Powered by Deep Web Technologies
Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Explosive Waste Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106 106 Environment a 1 Assessment for th.e Explosive Waste Treatment Facility at Site 300 Lawrence Livermore National Laboratory MASTER November 1995 U.S. Department of Energy Office of Environmental Restoration and Waste Management Washington, DOC. 20585 Portions of this document maly be illegible in electronic image products. Images are produced from the best available original document. Table of Contents 1 . 0 2.0 3 . 0 4.0 5 . 0 6.0 7 . 0 8 . 0 Document Summary .............................................................. 1 Purpose and Need for Agency Action ............................................. 3 Description of the Proposed Action and Alternatives ............................ 4 3.1.1 Location ............................................................. 4

2

Integrated Waste Treatment Facility Fact Sheet | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Management Tank Waste and Waste Processing Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet Waste Management Nuclear...

3

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho...

4

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars...

5

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facility L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-047 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) Pretreatment Facilities L. Holton D. Alexander M. Johnson H. Sutter August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-047 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental Management (EM), Office of Project Recovery has completed a Technology Readiness

6

CRAD, Management - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho MF-628 Drum Treatment Facility Idaho MF-628 Drum Treatment Facility CRAD, Management - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May, 2007 readiness assessment of the Management at the MF-628 Drum Treatment Facility at the Idaho National Laboratory, Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Engineering - Idaho MF-628 Drum Treatment Facility CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility

7

CRAD, Training - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho MF-628 Drum Treatment Facility Idaho MF-628 Drum Treatment Facility CRAD, Training - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Training Program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility

8

Hanford Treatment Facility Achieves First Gold Ranking for Sustainable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Treatment Facility Achieves First Gold Ranking for Treatment Facility Achieves First Gold Ranking for Sustainable Design in EM Complex: New groundwater treatment facility will be Hanford's largest, greenest pump-and-treat system Hanford Treatment Facility Achieves First Gold Ranking for Sustainable Design in EM Complex: New groundwater treatment facility will be Hanford's largest, greenest pump-and-treat system May 1, 2012 - 12:00pm Addthis Workers use a lift to access part of the 200 West Groundwater Treatment Facility. Workers use a lift to access part of the 200 West Groundwater Treatment Facility. Pump-and-treat construction managers David Fink (left) and Delise Pargmann (right) review information for the LEED gold certification of the main process building for the 200 West Groundwater Treatment Facility.

9

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment...

10

CRAD, Engineering - Idaho MF-628 Drum Treatment Facility | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MF-628 Drum Treatment Facility MF-628 Drum Treatment Facility CRAD, Engineering - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Engineering program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Occupational Safety & Health - Idaho MF-628 Drum Treatment Facility

11

CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance - Idaho MF-628 Drum Treatment Facility Quality Assurance - Idaho MF-628 Drum Treatment Facility CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility May 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2007 readiness assessment of the Quality Assurance Program at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Idaho MF-628 Drum Treatment Facility More Documents & Publications CRAD, Engineering - Idaho MF-628 Drum Treatment Facility

12

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Startup of Waste Treatment Facility Following Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

13

Idaho Site Launches Startup of Waste Treatment Facility Following Federal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Launches Startup of Waste Treatment Facility Following Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone Idaho Site Launches Startup of Waste Treatment Facility Following Federal Inspection, DOE Milestone April 23, 2012 - 12:00pm Addthis A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste Treatment Unit. A view of the interior of the Integrated Waste Treatment Unit. A controlled, phased startup of the Integrated Waste Treatment Unit began today after the facility passed a federal inspection. A view of the interior of the Integrated Waste

14

Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)  

SciTech Connect

This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

WESTRA, A.G.

1999-06-24T23:59:59.000Z

15

EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING  

SciTech Connect

The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation.

HALGREN DL

2008-07-30T23:59:59.000Z

16

Applications of Energy Efficiency Technologies in Wastewater Treatment Facilities  

E-Print Network (OSTI)

"Depending on the level and type of treatment, municipal wastewater treatment (WWT) can be an energy intensive process, constituting a major cost for the municipal governments. According to a 1993 study wastewater treatment plants consume close to 1% of the electrical power in Northern and Central California. Activated sludge is the most common method for wastewater treatment, and at the same time the most energy intensive process. New energy efficient technologies can help reduce energy consumption of these processes, while improving the treatment effectiveness. Energy efficient technologies can be implemented in retrofit, expansion as well as new construction. This paper details the application of energy efficient technologies in retrofit as well as new construction projects, outlining significant opportunities for energy efficiency and conservation as well as demand response in various types of WWT facilities. This is based on detailed assessments of over 10 wastewater treatment plants in Northern California. The results show that energy savings in the range of 15,000 kWh per year to over 3.2 million kWh per year with paybacks in the range of 1.7 years to 8.9 years are readily achievable in retrofit projects. Application of energy efficient technologies in new construction can be most beneficial in the lifetime of the plant, which usually exceeds 30 years. Based on our experience in evaluation of design by others in energy efficiency design assistance of 7 plants, energy efficiency opportunities in new construction will be elaborated. This paper will discuss common energy efficient practices in new construction and outline additional opportunities that can help further improve energy efficiency of new construction projects. Finally, based on a recent survey, wastewater treatment plants have excellent opportunities for demand response. In Northern California, several WWT plants have participated and greatly benefited from demand response opportunities. Opportunities for demand response based on detailed assessment of 10 plants will be discussed."

Chow, S.; Werner, L.; Wu, Y. Y.; Ganji, A. R.

2009-05-01T23:59:59.000Z

17

New Groundwater Treatment Facility Begins Operation: Boost in Cleanup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Groundwater Treatment Facility Begins Operation: Boost in New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding New Groundwater Treatment Facility Begins Operation: Boost in Cleanup Accelerated by Recovery Act Funding January 19, 2011 - 12:00pm Addthis Media Contacts Andre Armstrong, CH2M HILL (509)376-6773 Andre_L_Armstrong@rl.gov Geoff Tyree, DOE (509) 376-4171 Geoffrey.Tyree@rl.doe.gov RICHLAND, WASH. - The U.S. Department of Energy (DOE) is boosting its capacity for treating groundwater to remove chromium near the Columbia River by 40 percent with the recent completion of a new treatment facility. Contractor CH2M HILL Plateau Remediation Company (CH2M HILL) finished building and started operating the new 100-DX groundwater treatment facility in December. The facility is located near the D and DR Reactors on

18

Idaho waste treatment facility startup testing suspended to evaluate system  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

waste treatment facility startup testing suspended to waste treatment facility startup testing suspended to evaluate system response Idaho waste treatment facility startup testing suspended to evaluate system response June 20, 2012 - 12:00pm Addthis Media Contacts Brad Bugger 208-526-0833 Danielle Miller 208-526-5709 IDAHO FALLS, ID- On Saturday, June 16, startup testing was suspended at the Integrated Waste Treatment Unit (IWTU) located at the U.S. Department of Energy's Idaho Site. Testing and plant heat-up was suspended to allow detailed evaluation of a system pressure event observed during testing on Saturday. Facility startup testing has been ongoing for the past month, evaluating system and component operation and response during operating conditions. No radioactive or hazardous waste has been introduced into the facility,

19

Waste Treatment Facility Passes Federal Inspection, Completes Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Passes Federal Inspection, Completes Final Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup Waste Treatment Facility Passes Federal Inspection, Completes Final Milestone, Begins Startup April 23, 2012 - 12:00pm Addthis Media Contact Erik Simpson, 208-390-9464 Danielle Miller, 208-526-5709 The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. A U.S. Department of Energy (DOE) operational readiness review team (made up of Subject Matter Experts across the country) in early April identified a dozen issues for the cleanup contractor CH2M-WG Idaho, LLC (CWI) to

20

West Point Treatment Plant Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Point Treatment Plant Biomass Facility Point Treatment Plant Biomass Facility Jump to: navigation, search Name West Point Treatment Plant Biomass Facility Facility West Point Treatment Plant Sector Biomass Facility Type Non-Fossil Waste Location King County, Washington Coordinates 47.5480339°, -121.9836029° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5480339,"lon":-121.9836029,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2011 June 7, 2011 Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility RICHLAND, Wash. - Construction of the largest ground- water treatment facility at the Hanford Site - a major American Recovery and Reinvestment Act project - is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish con- struction of the 200 West Groundwater Treatment Facil- ity this year. Funding for the project comes from the $1.6 billion the Richland Operations Office received from the Recovery Act. The 52,000-square-foot facility will pump contaminated water from the ground, remove contaminants with a combination of treatment technologies, and return clean water to the aquifer. The system will have the capacity to

22

Cancer-fighting treatment gets boost from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Cancer-fighting treatment gets boost from Isotope Production Facility Cancer-fighting treatment gets boost from Isotope Production Facility New capability expands existing program, creates treatment product in quantity. April 13, 2012 Medical Isotope Work Moves Cancer Treatment Agent Forward Medical Isotope Work Moves Cancer Treatment Agent Forward - Los Alamos scientist Meiring Nortier holds a thorium foil test target for the proof-of-concept production experiments. Research indicates that it will be possible to match current annual, worldwide production of Ac-225 in just two to five days of operations using the accelerator at Los Alamos and analogous facilities at Brookhaven. Alpha particles are energetic enough to destroy cancer cells but are unlikely to move beyond a tightly controlled target region and destroy

23

Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Improves Worker Safety and Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars Idaho Waste Treatment Facility Improves Worker Safety and Efficiency, Saves Taxpayer Dollars August 27, 2013 - 12:00pm Addthis The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging. The new soft-sided overpack is placed for shipment for treatment and repackaging. The box retrieval forklift carriage is used to lift a degraded box as retrieval personnel monitor progress. The new soft-sided overpack is placed for shipment for treatment and repackaging.

24

Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility  

Science Conference Proceedings (OSTI)

The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

Not Available

1993-08-01T23:59:59.000Z

25

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Facility Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Gilbane Building Company Developer Narragansett Bay Commission Energy Purchaser Field's Point Location Providence RI Coordinates 41.79260859°, -71.3896966° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.79260859,"lon":-71.3896966,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Waste treatment facility passes federal inspection, completes final  

NLE Websites -- All DOE Office Websites (Extended Search)

23, 2012 23, 2012 Media Contact: Danielle Miller, 208-526-5709 Erik Simpson, 208-390-9464 Waste treatment facility passes federal inspection, completes final milestone, begins startup The Idaho site today initiated the controlled, phased startup of a new waste treatment facility scheduled to begin treating 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility next month. An exterior view of the Integrated Waste Treatment Unit A U.S. Department of Energy (DOE) operational readiness review team (made up of Subject Matter Experts across the country) in early April identified a dozen issues for the cleanup contractor CH2M-WG Idaho, LLC (CWI) to resolve before the 53,000-square-foot Integrated Waste Treatment Unit

27

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

Science Conference Proceedings (OSTI)

Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

2008-11-19T23:59:59.000Z

28

Waste Treatment Facility Saves Taxpayers Nearly $20 Million | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million December 11, 2012 - 1:40pm Addthis A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. Erin Szulman Erin Szulman Special Assistant, Office of Environmental Management What Are The Two Types of Waste? One is contact-handled, which has lower radioactivity and can be

29

Waste Treatment Facility Saves Taxpayers Nearly $20 Million | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million Waste Treatment Facility Saves Taxpayers Nearly $20 Million December 11, 2012 - 1:40pm Addthis A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. A new enclosure for processing radioactive casks has put Oak Ridge on a path to finishing cleanup work two years ahead of schedule, saving nearly $20 million. | Photo courtesy of the Office of Environmental Management. Erin Szulman Erin Szulman Special Assistant, Office of Environmental Management What Are The Two Types of Waste? One is contact-handled, which has lower radioactivity and can be

30

Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities  

SciTech Connect

Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

2012-01-01T23:59:59.000Z

31

200 area effluent treatment facility opertaional test report  

Science Conference Proceedings (OSTI)

This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting.

Crane, A.F.

1995-10-26T23:59:59.000Z

32

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

33

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility August 18, 2011 - 12:00pm Addthis Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of AMWTP's nearly 3,900 shipments. Idaho State Patrol Troopers Rick Stouse and Tony Anderson inspected the TRUPACTS, containers which contain TRU waste, and trailer containing the final shipment of Hanford offsite waste. The Idaho State Patrol officers have played an important role in AMWTP's success by inspecting every one of

34

Risk management program for the 283-W water treatment facility  

Science Conference Proceedings (OSTI)

This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document.

GREEN, W.E.

1999-05-11T23:59:59.000Z

35

Reliability analysis of common hazardous waste treatment processes  

Science Conference Proceedings (OSTI)

Five hazardous waste treatment processes are analyzed probabilistically using Monte Carlo simulation to elucidate the relationships between process safety factors and reliability levels. The treatment processes evaluated are packed tower aeration, reverse osmosis, activated sludge, upflow anaerobic sludge blanket, and activated carbon adsorption.

Waters, R.D. [Vanderbilt Univ., Nashville, TN (United States)

1993-05-01T23:59:59.000Z

36

Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection Richland, Washington, 99352 07-DESIGN-046 Technology Readiness Assessment for the Waste Treatment and Immobilization Plant (WTP) HLW Waste Vitrification Facility L. Holton D. Alexander C. Babel H. Sutter J. Young August 2007 Prepared by the U.S. Department of Energy Office of River Protection under Contract DE-AC05-76RL01830 07-DESIGN-046 iii Summary The U.S. Department of Energy (DOE), Office of River Protection (ORP) and the DOE Office of Environmental and Radioactive Waste Management (EM), Office of Project Recovery have completed a

37

Mixed and Low-Level Waste Treatment Facility project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

38

Radioactive Liquid Waste Treatment Facility: Environmental Information Document  

Science Conference Proceedings (OSTI)

At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

1993-11-01T23:59:59.000Z

39

Mixed and Low-Level Waste Treatment Facility Project  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

40

Mixed and low-level waste treatment facility project  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

Not Available

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Mixed Waste Treatment: Results of Mixed Waste Treatment at the M-4 Facility  

Science Conference Proceedings (OSTI)

Processing alternatives for commercial nuclear plant mixed wastes are limited. In order to expand potential treatment options, EPRI entered a collaborative research agreement to process mixed wastes at an environmental facility. This report documents the success of that effort to date.

1997-12-31T23:59:59.000Z

42

Mixed and Low-Level Treatment Facility Project  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

43

Treatment of measurement uncertainties at the power burst facility  

SciTech Connect

The treatment of measurement uncertainty at the Power Burst Facility provides a means of improving data integrity as well as meeting standard practice reporting requirements. This is accomplished by performing the uncertainty analysis in two parts, test independent uncertainty analysis and test dependent uncertainty analysis. The test independent uncertainty analysis is performed on instrumentation used repeatedly from one test to the next, and does not have to be repeated for each test except for improved or new types of instruments. A test dependent uncertainty analysis is performed on each test based on the test independent uncertainties modified as required by test specifications, experiment fixture design, and historical performance of instruments on similar tests. The methodology for performing uncertainty analysis based on the National Bureau of Standards method is reviewed with examples applied to nuclear instrumentation.

Meyer, L.C.

1980-01-01T23:59:59.000Z

44

Treatment Facility F: Accelerated Removal and Validation Project  

Science Conference Proceedings (OSTI)

The Accelerated Removal and Validation (ARV) phase of remediation at the Treatment Facility F (TFF) site at Lawrence Livermore National Laboratory (LLNL) was designed to accelerate removal of gasoline from the site when compared to normal, single shift, pump-and-treat operations. The intent was to take advantage of the in-place infrastructure plus the increased underground temperatures resulting from the Dynamic Underground Stripping Demonstration Project (DUSDP). Operations continued 24-hours (h) per day between October 4 and December 12, 1993. Three contaminant removal rate enhancement approaches were explored during the period of continuous operation. First, we tried several configurations of the vapor pumping system to maximize the contaminant removal rate. Second, we conducted two brief trials of air injection into the lower steam zone. Results were compared with computer models, and the process was assessed for contaminant removal rate enhancement. Third, we installed equipment to provide additional electrical heating of contaminated low-permeability soil. Four new electrodes were connected into the power system. Diagnostic capabilities at the TFF site were upgraded so that we could safely monitor electrical currents, soil temperatures, and water treatment system processes while approximately 300 kW of electrical energy was being applied to the subsurface.

Sweeney, J.J.; Buettner, M.H.; Carrigan, C.R. [and others

1994-04-01T23:59:59.000Z

45

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

46

PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY  

Science Conference Proceedings (OSTI)

The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

HALGREN DL

2010-03-12T23:59:59.000Z

47

Biological Information Document, Radioactive Liquid Waste Treatment Facility  

SciTech Connect

This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

Biggs, J.

1995-12-31T23:59:59.000Z

48

Radioactive Liquid Waste Treatment Facility Discharges in 2011  

Science Conference Proceedings (OSTI)

This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

Del Signore, John C. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

49

EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

106: Explosive Waste Treatment Facility at Site 300, Lawrence 106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California EA-1106: Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory, San Joaquin County, California SUMMARY This EA evaluates the environmental impacts of the proposal to build, permit, and operate the Explosive Waste Treatment Facility to treat explosive waste at the U.S. Department of Energy's Lawrence Livermore National Laboratory Experimental Test Site, Site 300. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 16, 1996 EA-1106: Finding of No Significant Impact Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory April 16, 1996

50

Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)  

SciTech Connect

The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

1992-04-01T23:59:59.000Z

51

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR SAFETY (NS) NUCLEAR SAFETY (NS) Objective: NS.1 Facility safety documentation is in place and has been implemented that describes the "safety envelope" of the facility. (CR 7) Criterion: An unreviewed safety question (USQ) screen/evaluation has been completed and approved for the installation and use of the DTF for drum treatment in the DTF. Objective: NS.2 The facility systems and procedures, for the DTF and drum treatment activities, are consistent with the description of the facility, procedures, and accident analysis included in the safety basis. (CR9) Criterion: The DTF and drum treatment activities are adequately described in the documented safety analysis (DSA) or changes have been identified for inclusion in the next annual update.

52

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the DTF, its support systems, tools, and drum treatment activities identified in ORPS corrective actions, NCRs or CARS have been adequately resolved. b. Lessons learned from...

53

Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary  

SciTech Connect

This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals.

1995-03-24T23:59:59.000Z

54

Sanitary Waste Water Treatment System for the Hanford Decontamination Laundry Facility  

SciTech Connect

This is an engineering report for the Decontamination Laundry Facility (DLF) which will be located in the 200 East Area of the Hanford Site. The proposed Sanitary Waste Treatment System is new and does not involve interfacing with existing sanitary waste treatment systems. It will utilize a subsurface soil absorption system (SSAS), which are frequently used to dispose of sanitary waste water from facilities at the Hanford Site, since a majority of its` facilities are located in remote areas. Construction of the DLF is scheduled to start in 1992 and startup of the DLF is planned during the summer of 1994.

Yanochko, R.M.

1992-09-01T23:59:59.000Z

55

Sanitary Waste Water Treatment System for the Hanford Decontamination Laundry Facility  

SciTech Connect

This is an engineering report for the Decontamination Laundry Facility (DLF) which will be located in the 200 East Area of the Hanford Site. The proposed Sanitary Waste Treatment System is new and does not involve interfacing with existing sanitary waste treatment systems. It will utilize a subsurface soil absorption system (SSAS), which are frequently used to dispose of sanitary waste water from facilities at the Hanford Site, since a majority of its' facilities are located in remote areas. Construction of the DLF is scheduled to start in 1992 and startup of the DLF is planned during the summer of 1994.

Yanochko, R.M.

1992-09-01T23:59:59.000Z

56

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

57

Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

Norm Stanley

2011-02-01T23:59:59.000Z

58

Test of a magnetic device for the amelioration of scale formation at Treatment Facility D  

SciTech Connect

A commercial device (Descal-A-Matic{reg_sign}, Norfolk, VA) designed to treat water by means of a magnetic field has been evaluated for its effect on the formation of calcite scale at LLNL Treatment Facility D. At this facility, volatile organic contaminants (VOCs) are removed by air stripping, which raises the water pH, causing the deposition of calcium carbonate as calcite scale downstream. To evaluate the magnetic treatment technique, the ground water was passed through the Descal-A-Matic{reg_sign} device before treatment by the air stripping unit, and the resulting scale formation and other water characteristics were compared with those found during a test with no water treatment and a test with chemical treatment with a polyphosphate additive. No beneficial effect was found when using the magnetic device. 6 refs., 6 figs., 4 tabs.

Krauter, P.W., Harrar, J.E., Orloff, S.P., Bahowick, S.M.

1996-12-01T23:59:59.000Z

59

The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radioactive Liquid Waste Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory" BACKGROUND The Department of Energy's Los Alamos National Laboratory (Los Alamos) is a Government- owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. Los Alamos' primary responsibility is to

60

Economic costs of conventional surface-water treatment: A case study of the Mcallen northwest facility  

E-Print Network (OSTI)

Conventional water treatment facilities are the norm for producing potable water for U.S. metropolitan areas. Rapidly-growing urban populations, competing demands for water, imperfect water markets, and uncertainty of future water supplies contribute to high interests in alternative sources of potable water for many U.S. municipalities. In situations where multiple supply alternatives exist, properly analyzing which alternative is the most-economically efficient over the course of its useful life requires a sound economic and financial analysis of each alternative using consistent methodology. This thesis discusses such methodology and provides an assessment of the life-cycle costs of conventional water treatment using actual data from an operating surface-water treatment facility located in McAllen, Texas: the McAllen Northwest facility. This facility has a maximum-designed operating capacity of 8.25 million gallons per day (mgd), but due to required shutdown time and other limitations, it is currently operating at 78% of the designed capacity (6.44 mgd). The economic and financial life-cycle costs associated with constructing and operating the McAllen Northwest facility are analyzed using a newly-developed Excel 2 spreadsheet model, CITY H O ECONOMICS . Although specific results are applicable only to the McAllen Northwest facility, the baseline results of $771.67/acre-foot (acft)/ yr {$2.37/1,000 gallons/yr} for this analysis provide insight regarding the life-cycle costs for conventional surface-water treatment. The baseline results are deterministic (i.e., noninclusive of risk/uncertainty about datainput values), but are expanded to include sensitivity analyses with respect to several critical factors including the facilitys useful life, water rights costs, initial construction costs, and annual operations and maintenance, chemical, and energy costs. For example, alternative costs for water rights associated with sourcing water for conventional treatment facilities are considered relative to the assumed baseline cost of $2,300/ac-ft, with results ranging from a low of $653.34/ac-ft/yr (when water rights are $2,000/ac-ft) to a high of $1,061.83/ac-ft/yr (when water rights are $2,600/ac-ft). Furthermore, modifications to key data-input parameters and results are included for a more consistent basis of comparison to enable comparisons across facilities and/or technologies. The modified results, which are considered appropriate to compare to other similarly calculated values, are $667.74/ac-ft/yr {2.05/1,000 gallons/yr}.

Rogers, Callie Sue

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Audit of the radioactive liquid waste treatment facility operations at the Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (Los Alamos) generates radioactive and liquid wastes that must be treated before being discharged to the environment. Presently, the liquid wastes are treated in the Radioactive Liquid Waste Treatment Facility (Treatment Facility), which is over 30 years old and in need of repair or replacement. However, there are various ways to satisfy the treatment need. The objective of the audit was to determine whether Los Alamos cost effectively managed its Treatment Facility operations. The audit determined that Los Alamos` treatment costs were significantly higher when compared to similar costs incurred by the private sector. This situation occurred because Los Alamos did not perform a complete analysis of privatization or prepare a {open_quotes}make-or-buy{close_quotes} plan for its treatment operations, although a {open_quotes}make-or-buy{close_quotes} plan requirement was incorporated into the contract in 1996. As a result, Los Alamos may be spending $2.15 million more than necessary each year and could needlessly spend $10.75 million over the next five years to treat its radioactive liquid waste. In addition, Los Alamos has proposed to spend $13 million for a new treatment facility that may not be needed if privatization proves to be a cost effective alternative. We recommended that the Manager, Albuquerque Operations Office (Albuquerque), (1) require Los Alamos to prepare a {open_quotes}make-or-buy{close_quotes} plan for its radioactive liquid waste treatment operations, (2) review the plan for approval, and (3) direct Los Alamos to select the most cost effective method of operations while also considering other factors such as mission support, reliability, and long-term program needs. Albuquerque concurred with the recommendations.

1997-11-19T23:59:59.000Z

62

Endovascular Treatment of Infrarenal Abdominal Aortic Lesions With or Without Common Iliac Artery Involvement  

SciTech Connect

To evaluate the results of stent placement for obstructive atherosclerotic aortic disease with or without involvement of the common iliac artery. Forty patients had self-expanding stents primarily or after balloon dilatation in the abdominal aorta between January 2005 and May 2011. All patients had trouble walking. Follow-up examinations were performed with clinical visits; these included color Doppler ultrasonography and computed tomographic angiography. Technical, clinical, and hemodynamic success was achieved in all patients. None of the patients underwent reintervention during the follow-up period, which ranged from 3 months to 6 years (median 24 months). Nine complications occurred in six patients. Of the nine complications, four were distal thromboembolisms, which were successfully treated with catheter-directed thrombolysis or anticoagulation therapy. Endovascular treatment of the obstructive aortic disease using self-expanding stents was safe and effective, with high technical success and long-term patency. Thromboembolic complications were high even though direct stenting was considered protective for thromboembolism formation. Particularly for infrarenal aortic stenosis, it can be recommended as the first-line treatment option for patients with obstructive atherosclerotic aortic disease.

Oender, Hakan, E-mail: drhakanonder@hotmail.com [Dicle University Medical Faculty, Department of Radiology (Turkey)] [Dicle University Medical Faculty, Department of Radiology (Turkey); Oguzkurt, Levent [Baskent University Medical Faculty, Department of Radiology (Turkey)] [Baskent University Medical Faculty, Department of Radiology (Turkey); Guer, Serkan [Sifa University Medical Faculty, Department of Radiology (Turkey)] [Sifa University Medical Faculty, Department of Radiology (Turkey); Tekbas, Gueven [Dicle University Medical Faculty, Department of Radiology (Turkey)] [Dicle University Medical Faculty, Department of Radiology (Turkey); Guerel, Kamil [Abant Izzet Baysal University Medical Faculty, Department of Radiology (Turkey)] [Abant Izzet Baysal University Medical Faculty, Department of Radiology (Turkey); Coskun, Isa [Baskent University Medical Faculty, Department of Cardiovascular Surgery (Turkey)] [Baskent University Medical Faculty, Department of Cardiovascular Surgery (Turkey); Oezkan, Ugur [Baskent University Medical Faculty, Department of Radiology (Turkey)] [Baskent University Medical Faculty, Department of Radiology (Turkey)

2013-02-15T23:59:59.000Z

63

2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: Site description Facility and system description Permit required monitoring data and loading rates Status of special compliance conditions Discussion of the facilitys environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Mike lewis

2011-02-01T23:59:59.000Z

64

2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: Site description Facility and system description Permit required monitoring data and loading rates Status of compliance conditions and activities Discussion of the facilitys environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

Mike Lewis

2013-02-01T23:59:59.000Z

65

Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3  

Science Conference Proceedings (OSTI)

This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

Sullivan, N.

1995-05-02T23:59:59.000Z

66

Request for modification of 200 Area effluent treatment facility final delisting  

SciTech Connect

A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act.

BOWMAN, R.C.

1998-11-19T23:59:59.000Z

67

Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project OAS-M-13-03 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project" BACKGROUND In 2005, the Department of Energy (Department) awarded the Idaho Cleanup Project contract to CH2M ♦ WG Idaho, LLC (CWI) to remediate the Idaho National Laboratory. The Sodium

68

Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact  

SciTech Connect

The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

1992-12-31T23:59:59.000Z

69

2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Sites Central Facilities Area Sewage Treatment Plant  

SciTech Connect

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Michael G. Lewis

2012-02-01T23:59:59.000Z

70

SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT & M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS  

SciTech Connect

In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI!ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized.

RYAN GW

2008-04-25T23:59:59.000Z

71

Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities  

Science Conference Proceedings (OSTI)

In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

Sasser, K.

1994-06-01T23:59:59.000Z

72

Assessment of Air Emissions at the U S Liquids Exploration and Production Land Treatment Facility  

SciTech Connect

This project was initiated to make the first set of measurements documenting the potential for emissions of pollutants from exploration and production (E&P) waste disposal facilities at Bourg, Louisiana and Bateman Island, Louisiana. The objective of the project was to quantify the emissions and to determine whether the measured emissions were potentially harmful to human health of workers and the adjacent community. The study, funded by the Department of Energy (DOE) is designed to complement additional studies funded by Louisiana Department of Natural Resources (LADNR) and the American Petroleum Institute. The distinguishing feature of this study is that actual, independent field measurements of emissions were used to assess the potential problems of this disposal technology. Initial measurements were made at the Bourg, LA facility, adjacent to the community of Grand Bois in late 1998-early 1999. Emission measurements were performed using aluminum chambers placed over the surface of the landfarm cells. Air was pulled through the chambers and the concentration of the contaminants in the air exiting the chambers was measured. The contaminants of interest were the ''BTEX'' compounds (benzene, toluene, ethylbenzene and xylene), commonly found in E&P wastes and hydrogen sulfide, a noxious gas present naturally in many E&P wastes and crude oils. Measurements indicated that emissions were measurable using the techniques developed for the study. However, when the air concentrations of these contaminants that developed above the landfarm cells were compared with standards for workers from the Occupational and Safety and Health Association (''OSHA'') and for communities (Louisiana's ambient air standards), levels were not of concern. Since amounts of wastes being processed by the Bourg facility were considerably lower than normal, a decision was made to continue the study at the Bateman Island facility near Morgan City, LA. This facility was receiving more normal loadings of E&P wastes. Additional emission measurements were made at the Bateman Island facility within cells over a range of ''ages'', from those most recently loaded with E&P wastes to cells that have not received wastes for 9 months or more. As expected the greatest chance for emissions when the cell is most recently loaded. Again, measured fluxes did not produce air concentrations that were of concern. As expected, the highest fluxes were observed in the cells that had recently received wastes and older cells had very low emissions. Measurements of emissions of hydrogen sulfide (H{sub 2}S) were also conducted at these two facilities. Levels of emissions were similar to the xange observed in the literature for natural salt marshes that surround these facilities. Production of sulfide within the cells was also measured by the most sensitive techniques available and measured sulfide production rates were low in the samples tested. The only potential concern at the facility with regards to sulfide was the levels of sulfide emitted from the sumps. The facility logbook at Bourg was analyzed to determine a time sequence of activities over 1998-1999. The Louisiana Department of Environmental Quality conducted a time-series of air concentrations for hazardous air pollutants during this period at the fenceline of the Bourg facility. These data were characterized by periods of static concentrations interspersed with peaks. A series of peaks were analyzed and compared with logbook records for the activities occurring at the time. In reverse fashion, a set of activities documented by the logbook was examined and the concentrations of benzene that developed from these activities were documented. No direct correlation could be made with the observed peaks and any activities suggesting that concentrations of benzene at the fenceline may be the result of a complex suite of activities including onsite activities not documented in the logbook (loading of the cells by truck haulers) and offsite activities (automobile traffic). Based on these results several recomme

John H. Pardue; K.T. Valsaraj

2000-12-01T23:59:59.000Z

73

Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

Not Available

1993-10-01T23:59:59.000Z

74

Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study  

SciTech Connect

This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions of 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.

Thompson, Lisa; Lekov, Alex; McKane, Aimee; Piette, Mary Ann

2010-08-20T23:59:59.000Z

75

Hanford Facility Dangerous Waste Closure Plan - Plutonium Finishing Plant Treatment Unit Glovebox HA-20MB  

Science Conference Proceedings (OSTI)

This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility. Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to RHA.

PRIGNANO, A.L.

2003-06-25T23:59:59.000Z

76

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

SciTech Connect

This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

2009-04-01T23:59:59.000Z

77

Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste  

SciTech Connect

This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

1996-02-01T23:59:59.000Z

78

PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION  

Science Conference Proceedings (OSTI)

Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site. The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individ

JOHNSTON GA

2008-01-15T23:59:59.000Z

79

Recycle of the treated effluent from the Liquid Effluent Treatment Facility: Engineering study  

SciTech Connect

During normal N Reactor operation there will be low-level radioactive liquid effluent flows discharged to the planned Liquid Effluent Treatment Facility (LETF). The LETF will filter and treat these flows to decrease the radioactive prior to discharging the effluent to the Liquid Waste Disposal Facility (LWDF) soil column. This report examines the feasibility and economics of recycling the treated effluent to the N Reactor for reuse thus eliminating or reducing discharges to the soil. The study concluded that recycling LETF effluent for reuse in the primary coolant system and in the fuel storage basin is technically feasible. However, the high cost to provide recycle water meeting the minimum N reactor chemical requirements and radiological concerns may not be justified due to the limited reactor operating life. The study concluded that inexpensive piping modifications to the Building 107N recirculation system would provide additional flow to alleviate the fuel basin clarity problem during refueling. This change would avoid the disposal of 62.2 million gal of treated water per year to the soil column. 21 refs., 5 figs., 7 tabs.

Shearer, E.A.; Janke, D.S.

1988-04-01T23:59:59.000Z

80

Treatment Facility D P.W. Krauter J.E. Harrar  

Office of Scientific and Technical Information (OSTI)

129050 129050 Effect of C02-Air Mixtures on the pH of Air-Stripped Water at Treatment Facility D P.W. Krauter J.E. Harrar S .P. Orloff January1998 or may not be those of the Laboratory. Work performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under Contract W-7405ENG-48. DISCLAIMER This document was prepared as an account of work sponsored by an agencv of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY  

Science Conference Proceedings (OSTI)

This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

MAY TH; GEHNER PD; STEGEN GARY; HYMAS JAY; PAJUNEN AL; SEXTON RICH; RAMSEY AMY

2009-12-28T23:59:59.000Z

82

The Design and Construction of the Advanced Mixed Waste Treatment Facility  

SciTech Connect

The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site integration of functional components or glove boxes, with the attendant integrated control system and undertaking continuous, non-stop, operational effectiveness proof tests. This paper describes the process, plant and technology used within the AMWTP and provides an outline of the associated design, procurement, fabrication, testing and construction.

Harrop, G.

2003-02-27T23:59:59.000Z

83

Operational characteristics of anaerobic digesters at selected municipal wastewater treatment facilities in the United States  

DOE Green Energy (OSTI)

Bench-scale and pilot plant studies at PNL have shown that powdered activated carbon is effective in improving volatile solids destruction and gas production in anaerobic digesters that are operating at less than normally expected levels of efficiency. To evaluate the applicability of this technology to digesters in the United States, digester operating characteristics at 60 facilities were surveyed and the number of stressed digesters estimated. The results show that although median values of the operating parameters conformed with those of a well-operated digester, 30% of the digesters surveyed were stressed with regard to at least one important parameter. Of the 30 largest treatment plants in the U.S., 7 fell into this category. Digester gas production and usage were then examined to determine the importance of methane off-gas as an energy source. A conservative estimate is that the gas produced nationally represents a heating value of about 2.36 x 10/sup 13/ Btu/year with a present value of $40 million. Of this amount, an estimated 75% is used either onsite or sold. Onsite uses include heating digesters and buildings, incinerating sludge, operating equipment, and generating electricity. The other 25% is flared and the energy value lost. The present value of the flared gas is about $10 million/year. Natural gas prices are projected to increase 150% over the next 7 years. If the present utilization ratio continues, the flared gas will be worth approximately $27 million in 1985. Presently, digester gas is mainly used for process heating and operating equipment. The technical and economic feasibility of recovering digester gas for electrical power generation, onsite equipment operation, and sales to other consumers (utilities, private companies) should be thoroughly investigated. If fuel gas recovery and utilization are found to be desirable, consideration should be given to expanding and upgrading anaerobic digester facilities in the U.S.

Spencer, R.R.; Wong, A.L.; Coates, J.A.; Ahlstrom, S.B.

1978-12-01T23:59:59.000Z

84

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRITICALITY SAFETY CRITICALITY SAFETY OBJECTIVE CS.1 Facility safety documentation that describes the "safety envelope" for the AR Project II activities is in place and has been implemented and administrative and engineering controls to prevent and mitigate hazards associated with commencing the AR Project II activities are tailored to the work being performed and the associated hazards to meet the following criteria: CRITERIA: CS. 1.1 Criticality safety requirements are current, approved, and properly controlled. CS. 1.2 Facility safety and criticality requirements have been incorporated into applicable procedures and documents. REVIEW APPROACH: Document Reviews: * Review applicable CSEs for identification of facility hazards and development

85

SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY  

Science Conference Proceedings (OSTI)

The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.

RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

2009-04-29T23:59:59.000Z

86

LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY  

Science Conference Proceedings (OSTI)

Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have minor/major impacts are chlorination, pH adjustment, 1st mercury removal, organics removal, 2nd mercury removal, and ion exchange. For minor impacts, the general approach is to use historical process operations data/modeling software like OLI/ESP and/or monitoring/compiled process operations data to resolve any uncertainties with testing as a last resort. For major impacts (i.e., glycolate concentrations > 33 mg/L or 0.44 mM), testing is recommended. No impact is envisaged for the following ETF unit operations regardless of the glycolate concentration - filtration, reverse osmosis, ion exchange resin regeneration, and evaporation.

Adu-Wusu, K.

2012-05-10T23:59:59.000Z

87

Pilot studies to achieve waste minimization and enhance radioactive liquid waste treatment at the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility  

SciTech Connect

The Radioactive and Industrial Wastewater Science Group manages and operates the Radioactive Liquid Waste Treatment Facility (RLWTF) at the Los Alamos National Laboratory (LANL). The RLWTF treats low-level radioactive liquid waste generated by research and analytical facilities at approximately 35 technical areas throughout the 43-square-mile site. The RLWTF treats an average of 5.8 million gallons (21.8-million liters) of liquid waste annually. Clarifloculation and filtration is the primary treatment technology used by the RLWTF. This technology has been used since the RLWTF became operable in 1963. Last year the RLWTF achieved an average of 99.7% removal of gross alpha activity in the waste stream. The treatment process requires the addition of chemicals for the flocculation and subsequent precipitation of radionuclides. The resultant sludge generated during this process is solidified in drums and stored or disposed of at LANL.

Freer, J.; Freer, E.; Bond, A. [and others

1996-07-01T23:59:59.000Z

88

Supplemental Power for the town of Browning Waste-Water Treatment Facility  

Science Conference Proceedings (OSTI)

This final report is issued for the "Supplemental power for the Town of Browning waste-water treatment facility" under the Field Verification Program for Small Wind Turbines Grant. The grant application was submitted on April 16, 1999 wherein the full description of this project is outlined. The project was initially designed to test the Bergy small wind turbines, 10 kW, applicability to residential and commercial applications. The objectives of the project were the following: 1. To verify the performance of the BWC Excel-S/E model wind turbine in an operational application in the fierce winds and severe weather conditions of the Class V winds of the Blackfeet Indian Reservation of Northern Montana. 2. To open up the Blackfeet reservation and northern Montana, to government sponsored, regionally distributed wind generation programs. 3. To examine the natural partnership of wind/electric with water pumping and water purification applications whose requirements parallel the variably available nature of energy produced by wind. 4. To provide data and hands-on experience to citizens, scientists, political leaders, utility operators and Tribal planners with regard to the potential uses of small-capacity, distributed-array wind turbines on the Blackfeet Reservation and in other areas of northern Montana. This project has not been without a few, which were worked out and at the time of this report continue to be worked on with the installation of two new Trace Technologies invertors and a rebuilt one with new technology inside. For the most part when the system has worked it produced power that was used within the wastewater system as was the purpose of this project.

William Morris; Dennis Fitzpatrick

2005-12-20T23:59:59.000Z

89

Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update  

SciTech Connect

The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

L. V. Street

2007-04-01T23:59:59.000Z

90

Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

1992-04-01T23:59:59.000Z

91

Effect of distance to radiation treatment facility on use of radiation therapy after mastectomy in elderly women  

Science Conference Proceedings (OSTI)

Purpose: We sought to study the effect of distance to the nearest radiation treatment facility on the use of postmastectomy radiation therapy (PMRT) in elderly women. Methods and Materials: Using data from the linked Surveillance, Epidemiology, and End Results-Medicare (SEER-Medicare) database, we analyzed 19,787 women with Stage I or II breast cancer who received mastectomy as definitive surgery during 1991 to 1999. Multivariable logistic regression was used to investigate the association of distance with receipt of PMRT after adjusting for clinical and sociodemographic factors. Results: Overall 2,075 patients (10.5%) treated with mastectomy received PMRT. In addition to cancer and patient characteristics, in our primary analysis, increasing distance to the nearest radiation treatment facility was independently associated with a decreased likelihood of receiving PMRT (OR 0.996 per additional mile, p = 0.01). Secondary analyses revealed that the decline in PMRT use appeared at distances of more than 25 miles and was statistically significant for those patients living more than 75 miles from the nearest radiation facility (odds of receiving PMRT of 0.58 [95% CI 0.34-0.99] vs. living within 25 miles of such a facility). The effect of distance on PMRT appeared to be more pronounced with increasing patient age (>75 years). Variation in the effect of distance on radiation use between regions of the country and nodal status was also identified. Conclusions: Oncologists must be cognizant of the potential barrier to quality care that is posed by travel distance, especially for elderly patients; and policy makers should consider this fact in resource allocation decisions about radiation treatment centers.

Punglia, Rinaa S. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA (United States)]. E-mail: rpunglia@lroc.harvard.edu; Weeks, Jane C. [Division of Medical Oncology, Center for Outcomes and Policy Research, Dana-Farber Cancer Institute, Boston, MA (United States); Neville, Bridget A. [Division of Medical Oncology, Center for Outcomes and Policy Research, Dana-Farber Cancer Institute, Boston, MA (United States); Earle, Craig C. [Division of Medical Oncology, Center for Outcomes and Policy Research, Dana-Farber Cancer Institute, Boston, MA (United States)

2006-09-01T23:59:59.000Z

92

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

93

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conduct of Operations (OP) Conduct of Operations (OP) OBJECTIVE OP.1 Resources are effectively allocated to address environmental, safety, health, and quality (ESH&Q), programmatic, and operational considerations required for commencing AR Project II activities to meet the following criteria: CRITERIA: OP.1.1. There are sufficient numbers of trained/qualified operations personnel to conduct and support the activity. OP. 1.2 There are adequate facilities and equipment available to ensure operational support is adequate for the activity. (Such support services include operations, training, maintenance, waste management, environmental protection, industrial safety and hygiene, radiological protection and health physics, emergency preparedness, fire protection, quality assurance, criticality safety, and

94

SLUDGE TREATMENT PROJECT KOP DISPOSITION - THERMAL AND GAS ANALYSIS FOR THE COLD VACUUM DRYING FACILITY  

DOE Green Energy (OSTI)

The purpose of this document is to present conceptual design phase thermal process calculations that support the process design and process safety basis for the cold vacuum drying of K Basin KOP material. This document is intended to demonstrate that the conceptual approach: (1) Represents a workable process design that is suitable for development in preliminary design; and (2) Will support formal safety documentation to be prepared during the definitive design phase to establish an acceptable safety basis. The Sludge Treatment Project (STP) is responsible for the disposition of Knock Out Pot (KOP) sludge within the 105-K West (KW) Basin. KOP sludge consists of size segregated material (primarily canister particulate) from the fuel and scrap cleaning process used in the Spent Nuclear Fuel process at K Basin. The KOP sludge will be pre-treated to remove fines and some of the constituents containing chemically bound water, after which it is referred to as KOP material. The KOP material will then be loaded into a Multi-Canister Overpack (MCO), dried at the Cold Vacuum Drying Facility (CVDF) and stored in the Canister Storage Building (CSB). This process is patterned after the successful drying of 2100 metric tons of spent fuel, and uses the same facilities and much of the same equipment that was used for drying fuel and scrap. Table ES-l present similarities and differences between KOP material and fuel and between MCOs loaded with these materials. The potential content of bound water bearing constituents limits the mass ofKOP material in an MCO load to a fraction of that in an MCO containing fuel and scrap; however, the small particle size of the KOP material causes the surface area to be significantly higher. This relatively large reactive surface area represents an input to the KOP thermal calculations that is significantly different from the calculations for fuel MCOs. The conceptual design provides for a copper insert block that limits the volume available to receive KOP material, enhances heat conduction, and functions as a heat source and sink during drying operations. This use of the copper insert represents a significant change to the thermal model compared to that used for the fuel calculations. A number of cases were run representing a spectrum of normal and upset conditions for the drying process. Dozens of cases have been run on cold vacuum drying of fuel MCOs. Analysis of these previous calculations identified four cases that provide a solid basis for judgments on the behavior of MCO in drying operations. These four cases are: (1) Normal Process; (2) Degraded vacuum pumping; (3) Open MCO with loss of annulus water; and (4) Cool down after vacuum drying. The four cases were run for two sets of input parameters for KOP MCOs: (1) a set of parameters drawn from safety basis values from the technical data book and (2) a sensitivity set using parameters selected to evaluate the impact of lower void volume and smaller particle size on MCO behavior. Results of the calculations for the drying phase cases are shown in Table ES-2. Cases using data book safety basis values showed dry out in 9.7 hours and heat rejection sufficient to hold temperature rise to less than 25 C. Sensitivity cases which included unrealistically small particle sizes and corresponding high reactive surface area showed higher temperature increases that were limited by water consumption. In this document and in the attachment (Apthorpe, R. and M.G. Plys, 2010) cases using Technical Databook safety basis values are referred to as nominal cases. In future calculations such cases will be called safety basis cases. Also in these documents cases using parameters that are less favorable to acceptable performance than databook safety values are referred to as safety cases. In future calculations such cases will be called sensitivity cases or sensitivity evaluations Calculations to be performed in support of the detailed design and formal safety basis documentation will expand the calculations presented in this document to include: additional features of th

SWENSON JA; CROWE RD; APTHORPE R; PLYS MG

2010-03-09T23:59:59.000Z

95

Ecological survey for the siting of the Mixed and Low-Level Waste Treatment Facility and the Idaho Waste Processing Facility  

SciTech Connect

This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Laboratory (INEL) at four candidate locations for the siting of the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate location were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning System (GPS) measurements of the marker stakes were made, and input to the Arc/Info{reg_sign} geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data was overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Results of the field surveys indicate use of Candidate Location {number_sign}1 by pygmy rabbits (Sylvilagus idahoensis) and expected use by them of Candidate Locations {number_sign}3 and {number_sign}9. Pygmy rabbits are categorized as a C2 species by the US Fish and Wildlife Service (USFWS). Two other C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. Candidate Location {number_sign}5 at the north end of the INEL is in the winter range of a large number of pronghorn antelope (Antilocapra americana).

Hoskinson, R.L.

1994-05-01T23:59:59.000Z

96

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONDUCT OF OPERATIONS (OP) CONDUCT OF OPERATIONS (OP) Objective: OP.1 Adequate and correct procedures and safety limits are in place for operating the DTF ventilation system and conducting treatment activities. (CR1, CR-10) Criteria: a. All required procedures, AMOWs, PTWs, and work orders have been prepared, validated, and approved for all routine treatment and support activities. b. Procedures include actions for anticipated abnormal or emergency conditions. c. Workers have demonstrated their familiarity and knowledge of the procedures during interviews and mockup operations. Objective: OP.2 Routine drills have been prepared and conducted for the DTF drum treatment activities. (CR11) Criteria; a. Drills have been prepared that address the anticipated abnormal and

97

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

98

Readiness Assessment for MF-628 Drum Treatment Facility - Advanced Mixed Waste Treatment Project … 5-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RADIATION PROTECTION (RP) RADIATION PROTECTION (RP) Objective: RP.1 Adequate and correct contamination control procedures and safety limits are in place for operating the DTF ventilation system and conducting drum treatment operations in the DTF. (CR1, CR10) a. A thorough hazard analysis addressing contamination control and radiation protection has been completed for drum treatment activities in the DTF. b. The design of the DTF and ventilation system is adequate to prevent the spread of contamination. The adequacy has been demonstrated by testing and mockup operations. c. Appropriate limits, contamination control methods, and radiation protection practices have been identified and included in the applicable AMOW, PTW and procedures. d. Adequate radiation monitoring instruments are installed and properly located

99

Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility  

SciTech Connect

CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energys (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOEs mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project teams successful integration of the projects core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOEs mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

2013-01-11T23:59:59.000Z

100

Report on the Best Available Technology (BAT) for the treatment of the INEL Central Laundry and Respirator Facility (CFA-617)  

SciTech Connect

The Central Laundry and Respirator Facility (CLRF) designated by the building number of CFA-617 has been addressed as a potential source of contamination to the Central Facilities Area (CFA) subsurface drainage field which also receives waste water from the current CFA Sewage Treatment Plant (STP). Currently, discharges from the CLRF have been below set guidelines, DCG. A new STP has been proposed for the CFA. Since the CLRF has been designated as a potential source of contamination, a Best Available Technology (BAT) assessment was requested to determine what action should be taken in respect to the aqueous discharges from the CLRF. The BAT assessment involved source definition, technology evaluation, BAT matrix development, BAT selection, and BAT documentation. The BAT for the Central laundry and Respirator Facility selected the treatment which would impact the CLRF and the new STP the least in all aspects considered and was the system of filtration and a lined pond for natural evaporation of the water. The system will provide an isolation of this waste stream from all other CFA waste water which will be treated at the new STP. Waste minimization possibilities exist within the laundry process and are considered. These minimization actions will reduce the amount of waste water being released, but will result in raising the contaminate's concentrations (the total mass will remain the same). The second option was the use of ion exchange to remove the contaminates and recycle the water back to the wash and rinse cycles in the laundry. 3 refs., 9 figs., 11 tabs.

Miyasaki, D.H.; Heiser, D.L.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility  

SciTech Connect

CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

2012-11-14T23:59:59.000Z

102

Determination of Baselines for Evaluation and Promotion of Energy Efficiency in Wastewater Treatment Facilities  

E-Print Network (OSTI)

Wastewater treatment plants are one of the largest energy consumers managed by the public sector. As plants expand in the future to accommodate population growth, energy requirements will substantially increase. Thus, implementation of energy efficient technologies is crucial in reducing national energy consumption. A detailed understanding of the current industry standards (baselines) is needed to estimate the energy savings potential for advanced state-of-the-art technologies and to provide incentives for application of the new technologies in retrofit and new construction projects. This paper summarizes the process BASE Energy, Inc. (BASE) went through to establish baselines to compare the energy performance of potential energy efficient technologies in the wastewater treatment industry that can be applied to energy efficiency programs available for wastewater treatment plants.

Chow, S. A.; Ganji, A. R.; Fok, S.

2009-05-01T23:59:59.000Z

103

Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams  

SciTech Connect

This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

1992-04-01T23:59:59.000Z

104

CORROSION STUDY FOR THE EFFLUENT TREATMENT FACILITY (ETF) CHROME (VI) REDUCTANT SOLUTION USING 304 & 316L STAINLESS STEEL  

Science Conference Proceedings (OSTI)

The Effluent Treatment Facility has developed a method to regenerate spent resin from the groundwater pump and treat intercepting chrome(VI) plumes (RPP-RPT-32207, Laboratory Study on Regeneration of Spent DOWEX 21K 16-20 Mesh Ion Exchange Resin). Subsequent laboratory studies have shown that the chrome(VI) may be reduced to chrome(III) by titrating with sodium metabisulfite to an oxidation reduction potential (ORP) of +280 mV at a pH of 2. This test plan describes the use of cyclic potentiodynamic polarization and linear polarization techniques to ascertain the electrochemical corrosion and pitting propensity of the 304 and 316L stainless steel in the acidified reducing the solution that will be contained in either the secondary waste receiver tank or concentrate tank.

DUNCAN, J.B.

2007-06-27T23:59:59.000Z

105

Summary of treatment, storage, and disposal facility usage data collected from U.S. Department of Energy sites  

SciTech Connect

This report presents an analysis for the US Department of Energy (DOE) to determine the level and extent of treatment, storage, and disposal facility (TSDF) assessment duplication. Commercial TSDFs are used as an integral part of the hazardous waste management process for those DOE sites that generate hazardous waste. Data regarding the DOE sites` usage have been extracted from three sets of data and analyzed in this report. The data are presented both qualitatively and quantitatively, as appropriate. This information provides the basis for further analysis of assessment duplication to be documented in issue papers as appropriate. Once the issues have been identified and adequately defined, corrective measures will be proposed and subsequently implemented.

Jacobs, A.; Oswald, K. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Trump, C. [EG and G Rocky Flats, Golden, CO (United States)

1995-04-01T23:59:59.000Z

106

Ecological surveys of the proposed high explosives wastewater treatment facility region  

SciTech Connect

Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

Haarmann, T.

1995-07-01T23:59:59.000Z

107

Documentation assessment, Project C-018H, 200-E area effluent treatment facility  

Science Conference Proceedings (OSTI)

Project C-018H is one of the fourteen subprojects to the Hanford Environmental Compliance (HEC) Project. Project C-018H provides treatment and disposal for the 242-A Evaporator and PUREX plant process condensate waste streams. This project used the Integrated Management Team (IMT) approach proposed by RL. The IMT approach included all affected organizations on the project team to coordinate and execute all required project tasks, while striving to integrate and satisfy all technical, operational, functional, and organizational objectives. The HEC Projects were initiated in 1989. Project C-018H began in early 1990, with completion of construction currently targeted for mid-1995. This assessment was performed to evaluate the effectiveness of the management control on design documents and quality assurance records developed and submitted for processing, use, and retention for the Project. The assessment focused primarily on the overall adequacy and quality of the design documentation currently being submitted to the project document control function.

Peres, M.W.; Connor, M.D.; Mertelendy, J.I.

1994-12-21T23:59:59.000Z

108

DEMONSTRATION OF SIMULATED WASTE TRANSFERS FROM TANK AY-102 TO THE HANFORD WASTE TREATMENT FACILITY  

SciTech Connect

In support of Hanford's AY-102 Tank waste certification and delivery of the waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring the waste in the Double Shell Tank (DST) to the WTP Receipt Tank. This work is a follow-on to the previous 'Demonstration of Internal Structures Impacts on Double Shell Tank Mixing Effectiveness' task conducted at SRNL 1. The objective of these transfers was to qualitatively demonstrate how well waste can be transferred out of a mixed DST tank and to provide insights into the consistency between the batches being transferred. Twelve (12) different transfer demonstrations were performed, varying one parameter at a time, in the Batch Transfer Demonstration System. The work focused on visual comparisons of the results from transferring six batches of slurry from a 1/22nd scale (geometric by diameter) Mixing Demonstration Tank (MDT) to six Receipt Tanks, where the consistency of solids in each batch could be compared. The simulant used in this demonstration was composed of simulated Hanford Tank AZ-101 supernate, gibbsite particles, and silicon carbide particles, the same simulant/solid particles used in the previous mixing demonstration. Changing a test parameter may have had a small impact on total solids transferred from the MDT on a given test, but the data indicates that there is essentially no impact on the consistency of solids transferred batch to batch. Of the multiple parameters varied during testing, it was found that changing the nozzle velocity of the Mixer Jet Pumps (MJPs) had the biggest impact on the amount of solids transferred. When the MJPs were operating at 8.0 gpm (22.4 ft/s nozzle velocity, U{sub o}D=0.504 ft{sup 2}/s), the solid particles were more effectively suspended, thus producing a higher volume of solids transferred. When the MJP flow rate was reduced to 5 gpm (14 ft/s nozzle velocity, U{sub o}D = 0.315 ft{sup 2}/s) to each pump, dead zones formed in the tank, resulting in fewer solids being transferred in each batch to the Receipt Tanks. The larger, denser particles were displaced (preferentially to the smaller particles) to one of the two dead zones and not re-suspended for the duration of the test. As the liquid level dropped in the MDT, re-suspending the particles became less effective (6th batch). The poor consistency of the solids transferred in the 6th batch was due to low liquid level in the MDT, thus poor mixing by the MJPs. Of the twelve tests conducted the best transfer of solids occurred during Test 6 and 8 where the MJP rotation was reduced to 1.0 rpm.

Adamson, D.; Poirier, M.; Steeper, T.

2009-12-03T23:59:59.000Z

109

Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect

The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

Glover, T.

1999-11-23T23:59:59.000Z

110

Mixed and Low-Level Waste Treatment Facility project. Executive summary: Volume 1, Program summary information; Volume 2, Waste stream technical summary: Draft  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL`s waste streams and their potential treatment strategies.

1992-04-01T23:59:59.000Z

111

Report of exploratory trenching for the Decontamination and Waste Treatment Facility at Lawrence Livermore National Laboratory, Livermore, California  

Science Conference Proceedings (OSTI)

Three exploratory trenches, totaling about 1,300 ft in length were excavated and logged across the site of a proposed Decontamination and Waste Treatment Facility (DWTF), to assess whether or not active Greenville fault zone, located about 4100 ft to the northeast, pass through or within 200 ft of the site. The layout of the trenches (12-16 ft deep) was designed to provide continuous coverage across the DWTF site and an area within 200 ft northeast and southwest of the site. Deposits exposed in the trench walls are primarily of clay, and are typical of weakly cemented silty sand to sandy silt with the alluvial deposits in the area. Several stream channels were encountered that appear to have an approximated east-west orintation. The channel deposits consist of well-sorted, medium to coarse-grained sand and gravel. A well-developed surface soil is laterally continuous across all three trenches. The soil reportedly formed during late Pleistocene time (about 35,000 to 40,000 yr before present) based on soil stratigraphic analyses. A moderately to well-developed buried soil is laterally continuous in all three trenches, except locally where it has been removed by channelling. This buried soil apparently formed about 100,000 yr before present. At least one older, discontinuous soil is present below the 100,000-yr-old soil in some locations. The age of the older soil is unknown. At several locations, two discontinuous buried soils were observed between the surface soil and the 100,000-yr-old soil. Various overlapping stratigraphic units could be traced across the trenches providing a continuous datum of at least 100,000 yr to assess the presence or absence of faulting. The continuity of stratigraphic units in all the trenches demonstrated that no active faults pass through or within 200 ft of the proposed DWTF site.

Dresen, M.D.; Weiss, R.B.

1985-12-01T23:59:59.000Z

112

Intensive archaeological survey of the proposed Central Sanitary Wastewater Treatment Facility, Savannah River Site, Aiken and Barnwell Counties, South Carolina  

SciTech Connect

The project area for the proposed Central Sanitary Wastewater Treatment Facility on the Savannah River Site includes a six-acre tract along Fourmile Branch and 18 mi of trunk line corridors. Archaeological investigations of the six-acre parcel resulted in the discovery of one small prehistoric site designated 38AK465. This cultural resource does not have the potential to add significantly to archaeological knowledge of human occupation in the region. The Savannah River Archaeological Research Program (SRARP) therefore recommends that 38AK465 is not eligible for nomination to the National Register of Historic Places (NRHP) and further recommends a determination of no effect. Archaeological survey along the trunk line corridors implicated previously recorded sites 38AK92, 38AK145, 38AK415, 38AK417, 38AK419, and 38AK436. Past disturbance from construction had severely disturbed 38AK92 and no archaeological evidence of 38AK145, 38AK419, and 38AK436 was recovered during survey. Lacking further evidence for the existence of these sites, the SRARP recommends that 38AK92, 38AK145, 38AK419, and 38AK436 are not eligible for nomination to the NRHP and thus warrant a determination of no effect. Two of these sites, 38Ak415 and 38AK417, required further investigation to evaluate their archaeological significance. Both of the sites have the potential to yield significant data on the prehistoric period occupation of the Aiken Plateau and the SRARP recommends that they are eligible for nomination to the NRHP. The Savannah River Archaeological Research Program recommends that adverse effects to sites 38AK415 and 38AK417 from proposed construction can be mitigated through avoidance.

Stephenson, D.K.; Sassaman, K.E.

1993-11-01T23:59:59.000Z

113

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

114

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents  

Science Conference Proceedings (OSTI)

This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

115

Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory  

SciTech Connect

This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

Neupauer, R.M.; Thurmond, S.M.

1992-09-01T23:59:59.000Z

116

Facility Representative Program: 2003 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

117

FINAL REPORT FOR THE REDUCTION OF CHROME (VI) TO CHROME (III) IN THE SECONDARY WASTE STREAM OF THE EFFLUENT TREATMENT FACILITY  

SciTech Connect

This report documents the laboratory results of RPP-PLAN-35958, Test Plan for the Effluent Treatment Facility to Reduce Chrome (VI) to Chrome (III) in the Secondary Waste Stream With the exception of the electrochemical corrosion scans, all work was carried out at the Center for Laboratory Science (CLS) located at the Columbia Basin College. This document summarizes the work carried out at CLS and includes the electrochemical scans and associated corrosion rates for 304 and 316L stainless steel.

DUNCAN JB; GUTHRIE MD

2008-08-29T23:59:59.000Z

118

Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300  

Science Conference Proceedings (OSTI)

This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

Mathews, S.

1997-04-01T23:59:59.000Z

119

Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.  

DOE Green Energy (OSTI)

This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

1999-10-01T23:59:59.000Z

120

Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory  

E-Print Network (OSTI)

Based on recent decisions made by Los Alamos National Laboratory concerning the development of site-wide National Environmental Policy Act documents, an effort was undertaken to develop a Pilot Safety Information Document (PSID) for the replacement Radioactive Liquid Waste Treatment Facility. The PSID documents risk analysis for the proposed facility and some of the alternatives, accident analysis, radioactive and hazardous material doses to off-site individuals, and the cumulative safety risk from adjacent facilities. In addition, this study also compared two methods for calculating the consequences of a radioactive spill. The methods compared were the Superfund model and the release fraction model. It was determined that the release fraction model gives a more realistic estimate of the doses incurred as the result of an accident, and that the Superfund model should be used for estimating the dose before and during the remediation effort. The cumulative safety risk was determined by calculating the exceedance probability if the individual dose from four geographically related facilities. The risk for cancer fatalities was determined to be within the DOE's Nuclear Safety Policy Goals.

Selvage, Ronald Derek

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams  

SciTech Connect

Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

1992-04-01T23:59:59.000Z

122

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network (OSTI)

state.aspx? id=124. California Energy Commission. (2000). "pubs/fuelcell.pdf. California Energy Commission (2003).Wastewater Treatment. California Energy Commission (2003).

Lekov, Alex

2010-01-01T23:59:59.000Z

123

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for...

124

HUMAN MACHINE INTERFACE (HMI) EVALUATION OF ROOMS TA-50-1-60/60A AT THE RADIOACTIVE LIQUID WASTE TREATMENT FACILITY (RLWTF)  

Science Conference Proceedings (OSTI)

This effort addressed an evaluation of human machine interfaces (HMIs) in Room TA-50-1-60/60A of the Radioactive Liquid Waste Treatment Facility (RLWTF). The evaluation was performed in accordance with guidance outlined in DOE-STD-3009, DOE Standard Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, 2006 [DOE 2006]. Specifically, Chapter 13 of DOE 2006 highlights the 10 CFR 830, Nuclear Safety Management, 2012, [CFR 2012] and DOE G 421.1-2 [DOE 2001a] requirements as they relate to the human factors process and, in this case, the safety of the RLWTF. The RLWTF is a Hazard Category 3 facility and, consequently, does not have safety-class (SSCs). However, safety-significant SSCs are identified. The transuranic (TRU) wastewater tanks and associated piping are the only safety-significant SSCs in Rooms TA-50-1-60/60A [LANL 2010]. Hence, the human factors evaluation described herein is only applicable to this particular assemblage of tanks and piping.

Gilmore, Walter E. [Los Alamos National Laboratory; Stender, Kerith K. [Los Alamos National Laboratory

2012-08-29T23:59:59.000Z

125

Electric generating or transmission facility: determination of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination...

126

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

127

HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

Evans, S. K.

2007-11-07T23:59:59.000Z

128

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

129

Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immobilization Plant (LBL Facilities), April 23, 2013 (HSS CRAD 45-58, Rev. 0)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of U.S. Department of Energy Subject: Review of Documented Safety Analysis Development for the Hanford Site Waste Treatment and Immob ilization Plant (LBL Facilities) - C riteria and Review Approach D oc um~ HS: HSS CRAD 45-58 Rev: 0 Eff. Date: April 23, 2013 Office of Safety and Emergency Management Evaluations Acting Di rec or, Office of Safety and Emergency Nltanagement Evaluations Date: Apri l 23 , 20 13 Criteria and Review Approach Document ~~ trd,James Low Date: April 23 , 20 13 1.0 PURPOSE Within the Office of H.ealth, Safety and Security (HSS), the Office of Enforcement and Overs ight, Office of Safety and Emergency Management Evaluations (HS-45) miss io n is to assess the effectiveness of the environment, safety, health, and emergency management systems and practices used by line and

130

Facility Microgrids  

Science Conference Proceedings (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

131

Integrated Facilities Disposition Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

132

Facilities Maintenance Guide  

Science Conference Proceedings (OSTI)

The subject of facilities maintenance is very broad and is commonly interpreted quite differently among maintenance managers at power plants and U.S. Department of Energy (DOE) nuclear and process facilities. In many cases, the maintenance of administrative buildings, support structures, and "real property" is managed separately from the maintenance of process equipment. The scope and breadth of each maintenance program varies from site to site, as does the formality of the program established to address...

2004-09-16T23:59:59.000Z

133

WHC-SD-W252-FHA-001, Rev. 0: Preliminary fire hazard analysis for Phase II Liquid Effluent Treatment and Disposal Facility, Project W-252  

Science Conference Proceedings (OSTI)

A Fire Hazards Analysis was performed to assess the risk from fire and other related perils and the capability of the facility to withstand these hazards. This analysis will be used to support design of the facility.

Barilo, N.F.

1995-05-11T23:59:59.000Z

134

Major Risk Factors Integrated Facility Disposition Project -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Treatment Alternatives For Process Wastewater at ORNL, ORNLCF-0603-R1, November 2007; HFIR and REDC Process Waste Drains and Waste Treatment Plant, ORNL Facilities Development...

135

Application: Facilities  

Science Conference Proceedings (OSTI)

... Option.. Papavergos, PG; 1991. Halon 1301 Use in Oil and Gas Production Facilities: Alaska's North Slope.. Ulmer, PE; 1991. ...

2011-12-22T23:59:59.000Z

136

Fuel Conditioning Facility Electrorefiner Process Model  

SciTech Connect

The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

DeeEarl Vaden

2005-10-01T23:59:59.000Z

137

User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory's National User Facilities are available for cooperative research with institutions and the private sector worldwide. The Environmental...

138

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

139

RCRA facility assessments  

SciTech Connect

The Hazardous and Solid Waste Amendments of 1984 (HSWA) broadened the authorities of the Resource Conservation and Recovery Act (RCRA) by requiring corrective action for releases of hazardous wastes and hazardous constituents at treatment, storage, and disposal (TSD) facilities. The goal of the corrective action process is to ensure the remediation of hazardous waste and hazardous constituent releases associated with TSD facilities. Under Section 3004(u) of RCRA, operating permits issued to TSD facilities must address corrective actions for all releases of hazardous waste and hazardous constituents from any solid waste management unit (SWMU) regardless of when the waste was placed in such unit. Under RCRA Section 3008(h), the Environmental Protection Agency (EPA) may issue administrative orders to compel corrective action at facilities authorized to operate under RCRA Section 3005(e) (i.e., interim status facilities). The process of implementing the Corrective Action program involves the following, in order of implementation; (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) the Corrective Measures Study (CMS); and (4) Corrective Measures Implementation (CMI). The RFA serves to identify and evaluate SWMUs with respect to releases of hazardous wastes and hazardous constituents, and to eliminate from further consideration SWMUs that do not pose a threat to human health or the environment. This Information Brief will discuss issues concerning the RFA process.

NONE

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE/EA-1308; Environmental Assessment for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities (February 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 08 ENVIRONMENTAL ASSESSMENT FOR THE OFFSITE TRANSPORTATION OF CERTAIN LOW-LEVEL AND MIXED RADIOACTIVE WASTE FROM THE SAVANNAH RIVER SITE FOR TREATMENT AND DISPOSAL AT COMMERCIAL AND GOVERNMENT FACILITIES FEBRUARY 2001 U. S. DEPARTMENT OF ENERGY SAVANNAH RIVER OPERATIONS OFFICE SAVANNAH RIVER SITE i ii This page is intentionally left blank iii TABLE OF CONTENTS Page 1.0 INTRODUCTION 1 1.1 Background 1 1.2 Purpose and Need for Action 6 2.0 PROPOSED ACTION AND ALTERNATIVES 6 2.1 Proposed Action 6 2.2 Alternatives to the Proposed Action 11 2.2.1 No Action, Continue to Store These Waste Forms at SRS 11 2.2.2 Construct and Operate Onsite Treatment and Disposal Facilities 11 3.0 ENVIRONMENTAL CONSEQUENCES OF THE PROPOSED ACTION AND ALTERNATIVES 12 3.1 Onsite Loading Operations 12 3.2 Transportation Impacts

142

Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect

This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

1996-12-01T23:59:59.000Z

143

Student Common Interest Group  

Science Conference Proceedings (OSTI)

Students interested in the oils and fats industry make valuable networking connections by joining the AOCS Student Common Interest Group. Student Common Interest Group Student Membership achievement aocs application award awards distinguished divi

144

Kiowa County Commons Building  

Energy.gov (U.S. Department of Energy (DOE))

This poster describes the energy efficiency features and sustainable materials used in the Kiowa County Commons Building in Greensburg, Kansas.

145

Facility effluent monitoring plan for the 325 Facility  

SciTech Connect

The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1998-12-31T23:59:59.000Z

146

Design features for decontamination in new plutonium facilities  

SciTech Connect

Specific features for preventing, containing, controlling, and removing contamination in the Plutonium Recovery and Waste Treatment Facility are outlined. (LK)

Freiberg, K.J.; Haynes, C.G.

1975-09-01T23:59:59.000Z

147

Common Event Rule Expression  

Science Conference Proceedings (OSTI)

... Page 26 Incident Response/Management and the Common Cyber Observables (CybOX) Schema ... Content Transformed from Portion of MAEC ...

2012-10-26T23:59:59.000Z

148

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H  

Science Conference Proceedings (OSTI)

This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

149

SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

150

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2004 Facility News ARM Climate Research Facility Achieves User Milestone Three Months Ahead of Schedule Bookmark and Share Summary of the ARM Climate Research Facility User...

151

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News Future of User Facility Discussed at Fall Workshop As a national user facility, ARM is accessible to scientists around the globe for...

152

ARM - SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

153

The Common Land Model  

Science Conference Proceedings (OSTI)

The Common Land Model (CLM) was developed for community use by a grassroots collaboration of scientists who have an interest in making a general land model available for public use and further development. The major model characteristics include ...

Yongjiu Dai; Xubin Zeng; Robert E. Dickinson; Ian Baker; Gordon B. Bonan; Michael G. Bosilovich; A. Scott Denning; Paul A. Dirmeyer; Paul R. Houser; Guoyue Niu; Keith W. Oleson; C. Adam Schlosser; Zong-Liang Yang

2003-08-01T23:59:59.000Z

154

Common Coil Papers  

NLE Websites -- All DOE Office Websites (Extended Search)

on the common coil magnet design with Ramesh Gupta as a major author on the common coil magnet design with Ramesh Gupta as a major author (unless noted). There are many other papers on common coil magnet by several other authors that are not listed here. R. Gupta, et. al, "React & Wind Nb3Sn Common Coil Dipole", Presented at ASC 2006, August 27- September 1, 2006 in Seattle, WA, USA. J. Cozzolino, et. al., "Magnet Engineering and Test Results of the High Field Magnet R&D Program at BNL", Presented at the Applied Superconductivity Conference at Houston, TX, USA (2002). R. Gupta, et al., “R & D for Accelerator Magnets with React and Wind High Temperature Superconductors,” International Conference on Magnet Technology (MT-17) at Geneva, Switzerland (2001)... (Click here for Talk) J. Escallier, et al., "Technology Development for React and Wind

155

Research Facilities and Programs  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Magnesium Research Facilities and Programs ... to universities, corporations, and other facilities involved in magnesium research, 0, 1025...

156

Californium Neutron Irradiation Facility  

Science Conference Proceedings (OSTI)

Californium Neutron Irradiation Facility. Summary: ... Cf irradiation facility (Photograph by: Neutron Physics Group). Lead Organizational Unit: pml. Staff: ...

2013-07-23T23:59:59.000Z

157

Mobile Solar Tracker Facility  

Science Conference Proceedings (OSTI)

Mobile Solar Tracker Facility. ... NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. ...

2011-11-15T23:59:59.000Z

158

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

159

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

160

Facility Representatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Research Facility,  

NLE Websites -- All DOE Office Websites (Extended Search)

Collecting and Delivering the Data Collecting and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Preliminary data may be shared among field campaign participants during and shortly following the campaign. To facilitate sharing of preliminary data, the ARM Data Archive establishes restricted access capability, limited to participants and data managers.

162

Facility automation for retail facilities  

Science Conference Proceedings (OSTI)

This article will focus on retail chain stores with areas of 22,000 to 75,000 sq ft, but much of the article will apply to all retail stores independent of size. Typically, a store is serviced by 5 to 15 rooftop HVAC units with a total cooling capacity of 50 to 150 tons, depending on the floor area and geographic location. The interior lighting represents a load of 80 to 300 KW with three lighting levels--retail, stocking, and security or night. Most stores are located in strip centers, and therefore, the parking lot lighting is provided by the landlord, but each store does control and service its own sign lighting. Generally, the total load controlled by an FAS represents 130 to 450 KW with corresponding annual energy costs ranging from $65,000 to $200,000 (natural gas and electricity), depending on the size of the store and the local unit costs of energy. Historical utility data, electrical and mechanical drawings, site surveys, significant analyses of data, and most importantly, discussions with corporate facilities management personnel and store operations personnel provide the source for the development theory and sequence of operation of the design of the facility automation systems for retail stores. The three main goals of an FAS are: reduce utility operating costs, maintain comfort levels during occupied hours, reduce HVAC maintenance costs.

Ameduri, G. (Roth Bros., Inc., Youngstown, OH (United States). Facilities Automation Division)

1994-12-01T23:59:59.000Z

163

NVLAP Common Criteria Testing LAP  

Science Conference Proceedings (OSTI)

NVLAP Common Criteria Testing LAP. ... This site has been established for applicants to the Common Criteria Testing accreditation program. ...

2013-07-26T23:59:59.000Z

164

Finding of No Significant Impact for the Offsite Transportation of Certain Low-Level and Mixed Radioactive Waste from Savannah River Site for Treatment and Disposal at Commercial and Government Facilities, DOE/EA-1308 (02/15/01)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact for the Offsite Transportation of Certain Low-level and Mixed Radioactive Waste from the Savannah River Site for Treatment and Disposal at Commercial and Government Facilities Agency: U. S. Department of Energy Action: Finding of No Significant Impact Summary: The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1308) to analyze the potential environmental impacts associated with the proposed offsite transportation of certain low-level radioactive waste (LLW) and mixed (i.e., hazardous and radioactive) low-level radioactive waste (MLLW) from the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the action is not a major Federal action significantly affecting

165

Harrisburg Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Harrisburg Facility Biomass Facility Harrisburg Facility Biomass Facility Jump to: navigation, search Name Harrisburg Facility Biomass Facility Facility Harrisburg Facility Sector Biomass Facility Type Landfill Gas Location Dauphin County, Pennsylvania Coordinates 40.2734277°, -76.7336521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2734277,"lon":-76.7336521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

167

Commonizing Uncommon Sense  

Office of Scientific and Technical Information (OSTI)

Commonizing Uncommon Sense Commonizing Uncommon Sense The universe that Einstein discovered—in which time doesn’t pass at the same rate for everyone, space bends, and chance prevails where we would expect certainties—seems strange to us, but becomes easier to understand once we realize that our everyday situation is the unusual one. Imagine that you had never known how different people’s customs are in other countries. One day you travel to another country, far from your own, where they do things not just slightly differently, but very differently. Not being forewarned of this, you might be greatly surprised, and find yourself having to spend a lot more time than you expected getting used to the differences. Your understanding of the culture could develop in at least one of two

168

Most Commonly Identified Recommendations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Most Commonly Identified Recommendations Most Commonly Identified Recommendations DOE ITP In Depth ITP Energy Assessment Webcast Presented by: Dr. Bin Wu, Director, Professor of Industrial Engineering Dr. Sanjeev Khanna, Assistant Director, Associate Professor of Mechanical Engineering With Contribution From MO IAC Student Engineers: Chatchai Pinthuprapa Jason Fox Yunpeng Ren College of Engineering, University of Missouri. April 16, 2009 Missouri Industrial Assessment Center Missouri IAC is one of the 26 centers founded by the U.S. DOE in the nation. Since its establishment in 2005, we have been working closely with the MoDNR, the MU University Extension, utility providers in the state, etc, to provide education, development and services in industrial energy efficiency. Our services (audits, workshops, etc), have already covered many locations across the state of Missouri.

169

Common tester platform concept.  

Science Conference Proceedings (OSTI)

This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

Hurst, Michael James

2008-05-01T23:59:59.000Z

170

Common Information Model Primer  

Science Conference Proceedings (OSTI)

The Common Information Model (CIM) Primer explains the basics of the CIM (IEC 61970, IEC 61968, and IEC 62325). Starting with a historical perspective, it describes how the CIM originated and grew through the years. The functions of various working groups of Technical Committee 57 of the International Electrotechnical Commission (IEC) are described. The process of how an IEC standard is created is also outlined. The basics of the Unified Modeling Language (UML) are detailed to introduce the reader to the...

2011-11-10T23:59:59.000Z

171

User Facilities Frequently Asked Questions | U.S. DOE Office of Science  

Office of Science (SC) Website

User Facilities Frequently User Facilities Frequently Asked Questions User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 User Facilities Frequently Asked Questions Print Text Size: A A A RSS Feeds FeedbackShare Page The Office of Science User Facilities are a unique resource for the Nation's researchers. Below are answers to some commonly asked questions. What is a user facility? A user facility is a federally sponsored research facility available for external use to advance scientific or technical knowledge under the

172

International Facility Management Association Strategic Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Management Association Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning © 2009 | International Facility Management Association For additional information, contact: 1 e. Greenway Plaza, Suite 1100 houston, tX 77046-0104 USA P: + 1-713-623-4362 F: + 1-713-623-6124 www.ifma.org taBle OF cOntentS PreFace ......................................................... 2 executive Summary .................................... 3 Overview ....................................................... 4 DeFinitiOn OF Strategic Facility Planning within the Overall cOntext OF Facility Planning ................. 5 SPecializeD analySeS ................................ 9 OrganizatiOnal aPPrOacheS tO SFP ... 10 the SFP PrOceSS .......................................

173

Office of Nuclear Facility Basis & Facility Design  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Nuclear Safety Basis & Facility Design(HS-31) Reports to the Office of Nuclear Safety About Us The Office of Nuclear Safety Basis & Facility Design establishes safety...

174

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

than any other quarter on record-961 The U.S. Department of Energy requires national user facilities to report facility use by total visitor days and facility to track actual...

175

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Facility Captures Rare Tornado Data ARM Facility Captures Rare Tornado Data Bookmark and Share Every spring, tornadoes thunder across five states, from Kansas to Texas, and alerts are common. However, by Monday, May 20, it was clear that this time the alert had a different urgency to it. The turn of events leading up to the EF-5 tornado that wreaked havoc in Moore, Oklahoma, provided a unique opportunity for scientists to sample the environment preceding a severe weather event. Raw data from the additional radiosonde launches preceding the severe weather events of May 20 in Oklahoma. The blue line identifies the temperature, which decreases with increasing altitude (decreasing pressure). The red line is the dew point; dew point-also expressed as a temperature-is the temperature at which the air is 100% saturated with its water vapor content (low values of the dew point represent low relative humidity). Where the dew point approaches the actual temperature, the air is nearing 100% relative humidity, or saturation, near the ground-ideal conditions for tornado events.

176

Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility  

SciTech Connect

This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energys Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

Bonnema, Bruce Edward

2001-09-01T23:59:59.000Z

177

New Waste Calcining Facility (NWCF) Waste Streams  

SciTech Connect

This report addresses the issues of conducting debris treatment in the New Waste Calcine Facility (NWCF) decontamination area and the methods currently being used to decontaminate material at the NWCF.

K. E. Archibald

1999-08-01T23:59:59.000Z

178

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility News Data Collection from Mobile Facility on Gan Island Suspended Local weather balloon launch volunteers pose with the AMF team on Gan Island after completing their...

179

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

approximately 22,500 square kilometers, or the approximate area of a modern climate model grid cell. Centered around the SGP Central Facility, these extended facilities are...

180

Chemistry Dept. Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities As a research organization within a National Laboratory, the Chemistry Department operates research facilities that are available to other researchers as...

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Facility Safeguardability Assessment Report  

National Nuclear Security Administration (NNSA)

of the Facility Safeguardability Analysis (FSA) Process RA Bari SJ Johnson J Hockert R Wigeland EF Wonder MD Zentner August 2012 PNNL- 21698 Overview of the Facility...

182

Facility Safeguardability Assessment Report  

National Nuclear Security Administration (NNSA)

facilities or research facilities that involve previously unused processes or technologies, comparison with previously required safeguard design features may not be...

183

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

184

User Facility Agreement Form  

NLE Websites -- All DOE Office Websites (Extended Search)

5. Which Argonne user facility will be hosting you? * Advanced Leadership Computing Facility (ALCF) Advanced Photon Source (APS) Argonne Tandem Linear...

185

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

186

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2008 Facility News National User Facility Organization Meets to Discuss Progress and Ideas In late April, the ARM Technical Director attended an annual meeting of the...

187

Oak Ridge Reservation Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

processed for shipment to the Nevada Test Site or other appropriate disposal facility. Molten Salt Reactor Experiment Facility The Molten Salt Reactor Experiment (MSRE) operated...

188

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Researchers will study severe precipitation events that occurred in August and October...

189

Site maps and facilities listings  

SciTech Connect

In September 1989, a Memorandum of Agreement among DOE offices regarding the environmental management of DOE facilities was signed by appropriate Assistant Secretaries and Directors. This Memorandum of Agreement established the criteria for EM line responsibility. It stated that EM would be responsible for all DOE facilities, operations, or sites (1) that have been assigned to DOE for environmental restoration and serve or will serve no future production need; (2) that are used for the storage, treatment, or disposal of hazardous, radioactive, and mixed hazardous waste materials that have been properly characterized, packaged, and labelled, but are not used for production; (3) that have been formally transferred to EM by another DOE office for the purpose of environmental restoration and the eventual return to service as a DOE production facility; or (4) that are used exclusively for long-term storage of DOE waste material and are not actively used for production, with the exception of facilities, operations, or sites under the direction of the DOE Office of Civilian Radioactive Waste Management. As part of the implementation of the Memorandum of Agreement, Field Offices within DOE submitted their listings of facilities, systems, operation, and sites for which EM would have line responsibility. It is intended that EM facility listings will be revised on a yearly basis so that managers at all levels will have a valid reference for the planning, programming, budgeting and execution of EM activities.

Not Available

1993-11-01T23:59:59.000Z

190

Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis  

SciTech Connect

The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility.

Brandyberry, M.D.; Baker, W.H.; Wittman, R.S. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N. [Science Applications International Corp., Albuquerque, NM (United States)

1993-12-31T23:59:59.000Z

191

NREL: Research Facilities - Test and User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

192

Facility Representative Program: 2000 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

193

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

194

Guide to research facilities  

SciTech Connect

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

195

Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB),  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Immobilization Plant (WTP) Analytical Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Full Document and Summary Versions are available for download Waste Treatment and Immobilization Plant (WTP) Analytical Laboratory (LAB), Balance of Facilities (BOF) and Low-Activity Waste Vitrification Facilities (LAW) Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility Waste Treatment and Immobilation Plant Pretreatment Facility Compilation of TRA Summaries

196

Facilities/Staff Hydrogen  

Science Conference Proceedings (OSTI)

Thermophysical Properties of Hydrogen. FACILITIES and STAFF. The Thermophysical Properties Division is the Nation's ...

197

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

198

Facility Representative Program: 2001 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

199

Facility Representative Program: 2010 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

200

Facility Representative Program: 2007 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Facility Representative Program: 2008 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sherman Chao, LSO Conduct of Operations Improvements at K Basins Dennis Humphreys, RL Molten Salt Reactor Experiment (MSRE) facility lessons learned Charlie Wright, ORO...

202

Facility Representative Program: 2005 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharing of Good Practices and Lessons Learned (4) Inadvertent Startup of Electric Centrifuge at the Weapon Evaluation Test Lab Joyce Arviso-Benally, SSO Facility Rep...

203

Facility Representative Program: 2012 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2012 Las Vegas, NV Agenda | Presentations | SSO Annual Award | Pictures | Summary Report 2011 Facility Representative of the Year Award 2011 WINNER: Congratulations to Bradley...

204

Returning common sense to regulations  

SciTech Connect

While these sessions of the November 1995 meeting of the American Nuclear Society are being devoted to the Linear Theory of harm from radiation, it must be realized that the low-level radiation issue, as important as it may be, is but a subset of an entire body of environmental issues running afoul of common sense. Cellular phones, electromagnetic fields, asbestos, dioxin, acid rain, and others especially in their public portrayals, some in their regulatory treatment, are based upon exaggerated or misunderstood risks. One must recognize that what lies ahead is an immense effort to revisit the underlying science of the existing regulations of radiation exposures. New evidence has been published, and most importantly, it is now recognized that many of these regulations--promulgated with the best of intentions--have been extraordinarily harmful to the public. In many cases, the harm has been exaggerated, and has created in the public policy arena the notion that the public is at great risk from the smallest sources of radiation. The national cost of compliance with these regulations has been enormous. To the extent that existing environmental regulations are not being moderated, they pose major economic threats to present and future industries involving nuclear materials and technology. These would include the pharmaceutical industries as well as those seeking U.S. isotope markets in separations, purification, labeling, and manufacturing of new radiopharmaceuticals for cancer therapy, diagnosis, pain mitigation, treatment of arthritis, and other new applications. For those who are not aware of the results of recent advances in radiopharmaceuticals, clinical trials have demonstrated an 80% remission rate in the treatment of b-cell lymphoma and leukemia. New isotopes and new isotope technology promise greater effectiveness in the treatment of cancer and other diseases. The regulatory problems and their enormous costs exist at all stages in nuclear medicine, from the manufacture of the radiopharmaceuticals to the disposal of low-level wastes in Ward Valley, California, for example. Access to these promising new technologies will be severely limited under the existing regulatory environment.

Fox, M.R.

1995-10-01T23:59:59.000Z

205

National Biomedical Tracer Facility: Project definition study  

SciTech Connect

The Los Alamos National Laboratory is an ideal institution and New Mexico is an ideal location for siting the National Biomedical Tracer Facility (NBTF). The essence of the Los Alamos proposal is the development of two complementary irradiation facilities that combined with our existing radiochemical processing hot cell facilities and waste handling and disposal facilities provide a low cost alternative to other proposals that seek to satisfy the objectives of the NBTF. We propose the construction of a 30 MeV cyclotron facility at the site of the radiochemical facilities, and the construction of a 100 MeV target station at LAMPF to satisfy the requirements and objectives of the NBTF. We do not require any modifications to our existing radiochemical processing hot cell facilities or our waste treatment and disposal facilities to accomplish the objectives of the NBTF. The total capital cost for the facility defined by the project definition study is $15.2 M. This cost estimate includes $9.9 M for the cyclotron and associated facility, $2.0 M for the 100 MeV target station at LAMPF, and $3.3 M for design.

Heaton, R.; Peterson, E. [Los Alamos National Lab., NM (United States); Smith, P. [Smith (P.A.) Concepts and Designs (United States)

1995-05-31T23:59:59.000Z

206

Waste Treatment and Immobilation Plant Pretreatment Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

pressure and vacuum optimum range to minimize air entrainment. - Validation of the TEMPEST CFD model of the PJMs using the data generated in the small tank. A mixing time...

207

NREL: Photovoltaics Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine. Research within these facilities focuses on targeted areas of interest that require specific tools, techniques, or unique capabilities. Our two main dedicated-use facilities are the following: Outdoor Test Facility (OTF) OTF researchers study and evaluate advanced or emerging PV technologies

208

Facility Representative Program: Facility Representative Program Sponsors  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

209

User Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

USER PORTAL USER PORTAL BTRICBuilding Technologies Research Integration Center CNMSCenter for Nanophase Materials Sciences CSMBCenter for Structural Molecular Biology CFTFCarbon Fiber Technology Facility HFIRHigh Flux Isotope Reactor MDF Manufacturing Demonstration Facility NTRCNational Transportation Research Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Keeping it fresh at the Spallation Neutron Source Nanophase material sciences' nanotech toolbox Home | User Facilities SHARE ORNL User Facilities ORNL is home to a number of highly sophisticated experimental user facilities that provide unmatched capabilities to the broader scientific community, including a growing user community from universities, industry, and other laboratories research institutions, as well as to ORNL

210

Professional Educators Common Interest Group  

Science Conference Proceedings (OSTI)

Promoting teaching excellence for those involved in university education and industrial training in lipids and oils. Professional Educators Common Interest Group Professional Educators Common Interest Group aocs awards Educators fats global info

211

Common Platform Enumeration (CPE): Dictionary  

Science Conference Proceedings (OSTI)

... Common Platform Enumeration (CPE): Dictionary. ... CPE Dictionary Resources. Release 2.3. CPE 2.3 Dictionary Resources (August 2011). ...

2012-11-02T23:59:59.000Z

212

Facility Security Officer Contractor Toolcart  

NLE Websites -- All DOE Office Websites (Extended Search)

FOREIGN OWNERSHIP, CONTROL OR INFLUENCE (FOCI) PROGRAM FOREIGN OWNERSHIP, CONTROL OR INFLUENCE (FOCI) PROGRAM It is DOE policy to obtain information that indicates whether a company that SNL will enter into a contract with is Owned, Controlled, or Influenced by a foreign person or entity and whether as a result, the potential for an undue risk to the common defense and national security may exist. Reference: Department of Energy Order (DOE O) 470.1, Safeguards and Security Program, Change 1, Chapter VI, Section 1 The DOE conducts a background check to determine FOCI, based on the information the company provides through the e-FOCI website: https://foci.td.anl.gov. Upon favorable FOCI certification by DOE, a facility clearance is granted. Facility cleareance is required in order to support personnel clearances needed to perform the work under contractual agreement with Sandia.

213

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2005 [Facility News] October 15, 2005 [Facility News] Room to Share-New Guest Facility Ready for Users at North Slope of Alaska Bookmark and Share In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. To alleviate crowded conditions at its research facilities on the North Slope of Alaska (NSA) site in Barrow, ARM operations staff recently completed the installation of a new Guest Instrument Facility. Similar to the platform at the Atqasuk site, the facility consists of two insulated shipping containers mounted on pilings, with a mezzanine to accommodate

214

NREL: Wind Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

215

FACET User Facility  

NLE Websites -- All DOE Office Websites

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

216

Government Facilities Segment Analysis  

Science Conference Proceedings (OSTI)

Federal, state, and local governments own or lease an estimated 1.2 million buildings and facilities in the United States. These facilities are an important -- and often overlooked -- customer segment for all energy and energy service providers.

1998-12-19T23:59:59.000Z

217

Geothermal component test facility  

DOE Green Energy (OSTI)

A description is given of the East Mesa geothermal facility and the services provided. The facility provides for testing various types of geothermal energy-conversion equipment and materials under field conditions using geothermal fluids from three existing wells. (LBS)

Not Available

1976-04-01T23:59:59.000Z

218

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities...

219

Idaho Site Nuclear Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Nuclear Facilities Idaho Idaho National Laboratorys (INL) Idaho Closure Project (ICP) This page was last updated on May 16...

220

MML Microscopy Facility  

Science Conference Proceedings (OSTI)

The MML Electron Microscopy Facility consists of three transmission electron microscopes (TEM), three scanning electron microscopes (SEM), a ...

2013-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Photon Sciences | Navigation | Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities NSLS About NSLS Accelerator Activity Report Experimental Systems Machine Status & History Operations & Engineering Operating Schedules Ring Parameters NSLS Ops:...

222

Facilities and Instruments  

Science Conference Proceedings (OSTI)

... The EL Facilities listed here are available for cooperative or independent research, typically on a cost reimbursable basis. ...

2013-03-12T23:59:59.000Z

223

Facility Representative Program: 2004 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASA’S Columbia Accident Investigation Board Report

224

Facility Representative Program: 2006 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

225

Facility Representative Program: 2000 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Break 10:00 a.m. - Making Your Observations CountLeading Indicators - Mike Weis, Rocky Flats Field Office 10:45 a.m. - Facility Representative PanelQuestions and Answers (Ben...

226

WIRELESS FOR A NUCLEAR FACILITY  

SciTech Connect

The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

Shull, D; Joe Cordaro, J

2007-03-28T23:59:59.000Z

227

WIRELESS FOR A NUCLEAR FACILITY  

SciTech Connect

The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

Shull, D; Joe Cordaro, J

2007-03-28T23:59:59.000Z

228

NREL: Buildings Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

229

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

230

Municipal bond financing of solar energy facilities  

DOE Green Energy (OSTI)

The application of the laws of municipal bond financing to solar facilities is examined. The type of facilities under consideration are outlined. The general legal principles of municipal securities financing are discussed. The effect of recent decisions applying antitrust liability to municipal corporations is also discussed. Five specific types of municipal bonds are explained. The application of Section 103 of the Internal Revenue Code of 1954, as amended, to the issuance of municipal bonds for solar facility financing is examined also. Five bond laws of five representative states are examined and whether the eight types of solar facilities under consideration could be financed under such law is discussed. The application of the general legal principle is illustrated. Three hypothetical situations are set forth and common legal issues to be confronted by city officials in proposing such financing are discussed. These issues will be raised in most financings, but the purpose is to examine the common context in which they are raised. It is concluded that if it can be shown that the purpose of the solar facilities to be financed is to benefit the public, all legal obstacles to the use of municipal financing of solar facilities can be substantially overcome.

White, S.S.

1979-12-01T23:59:59.000Z

231

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

232

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2007 [Facility News] March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January through December 2006, with the primary facility at the Niamey airport, and an ancillary site in Banizoumbou. The AMF recorded a major dust storm that passed through the area in March, and combined with simultaneous satellite

233

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 16, 2005 [Facility News] February 16, 2005 [Facility News] Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Image - The ARM Mobile Facility in Point Reyes, California Safe and sound at Point Reyes, the ARM Mobile Facility instrumentation is set up on the roof of a shelter until a fence is installed to keep out the curious local cattle. On February 9, the ARM Mobile Facility (AMF) withstood an accident on the way to its deployment location at Point Reyes, California. About an hour from its destination, the truck carrying the two AMF shelters packed with instrumentation and associated equipment swerved to avoid another vehicle and slid off the road and down a steep embankment. Emergency personnel soon

234

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2011 [Facility News] 22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October 2013 Fixed sites available FY2013 Priority will be given to proposals that make comprehensive use of the ARM facilities and focus on long-term goals of the DOE Office of Biological and Environmental Research. Successful proposals will be supplied all operational and logistical resources (provided at no cost to the principal

235

FACILITY AND ADMINISTRATIVE (INDIRECT) COSTS September 2007  

E-Print Network (OSTI)

, 2015. Definitions: Direct Costs: Costs that can be specifically identified with a particular project(s) Cost: A broad category of costs that are common to all research projects. "Facilities" is defined one F&A cost rate. If 50% or more of a project is performed off-campus (exclusive of any subcontract

Albertini, David

236

Field Campaign Guidelines (ARM Climate Research Facility)  

Science Conference Proceedings (OSTI)

The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

Voyles, JW

2011-01-17T23:59:59.000Z

237

Manufacturing Demonstration Facility (MDF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) Manufacturing Demonstration Facility (MDF) October 11, 2013 - 9:44am Addthis The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused on Additive Manufacturing and Low-cost Carbon Fiber. Fostering Collaboration to Accelerate Progress Work conducted by MDF partners and users provides real data that is used to reduce the technical risk associated with full commercialization of promising foundational manufacturing process and materials innovations. The

238

NREL: Technology Transfer - Research Facilities  

NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies.

239

Quantum Electrical Metrology Division Facilities  

Science Conference Proceedings (OSTI)

Microfabrication Facility Our facilities for fabrication of integrated circuits are essential to nearly all of the work in the Group. ...

2011-10-03T23:59:59.000Z

240

Policies and Procedures - Accessing Facilities  

Science Conference Proceedings (OSTI)

... of Facilities Use Agreements: Description of the facilities use agreements ... Criteria: Guidance for applicants describing essential information about ...

2013-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Relevance of international research facilities to international stability  

Science Conference Proceedings (OSTI)

International Facilities have played an important play in expanding and keeping open a dialogue between east and west. The advent of glasnost has dramatically reduced inhibitions on communications and opened new opportunities for international facilities to facilitate the understanding and appreciation of common goals and common threats. This is accomplished through frank discussions in which real problems are identified and assessed while fictitious ones are laid to rest.

Rosen, L.

1989-03-20T23:59:59.000Z

242

New EM Facility Treats Groundwater at Oak Ridge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New EM Facility Treats Groundwater at Oak Ridge New EM Facility Treats Groundwater at Oak Ridge New EM Facility Treats Groundwater at Oak Ridge January 30, 2013 - 12:00pm Addthis Chromium Water Treatment System Facility Manager Matt Finley stands near one of the facility’s ground wells. Chromium Water Treatment System Facility Manager Matt Finley stands near one of the facility's ground wells. The Chromium Water Treatment System, located within the footprint of the older Central Neutralization Facility, serves a vital need by treating groundwater and achieving substantial savings for Oak Ridge’s EM program. The Chromium Water Treatment System, located within the footprint of the older Central Neutralization Facility, serves a vital need by treating groundwater and achieving substantial savings for Oak Ridge's EM program.

243

New EM Facility Treats Groundwater at Oak Ridge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Facility Treats Groundwater at Oak Ridge EM Facility Treats Groundwater at Oak Ridge New EM Facility Treats Groundwater at Oak Ridge January 30, 2013 - 12:00pm Addthis Chromium Water Treatment System Facility Manager Matt Finley stands near one of the facility’s ground wells. Chromium Water Treatment System Facility Manager Matt Finley stands near one of the facility's ground wells. The Chromium Water Treatment System, located within the footprint of the older Central Neutralization Facility, serves a vital need by treating groundwater and achieving substantial savings for Oak Ridge’s EM program. The Chromium Water Treatment System, located within the footprint of the older Central Neutralization Facility, serves a vital need by treating groundwater and achieving substantial savings for Oak Ridge's EM program.

244

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

245

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16, the team traveled to Graciosa Island in the Azores to scout sites for the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field

246

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 31, 2009 [Facility News] July 31, 2009 [Facility News] President of the Regional Government Speaks at Opening Ceremony for Mobile Facility in the Azores Bookmark and Share Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. On June 30, officials from the Regional Government of the Azores recognized the deployment of the ARM Mobile Facility on Graciosa Island during an official opening ceremony held at the site. Notable among the participants

247

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2012 [Facility News] 6, 2012 [Facility News] News Tips from 2012 EGU General Assembly Bookmark and Share The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. VIENNA - The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is the world's most comprehensive outdoor laboratory and data archive for research related to atmospheric processes that affect Earth's climate. At the European Geophysical Union (EGU) General Assembly 2012 in Vienna, find out how scientists use the ARM Facility to study the interactions between clouds,

248

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

249

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2011 [Facility News, Publications] 8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21 papers published in a special issue of the Quarterly Journal of the Royal Meteorological Society demonstrate that the data collected during COPS are providing new insight into: the key chemical and physical processes leading to convection initiation and to the modification of precipitation by orography;

250

WIPP - Public Reading Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE sites, have established home pages on the Internet with links to other web sites. If you determine a specific facility might have records in which you are interested, requests for those records can be made directly to the public reading rooms identified below. Copying of records located in the public reading rooms must be made by the staff of those facilities.

251

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant improvements have been made to facilities and equipment throughout the years, the computer network at the

252

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 7, 2011 [Facility News] April 7, 2011 [Facility News] Review Panel States ARM Facility "Without Peer" Bookmark and Share Every three years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review was conducted in mid-February by a six-member review panel led by Minghua Zhang of Stony Brook University. Notably, in a debriefing following the review, the panel stated that ARM was a "world class facility without peer." The panel convened in Ponca City, Oklahoma, near ARM's Southern Great Plains site to conduct their review. Their first agenda item was an SGP site tour, which provided a realtime example of the scope and expertise of site operations and included a demonstration of the site's newly

253

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 [Facility News] 4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science possible. Enter the ARM Science Board. This eleven-member group annually reviews complex proposals for use of the ARM mobile and aerial facilities. To maintain excellence and integrity in the review process, each member serves a renewable term of two years, with membership updated annually.

254

Calcined solids storage facility closure study  

SciTech Connect

The disposal of radioactive wastes now stored at the Idaho National Engineering and Environmental Laboratory is currently mandated under a {open_quotes}Settlement Agreement{close_quotes} (or {open_quotes}Batt Agreement{close_quotes}) between the Department of Energy and the State of Idaho. Under this agreement, all high-level waste must be treated as necessary to meet the disposal criteria and disposed of or made road ready to ship from the INEEL by 2035. In order to comply with this agreement, all calcined waste produced in the New Waste Calcining Facility and stored in the Calcined Solids Facility must be treated and disposed of by 2035. Several treatment options for the calcined waste have been studied in support of the High-Level Waste Environmental Impact Statement. Two treatment methods studied, referred to as the TRU Waste Separations Options, involve the separation of the high-level waste (calcine) into TRU waste and low-level waste (Class A or Class C). Following treatment, the TRU waste would be sent to the Waste Isolation Pilot Plant (WIPP) for final storage. It has been proposed that the low-level waste be disposed of in the Tank Farm Facility and/or the Calcined Solids Storage Facility following Resource Conservation and Recovery Act closure. In order to use the seven Bin Sets making up the Calcined Solids Storage Facility as a low-level waste landfill, the facility must first be closed to Resource Conservation and Recovery Act (RCRA) standards. This study identifies and discusses two basic methods available to close the Calcined Solids Storage Facility under the RCRA - Risk-Based Clean Closure and Closure to Landfill Standards. In addition to the closure methods, the regulatory requirements and issues associated with turning the Calcined Solids Storage Facility into an NRC low-level waste landfill or filling the bin voids with clean grout are discussed.

Dahlmeir, M.M.; Tuott, L.C.; Spaulding, B.C. [and others

1998-02-01T23:59:59.000Z

255

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 30, 2008 Facility News Site Operations Centralized Through New Tracking System Bookmark and Share Tracking over 300 instrument systems distributed around the world is a...

256

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

257

BTRIC - User Facility - ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

whole-building and community integration, improved energy management in buildings and industrial facilities during their operational phase, and market transformations from old...

258

Superalloy Research Facilities  

Science Conference Proceedings (OSTI)

Feb 8, 2007 ... This directory provides a list of links to superalloy research facilities and programs around the world. Two formats of the information are...

259

Wind Manufacturing Facilities  

Energy.gov (U.S. Department of Energy (DOE))

America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state.

260

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

TR-081.2 iii Abstract This report provides a short description of the Atmospheric Radiation Measurement (ARM) Climate Research Facility microwave radiometer (MWR) Retrieval...

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

instruments and equipment, as well as local facilities such as hospitals, groceries, and gas stations. Next steps will involve such items as securing access to power from nearby...

262

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 30, 2004 Facility News New Instrumentation on Proteus Aircraft Tested This fall, the ARM-Unmanned Aerospace Vehicle Program-specifically, the Proteus aircraft-is...

263

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15 and 21 will remain intact, along with the Central Facility (C1) near Lamont. Instrumentation at the remaining sites will be consolidated into the new, smaller footprint....

264

Lighting Systems Test Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurement equipment with light beam Lighting Systems Test Facilities NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be...

265

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2, 2013 Facility News 2014 Funding Opportunity Available for Early Career Scientists The U.S. Department of Energy's Office of Science is now accepting research...

266

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

Shared Research Equipment (ShaRE) The Shared Research Equipment (ShaRE) User Facility at the Oak Ridge National Laboratory (ORNL) is one of three Electron Beam...

267

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 15, 2008 Facility News User Group Provides Recommendations for Data Archive Improvements Routine data from the ARM sites and ARM-sponsored field campaigns are stored in...

268

User Facilities - Learn More  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Source Search by Equipment or Process User Portal Quick Links ORNL home User facility contacts ORNL Guest House Open Helpful Travel Information Learn More User...

269

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 31, 2008 Facility News Breakthrough User Interface Delivers Statistical Views of Data With its "drill-down" preview feature, the Statistical Browser is the first example...

270

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Mapping It Up With Google Bookmark and Share "Thumbtacks" help ARM website users identify where the ARM sites are, including the ARM Mobile Facility deployments. "Thumbtacks" help...

271

Facility Survey & Transfer  

Energy.gov (U.S. Department of Energy (DOE))

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

272

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

features the familiar faces of Professor Polar Bear, Teacher Turtle, and PI Prairie Dog (each representing an ARM Climate Research Facility site), but now provides easier...

273

Facilities for Calibration  

Science Conference Proceedings (OSTI)

... Our state-of-the-art property measurements require extensive calibration facilities of equal quality. Regular calibrations are essential for realistic ...

2014-01-03T23:59:59.000Z

274

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 30, 2007 Facility News New Radar Wind Profiler Joins AMF Instrument Suite in Germany The 1290 MHz wind profiler (foreground) joins the eddy correlation system (background)...

275

ARM - SGP Boundary Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities-located at Hillsboro, Kansas; Morris, Oklahoma; Purcelll, Oklahoma and Vici, Oklahoma (north, east, south and west, respectively)-marked the approximate midpoint of...

276

No- and Low-Cost Energy-Saving Tips for Multifamily Housing Common...  

NLE Websites -- All DOE Office Websites (Extended Search)

No- and Low-Cost Energy-Saving Tips for Multifamily Housing Common Areas Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing...

277

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Susan E. Bechtol 509-376-3388 Advanced Mixed Waste Treatment Plant (INEEL) EM Idaho Treatment Group, LLC DE-AC07-091D-14813 5272011 9302015 No options 9302015...

278

DOE Facility Management Contracts Facility Owner Contractor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

865- 576-0976 Heather Houk 865-576-1894 Advanced Mixed Waste Treatment Plant (INEEL) EM Idaho Treatment Group, LLC 5272011 9302015 No options 9302015 Site Clean upfacility...

279

Former Workers Medical Facilities with Experience Evaluating Chronic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Former Workers Medical Facilities with Experience Evaluating Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease Former Workers Medical Facilities with Experience Evaluating Chronic Beryllium Disease April 2011 This document provides a listing of medical facilities within the United States with experience in evaluating Chronic Beryllium Disease (CBD). Because the medical community at large is not experienced in the evaluation and treatment of individuals with CBD, this list is offered to individuals in the Former Worker Medical Screening Program who have received an abnormal Beryllium Lymphocyte Proliferation Test and may need further medical monitoring for CBD. Former Worker Medical Facilities with Experience Evaluating Chronic Beryllium Disease More Documents & Publications

280

Facility Representative Program: DOE Facility Representatives  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP PADU PORTS ANL WVDP MOAB SFO LFO LAFO NFO SRFO RL PNSO ORP ID NPO-PX FSO NBL NPO-Y12 ORO OSO SPRU BHSO PSO SR SR NA26 DOE Facility Site Map Please help keep this...

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Biological Sciences Facility and Computational Sciences Facility  

E-Print Network (OSTI)

on PNNL's campus since 1997. Combined, the two facilities house about 300 staff who support PNNL replacing laboratory and office space PNNL has been using on the south end of the nearby Hanford Site financed the new buildings and is leasing them to Battelle, which operates PNNL for DOE. #12;January 2010

282

Commons Capital | Open Energy Information  

Open Energy Info (EERE)

Commons Capital Commons Capital Jump to: navigation, search Logo: Commons Capital Name Commons Capital Address 320 Washington Street, 4th floor Place Brookline, Massachusetts Zip 02445 Region Greater Boston Area Product Early-stage venture capital fund. Phone number (617) 739-3500 Website http://www.commonscapital.com/ Coordinates 42.3333887°, -71.1201943° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3333887,"lon":-71.1201943,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Lunch & Learn Facilities &  

E-Print Network (OSTI)

reimbursements to the University for costs incurred in support of sponsored projects Sponsor perspective: F&A represent the sponsor's fair share of facilities and administration as it relates to total project costs 7Lunch & Learn Facilities & Administrative (F&A) Costs #12;Today's Agenda What are F&A Costs? How

McQuade, D. Tyler

284

Facility location: distributed approximation  

Science Conference Proceedings (OSTI)

In this paper, we initiate the study of the approximability of the facility location problem in a distributed setting. In particular, we explore a trade-off between the amount of communication and the resulting approximation ratio. We give a distributed ... Keywords: distributed approximation, facility location, linear programming, primal-dual algorithms

Thomas Moscibroda; Rogert Wattenhofer

2005-07-01T23:59:59.000Z

285

Argonne Leadership Computing Facility  

E-Print Network (OSTI)

on constant Q surface. (Credit: Anurag Gupta/GE Global) www.alcf.anl.gov The Leadership Computing Facility Division operates the Argonne Leadership Computing Facility -- the ALCF -- as part of the U.S. Department.......................................................................................... 63 2010 ALCF Projects ............................................................................ 64

Kemner, Ken

286

NSA Barrow Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrow Facility Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the northernmost point in the United States, 330 miles north of the Arctic Circle. Also known as the Top of the World, Barrow is Alaska's largest Eskimo village (home to 4,581 people). Tax revenue from the Slope's oil fields pay for services borough wide, and natural gas is used to heat homes and generate electricity in Barrow. Many residents, however, maintain

287

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

25, 2013 [Education, Facility News] 25, 2013 [Education, Facility News] Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Bookmark and Share Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. School break means vacation, and around Cape Cod, that often means a trip to the seashore. On April 17, families looking for fun and educational outdoor activities spent several hours at Cape Cod National Seashore's

288

ARM - NSA Barrow Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Barrow Facility Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the northernmost point in the United States, 330 miles north of the Arctic Circle. Also known as the Top of the World, Barrow is Alaska's largest Eskimo village (home to 4,581 people). Tax revenue from the Slope's oil fields pay for services borough wide, and natural gas is used to heat homes and generate electricity in Barrow. Many residents, however, maintain

289

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2004 [Facility News] May 15, 2004 [Facility News] Mid-latitude Cirrus Cloud Experiment Underway Bookmark and Share NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. In late April, scientific collaborators at the National Aeronautics and Space Administration (NASA) carried out two high-altitude flights over the ARM Climate Research Facility Southern Great Plains (SGP) central facility. The purpose of these flights was to use a new suite of cloud property probes on the WB-57F aircraft to more accurately characterize the properties of mid-latitude cirrus clouds-which are composed solely of ice crystals-than has previously been possible. Eight flights over the SGP central facility were originally planned, but the expected cirrus clouds

290

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2007 [Facility News] 30, 2007 [Facility News] High-Speed Internet Deflects Information Overload Bookmark and Share Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments at the various facilities throughout the SGP site generate approximately 27 gigabytes of data every day. Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments at the various facilities throughout the SGP site generate approximately 27 gigabytes of data every day. A little more room in the internet link at the ARM Southern Great Plains site is providing needed relief to the crowded lines that keep data flowing from the site. In July 2007, the internet service from the SGP Central Facility was switched to a higher speed (6 megabits) link, increasing the

291

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2009 [Facility News] , 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended deployment will obtain seasonal statistics to improve climate models Today marks the beginning of a 20-month field campaign on Graciosa Island in the Azores to study the seasonal life cycle of marine clouds and how they modulate the global climate system. Sponsored by the U.S. Department

292

BNL | Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven's Research Facilities Brookhaven's Research Facilities Tools of Discovery Brookhaven National Lab excels at the design, construction, and operation of large-scale, cutting-edge research facilities-some available nowhere else in the world. Each year, thousands of scientists from laboratories, universities, and industries around the world use these facilities to delve into the basic mysteries of physics, chemistry, biology, materials science, energy, and the environment-and develop innovative applications that arise, sometimes at the intersections of these disciplines. construction Brookhaven Lab is noted for the design, construction and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide. RHIC tunnel Relativistic Heavy Ion Collider

293

ARM Aerial Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesAerial Facility govSitesAerial Facility AAF Information Proposal Process Science (PDF) Baseline Instruments Campaign Instruments Instrumentation Workshop 2008 AAF Fact Sheet G-1 Fact Sheet Images Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey Petty DOE AAF Program Director Beat Schmid Technical Director ARM Aerial Facility Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. As an integral measurement capability of the ARM Climate Research Facility, the ARM Aerial Facility (AAF) provides airborne measurements required to answer science questions proposed by the ARM Science Team and the external

294

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2010 [Facility News] 15, 2010 [Facility News] Water Vapor Network at SGP Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. After nearly eleven years, the Single Frequency GPS Water Vapor Network field campaign at the ARM Southern Great Plains (SGP) site came to a close on July 1, 2010. Installed between 1999 and 2000, this network consisted of 24 GPS stations operating within an 8-kilometer radius around the SGP Central Facility near Lamont, Oklahoma. Developed to function as a single instrument, the network simultaneously measured "slant water vapor" in

295

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2005 [Facility News] 30, 2005 [Facility News] Coastal Clouds Field Campaign Takes Off in July Bookmark and Share The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point Reyes National Seashore in northern California for the Marine Stratus Radiation, Aerosol, and Drizzle Intensive Operational Period. The goals of this 6-month field campaign are to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated

296

FACILITY SAFETY (FS)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACILITY SAFETY (FS) FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the safety envelope of the facility. The, safety documentation should characterize the hazards/risks associated with the facility and should, identify preventive and mitigating measures (e.g., systems, procedures, and administrative, controls) that protect workers and the public from those hazards/risks. (Old Core Requirement 4) Criteria 1. A DSA has been prepared by FWENC, approved by DOE, and implemented to reflect the SN process operations in the WPF. (10 CFR 830.200, DOE-STD-3009-94) 2. A configuration control program is in place and functioning such that the DSA is

297

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2009 [Facility News] 7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment Act of 2009, the DOE Office of Science received $1.2 billion, with $60 million allocated to the ARM Climate Research Facility. With these funds, ARM will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several sites with precipitation radars and energy flux measurement capabilities,

298

Waste Management Facilities Cost Information Report  

Science Conference Proceedings (OSTI)

The Waste Management Facility Cost Information (WMFCI) Report, commissioned by the US Department of Energy (DOE), develops planning life-cycle cost (PLCC) estimates for treatment, storage, and disposal facilities. This report contains PLCC estimates versus capacity for 26 different facility cost modules. A procedure to guide DOE and its contractor personnel in the use of estimating data is also provided. Estimates in the report apply to five distinctive waste streams: low-level waste, low-level mixed waste, alpha contaminated low-level waste, alpha contaminated low-level mixed waste, and transuranic waste. The report addresses five different treatment types: incineration, metal/melting and recovery, shredder/compaction, solidification, and vitrification. Data in this report allows the user to develop PLCC estimates for various waste management options.

Feizollahi, F.; Shropshire, D.

1992-10-01T23:59:59.000Z

299

FAQS Qualification Card - Facility Representative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Representative Representative FAQS Qualification Card - Facility Representative A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-FacilityRepresentative.docx Description Facility Representative Qualification Card More Documents & Publications FAQS Gap Analysis Qualification Card - Facility Representative

300

Calibration Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards for calibrating borehole fission neutron devices are also available, but are used infrequently. Radiation standards are constructed of concrete with elevated, uniform concentrations of naturally occurring potassium, uranium, and/or thorium. Pad standards have large, flat surfaces suitable for calibration

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

METC Combustion Research Facility  

SciTech Connect

The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

Halow, J.S.; Maloney, D.J.; Richards, G.A.

1993-11-01T23:59:59.000Z

302

Department of Residential Facilities Facilities Student Employment Office  

E-Print Network (OSTI)

Department of Residential Facilities Facilities Student Employment Office 1205E Leonardtown Service Updated 3/09 #12;EMPLOYMENT HISTORY Have you worked for Residential Facilities before? Yes No If so list

Milchberg, Howard

303

Constructing Commons in the Cultural Environment  

E-Print Network (OSTI)

Commons in the Cultural Environment Michael J. MadisonCOMMONS IN THE CULTURAL ENVIRONMENT Draft of August 27, 2008Commons in the Cultural Environment ? Michael J. Madison, 1

Madison, Michael J.; Frischmann, Brett M.; Strandburg, Katherine J.

2008-01-01T23:59:59.000Z

304

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 10, 2012 [Facility News] July 10, 2012 [Facility News] Collaborations in Atmospheric Science and Observations Discussed in Germany Bookmark and Share Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the university's Jülich ObservatorY for Cloud Evolution (JOYCE) site. Crewell explained that JOYCE, like ARM facilities, was designed for long-term continuous measurements of cloud, radiation, boundary humidity, and precipitation, using active and passive remote sensing instruments. Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the

305

Supercomputing | Facilities | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities and Capabilities Facilities and Capabilities Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities | High Performance Storage SHARE High Performance Storage and Archival Systems To meet the needs of ORNL's diverse computational platforms, a shared parallel file system capable of meeting the performance and scalability require-ments of these platforms has been successfully deployed. This shared file system, based on Lustre, Data Direct Networks (DDN), and Infini-Band technologies, is known as Spider and provides centralized access to petascale datasets from all major on-site computational platforms. Delivering more than 240 GB/s of aggregate performance,

306

TRITIUM EXTRACTION FACILITY ALARA  

SciTech Connect

The primary mission of the Tritium Extraction Facility (TEF) is to extract tritium from tritium producing burnable absorber rods (TPBARs) that have been irradiated in a commercial light water reactor and to deliver tritium-containing gas to the Savannah River Site Facility 233-H. The tritium extraction segment provides the capability to deliver three (3) kilograms per year to the nation's nuclear weapons stockpile. The TEF includes processes, equipment and facilities capable of production-scale extraction of tritium while minimizing personnel radiation exposure, environmental releases, and waste generation.

Joye, BROTHERTON

2005-04-19T23:59:59.000Z

307

Transuranic waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the U.S. Department of Energy Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

Transuranic waste (TRUW) loads and potential contaminant releases at and en route to treatment, storage, and disposal sites in the US Department of Energy (DOE) complex are important considerations in DOE`s Waste Management Programmatic Environmental Impact Statement (WM PEIS). Waste loads are determined in part by the level of treatment the waste has undergone and the complex-wide configuration of origination, treatment, storage, and disposal sites selected for TRUW management. Other elements that impact waste loads are treatment volumes, waste characteristics, and the unit operation parameters of the treatment technologies. Treatment levels and site configurations have been combined into six TRUW management alternatives for study in the WM PEIS. This supplemental report to the WM PEIS gives the projected waste loads and contaminant release profiles for DOE treatment sites under each of the six TRUW management alternatives. It gives TRUW characteristics and inventories for current DOE generation and storage sites, describes the treatment technologies for three proposed levels of TRUW treatment, and presents the representative unit operation parameters of the treatment technologies. The data presented are primary inputs to developing the costs, health risks, and socioeconomic and environmental impacts of treating, packaging, and shipping TRUW for disposal.

Hong, K.; Kotek, T.; Folga, S.; Koebnick, B.; Wang, Y.; Kaicher, C.

1996-12-01T23:59:59.000Z

308

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2013 [Facility News] 9, 2013 [Facility News] ARM Facility Shares Return on Science Investments Bookmark and Share The Bolger Center-a former U.S. Postal Service training center-hosted the fourth annual ASR Science Team Meeting in March. The Bolger Center-a former U.S. Postal Service training center-hosted the fourth annual ASR Science Team Meeting in March. To quote Ben Franklin, "If a man empties his purse into his head, no man can take it away from him. An investment in knowledge always pays the best interest." ARM Climate Research Facility staff who attended the fourth annual Atmospheric System Research (ASR) Science Team Meeting in April received a healthy dose of interest in March! With over 350 attendees presenting nearly 250 posters, the wealth of atmospheric climate science knowledge

309

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2011 [Facility News] May 20, 2011 [Facility News] From Snow to Sand; Mobile Facility Headed to the Maldives Bookmark and Share AMF2 operations team members pack up the 3-channel microwave radiometer at the STORMVEX valley floor site in Steamboat Springs, Colorado. AMF2 operations team members pack up the 3-channel microwave radiometer at the STORMVEX valley floor site in Steamboat Springs, Colorado. After spending six very snowy months at Steamboat Springs, Colorado, the second ARM Mobile Facility (AMF2) is switching gears and heading to the tropical climes of the Maldives in the Indian Ocean. In mid-April, the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) came to a close, ending the final chapter of the AMF2's maiden deployment. After packing up the instruments and data systems, the AMF2 team is now preparing

310

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Service Conserves Cash Satellite Service Conserves Cash Bookmark and Share In April, operations personnel completed a series of cost-saving data communication changes at the ARM Climate Research Facility Southern Great Plains (SGP) locale. The T-1 telephone lines at the four SGP boundary facilities were replaced with satellite dish technology. This change still allows large data sets to be transferred at acceptable bandwidth but at substantial savings. Inexpensive satellite services now meet data transmission needs at the SGP boundary facilities. Inexpensive satellite services now meet data transmission needs at the SGP boundary facilities. Huge amounts of data are collected daily by SGP site instruments. These data must be transmitted rapidly and reliably from remote measurement

311

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2012 [Data Announcements, Facility News] 2, 2012 [Data Announcements, Facility News] Toolkit for ARM Radar Data Previewed at Workshop Bookmark and Share This data plot shows the height and north/south displacement of rain relative to the ARM Southern Great Plains site's Central Facility in Oklahoma. This retrieval used information from all three X-band scanning ARM precipitation radars at the SGP site and was performed using tools in the Python-ARM radar toolkit. Click on image to enlarge. This data plot shows the height and north/south displacement of rain relative to the ARM Southern Great Plains site's Central Facility in Oklahoma. This retrieval used information from all three X-band scanning ARM precipitation radars at the SGP site and was performed using tools in the Python-ARM radar toolkit. Click on image to enlarge.

312

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 31, 2009 [Facility News] March 31, 2009 [Facility News] New Sensors Installed for Cloud Radar Calibration at North Slope Bookmark and Share Located on the roof of the Guest Instrument Facility at the ARM Barrow site are the PARSIVEL (left) and POSS (right) instruments. Located on the roof of the Guest Instrument Facility at the ARM Barrow site are the PARSIVEL (left) and POSS (right) instruments. Cloud radars at the ARM sites provide important information about cloud properties and continue to evolve in providing climate researchers more complex data. This creates a greater need to know the absolute calibration of the radar reflectivity measurement. However, the large and immobile antenna for the millimeter wavelength cloud radar (MMCR) is impossible to point directly at a calibration target. At the ARM North Slope of Alaska

313

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2006 [Facility News] May 15, 2006 [Facility News] New Micropulse Lidars to Replace Old Ones; Deployments Begin at SGP Bookmark and Share A representative from Sigma Space Corporation demonstrates the operation of the new micropulse lidar to ARM instrument mentors and site operations technicians. A representative from Sigma Space Corporation demonstrates the operation of the new micropulse lidar to ARM instrument mentors and site operations technicians. On May 3, the first of seven new and upgraded micropulse lidars (MPLs) was deployed at the ARM Southern Great Plains (SGP) site's Central Facility. These seven identical systems (including one spare) will replace the existing MPLs deployed at facilities throughout the SGP site and include new polarization capability. The MPLs provide critical backscatter

314

Nuclear Facility Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design Design FUNCTIONAL AREA GOAL: Headquarters and Field organizations and their contractors ensure that nuclear facilities are designed to assure adequate protection for the public, workers, and the environment from nuclear hazards. REQUIREMENTS:  10 CFR 830.120  10 CFR 830 subpart B  DOE O 413.3  DOE O 420.1B  DOE O 414.1C  DOE O 226.1  DOE M 426.1  DEAR 970-5404-2 Guidance:  DOE G 420.1-1  Project Management Practices, Integrated Quality ( Rev E, June 2003)  DOE Implementation Plan for DNSB Recommendation 2004-2 Performance Objective 1: Contractor Program Documentation Contracts between and the contractors who operate nuclear facilities contain adequate requirements concerning the conduct of nuclear facility safety design for nuclear facility capital projects and major modifications and the

315

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 22, 2008 Facility News ARM Staff Changes to Note Bookmark and Share Dr. Martin Stuefer, newest member of NSA team, and his plane. Dr. Martin Stuefer, newest member of NSA...

316

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

27, 2009 [Facility News] 27, 2009 [Facility News] Arrival of Recovery Act Funds Sets Wheels In Motion Bookmark and Share So that people can easily recognize the effects of the American Recovery and Reinvestment Act, all projects will be stamped with the Recovery Act logo. So that people can easily recognize the effects of the American Recovery and Reinvestment Act, all projects will be stamped with the Recovery Act logo. Through the American Recovery and Reinvestment Act of 2009 (aka stimulus), the Department of Energy's Office of Science received $1.2 billion. In late May, DOE released approximately $54 million-90 percent-of the $60 million allocated to the ARM Climate Research Facility. During the next 18 months, the ARM Climate Research Facility will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several

317

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

28, 2005 [Facility News] 28, 2005 [Facility News] Readiness of New Lidar Evaluated at Southern Great Plains Site Bookmark and Share Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. As the focus of the Boundary Layer Carbon Dioxide (CO2) Intensive Operational Period (IOP) starting in March, science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA)

318

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Quality Improvement Inspections Take Place Annual Quality Improvement Inspections Take Place Bookmark and Share During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. During the SGP site audit conducted in April 2005, a member of the Continuous Quality Improvement Program team is accompanied by a local jackrabbit at the Ringwood Extended Facility. The Continuous Quality Improvement Program (CQIP) implemented by the ARM Program in 1998 requires annual audits and inspection visits to each of the ARM Climate Research Facility Southern Great Plains (SGP) site's 27 field facilities located in Oklahoma and Kansas. A small team of scientists and engineers conduct the inspections each year to evaluate the field

319

PNNL: About PNNL - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Facilities Scientific Facilities At PNNL, we offer scientific researchers access to unique equipment housed in state-of-the-art facilities as well as onsite experts to help visiting researchers take advantage of and make best use of the capabilities. You also have the opportunity to collaborate with our world-renowned scientists and engineers who can help you advance your scientific research and publish your results. Take a virtual tour of some of our laboratories. William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) EMSL EMSL is a U.S. Department of Energy (DOE) national user facility currently shared and used by researchers from around the world. Research at EMSL focuses principally on developing a molecular-level understanding of the physical, chemical, and biological processes that underlie the most

320

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

New Backup Software Improves Processing, Reliability at Data Management New Backup Software Improves Processing, Reliability at Data Management Facility Bookmark and Share Real-time data from all three of the ARM Climate Research Facility sites (North Slope of Alaska, Southern Great Plains, and Tropical Western Pacific) are collected and processed at the ARM Climate Research Facility Data Management Facility (DMF) each day. Processing involves the application of algorithms for performing simple averaging routines, qualitative comparisons, or more complicated experimental calculations. With continual advances in computer technology, keeping up with the volume and pace of incoming data is a daunting challenge. And because the remote sites do not provide backups, reliable backups of these data at the DMF are critical. In addition, significant numbers of value-added datasets are

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Facility Beta Testing Complete; System Headed to California Seashore Mobile Facility Beta Testing Complete; System Headed to California Seashore Bookmark and Share A key addition to the ARM Climate Research Facility scientific infrastructure is ready to roll...literally. In February, the ARM Mobile Facility (AMF) is being packed up and shipped from Richland, Washington, to the Point Reyes National Seashore north of San Francisco, California. There, it will be reassembled in preparation for its first deployment as part of a 6-month experiment to study the microphysical characteristics of marine stratus clouds, and in particular, marine stratus drizzle processes. Throughout the deployment, the AMF will accommodate aerosol observing equipment for National Oceanic and Atmospheric Administration (NOAA) researchers co-sponsored by ARM and the DOE Aerosol Science Program.

322

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of ARM Infrastructure Completed Review of ARM Infrastructure Completed Bookmark and Share In May, the Department of Energy's Biological and Environmental Research Advisory Committee (BERAC) published findings and recommendations from their assessment of the effectiveness of ARM Climate Research Facility as a national scientific user facility. Based on a review of total user requests, the BERAC concluded that ARM was being effectively used by the broader scientific community, not just the ARM Program. They also stated that cost cutting measures had achieved the desired efficiency goals, but further cuts could impair the Facility's operations. The subcommittee reinforced the importance of the scientific impacts of this facility (including publications), and the value it has had for the international

323

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 1, 2012 [Facility News] March 1, 2012 [Facility News] Arctic Storm Samples Show Relationship Between Sea Ice and Precipitation Over Land Bookmark and Share Walter Brower, Barrow site facilities manager for ARM, cleans the sampling surface in preparation for the next snow storm. Visible in the background is the site's automated weather balloon launcher. Walter Brower, Barrow site facilities manager for ARM, cleans the sampling surface in preparation for the next snow storm. Visible in the background is the site's automated weather balloon launcher. As an important component of Earth's climate system, sea ice has a particularly strong influence on the Arctic sea surface temperature, evaporation, and reflectivity, or "albedo." The critical relationship among sea ice, evaporation, and precipitation is linked to a number of

324

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] ARM Outreach Materials Chosen for Earth Day Display in Washington DC Bookmark and Share Posters for the ARM Mobile Facility and ARM Education and Outreach were selected for the 2008 Earth Day display at DOE Headquarters. Posters for the ARM Mobile Facility and ARM Education and Outreach were selected for the 2008 Earth Day display at DOE Headquarters. Earth Day is officially honored each year on April 22, however, many groups sponsor activities throughout the entire month of April. At DOE Headquarters in Washington DC, two ARM posters were selected to join a poster display representing programs from numerous DOE offices. The display was featured in the Forrestal Building's ground-level and first floor lobby areas throughout the week of April 21. The posters were then displayed at

325

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2007 [Facility News] 15, 2007 [Facility News] Microwave Radiometers Put to the Test in Germany Bookmark and Share A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler (right) are part of a larger collection of instruments deployed at the ARM Mobile Facility site in Heselbach, Germany, in 2007. A 2-channel microwave radiometer (left) and a 12-channel microwave radiometer profiler (right) are part of a larger collection of instruments deployed at the ARM Mobile Facility site in Heselbach, Germany, in 2007. Microwave radiometers (MWRs) are instruments used to measure emissions of water vapor and liquid water molecules in the atmosphere at specific microwave frequencies. Different MWRs are used to measure various frequencies, but the accuracy of all their retrievals is somewhat suspect,

326

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

327

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2007 [Facility News] 15, 2007 [Facility News] Commercial Infrared Sky Imagers Compared Bookmark and Share Three of the four instruments used in the sky imager intercomparison are visible in this photo taken on the Guest Instrument Facility platform at the SGP site. They are the Solmirus All Sky Infrared Visible Analyzer (foreground); Heitronics Nubiscope (top right); and Atmos Cloud Infrared Radiometer-4 (far left). Three of the four instruments used in the sky imager intercomparison are visible in this photo taken on the Guest Instrument Facility platform at the SGP site. They are the Solmirus All Sky Infrared Visible Analyzer (foreground); Heitronics Nubiscope (top right); and Atmos Cloud Infrared Radiometer-4 (far left). Four infrared imaging instruments were installed and operated at the ARM

328

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2011 [Facility News] 1, 2011 [Facility News] Data from Field Campaign in Black Forest, Germany, are Red Hot Bookmark and Share During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. During COPS, the ARM Mobile Facility operated in Heselbach, Germany, obtaining measurements encompassing the entire life cycle of precipitation. The AMF site also hosted a number of guest instruments for supplemental field campaigns throughout the deployment. A paper published in a special issue of the Quarterly Journal of the Royal Meteorological Society describing the scientific strategy, field phase, and

329

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2006 [Facility News] 15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the troposphere. This may be a key variable in determining the vertical distribution of dust in the experimental domain. Gradients in the radar's reflectivity spectrum may also help to provide continuous identification of the depth of the boundary layer in the summer months, when refractive gradients are likely to be maximized by low-level moisture.

330

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2006 [Facility News] April 30, 2006 [Facility News] Disdrometer Joins Tipping Bucket to Improve Precipitation Measurements Bookmark and Share At the SGP site, the disdrometer is installed near the site's main instrument cluster, approximately 50 feet east of the Central Facility. To avoid secondary splash contamination, the disdrometer's sensor cone is surrounded by splash-resistant material. At the SGP site, the disdrometer is installed near the site's main instrument cluster, approximately 50 feet east of the Central Facility. To avoid secondary splash contamination, the disdrometer's sensor cone is surrounded by splash-resistant material. This spring, a pair of new distrometers began collecting data at the ARM Southern Great Plains (SGP) site and the ARM Darwin site in the Tropical

331

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 3, 2004 [Facility News] December 3, 2004 [Facility News] First Deployment of ARM Mobile Facility to Occur on California Coast Bookmark and Share Image - Point Reyes Beach Image - Point Reyes Beach Point Reyes National Seashore, on the California coast north of San Francisco, has been identified as the official location for the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). As part of a 6-month field campaign beginning in March 2005 to study the microphysical characteristics of marine stratus and, in particular, marine stratus drizzle processes, the AMF will provide a mature instrument system to help fill information gaps in the existing limited surveys of marine stratus microphysical structure. Marine stratus clouds are known to be susceptible to the byproducts of fossil fuel consumption, a

332

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman August 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

333

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARM Climate Research Facility Quarterly Value-Added Product Report Chitra Sivaraman June 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

334

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION Jeffrey D. Byron B.B. Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE Mark

335

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

336

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2004 Facility News Education and Outreach Program Visits Schools in the Tropics Bookmark and Share A native islander is interviewed in his natural setting at Manus Island as...

337

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

24, 2011 Facility News New Radar is a "Can't Miss" on Manus Resting atop a 60-foot tower, the new radar's antenna is visible above the treetops from most vantage points on...

338

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Exchange Researchers installed a continuous 222Rn monitor at the base of the 60-meter tower at the SGP Central Facility. A sampling tube connected to the tower supplies air to...

339

ARM - Facility News Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Amazon Rainforest Apr 25 Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Apr 24 A Twist on TwisterTM: ARM Educational Outreach Participates in Community Science...

340

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2009 Facility News Internet Upgrade Speeds Data Transfer from Tropics Bookmark and Share View this video to see how the millimeter wave cloud radar works. View this video to...

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Network for Barrow, AK, and Stillwater, OK, are Available Through the External Data Center Bookmark and Share The ARM Climate Research Facility is providing data in netCDF...

342

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 15, 2004 Facility News SuomiNet-type Instruments Tested and Ready for Tropics Bookmark and Share The SuomiNet software integrates a network of global positioning systems...

343

Liquidity facilities and signaling  

E-Print Network (OSTI)

This dissertation studies the role of signaling concerns in discouraging access to liquidity facilities like the IMF contingent credit lines (CCL) and the Discount Window (DW). In Chapter 1, I analyze the introduction of ...

Arregui, Nicols

2010-01-01T23:59:59.000Z

344

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

0 ARM Climate Research Facility Quarterly Value-Added Product Report C Sivaraman May 2013 DISCLAIMER This report was prepared as an account of work sponsored by the U.S....

345

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Records Set Again; New Process Enhances Reporting of User Facility Statistics The 2006 year-end ARM statistics included a spatial distribution of global (shown here; click map for...

346

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Capability Added to Cloud Radar As a prelude to great things to come throughout the user facility, a new 95-gigahertz scanning W-band cloud radar was installed in late...

347

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 30, 2009 Facility News Climate Change Lesson Plan Selected for MyHealthySchool.com Bookmark and Share A lesson plan about climate change in the Arctic was selected by...

348

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE achieve its goal to provide open access to experimental data, as set forth in the DOE 2011 Strategic Plan. As a scientific user facility serving researchers both in the United...

349

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparations Underway for 2007 ARM Mobile Facility Deployment in Germany In the Black Forest region of Germany, the COPS field campaign will cover an area of about 700km2, as...

350

JGI - The Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

The Facility aerial photo of JGI The Joint Genome Institute (foreground) The U.S. Department of Energy (DOE) Joint Genome Institute (JGI) is located in the former Dow Chemical...

351

B Plant facility description  

SciTech Connect

Buildings 225B, 272B, 282B, 282BA, and 294B were removed from the B Plant facility description. Minor corrections were made for tank sizes and hazardous and toxic inventories.

Chalk, S.E.

1996-10-04T23:59:59.000Z

352

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] ARM Mobile Facility Begins Year-Long Deployment in Africa Bookmark and Share Beginning on January 9, the ARM Mobile Facility began officially collecting atmospheric data from a location at the airport in Niamey, Niger, Africa. As part of the RADAGAST field campaign, the AMF will measure the effects of absorbing aerosols from desert dust in the dry season, and the effects of deep convective clouds and associated moisture loadings on the transmission of atmospheric radiation during the summer monsoon. These measurements will be combined with associated satellite data to provide the first well-sampled direct estimates of the energy balance across the atmosphere. This dataset will provide valuable information to an ongoing effort called

353

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 [Facility News] 5, 2009 [Facility News] Turning a New Page with Facebook; Are You a Fan? Bookmark and Share Keep up with the ARM Climate Research Facilty via Facebook! Keep up with the ARM Climate Research Facilty via Facebook! As a scientific user facility for the global change research community, the ARM Climate Research Facility strives to provide data and share its climate observation capabilities with researchers around the world. In a continuing effort to reach new users, ARM is turning another page in its outreach strategy with a presence on Facebook. (You must have a Facebook account to access the page; if you don't have one, it is free and easy to create one.) Savvy Internet users of all ages increasingly use these types of communication tools to track topics of interest and share information with

354

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

February 28, 2006 [Facility News] February 28, 2006 [Facility News] Network of Infrared Thermometers Nearly Complete at SGP Bookmark and Share Red dots indicate extended facilities at SGP with the new IRTs installed; green dots indicate future installations. Red dots indicate extended facilities at SGP with the new IRTs installed; green dots indicate future installations. As reported in April 2005, a network of infrared thermometers (IRT) is being installed throughout the ARM Southern Great Plains (SGP) site for the purpose of measuring cloud base temperature and inferring cloud base height across the domain. These measurements will enhance existing SGP surface and satellite cloud measurements to help scientists improve their calculations of heating rate profiles on the scale of global climate models. The first

355

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 28, 2010 Facility News First Data from Darwin Raman Lidar Bookmark and Share Since 1996, the ARM Southern Great Plains site has maintained one of the few operational...

356

Petroleum fuel facilities. design manual 22. Final design criteria  

SciTech Connect

Design criteria are presented for use by qualified engineers in designing liquid fueling and dispensing facilities. Included are basic requirements for the design of piping systems, pumps, heaters, and controls; the design of receiving, dispensing, and storage facilities; ballast treatment and sludge removal; corrosion and fire protection; and environmental requirements.

1982-08-01T23:59:59.000Z

357

Educational Facilities Guidebook  

Science Conference Proceedings (OSTI)

This Guidebook provides utility marketing staff with a basic guide to 29 electric solutions for typical problems in educational facilities, including options for improved energy service quality, reduced energy costs, enhanced environmental protection, and increased electrification. In an era of aging educational facilities and tight budgets, the Guidebook suggests practical measures for applying 1990s electric technology to 1950s buildings as well as new buildings. It also highlights efficient electric t...

1997-01-28T23:59:59.000Z

358

Mound facility physical characterization  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

1993-12-01T23:59:59.000Z

359

CRAD, Facility Safety - Nuclear Facility Safety Basis | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis CRAD, Facility Safety - Nuclear Facility Safety Basis A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Facility Safety - Nuclear Facility Safety Basis More Documents & Publications CRAD, Facility Safety - Unreviewed Safety Question Requirements Site Visit Report, Livermore Site Office - February 2011 FAQS Job Task Analyses - Nuclear Safety Specialist

360

Facility Disposition Safety Strategy RM  

Energy.gov (U.S. Department of Energy (DOE))

The Facility Disposition Safety Strategy (FDSS) Review Module is a tool that assists DOE federal project review teams in evaluating the adequacy of the facility documentation, preparations or...

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LANL | Physics | Trident Laser Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

science at Trident Laser Facility Several important discoveries and first observations have been made at the Trident Laser Facility, a unique three-beam neodymium-glass laser...

362

Facilities Initiatives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Administration, Office of Logistics and Facility Operations, has several energy saving initiatives in place or in progress at their Headquarters' facilities in the...

363

BERA Recreational Facilities for FREE  

NLE Websites -- All DOE Office Websites (Extended Search)

RETIREES are welcome to use the BERA Recreational Facilities for FREE CONGRATULATIONS on your retirement Retirees are requested to use the recreational facilities during off...

364

User Facilities | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facilities Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Electron Microscopy Center...

365

Pollution Control Facilities (South Carolina)  

Energy.gov (U.S. Department of Energy (DOE))

For the purpose of this legislation, pollution control facilities are defined as any facilities designed for the elimination, mitigation or prevention of air or water pollution, including all...

366

Advanced Safeguards Approaches for New Reprocessing Facilities  

Science Conference Proceedings (OSTI)

U.S. efforts to promote the international expansion of nuclear energy through the Global Nuclear Energy Partnership (GNEP) will result in a dramatic expansion of nuclear fuel cycle facilities in the United States. New demonstration facilities, such as the Advanced Fuel Cycle Facility (AFCF), the Advanced Burner Reactor (ABR), and the Consolidated Fuel Treatment Center (CFTC) will use advanced nuclear and chemical process technologies that must incorporate increased proliferation resistance to enhance nuclear safeguards. The ASA-100 Project, Advanced Safeguards Approaches for New Nuclear Fuel Cycle Facilities, commissioned by the NA-243 Office of NNSA, has been tasked with reviewing and developing advanced safeguards approaches for these demonstration facilities. Because one goal of GNEP is developing and sharing proliferation-resistant nuclear technology and services with partner nations, the safeguards approaches considered are consistent with international safeguards as currently implemented by the International Atomic Energy Agency (IAEA). This first report reviews possible safeguards approaches for the new fuel reprocessing processes to be deployed at the AFCF and CFTC facilities. Similar analyses addressing the ABR and transuranic (TRU) fuel fabrication lines at AFCF and CFTC will be presented in subsequent reports.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Richard; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-06-24T23:59:59.000Z

367

Secure Facilities & Capabilities | National Security | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Facilities SHARE Secure Facilities and Capabilities...

368

Best Management Practices for Vegetation Management at Electric Utility Facilities  

Science Conference Proceedings (OSTI)

Controlling vegetation inside key electric utility facilities is a necessary maintenance activity for a utilitys safe and reliable operation. Substations, switchyards, and other facilities require perpetual maintenance to maintain a vegetation-free environment. At a minimum, vegetation-maintenance treatment needs to be conducted annually; in some climatic regions, multiple treatments may be required. The objective of this research paper was to define current industry practices by means of a ...

2013-11-22T23:59:59.000Z

369

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid...

370

Mixed Waste Treatment Study  

Science Conference Proceedings (OSTI)

As part of an ongoing integrated mixed waste program, EPRI has documented nuclear utility industry experience in the on-site treatment of mixed waste. This report reviews all available exclusions/exceptions to EPA permitting requirements for environmentally responsible on-site management of mixed waste. Included is a description of emerging mixed waste treatment technologies along with a detailed evaluation of off-site treatment/disposal facilities.

1996-01-31T23:59:59.000Z

371

Energy Efficiency Strategies for Municipal Wastewater Treatment...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Municipal Wastewater Treatment Facilities J. Daw and K. Hallett National Renewable Energy Laboratory J. DeWolfe and I. Venner Malcolm Pirnie, the Water Division of ARCADIS...

372

Common Rail Injection System Development  

DOE Green Energy (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

373

Comprehensive facilities plan  

Science Conference Proceedings (OSTI)

The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitate existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.

NONE

1997-09-01T23:59:59.000Z

374

Anti-cancer actions in commonly used drugs: epidemiology led by laboratory science.  

E-Print Network (OSTI)

??Despite considerable research on cancer treatments and preventatives, poor outcomes in cancer patients are common. The vital search for effective cancer drugs often begins in (more)

Walker, Alex J.

2011-01-01T23:59:59.000Z

375

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Guest Instruments to Collect Aerosol Data During Coastal Field Campaign Guest Instruments to Collect Aerosol Data During Coastal Field Campaign Bookmark and Share The counter-flow virtual impactor (inset), which can characterize aerosol particles in cloud droplets, joins a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The counter-flow virtual impactor (inset), which can characterize aerosol particles in cloud droplets, joins a number of other guest instruments at the ARM Mobile Facility deployment site at Point Reyes National Seashore in California. The ARM Mobile Facility's (AMF's) inaugural field campaign, the Marine Stratus Radiation Aerosol and Drizzle (MASRAD) Intensive Operational Period, is well underway at Point Reyes National Seashore on the northern

376

Lighting Research Group: Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Lighting Research Facilities at LBNL gonio-photometer Gonio-photometer We use this device to measure the intensity and direction of the light from a lamp or fixture. integrating sphere Integrating sphere This instrument allows us to get a fast and accurate measurement of the total light output of a lamp. We are not able to determine the direction of the light, only the intensity. power analyzer Power analyzer We use our power analyzer with the lamps in the gonio-photometer to measure input power, harmonic distortion, power factor, and many other signals that tell us how well a lamp is performing. spectro-radiometer Spectro-radiometer This device measures not only the intensity of a light source but also the intensity of the light at each wavelength.

377

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 24, 2013 [Education, Facility News] April 24, 2013 [Education, Facility News] A Twist on TwisterTM: ARM Educational Outreach Participates in Community Science Nights Bookmark and Share This week, the U.S. Department of Energy begins its National Science Bowl competition, a nationwide academic competition that tests students' knowledge in all areas of science. Created 22 years ago in 1991, the DOE National Science Bowl strives to encourage students to excel in mathematics and science and to pursue careers in these fields and is an important part of DOE's STEM (science, technology, engineering and math) education efforts today. The ARM Climate Research Facility supports STEM by participating in public science nights and developing climate related lesson plans to share at these events and via the ARM website.

378

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

March 10, 2010 [Facility News] March 10, 2010 [Facility News] Atmospheric System Research Funding Opportunity Announced Bookmark and Share The U.S. Department of Energy's Office of Science is now accepting applications for Office of Biological and Environmental Research (BER) research grants for the development of innovative laboratory and observational data analyses. The resulting knowledge from such analyses will be used to improve cloud and aerosol formulations in global climate models. If the application is successful, the research will be part of the Atmospheric System Research (ASR) Program in the Climate and Environmental Sciences Division (CESD). The mission of ASR, in partnership with the ARM Climate Research Facility, is to quantify the interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics to improve

379

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

380

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 23, 2008 [Data Announcements, Facility News] July 23, 2008 [Data Announcements, Facility News] Second Version of Long-Term Climate Modeling Best Estimate Data Released Bookmark and Share Version 2 of the Climate Modeling Best Estimate includes the data source information for cloud fraction, as depicted in this data plot. Version 2 of the Climate Modeling Best Estimate includes the data source information for cloud fraction, as depicted in this data plot. With major improvements in the cloud fraction, cloud liquid water path (LWP), precipitable water vapor (PWV), and surface radiative fluxes, a new version of the "Climate Modeling Best Estimate" (CMBE) is now available from the ARM Climate Research Facility Archive. This data set, specifically tailored for use in evaluating global climate models, includes long-term

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 15, 2007 [Facility News] October 15, 2007 [Facility News] ARM Joins National Science Foundation Remote Sensing Collaboration Bookmark and Share In September, the ARM Climate Research Facility became an official member of the National Science Foundation's Center for Collaborative Adaptive Sensing of the Atmosphere, or CASA. Initial discussions for partnering began nearly a year ago. After a series of informative visits and presentations, the decision was made to move forward with membership process. The transfer of interagency funds was completed on September 18, 2007, solidifying the partnership. In the meantime, CASA dedicated a significant effort to support the CLASIC field campaign in June 2007 by providing a network of four scanning X-band radars. CASA is a multi-sector partnership among academia, industry, and government

382

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

CIMEL Sunphotometer Helps Researchers See the Light in Australia CIMEL Sunphotometer Helps Researchers See the Light in Australia Bookmark and Share A CIMEL sunphotometer, similar to this one in Tinga Tingana, Australia, will be installed at the ARM Climate Research Facility Darwin site. Photo courtesy of NASA Goddard Space Flight Center. A CIMEL sunphotometer, similar to this one in Tinga Tingana, Australia, will be installed at the ARM Climate Research Facility Darwin site. Photo courtesy of NASA Goddard Space Flight Center. Science collaborators at the Australian Bureau of Meteorology (BOM) and the Australian Commonwealth Scientific and Industry Research Organization (CSIRO) are using the ARM Climate Research Facility Darwin site in Australia to evaluate aerosol optical properties during the tropical dry season. As part of the Darwin Aerosol Intensive Operational Period (IOP), a

383

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 15, 2006 [Facility News] June 15, 2006 [Facility News] Data From Rotating Shadowband Spectroradiometer Now Available in Data Archive Bookmark and Share The Rotating Shadowband Spectroradiometer (RSS) is calibrated bi-weekly with external lamp calibrators for accuracy. The Rotating Shadowband Spectroradiometer (RSS) is calibrated bi-weekly with external lamp calibrators for accuracy. After refinements based on a series of successful field trials, the latest Rotating Shadowband Spectroradiometer (RSS) joins the collection of permanent ARM instruments at the ARM Southern Great Plains (SGP) site. The current RSS-known as the RSS105-is deployed at the SGP Central Facility and is the first commercially built RSS manufactured by Yankee Environmental Systems, Inc. Since its deployment in May 2003, the RSS has

384

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 11, 2011 [Facility News] October 11, 2011 [Facility News] Final Recovery Act Milestone Complete! Bookmark and Share To support all the new instruments from the Recovery Act, infrastructure upgrades ranging from power and platforms to communications and data systems required a focused team effort. To support all the new instruments from the Recovery Act, infrastructure upgrades ranging from power and platforms to communications and data systems required a focused team effort. For the past year and a half, ARM scientists, engineers, operations, and data systems staff have been working tirelessly to support the installation and operation of nearly 150 new and upgraded instruments throughout the user facility. In September, ARM received its final three instruments - a radar wind profiler; a micropulse lidar for the Darwin, Australia site; and

385

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2013 [Facility News] April 30, 2013 [Facility News] Gearing Up for Science in Amazon Rainforest Bookmark and Share In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. In March 2013, an initial instrument suite began operating near Manacupuru, in the Brazilian state of Amazonas, as part of the GOAMAZON field campaign. Preparing for the biggest and most complex deployment of field resources to date, the ARM Mobile Facility operations team from Los Alamos National Laboratory spent three weeks in Brazil in early March tackling a range of protocol and logistics tasks for next year's GOAMAZON field campaign. Between ARM and Brazilian collaborators, about 80 instruments will obtain

386

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15, 2008 [Data Announcements, Facility News] May 15, 2008 [Data Announcements, Facility News] Announcing the Release of the Radiative Flux Analysis PI Product Bookmark and Share Developed by Dr. Chuck Long, Radiative Flux Analysis PI Product data are now available from the ARM Climate Research Facility Archive. The current release includes data for all of the ARM fixed sites (except Darwin, which requires manual processing because of the monsoon season) plus data for the AMF deployments at Pt. Reyes and the COPS Black Forest site. Future releases will include data for Darwin, the COPS Hornisgrinde and Rhine Valley sites, and the AMF Niamey deployment. The Radiative Flux Analysis is a technique for using surface shortwave (SW) and longwave (LW) broadband radiation measurements for detecting periods of

387

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facility Improvements Continue at North Slope of Alaska Locale User Facility Improvements Continue at North Slope of Alaska Locale Bookmark and Share The "skydeck" at Barrow shows how the instrument platforms can get very crowded during peak experimental periods. The "skydeck" at Barrow shows how the instrument platforms can get very crowded during peak experimental periods. Two things are critical for conducting scientific research: adequate equipment and power. This is especially true in the Arctic, where average winter temperatures hover around -30 degrees Celsius, and access to additional resources is limited. After experiencing crowded working conditions during complex field campaigns last year, followed by several power outages this past winter, operations staff at the ARM Climate Research Facility's North Slope of Alaska (NSA) locale began implementing

388

Nuclear Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Basis Safety Basis FUNCTIONAL AREA GOAL: A fully compliant Nuclear Facility Safety Basis. Program is implemented and maintained across the site. REQUIREMENTS:  10 CFR 830 Subpart B Guidance:  DOE STD 3009  DOE STD 1104  DOE STD  DOE G 421.1-2 Implementation Guide For Use in Developing Documented Safety Analyses To Meet Subpart B Of 10 CFR 830  DOE G 423.1-1 Implementation Guide For Use In Developing Technical Safety Requirements  DOE G 424.1-1 Implementation Guide For Use In Addressing Unreviewed Safety Question Requirements Performance Objective 1: Contractor Program Documentation The site contractor has developed an up-to-date, comprehensive, compliant, documented nuclear facility safety basis and associated implementing mechanisms and procedures for all required nuclear facilities and activities (10 CFR

389

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2011 [Facility News] 5, 2011 [Facility News] Atmospheric System Research Announces Funding Opportunity Bookmark and Share The U.S. Department of Energy's Office of Science is now accepting applications for Office of Biological and Environmental Research (BER) research grants for the development of innovative laboratory and observational data analyses. The resulting knowledge from such analyses will be used to improve cloud and aerosol formulations in global climate models. Successful applications will be part of the Atmospheric System Research (ASR) Program in the Climate and Environmental Sciences Division (CESD). The mission of ASR, in partnership with the ARM Climate Research Facility, is to quantify the interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics to improve fundamental

390

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 15, 2010 [Facility News] August 15, 2010 [Facility News] Micropulse Lidars Get Boost from Recovery Act Bookmark and Share Shown here during installation on the aft deck of the RV Connecticut, the upgraded MPL includes a sleek new computer that can fit into smaller spaces. The laser window at the top is covered by a cone until the instrument is turned on. Shown here during installation on the aft deck of the RV Connecticut, the upgraded MPL includes a sleek new computer that can fit into smaller spaces. The laser window at the top is covered by a cone until the instrument is turned on. Through funding from the American Recovery and Reinvestment Act of 2009, ARM is upgrading the micropulse lidars (MPL) throughout the user facility. Similar to a radar, the MPL sends pulses of energy into the atmosphere.

391

SEU Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Logo The SEU Test Facility Logo The SEU Test Facility 1. Introduction The uninterrupted and progressive miniaturization of microelectronic devices while resulting in more powerful computers, has also made these computers more susceptible to the effects of ionizing radiation. This is of particular concern for space applications due to the radiation fields encountered outside the protective terrestrial atmosphere and magnetosphere. Starting in 1987, a coalition of US government agencies (NSA, NASA, NRL and USASSDC ) collaborated with BNL to develop a powerful and user-friendly test facility for investigating space-radiation effects on micro-electronic devices[1]. The main type of effects studied are the so called Single Event Upsets (SEUs) where ionization caused by the passage of

392

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 11, 2007 [Facility News] January 11, 2007 [Facility News] ARM Mobile Facility Moves to China in 2008 for Study of Aerosol Impacts on Climate Bookmark and Share Onshore winds and a mountain range to the west of Shanghai form a natural basin which traps particulates in the air above the Yangtze River delta region. (Illustration courtesy of Patricia Ebrey, University of Washington) Onshore winds and a mountain range to the west of Shanghai form a natural basin which traps particulates in the air above the Yangtze River delta region. (Illustration courtesy of Patricia Ebrey, University of Washington) China generates exceptionally high amounts of aerosol particles whose influence on the atmosphere has been detected across the Pacific Rim. In the Yangtze River delta in southeast China, these high aerosol loadings

393

AWA Facility Expansion  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Upgrade Facility Upgrade Wei Gai High Energy Physics Division June 16, 2009 Background * AWA Group has been receiving very positive DOE Review evaluations in the last several years. * DOE funding has been constant or increasing, even in years with general budget cuts. * Outstanding scientific results have been achieved in recent years using the unique AWA electron beam capabilities (100 MV/m accelerating gradient). * General infrastructure in building 366 has improved in recent years (air-conditioner, better lighting, new laboratory space), creating a much better environment for conducting the AWA research program. * Additional RF power station (a second klystron) is being commissioned and it will improve the capabilities of the facility. Recent Budget Increase * Very positive DOE review (Dec. 2008) and

394

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

The Tale of the Tapes-No More Boxes of Data! The Tale of the Tapes-No More Boxes of Data! Bookmark and Share In October 1997, the ARM Program entered into a contract with the University of Alaska-Fairbanks to obtain image data covering the ARM Climate Research Facility's North Slope of Alaska (NSA) locale. Image data taken by an advanced very high resolution radiometer (AVHRR) are collected by a satellite receiver at Fairbanks and, up until February 2004, were stored on 4mm tapes. These boxes were then shipped by the boxful to the ARM Climate Research Facility External Data Center every six months. Once at the External Data Center, the data was processed into standard "hierarchical data format" or HDF files and transferred to the ARM Climate Research Facility Data Archive for use by ARM researchers. All data from

395

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

More Storage Space, Better Reliability Now at the ARM Data Management More Storage Space, Better Reliability Now at the ARM Data Management Facility Bookmark and Share To support the ever-increasing file storage needs of the ARM Data Management Facility (DMF) and ARM Engineering computers, a Network Appliance (NetApp®) file server with 2.68 terabytes, or 2.95 trillion bytes, of highly-reliable and extremely-fast, usable disk storage joined the DMF servers. The NetApp system performs nearly four times faster than the previous file server and is engineered for a higher degree of reliability-critical improvements needed to maintain uptime for ARM data availability at the DMF. A NetApp server increases ARM storage capacity and keeps the data flowing at the Data Management Facility. A NetApp server increases ARM storage capacity and keeps the data flowing

396

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 8, 2012 [Facility News] October 8, 2012 [Facility News] Near Miss at Barrow Due to Beach Erosion Bookmark and Share With a little help from his friends, Walter Brower (hidden by the ECOR) moves the system away from the ocean's edge as an early September storm pounds away at the beach. With a little help from his friends, Walter Brower (hidden by the ECOR) moves the system away from the ocean's edge as an early September storm pounds away at the beach. On a stormy Friday evening in early September, Walter Brower received an urgent message: "Beach erosion very close to ECOR Point." Brower is the local facility manager for ARM's North Slope of Alaska site in Barrow. His duties extend to Point Barrow at the coastline of the Arctic Ocean, where ARM operates an eddy correlation flux measurement system, or

397

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2005 [Facility News] 31, 2005 [Facility News] Ancillary Site to Provide Key Data from Africa Bookmark and Share In January 2006, the ARM Mobile Facility (AMF) begins a year-long field campaign in Africa as part of a multi-year international experiment called the African Monsoon Multidisciplinary Analysis (AMMA). The AMF will be placed at the airport in Niamey, Niger, well within view of the Global Earth Radiation Budget (GERB) geostationary satellite. Cloud and radiative property measurements collected by the AMF will be used in conjunction with GERB data for a greater understanding of the atmosphere than could be gained from either dataset alone. While preparing for the campaign, the science team identified the need for instrumentation at an off-site location to compare radiative measurements from the natural environment of

398

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

April 15, 2010 [Facility News] April 15, 2010 [Facility News] Second Phase of African Scientific Exchange Underway Bookmark and Share Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Left to right: Dr. Zewdu Segele and Hama Hamidou examine reflectivity measurements made by the W-band ARM cloud radar in Niamey during July 2006. Continuing an international collaboration that began with the ARM Mobile Facility deployment to Niamey, Niger, in 2006, meteorologist Hama Hamidou from the University of Niamey recently arrived at the Cooperative Institute for Mesoscale Meteorological Studies at the University of Oklahoma for a six-month scientific exchange. Under the guidance of Dr. Zewdu Segele, a

399

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

W-Band Cloud Radar Added to ARM Mobile Facility in Africa W-Band Cloud Radar Added to ARM Mobile Facility in Africa Bookmark and Share Most of the WACR is mounted on top of one of the AMF shelters. The WACR computer and chiller (used to keep the WACR cool in temperatures up to 47 degrees C) are located in the shelter below the radar. Most of the WACR is mounted on top of one of the AMF shelters. The WACR computer and chiller (used to keep the WACR cool in temperatures up to 47 degrees C) are located in the shelter below the radar. A W-band ARM Cloud Radar (WACR) recently joined the suite of baseline capabilities offered by the ARM Mobile Facility (AMF). The term "W-band" refers to the specific radio frequency range of this radar, which is a 95 gigahertz pulse Doppler zenith pointing radar, providing profiles of cloud

400

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Climate Research Facility Communication Products Garner Awards in ARM Climate Research Facility Communication Products Garner Awards in Competition Bookmark and Share Entries in the Communicator Awards are judged by industry professionals who look for talents that exceed a high standard of excellence and work that serves as a benchmark for the industry. Entries in the Communicator Awards are judged by industry professionals who look for talents that exceed a high standard of excellence and work that serves as a benchmark for the industry. Trying to describe the ARM Climate Research Facility to an educated audience is hard enough; imagine explaining it to someone who knows next to nothing about atmospheric science! Judges of the 2005 Communicator Awards print media competition apparently got the message, as they gave awards to

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Electric generating or transmission facility: determination of rate-making  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

402

Recovery Act Supports Construction of Site's Largest Groundwater Treatment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supports Construction of Site's Largest Groundwater Supports Construction of Site's Largest Groundwater Treatment Facility Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility Construction of the largest groundwater treatment facility at the Hanford Site – a major American Recovery and Reinvestment Act project – is on schedule and more than 70 percent complete. Recovery Act workers with DOE contractor CH2M HILL Plateau Remediation Company are on pace to finish construction of the 200 West Groundwater Treatment Facility this year. Recovery Act Supports Construction of Site's Largest Groundwater Treatment Facility More Documents & Publications Hanford Treats Record Amount of Groundwater Recovery Act Invests in Cleanup, Preservation of Hanford Site Locomotives,

403

HFIR Experiment Facilities | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Experiment Facilities Experiment Facilities HFIR Experiment Facilities Neutron Scattering Facilities Target Positions Experiment Facilities in the Beryllium Reflector Large Removable Beryllium Facilities Small Removable Beryllium Facilities Control-Rod Access Plug Facilities Small Vertical Experiment Facilities Large Vertical Experiment Facilities Hydraulic Tube Facility Peripheral Target Positions Neutron Activation Analysis (NAA) Laboratory and Pneumatic Tube Facilities Slant Engineering Facilities Gamma Irradiation Facility Quality Assurance Requirements Contact Information Neutron Scattering Facilities The fully instrumented HFIR will eventually include 15 state-of-the-art neutron scattering instruments, seven of which will be designed exclusively for cold neutron experiments, located in a guide hall south of the reactor

404

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion > Facilities Facilities Office of Inertial Confinement Fusion, Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser Energetics Z Machine, Sandia National Laboratories

405

Nevada Waste Leaves Idaho Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Contacts: Media Contacts: Danielle Miller, 208-526-5709 Brad Bugger, 208-526-0833 For Immediate Release: Date: March 02, 2010 Nevada Waste Leaves Idaho Facility (Note: This is a reissue of a press release originally sent last week to ensure all intended recipients receive a copy after technical glitch may have kept it from reaching some of them) It may have looked like just another shipment of transuranic radioactive waste leaving Idaho, but the shipment heading south on U.S. Interstate 15 the afternoon of January 26 actually contained waste from another DOE site in Nevada. The shipment demonstrated the capacity of the U.S. Department of Energy�s Advanced Mixed Waste Treatment Project to be a hub where the Department�s transuranic radioactive waste can be safely and compliantly

406

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

16, 2008 [Facility News] 16, 2008 [Facility News] Revised Convective Triggering Mechanism Improves Precipitation Forecast Bookmark and Share Example of Global Spectral Model (GSM) at the Japan Meteorological Agency (JMA). Example of Global Spectral Model (GSM) at the Japan Meteorological Agency (JMA). An improved convective triggering mechanism developed by ARM scientists based on ARM observations was implemented recently in the Global Spectral Model at the Japan Meteorological Agency (JMA) to improve surface precipitation forecasts. The revised triggering mechanism uses a dynamic convective available potential energy generation rate (DCAPE) to control the onset of deep convection. It assumes that deep convection occurs only when the large-scale dynamic forcing makes a positive

407

MPA-11 Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Cleanroom Facility is available for use by LANL researchers MPA-11 Facilities Fuel cell testing, acoustics laboratories, and a wide spectrum of characterization equipment are essential to the research conducted in our group. Fuel Cell Testing. ........Acoustics. ........Characterization . ........ Many other multi-disciplinary staff and experimental/computational capabilities throughout Los Alamos National Laboratory are available to support our research. Access to enabling capabilities for the Fuel Cell Program is facilitated by the Laboratory's Institute for Hydrogen and Fuel Cell Research. Fuel Cell Testing Experimental equipment that is essential to our fuel cell efforts is housed in 24 laboratories at the Los Alamos National Laboratory. A partial list of

408

Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites

area area Contact Us | Careers | Staff Directory | User Support Search form Search Search Argonne Leadership Computing Facility an Office of Science user facility Home . About Overview History Staff Directory Careers Visiting Us Contact Us Resources & Expertise Mira Cetus Vesta Intrepid Challenger Surveyor Visualization Clusters Data and Networking Our Teams User Advisory Council Science at ALCF INCITE 2014 Projects ALCC 2013 Projects ESP Projects View All Projects Allocation Programs Early Science Program Publications Industry Collaborations News & Events Web Articles In the News Upcoming Events Past Events Informational Materials Photo Galleries User Services User Support Machine Status Presentations Training & Outreach User Survey Getting Started How to Get an Allocation New User Guide

409

Sandia Laboratories radiation facilities  

SciTech Connect

This brochure is designed as a basic source of information for prospective users of Sandia Laboratories Radiation Facilities. It contains a brief description of the various major radiation sources, a summary of their output characteristics, and additional information useful to experimenters. Radiation source development and source upgrading is an ongoing program, with new source configurations and modes of operation continually being devised to satisfy the ever-changing radiation requirements of the users. For most cases, the information here should allow a potential user to assess the applicability of a particular radiation facility to a proposed experiment and to permit some preirradiation calculations and planning.

Choate, L.M.; Schmidt, T.R.; Schuch, R.L.

1977-07-01T23:59:59.000Z

410

The Common Communication Interface (CCI)  

SciTech Connect

There are many APIs for connecting and exchanging data between network peers. Each interface varies wildly based on metrics including performance, portability, and complexity. Specifically, many interfaces make design or implementation choices emphasizing some of the more desirable metrics (e.g., performance) while sacrificing others (e.g., portability). As a direct result, software developers building large, network-based applications are forced to choose a specific network API based on a complex, multi-dimensional set of criteria. Such trade-offs inevitably result in an interface that fails to deliver some desirable features. In this paper, we introduce a novel interface that both supports many features that have become standard (or otherwise generally expected) in other communication interfaces, and strives to export a small, yet powerful, interface. This new interface draws upon years of experience from network-oriented software development best practices to systems-level implementations. The goal is to create a relatively simple, high-level communication interface with low barriers to adoption while still providing important features such as scalability, resiliency, and performance. The result is the Common Communications Interface (CCI): an intuitive API that is portable, efficient, scalable, and robust to meet the needs of network-intensive applications common in HPC and cloud computing.

Shipman, Galen M [ORNL; Atchley, Scott [ORNL; Dillow, David A [ORNL; Geoffray, Patrick [ORNL; Bosilca, George [University of Tennessee, Knoxville (UTK); Squyres, Jeffrey M [ORNL; Minnich, Ronald [Sandia National Laboratories (SNL)

2011-01-01T23:59:59.000Z

411

Kent County Waste to Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Kent County Waste to Energy Facility Biomass Facility Kent County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy Facility Sector Biomass Facility Type Municipal Solid Waste Location Kent County, Michigan Coordinates 43.0097027°, -85.520024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0097027,"lon":-85.520024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

North City Cogen Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

City Cogen Facility Biomass Facility City Cogen Facility Biomass Facility Jump to: navigation, search Name North City Cogen Facility Biomass Facility Facility North City Cogen Facility Sector Biomass Facility Type Landfill Gas Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Metro Methane Recovery Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Methane Recovery Facility Biomass Facility Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass Facility Type Landfill Gas Location Polk County, Iowa Coordinates 41.6278423°, -93.5003454° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6278423,"lon":-93.5003454,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Gas Utilization Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Utilization Facility Biomass Facility Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type Non-Fossil Waste Location San Diego County, California Coordinates 33.0933809°, -116.6081653° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0933809,"lon":-116.6081653,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Huntington Resource Recovery Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Huntington Resource Recovery Facility Biomass Facility Huntington Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility Sector Biomass Facility Type Municipal Solid Waste Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Stockton Regional Water Control Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Stockton Regional Water Control Facility Biomass Facility Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional Water Control Facility Sector Biomass Facility Type Non-Fossil Waste Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Middlesex Generating Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Middlesex Generating Facility Biomass Facility Middlesex Generating Facility Biomass Facility Jump to: navigation, search Name Middlesex Generating Facility Biomass Facility Facility Middlesex Generating Facility Sector Biomass Facility Type Non-Fossil Waste Location Middlesex County, New Jersey Coordinates 40.4111363°, -74.3587473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4111363,"lon":-74.3587473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Wheelabrator Millbury Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Millbury Facility Biomass Facility Wheelabrator Millbury Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Millbury Facility Biomass Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528°, -71.8571331° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4096528,"lon":-71.8571331,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

McKay Bay Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

McKay Bay Facility Biomass Facility McKay Bay Facility Biomass Facility Jump to: navigation, search Name McKay Bay Facility Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.9903597,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Space Conditioning Technology Options for High-Bay Facilities  

Science Conference Proceedings (OSTI)

High-bay facility owners are considering the addition of space conditioning systems and technologies to improve their operations. This trend creates an opportunity for utility representatives to provide sound guidance on space conditioning system selection alternatives and other energy efficiency options to cost-effectively meet the owners requirements. This report describes the common heating and cooling technologies applicable to high-bay facilities and analyzes the strengths and weaknesses of each in...

2007-12-18T23:59:59.000Z

422

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

DOE Green Energy (OSTI)

The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNLs R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

Ballinger, Marcel Y.; Gervais, Todd L.

2004-11-15T23:59:59.000Z

423

Facility Representative Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

424

DOE Designated User Facilities Multiple Laboratories * ARM Climate Research Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designated User Facilities Designated User Facilities Multiple Laboratories * ARM Climate Research Facility Argonne National Laboratory * Advanced Photon Source (APS) * Electron Microscopy Center for Materials Research * Argonne Tandem Linac Accelerator System (ATLAS) * Center for Nanoscale Materials (CNM) * Argonne Leadership Computing Facility (ALCF) * Brookhaven National Laboratory * National Synchrotron Light Source (NSLS) * Accelerator Test Facility (ATF) * Relativistic Heavy Ion Collider (RHIC) * Center for Functional Nanomaterials (CFN) * National Synchrotron Light Source II (NSLS-II ) (under construction) Fermi National Accelerator Laboratory * Fermilab Accelerator Complex Idaho National Laboratory * Advanced Test Reactor ** * Wireless National User Facility (WNUF)

425

List of Geothermal Facilities | Open Energy Information  

Open Energy Info (EERE)

Facilities Facilities Jump to: navigation, search Facility Location Owner Aidlin Geothermal Facility Geysers Geothermal Area Calpine Amedee Geothermal Facility Honey Lake, California Amedee Geothermal Venture BLM Geothermal Facility Coso Junction, California, Coso Operating Co. Bear Canyon Geothermal Facility Clear Lake, California, Calpine Beowawe Geothermal Facility Beowawe, Nevada Beowawe Power LLC Big Geysers Geothermal Facility Clear Lake, California Calpine Blundell 1 Geothermal Facility Milford, Utah PacificCorp Energy Blundell 2 Geothermal Facility Milford, Utah PacificCorp Brady Hot Springs I Geothermal Facility Churchill, Nevada Ormat Technologies Inc CE Turbo Geothermal Facility Calipatria, California CalEnergy Generation Calistoga Geothermal Facility The Geysers, California Calpine

426

NREL: Technology Transfer - Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities Research Facilities Photo of Solar Energy Research Facility building at NREL. NREL's Solar Energy Research Facility is one of many world-class facilities available to public and private agencies. For developing commercially viable energy products, organizations may partner with NREL to use our state-of-the-art laboratories, and testing and user facilities. Visit NREL's Research Facilities Web site to learn more about them. We typically develop technology partnership agreements for using our facilities and/or working with our researchers. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Nondisclosure Agreements Research Facilities Commercialization Programs Success Stories News Contacts Did you find what you needed?

427

Wheelabrator Sherman Energy Facility Biomass Facility | Open Energy  

Open Energy Info (EERE)

Sherman Energy Facility Biomass Facility Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector Biomass Location Penobscot County, Maine Coordinates 45.3230777°, -68.5806727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3230777,"lon":-68.5806727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Facility effluent monitoring plan for the 3720 facility  

SciTech Connect

This report describes the effluent monitoring plan for the 3720 facility. Airborne and liquid effluents are monitored.

Ballinger, M.Y.

1994-11-01T23:59:59.000Z

429

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

430

Designation of facility usage categories for Hanford Site facilities  

SciTech Connect

This report summarizes the Hanford Site methodology used to ensure facility compliance with the natural phenomena design criteria set forth in the US Department of Energy Orders and guidance. The current Hanford Site methodology for Usage Category designation is based on an engineered feature's safety function and on the feature's assigned Safety Class. At the Hanford Site, Safety Class assignments are deterministic in nature and are based on teh consequences of failure, without regard to the likelihood of occurrence. The report also proposes a risk-based approach to Usage Category designation, which is being considered for future application at the Hanford Site. To establish a proper Usage Category designation, the safety analysis and engineering design processes must be coupled. This union produces a common understanding of the safety function(s) to be accomplished by the design feature(s) and a sound basis for the assignment of Usage Categories to the appropriate systems, structures, and components. 4 refs., 9 figs., 1 tab.

Woodrich, D.D.; Ellingson, D.R.; Scott, M.A.; Schade, A.R.

1991-10-01T23:59:59.000Z

431

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 15, 2007 [Facility News] December 15, 2007 [Facility News] Radar Antenna Replacement Effort Begins at Barrow Bookmark and Share On November 28, 2007, ARM operations and engineering staff braved -15°F weather to install the new radar antenna at Barrow. After lifting the antenna via crane onto the roof of the skydeck, the gloves had to come off to securely fasten all the tiny connecting screws and bolts-brrrrr! On November 28, 2007, ARM operations and engineering staff braved -15°F weather to install the new radar antenna at Barrow. After lifting the antenna via crane onto the roof of the skydeck, the gloves had to come off to securely fasten all the tiny connecting screws and bolts-brrrrr! For estimates of cloud boundaries, there is no better capability than the millimeter wave cloud radar (MMCR). This sophisticated radar is part of the

432

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

September 15, 2008 [Facility News] September 15, 2008 [Facility News] Global Earth Observations Portal Provides Gateway to ARM Data Bookmark and Share The GEOSS is simultaneously addressing nine areas of critical importance to society, ranging from managing energy resources and promoting sustainable agriculture to improving weather forecasts and responding to climate change and its impacts. The GEOSS is simultaneously addressing nine areas of critical importance to society, ranging from managing energy resources and promoting sustainable agriculture to improving weather forecasts and responding to climate change and its impacts. Data obtained at the ARM sites are freely available to users worldwide through the ARM Data Archive. In August, ARM added another entry point to its data collection by registering the ARM Program and Data Archive as

433

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

November 3, 2010 [Facility News] November 3, 2010 [Facility News] Arctic Campaign Cut Short; Spring Restart A Possibility Bookmark and Share An unfortunate incident in the early stages of the Arctic Lower Troposphere Observed Structure (ALTOS) field campaign at Oliktok Point on the North Slope of Alaska has resulted in the campaign being terminated. The primary in situ measurement platform for the campaign was a tethered balloon for making ascents through the clouds with instruments that measure cloud microphysical properties, while ground-based instruments simultaneously collect additional data. During one of the balloon's initial flights, its primary and secondary tethers broke. A radio-controlled cut-down device was activated to bring down the balloon, which landed with its instrument

434

ARM Climate Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Act Recovery Act Learn about ARM's efforts. The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility, providing data from strategically located in situ and remote sensing observatories around the world. [ Live Data Displays ] Featured Data 09.19.2013 New ARM Best Estimate Land Product Contains Critical Soil Quantities for Describing Land Properties 09.12.2013 Value-Added Product Estimates Planetary Boundary Layer Height from Radiosondes 08.29.2013 New Data Available for Precipitation Value-Added Product Feature12.30.2013 Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere Pole Position: New Field Campaigns Explore Arctic and Antarctic Atmosphere For the first time, ARM ventures to Antarctica for one of several newly

435

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2011 [Facility News] 9, 2011 [Facility News] Forecasting Exercise Begins Oklahoma Storm Study Count Down Bookmark and Share Clouds like this, called by the name "anvil" for its shape, are one type of cloud system researchers hope to encounter during MC3E. Clouds like this, called by the name "anvil" for its shape, are one type of cloud system researchers hope to encounter during MC3E. Beginning April 2011, the ARM Southern Great Plains (SGP) site in north-central Oklahoma will host the first major field campaign to take advantage of numerous new radars and other remote sensing instrumentation installed throughout the site with funding from the American Recovery and Reinvestment Act. The Midlatitude Continental Convective Clouds Experiment (MC3E) will use two aircraft and a comprehensive array of ground-based

436

User Facility Science Highlights  

NLE Websites -- All DOE Office Websites (Extended Search)

user-facilities/highlights/ The Office of Science user-facilities/highlights/ The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of national importance. It oversees - and is the principal federal funding agency of - the Nation's research programs in high-energy physics, nuclear physics, and fusion energy sciences. en {611EDD39-818D-4CBA-BFD7-9568495C1566}http://science.energy.gov/bes/highlights/2013/bes-2013-09-a/ The Role of Stripes in Superconducting Behavior Using neutron diffraction, movement of charged atoms arranged as "stripes"

437

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2007 [Facility News] 6, 2007 [Facility News] Radiative Heating in Unexplored Bands Campaign Begins Today Bookmark and Share This chart shows the spectral and height dependence of the infrared cooling rates for a mid-latitude summer profile. Note that the majority of the infrared cooling in the middle and upper tropsphere occurs in spectral regions that RHUBC will investigate. This chart shows the spectral and height dependence of the infrared cooling rates for a mid-latitude summer profile. Note that the majority of the infrared cooling in the middle and upper tropsphere occurs in spectral regions that RHUBC will investigate. In conjunction with other scientific activities taking place during International Polar Year 2007-2008, today (February 26) an international research team begins a three-week field campaign in Barrow, Alaska. The

438

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

October 6, 2010 [Facility News] October 6, 2010 [Facility News] New Raman Lidar En Route to Australia Bookmark and Share Since 1996, the ARM Southern Great Plains site has maintained one of the few operational Raman lidars in the world. Now, thanks to funding from the American Recovery and Reinvestment Act, the ARM Tropical Western Pacific site is about to join that exclusive group. A new Raman lidar, built by Sandia National Laboratories in New Mexico, is on its way to Darwin, Australia. Optics contained inside the Raman lidar shelter guide backscattered laser radiation in order to measure signals collected by the telescope. Optics contained inside the Raman lidar shelter guide backscattered laser radiation in order to measure signals collected by the telescope. The Raman lidar (light detection and ranging) uses pulses of laser

439

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2004 [Facility News] 31, 2004 [Facility News] New Technique Used to Measure Ice and Liquid in Clouds Bookmark and Share A mirror angled at 45 degrees inside the "winglet" viewing port deflects sunlight to the optical fiber and into the detector housed inside the "Great White" shelter at Barrow. A mirror angled at 45 degrees inside the "winglet" viewing port deflects sunlight to the optical fiber and into the detector housed inside the "Great White" shelter at Barrow. Difficulties in modeling the effects of clouds on climate arise largely from the insufficient number of observations needed to sufficiently understand cloud processes. Science collaborators at the National Oceanic and Atmospheric Administrations (NOAA) Aeronomy Laboratory have developed a

440

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 28, 2011 [Facility News] July 28, 2011 [Facility News] A Giant Lift for Arctic Climate Data Bookmark and Share A newly installed X-band scanning ARM precipitation radar operates from atop the Barrow Arctic Research Center in Alaska. A newly installed X-band scanning ARM precipitation radar operates from atop the Barrow Arctic Research Center in Alaska. Ushering in the first operational precipitation radar on the U.S. Arctic Coast, engineers completed acceptance testing for the new X-band scanning ARM precipitation radar (X-SAPR) on June 21 at its location atop the Barrow Arctic Research Center in Alaska. Data from the radar are transmitted through a wireless connection to the ARM site data system. With the radar up and running, signal returns on June 24 provided an indication of the

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2009 [Facility News] 30, 2009 [Facility News] Smart Filter Clears the Way for Speedy Data Transfer Bookmark and Share These data plots illustrate the results of the smart filter in reducing the volume of MMCR data. The left column shows the full reflectivity data for individual radar data collection modes: cirrus, precipitation, general, and boundary layer. The right column shows the data retained after applying the clear-sky filter. These data plots illustrate the results of the smart filter in reducing the volume of MMCR data. The left column shows the full reflectivity data for individual radar data collection modes: cirrus, precipitation, general, and boundary layer. The right column shows the data retained after applying the clear-sky filter. As reported in mid-February, data transfer from the ARM Tropical Western

442

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2012 [Facility News] 9, 2012 [Facility News] Unmanned Aircraft Test Flights Completed at Oliktok Point Bookmark and Share Because of its small size and light weight (72-inch wingspan and weighing about 22 pounds), the Bat-3 is launched using a bungee-powered catapult from the roof of a vehicle and can land autonomously on fixed wheels. Its modular design fits into two suitcase-sized containers. Because of its small size and light weight (72-inch wingspan and weighing about 22 pounds), the Bat-3 is launched using a bungee-powered catapult from the roof of a vehicle and can land autonomously on fixed wheels. Its modular design fits into two suitcase-sized containers. On October 22, a small flight team from New Mexico State University (NMSU) began the first in a series of test flights (see YouTube video) for the ARM

443

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2010 [Facility News] January 31, 2010 [Facility News] STORMVEX Science Team Confirms Site Plans; Outreach Begins at Weather Summit Bookmark and Share Dr. Ashley Williamson introduces the STORMVEX campaign to Weather Summit attendees. Dr. Ashley Williamson introduces the STORMVEX campaign to Weather Summit attendees. In late January, meteorologists from a dozen major news markets across the country gathered in Steamboat Springs, Colorado, for an annual event called the "Weather Summit" where they received a preview of the Storm Peak Lab Cloud Property Validation Experiment, or STORMVEX, field campaign scheduled to begin next fall. Meanwhile, down the hall, the STORMVEX science team reviewed the status of the campaign components thus far, discussed remaining instrument issues, and made assignments to complete a

444

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Military Facilities, Restricted Airspace Okayed to Support Arctic Cloud Military Facilities, Restricted Airspace Okayed to Support Arctic Cloud Experiment Bookmark and Share As shown in this aerial photo of Oliktok Point, Alaska, the USAF Long Range Radar Station-also known as Dew Line Station-is situated at the edge of the Arctic Ocean. Instrumentation for the ARM Program's M-PACE experiment will be located just south of the station, near the aircraft hangar. (Photo courtesy of Aeromap U.S.) As shown in this aerial photo of Oliktok Point, Alaska, the USAF Long Range Radar Station-also known as Dew Line Station-is situated at the edge of the Arctic Ocean. Instrumentation for the ARM Program's M-PACE experiment will be located just south of the station, near the aircraft hangar. (Photo courtesy of Aeromap U.S.) After more than a year and a half of planning, proposals, and paperwork,

445

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

August 31, 2006 [Facility News] August 31, 2006 [Facility News] New Lidars Installed at Tropical Western Pacific Site Bookmark and Share A representative from Sigma Space Corporation trains ARM operations staff in Darwin, Australia, on various components of the new micropulse lidar. The lidar, shown at left, will be placed in one of the outdoor instrument shelters, below a hole in the roof for the laser to pulse through. A representative from Sigma Space Corporation trains ARM operations staff in Darwin, Australia, on various components of the new micropulse lidar. The lidar, shown at left, will be placed in one of the outdoor instrument shelters, below a hole in the roof for the laser to pulse through. As reported in May, all the ARM sites are benefiting from new and upgraded micropulse lidars. This month, the new lidar was received in Darwin,

446

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2010 [Data Announcements, Facility News] 5, 2010 [Data Announcements, Facility News] New Datastream Identifies Nauru Data Influenced by Clouds Bookmark and Share A new data set that identifies periods when Nauru data may be affected by island-influenced clouds has been produced by Chuck Long, site scientist for the ARM Tropical Western Pacific site. The Nauru island effect (NIE) data set currently covers the period from September 2005 to May 2010 and will be updated periodically as new data are obtained. This data set will help scientists in their analysis of cloud and radiation data at Nauru and will enable them to perform more relevant comparisons of observations and model results. This conceptual model of the Nauru island effect phenomenon shows the location of the ARM and auxiliary Licor shortwave radiometer sites.

447

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 18, 2012 [Facility News] January 18, 2012 [Facility News] Wind Profiler Completes Offsite Campaign Bookmark and Share The radar wind profiler operates by sending pulses of energy into the sky and measuring the strength and frequency of returned energy. The radar wind profiler operates by sending pulses of energy into the sky and measuring the strength and frequency of returned energy. Between November 2010 and November 2011, a handful of meteorological instruments-including Doppler sodar, ultrasonic anemometers, and one of ARM's radar wind profilers-gathered massive amounts of data for the Columbia Basin Wind Energy Study. To ensure that the data collected represent conditions experienced by real wind plants, the instruments were placed next to an operating wind farm on the eastern border of Washington

448

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

July 31, 2010 [Facility News] July 31, 2010 [Facility News] Containers for Aerosol Observing Systems Pass Acceptance Testing Bookmark and Share Left to right: Pat Maloy, Stephen Springston, and Mike Ritsche inspect the AMF2 AOS container. They checked for proper locations of unistrut on the ceiling, walls and floor for connecting racks and other equipment, as well as functioning of HVAC units and infrared heaters (above Mike's head). Red lights are required for nighttime ship operations, and the hatch in ceiling will accommodate the aerosol stack. Left to right: Pat Maloy, Stephen Springston, and Mike Ritsche inspect the AMF2 AOS container. They checked for proper locations of unistrut on the ceiling, walls and floor for connecting racks and other equipment, as well as functioning of HVAC units and infrared heaters (above Mike's head). Red

449

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2006 [Facility News] January 31, 2006 [Facility News] Media Day Kicks Off Tropical Cloud Study in Australia Bookmark and Share While on the ground, the Twin Otter (left) and Proteus (right) are sharing hangar space at the Royal Australian Air Force base for the duration of TWP-ICE field operations. While on the ground, the Twin Otter (left) and Proteus (right) are sharing hangar space at the Royal Australian Air Force base for the duration of TWP-ICE field operations. Two days after a highly successful media day, January 21 marked the official start of flight operations for the Tropical Warm Pool International Cloud Experiment in Darwin, Australia. Science team members are guiding the aircraft missions from the Bureau of Meteorology's Forecast Center in Darwin; the rest of the experiment activities are being managed

450

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2007 [Facility News] 31, 2007 [Facility News] Long-term Radiosonde Validation Campaign Concludes Bookmark and Share In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency) In 2007, sonde launches at ARM sites supported validation of the IASI instrument onboard the Metop-A satellite. As the satellite scans a "swath" of the Earth below it, the IASI scanning mirror directs emitted infrared radiation into the uncovered interferometer to derive atmospheric temperature and humidity profiles. (Image source: European Space Agency)

451

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 19, 2012 [Facility News] June 19, 2012 [Facility News] Storm Chasers Take a Break at the Southern Great Plains Site Bookmark and Share Scientist Gunnar Senum (far left) from Brookhaven National Laboratory describes the aerosol observing system to a group of visiting meteorology students from Rutgers University. Scientist Gunnar Senum (far left) from Brookhaven National Laboratory describes the aerosol observing system to a group of visiting meteorology students from Rutgers University. Taking a break from storm chasing due to "good weather," a group of 16 meteorology students from Rutgers University visited the ARM Southern Great Plains site in early June. The students, ranging from juniors to recent graduates, are participating in an inaugural severe weather class taught by

452

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2010 [Facility News] 31, 2010 [Facility News] Instruments on Mt. Pico to Supplement Measurements from Graciosa Island Bookmark and Share At an elevation of about 2225 meters-usually above the marine boundary layer-the Pico Observatory is able to measure properties in the atmosphere transported from North America and Europe. At an elevation of about 2225 meters-usually above the marine boundary layer-the Pico Observatory is able to measure properties in the atmosphere transported from North America and Europe. Located high on Mount Pico in the Azores, the University of the Azores, the University of Colorado, and Michigan Technological University operate an instrumented observation station, the Pico Observatory. In May, a small team of local volunteers from Pico Island helped install a set of ARM

453

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

31, 2006 [Facility News] 31, 2006 [Facility News] Comprehensive Instrument Validation Campaign Concludes Bookmark and Share As the Aqua satellite moves along, the AIRS mirror scans a "swath" across the Earth's surface and directs infrared energy into the instrument. This energy is separated into wavelengths, which are transferred from Aqua to computers on the ground for additional processing. (Source: http://airs.jpl.nasa.gov As the Aqua satellite moves along, the AIRS mirror scans a "swath" across the Earth's surface and directs infrared energy into the instrument. This energy is separated into wavelengths, which are transferred from Aqua to computers on the ground for additional processing. (Source: http://airs.jpl.nasa.gov After almost four years, the last soundings in the final phase of the

454

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

June 28, 2013 [Facility News] June 28, 2013 [Facility News] What's a Little Helium Among Friends? Bookmark and Share In early June, this 38-cylinder helium storage system arrived at the ARM Southern Great Plains site with nearly 18,000 standard cubic feet of helium left in it-enough to launch about 400 weather balloons. In early June, this 38-cylinder helium storage system arrived at the ARM Southern Great Plains site with nearly 18,000 standard cubic feet of helium left in it-enough to launch about 400 weather balloons. What is white and blue, can hold 55,000 standard cubic feet (scf) of gas, and looks like it could attach to the International Space Station? A helium storage system, of course. This impressive contraption arrived at the ARM Southern Great Plains site in early June, along with 18,000 scf of helium inside-valuable stuff,

455

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Upgrades to Darwin Radar Double Data Delivery Bookmark and Share The new processor for the MMCR at Darwin collects spectral data in four different modes, resulting in approximately 3.4 gigabytes of signal output per day. The new processor for the MMCR at Darwin collects spectral data in four different modes, resulting in approximately 3.4 gigabytes of signal output per day. Virtually all cloud studies within the ARM Program involve the Millimeter Wavelength Cloud Radar (MMCR). This instrument is the only source for obtaining detailed information about cloud location and internal structure in the atmospheric columns above the ARM sites, and can be operated in almost any atmospheric condition. In November, a major upgrade to the 35

456

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

January 15, 2006 [Facility News] January 15, 2006 [Facility News] Location, Location, Location... Field Campaign Focuses on Latitude Effects Bookmark and Share A scintillometer was used to detect atmospheric optical disturbances-called scintillations-caused by temperature, pressure and humidity. The instrument emits light from two transmitters, shown at left. The light traverses the local atmosphere, perturbed by density fluctuations. Some of the light enters the receiver, shown at right. (Image from Scintec at www.scintec.com.) A scintillometer was used to detect atmospheric optical disturbances-called scintillations-caused by temperature, pressure and humidity. The instrument emits light from two transmitters, shown at left. The light traverses the local atmosphere, perturbed by density fluctuations. Some of the light

457

Science and Technology Facility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBRF Project Lessons Learned Report IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This document contains lessons learned for the Integrated Biorefinery Research Facility (IBRF) project. The period covered by these lessons learned is IBRF"s Stage I acquisition through Stage II construction completion. The lessons learned presented are specific for construction line item type projects at the National Renewable Energy Laboratory (NREL) typically with a total project cost (TPC) in excess of $20M. Lessons Learned - IBRF-001 Lessons Learned Statement: Incorporate a strong safety culture early and into all phases of the project, from developing the RFP through construction and commissioning.

458

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 11, 2012 [Education, Facility News] May 11, 2012 [Education, Facility News] Fairbanks Middle Schoolers Enjoy Field Trip to Barrow Bookmark and Share Watershed School's bundled-up 8th grade class and their chaperones stop for a quick photo in front of the U.S. flag near the Arctic sea ice. With its consistently chilly temperatures, student visits to the ARM site in Barrow are somewhat rare, but always welcome! Watershed School's bundled-up 8th grade class and their chaperones stop for a quick photo in front of the U.S. flag near the Arctic sea ice. With its consistently chilly temperatures, student visits to the ARM site in Barrow are somewhat rare, but always welcome! In April, the 8th grade class from Watershed School in Fairbanks, Alaska, made the long trek to the North Slope for a week-long field trip filled

459

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2007 [Facility News] 15, 2007 [Facility News] Radiosonde Temperature Sensor Benefits from Stronger Structure Bookmark and Share The new temperature sensor (front and back shown above) for the RS92 radiosonde sports an integrated fiber-reinforced structure that improves durability while maintaining the needed measurement accuracy and response. The new temperature sensor (front and back shown above) for the RS92 radiosonde sports an integrated fiber-reinforced structure that improves durability while maintaining the needed measurement accuracy and response. Small sensor packages called radiosondes (or "sondes") are used to transmit atmospheric information from weather balloons as they rise through the air. Vaisala, the supplier of sondes used at all the ARM sites, has introduced

460

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

May 31, 2006 [Facility News] May 31, 2006 [Facility News] New Shortwave Spectroradiometer Deployed at SGP Bookmark and Share A ceiling port in the SGP Optical Trailer houses the optic element of the SWS, which connects to the spectrometer inside the trailer via fiber optic cable. A ceiling port in the SGP Optical Trailer houses the optic element of the SWS, which connects to the spectrometer inside the trailer via fiber optic cable. In late April, a new Shortwave Spectroradiometer (SWS) began operating at the ARM Southern Great Plains (SGP) site. The instrument measures the zenith solar spectral radiance (1.4° field of view) between 300-2200 nm. The SWS incorporates two Zeiss miniature monolithic spectrometers having a spectral resolution of 8 nm in the range 300-975 nm, and 12 nm in the range

Note: This page contains sample records for the topic "treatment facilities common" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

, 2011 [Facility News] , 2011 [Facility News] Methane Monitor Joins Surface Flux Instruments at North Slope Bookmark and Share The new ECOR/SEBS Tower at the NSA site in Barrow includes greenhouse gas flux instruments. At the top of the tower, left to right, are the methane sensor, sonic anemometer, and carbon dioxide and water vapor sensor. The horizontal arm below and to the left of these instruments is a net radiometer. The new ECOR/SEBS Tower at the NSA site in Barrow includes greenhouse gas flux instruments. At the top of the tower, left to right, are the methane sensor, sonic anemometer, and carbon dioxide and water vapor sensor. The horizontal arm below and to the left of these instruments is a net radiometer. In October 2011, the ARM North Slope of Alaska site in Barrow welcomed a