-Level Waste Corporate Board High-Level Waste Corporate Board Meeting Agenda Loews Hotel 1065 West Peachtree St, Atlanta, Georgia November 18, 2010 Time Topic Speaker 7:30 AM Closed Session - ratify Charter Board members 8:30 AM Welcome, Introduction, 2011 focus for HLW Corp Board Shirley Olinger 8:50 AM Introduction to Tc/I in Hanford Flowsheet  Show flowsheet w/ split locations  Describe recycle of LAW concept  Discuss baseline assumptions  Describe subsequent talks using flowsheet figure Gary Smith 9:15 AM Waste Treatment & Immobilization Plant (WTP)  Tc/I split factors (w/ and w/o recycle)  Water management (w/ and w/o recycle) Albert Kruger 9:45 AM WTP Melter/Offgas Systems Decontamination Factors  Re as a stimulant for Tc  Issues that limit Tc incorporation in LAW glass

396

December 4, 2003, Board Public Meeting Speaker Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

CHG0311-10 CHG0311-10 Hanford Tank Farm Contractor Self-Assessment Program Hanford Tank Farm Contractor Self-Assessment Program Hanford Tank Farm Contractor Self-Assessment Program DNFSB General Briefing December 4, 2003 Edward S. Aromi, Jr. President and General Manager CH2M HILL Hanford Group, Inc. CHG0311-10 Hanford Tank Farm Contractor Self-Assessment Program Hanford Tank Farm Contractor Self-Assessment Program Tank Farm Contractor Scope of Work Waste management on 177 tanks Manage 222-S Laboratory and 242-A Evaporator Stabilize and remove waste from 149 older single-shell tanks Close single-shell tanks Stage waste and manage 28 newer double-shell tanks Manage projects to prepare for transfer of waste to Waste Treatment Plant (WTP) Search out technologies to reduce load on WTP

397

Simulated Waste for Leaching and Filtration Studies--Laboratory Preparation Procedure  

Science Conference Proceedings (OSTI)

This report discusses the simulant preparation procedure for producing multi-component simulants for leaching and filtration studies, including development and comparison activities in accordance with the test plan( ) prepared and approved in response to the Test Specification 24590-WTP-TSP-RT-06-006, Rev 0 (Smith 2006). A fundamental premise is that this approach would allow blending of the different components to simulate a wide variety of feeds to be treated in the Hanford Tank Waste Treatment and Immobilization Plant (WTP). For example, a given feed from the planned feed vector could be selected, and the appropriate components would then be blended to achieve a representation of that particular feed. Using the blending of component simulants allows the representation of a much broader spectrum of potential feeds to the Pretreatment Engineering Platform (PEP).

Smith, Harry D.; Russell, Renee L.; Peterson, Reid A.

2009-10-27T23:59:59.000Z

398

Pretreatment Engineering Platform Phase 1 Final Test Report  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory (PNNL) was tasked by Bechtel National Inc. (BNI) on the River Protection Project, Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to conduct testing to demonstrate the performance of the WTP Pretreatment Facility (PTF) leaching and ultrafiltration processes at an engineering-scale. In addition to the demonstration, the testing was to address specific technical issues identified in Issue Response Plan for Implementation of External Flowsheet Review Team (EFRT) Recommendations - M12, Undemonstrated Leaching Processes.( ) Testing was conducted in a 1/4.5-scale mock-up of the PTF ultrafiltration system, the Pretreatment Engineering Platform (PEP). Parallel laboratory testing was conducted in various PNNL laboratories to allow direct comparison of process performance at an engineering-scale and a laboratory-scale. This report presents and discusses the results of those tests.

Kurath, Dean E.; Hanson, Brady D.; Minette, Michael J.; Baldwin, David L.; Rapko, Brian M.; Mahoney, Lenna A.; Schonewill, Philip P.; Daniel, Richard C.; Eslinger, Paul W.; Huckaby, James L.; Billing, Justin M.; Sundar, Parameshwaran S.; Josephson, Gary B.; Toth, James J.; Yokuda, Satoru T.; Baer, Ellen BK; Barnes, Steven M.; Golovich, Elizabeth C.; Rassat, Scot D.; Brown, Christopher F.; Geeting, John GH; Sevigny, Gary J.; Casella, Amanda J.; Bontha, Jagannadha R.; Aaberg, Rosanne L.; Aker, Pamela M.; Guzman-Leong, Consuelo E.; Kimura, Marcia L.; Sundaram, S. K.; Pires, Richard P.; Wells, Beric E.; Bredt, Ofelia P.

2009-12-23T23:59:59.000Z

399

Characterization, Leaching, and Filtrations Testing of Ferrocyanide Tank sludge (Group 8) Actual Waste Composite  

SciTech Connect

This is the final report in a series of eight reports defining characterization, leach, and filtration testing of a wide variety of Hanford tank waste sludges. The information generated from this series is intended to supplement the Waste Treatment and Immobilization Plant (WTP) project understanding of actual waste behaviors associated with tank waste sludge processing through the pretreatment portion of the WTP. The work described in this report presents information on a high-iron waste form, specifically the ferrocyanide tank waste sludge. Iron hydroxide has been shown to pose technical challenges during filtration processing; the ferrocyanide tank waste sludge represented a good source of the high-iron matrix to test the filtration processing.

Fiskum, Sandra K.; Billing, Justin M.; Crum, J. V.; Daniel, Richard C.; Edwards, Matthew K.; Shimskey, Rick W.; Peterson, Reid A.; MacFarlan, Paul J.; Buck, Edgar C.; Draper, Kathryn E.; Kozelisky, Anne E.

2009-02-28T23:59:59.000Z

400

Estimate of Hanford Waste Rheology and Settling Behavior  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Office of River Protections Waste Treatment and Immobilization Plant (WTP) will process and treat radioactive waste that is stored in tanks at the Hanford Site. Piping, pumps, and mixing vessels have been selected to transport, store, and mix the high-level waste slurries in the WTP. This report addresses the analyses performed by the Rheology Working Group (RWG) and Risk Assessment Working Group composed of Pacific Northwest National Laboratory (PNNL), Bechtel National Inc. (BNI), CH2M HILL, DOE Office of River Protection (ORP) and Yasuo Onishi Consulting, LLC staff on data obtained from documented Hanford waste analyses to determine a best-estimate of the rheology of the Hanford tank wastes and their settling behavior. The actual testing activities were performed and reported separately in referenced documentation. Because of this, many of the required topics below do not apply and are so noted.

Poloski, Adam P.; Wells, Beric E.; Tingey, Joel M.; Mahoney, Lenna A.; Hall, Mark N.; Thomson, Scott L.; Smith, Gary Lynn; Johnson, Michael E.; Meacham, Joseph E.; Knight, Mark A.; Thien, Michael G.; Davis, Jim J.; Onishi, Yasuo

2007-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "treatment plant wtp" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Cites Bechtel National Inc. for Price-Anderson Violations | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. for Price-Anderson Violations Inc. for Price-Anderson Violations DOE Cites Bechtel National Inc. for Price-Anderson Violations December 3, 2008 - 4:58pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today issued a Preliminary Notice of Violation (PNOV) to Bechtel National, Inc. (BNI) for nuclear safety violations at DOE's Hanford Site near Richland, Washington. BNI is the contractor responsible for the design and construction of the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in southeast Washington State. The PNOV cites multiple violations of 10 C.F.R. Part 830, Nuclear Safety Management, which occurred during the procurement and fabrication of piping and the development of project specifications. Several thousand feet of piping intended to be used in sections of the WTP "black cell" areas -

402

Hanford Low-Level Waste Form Performance for Meeting Land Disposal Requirements  

Science Conference Proceedings (OSTI)

Immobilized Low-activity waste (ILAW) from the Hanford site will be disposed of in near-surface burial grounds and must be processed into a chemically durable waste form to prevent release of hazardous constituents to the environment. To meet his goal, the LAW will be immobilized in borosilicate glass. the DOE office of River Protection and the Rive Protection Project-Waste Treatment Plant (RPP-WTP) project have agreed on testing requirements that the immobilized LAW glass must meet to demonstrate chemically durability. Two of the tests are the Product Consistency Test (PCT) and Environmental Protection Agency's (EPA) Toxicity Characteristic Leaching Procedure (TCLP). This paper provides results of RPP-WTP PCT and TCLP testing on both actual radioactive and non-radioactive simulant LAW glasses to show they meet the associated land disposal requirements.

Crawford, C.L.

2003-01-07T23:59:59.000Z

403

prairie restoration plant ident  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Identification Plant Identification Once your restoration is started and plants begin to germinate, the next issue you are faced with is the identification of what is growing. From my experience, the seeds you planted should start germinating after about a week to ten days. Of course, this is dependent on the weather conditions and the amount of moisture in the soil. If you are watering regularly, you will get growth much more quickly than if you are just waiting for nature to take its course. Identifying prairie plants as they germinate is very difficult. If you are an experienced botanist or an expert on prairie plants, your identification will still be a little more than an educated guess. In other words identifying prairie species from non-native species will take some time.

404

Conditional sterility in plants  

DOE Patents (OSTI)

The present disclosure provides methods, recombinant DNA molecules, recombinant host cells containing the DNA molecules, and transgenic plant cells, plant tissue and plants which contain and express at least one antisense or interference RNA specific for a thiamine biosynthetic coding sequence or a thiamine binding protein or a thiamine-degrading protein, wherein the RNA or thiamine binding protein is expressed under the regulatory control of a transcription regulatory sequence which directs expression in male and/or female reproductive tissue. These transgenic plants are conditionally sterile; i.e., they are fertile only in the presence of exogenous thiamine. Such plants are especially appropriate for use in the seed industry or in the environment, for example, for use in revegetation of contaminated soils or phytoremediation, especially when those transgenic plants also contain and express one or more chimeric genes which confer resistance to contaminants.

Meagher, Richard B. (Athens, GA); McKinney, Elizabeth (Athens, GA); Kim, Tehryung (Taejeon, KR)

2010-02-23T23:59:59.000Z

405

Crystals and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Crystals and Plants Crystals and Plants Name: Diab Location: N/A Country: N/A Date: N/A Question: What will the likely effects of crystallized filaments in plant cells be? I had noticed that moth balls (para dichlorbenzene) tends within a very short temperature range to transform from a solid to gas and back to solid in the form of crystal filaments. I been wondering about the likely effects of an experiment in which a plant is placed in a chamber saturated with the fumes of a substance that had the same transformation properties of its state but none of the toxic effects be on the plants and will such filaments form inside the cell and rearrange its DNA strands or kill it outright? Replies: The following might be helpful: http://biowww.clemson.edu/biolab/mitosis.html http://koning.ecsu.ctstateu.edu/Plant_Physiology/osmosis.html

406

Electrical generating plant availability  

SciTech Connect

A discussion is given of actions that can improve availability, including the following: the meaning of power plant availability; The organization of the electric power industry; some general considerations of availability; the improvement of power plant availability--design factors, control of shipping and construction, maintenance, operating practices; sources of statistics on generating plant availability; effects of reducing forced outage rates; and comments by electric utilities on generating unit availability.

1975-05-01T23:59:59.000Z

407

Plant Growth and Photosynthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Growth and Photosynthesis Plant Growth and Photosynthesis Name: Jack Location: N/A Country: N/A Date: N/A Question: Do plants have any other way of growing besides photosythesis? Plants do not use photosynthesis to grow!!! They use cellular respiration just like every other organism to process energy into work. Plants use oxygen just like we do. Photosynthesis is principally only a process to change sunlight into a chemical form for storage. Replies: Check out our archives for more information. www.newton.dep.anl.gov/archive.htm Steve Sample Jack, Several kinds of flowering plants survive without the use of chlorophyll which is what makes plants green and able to produce sugar through photosynthesis. Dodder is a parasitic nongreen (without chlorophyll) plant that is commonly found growing on jewelweed and other plants in damp areas. Dodder twines around its host, (A host is an organism that has fallen victim to a parasite.), like a morning glory and attaches itself at certain points along the stem where it absorbs sugar and nutrients from the hosts sap.

408

Sunrise II Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sunrise Power Company, LLC (Sunrise), has planned the modification of an existing power plant project to increase its generation capacity by 265 megawatts by 2003. The initial...

409

Plant and Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

publicationshouseplantligh t.html Sincerely, Anthony R. Brach "Artificial" light comes from many kinds of bulbs that emit different wavelengths of light; Many plants...

410

Repurposing a Hydroelectric Plant.  

E-Print Network (OSTI)

??This thesis project explores repurposing a hydroelectric plant along Richmond Virginia's Canal Walk. The building has been redesigned to create a community-oriented space programmed as (more)

Pritcher, Melissa

2008-01-01T23:59:59.000Z

411

Secondary Waste Form Down-Selection Data PackageFluidized Bed Steam Reforming Waste Form  

SciTech Connect

The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sent to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.

Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.; Valenta, Michelle M.; Pires, Richard P.

2011-09-12T23:59:59.000Z

412

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS  

Science Conference Proceedings (OSTI)

Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in with percent relative standard deviations (%RSDs) % for most elements in filtered solution. There were some issues with a few elements precipitating out of solution over time affecting the long term precision of the method. Additional research will need to be performed to resolve this sample stability problem. Activities related to methodology optimization in the Phase 1b portion of the study were eliminated as a result of WTP request to discontinue remaining activities due to funding reduction. These preliminary studies demonstrate that developing an XRF method to support the LAW vitrification plant is feasible. When funding is restored for the WTP, it is recommended that optimization of this technology should be pursued.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2006-05-08T23:59:59.000Z

413

Modulating lignin in plants  

DOE Patents (OSTI)

Materials and methods for modulating (e.g., increasing or decreasing) lignin content in plants are disclosed. For example, nucleic acids encoding lignin-modulating polypeptides are disclosed as well as methods for using such nucleic acids to generate transgenic plants having a modulated lignin content.

Apuya, Nestor; Bobzin, Steven Craig; Okamuro, Jack; Zhang, Ke

2013-01-29T23:59:59.000Z

414

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

415

Plants remember drought, adapt  

Science Conference Proceedings (OSTI)

Research carried out at the University of Nebraska-Lincoln (UNL; USA) shows that plants subjected to a previous period of drought learn to deal with the stress owing to their memories of the experience. Plants remember drought, adapt Inform Magazine

416

BNL | Plant Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Sciences Plant Sciences The Plant Sciences group's goal is to understand the principles underlying carbon capture, conversion, and storage in living systems; and develop the capability to model, predict and optimize these processes in plants and microorganisms. Staff Members John Shanklin Jason Candreva Jilian Fan Hui Liu Qin Liu Edward Whittle Xiaohong Yu Dax Fu Jin Chai Chang-Jun Liu Yuanheng Cai Mingyue Gou Guoyin Kai Zhaoyang Wei Huijun Yang Kewei Zhang Xuebin Zhang Jörg Schwender Jordan Hay Inga Hebbelmann Hai Shi Zhijie Sun Changcheng Xu Chengshi Yan Zhiyang Zhai Plant Sciences Contact John Shanklin, (631)344-3414 In the News No stories available Funding Agencies DOE Basic Energy Sciences Bayer CropScience The Biosciences Department is part of the Environment and Life Sciences Directorate at Brookhaven National Laboratory

417

Granby Pumping Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Granby Pumping Plant Granby Pumping Plant Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Granby Pumping Plant-Windy Gap Transmission Line Rebuild Project Western owns and operates a 12-mile, 69-kV electric transmission line in Grand County, Colo., that originates at Windy Gap Substation and terminates at Granby Pumping Plant Switchyard. The proposed project would rebuild the single circuit line as a double circuit transmission line and add a second power transformer. One circuit would replace the existing 69-kV line; the other circuit would be a new 138-kV line. Granby Pumping Plant Switchyard would be expanded to accommodate the second line and power transformer. Windy Gap Substation would be modified to accommodate the second line.

418

Nuclear plant cancellations: causes, costs, and consequences  

Science Conference Proceedings (OSTI)

This study was commissioned in order to help quantify the effects of nuclear plant cancellations on the Nation's electricity prices. This report presents a historical overview of nuclear plant cancellations through 1982, the costs associated with those cancellations, and the reasons that the projects were terminated. A survey is presented of the precedents for regulatory treatment of the costs, the specific methods of cost recovery that were adopted, and the impacts of these decisions upon ratepayers, utility stockholders, and taxpayers. Finally, the report identifies a series of other nuclear plants that remain at risk of canellation in the future, principally as a result of similar demand, finance, or regulatory problems cited as causes of cancellation in the past. The costs associated with these potential cancellations are estimated, along with their regional distributions, and likely methods of cost recovery are suggested.

Not Available

1983-04-01T23:59:59.000Z

419

Why Sequence the Microbial Community from a Wastewater Treatment...  

NLE Websites -- All DOE Office Websites (Extended Search)

Microbial Community from a Wastewater Treatment Plant? The goal of this project is to get a concise picture of the capacity of a complete complex microbial community in a...

<