National Library of Energy BETA

Sample records for trap mass spectrometer

  1. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D. (Livermore, CA); Keville, Robert F. (Valley Springs, CA)

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  2. Mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-09-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  3. Microscale ion trap mass spectrometer

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Witten, William B. (Lancing, TN); Kornienko, Oleg (Lansdale, PA)

    2002-01-01

    An ion trap for mass spectrometric chemical analysis of ions is delineated. The ion trap includes a central electrode having an aperture; a pair of insulators, each having an aperture; a pair of end cap electrodes, each having an aperture; a first electronic signal source coupled to the central electrode; a second electronic signal source coupled to the end cap electrodes. The central electrode, insulators, and end cap electrodes are united in a sandwich construction where their respective apertures are coaxially aligned and symmetric about an axis to form a partially enclosed cavity having an effective radius r.sub.0 and an effective length 2z.sub.0, wherein r.sub.0 and/or z.sub.0 are less than 1.0 mm, and a ratio z.sub.0 /r.sub.0 is greater than 0.83.

  4. Electron source for a mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, Daniel D. (Livermore, CA); Keville, Robert F. (Valley Springs, CA)

    1995-01-01

    An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

  5. Electron source for a mini ion trap mass spectrometer

    DOE Patents [OSTI]

    Dietrich, D.D.; Keville, R.F.

    1995-12-19

    An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.

  6. Dipole Excitation With A Paul Ion Trap Mass Spectrometer

    SciTech Connect (OSTI)

    MacAskill, J. A.; Madzunkov, S. M.; Chutjian, A. [Atomic and Molecular Physics Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-06-01

    Preliminary results are presented for the use of an auxiliary radiofrequency (rf) excitation voltage in combination with a high purity, high voltage rf generator to perform dipole excitation within a high precision Paul ion trap. These results show the effects of the excitation frequency over a continuous frequency range on the resultant mass spectra from the Paul trap with particular emphasis on ion ejection times, ion signal intensity, and peak shapes. Ion ejection times are found to decrease continuously with variations in dipole frequency about several resonant values and show remarkable symmetries. Signal intensities vary in a complex fashion with numerous resonant features and are driven to zero at specific frequency values. Observed intensity variations depict dipole excitations that target ions of all masses as well as individual masses. Substantial increases in mass resolution are obtained with resolving powers for nitrogen increasing from 114 to 325.

  7. Ultra High Mass Range Mass Spectrometer System

    DOE Patents [OSTI]

    Reilly, Peter T. A. [Knoxville, TN

    2005-12-06

    Applicant's present invention comprises mass spectrometer systems that operate in a mass range from 1 to 10.sup.16 DA. The mass spectrometer system comprising an inlet system comprising an aerodynamic lens system, a reverse jet being a gas flux generated in an annulus moving in a reverse direction and a multipole ion guide; a digital ion trap; and a thermal vaporization/ionization detector system. Applicant's present invention further comprises a quadrupole mass spectrometer system comprising an inlet system having a quadrupole mass filter and a thermal vaporization/ionization detector system. Applicant's present invention further comprises an inlet system for use with a mass spectrometer system, a method for slowing energetic particles using an inlet system. Applicant's present invention also comprises a detector device and a method for detecting high mass charged particles.

  8. Action spectroscopy of SrCl{sup +} using an integrated ion trap time-of-flight mass spectrometer

    SciTech Connect (OSTI)

    Puri, Prateek Schowalter, Steven J.; Hudson, Eric R.; Kotochigova, Svetlana; Petrov, Alexander

    2014-07-07

    The photodissociation cross-section of SrCl{sup +} is measured in the spectral range of 36?000–46?000 cm{sup ?1} using a modular time-of-flight mass spectrometer (TOF-MS). By irradiating a sample of trapped SrCl{sup +} molecular ions with a pulsed dye laser, X{sup 1}?{sup +} state molecular ions are electronically excited to the repulsive wall of the A{sup 1}? state, resulting in dissociation. Using the TOF-MS, the product fragments are detected and the photodissociation cross-section is determined for a broad range of photon energies. Detailed ab initio calculations of the SrCl{sup +} molecular potentials and spectroscopic constants are also performed and are found to be in good agreement with experiment. The spectroscopic constants for SrCl{sup +} are also compared to those of another alkaline earth halogen, BaCl{sup +}, in order to highlight structural differences between the two molecular ions. This work represents the first spectroscopy and ab initio calculations of SrCl{sup +}.

  9. Method for increasing the dynamic range of mass spectrometers

    DOE Patents [OSTI]

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  10. Time of flight mass spectrometer

    DOE Patents [OSTI]

    Ulbricht, Jr., William H. (Arvada, CO)

    1984-01-01

    A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

  11. Laser desorption lamp ionization source for ion trap mass spectrometry

    E-Print Network [OSTI]

    Zare, Richard N.

    Laser desorption lamp ionization source for ion trap mass spectrometry Qinghao Wu and Richard N. Zare* A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm

  12. Subcellular-level resolution MALDI-MS imaging of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Korte, Andrew R.; Yandeau-Nelson, Marna D.; Nikolau, Basil J.; Lee, Young Jin

    2015-01-25

    A significant limiting factor in achieving high spatial resolution for matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) imaging is the size of the laser spot at the sample surface. We present modifications to the beam-delivery optics of a commercial MALDI-linear ion trap-Orbitrap instrument, incorporating an external Nd:YAG laser, beam-shaping optics, and an aspheric focusing lens, to reduce the minimum laser spot size from ~50 ?m for the commercial configuration down to ~9 ?m for the modified configuration. This improved system was applied for MALDI-MS imaging of cross sections of juvenile maize leaves at 5-?m spatial resolution using an oversampling method. Theremore »are a variety of different metabolites including amino acids, glycerolipids, and defense-related compounds were imaged at a spatial resolution well below the size of a single cell. Such images provide unprecedented insights into the metabolism associated with the different tissue types of the maize leaf, which is known to asymmetrically distribute the reactions of C4 photosynthesis among the mesophyll and bundle sheath cell types. The metabolite ion images correlate with the optical images that reveal the structures of the different tissues, and previously known and newly revealed asymmetric metabolic features are observed.« less

  13. Gas sampling system for a mass spectrometer

    DOE Patents [OSTI]

    2003-12-30

    The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.

  14. NEREUS Nemertes : embedded mass spectrometer control system

    E-Print Network [OSTI]

    Champy, Adam Samuel

    2005-01-01

    In this thesis, I present Nemertes System, a software suite to control an embedded autonomous mass spectrometer. I first evaluate previous control systems for the hard- ware and evaluate a set of software design goals. The ...

  15. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect (OSTI)

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time-of-flightTOFtime-of-flight4

  16. Ion mobility spectrometer / mass spectrometer (IMS-MS).

    SciTech Connect (OSTI)

    Hunka Deborah Elaine; Austin, Daniel E.

    2005-07-01

    The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400). Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS) is described. The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.

  17. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  18. Micro mass spectrometer on a chip.

    SciTech Connect (OSTI)

    Cruz, Dolores Y.; Blain, Matthew Glenn; Fleming, James Grant

    2005-11-01

    The design, simulation, fabrication, packaging, electrical characterization and testing analysis of a microfabricated a cylindrical ion trap ({mu}CIT) array is presented. Several versions of microfabricated cylindrical ion traps were designed and fabricated. The final design of the individual trap array element consisted of two end cap electrodes, one ring electrode, and a detector plate, fabricated in seven tungsten metal layers by molding tungsten around silicon dioxide (SiO{sub 2}) features. Each layer of tungsten is then polished back in damascene fashion. The SiO{sub 2} was removed using a standard release processes to realize a free-hung structure. Five different sized traps were fabricated with inner radii of 1, 1.5, 2, 5 and 10 {micro}m and heights ranging from 3-24 {micro}m. Simulations examined the effects of ion and neutral temperature, the pressure and nature of cooling gas, ion mass, trap voltage and frequency, space-charge, fabrication defects, and other parameters on the ability of micrometer-sized traps to store ions. The electrical characteristics of the ion trap arrays were determined. The capacitance was 2-500 pF for the various sized traps and arrays. The resistance was in the order of 1-2 {Omega}. The inductance of the arrays was calculated to be 10-1500 pH, depending on the trap and array sizes. The ion traps' field emission characteristics were assessed. It was determined that the traps could be operated up to 125 V while maintaining field emission currents below 1 x 10{sup -15} A. The testing focused on using the 5-{micro}m CITs to trap toluene (C{sub 7}H{sub 8}). Ion ejection from the traps was induced by termination of the RF voltage applied to the ring electrode and current measured on the collector electrode suggested trapping of ions in 1-10% of the traps. Improvements to the to the design of the traps were defined to minimize voltage drop to the substrate, thereby increasing trapping voltage applied to the ring electrode, and to allow for electron injection into, ion ejection from, and optical access to the trapping region.

  19. ELECTRONICS UPGRADE OF HIGH RESOLUTION MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Mcintosh, J; Joe Cordaro, J

    2008-03-10

    High resolution mass spectrometers are specialized systems that allow researchers to determine the exact mass of samples to four significant digits by using magnetic and electronic sector mass analyzers. Many of the systems in use today at research laboratories and universities were designed and built more than two decades ago. The manufacturers of these systems have abandoned the support for some of the mass spectrometers and parts to power and control them have become scarce or obsolete. The Savannah River National Laboratory has been involved in the upgrade of the electronics and software for these legacy machines. The Electronics Upgrade of High Resolution Mass Spectrometers consists of assembling high-end commercial instrumentation from reputable manufacturers with a minimal amount of customization to replace the electronics for the older systems. By taking advantage of advances in instrumentation, precise magnet control can be achieved using high resolution current sources and continuous feedback from a high resolution hall-effect probe. The custom equipment include a precision voltage divider/summing amplifier chassis, high voltage power supply chassis and a chassis for controlling the voltage emission for the mass spectrometer source tube. The upgrade package is versatile enough to interface with valve control, vacuum and other instrumentation. Instrument communication is via a combination of Ethernet and traditional IEEE-488 GPIB protocols. The system software upgrades include precision control, feedback and spectral waveform analysis tools.

  20. Development and performance of a miniature, low cost mass spectrometer

    E-Print Network [OSTI]

    Hemond, Brian D. (Brian David Thomson)

    2011-01-01

    A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

  1. Portable gas chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D. (Livermore, CA); Eckels, Joel D. (Livermore, CA); Kimmons, James F. (Manteca, CA); Myers, David W. (Livermore, CA)

    1996-01-01

    A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

  2. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, B.D.; Fought, E.R.

    1989-09-19

    A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

  3. Interface for liquid chromatograph-mass spectrometer

    DOE Patents [OSTI]

    Andresen, Brian D. (Pleasanton, CA); Fought, Eric R. (Livermore, CA)

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  4. Capillary zone electrophoresis-mass spectrometer interface

    DOE Patents [OSTI]

    D`Silva, A.

    1996-08-06

    A device for providing equal electrical potential between two loci unconnected by solid or liquid electrical conductors is provided. The device comprises a first electrical conducting terminal, a second electrical conducting terminal connected to the first terminal by a rigid dielectric structure, and an electrically conducting gas contacting the first and second terminals. This device is particularly suitable for application in the electrospray ionization interface between a capillary zone electrophoresis apparatus and a mass spectrometer. 1 fig.

  5. Expert overseer for mass spectrometer system

    DOE Patents [OSTI]

    Filby, Evan E. (Idaho Falls, ID); Rankin, Richard A. (Ammon, ID)

    1991-01-01

    An expert overseer for the operation and real-time management of a mass spectrometer and associated laboratory equipment. The overseer is a computer-based expert diagnostic system implemented on a computer separate from the dedicated computer used to control the mass spectrometer and produce the analysis results. An interface links the overseer to components of the mass spectrometer, components of the laboratory support system, and the dedicated control computer. Periodically, the overseer polls these devices and as well as itself. These data are fed into an expert portion of the system for real-time evaluation. A knowledge base used for the evaluation includes both heuristic rules and precise operation parameters. The overseer also compares current readings to a long-term database to detect any developing trends using a combination of statistical and heuristic rules to evaluate the results. The overseer has the capability to alert lab personnel whenever questionable readings or trends are observed and provide a background review of the problem and suggest root causes and potential solutions, or appropriate additional tests that could be performed. The overseer can change the sequence or frequency of the polling to respond to an observation in the current data.

  6. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    SciTech Connect (OSTI)

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Duellmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Hessberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.; and others

    2013-03-19

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  7. Mass spectrometer vacuum housing and pumping system

    DOE Patents [OSTI]

    Coutts, Gerald W. (Livermore, CA); Bushman, John F. (Oakley, CA); Alger, Terry W. (Tracy, CA)

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  8. Mass spectrometer vacuum housing and pumping system

    DOE Patents [OSTI]

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  9. Open-split interface for mass spectrometers

    DOE Patents [OSTI]

    Diehl, John W. (Grand Forks, ND)

    1991-01-01

    An open-split interface includes a connector body having four leg members projecting therefrom within a single plane, the first and third legs being coaxial and the second and fourth legs being coaxial. A tubular aperture extends through the first and third legs and a second tubular aperture extends through the second and fourth legs, connecting at a juncture within the center of the connector body. A fifth leg projects from the connector body and has a third tubular aperture extending therethrough to the juncture of the first and second tubular apertures. A capillary column extends from a gas chromatograph into the third leg with its end adjacent the juncture. A flow restrictor tube extends from a mass spectrometer through the first tubular aperture in the first and third legs and into the capillary columnm end, so as to project beyond the end of the third leg within the capillary column. An annular gap between the tube and column allows excess effluent to pass to the juncture. A pair of short capillary columns extend from separate detectors into the second tubular aperture in the second and fourth legs, and are oriented with their ends spaced slightly from the first capillary column end. A sweep flow tube is mounted in the fifth leg so as to supply a helium sweep flow to the juncture.

  10. Mass spectrometer having a derivatized sample presentation apparatus

    DOE Patents [OSTI]

    Nelson, Randall W. (Phoenix, AZ)

    2000-07-25

    A mass spectrometer having a derivatized sample presentation apparatus is provided. The sample presentation apparatus has a complex bound to the surface of the sample presentation apparatus. This complex includes a molecule which may chemically modify a biomolecule.

  11. SIEMENS ADVANCED QUANTRA FTICR MASS SPECTROMETER FOR ULTRA HIGH RESOLUTION AT LOW MASS

    SciTech Connect (OSTI)

    Spencer, W; Laura Tovo, L

    2008-07-08

    The Siemens Advanced Quantra Fourier Transform Ion Cyclotron Resonance (FTICR) mass spectrometer was evaluated as an alternative instrument to large double focusing mass spectrometers for gas analysis. High resolution mass spectrometers capable of resolving the common mass isomers of the hydrogen isotopes are used to provide data for accurate loading of reservoirs and to monitor separation of tritium, deuterium, and helium. Conventional double focusing magnetic sector instruments have a resolution that is limited to about 5000. The Siemens FTICR instrument achieves resolution beyond 400,000 and could possibly resolve the tritium ion from the helium-3 ion, which differ by the weight of an electron, 0.00549 amu. Working with Y-12 and LANL, SRNL requested Siemens to modify their commercial Quantra system for low mass analysis. To achieve the required performance, Siemens had to increase the available waveform operating frequency from 5 MHz to 40 MHz and completely redesign the control electronics and software. However, they were able to use the previous ion trap, magnet, passive pump, and piezo-electric pulsed inlet valve design. NNSA invested $1M in this project and acquired four systems, two for Y-12 and one each for SRNL and LANL. Siemens claimed a $10M investment in the Quantra systems. The new Siemens Advanced Quantra demonstrated phenomenal resolution in the low mass range. Resolution greater than 400,000 was achieved for mass 2. The new spectrometer had a useful working mass range to 500 Daltons. However, experiments found that a continuous single scan from low mass to high was not possible. Two useful working ranges were established covering masses 1 to 6 and masses 12 to 500 for our studies. A compromise performance condition enabled masses 1 to 45 to be surveyed. The instrument was found to have a dynamic range of about three orders of magnitude and quantitative analysis is expected to be limited to around 5 percent without using complex fitting algorithms. Analysis of low concentration ions, at the ppm level, required a separate analysis using ion ejection techniques. Chemical ionization due to the formation of the MH{sup +} ion or MD{sup +} increased the complexity of the spectra compared to magnetic sector mass spectra and formation of the protonated or deuterated complex was a dynamic function of the trap ion concentration. This made quantitative measurement more of a challenge. However, the resolution of the instrument was far superior to any other mass spectrometry technique that has been applied to the analysis of the hydrogen isotopes. The piezo-electric picoliter injection device offers a new way of submitting small quantities of atmospheric pressure sample gas for analysis. The new software had many improvements over the previous version but significant flaws in the beta codes remain that make the prototype units less than ideal. The instrument is a promising new technology that experience will likely improve. Unfortunately, Siemens has concluded that the technology will not be a commercial success and has decided to stop producing this product.

  12. EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS

    SciTech Connect (OSTI)

    Johnson, S.; Cordaro, J.; Holland, M.; Jones, V.

    2010-06-17

    Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability to refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.

  13. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, Cyril V. (Knoxville, TN); Wise, Marcus B. (Kingston, TN)

    1993-01-01

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus.

  14. Sample introducing apparatus and sample modules for mass spectrometer

    DOE Patents [OSTI]

    Thompson, C.V.; Wise, M.B.

    1993-12-21

    An apparatus for introducing gaseous samples from a wide range of environmental matrices into a mass spectrometer for analysis of the samples is described. Several sample preparing modules including a real-time air monitoring module, a soil/liquid purge module, and a thermal desorption module are individually and rapidly attachable to the sample introducing apparatus for supplying gaseous samples to the mass spectrometer. The sample-introducing apparatus uses a capillary column for conveying the gaseous samples into the mass spectrometer and is provided with an open/split interface in communication with the capillary and a sample archiving port through which at least about 90 percent of the gaseous sample in a mixture with an inert gas that was introduced into the sample introducing apparatus is separated from a minor portion of the mixture entering the capillary discharged from the sample introducing apparatus. 5 figures.

  15. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, Michel G. (Los Alamos, NM)

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  16. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  17. Mass Spectrometer Laboratory | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)PriceHistoricEnergyAprilMartinFeet)perMassMass

  18. Miniaturized Mass Spectrometer - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OFDetectionBenchmarkResults andVehicles and Fuels Vehicles

  19. Mass Spectrometer Facility | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport)PriceHistoricEnergyAprilMartinFeet)perMass

  20. Universal collisional activation ion trap mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Goeringer, Douglas E. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  1. Universal collisional activation ion trap mass spectrometry

    DOE Patents [OSTI]

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  2. Design and evaluation of a miniaturized Particle Desorption Mass Spectrometer 

    E-Print Network [OSTI]

    Davis, Kelly Vaughn

    1987-01-01

    Detail of mass spectrometer showing primary fission fragments, desorbed ions, and start and stop curcuits. 15 Biasing network for the microchannel plate detectors 16 5 Schematic of flight tube showing EPG 18 Schematic of stainless steel sample... convenient source of these high-energy heavy ions is the radionuclide Californium-252. This element undergoes spontaneous fission as 3'/o of its total decay scheme (6). The fission fragments range in energy from 80 to 100 MeV and in mass from 100 to 140...

  3. Background due to stored electrons following nuclear decays in the KATRIN spectrometers and its impact on the neutrino mass sensitivity

    E-Print Network [OSTI]

    Mertens, S; Fraenkle, F M; Furse, D; Glueck, F; Goerhardt, S; Hoetzel, M; Kaefer, W; Leiber, B; Thuemmler, T; Wandkowsky, N; Wolf, J

    2012-01-01

    The KATRIN experiment is designed to measure the absolute neutrino mass scale with a sensitivity of 200 meV at 90% C.L. by high resolution tritium beta-spectroscopy. A low background level of 10 mHz at the beta-decay endpoint is required in order to achieve the design sensitivity. In this paper we discuss a novel background source arising from magnetically trapped keV electrons in electrostatic retarding spectrometers. The main sources of these electrons are alpha-decays of the radon isotopes (219,220)Rn as well as beta-decays of tritium in the volume of the spectrometers. We characterize the expected background signal by extensive MC simulations and investigate the impact on the KATRIN neutrino mass sensitivity. From these results we refine design parameters for the spectrometer vacuum system and propose active background reduction methods to meet the stringent design limits for the overall background rate.

  4. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOE Patents [OSTI]

    Felter, Thomas E. (Livermore, CA)

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  5. Linear electric field time-of-flight ion mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); Feldman, William C. (Los Alamos, NM)

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  6. Design and operational characteristics of a cast steel mass spectrometer

    SciTech Connect (OSTI)

    Blantocas, Gene Q.; Ramos, Henry J.; Wada, Motoi

    2004-09-01

    A cast steel magnetic sector mass analyzer is developed for studies of hydrogen and helium ion beams generated by a gas discharge compact ion source. The optimum induced magnetic flux density of 3500 G made it possible to scan the whole spectrum of hydrogen and helium ion species. Analysis of beam characteristics shows that the mass spectrometer sensitivity, and resolving power are approximately inversely proportional. The resolution is enhanced at higher pressures and lower current discharges. In contrast, the instrument sensitivity increased at higher current discharges and decreased at higher pressures. Calculations of the ultimate resolving power with reference to analyzer dimensions yield a numerical value of 30. System anomaly in the form of spherical aberrations was also analyzed using the paraxial beam envelope equation. Beam divergence is most significant at high discharge conditions where angular spread reaches an upper limit of 8.6 deg.

  7. Linear electronic field time-of-flight ion mass spectrometers

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM)

    2010-08-24

    Time-of-flight mass spectrometer comprising a first drift region and a second drift region enclosed within an evacuation chamber; a means of introducing an analyte of interest into the first drift region; a pulsed ionization source which produces molecular ions from said analyte of interest; a first foil positioned between the first drift region and the second drift region, which dissociates said molecular ions into constituent atomic ions and emits secondary electrons; an electrode which produces secondary electrons upon contact with a constituent atomic ion in second drift region; a stop detector comprising a first ion detection region and a second ion detection region; and a timing means connected to the pulsed ionization source, to the first ion detection region, and to the second ion detection region.

  8. Rotary turret and reusable specimen holder for mass spectrometer

    DOE Patents [OSTI]

    Banar, Joseph C. (Los Alamos, NM); Perrin, Richard E. (Jemez Springs, NM); Ostrenga, Raymond A. (Los Alamos, NM)

    1988-01-01

    A sample holder for use in a mass spectrometer is provided for heating a sample to discharge ions through an electrostatic field which focuses and accelerates the ions for analysis. Individual specimen holders form a plurality of filaments for heating the sample materials for ion emission. Mounting devices hold the plurality of filaments at regular spaced apart angles in a closed configuration adjacent the electrostatic field elements. A substantially solid ceramic turret is provided with a plurality of electrical contacts which engage the individual holder means for energizing the filaments and forming a corresponding plurality of radially facing, axially extending first conductive surfaces. A substantially solid stationary turret bearing member is mounted about the rotating turret with a plurality of radially biased second electrical conductive surfaces, mounted to electrically contact facing ones of the plurality of radially facing first conductive surfaces. The assembly provides a large thermal mass for thermal stability and large electrical contact areas for repeatable, stable power input for heating the sample materials. An improved sample holder is also provided having a ceramic body portion for removably engaging conductive wires. The conductive wires are compatible with a selected filament element and the sample material to be analyzed.

  9. Mass-spectrometer method for determining helium in the parts-per-million to 10-percent range. Rept. of Investigations/1991

    SciTech Connect (OSTI)

    Holland, P.W.

    1991-01-01

    The U.S. Bureau of Mines has developed a mass spectrometer method for determining helium in the parts-per-million to 10-pct range to an accuracy of + or {minus} 1 pct. The method employs a mass spectrometer, an inlet system utilizing a chromatographic gas-sampling valve, and an activated coconut charcoal trap cooled with liquid nitrogen. Gravimetrically prepared standards of helium in nitrogen were used to demonstrate the linearity of the method over the concentration range of 10 ppm to 10.66 pct helium.

  10. Extended-range grazing-incidence spectrometer for high-resolution extreme ultraviolet measurements on an electron beam ion trap

    SciTech Connect (OSTI)

    Beiersdorfer, P.; Magee, E. W.; Brown, G. V.; Träbert, E.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hell, N. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Dr. Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, 96049 Bamberg (Germany)

    2014-11-15

    A high-resolution grazing-incidence grating spectrometer has been implemented on the Livermore electron beam ion traps for performing very high-resolution measurements in the soft x-ray and extreme ultraviolet region spanning from below 10 Å to above 300 Å. The instrument operates without an entrance slit and focuses the light emitted by highly charged ions located in the roughly 50 ?m wide electron beam onto a cryogenically cooled back-illuminated charge-coupled device detector. The measured line widths are below 0.025 Å above 100 Å, and the resolving power appears to be limited by the source size and Doppler broadening of the trapped ions. Comparisons with spectra obtained with existing grating spectrometers show an order of magnitude improvement in spectral resolution.

  11. The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results

    E-Print Network [OSTI]

    S. George; K. Blaum; F. Herfurth; A. Herlert; M. Kretzschmar; S. Nagy; S. Schwarz; L. Schweikhard; C. Yazidjian

    2007-01-22

    The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new excitation scheme, Ramsey's method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion excited with Ramsey's method in a Penning trap and subsequently the calculation of the resonance line shapes for different excitation times, pulse structures, and detunings of the quadrupole field has been carried out in a quantum mechanical framework and is discussed in detail in the preceding article in this journal by M. Kretzschmar. Here, the new excitation technique has been applied with the ISOLTRAP mass spectrometer at ISOLDE/CERN for mass measurements on stable as well as short-lived nuclides. The experimental resonances are in agreement with the theoretical predictions and a precision gain close to a factor of four was achieved compared to the use of the conventional excitation technique.

  12. Measurement of the Translational Energy of Ions with a Time?of?Flight Mass Spectrometer

    E-Print Network [OSTI]

    Franklin, J. L.; Hierl, Peter M.; Whan, David A.

    1967-01-01

    A mathematical analysis of peak shapes in a Bendix time?of?flight mass spectrometer shows that ions formed with excess translational energy exhibit considerable peak broadening. A method is developed by which this translational ...

  13. Ruthenium trisbipyridine as a candidate for gas-phase spectroscopic studies in a Fourier transform mass spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Scott, Jill R.; Ham, Jason E.; Durham, Bill; Tremblay, Paul L.

    2004-01-01

    Metal polypyridines are excellent candidates for gas-phase optical experiments where their intrinsic properties can be studied without complications due to the presence of solvent. The fluorescence lifetimes of [Ru(bpy)3]1+trapped in an optical detection cell within a Fourier transform mass spectrometer were obtained using matrix-assisted laser desorption/ionization to generate the ions with either 2,5-dihydroxybenzoic acid (DHB) or sinapinic acid (SA) as matrix. All transients acquired, whether using DHB or SA for ion generation, were best described as approximately exponential decays. The rate constant for transients derived using DHB as matrix was 4×107s?1, while the rate constant using SA was 1×107s?1. Somemore »suggestions of multiple exponential decay were evident although limited by the quality of the signals. Photodissociation experiments revealed that [Ru(bpy)3]1+generated using DHB can decompose to [Ru(bpy)2]1+, whereas ions generated using SA showed no decomposition. Comparison of the mass spectra with the fluorescence lifetimes illustrates the promise of incorporating optical detection with trapped ion mass spectrometry techniques.« less

  14. UV-light microscope: improvements in optical imaging for a secondary ion mass spectrometer

    E-Print Network [OSTI]

    Meyers, Stephen R.

    UV-light microscope: improvements in optical imaging for a secondary ion mass spectrometer Noriko T­10 mm. However, the original reflected light microscope of the CAMECA IMS 1280 SIMS had an optical at the mm scale. We modified the optical microscope to use ultraviolet (UV) light illumination and UV

  15. Laser desorption time-of-flight mass spectrometer DNA analyzer. Final report

    SciTech Connect (OSTI)

    Chen, C.H.W.; Martin, S.A.

    1997-02-01

    The objective of this project is the development of a laser desorption time-of-flight mass spectrometer DNA analyzer which can be broadly used for biomedical research. Tasks include: pulsed ion extraction to improve resolution; two-component matrices to enhance ionization; and solid phase DNA purification.

  16. HD gas analysis with Gas Chromatography and Quadrupole Mass Spectrometer

    E-Print Network [OSTI]

    T. Ohta; S. Bouchigny; J. -P. Didelez; M. Fujiwara; K. Fukuda; H. Kohri; T. Kunimatsu; C. Morisaki; S. Ono; G. Rouille; M. Tanaka; K. Ueda; M. Uraki; M. Utsuro; S. Y. Wang; M. Yosoi

    2011-01-28

    A gas analyzer system has been developed to analyze Hydrogen-Deuteride (HD) gas for producing frozen-spin polarized HD targets, which are used for hadron photoproduction experiments at SPring-8. Small amounts of ortho-H$_{2}$ and para-D$_{2}$ gas mixtures ($\\sim$0.01%) in the purified HD gas are a key to realize a frozen-spin polarized target. In order to obtain reliable concentrations of these gas mixtures in the HD gas, we produced a new gas analyzer system combining two independent measurements with the gas chromatography and the QMS. The para-H$_{2}$, ortho-H$_{2}$, HD, and D$_{2}$ are separated using the retention time of the gas chromatography and the mass/charge. It is found that the new gas analyzer system can measure small concentrations of $\\sim$0.01% for the otho-H$_2$ and D$_2$ with good S/N ratios.

  17. Note: A novel dual-channel time-of-flight mass spectrometer for photoelectron imaging spectroscopy

    SciTech Connect (OSTI)

    Qin Zhengbo; Wu Xia; Tang Zichao [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2013-06-15

    A novel dual-channel time-of-flight mass spectrometer (D-TOFMS) has been designed to select anions in the photoelectron imaging measurements. In this instrument, the radiation laser can be triggered precisely to overlap with the selected ion cloud at the first-order space focusing plane. Compared with that of the conventional single channel TOFMS, the in situ mass selection performance of D-TOFMS is significantly improved. Preliminary experiment results are presented for the mass-selected photodetachment spectrum of F{sup -} to demonstrate the capability of the instrument.

  18. Portable gas chromatograph mass spectrometer for on-site chemical analyses

    DOE Patents [OSTI]

    Haas, Jeffrey S. (San Ramon, CA); Bushman, John F. (Oakley, CA); Howard, Douglas E. (Livermore, CA); Wong, James L. (Livermore, CA); Eckels, Joel D. (Livermore, CA)

    2002-01-01

    A portable, lightweight (approximately 25 kg) gas chromatograph mass spectrometer, including the entire vacuum system, can perform qualitative and quantitative analyses of all sample types in the field. The GC/MS has a conveniently configured layout of components for ease of serviceability and maintenance. The GC/MS system can be transported under operating or near-operating conditions (i.e., under vacuum and at elevated temperature) to reduce the downtime before samples can be analyzed on-site.

  19. Elimination of ``memory`` from sample handling and inlet system of a mass spectrometer

    DOE Patents [OSTI]

    Chastgner, P.

    1991-05-08

    This paper describes a method for preparing the sample handling and inlet system of a mass spectrometer for analysis of a subsequent sample following analysis of a previous sample comprising the flushing of the system interior with supercritical CO{sub 2} and venting the interior. The method eliminates the effect of system ``memory`` on the subsequent analysis, especially following persistent samples such as xenon and krypton.

  20. Solid Phase Microextraction and Miniature Time-of-Flight Mass Spectrometer

    SciTech Connect (OSTI)

    Hiller, j.m.

    1999-01-26

    A miniature mass spectrometer, based on the time-of-flight principle, has been developed for the detection of chemical warfare agent precursor molecules. The instrument, with minor modifications, could fulfill many of the needs for sensing organic molecules in various Defense Programs, including Enhanced Surveillance. The basic footprint of the instrument is about that of a lunch box. The instrument has a mass range to about 300, has parts-per-trillion detection limits, and can return spectra in less than a second. The instrument can also detect permanent gases and is especially sensitive to hydrogen. In volume, the device could be manufactured for under $5000.

  1. Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer

    E-Print Network [OSTI]

    Williams, L. R.

    We have designed and characterized a new inlet and aerodynamic lens for the Aerodyne aerosol mass spectrometer (AMS) that transmits particles between 80 nm and more than 3 ?m in vacuum aerodynamic diameter. The design of ...

  2. Development of a variable-temperature ion mobility/ time-of-flight mass spectrometer for separation of electronic isomers 

    E-Print Network [OSTI]

    Verbeck, Guido Fridolin

    2005-08-29

    The construction of a liquid nitrogen-cooled ion mobility spectrometer coupled with time-of-flight mass spectrometry was implemented to demonstrate the ability to discriminate between electronic isomers. Ion mobility allows for the separation...

  3. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, David P. (St. Petersburg, FL); Browning, James F. (Palm Harbour, FL)

    1999-01-01

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu.

  4. Method for studying a sample of material using a heavy ion induced mass spectrometer source

    DOE Patents [OSTI]

    Fries, D.P.; Browning, J.F.

    1999-02-16

    A heavy ion generator is used with a plasma desorption mass spectrometer to provide an appropriate neutron flux in the direction of a fissionable material in order to desorb and ionize large molecules from the material for mass analysis. The heavy ion generator comprises a fissionable material having a high n,f reaction cross section. The heavy ion generator also comprises a pulsed neutron generator that is used to bombard the fissionable material with pulses of neutrons, thereby causing heavy ions to be emitted from the fissionable material. These heavy ions impinge on a material, thereby causing ions to desorb off that material. The ions desorbed off the material pass through a time-of-flight mass analyzer, wherein ions can be measured with masses greater than 25,000 amu. 3 figs.

  5. Improved ion optics for introduction of ions into a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer

    SciTech Connect (OSTI)

    Chen, Yu; Leach, Franklin E.; Kaiser, Nathan K.; Dang, Xibei; Ibrahim, Yehia M.; Norheim, Randolph V.; Anderson, Gordon A.; Smith, Richard D.; Marshall, Alan G.

    2015-01-01

    Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry provides unparalleled mass accuracy and resolving power.[1],[2] With electrospray ionization (ESI), ions are typically transferred into the mass spectrometer through a skimmer, which serves as a conductance-limiting orifice. However, the skimmer allows only a small fraction of incoming ions to enter the mass spectrometer. An ion funnel, originally developed by Smith and coworkers at Pacific Northwest National Laboratory (PNNL)[3-5] provides much more efficient ion focusing and transfer. The large entrance aperture of the ion funnel allows almost all ions emanating from a heated capillary to be efficiently captured and transferred, resulting in nearly lossless transmission.

  6. A laser and molecular beam mass spectrometer study of low-pressure dimethyl ether flames

    SciTech Connect (OSTI)

    Andrew McIlroy; Toby D. Hain; Hope A. Michelsen; Terrill A. Cool

    2000-12-15

    The oxidation of dimethyl ether (DME) is studied in low-pressure flames using new molecular beam mass spectrometer and laser diagnostics. Two 30.0-Torr, premixed DME/oxygen/argon flames are investigated with stoichiometries of 0.98 and 1.20. The height above burner profiles of nine stable species and two radicals are measured. These results are compared to the detailed chemical reaction mechanism of Curran and coworkers. Generally good agreement is found between the model and data. The largest discrepancies are found for the methyl radical profiles where the model predicts qualitatively different trends in the methyl concentration with stoichiometry than observed in the experiment.

  7. Novel endothermic and exothermic ion-molecule reactions as observed in a Fourier transform mass spectrometer 

    E-Print Network [OSTI]

    Bricker, Donald Lee

    1986-01-01

    is the electric field strength in. v/m and t ~ 2rB/E (6) B is the magnetic field strength in tesla. 6 The standard FTICR trap cell developed by McIver is a one 7 region cell consisting of six flat plates arranged in a rectangular geometry. A positive... q is the charge on the KE = q r B /2m (7) 2 2 2 ion, r is the radius of the trap cell in meters, B is the magnetic field strength in tesla and m is the mass of the ion in kilograms. therefore an ion of m/z 100 in a 1. 9 tesla magnetic field...

  8. Mass spectrometer with electron source for reducing space charge effects in sample beam

    DOE Patents [OSTI]

    Houk, Robert S.; Praphairaksit, Narong

    2003-10-14

    A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.

  9. High-precision Penning trap mass measurements for tests of the Standard Model

    SciTech Connect (OSTI)

    Blaum, Klaus; Eliseev, Sergey; Nagy, Szilard

    2010-08-04

    With the nowadays achievable accuracy in Penning trap mass spectrometry on short-lived exotic nuclides as well as stable atoms, precision fundamental tests can be performed, among them a test of the Standard Model, in particular with regard to the weak interaction, the CPT symmetry conservation, and the unitarity of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. In addition, accurate mass values of specific nuclides are important for neutrino physics. The presently best tests of the Standard Model with high-precision Penning trap mass spectrometry will be reviewed.

  10. Off-resonance energy absorption in a linear Paul trap due to mass selective resonant quenching

    SciTech Connect (OSTI)

    Sivarajah, I.; Goodman, D. S.; Wells, J. E.; Smith, W. W.; Narducci, F. A.

    2013-11-15

    Linear Paul traps (LPT) are used in many experimental studies such as mass spectrometry, atom-ion collisions, and ion-molecule reactions. Mass selective resonant quenching (MSRQ) is implemented in LPT either to identify a charged particle's mass or to remove unwanted ions from a controlled experimental environment. In the latter case, MSRQ can introduce undesired heating to co-trapped ions of different mass, whose secular motion is off resonance with the quenching ac field, which we call off-resonance energy absorption (OREA). We present simulations and experimental evidence that show that the OREA increases exponentially with the number of ions loaded into the trap and with the amplitude of the off-resonance external ac field.

  11. Status and Outlook of CHIP-TRAP: the Central Michigan University High Precision Penning Trap

    E-Print Network [OSTI]

    Matthew Redshaw; Richard A. Bryce; Paul Hawks; Nadeesha D. Gamage; Curtis Hunt; Rathnayake M. E. B. Kandegedara; Ishara S. Ratnayake; Lance Sharp

    2015-10-25

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP)that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/?filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m=q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  12. Status and Outlook of CHIP-TRAP: the Central Michigan University High Precision Penning Trap

    E-Print Network [OSTI]

    Redshaw, Matthew; Hawks, Paul; Gamage, Nadeesha D; Hunt, Curtis; Kandegedara, Rathnayake M E B; Ratnayake, Ishara S; Sharp, Lance

    2015-01-01

    At Central Michigan University we are developing a high-precision Penning trap mass spectrometer (CHIP-TRAP)that will focus on measurements with long-lived radioactive isotopes. CHIP-TRAP will consist of a pair of hyperbolic precision-measurement Penning traps, and a cylindrical capture/?filter trap in a 12 T magnetic field. Ions will be produced by external ion sources, including a laser ablation source, and transported to the capture trap at low energies enabling ions of a given m=q ratio to be selected via their time-of-flight. In the capture trap, contaminant ions will be removed with a mass-selective rf dipole excitation and the ion of interest will be transported to the measurement traps. A phase-sensitive image charge detection technique will be used for simultaneous cyclotron frequency measurements on single ions in the two precision traps, resulting in a reduction in statistical uncertainty due to magnetic field fluctuations.

  13. Method for calibrating a Fourier transform ion cyclotron resonance mass spectrometer

    DOE Patents [OSTI]

    Smith, Richard D.; Masselon, Christophe D.; Tolmachev, Aleksey

    2003-08-19

    A method for improving the calibration of a Fourier transform ion cyclotron resonance mass spectrometer wherein the frequency spectrum of a sample has been measured and the frequency (f) and intensity (I) of at least three species having known mass to charge (m/z) ratios and one specie having an unknown (m/z) ratio have been identified. The method uses the known (m/z) ratios, frequencies, and intensities at least three species to calculate coefficients A, B, and C, wherein the mass to charge ratio of a least one of the three species (m/z).sub.i is equal to ##EQU1## wherein f.sub.i is the detected frequency of the specie, G(I.sub.i) is a predetermined function of the intensity of the species, and Q is a predetermined exponent. Using the calculated values for A, B, and C, the mass to charge ratio of the unknown specie (m/z).sub.ii is calculated as the sum of ##EQU2## wherein f.sub.ii is the measured frequency of the unknown specie, and (I.sub.ii) is the measured intensity of the unknown specie.

  14. Development of A Cryogenic Drift Cell Spectrometer and Methods for Improving the Analytical Figures of Merit for Ion Mobility-Mass Spectrometry Analysis 

    E-Print Network [OSTI]

    May, Jody C.

    2010-10-12

    A cryogenic (325-80 K) ion mobility-mass spectrometer was designed and constructed in order to improve the analytical figures-of-merit for the chemical analysis of small mass analytes using ion mobility-mass spectrometry. ...

  15. Invited Article: Characterization of background sources in space-based time-of-flight mass spectrometers

    SciTech Connect (OSTI)

    Gilbert, J. A.; Gershman, D. J.; Gloeckler, G.; Lundgren, R. A.; Zurbuchen, T. H.; Orlando, T. M.; McLain, J.; Steiger, R. von

    2014-09-15

    For instruments that use time-of-flight techniques to measure space plasma, there are common sources of background signals that evidence themselves in the data. The background from these sources may increase the complexity of data analysis and reduce the signal-to-noise response of the instrument, thereby diminishing the science value or usefulness of the data. This paper reviews several sources of background commonly found in time-of-flight mass spectrometers and illustrates their effect in actual data using examples from ACE-SWICS and MESSENGER-FIPS. Sources include penetrating particles and radiation, UV photons, energy straggling and angular scattering, electron stimulated desorption of ions, ion-induced electron emission, accidental coincidence events, and noise signatures from instrument electronics. Data signatures of these sources are shown, as well as mitigation strategies and design considerations for future instruments.

  16. Multi-Collector Inductively Coupled Plasma Mass Spectrometer – Operational Performance Report

    SciTech Connect (OSTI)

    Matthew Watrous; Anthony Appelhans; Robert Hague; John Olson; Tracy Houghton

    2013-06-01

    The INL made an assessment of the commercially available inductively coupled plasma mass spectrometers (ICPMS) for actinide analysis; emphasizing low detection limits for plutonium. INL scientists subsequently determined if plutonium was present on a swipe, at a 10 million atom decision level. This report describes the evaluation of ICPMS instruments and the operational testing of a new process for the dissolution, separation and analysis via ICPMS of swipes for plutonium and uranium. The swipe dissolution, plutonium and uranium isolation, separation and purification are wet chemistry methods following established procedures. The ICPMS is a commercially available multi-collector magnetic sector mass spectrometer that utilizes five ion counting detectors operating simultaneously. The instrument includes a sample introduction system allowing for sample volumes of < 1 mL to be reproducibly injected into the instrument with minimal waste of the sample solution, while maximizing the useable signal. The performance of the instrument was measured using SRM 996 (244Pu spike) at concentrations of 12 parts per quadrillion (ppq, fg/mL) and with SRM 4350B Columbia River Sediment samples spiked onto swipes at the 10 million atom level. The measured limit of detection (LOD, defined as 3s) for 239Pu is 310,000 atoms based upon the instrument blank data. The limit of quantification (LOQ defined as 10 s) for 239Pu is 105,000 atoms. The measured limit of detection for 239Pu from the SRM 4350B spiked onto a swipe was 2.7 million atoms with the limit of quantification being 9.0 million atoms.

  17. Ion Trap Array-Based Systems And Methods For Chemical Analysis

    DOE Patents [OSTI]

    Whitten, William B [Oak Ridge, TN; Ramsey, J Michael [Knoxville, TN

    2005-08-23

    An ion trap-based system for chemical analysis includes an ion trap array. The ion trap array includes a plurality of ion traps arranged in a 2-dimensional array for initially confining ions. Each of the ion traps comprise a central electrode having an aperture, a first and second insulator each having an aperture sandwiching the central electrode, and first and second end cap electrodes each having an aperture sandwiching the first and second insulator. A structure for simultaneously directing a plurality of different species of ions out from the ion traps is provided. A spectrometer including a detector receives and identifies the ions. The trap array can be used with spectrometers including time-of-flight mass spectrometers and ion mobility spectrometers.

  18. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    SciTech Connect (OSTI)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-06-14

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets [I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas [2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study [3] has been expanded with additional bacteria and fungi. These spectra were acquired on a Finnigan Magnum ion trap using helium buffer gas. A new database of Cl spectra of microorganisms is planned using the CBMS Block II instrument and air as the buffer gas. Using the current database, the fatty acid composition of the organisms was compared using the percentage of the ion current attributable to fatty acids. The data presented suggest promising rules for discrimination of these organisms. Strain, growth media and vegetative state do contribute to some of the distributions observed in the data. However, the data distributions observed in the current study only reflect our experience to date and do not fully represent the variability that might be expected in practice: Acquisition of MS/ MS spectra has begun (using He and air buffer gas) of the protonated molecular ion of a variety of fatty acids and for a number of ions nominally assigned as fatty acids from microorganisms. These spectra will be used to help verify fatty acid .

  19. Toward a Fieldable Atomic Mass Spectrometer for Safeguards Applications: Sample Preparation and Ionization

    SciTech Connect (OSTI)

    Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth; Jones, Sarah MH; Manard, Benjamin T.

    2014-10-31

    The International Atomic Energy Agency’s (IAEA’s) long-term research and development plan calls for the development of new methods to detect misuse at nuclear fuel cycle facilities such as reprocessing and enrichment plants. At enrichment plants, for example, the IAEA’s contemporary safeguards approaches are based on a combination of routine and random inspections that include collection of UF6 samples from in-process material and selected cylinders for subsequent analyses. These analyses include destructive analysis (DA) in a laboratory (typically by mass spectrometry [MS]) for isotopic characterization, and environmental sampling (ES) for subsequent laboratory elemental and isotopic analysis (also both typically by MS). One area of new method development includes moving this kind of isotope ratio analytical capability for DA and ES activities into the field. Some of the reasons for these developments include timeliness of results, avoidance of hazardous material shipments, and guidance for additional sample collecting. However, this capability does not already exist for several reasons, such as that most lab-based chemical and instrumental methods rely on laboratory infrastructure (highly trained staff, power, space, hazardous material handling, etc.) and require significant amounts of consumables (power, compressed gases, etc.). In addition, there are no currently available, fieldable instruments for atomic or isotope ratio analysis. To address these issues, Pacific Northwest National Laboratory (PNNL) and collaborator, Clemson University, are studying key areas that limit the fieldability of isotope ratio mass spectrometry for atomic ions: sample preparation and ionization, and reducing the physical size of a fieldable mass spectrometer. PNNL is seeking simple and robust techniques that could be effectively used by inspectors who may have no expertise in analytical MS. In this report, we present and describe the preliminary findings for three candidate techniques: matrix-assisted laser desorption/ionization (MALDI) MS, liquid sampling-atmospheric pressure glow discharge (LS-APGD), and laser ablation/ionization (LAI) MS at atmospheric pressure. Potential performance metrics for these techniques will be presented, including detectability, response, isotope ratio accuracy and precision, and ease of use.

  20. Development and Application of an Electrospray Ionization Ion Mobility-mass Spectrometer Using an RF Ion Funnel and Periodic-focusing Ion Guide 

    E-Print Network [OSTI]

    Jeon, Junho

    2013-10-16

    A novel ion mobility-mass spectrometer was designed and built in order to achieve high transmission and high resolution for observing desolvated ion conformations of chemical and biological molecules in the gas phase. The instrument incorporates a...

  1. Development of a MALDI-Ion Mobility-Surface-Induced Dissociation-Time-of-flight-mass spectrometer for the analysis of peptides and proteins 

    E-Print Network [OSTI]

    Stone, Earle Gregory

    2004-09-30

    Peptide sequencing by surface-induced dissociation (SID) on a MALDI-Ion Mobility-orthogonal-TOF mass spectrometer is demonstrated. The early version of the instrument used for proof-of-concept experiments achieves a mobility resolution...

  2. Enhancing The Sensitivity of Miniaturized Quadrupole Mass Spectrometers Bodgan Wilamowski1

    E-Print Network [OSTI]

    Wilamowski, Bogdan Maciej

    and have high power requirements. The optimum solution would be to have a miniaturized portable mass is the distance between hyperbolic rods. 2ro o- o- o+o+ y x z (a) Heater Ionizer NeutralIons RF system mass filter in the space between the quadrupoles. To the right of curve X, light ions hit the left or right poles

  3. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    Institute for Research in the Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado C-130 aircraft study near Mexico City, showing high correlation with independent measurements high vacuum followed by electron impact ionization (EI) and mass analysis by a quadrupole mass

  4. Combined distance-of-flight and time-of-flight mass spectrometer

    DOE Patents [OSTI]

    Enke, Christie G; Ray, Steven J; Graham, Alexander W; Hieftje, Gary M; Barinaga, Charles J; Koppenaal, David W

    2014-02-11

    A combined distance-of-flight mass spectrometry (DOFMS) and time-of-flight mass spectrometry (TOFMS) instrument includes an ion source configured to produce ions having varying mass-to-charge ratios, a first detector configured to determine when each of the ions travels a predetermined distance, a second detector configured to determine how far each of the ions travels in a predetermined time, and a detector extraction region operable to direct portions of the ions either to the first detector or to the second detector.

  5. First Use of High Charge States for Mass Measurements of Short-Lived Nuclides in a Penning Trap

    SciTech Connect (OSTI)

    Ettenauer, S.; Gallant, A. T.; Dilling, J.; Simon, M. C.; Chaudhuri, A.; Mane, E.; Delheij, P.; Pearson, M. R.; Brunner, T.; Chowdhury, U.; Simon, V. V.; Brodeur, M.; Andreoiu, C.; Audi, G.; Lopez-Urrutia, J. R. Crespo; Ullrich, J.; Gwinner, G.; Lapierre, A.; Lunney, D.; Ringle, R.

    2011-12-30

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {beta} emitter {sup 74}Rb (T{sub 1/2}=65 ms). The determination of its atomic mass and an improved Q{sub EC} value are presented.

  6. First Use of High Charge States for Mass Measurements of Short-lived Nuclides in a Penning Trap

    E-Print Network [OSTI]

    S. Ettenauer; M. C. Simon; A. T. Gallant; T. Brunner; U. Chowdhury; V. V. Simon; M. Brodeur; A. Chaudhuri; E. Mané; C. Andreoiu; G. Audi; J. R. Crespo López-Urrutia; P. Delheij; G. Gwinner; A. Lapierre; D. Lunney; M. R. Pearson; R. Ringle; J. Ullrich; J. Dilling

    2011-09-15

    Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly-charged ions (HCI), using the TITAN facility at TRIUMF. Compared to singly-charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb-isotopes have been charge bred in an electron beam ion trap to q = 8 - 12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly-charged ions at a radioactive beam facility opens the door to unrivalled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed {\\beta} emitter 74Rb (T1/2 = 65 ms). The determination of its atomic mass and an improved QEC-value are presented.

  7. Standard test method for isotopic analysis of uranium hexafluoride by double standard single-collector gas mass spectrometer method

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This is a quantitative test method applicable to determining the mass percent of uranium isotopes in uranium hexafluoride (UF6) samples with 235U concentrations between 0.1 and 5.0 mass %. 1.2 This test method may be applicable for the entire range of 235U concentrations for which adequate standards are available. 1.3 This test method is for analysis by a gas magnetic sector mass spectrometer with a single collector using interpolation to determine the isotopic concentration of an unknown sample between two characterized UF6 standards. 1.4 This test method is to replace the existing test method currently published in Test Methods C761 and is used in the nuclear fuel cycle for UF6 isotopic analyses. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appro...

  8. Highly Reproducible Laser Beam Scanning Device for an Internal Source Laser Desorption Microprobe Fourier Transform Mass Spectrometer

    SciTech Connect (OSTI)

    Scott, Jill Rennee; Tremblay, Paul Leland

    2002-03-01

    Traditionally, mass spectrometry has relied on manipulating the sample target to provide scanning capabilities for laser desorption microprobes. This has been problematic for an internal source laser desorption Fourier transform mass spectrometer (LD-FTMS) because of the high magnetic field (7 Tesla) and geometric constraints of the superconducting magnet bore. To overcome these limitations, we have implemented a unique external laser scanning mechanism for an internal source LD-FTMS. This mechanism provides adjustable resolution enhancement so that the spatial resolution at the target is not limited to that of the stepper motors at the light source (~5 µm/step). The spatial resolution is now limited by the practical optical diffraction limit of the final focusing lens. The scanning mechanism employs a virtual source that is wavelength independent up to the final focusing lens, which can be controlled remotely to account for focal length dependence on wavelength. A binary index provides an automatic alignment feature. The virtual source is located ~9 ft from the sample; therefore, it is completely outside of the vacuum system and beyond the 50 G line of the fringing magnetic field. To eliminate reproducibility problems associated with vacuum pump vibrations, we have taken advantage of the magnetic field inherent to the FTMS to utilize Lenz's law for vibrational dampening. The LD-FTMS microprobe has exceptional reproducibility, which enables successive mapping sequences for depth-profiling studies.

  9. Simulation of lean NOx trap performance with microkinetic chemistry and without mass transfer.

    SciTech Connect (OSTI)

    Larson, Rich; Daw, C. Stuart; Pihl, Josh A.; Chakravarthy, V. Kalyana

    2011-08-01

    A microkinetic chemical reaction mechanism capable of describing both the storage and regeneration processes in a fully formulated lean NO{sub x} trap (LNT) is presented. The mechanism includes steps occurring on the precious metal, barium oxide (NO{sub x} storage), and cerium oxide (oxygen storage) sites of the catalyst. The complete reaction set is used in conjunction with a transient plug flow reactor code to simulate not only conventional storage/regeneration cycles with a CO/H{sub 2} reductant, but also steady flow temperature sweep experiments that were previously analyzed with just a precious metal mechanism and a steady state code. The results show that NO{sub x} storage is not negligible during some of the temperature ramps, necessitating a re-evaluation of the precious metal kinetic parameters. The parameters for the entire mechanism are inferred by finding the best overall fit to the complete set of experiments. Rigorous thermodynamic consistency is enforced for parallel reaction pathways and with respect to known data for all of the gas phase species involved. It is found that, with a few minor exceptions, all of the basic experimental observations can be reproduced with these purely kinetic simulations, i.e., without including mass-transfer limitations. In addition to accounting for normal cycling behavior, the final mechanism should provide a starting point for the description of further LNT phenomena such as desulfation and the role of alternative reductants.

  10. Collection efficiency of the Soot-Particle Aerosol Mass Spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-05-26

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore »used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of two. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  11. Collection efficiency of the soot-particle aerosol mass spectrometer (SP-AMS) for internally mixed particulate black carbon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Willis, M. D.; Lee, A. K. Y.; Onasch, T. B.; Fortner, E. C.; Williams, L. R.; Lambe, A. T.; Worsnop, D. R.; Abbatt, J. P. D.

    2014-12-18

    The soot-particle aerosol mass spectrometer (SP-AMS) uses an intra-cavity infrared laser to vaporize refractory black carbon (rBC) containing particles, making the particle beam–laser beam overlap critical in determining the collection efficiency (CE) for rBC and associated non-refractory particulate matter (NR-PM). This work evaluates the ability of the SP-AMS to quantify rBC and NR-PM mass in internally mixed particles with different thicknesses of organic coating. Using apparent relative ionization efficiencies for uncoated and thickly coated rBC particles, we report measurements of SP-AMS sensitivity to NR-PM and rBC, for Regal Black, the recommended particulate calibration material. Beam width probe (BWP) measurements aremore »used to illustrate an increase in sensitivity for highly coated particles due to narrowing of the particle beam, which enhances the CE of the SP-AMS by increasing the laser beam–particle beam overlap. Assuming complete overlap for thick coatings, we estimate CE for bare Regal Black particles of 0.6 ± 0.1, which suggests that previously measured SP-AMS sensitivities to Regal Black were underestimated by up to a factor of 2. The efficacy of the BWP measurements is highlighted by studies at a busy road in downtown Toronto and at a non-roadside location, which show particle beam widths similar to, but greater than that of bare Regal Black and coated Regal Black, respectively. Further BWP measurements at field locations will help to constrain the range of CE for fresh and aged rBC-containing particles. The ability of the SP-AMS to quantitatively assess the composition of internally mixed particles is validated through measurements of laboratory-generated organic coated particles, which demonstrate that the SP-AMS can quantify rBC and NR-PM over a wide range of particle compositions and rBC core sizes.« less

  12. In-Situ Characterization of Cloud Condensation Nuclei, Interstitial, and background Particles using Single Particle Mass Spectrometer, SPLAT II

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Imre, D.; Earle, Michael; Easter, Richard C.; Korolev, Alexei; Leaitch, W. R.; Liu, Peter; Macdonald, A. M.; Ovchinnikov, Mikhail; Strapp, Walter

    2010-10-01

    Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70 particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.

  13. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Goeringer, Douglas E. (Oak Ridge, TN)

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  14. Monolithic spectrometer

    DOE Patents [OSTI]

    Rajic, S.; Egert, C.M.; Kahl, W.K.; Snyder, W.B. Jr.; Evans, B.M. III; Marlar, T.A.; Cunningham, J.P.

    1998-05-19

    A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays. 6 figs.

  15. Development and implementation of a FT-ICR mass spectrometer for the investigation of ion conformations of peptide sequence isomers containing basic amino acid residues by gas-phase hydrogen/deuterium exchange 

    E-Print Network [OSTI]

    Marini, Joseph Thomas

    2004-09-30

    The gas-phase hydrogen/deuterium (H/D) exchange of protonated di- and tripeptides containing a basic amino acid residue has been studied with a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. Bimolecular reactions...

  16. A Novel 9.4 Tesla FT-ICR Mass Spectrometer with Improved Sensitivity, Mass Resolution, and Mass Range, for Petroleum Heavy Crude Oil Analysis

    E-Print Network [OSTI]

    Range, for Petroleum Heavy Crude Oil Analysis Nathan K. Kaiser, John P. Quinn, Greg T. Blakney organic mixtures. However, analysis of petroleum crude oil as well as upcoming biofuels requires continued-ion atmospheric pressure photoionization mass spectrum of a Middle Eastern light crude oil, acquired with the new

  17. Correlation spectrometer

    DOE Patents [OSTI]

    Sinclair, Michael B. (Albuquerque, NM); Pfeifer, Kent B. (Los Lunas, NM); Flemming, Jeb H. (Albuquerque, NM); Jones, Gary D. (Tijeras, NM); Tigges, Chris P. (Albuquerque, NM)

    2010-04-13

    A correlation spectrometer can detect a large number of gaseous compounds, or chemical species, with a species-specific mask wheel. In this mode, the spectrometer is optimized for the direct measurement of individual target compounds. Additionally, the spectrometer can measure the transmission spectrum from a given sample of gas. In this mode, infrared light is passed through a gas sample and the infrared transmission signature of the gasses present is recorded and measured using Hadamard encoding techniques. The spectrometer can detect the transmission or emission spectra in any system where multiple species are present in a generally known volume.

  18. A Thomson-type mass and energy spectrometer for characterizing ion energy distributions in a coaxial plasma gun operating in a gas-puff mode

    SciTech Connect (OSTI)

    Rieker, G. B.; Poehlmann, F. R.; Cappelli, M. A.

    2013-07-15

    Measurements of ion energy distribution are performed in the accelerated plasma of a coaxial electromagnetic plasma gun operating in a gas-puff mode at relatively low discharge energy (900 J) and discharge potential (4 kV). The measurements are made using a Thomson-type mass and energy spectrometer with a gated microchannel plate and phosphor screen as the ion sensor. The parabolic ion trajectories are captured from the sensor screen with an intensified charge-coupled detector camera. The spectrometer was designed and calibrated using the Geant4 toolkit, accounting for the effects on the ion trajectories of spatial non-uniformities in the spectrometer magnetic and electric fields. Results for hydrogen gas puffs indicate the existence of a class of accelerated protons with energies well above the coaxial discharge potential (up to 24 keV). The Thomson analyzer confirms the presence of impurities of copper and iron, also of relatively high energies, which are likely erosion or sputter products from plasma-electrode interactions.

  19. The TFTR E Parallel B Spectrometer for Mass and Energy Resolved Multi-Ion Charge Exchange Diagnostics

    SciTech Connect (OSTI)

    A.L. Roquemore; S.S. Medley

    1998-01-01

    The Charge Exchange Neutral Analyzer diagnostic for the Tokamak Fusion Test Reactor was designed to measure the energy distributions of both the thermal ions and the supra thermal populations arising from neutral-beam injection and ion cyclotron radio-frequency heating. These measurements yield the plasma ion temperature, as well as several other plasma parameters necessary to provide an understanding of the plasma condition and the performance of the auxiliary heating methods. For this application, a novel charge-exchange spectrometer using a dee-shaped region of parallel electric and magnetic fields was developed at the Princeton Plasma Physics Laboratory. The design and performance of this spectrometer is described in detail, including the effects of exposure of the microchannel plate detector to magnetic fields, neutrons, and tritium.

  20. NOAA Technical Memorandum ERL GLERL-75 Sediment Trap Study in the Green Bay Mass Balance Program

    E-Print Network [OSTI]

    : Mass and Organic Carbon Fluxes, Resuspension, and Particle Settling Velocities Brian J. Eadie Gerald L ................................................................................................. 23 4.5 Flux Profiles and Estimates of Sediment Resuspension

  1. Human Plasma Proteome Analysis by Multidimensional Chromatography Prefractionation and Linear Ion Trap Mass

    E-Print Network [OSTI]

    Tian, Weidong

    to facilitate human plasma proteome research. Keywords: proteomics · human plasma · mass spectrometry · two the past decades of plasma proteome research works based on 2-DE:2,14-20 the highest quantity of identified

  2. Quantum particles trapped in a position-dependent mass barrier; a d-dimensional recipe

    E-Print Network [OSTI]

    Omar Mustafa; S. Habib Mazharimousavi

    2006-05-13

    We consider a free particle,V(r)=0, with position-dependent mass m(r)=1/(1+zeta^2*r^2)^2 in the d-dimensional schrodinger equation. The effective potential turns out to be a generalized Poschl-Teller potential that admits exact solution.

  3. Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This method describes the determination of the isotopic composition and/or the concentration of uranium and plutonium as nitrate solutions by the thermal ionization mass spectrometric (TIMS) total evaporation method. Purified uranium or plutonium nitrate solutions are loaded onto a degassed metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion beams are continually measured until the sample is exhausted. The measured ion currents are integrated over the course of the run, and normalized to a reference isotope ion current to yield isotopic ratios. 1.2 In principle, the total evaporation method should yield isotopic ratios that do not require mass bias correction. In practice, some samples may require this bias correction. When compared to the conventional TIMS method, the total evaporation method is approximately two times faster, improves precision from two to four fold, and utilizes smaller sample sizes. 1.3 The tot...

  4. Spectrometer gun

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Wolf, Michael A. (Los Alamos, NM); Umbarger, C. John (Los Alamos, NM)

    1985-01-01

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  5. Spectrometer gun

    DOE Patents [OSTI]

    Waechter, D.A.; Wolf, M.A.; Umbarger, C.J.

    1981-11-03

    A hand-holdable, battery-operated, microprocessor-based spectrometer gun is described that includes a low-power matrix display and sufficient memory to permit both real-time observation and extended analysis of detected radiation pulses. Universality of the incorporated signal processing circuitry permits operation with various detectors having differing pulse detection and sensitivity parameters.

  6. Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    with carbon monoxide (CO) and fragments of aliphatic and oxygenated organic compounds in the AMS mass spectra. Combustion-related organic aerosol (combustion OA) is defined as the primary organic aerosol (POA) fraction the combustion OA and the background OA from the total OA. The combustion OA and excess OA show good correlation

  7. First inductively coupled plasma-distance-of-flight mass spectrometer: instrument performance with a microchannel plate/phosphor imaging detector

    SciTech Connect (OSTI)

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2013-09-01

    Here we describe the first combination of a Distance-of-Flight Mass Spectrometry (DOFMS) instrument and an inductively coupled plasma (ICP) ion source. DOFMS is a velocity-based MS technique in which ions of a range of mass-to-charge (m/z) values are detected simultaneously along the length of a spatially selective detector. As a relative of time-of-flight (TOF) MS, DOFMS leverages benefits fromboth TOFMS and spatially dispersive MS. The simultaneous detection of groups of m/z values improves dynamic range by spreading ion signal across many detector elements and reduces correlated noise by signal ratioing. To ascertain the performance characteristics of the ICP-DOFMS instrument, we have employed a microchannel-plate/phosphor detection assembly with a scientific CCD to capture images of the phosphor plate. With this simple (and commercially available) detection scheme, elemental detection limits from 2–30 ng L*1 and a linear dynamic range of 5 orders of magnitude (10–106 ng L1) have been demonstrated. Additionally, a competitive isotope-ratio precision of 0.1% RSD has been achieved with only a 6 s signal integration period. In addition to first figures of merit, this paper outlines technical considerations for the design of the ICP-DOFMS.

  8. Electron capture from H2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV

    E-Print Network [OSTI]

    Electron capture from H2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV G. Weinberg,1,* B. R. Beck,2 J. Steiger,2 D. A. Church,1 J. McDonald,2 and D. Schneider2 1 Laboratory, P.O. Box 808, Livermore, California 94550 Received 19 May 1997 Ions with charge states as high

  9. Mass measurements of rare isotopes with SHIPTRAP

    SciTech Connect (OSTI)

    Dworschak, M.

    2010-06-01

    The Penning-trap mass spectrometer SHIPTRAP was set up with the aim to perform high-precision mass measurements. Since autumn 2005, the masses of 63 neutron-deficient nuclides in the mass range from A = 80 to A = 254 have been determined with relative uncertainties of down to 10{sup -8}. Nuclides with half-lives down to 580 ms and production rates of less than one atom per minute were investigated. The results are valuable for nuclear structure investigations and nuclear astrophysics. The most remarkable successes were the first direct mass measurements beyond the proton drip line and in the region above Z = 100.

  10. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    SciTech Connect (OSTI)

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks on the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.

  11. Analysis of passivated A-286 stainless steel surfaces for mass spectrometer inlet systems by Auger electron and X-ray photoelectron spectroscopy and scanning electron microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ajo, Henry; Blankenship, Donnie; Clark, Elliot

    2014-07-25

    In this study, various commercially available surface treatments are being explored for use on stainless steel components in mass spectrometer inlet systems. Type A-286 stainless steel coupons, approximately 12.5 mm in diameter and 3 mm thick, were passivated with one of five different surface treatments; an untreated coupon served as a control. The surface and near-surface microstructure and chemistry of the coupons were investigated using sputter depth profiling using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy (SEM). All the surface treatments studied appeared to change the surface morphology dramatically, as evidenced by lack of tool marks onmore »the treated samples in SEM images. In terms of the passivation treatment, Vendors A-D appeared to have oxide layers that were very similar in thickness to each other (0.7–0.9 nm thick), as well as to the untreated samples (the untreated sample oxide layers appeared to be somewhat larger). Vendor E’s silicon coating appears to be on the order of 200 nm thick.« less

  12. Penning-trap mass spectrometry of highly charged, neutron-rich Rb and Sr isotopes in the vicinity of $A\\approx100$

    E-Print Network [OSTI]

    V. V. Simon; T. Brunner; U. Chowdhury; B. Eberhardt; S. Ettenauer; A. T. Gallant; E. Mané; M. C. Simon; P. Delheij; M. R. Pearson; G. Audi; G. Gwinner; D. Lunney; H. Schatz; J. Dilling

    2012-05-29

    The neutron-rich mass region around $A\\approx100$ presents challenges for modeling the astrophysical $r$-process because of rapid shape transitions. We report on mass measurements using the TITAN Penning trap at TRIUMF-ISAC to attain more reliable theoretical predictions of $r$-process nucleosynthesis paths in this region. A new approach using highly charged ($q=15+$) ions has been applied which considerably saves measurement time and preserves accuracy. New mass measurements of neutron-rich $^{94,97,98}$Rb and $^{94,97-99}$Sr have uncertainties of less than 4 keV and show deviations of up to 11$\\sigma$ to previous measurements. An analysis using a parameterized $r$-process model is performed and shows that mass uncertainties for the A=90 abundance region are eliminated.

  13. Microfabricated ion trap array

    DOE Patents [OSTI]

    Blain, Matthew G. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM)

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  14. Direct mass measurements of cadmium and palladium isotopes and their double-beta transition Q-values

    E-Print Network [OSTI]

    C. Smorra; T. Beyer; K. Blaum; M. Block; Ch. E. Düllmann; K. Eberhardt; M. Eibach; S. Eliseev; Sz. Nagy; W. Nörtershäuser; D. Renisch

    2012-01-31

    The Q-value of the double-electron capture in Cd-108 has been determined to be (272.04 +/- 0.55) keV in a direct measurement with the double-Penning trap mass spectrometer TRIGA-TRAP. Based on this result a resonant enhancement of the decay rate of Cd-108 is excluded. We have confirmed the double-beta transition Q-values of Cd-106 and Pd-110 recently measured with the Penning-trap mass spectrometers SHIPTRAP and ISOLTRAP, respectively. Furthermore, the atomic masses of the involved nuclides Cd-106, Cd-108, Cd-110, Pd-106, Pd-108 and Pd-110 have been directly linked to the atomic mass standard.

  15. Characterization of a real-time tracer for Isoprene Epoxydiols-derived Secondary Organic Aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; et al

    2015-04-16

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene low-NO oxidation pathways, was quantified by applying Positive Matrix Factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of OA in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the SOAS study, 78% of IEPOX-SOA is accounted for the measured molecular tracers, making itmore »the highest level of molecular identification of an ambient SOA component to our knowledge. Enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O ( fC5H6O = C5H6O+/OA) across multiple field, chamber and source datasets. A background of ~ 1.7 ± 0.1‰ is observed in studies strongly influenced by urban, biomass-burning and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.8‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7‰). Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40‰) but varies substantially between locations, which is shown to reflect large variations in its detailed molecular composition. The low fC5H6O (< 3‰) observed in non IEPOX-derived isoprene-SOA indicates that this tracer ion is specifically enhanced from IEPOX-SOA, and is not a tracer for all SOA from isoprene. We introduce a graphical diagnostic to study the presence and aging of IEPOX-SOA as a "triangle plot" of fCO2 vs. fC5H6O. Finally, we develop a simplified method to estimate ambient IEPOX-SOA mass concentrations, which is shown to perform well compared to the full PMF method. The uncertainty of the tracer method is up to a factor of ~ 2 if the fC5H6O of the local IEPOX-SOA is not available. When only unit mass resolution data is available, as with the aerosol chemical speciation monitor (ACSM), all methods may perform less well because of increased interferences from other ions at m/z 82. This study clarifies the strengths and limitations of the different AMS methods for detection of IEPOX-SOA and will enable improved characterization of this OA component.« less

  16. Simulation of background from low-level tritium and radon emanation in the KATRIN spectrometers

    SciTech Connect (OSTI)

    Leiber, B. [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany)] [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Collaboration: KATRIN Collaboration

    2013-08-08

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a large-scale experiment for the model independent determination of the mass of electron anti-neutrinos with a sensitivity of 200 meV/c{sup 2}. It investigates the kinematics of electrons from tritium beta decay close to the endpoint of the energy spectrum at 18.6 keV. To achieve a good signal to background ratio at the endpoint, a low background rate below 10{sup ?2} counts per second is required. The KATRIN setup thus consists of a high luminosity windowless gaseous tritium source (WGTS), a magnetic electron transport system with differential and cryogenic pumping for tritium retention, and electro-static retarding spectrometers (pre-spectrometer and main spectrometer) for energy analysis, followed by a segmented detector system for counting transmitted beta-electrons. A major source of background comes from magnetically trapped electrons in the main spectrometer (vacuum vessel: 1240 m{sup 3}, 10{sup ?11} mbar) produced by nuclear decays in the magnetic flux tube of the spectrometer. Major contributions are expected from short-lived radon isotopes and tritium. Primary electrons, originating from these decays, can be trapped for hours, until having lost almost all their energy through inelastic scattering on residual gas particles. Depending on the initial energy of the primary electron, up to hundreds of low energetic secondary electrons can be produced. Leaving the spectrometer, these electrons will contribute to the background rate. This contribution describes results from simulations for the various background sources. Decays of {sup 219}Rn, emanating from the main vacuum pump, and tritium from the WGTS that reaches the spectrometers are expected to account for most of the background. As a result of the radon alpha decay, electrons are emitted through various processes, such as shake-off, internal conversion and the Auger deexcitations. The corresponding simulations were done using the KASSIOPEIA framework, which has been developed for the KATRIN experiment for low-energy electron tracking, field calculation and detector simulation. The results of the simulations have been used to optimize the design parameters of the vacuum system with regard to radon emanation and tritium pumping, in order to reach the stringent requirements of the neutrino mass measurement.

  17. Determination of parts-per-billion concentrations of dioxane in water and soil by purge and trap gas chromatography/mass spectrometry or charcoal tube enrichment gas chromatography

    SciTech Connect (OSTI)

    Epstein, P.S.; Mauer, T.; Wagner, M.; Chase, S.; Giles, B.

    1987-08-01

    Two methods for the determination of 1,4-dioxane in water have been studied. The first method is a heated purge and trap gas chromatography/mass spectrometry system following salting out with sodium sulfate. The second method is an adsorption on coconut-shell charcoal and solvent desorption with carbon disulfide/methanol followed by analysis of the desorbate by gas chromatography with flame ionization detection. The first method is also successful for the determination of 1,4-dioxane in solids and sediments. The second method is shown to be successful for 2-butanone, 4-methyl-2-pentanone, and butoxyethanol in water. The two methods are compared by analyzing 15 samples by both methods and achieving similar results.

  18. Gated charged-particle trap

    DOE Patents [OSTI]

    Benner, W. Henry (Danville, CA)

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  19. ORGANIC MASS SPECTROMETRY,VOL. 23,54-56 (1988) Thermochemical vs. Kinetic Control of Reactions in an Ion Trap Mass

    E-Print Network [OSTI]

    Wysocki, Vicki H.

    1988-01-01

    ORGANIC MASS SPECTROMETRY,VOL. 23,54-56 (1988) OMS Letter Dear Sir Thermochemical vs. Kinetic energies. 519 REACTlON COORDINATE Figure 1. Enthalpies associated with deamination and dehydratt o n

  20. Electron capture from H-2 to highly charged Th and Xe ions trapped at center-of-mass energies near 6 eV 

    E-Print Network [OSTI]

    Weinberg, G.; Beck, B. R.; Steiger, J.; Church, David A.; McDonald, J.; Schneider, D.

    1998-01-01

    Ions with charge states as high as 80+, produced in the Lawrence Livermore National Laboratory electron beam ion trap were extracted and transferred to a Penning ion trap (RETRAP). RETRAP was operated at cryogenic temperature in the field of a...

  1. Microfabricated cylindrical ion trap

    DOE Patents [OSTI]

    Blain, Matthew G.

    2005-03-22

    A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.

  2. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  3. Rapid and sensitive gas chromatography ion-trap mass spectrometry method for the determination of tobacco specific N-nitrosamines in secondhand smoke

    SciTech Connect (OSTI)

    SLEIMAN, Mohamad; MADDALENA, Randy L.; GUNDEL, Lara A.; DESTAILLATS, Hugo

    2009-07-01

    Tobacco-specific nitrosamines (TSNAs) are some of the most potent carcinogens in tobacco and cigarette smoke. Accurate quantification of these chemicals is needed to help assess public health risks. We developed and validated a specific and sensitive method to measure four TSNAs in both the gas- and particle-phase of secondhand smoke (SHS) using gas chromatography and ion-trap tandem mass spectrometry,. A smoking machine in an 18-m3 room-sized chamber generated relevant concentrations of SHS that were actively sampled on Teflon coated fiber glass (TCFG) filters, and passively sampled on cellulose substrates. A simple solid-liquid extraction protocol using methanol as solvent was successfully applied to both filters with high recoveries ranging from 85 to 115percent. Tandem MS parameters were optimized to obtain the best sensitivity in terms of signal to-noise ratio (S/N) for the target compounds. For each TSNA, the major fragmentation pathways as well as ion structures were elucidated and compared with previously published data. The method showed excellent performances with a linear dynamic range between 2 and 1000 ng mL-1, low detection limits (S/N> 3) of 30-300 pg.ml-1 and precision with experimental errors below 10percent for all compounds. Moreover, no interfering peaks were observed indicating a high selectivity of MS/MS without the need for a sample clean up step. The sampling and analysis method provides a sensitive and accurate tool to detect and quantify traces of TSNA in SHS polluted indoor environments.

  4. Advanced quadrupole ion trap instrumentation for low level vehicle emissions measurements. CRADA final report for number ORNL93-0238

    SciTech Connect (OSTI)

    McLuckey, S.A.; Buchanan, M.V.; Asano, K.G.; Hart, K.J.; Goeringer, D.E.; Dearth, M.A.

    1997-09-01

    Quadrupole ion trap mass spectrometry has been evaluated for its potential use in vehicle emissions measurements in vehicle test facilities as an analyzer for the top 15 compounds contributing to smog generation. A variety of ionization methods were explored including ion trap in situ chemical ionization, atmospheric sampling glow discharge ionization, and nitric oxide chemical ionization in a glow discharge ionization source coupled with anion trap mass spectrometer. Emphasis was placed on the determination of hydrocarbons and oxygenated hydrocarbons at parts per million to parts per billion levels. Ion trap in situ water chemical ionization and atmospheric sampling glow discharge ionization were both shown to be amenable to the analysis of arenes, alcohols, aldehydes and, to some degree, alkenes. Atmospheric sampling glow discharge also generated molecular ions of methyl-t-butyl ether (MTBE). Neither of these ionization methods, however, were found to generate diagnostic ions for the alkanes. Nitric oxide chemical ionization, on the other hand, was found to yield diagnostic ions for alkanes, alkenes, arenes, alcohols, aldehydes, and MTBE. The ability to measure a variety of hydrocarbons present at roughly 15 parts per billion at measurement rates of 3 Hz was demonstrated. These results have demonstrated that the ion trap has an excellent combination of sensitivity, specificity, speed, and flexibility with respect to the technical requirements of the top 15 analyzer.

  5. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect (OSTI)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  6. The Results of Tests of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2009-10-19

    The Muon Ionization Cooling Experiment (MICE) spectrometer solenoid magnets will be the first magnets to be installed within the MICE cooling channel. The spectrometer magnets are the largest magnets in both mass and surface area within the MICE ooling channel. Like all of the other magnets in MICE, the spectrometer solenoids are kept cold using 1.5 W (at 4.2 K) pulse tube coolers. The MICE spectrometer solenoid is quite possibly the largest magnet that has been cooled using small coolers. Two pectrometer magnets have been built and tested. This report discusses the results of current and cooler tests of both magnets.

  7. Evidence for a breakdown of the Isobaric Multiplet Mass Equation: A study of the A=35, T=3/2 isospin quartet

    E-Print Network [OSTI]

    C. Yazidjian; G. Audi; D. Beck; K. Blaum; S. George; C. Guenaut; F. Herfurth; A. Herlert; A. Kellerbauer; H. -J. Kluge; D. Lunney; L. Schweikhard

    2007-07-21

    Mass measurements on radionuclides along the potassium isotope chain have been performed with the ISOLTRAP Penning trap mass spectrometer. For 35K T1/2=178ms) to 46K (T1/2=105s) relative mass uncertainties of 2x10-8 and better have been achieved. The accurate mass determination of 35K (dm=0.54keV) has been exploited to test the Isobaric Multiplet Mass Equation (IMME) for the A=35, T=3/2 isospinquartet. The experimental results indicate a deviation from the generally adopted quadratic form.

  8. Interaction of trapped ions with trapped atoms

    E-Print Network [OSTI]

    Grier, Andrew T. (Andrew Todd)

    2011-01-01

    In this thesis, I present results from two Paul-trap based ion traps carried out in the Vuleti? laboratory: the Atom-Ion trap for collision studies between cold atoms and cold ions, and the Cavity-Array trap for studying ...

  9. Atomic mass measurements of short-lived nuclides around the doubly-magic 208Pb

    E-Print Network [OSTI]

    C. Weber; G. Audi; D. Beck; K. Blaum; G. Bollen; F. Herfurth; A. Kellerbauer; H. -J. Kluge; D. Lunney; S. Schwarz

    2008-01-14

    Accurate atomic mass measurements of neutron-deficient and neutron-rich nuclides around the doubly-magic 208Pb and of neutron-rich cesium isotopes were performed with the Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN. The masses of 145,147Cs, 181,183Tl, 186Tlm, 187Tl, 196Tlm, 205Tl, 197Pbm, 208Pb, 190 to 197Bi, 209,215,216Bi, 203,205,229Fr, and 214,229,230Ra were determined. The obtained relative mass uncertainty in the range of $2 \\cdot 10^{-7}$ to $2 \\cdot 10^{-8}$ is not only required for safe identification of isomeric states but also allows mapping the detailed structure of the mass surface. A mass adjustment procedure was carried out and the results included into the Atomic Mass Evaluation. The resulting separation energies are discussed and the mass spectrometric and laser spectroscopic data are examined for possible correlations.

  10. LUNAR MASS SPECTROMETER RELIABILITY LOGIC DIAGRAM

    E-Print Network [OSTI]

    Rathbun, Julie A.

    point (A) to (F). The block diagram also defines the reliability functions for the purpose of FMEA 1

  11. Steam Trap Application 

    E-Print Network [OSTI]

    Murphy, J. J.

    1982-01-01

    The effective application of steam traps encompasses three primary areas which are the selection and sizing, the installation, and the monitoring of the steam trapping system. Proper application of steam traps will improve production rates, product...

  12. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, S.H.

    1988-03-10

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

  13. Resonant ultrasound spectrometer

    DOE Patents [OSTI]

    Migliori, Albert (Santa Fe, NM); Visscher, William M. (Los Alamos, NM); Fisk, Zachary (Santa Fe, NM)

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  14. Fast-ion-beam photoelectron spectrometer K. A. Hanold, C. R. Sherwood, M. C. Garner, and R. E. Continetti

    E-Print Network [OSTI]

    Continetti, Robert E.

    Fast-ion-beam photoelectron spectrometer K. A. Hanold, C. R. Sherwood, M. C. Garner, and R. E) A high-collection-efficiency fast-ion-beam photoelectron spectrometer is described. In a straight time of the photoelectron laboratory energy to center-of-mass energy. The fast-ion-beam photoelectron spectrometer is used

  15. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-12-26

    A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.

  16. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

    1989-01-01

    A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

  17. Microfabricated Ion Traps

    E-Print Network [OSTI]

    Marcus D. Hughes; Bjoern Lekitsch; Jiddu A. Broersma; Winfried K. Hensinger

    2011-06-28

    Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions within ion traps, which becomes an important factor in the miniaturization of ion traps.

  18. Inertial measurement with trapped particles: A microdynamical system

    SciTech Connect (OSTI)

    Post, E. Rehmi; Popescu, George A.; Gershenfeld, Neil [Center for Bits and Atoms, Massachusetts Institute of Technology, 20 Ames Street, Cambridge, Massachusetts 02139 (United States)

    2010-04-05

    We describe an inertial measurement device based on an electrodynamically trapped proof mass. Mechanical constraints are replaced by guiding fields, permitting the trap stiffness to be tuned dynamically. Optical readout of the proof mass motion provides a measurement of acceleration and rotation, resulting in an integrated six degree of freedom inertial measurement device. We demonstrate such a device - constructed without microfabrication - with sensitivity comparable to that of commercial microelectromechanical systems technology and show how trapping parameters may be adjusted to increase dynamic range.

  19. Design Criteria Document Hybrid Spectrometer

    E-Print Network [OSTI]

    Johnson, Peter D.

    Design Criteria Document for the Hybrid Spectrometer (HYSPEC) SNS SING14B-00-DC0001-R00 Date: 15 contract DE-AC05-00OR22725 #12;DESIGN CRITERIA DOCUMENT FOR THE HYBRID SPECTROMETER (HYSPEC) August 2005 or reflect those of the United States government or any agency thereof. #12;SING14B-00-DC0001-R00 DESIGN

  20. Design Criteria Document Hybrid Spectrometer

    E-Print Network [OSTI]

    Johnson, Peter D.

    Design Criteria Document for the Hybrid Spectrometer (HYSPEC) SNS SING14B-00-DC0001-R01 Date: 1 contract DE-AC05-00OR22725 #12;DESIGN CRITERIA DOCUMENT FOR THE HYBRID SPECTROMETER (HYSPEC) Mark Hagen or reflect those of the United States government or any agency thereof. #12;SING14B-00-DC0001-R01 DESIGN

  1. Lessons Learned for the MICE Coupling Solenoid from the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Green, Michael A.; Wang, Li; Pan, Heng; Wu, Hong; Guo, Xinglong; Li, S. Y.; Zheng, S. X.; Virostek, Steve P.; DeMello, Allen J.; Li, Derun; Trillaud, Frederick; Zisman, Michael S.

    2010-05-30

    Tests of the spectrometer solenoids have taught us some important lessons. The spectrometer magnet lessons learned fall into two broad categories that involve the two stages of the coolers that are used to cool the magnets. On the first spectrometer magnet, the problems were centered on the connection of the cooler 2nd-stage to the magnet cold mass. On the first test of the second spectrometer magnet, the problems were centered on the cooler 1st-stage temperature and its effect on the operation of the HTS leads. The second time the second spectrometer magnet was tested; the cooling to the cold mass was still not adequate. The cryogenic designs of the MICE and MuCOOL coupling magnets are quite different, but the lessons learned from the tests of the spectrometer magnets have affected the design of the coupling magnets.

  2. The isobaric multiplet mass equation for A?71 revisited

    SciTech Connect (OSTI)

    Lam, Yi Hua; Blank, Bertram; Smirnova, Nadezda A.; Bueb, Jean Bernard; Antony, Maria Susai

    2013-11-15

    Accurate mass determination of short-lived nuclides by Penning-trap spectrometers and progress in the spectroscopy of proton-rich nuclei have triggered renewed interest in the isobaric multiplet mass equation (IMME). The energy levels of the members of T=1/2,1,3/2, and 2 multiplets and the coefficients of the IMME are tabulated for A?71. The new compilation is based on the most recent mass evaluation (AME2011) and it includes the experimental results on energies of the states evaluated up to end of 2011. Taking into account the error bars, a significant deviation from the quadratic form of the IMME for the A=9,35 quartets and the A=32 quintet is observed.

  3. Mass measurements near the Z = N line with JYFLTRAP

    SciTech Connect (OSTI)

    Kankainen, Anu; Collaboration: JYFLTRAP Collaboration

    2011-11-30

    Masses of nuclides involved in astrophysical rp and {nu}p processes have to be known precisely in order to model these processes reliably. Mass excesses for 90 ground state and 8 isomeric states of neutron-deficient nuclides have been determined with a precision of better than 10 keV with the JYFLTRAP double Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line facility in Jyvaeskylae. Highlights of the measurements related to nuclear astrophysics are given. Some of the measured isomers, such as {sup 53}Co{sup m}, {sup 90}Tc{sup m}, and {sup 95}Pd{sup m}, and implications for the excitation energy of the 21{sup +} isomer in {sup 94}Ag are briefly discussed.

  4. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Wang, Shannon Xuanyue

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single [superscript 88]Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the ...

  5. Photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1989-08-08

    A method and apparatus are described for extracting for quantitative analysis ions of selected atomic components of a sample. A lens system is configured to provide a slowly diminishing field region for a volume containing the selected atomic components, enabling accurate energy analysis of ions generated in the slowly diminishing field region. The lens system also enables focusing on a sample of a charged particle beam, such as an ion beam, along a path length perpendicular to the sample and extraction of the charged particles along a path length also perpendicular to the sample. Improvement of signal to noise ratio is achieved by laser excitation of ions to selected auto-ionization states before carrying out quantitative analysis. Accurate energy analysis of energetic charged particles is assured by using a preselected resistive thick film configuration disposed on an insulator substrate for generating predetermined electric field boundary conditions to achieve for analysis the required electric field potential. The spectrometer also is applicable in the fields of SIMS, ISS and electron spectroscopy. 8 figs.

  6. Neutron range spectrometer

    DOE Patents [OSTI]

    Manglos, Stephen H. (East Syracuse, NY)

    1989-06-06

    A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

  7. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  8. Superconducting microfabricated ion traps

    E-Print Network [OSTI]

    Shannon X. Wang; Yufei Ge; Jaroslaw Labaziewicz; Eric Dauler; Karl Berggren; Isaac L. Chuang

    2010-12-14

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  9. Experimental demonstration of a surface-electrode multipole ion trap

    E-Print Network [OSTI]

    Maurice, Mark; Green, Dylan; Farr, Andrew; Burke, Timothy; Hilleke, Russell; Clark, Robert

    2015-01-01

    We report on the design and experimental characterization of a surface-electrode multipole ion trap. Individual microscopic sugar particles are confined in the trap. The trajectories of driven particle motion are compared with a theoretical model, both to verify qualitative predictions of the model, and to measure the charge-to-mass ratio of the confined particle. The generation of harmonics of the driving frequency is observed as a key signature of the nonlinear nature of the trap. We remark on possible applications of our traps, including to mass spectrometry.

  10. Microfabricated Ion Traps

    E-Print Network [OSTI]

    Hughes, Marcus D; Broersma, Jiddu A; Hensinger, Winfried K

    2011-01-01

    Ion traps offer the opportunity to study fundamental quantum systems with high level of accuracy highly decoupled from the environment. Individual atomic ions can be controlled and manipulated with electric fields, cooled to the ground state of motion with laser cooling and coherently manipulated using optical and microwave radiation. Microfabricated ion traps hold the advantage of allowing for smaller trap dimensions and better scalability towards large ion trap arrays also making them a vital ingredient for next generation quantum technologies. Here we provide an introduction into the principles and operation of microfabricated ion traps. We show an overview of material and electrical considerations which are vital for the design of such trap structures. We provide guidance in how to choose the appropriate fabrication design, consider different methods for the fabrication of microfabricated ion traps and discuss previously realized structures. We also discuss the phenomenon of anomalous heating of ions with...

  11. Dynamic multiplexed analysis method using ion mobility spectrometer

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA

    2010-05-18

    A method for multiplexed analysis using ion mobility spectrometer in which the effectiveness and efficiency of the multiplexed method is optimized by automatically adjusting rates of passage of analyte materials through an IMS drift tube during operation of the system. This automatic adjustment is performed by the IMS instrument itself after determining the appropriate levels of adjustment according to the method of the present invention. In one example, the adjustment of the rates of passage for these materials is determined by quantifying the total number of analyte molecules delivered to the ion trap in a preselected period of time, comparing this number to the charge capacity of the ion trap, selecting a gate opening sequence; and implementing the selected gate opening sequence to obtain a preselected rate of analytes within said IMS drift tube.

  12. Mass of astrophysically relevant $^{31}$Cl and the breakdown of the isobaric multiplet mass equation

    E-Print Network [OSTI]

    Kankainen, A; Eronen, T; Hakala, J; Jokinen, A; Koponen, J; Moore, I D; Nesterenko, D; Reinikainen, J; Rinta-Antila, S; Voss, A; Äystö, J

    2015-01-01

    The mass of $^{31}$Cl has been measured with the JYFLTRAP double Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, -7034.7(34) keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the T=3/2 quartet at A=31 fails ($\\chi^2_n$=11.6) and a non-zero cubic term, d=-3.49(44) keV, is obtained when the new mass value is adopted. $^{31}$Cl has been found to be less proton-bound with a proton separation energy of $S_p$=265(4) keV. Energies for the excited states in $^{31}$Cl and the photodisintegration rate on $^{31}$Cl have been determined with significantly improved precision using the new $S_p$ value. The improved photodisintegration rate helps to constrain astrophysical conditions where $^{30}$S can act as a waiting point in the rapid proton capture process in type I x-ray bursts.

  13. Mass of astrophysically relevant $^{31}$Cl and the breakdown of the isobaric multiplet mass equation

    E-Print Network [OSTI]

    A. Kankainen; L. Canete; T. Eronen; J. Hakala; A. Jokinen; J. Koponen; I. D. Moore; D. Nesterenko; J. Reinikainen; S. Rinta-Antila; A. Voss; J. Äystö

    2015-11-25

    The mass of $^{31}$Cl has been measured with the JYFLTRAP double Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, -7034.7(34) keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the T=3/2 quartet at A=31 fails ($\\chi^2_n$=11.6) and a non-zero cubic term, d=-3.49(44) keV, is obtained when the new mass value is adopted. $^{31}$Cl has been found to be less proton-bound with a proton separation energy of $S_p$=265(4) keV. Energies for the excited states in $^{31}$Cl and the photodisintegration rate on $^{31}$Cl have been determined with significantly improved precision using the new $S_p$ value. The improved photodisintegration rate helps to constrain astrophysical conditions where $^{30}$S can act as a waiting point in the rapid proton capture process in type I x-ray bursts.

  14. Steam Trap Management 

    E-Print Network [OSTI]

    Murphy, J. J.; Hirtner, H. H.

    1985-01-01

    A medium-sized plant of a high technology company is reaping the benefits of a Pro-active Steam Trap Program provided by Yarway's TECH/SERV Division. Initial work began March '84 and the most recent steam trap feasibility study conducted in March...

  15. Surface trap for ytterbium ions

    E-Print Network [OSTI]

    Campbell, Jonathan A. (Jonathan Alan)

    2006-01-01

    We conducted an experiment to load a shallow planar ion trap from a cold atom source of Ytterbium using photoionization. The surface trap consisted of a three-rod radio frequency Paul trap fabricated using standard printed ...

  16. MEMS-based Speckle Spectrometer

    E-Print Network [OSTI]

    A. I. Sheinis; L. Nigra; M. Q. Kuhlen

    2006-06-07

    We describe a new concept for a MEMS-based active spatial filter for astronomical spectroscopy. The goal of this device is to allow the use of a diffraction-limited spectrometer on a seeing limited observation at improved throughput over a comparable seeing-limited spectrometer, thus reducing the size and cost of the spectrometer by a factor proportional to r0/D (For the case of a 10 meter telescope this size reduction will be approximately a factor of 25 to 50). We use a fiber-based integral field unit (IFU) that incorporates an active MEMS mirror array to feed an astronomical spectrograph. A fast camera is used in parallel to sense speckle images at a spatial resolution of lambda/D and at a temporal frequency greater than that of atmospheric fluctuations. The MEMS mirror-array is used as an active shutter to feed speckle images above a preset intensity threshold to the spectrometer, thereby increasing the signal-to-noise ratio (SNR) of the spectrogram. Preliminary calculations suggests an SNR improvement of a factor of about 1.4. Computer simulations have shown an SNR improvement of 1.1, but have not yet fully explored the parameter space.

  17. MICE Spectrometer Magnet System Progress

    SciTech Connect (OSTI)

    Green, Michael A.; Virostek, Steve P.

    2007-08-27

    The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

  18. Dynamical Localization in the Paul Trap

    E-Print Network [OSTI]

    M. El Ghafar; P. Torma; V. Savichev; E. Mayr; A. Zeiler; W. P. Schleich

    1996-12-18

    We show that quantum localization occurs in the center-of-mass motion of an ion stored in a Paul trap and interacting with a standing laser field. The present experimental state of the art makes the observation of this phenomenon feasible.

  19. Dynamical Localization in the Paul Trap

    E-Print Network [OSTI]

    Ghafar, M E; Savichev, V; Mayr, E; Zeiler, A; Schleich, W P

    1997-01-01

    We show that quantum localization occurs in the center-of-mass motion of an ion stored in a Paul trap and interacting with a standing laser field. The present experimental state of the art makes the observation of this phenomenon feasible.

  20. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    SciTech Connect (OSTI)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  1. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Electron Trapping by Molecular Vibration Print Wednesday, 27 April 2005 00:00 In photoelectron spectroscopy experiments performed at the...

  2. Mass Measurements of Very Neutron-Deficient Mo and Tc Isotopes and Their Impact on rp Process Nucleosynthesis

    SciTech Connect (OSTI)

    Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ackermann, D.; Block, M.; Eliseev, S.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Kluge, H.-J.; Audi, G.; Blaum, K.; Ketter, J.; Fleckenstein, T.; Ketelaer, J.; Marx, G.; Schweikhard, L.; Mazzocco, M.; Novikov, Yu. N.; Vorobjev, G.

    2011-03-25

    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides {sup 85}Mo and {sup 87}Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low {alpha} separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

  3. Mass measurements of very neutron-deficient Mo and Tc isotopes and their impact on rp process nucleosynthesis

    E-Print Network [OSTI]

    E. Haettner; D. Ackermann; G. Audi; K. Blaum; M. Block; S. Eliseev; T. Fleckenstein; F. Herfurth; F. P. Heßberger; S. Hofmann; J. Ketelaer; J. Ketter; H. -J. Kluge; G. Marx; M. Mazzocco; Yu. N. Novikov; W. R. Plaß; S. Rahaman; T. Rauscher; D. Rodríguez; H. Schatz; C. Scheidenberger; L. Schweikhard; B. Sun; P. G. Thirolf; G. Vorobjev; M. Wang; C. Weber

    2011-03-28

    The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85-Mo and 87-Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical X-ray bursts. Surprisingly low alpha-separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

  4. HP Steam Trap Monitoring 

    E-Print Network [OSTI]

    Pascone, S.

    2011-01-01

    stream_source_info ESL-IC-11-10-61.pdf.txt stream_content_type text/plain stream_size 2024 Content-Encoding ISO-8859-1 stream_name ESL-IC-11-10-61.pdf.txt Content-Type text/plain; charset=ISO-8859-1 STEAM MONITORING HP... Steam Trap Monitoring HP Steam Trap Monitoring ? 12-18 months payback! ? 3-5% permanent reduction in consumption ? LEED Pt.? Innovation in Operations EB O&M ? Saved clients over $1,000,000 Annual consumption Steam Trap Monitoring ? Real...

  5. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect (OSTI)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  6. On-Chip Random Spectrometer

    E-Print Network [OSTI]

    Redding, Brandon; Sarma, Raktim

    2013-01-01

    Light scattering in disordered media has been studied extensively due to its prevalence in natural and artificial systems [1]. In the field of photonics most of the research has focused on understanding and mitigating the effects of scattering, which are often detrimental. For certain applications, however, intentionally introducing disorder can actually improve the device performance, e.g., in photovoltaics optical scattering improves the efficiency of light harvesting [2-5]. Here, we utilize multiple scattering in a random photonic structure to build a compact on-chip spectrometer. The probe signal diffuses through a scattering medium generating wavelength-dependent speckle patterns which can be used to recover the input spectrum after calibration. Multiple scattering increases the optical pathlength by folding the paths in a confined geometry, enhancing the spectral decorrelation of speckle patterns and thus increasing the spectral resolution. By designing and fabricating the spectrometer on a silicon wafe...

  7. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, M.J.

    1987-05-04

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (a hot finger) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellow in providing an indication of total energy (steam + condensate) of the system. Processing means coupled to and responsive to outputs from the hot and cold fingers subtracts the former from the latter to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning. 2 figs.

  8. REVIEW OF SCIENTIFIC INSTRUMENTS 82, 073301 (2011) Calibration of a Thomson parabola ion spectrometer and Fujifilm imaging

    E-Print Network [OSTI]

    2011-01-01

    spectrometer and Fujifilm imaging plate detectors for protons, deuterons, and alpha particles C. G. Freeman,1 G parabola ion spectrometer has been designed for use at the Multiterawatt (MTW) laser facility and magnetic fields to deflect particles of a given mass-to-charge ratio onto parabolic curves on the detector

  9. Ion funnel ion trap and process

    DOE Patents [OSTI]

    Belov, Mikhail E [Richland, WA; Ibrahim, Yehia M [Richland, WA; Clowers, Biran H [West Richland, WA; Prior, David C [Hermiston, OR; Smith, Richard D [Richland, WA

    2011-02-15

    An ion funnel trap is described that includes a inlet portion, a trapping portion, and a outlet portion that couples, in normal operation, with an ion funnel. The ion trap operates efficiently at a pressure of .about.1 Torr and provides for: 1) removal of low mass-to-charge (m/z) ion species, 2) ion accumulation efficiency of up to 80%, 3) charge capacity of .about.10,000,000 elementary charges, 4) ion ejection time of 40 to 200 .mu.s, and 5) optimized variable ion accumulation times. Ion accumulation with low concentration peptide mixtures has shown an increase in analyte signal-to-noise ratios (SNR) of a factor of 30, and a greater than 10-fold improvement in SNR for multiply charged analytes.

  10. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  11. Portable neutron spectrometer and dosimeter

    DOE Patents [OSTI]

    Waechter, David A. (Los Alamos, NM); Erkkila, Bruce H. (Los Alamos, NM); Vasilik, Dennis G. (Los Alamos, NM)

    1985-01-01

    The disclosure relates to a battery operated neutron spectrometer/dosimeter utilizing a microprocessor, a built-in tissue equivalent LET neutron detector, and a 128-channel pulse height analyzer with integral liquid crystal display. The apparatus calculates doses and dose rates from neutrons incident on the detector and displays a spectrum of rad or rem as a function of keV per micron of equivalent tissue and also calculates and displays accumulated dose in millirads and millirem as well as neutron dose rates in millirads per hour and millirem per hour.

  12. Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    E-Print Network [OSTI]

    D. Atanasov; P. Ascher; K. Blaum; R. B. Cakirli; T. E. Cocolios; S. George; F. Herfurth; D. Kisler; M. Kowalska; S. Kreim; Yu. A. Litvinov; D. Lunney; V. Manea; D. Neidherr; M. Rosenbusch; L. Schweikhard; A. Welker; F. Wienholtz; R. N. Wolf; K. Zuber

    2015-12-17

    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N = 82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A = 128 - 132 region and a reduction of the uncertainties from the precision mass input data.

  13. Compact reflective imaging spectrometer utilizing immersed gratings

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA)

    2006-05-09

    A compact imaging spectrometer comprising an entrance slit for directing light, a first mirror that receives said light and reflects said light, an immersive diffraction grating that diffracts said light, a second mirror that focuses said light, and a detector array that receives said focused light. The compact imaging spectrometer can be utilized for remote sensing imaging spectrometers where size and weight are of primary importance.

  14. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, S.E.; Alexander, M.L.; Follansbee, J.C.

    1997-12-02

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode is disclosed. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity. 4 figs.

  15. Asymmetric ion trap

    DOE Patents [OSTI]

    Barlow, Stephan E. (Richland, WA); Alexander, Michael L. (Richland, WA); Follansbee, James C. (Pasco, WA)

    1997-01-01

    An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.

  16. Evaluating Steam Trap Performance 

    E-Print Network [OSTI]

    Fuller, N. Y.

    1986-01-01

    stream_source_info ESL-IE-86-06-126.pdf.txt stream_content_type text/plain stream_size 11555 Content-Encoding ISO-8859-1 stream_name ESL-IE-86-06-126.pdf.txt Content-Type text/plain; charset=ISO-8859-1 EVALUATING STEAM... TRAP PERFORMANCE Noel Y Fuller, P.E. Holston Defense Corporation Kingsport, Tennessee ABSTRACT Laboratory tests were conducted on several types of steam traps at Holston Defense Corporation in Kingsport, Tennessee. Data from these tests...

  17. MEMS-based arrays of micro ion traps for quantum simulation scaling.

    SciTech Connect (OSTI)

    Berkeland, Dana J. (Los Alamos National Laboratory); Blain, Matthew Glenn; Jokiel, Bernhard, Jr.

    2006-11-01

    In this late-start Tier I Seniors Council sponsored LDRD, we have designed, simulated, microfabricated, packaged, and tested ion traps to extend the current quantum simulation capabilities of macro-ion traps to tens of ions in one and two dimensions in monolithically microfabricated micrometer-scaled MEMS-based ion traps. Such traps are being microfabricated and packaged at Sandia's MESA facility in a unique tungsten MEMS process that has already made arrays of millions of micron-sized cylindrical ion traps for mass spectroscopy applications. We define and discuss the motivation for quantum simulation using the trapping of ions, show the results of efforts in designing, simulating, and microfabricating W based MEMS ion traps at Sandia's MESA facility, and describe is some detail our development of a custom based ion trap chip packaging technology that enables the implementation of these devices in quantum physics experiments.

  18. The Design and Construction of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Wang, Bert; Wahrer, Bob; Taylor, Clyde; Xu, L.; Chen, J. Y.; Wang, M.; Juang, Tiki; Zisman, Michael S.; Virostek, Steve P.; Green, Michael A.

    2008-08-02

    The purpose of the MICE spectrometer solenoid is to provide a uniform field for a scintillating fiber tracker. The uniform field is produced by a long center coil and two short end coils. Together, they produce 4T field with a uniformity of better than 1% over a detector region of 1000 mm long and 300 mm in diameter. Throughout most of the detector region, the field uniformity is better than 0.3%. In addition to the uniform field coils, we have two match coils. These two coils can be independently adjusted to match uniform field region to the focusing coil field. The coil package length is 2544 mm. We present the spectrometer solenoid cold mass design, the powering and quench protection circuits, and the cryogenic cooling system based on using three cryocoolers with re-condensers.

  19. WATER-TRAPPED WORLDS

    SciTech Connect (OSTI)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  20. Steam trap monitor

    DOE Patents [OSTI]

    Ryan, Michael J. (Plainfield, IL)

    1988-01-01

    A steam trap monitor positioned downstream of a steam trap in a closed steam system includes a first sensor (the combination of a hot finger and thermocouple well) for measuring the energy of condensate and a second sensor (a cold finger) for measuring the total energy of condensate and steam in the line. The hot finger includes one or more thermocouples for detecting condensate level and energy, while the cold finger contains a liquid with a lower boiling temperature than that of water. Vapor pressure from the liquid is used to do work such as displacing a piston or bellows in providing an indication of total energy (steam+condensate) of the system. Processing means coupled to and responsive to outputs from the thermocouple well hot and cold fingers subtracts the condensate energy as measured by the hot finger and thermocouple well from the total energy as measured by the cold finger to provide an indication of the presence of steam downstream from the trap indicating that the steam trap is malfunctioning.

  1. Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer

    E-Print Network [OSTI]

    Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and the Moderate Resolution Imaging Spectrometer (MODIS). Key goals were to assess the nature of these relationships as they varied between sensors

  2. Investigations into the impact of transported particles on air pollution and climate using aerosol time-of-flight mass spectrometry

    E-Print Network [OSTI]

    Ault, Andrew Phillip

    2010-01-01

    a portable ATOFMS, Analytical Chemistry, 69 (20), 4083-4091,Mass- Spectrometry, Analytical Chemistry, 66 (9), 1403-1407,Mass Spectrometer, Analytical Chemistry, 81 (5), 1792-1800,

  3. Birefringent Fourier-transform imaging spectrometer

    E-Print Network [OSTI]

    Harvey, Andy

    Birefringent Fourier-transform imaging spectrometer Andrew Robert Harvey and David William Fletcher.r.Harvey@hw.ac.uk http://www.ece.eps.hw.ac.uk/~arharvey Abstract: Fourier-transform imaging spectrometers offer important, for application in harsh environments, deployment of Fourier-transform instruments based on traditional moving

  4. Progress on the Design and Fabircation of the MICE SpectrometerSolenoids

    SciTech Connect (OSTI)

    Virostek, S.P.; Green, M.A.; Lia, D.; Sizman, M.S.

    2007-06-20

    The Muon Ionization Cooling Experiment (MICE) willdemonstrate ionization cooling in a short section of a realistic coolingchannel using a muon beam at Rutherford Appleton Laboratory (RAL) in theUK. A five-coil, superconducting spectrometer solenoid magnet at each endof the cooling channel will provide a 4 T uniform field region for thescintillating fiber tracker within the magnet bore tubes. The trackermodules are used to measure the muon beam emittance as it enters andexits the cooling channel. The cold mass for the 400 mm warm bore magnetconsists of two sections: a three-coil spectrometer magnet and a two-coilmatching section that matches the uniform field of the solenoid into theMICE cooling channel. The spectrometer solenoid detailed designandanalysis has been completed, and the fabrication of the magnets is wellunder way. The primary features of the spectrometer solenoid magnet andmechanical designs are presented along with a summary of key fabricationissues and photos of the construction.

  5. 1 Making the Case for a Miniature Mass Spectrometer

    E-Print Network [OSTI]

    Christian, Eric

    -assembled, electrostatic-lens elements. The goal is to develop miniaturized vacuum components, such as low-leakage micro-valves

  6. THE CASSINI ION AND NEUTRAL MASS SPECTROMETER (INMS) INVESTIGATION

    E-Print Network [OSTI]

    Yelle, Roger V.

    to the creation of complex hydrocarbons and nitriles that may eventually precipitate onto the moon's surface to form hydrocarbon­nitrile lakes or oceans. The investigation is also focused on the neutral and plasma species in Saturn's inner magnetosphere. Measurement of material sputtered from the satellites

  7. Single-ultrafine-particle mass spectrometer development and application 

    E-Print Network [OSTI]

    Glagolenko, Stanislav Yurievich

    2004-11-15

    ., 1997], LAMPAS-2 [Trimborn et al., 2000] and SPLAT [Schneider et al., 2004] instruments use light scattering to detect particles, and the aerodynamic diameter is determined from the particle time of flight between two points. The main disadvantage... of the optical techniques is that particles too small to be detected by light scattering (roughly, smaller than 200 nm in diameter) cannot be analyzed. To overcome this limitation, an aerodynamic focusing mechanism was implemented in the RSMS-II instrument...

  8. An Engine Exhaust Particle SizerTM Spectrometer for Transient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle Measurements An Engine Exhaust Particle SizerTM Spectrometer for Transient Emission Particle...

  9. Making Mobile Measurement Using an EEPS Spectrometer | Department...

    Energy Savers [EERE]

    Using an EEPS Spectrometer Making Mobile Measurement Using an EEPS Spectrometer 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: TSI Incorporated...

  10. The Penning trap system used by the BASE experiment

    E-Print Network [OSTI]

    Marcastel, Fabienne

    2015-01-01

    A cut-away schematic of the Penning trap system used by BASE. The experiment receives antiprotons from CERN's AD; negative hydrogen ions are formed during injection into the apparatus. The set-up works with only a pair of particles at a time, while a cloud of a few hundred others are held in the reservoir trap, for future use. Here, an antiproton is in the measurement trap, while the negative hydyrogen ion is in held by the downstream park electrode. When the antiproton has been measured, it is moved to the upstream park electrode and the hydrogen ion is brought in to the measurement trap. This is repeated thousands of times, enabling a high-precision comparison of the charge-to-mass ratios of the two particles.

  11. A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER

    E-Print Network [OSTI]

    O'Donnell, Tom

    A SUPERCONDUCTING-SOLENOID ISOTOPE SPECTROMETER FOR PRODUCTION OF NEUTRON-RICH NUCLEI ( 136 Xe Superconducting Cyclotron Laboratory's weekly \\Green Sheet," 30 July 1999 #12; c Thomas W. O'Donnell 2000 All

  12. Optical Calibration For Jefferson Lab HKS Spectrometer

    E-Print Network [OSTI]

    L. Yuan; L. Tang

    2005-11-04

    In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

  13. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Trapping by Molecular Vibration Print In photoelectron spectroscopy experiments performed at the ALS, a group of researchers has found that electronic transitions normally...

  14. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadruple Mass Spectrometry

    SciTech Connect (OSTI)

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-07-21

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. The sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  15. Protection #2: Trap and Remove Sediment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions |(Conference)ProjectProposedAmerica'sTrap and Remove

  16. The LASS (Larger Aperture Superconducting Solenoid) spectrometer

    SciTech Connect (OSTI)

    Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

    1986-04-01

    LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

  17. Study Traps Avoid to Succeed

    E-Print Network [OSTI]

    Kunkle, Tom

    Study Traps Avoid to Succeed Study traps are all around you! If you have found yourself saying any. Interrupt study time with planned breaks. Begin studying early, but increase study time as exams approach. "I've got so much to study... and so little time." Preview and skim your reading! Read chapter

  18. Optimal traps in graphene

    E-Print Network [OSTI]

    C. A. Downing; A. R. Pearce; R. J. Churchill; M. E. Portnoi

    2015-03-27

    We transform the two-dimensional Dirac-Weyl equation, which governs the charge carriers in graphene, into a non-linear first-order differential equation for scattering phase shift, using the so-called variable phase method. This allows us to utilize the Levinson Theorem to find zero-energy bound states created electrostatically in realistic structures. These confined states are formed at critical potential strengths, which leads to us posit the use of `optimal traps' to combat the chiral tunneling found in graphene, which could be explored experimentally with an artificial network of point charges held above the graphene layer. We also discuss scattering on these states and find the zero angular momentum states create a dominant peak in scattering cross-section as energy tends towards the Dirac point energy, suggesting a dominant contribution to resistivity.

  19. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    Mehta, Karan Kartik

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process ...

  20. Performance Characteristics of a MEMS Quadrupole Mass Filter With Square Electrodes: Experimental and Simulated Results

    E-Print Network [OSTI]

    Hogan, Thomas J.

    Size reduction in quadrupole mass spectrometers (QMSs) is an ongoing requirement driven by the needs of space exploration, portable, and covert monitoring applications. Microelectromechanical systems (MEMS) technology ...

  1. Low energy x-ray spectrometer for an electron beam ion trap P. Beiersdotfer

    E-Print Network [OSTI]

    Wargelin, Bradford J.

    collection efficiencyover those of flat-crystal configurations, and uses a gas-filled proportional counter

  2. Protection #2: Trap and Remove Sediment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trap and Remove Sediment Protection 2: Trap and Remove Sediment The 3 Protections Defense in Depth August 1, 2013 Sediment behind LA Canyon weir is sampled and excavated...

  3. Fast Neutron Detection with a Segmented Spectrometer

    E-Print Network [OSTI]

    T. J. Langford; C. D. Bass; E. J. Beise; H. Breuer; D. K. Erwin; C. R. Heimbach; J. S. Nico

    2014-11-20

    A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulseshape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

  4. Wide size range fast integrated mobility spectrometer

    SciTech Connect (OSTI)

    Wang, Jian

    2013-10-29

    A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

  5. A study of the regeneration process in diesel particulate traps using a copper fuel additive

    SciTech Connect (OSTI)

    Tan, J.C.; Opris, C.N.; Baumgard, K.J.; Johnson, J.H. [Michigan Technological Univ., Houghton, MI (United States)

    1996-09-01

    The goals of this research are to understand the regeneration process in ceramic (Cordierite) monolith traps using a copper fuel additive and to investigate the various conditions that lead to trap regeneration failure. The copper additive lowers the trap regeneration temperature from approximately 500 C to 375 C and decreases the time necessary for regeneration. Because of these characteristics, it is important to understand the effect of the additive on regeneration when excessive particulate matter accumulation occurs in the trap. The effects of particulate mass loading on regeneration temperatures and regeneration time were studied for both the controlled (engine operated at full load rated speed) and uncontrolled conditions. The trap peak temperatures were higher for the uncontrolled than the controlled regeneration. The higher peak trap temperatures were predominantly controlled by the effect of the exhaust flow rates on the energy transfer processes. The total regeneration time was faster for the controlled regeneration compared to the uncontrolled regeneration. All traps passed the controlled regeneration tests having maximum temperatures less than 900 C. During the uncontrolled regeneration tests, trap failure occurred at 135 and 139 g particulate matter loadings. The maximum temperatures were in excess of 1,150 C. The pressure drop across the trap was modeled using the one dimensional Darcy`s law which accounted for the pressure drop due to the ceramic wall and the particulate layer. The experimental results for the substrate correlate well with the empirical substrate pressure drop models available in the literature. The models also enable an estimate to be made regarding trap mass loading. These data along with the laboratory data have indicated that mass loadings greater than 110 g followed by high temperature operation and subsequent engine idling can result in trap failures during regeneration.

  6. Fast transport of two ions in an anharmonic trap

    E-Print Network [OSTI]

    M. Palmero; E. Torrontegui; D. Guéry-Odelin; J. G. Muga

    2013-10-08

    We design fast trajectories of a trap to transport two ions using a shortcut-to-adiabaticity technique based on invariants. The effects of anharmonicity are analyzed first perturbatively, with an approximate, single relative-motion mode, description. Then we use classical calculations and full quantum calculations. This allows to identify discrete transport times that minimize excitation in the presence of anharmonicity. An even better strategy to suppress the effects of anharmonicity in a continuous range of transport times is to modify the trajectory using an effective trap frequency shifted with respect to the actual frequency by the coupling between relative and center of mass motions.

  7. Radon induced background processes in the KATRIN pre-spectrometer

    E-Print Network [OSTI]

    Fränkle, F M; Drexlin, G; Glück, F; Görhardt, S; Käfer, W; Mertens, S; Wandkowsky, N; Wolf, J

    2011-01-01

    The KArlsruhe TRItium Neutrino (KATRIN) experiment is a next generation, model independent, large scale tritium beta-decay experiment to determine the effective electron anti-neutrino mass by investigating the kinematics of tritium beta-decay with a sensitivity of 200 meV/c2 using the MAC-E filter technique. In order to reach this sensitivity, a low background level of 0.01 counts per second (cps) is required. This paper describes how the decay of radon in a MAC-E filter generates background events, based on measurements performed at the KATRIN pre-spectrometer test setup. Radon (Rn) atoms, which emanate from materials inside the vacuum region of the KATRIN spectrometers, are able to penetrate deep into the magnetic flux tube so that the alpha-decay of Rn contributes to the background. Of particular importance are electrons emitted in processes accompanying the Rn alpha-decay, such as shake-off, internal conversion of excited levels in the Rn daughter atoms and Auger electrons. While low-energy electrons (<...

  8. The response of a Bonner Sphere spectrometer to charged hadrons

    E-Print Network [OSTI]

    Agosteo, S; Fassò, A; Silari, M; 10.1093/rpd/nch187

    2004-01-01

    Bonner sphere spectrometers (BSSs) are employed in neutron spectrometry and dosimetry since many years. Recent developments have seen the addition to a conventional BSS of one or more detectors (moderator plus thermal neutron counter) specifically designed to improve the overall response of the spectrometer to neutrons above 10 MeV. These additional detectors employ a shell of material with a high mass number (such as lead) within the polyethylene moderator, in order to slow down high-energy neutrons via (n, xn) reactions. A BSS can be used to measure neutron spectra both outside accelerator shielding and from an unshielded target. Measurements were recently performed at CERN of the neutron yield and spectral fluence at various angles from unshielded, semithick copper, silver and lead targets, bombarded by a mixed proton/pion beam with 40 GeV per c momentum. These experiments have provided evidence that under certain circumstances, the use of lead-enriched moderators may present a problem: these detectors wer...

  9. Hydrodynamic enhanced dielectrophoretic particle trapping

    DOE Patents [OSTI]

    Miles, Robin R.

    2003-12-09

    Hydrodynamic enhanced dielectrophoretic particle trapping carried out by introducing a side stream into the main stream to squeeze the fluid containing particles close to the electrodes producing the dielelectrophoretic forces. The region of most effective or the strongest forces in the manipulating fields of the electrodes producing the dielectrophoretic forces is close to the electrodes, within 100 .mu.m from the electrodes. The particle trapping arrangement uses a series of electrodes with an AC field placed between pairs of electrodes, which causes trapping of particles along the edges of the electrodes. By forcing an incoming flow stream containing cells and DNA, for example, close to the electrodes using another flow stream improves the efficiency of the DNA trapping.

  10. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    M. Osipenko; M. Ripani; G. Ricco; B. Caiffi; F. Pompili; M. Pillon; M. Angelone; G. Verona-Rinati; R. Cardarelli; G. Mila; S. Argiro

    2015-05-25

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  11. Neutron spectrometer for fast nuclear reactors

    E-Print Network [OSTI]

    Osipenko, M; Ricco, G; Caiffi, B; Pompili, F; Pillon, M; Angelone, M; Verona-Rinati, G; Cardarelli, R; Mila, G; Argiro, S

    2015-01-01

    In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $\\alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$\\times 10^{-4}$ to 3.5$\\times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$\\alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.

  12. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, D.M.; Young, C.E.; Pellin, M.J.

    1990-11-27

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

  13. Lens system for a photo ion spectrometer

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Napersville, IL)

    1990-01-01

    A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

  14. Electronic Trap States in Methanofullerenes

    E-Print Network [OSTI]

    Julia Schafferhans; Carsten Deibel; Vladimir Dyakonov

    2011-07-18

    The trap states in three fullerene derivatives, namely PC61BM ([6,6]-phenyl C61 butyric acid methyl ester), bisPC61BM (bis[6,6]-phenyl C61 butyric acid methyl ester) and PC71BM ([6,6]-phenyl C71 butyric acid methyl ester), are investigated by thermally stimulated current measurements (TSC). Thereby, the lower limit of the trap densities for all studied methanofullerenes exhibits values in the order of 10^22 m^-3 with the highest trap density in bisPC61BM and the lowest in PC61BM. Fractional TSC measurements on PC61BM reveal a broad trap distribution instead of discrete trap levels with activation energies ranging from 15 meV to 270 meV and the maximum at about 75 meV. The activation energies of the most prominent traps in the other two fullerene derivatives are significantly higher, being at 96 meV and 223 meV for PC71BM and 184 meV for bisPC61BM, respectively. The influence of these findings on the performance of organic solar cells is discussed.

  15. Extending the frontiers of mass spectrometric instrumentation and methods

    SciTech Connect (OSTI)

    Schieffer, Gregg

    2010-12-15

    The focus of this dissertation is two-fold: developing novel analysis methods using mass spectrometry and the implementation and characterization of a novel ion mobility mass spectrometry instrumentation. The novel mass spectrometry combines ion trap for ion/ion reactions coupled to an ion mobility cell. The long term goal of this instrumentation is to use ion/ion reactions to probe the structure of gas phase biomolecule ions. The three ion source - ion trap - ion mobility - qTOF mass spectrometer (IT - IM - TOF MS) instrument is described. The analysis of the degradation products in coal (Chapter 2) and the imaging plant metabolites (Appendix III) fall under the methods development category. These projects use existing commercial instrumentation (JEOL AccuTOF MS and Thermo Finnigan LCQ IT, respectively) for the mass analysis of the degraded coal products and the plant metabolites, respectively. The coal degradation paper discusses the use of the DART ion source for fast and easy sample analysis. The sample preparation consisted of a simple 50 fold dilution of the soluble coal products in water and placing the liquid in front of the heated gas stream. This is the first time the DART ion source has been used for analysis of coal. Steven Raders under the guidance of John Verkade came up with the coal degradation projects. Raders performed the coal degradation reactions, worked up the products, and sent them to me. Gregg Schieffer developed the method and wrote the paper demonstrating the use of the DART ion source for the fast and easy sample analysis. The plant metabolite imaging project extends the use of colloidal graphite as a sample coating for atmospheric pressure LDI. DC Perdian and I closely worked together to make this project work. Perdian focused on building the LDI setup whereas Schieffer focused on the MSn analysis of the metabolites. Both Perdian and I took the data featured in the paper. Perdian was the primary writer of the paper and used it as a chapter in his dissertation. Perdian and Schieffer worked together to address the revisions and publish it in Rapid Communications in Mass Spectrometry Journal.

  16. Computer analysis of sodium cold trap design and performance. [LMFBR

    SciTech Connect (OSTI)

    McPheeters, C.C.; Raue, D.J.

    1983-11-01

    Normal steam-side corrosion of steam-generator tubes in Liquid Metal Fast Breeder Reactors (LMFBRs) results in liberation of hydrogen, and most of this hydrogen diffuses through the tubes into the heat-transfer sodium and must be removed by the purification system. Cold traps are normally used to purify sodium, and they operate by cooling the sodium to temperatures near the melting point, where soluble impurities including hydrogen and oxygen precipitate as NaH and Na/sub 2/O, respectively. A computer model was developed to simulate the processes that occur in sodium cold traps. The Model for Analyzing Sodium Cold Traps (MASCOT) simulates any desired configuration of mesh arrangements and dimensions and calculates pressure drops and flow distributions, temperature profiles, impurity concentration profiles, and impurity mass distributions.

  17. Study of elementary reactions with the HADES dielectron spectrometer

    E-Print Network [OSTI]

    B. Ramstein

    2009-12-14

    Results obtained with the HADES dielectron spectrometer at GSI are discussed, with emphasis on dilepton production in elementary reactions.

  18. Synergy of decay spectroscopy and mass spectrometry for the study of exotic nuclides

    E-Print Network [OSTI]

    Stanja, Juliane

    With only two ingredients, atomic nuclei exhibit a rich structure depending on the ordering of the different proton- and neutron-occupied states. This ordering can give rise to excited states with exceptionally long half-lives, also known as isomers, especially near shell closures. On-line mass spectrometry can often be compromised by the existence of such states that may even be produced in higher proportion than the ground state. This thesis presents the first results obtained from a nuclear spectroscopy setup coupled with the high-resolution Penning-trap mass spectrometer ISOLTRAP, at CERN’s radioactive ion beam facility ISOLDE. The isomerism in the neutron-deficient thallium isotopes was investigated. The data on $^{184,190,193?195}$Tl allow an improvement of existing mass values as well as a mass-spin- state assignment in $^{ 190,193,194}$Tl. Due to the presence of the ground and isomeric state for $^{ 194}$Tl the excitation energy of the latter was determined for the first time experimentally. Syste...

  19. Highly Charged Ions in Rare Earth Permanent Magnet Penning Traps

    E-Print Network [OSTI]

    Guise, Nicholas D; Tan, Joseph N

    2013-01-01

    A newly constructed apparatus at the National Institute of Standards and Technology (NIST) is designed for the isolation, manipulation, and study of highly charged ions. Highly charged ions are produced in the NIST electron-beam ion trap (EBIT), extracted through a beamline that selects a single mass/charge species, then captured in a compact Penning trap. The magnetic field of the trap is generated by cylindrical NdFeB permanent magnets integrated into its electrodes. In a room-temperature prototype trap with a single NdFeB magnet, species including Ne10+ and N7+ were confined with storage times of order 1 second, showing the potential of this setup for manipulation and spectroscopy of highly charged ions in a controlled environment. Ion capture has since been demonstrated with similar storage times in a more-elaborate Penning trap that integrates two coaxial NdFeB magnets for improved B-field homogeneity. Ongoing experiments utilize a second-generation apparatus that incorporates this two-magnet Penning tra...

  20. Associated Particle Tagging (APT) in Magnetic Spectrometers

    SciTech Connect (OSTI)

    Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

    2012-10-16

    Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the alpha-particle spectrometer concept, and outlines challenges involved in the magnetic field design. Tagged photon interrogation: • We investigated a method for discriminating fissile from benign cargo-material response to an energy-tagged photon beam. The method relies upon coincident detection of the tagged photon and a photoneutron or photofission neutron produced in the target material. The method exploits differences in the shape of the neutron production cross section as a function of incident photon energy in order to discriminate photofission yield from photoneutrons emitted by non-fissile materials. Computational tests of the interrogation method as applied to material composition assay of a simple, multi-layer target suggest that the tagged-photon information facilitates precise (order 1% thickness uncertainty) reconstruction of the constituent thicknesses of fissile (uranium) and high-Z (Pb) constituents of the test targets in a few minutes of photon-beam exposure. We assumed an 18-MeV endpoint tagged photon beam for these simulations. • The report addresses several candidate design and data analysis issues for beamline infrastructure required to produce a tagged photon beam in a notional AI-dedicated facility, including the accelerator and tagging spectrometer.

  1. Imaging spectrometer wide field catadioptric design

    DOE Patents [OSTI]

    Chrisp; Michael P. (Danville, CA)

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  2. Neutron spectrometer for improved SNM search.

    SciTech Connect (OSTI)

    Vance, Andrew L.; Aigeldinger, Georg

    2007-03-01

    With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

  3. Frequency-feedback cavity enhanced spectrometer

    DOE Patents [OSTI]

    Hovde, David Christian; Gomez, Anthony

    2015-08-18

    A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.

  4. Introduction to Subatomic-Particle Spectrometers

    E-Print Network [OSTI]

    Daniel M. Kaplan; Charles. E. Lane; Kenneth S. Nelson

    2015-07-17

    An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle interactions with matter are summarized, after which we review particle detectors. We conclude with three examples that illustrate the variety of subatomic-particle spectrometers and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely.

  5. Analysis of fission gas release kinetics by on-line mass spectrometry

    SciTech Connect (OSTI)

    Zerega, Y.; Reynard-Carette, C.; Parrat, D.; Carette, M.; Brkic, B.; Lyoussi, A.; Bignan, G.; Janulyte, A.; Andre, J.; Pontillon, Y.; Ducros, G.; Taylor, S.

    2011-07-01

    The release of fission gas (Xe and Kr) and helium out of nuclear fuel materials in normal operation of a nuclear power reactor can constitute a strong limitation of the fuel lifetime. Moreover, radioactive isotopes of Xe and Kr contribute significantly to the global radiological source term released in the primary coolant circuit in case of accidental situations accompanied by fuel rod loss of integrity. As a consequence, fission gas release investigation is of prime importance for the nuclear fuel cycle economy, and is the driven force of numerous R and D programs. In this domain, for solving current fuel behavior understanding issues, preparing the development of new fuels (e.g. for Gen IV power systems) and for improving the modeling prediction capability, there is a marked need for innovations in the instrumentation field, mainly for: . Quantification of very low fission gas concentrations, released from fuel sample and routed in sweeping lines. Monitoring of quick gas release variations by quantification of elementary release during a short period of time. Detection of a large range of atomic masses (e.g. H{sub 2}, HT, He, CO, CO{sub 2}, Ne, Ar, Kr, Xe), together with a performing separation of isotopes for Xe and Kr elements. Coupling measurement of stable and radioactive gas isotopes, by using in parallel mass spectrometry and gamma spectrometry techniques. To fulfill these challenging needs, a common strategy for analysis equipment implementation has been set up thanks to a recently launched collaboration between the CEA and the Univ. of Provence, with the technological support of the Liverpool Univ.. It aims at developing a chronological series of mass spectrometer devices based upon mass filter and 2D/3D ion traps with Fourier transform operating mode and having increasing levels of performances to match the previous challenges for out-of pile and in-pile experiments. The final objective is to install a high performance online mass spectrometer coupled to a gamma spectrometer in the fission product laboratory of the future Jules Horowitz Material Test Reactor. An intermediate step will consist of testing first equipment on an existing experimental facility in the LECA-STAR Hot Cell Laboratory of the CEA Cadarache. This paper presents the scientific and operational stakes linked to fission gas issues, resumes the current state of art for analyzing them in nuclear facilities, then presents the skills gathered through this collaboration to overcome technological bottlenecks. Finally it describes the implementation strategy in nuclear research facilities of the CEA Cadarache. (authors)

  6. Trapped-ion Lissajous trajectories

    E-Print Network [OSTI]

    R. F. Rossetti; G. D. de Moraes Neto; J. Carlos Egues; M. H. Y. Moussa

    2015-02-25

    Here we present a protocol for generating Lissajous curves with a trapped ion by engineering Rashba- and the Dresselhaus-type spin-orbit interactions in a Paul trap. The unique anisotropic Rashba $\\alpha_{x}$, $\\alpha_{y}$ and Dresselhaus $\\beta_{x}$, $\\beta_{y}$ couplings afforded by our setup also enables us to obtain an "unusual" Zitterbewegung, i.e., the semiconductor analog of the relativistic trembling motion of electrons, with cycloidal trajectories in the absence of magnetic fields. We have also introduced bounded SO interactions, confined to an upper-bound vibrational subspace of the Fock states, as an additional mechanism to manipulate the Lissajous motion of the trapped ion. Finally, we accounted for dissipative effects on the vibrational degrees of freedom of the ion and find that the Lissajous trajectories are still robust and well defined for realistic parameters.

  7. Structural determination of intact proteins using mass spectrometry

    DOE Patents [OSTI]

    Kruppa, Gary (San Francisco, CA); Schoeniger, Joseph S. (Oakland, CA); Young, Malin M. (Livermore, CA)

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  8. Surface-electrode point Paul trap

    SciTech Connect (OSTI)

    Kim, Tony Hyun; Herskind, Peter F.; Chuang, Isaac L. [Center for Ultracold Atoms, Department of Physics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Kim, Taehyun; Kim, Jungsang [Department of Electrical and Computer Engineering, Duke University Durham, North Carolina 27708 (United States)

    2010-10-15

    We present a model as well as experimental results for a surface electrode radiofrequency Paul trap that has a circular electrode geometry well suited for trapping single ions and two-dimensional planar ion crystals. The trap design is compatible with microfabrication and offers a simple method by which the height of the trapped ions above the surface may be changed in situ. We demonstrate trapping of single {sup 88}Sr{sup +} ions over an ion height range of 200-1000 {mu}m for several hours under Doppler laser cooling and use these to characterize the trap, finding good agreement with our model.

  9. Progress on the Fabrication and Testing of the MICE Spectrometer Solenoids

    SciTech Connect (OSTI)

    Virostek, Steve; Green, M.A.; Li, Derun; Zisman, Michael

    2009-05-19

    The Muon Ionization Cooling Experiment (MICE) is an international collaboration that will demonstrate ionization cooling in a section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. At each end of the cooling channel a spectrometer solenoid magnet consisting of five superconducting coils will provide a 4 tesla uniform field region. The scintillating fiber tracker within the magnet bore will measure the muon beam emittance as it enters and exits the cooling channel. The 400 mm diameter warm bore, 3 meter long magnets incorporate a cold mass consisting of two coil sections wound on a single aluminum mandrel: a three-coil spectrometer magnet and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The fabrication of the first of two spectrometer solenoids has been completed, and preliminary testing of the magnet is nearly complete. The key design features of the spectrometer solenoid magnets are presented along with a summary of the progress on the training and testing of the first magnet.

  10. Holographic microscopy of holographically trapped

    E-Print Network [OSTI]

    Weeks, Eric R.

    . Padgett, "Permanent 3D microstructures in a polymeric host created using holographic optical tweezers," J to organize microscopic materials into three-dimensional structures. In a complementary manner, holographicHolographic microscopy of holographically trapped three-dimensional structures Sang-Hyuk Lee

  11. LASER COOLING AND TRAPPING OF NEUTRAL ATOMS

    E-Print Network [OSTI]

    Orozco, Luis A.

    LASER COOLING AND TRAPPING OF NEUTRAL ATOMS Luis A. Orozco Department of Physics and Astronomy. Laser cooling and trapping is now an important tool for many spectroscopic studies. It enhances, 4]. In these notes I treat only very general aspects of laser cooling and trapping without

  12. Micro-optical-mechanical system photoacoustic spectrometer

    DOE Patents [OSTI]

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  13. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1985-07-29

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  14. Lead Slowing Down Spectrometer Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R. C.; Imel, G. R.; Kulisek, Jonathan A.; O'Donnell, J. M.; Weltz, Adam

    2012-06-07

    This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

  15. Compact proton spectrometers for measurements of shock

    SciTech Connect (OSTI)

    Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

    2012-05-02

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  16. Photoacoustic Soot Spectrometer (PASS) Instrument Handbook

    SciTech Connect (OSTI)

    Dubey, M; Springston, S; Koontz, A; Aiken, A

    2013-01-17

    The photoacoustic soot spectrometer (PASS) measures light absorption by aerosol particles. As the particles pass through a laser beam, the absorbed energy heats the particles and in turn the surrounding air, which sets off a pressure wave that can be detected by a microphone. The PASS instruments deployed by ARM can also simultaneously measure the scattered laser light at three wavelengths and therefore provide a direct measure of the single-scattering albedo. The Operator Manual for the PASS-3100 is included here with the permission of Droplet Measurement Technologies, the instrument’s manufacturer.

  17. Dual waveband compact catadioptric imaging spectrometer

    DOE Patents [OSTI]

    Chrisp, Michael P.

    2012-12-25

    A catadioptric dual waveband imaging spectrometer that covers the visible through short-wave infrared, and the midwave infrared spectral regions, dispersing the visible through shortwave infrared with a zinc selenide grating and midwave infrared with a sapphire prism. The grating and prism are at the cold stop position, enabling the pupil to be split between them. The spectra for both wavebands are focused onto the relevant sections of a single dual waveband detector. Spatial keystone distortion is controlled to less than one tenth of a pixel over the full wavelength range, facilitating the matching of the spectra in the midwave infrared with the shorter wavelength region.

  18. Tectonic and Aqueous Processes in the Formation of Mass-wasting Features on Mars and Earth

    E-Print Network [OSTI]

    Watkins, Jessica Andrea

    2015-01-01

    of the landslide mass by water, air cushion, or soft/weakporosity and fluid (water or air) content. These propertieslubrication by water, trapped air, ice, snow, evaporates,

  19. Wide swath imaging spectrometer utilizing a multi-modular design

    DOE Patents [OSTI]

    Chrisp, Michael P. (Danville, CA)

    2010-10-05

    A wide swath imaging spectrometer utilizing an array of individual spectrometer modules in the telescope focal plane to provide an extended field of view. The spectrometer modules with their individual detectors are arranged so that their slits overlap with motion on the scene providing contiguous spatial coverage. The number of modules can be varied to take full advantage of the field of view available from the telescope.

  20. Isoelectric Trapping and Mass Spectrometry: Tools for Proteomics 

    E-Print Network [OSTI]

    Cologna, Stephanie Marie

    2012-02-14

    Electrolyzer viii IPG Immobilized pH Gradient CID Collision Induced Dissociation ix TABLE OF CONTENTS Page ABSTRACT... ......................................................................................................................... 198 xi LIST OF FIGURES Page Figure 1. General schematic of a typical multicompartment electrolyzer...

  1. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    E-Print Network [OSTI]

    Virostek, S.P.

    2010-01-01

    IEEE Transactions on Applied Superconductivity 15, No. 2, p.IEEE Transactions on Applied Superconductivity 15, No. 2, p.AND MODELING OF THE MICE SUPERCONDUCTING SPECTROMETER

  2. MICROWAVE SPECTROMETER FOR THE DETECTION OF TRANSIENT GASEOUS SPECIES

    E-Print Network [OSTI]

    Kolbe, W.F.

    2011-01-01

    for Computer Control of Microwave Spectrometers, LBL-9276,and H. P. Broida, "Microwave Discharge Cavities Operating atJr. , and C. H. Townes, "Microwave Spectra of the Free

  3. The Results of Tests of the MICE Spectrometer Solenoids

    E-Print Network [OSTI]

    Green, Michael A.

    2010-01-01

    Rotary Valve 1st Stage Drop in Sleeve PS 300 A Fig.3 Quench protection circuit for the MICE spectrometer solenoids

  4. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    Mehta, K K; Bruzewicz, C D; Chuang, I L; Ram, R J; Sage, J M; Chiaverini, J

    2014-01-01

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  5. Ion traps fabricated in a CMOS foundry

    E-Print Network [OSTI]

    K. K. Mehta; A. M. Eltony; C. D. Bruzewicz; I. L. Chuang; R. J. Ram; J. M. Sage; J. Chiaverini

    2014-06-13

    We demonstrate trapping in a surface-electrode ion trap fabricated in a 90-nm CMOS (complementary metal-oxide-semiconductor) foundry process utilizing the top metal layer of the process for the trap electrodes. The process includes doped active regions and metal interconnect layers, allowing for co-fabrication of standard CMOS circuitry as well as devices for optical control and measurement. With one of the interconnect layers defining a ground plane between the trap electrode layer and the p-type doped silicon substrate, ion loading is robust and trapping is stable. We measure a motional heating rate comparable to those seen in surface-electrode traps of similar size. This is the first demonstration of scalable quantum computing hardware, in any modality, utilizing a commercial CMOS process, and it opens the door to integration and co-fabrication of electronics and photonics for large-scale quantum processing in trapped-ion arrays.

  6. The Elimination of Steam Traps 

    E-Print Network [OSTI]

    Dickman, F.

    1985-01-01

    compile published data by three leading steam trap facturers. ANNUAL COST OF STEAM LOSS FOR 100 PSIG STEAM AT $5/1000 LBS. TgpOrlflce l18nul8ctuNf M.,utectu,., DI.mNr A' 84 1/." . $ 3,150 $ 2,313 e to from nu ufKluNf co 3,1711 1/4" $12,eoo $ 9...

  7. Determination of the direct double- ? -decay Q value of Zr 96 and atomic masses of Zr 90 - 92 , 94 , 96 and Mo 92 , 94 - 98 , 100

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gulyuz, K.; Ariche, J.; Bollen, G.; Bustabad, S.; Eibach, M.; Izzo, C.; Novario, S. J.; Redshaw, M.; Ringle, R.; Sandler, R.; et al

    2015-05-06

    Experimental searches for neutrinoless double-? decay offer one of the best opportunities to look for physics beyond the standard model. Detecting this decay would confirm the Majorana nature of the neutrino, and a measurement of its half-life can be used to determine the absolute neutrino mass scale. Important to both tasks is an accurate knowledge of the Q value of the double-? decay. The LEBIT Penning trap mass spectrometer was used for the first direct experimental determination of the ??Zr double-? decay Q value: Q??=3355.85(15) keV. This value is nearly 7 keV larger than the 2012 Atomic Mass Evaluation [M.more »Wang et al., Chin. Phys. C 36, 1603 (2012)] value and one order of magnitude more precise. The 3-? shift is primarily due to a more accurate measurement of the ??Zr atomic mass: m(??Zr)=95.90827735(17) u. Using the new Q value, the 2???-decay matrix element, |M2?|, is calculated. Improved determinations of the atomic masses of all other zirconium (90-92,94,96Zr) and molybdenum (92,94-98,100Mo) isotopes using both ¹²C? and ??Rb as references are also reported.« less

  8. 140 GHz pulsed fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, William F. (Oakland, CA); Leskovar, Branko (Moraga, CA)

    1987-01-01

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  9. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1987-10-27

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  10. Solid state NMR spectrometer. Final project report

    SciTech Connect (OSTI)

    Jensen, C.M.

    1997-11-01

    The new Varian Unity INOVA 400 is being utilized on a daily basis. The instrument is available 24 hours a day seven days a week for scheduled experiments. In addition, a limited amount of time is available on a walk-in basis for researchers on the project. The instrument has operated with no down time since the end of the Varian installation process. Minor problems have been corrected by the facility staff (spent fused, malfunctioning boards and components and interrupted data transfers). Most of the initial problems were covered under the warrantee period. Since the end of this period there have been no major operational problems. This report discusses two research projects using the new spectrometer: dynamics of dihydrogen and alkane complexes of iridium and catalytic dehydrogenation by iridium hydride complexes.

  11. LANL/Green Star spectrometer tests

    SciTech Connect (OSTI)

    Sampson, T.E.; Cremers, T.L.; Vo, D.T. [Los Alamos National Lab., NM (United States); Seldiakov, Y.P.; Dorin, A.B.; Kondrashov, M.V. [Green Star, Moscow (Russian Federation); Timoshin, V.I. [VNIINM, Moscow (Russian Federation)

    1997-12-01

    The US and Russia have agreed to the joint development of a nondestructive assay system for use to support the dismantlement of nuclear weapons in Russia. This nondestructive assay system will be used to measure plutonium produced by the conversion of Russian nuclear weapons. The NDA system for Russia will be patterned after the ARIES NDA system being constructed at Los Alamos. One goal of the program is to produce an NDA system for use in Russia that maximizes the use of Russian resources to facilitate maintenance and future upgrades. The Green Star SBS50 Single Board Spectrometer system (Green Star Ltd., Moscow, Russia) has been suggested for use as the data acquisition component for gamma ray instruments in the system. Possible uses are for plutonium isotopic analysis and also segmented gamma scanning. Green Star has also developed analysis software for the SBS50. This software, both plutonium isotopic analysis and uranium enrichment analysis, was developed specifically for customs/border inspection applications (low counting rate applications and identification as opposed to quantification) and was not intended for MC and A applications. Because of the relative immaturity of the Green Star plutonium isotopic analysis software (it has been under development for only one year and is patterned after US development circa 1980), it was tentatively agreed, before the tests, that the Russian NDA system would use the Los Alamos PC/FRAM software for plutonium isotopic analysis. However, it was also decided to include the Green Star plutonium isotopic software in the testing, both to quantify its performance for MC and A applications and also to provide additional data to Green Star for further development of their software. The main purpose of the testing was to evaluate the SBS-50 spectrometer as a data acquisition device for use with LANL software.

  12. Passive regeneration of catalyst coated knitted fiber diesel particulate traps

    SciTech Connect (OSTI)

    Mayer, A.; Emig, G.; Gmehling, B.; Popovska, N.; Hoelemann, K.; Buck, A.

    1996-09-01

    Knitted fiber particulate traps facilitate deep-bed structures. These have excellent filtration properties, particularly for ultra-fine particulates. They are also suitable as substrate for catalytic processes. The two characteristics are: high total surface area of the filaments, and good mass transfer. These are prerequisites for intense catalytic activity. The deposited soot is uniformly distributed. Therefore, temperature peaks are avoided during regeneration. The tested coatings lower the regeneration temperature by about 200 C to burn-off temperatures below 350 C. Further improvements seem attainable. Thus, a purely passive regeneration appears feasible for most applications. The system is autonomous and cost effective. However, in extreme low load situations, e.g. city bus services, the necessary exhaust temperatures are not attained. Hence, burners or electrical heating is necessary for trap regeneration. Nevertheless, catalytic coating is attractive for substantially reducing the regeneration energy requirements.

  13. A direct digital synthesis chirped pulse Fourier transform microwave spectrometer

    E-Print Network [OSTI]

    Blake, Geoffrey

    A direct digital synthesis chirped pulse Fourier transform microwave spectrometer Ian A. Finneran OF SCIENTIFIC INSTRUMENTS 84, 083104 (2013) A direct digital synthesis chirped pulse Fourier transform microwave pulse Fourier transform microwave (CP-FTMW) spectrometers have become the instrument of choice

  14. Neutron Sciences THE HYSPEC POLARIZED BEAM SPECTROMETER AT THE SNS

    E-Print Network [OSTI]

    Johnson, Peter D.

    Neutron Sciences THE HYSPEC POLARIZED BEAM SPECTROMETER AT THE SNS M.E. Hagen(1), S.M. Shapiro(2 Neutron Source, Oak Ridge National Lab., P.O. Box 2008, Oak Ridge, TN 37831, U.S.A (2)Dept. of Condensed spectrometer that utilizes Bragg focusing optics to obtain a high intensity at the sample position for neutron

  15. Workshop on high-resolution, large-acceptance spectrometers

    SciTech Connect (OSTI)

    Zeidman, B. (ed.)

    1981-01-01

    The purpose of the Workshop on High-Resolution, Large-Acceptance Spectrometers was to provide a means for exchange of information among those actively engaged in the design and construction of these new spectrometers. Thirty-seven papers were prepared for the data base.

  16. Texas A&M Penning Trap Facility - Design of the Measurement Trap

    E-Print Network [OSTI]

    M. Mehlman; D. Melconian; P. D. Shidling

    2012-08-20

    A tandem Penning trap facility has been designed and is under construction at the Texas A&M University Cyclotron Institute (TAMU-TRAP). The initial experimental program will be the study of correlation parameters for T=2 superallowed beta-delayed proton emitters. The measurement trap is a unique large-bore optimized 5-electrode cylindrical Penning trap, which features a 90 mm free radius, larger than in any existing Penning trap. This novel geometry allows for full radial containment of decay products of interest. The trap has also been designed to exhibit a "tunable" and "orthogonalized" geometry, which is useful for alternate experiments.

  17. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOE Patents [OSTI]

    Frank, Matthias (Berkeley, CA); Mears, Carl A. (Oakland, CA); Labov, Simon E. (Berkeley, CA); Benner, W. Henry (Danville, CA)

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  18. Porous materials with pre-designed single-molecule traps for CO2 selective adsorption

    SciTech Connect (OSTI)

    Li, JR; Yu, JM; Lu, WG; Sun, LB; Sculley, J; Balbuena, PB; Zhou, HC

    2013-02-26

    Despite tremendous efforts, precise control in the synthesis of porous materials with pre-designed pore properties for desired applications remains challenging. Newly emerged porous metal-organic materials, such as metal-organic polyhedra and metal-organic frameworks, are amenable to design and property tuning, enabling precise control of functionality by accurate design of structures at the molecular level. Here we propose and validate, both experimentally and computationally, a precisely designed cavity, termed a 'single-molecule trap', with the desired size and properties suitable for trapping target CO2 molecules. Such a single-molecule trap can strengthen CO2-host interactions without evoking chemical bonding, thus showing potential for CO2 capture. Molecular single-molecule traps in the form of metal-organic polyhedra are designed, synthesised and tested for selective adsorption of CO2 over N-2 and CH4, demonstrating the trapping effect. Building these pre-designed single-molecule traps into extended frameworks yields metal-organic frameworks with efficient mass transfer, whereas the CO2 selective adsorption nature of single-molecule traps is preserved.

  19. EFFECT OF FILTER TEMPERATURE ON TRAPPING ZINC VAPOR

    SciTech Connect (OSTI)

    Korinko, P.

    2011-03-25

    To address the {sup 65}Zn contamination issue in the TEF, a multi-task experimental program was initiated. The first experimental task was completed and is reported in Ref. 1. The results of the second experimental task are reported here. This task examined the effect of filter temperature on trapping efficiency and deposit morphology. Based on the first experimental tasks that examined filter pore size and trapping efficiency, stainless steel filter media with a 20 {micro}m pore size was selected. A series of experiments using these filters was conducted during this second task to determine the effect of filter temperature on zinc vapor trapping efficiency, adhesion and morphology. The tests were conducted with the filters heated to 60, 120, and 200 C; the zinc source material was heated to 400 C for all the experiments to provide a consistent zinc source. The samples were evaluated for mass change, deposit adhesion and morphology. As expected from the physical vapor deposition literature, a difference in deposit morphology and appearance was observed between the three filter temperatures. The filter held at 60 C had the largest average mass gain while the 120 and 200 C filters exhibited similar but lower weight gains. The standard deviations were large and suggest that all three temperatures exhibited comparable gains. No zinc was detected on the backside surface of the filters indicating high efficiency for front and internal trapping. A zinc rich deposit was formed on the surface of the 60 C filter. Based on a simple tape adhesion test, the surface zinc was readily removed from the 60 C filter while less zinc deposit was removed from the 120 and 200 C filter samples. It is surmised that the higher temperatures enable the zinc to deposit within the filter media rather than on the surface. Based on the findings that all three statistically trapped the same quantity of zinc vapor and that the higher temperatures resulted in a more adherent/better trapped product, operating the filters at 120 to 200 C is recommended.

  20. Ion mobility spectrometer, spectrometer analyte detection and identification verification system, and method

    DOE Patents [OSTI]

    Atkinson, David A. (Idaho Falls, ID)

    2002-01-01

    Methods and apparatus for ion mobility spectrometry and analyte detection and identification verification system are disclosed. The apparatus is configured to be used in an ion mobility spectrometer and includes a plurality of reactant reservoirs configured to contain a plurality of reactants which can be reacted with the sample to form adducts having varying ion mobilities. A carrier fluid, such as air or nitrogen, is used to carry the sample into the spectrometer. The plurality of reactants are configured to be selectively added to the carrier stream by use inlet and outlet manifolds in communication with the reagent reservoirs, the reservoirs being selectively isolatable by valves. The invention further includes a spectrometer having the reagent system described. In the method, a first reactant is used with the sample. Following a positive result, a second reactant is used to determine whether a predicted response occurs. The occurrence of the second predicted response tends to verify the existence of a component of interest within the sample. A third reactant can also be used to provide further verification of the existence of a component of interest. A library can be established of known responses of compounds of interest with various reactants and the results of a specific multi-reactant survey of a sample can be compared against the library to determine whether a component detected in the sample is likely to be a specific component of interest.

  1. Electron Trapping by Molecular Vibration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroicAwardElectron Trapping by Molecular

  2. Cavity sideband cooling of trapped molecules

    SciTech Connect (OSTI)

    Kowalewski, Markus; Vivie-Riedle, Regina de [Department of Chemistry, Ludwig-Maximilian-Universitaet, D-81377 Munich (Germany); Morigi, Giovanna [Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Theoretische Physik, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany); Pinkse, Pepijn W. H. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500AE Enschede (Netherlands)

    2011-09-15

    The efficiency of cavity sideband cooling of trapped molecules is theoretically investigated for the case in which the infrared transition between two rovibrational states is used as a cycling transition. The molecules are assumed to be trapped either by a radiofrequency or optical trapping potential, depending on whether they are charged or neutral, and confined inside a high-finesse optical resonator that enhances radiative emission into the cavity mode. Using realistic experimental parameters and COS as a representative molecular example, we show that in this setup, cooling to the trap ground state is feasible.

  3. Improvements to TITAN's Mass Measurement and Decay Spectroscopy Capabilities

    E-Print Network [OSTI]

    D. Lascar; A. A. Kwiatkowski; U. Chowdhury; A. Finlay; A. T. Gallant; M. Good; R. Klawitter; B. Kootte; K. G. Leach; A. Lennarz; E. Leistenschneider; B. E. Schultz; R. Schupp; D. A. Short; C. Andreoiu; J. Dilling; G. Gwinner

    2015-08-27

    The study of nuclei farther from the valley of $\\beta$-stability goes hand-in-hand with shorter-lived nuclei produced in smaller abundances than their more stable counterparts. The measurement, to high precision, of nuclear masses therefore requires innovations in technique in order to keep up. TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) facility deploys three ion traps, with a fourth in the commissioning phase, to perform and support Penning trap mass spectrometry and in-trap decay spectroscopy on some of the shortest-lived nuclei ever studied. We report on recent advances and updates to the TITAN facility since the 2012 EMIS Conference. TITAN's charge breeding capabilities have been improved and in-trap decay spectroscopy can be performed in TITAN's electron beam ion trap (EBIT). Higher charge states can improve the precision of mass measurements, reduce the beam-time requirements for a given measurement, improve beam purity and opens the door to access, via in-trap decay and recapture, isotopes not available from the ISOL method. This was recently demonstrated during TITAN's mass measurement of $^{30}$Al. The EBIT's decay spectroscopy setup was commissioned with a successful branching ratio and half-life measurement of $^{124}$Cs. Charge breeding in the EBIT increases the energy spread of the ion bunch sent to the Penning trap for mass measurement so a new Cooler Penning Trap (CPET), which aims to cool highly charge ions with an electron plasma, is undergoing online commissioning. Already, CPET has demonstrated the trapping and self-cooling of a room-temperature electron plasma which was stored for several minutes. A new detector has been installed inside the CPET magnetic field which will allow for in-magnet charged particle detection.

  4. Report on strangeness photoproduction experiments performed with the Neutral Kaon Spectrometer 2

    E-Print Network [OSTI]

    B. Beckford; A. Chiba; D. Doi; J. Fujibayashi; T. Fujii; Y. Fujii; K. Futatsukawa; T. Gogami; O. Hashimoto; Y. C. Han; K. Hirose; S. Hirose; R. Honda; R. Honda; K. Hosomi; A. Iguchi; T. Ishikawa; H. Kanda; M. Kaneta; Y. Kaneko; S. Kato; D. Kawama; T. Kawasaki; C. Kimura; S. Kiyokawa; T. Koike; K. Maeda; K. Makabe; N. Maruyama; M. Matsubara; K. Miwa; Y. Miyagi; S. Nagao; S. N. Nakamura; A. Okuyama; K. Shirotori; K. Sugihara; K. Suzuki; T. Tamae; H. Tamura; N. Terada; K. Tsukada; K. Yagi; F. Yamamoto; T. O. Yamamoto; H. Yamazaki; Y. Yonemoto

    2012-03-28

    An experiment designed to investigate the strangeness photoproduction process using a tagged photon beam in the energy range of 0.90 -1.08 GeV incident on a liquid deuterium target was successfully performed. The purpose of the experiment was to measure the production of neutral kaons and the lambda particles on a deuteron. The generation of photo produced particles was verified by the measurement of their decayed charged particles in the Neutral Kaon Spectrometer 2. The reconstructed invariant mass distributions were achieved by selecting events where two or more particles tracks were identified. Preliminary results are presented here.

  5. High resolving power spectrometer for beam analysis

    SciTech Connect (OSTI)

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs.

  6. Compression of Antiproton Clouds for Antihydrogen Trapping

    E-Print Network [OSTI]

    G. B. Andresen; W. Bertsche; P. D. Bowe; C. C. Bray; E. Butler; C. L. Cesar; S. Chapman; M. Charlton; J. Fajans; M. C. Fujiwara; R. Funakoshi; D. R. Gill; J. S. Hangst; W. N. Hardy; R. S. Hayano; M. E. Hayden; R. Hydomako; M. J. Jenkins; L. V. Jorgensen; L. Kurchaninov; R. Lambo; N. Madsen; P. Nolan; K. Olchanski; A. Olin; A. Povilus; P. Pusa; F. Robicheaux; E. Sarid; S. Seif El Nasr; D. M. Silveira; J. W. Storey; R. I. Thompson; D. P. van der Werf; J. S. Wurtele; Y. Yamazaki

    2008-06-30

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report the first detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile and its relation to that of the electron plasma.

  7. Holographic optical trapping David G. Grier

    E-Print Network [OSTI]

    Grier, David

    Holographic optical trapping David G. Grier Yael Roichman Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, NY 10003 Holographic optical tweezers­beam optical traps use­ ful for capturing, moving and transforming mesoscopic objects. Through a combination

  8. Holographic optical trapping David G. Grier

    E-Print Network [OSTI]

    Grier, David

    Holographic optical trapping David G. Grier Yael Roichman Department of Physics and Center for Soft Matter Research, New York University, 4 Washington Place, New York, NY 10003 Holographic optical tweezers-beam optical traps use- ful for capturing, moving and transforming mesoscopic objects. Through a combination

  9. Enhanced Magnetic Trap Loading for Atomic Strontium

    E-Print Network [OSTI]

    Barker, D S; Pisenti, N C; Campbell, G K

    2015-01-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser tuned to the 3P1 to 3S1 (688-nm) transition. The depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope of strontium. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  10. Light-trapping concentrator cells

    SciTech Connect (OSTI)

    Keavney, C.J.; Geoffroy, L.M.; Sanfacon, M.M.; Tobin, S.P. (Spire Corp., Bedford, MA (USA))

    1989-11-01

    The objective of this project was to develop a thin, light-trapping silicon concentrator solar cell using a new structure, the cross-grooved cell. A process was developed for fabricating V-grooves on both sides of thin silicon wafers, the grooves on one side being perpendicular to those on the other side. A novel way of minimizing flat spots at the tops of the V-grooves was discovered. We experimentally verified the theoretical light-trapping superiority of the cross-grooved structure. We also demonstrated a reduction in grid line obscuration for grid lines running parallel to the V-grooves due to light reflection into the cell. high short-circuit current densities were achieved for p-i-n concentrator cells with the cross-grooved structure, proving the concept. The best efficiencies achieved were 18% at concentration, compared to 20% for a conventional planar low-resistivity cell. Recombination in the full-area emitter was identified as the major intrinsic loss mechanism in these thin, high-resistivity bifacial cells. Recombination on the emitter limits Voc and fill factor, and also leads to a large sublinearity of short-circuit current with light intensity. Reduction of the junction area is a major recommendation for future work. In addition, there were persistent problems with ohmic contacts and maintaining high minority-carrier lifetime during processing. We believe that these problems can be solved, and that the cross-grooved cell is a viable approach to the limit-efficiency silicon solar cell. This report covers research conducted between March 1987 and July 1989. 22 refs., 40 figs., 24 tabs.

  11. FLUCTUATION IN TRAP-NET CATCHES IN THE UPPER MISSISSIPPI RIVER

    E-Print Network [OSTI]

    LIBRARY WOODS HOLE, MASS. 1SPECIAL SCIENTIFIC REPORT: FISHERIES No. 101 UNITED STATES DEPARTMENT Gear used 3 Methods 5 Statistical considerations 5 Season trends in catch of trap nets 6 Black crappie catch trends 7 Summary of black crappie catch trends 1$ White crappie catch trends 17 Summary of white

  12. The FIRE infrared spectrometer at Magellan: construction and commissioning

    E-Print Network [OSTI]

    Simcoe, Robert A.

    We describe the construction and commissioning of FIRE, a new 0.8-2.5?m echelle spectrometer for the Magellan/ Baade 6.5 meter telescope. FIRE delivers continuous spectra over its full bandpass with nominal spectral ...

  13. Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

    E-Print Network [OSTI]

    Texas at Austin, University of

    Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane 1 Funded by Environmental-infrared absorption spectrum of methane at 1665.5nm. · Guided mode design in SOI wafer #12;9 Device Fabrication Steps

  14. The Gamma Ray Detection Capabilities of the Alpha Magnetic Spectrometer

    E-Print Network [OSTI]

    R. Battiston; M. Biasini; E. Fiandrini; J. Petrakis; M. H. Salamon

    1999-09-30

    The modeled performance of the Alpha Magnetic Spectrometer (AMS) as a high energy (0.3 to 100 GeV) gamma-ray detector is described, and its gamma ray astrophysics objectives are discussed.

  15. Diamond neutral particle spectrometer for fusion reactor ITER

    SciTech Connect (OSTI)

    Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D. [Institution PROJECT CENTER ITER, 1, Akademik Kurchatov Sq., Moscow (Russian Federation)

    2014-08-21

    A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.

  16. Tunable light source for use in photoacoustic spectrometers

    DOE Patents [OSTI]

    Bisson, Scott E.; Kulp, Thomas J.; Armstrong, Karla M.

    2005-12-13

    The present invention provides a photoacoustic spectrometer that is field portable and capable of speciating complex organic molecules in the gas phase. The spectrometer has a tunable light source that has the ability to resolve the fine structure of these molecules over a large wavelength range. The inventive light source includes an optical parametric oscillator (OPO) having combined fine and coarse tuning. By pumping the OPO with the output from a doped-fiber optical amplifier pumped by a diode seed laser, the inventive spectrometer is able to speciate mixtures having parts per billion of organic compounds, with a light source that has a high efficiency and small size, allowing for portability. In an alternative embodiment, the spectrometer is scanned by controlling the laser wavelength, thus resulting in an even more compact and efficient design.

  17. When a trap is not a trap: converging entry and exit rates and their effect on trap saturation of black sea bass (Centropristis striata)

    E-Print Network [OSTI]

    at50 min, when the entry ratedeclined and the exit rate increased to a point where their confidenceWhen a trap is not a trap: converging entry and exit rates and their effect on trap saturation entries and exits of black sea bass (Centropristis striata) from chevron traps (n ¼ 26) to quantify catch

  18. Note: A novel design of a microwave feed for a microwave frequency standard with a linear ion trap

    SciTech Connect (OSTI)

    Zhang, J. W., E-mail: zhangjw@tsinghua.edu.cn; Miao, K.; Wang, S. G.; Wang, Z. B. [NIM-THU Joint Institute for Measurement Science (JMI), Tsinghua University, Beijing 100084 (China); Department of Precision Instrument, Tsinghua University, Beijing 100084 (China)

    2014-07-15

    Linear ion traps are important tools in many applications, particularly in mass spectrum analyzers and frequency standards. Here a novel design of a microwave feed integrated into one electrode of a linear quadrupole ion trap is demonstrated for the application of a microwave frequency standard based on cadmium ions. The mechanical structure of the microwave feed is compact and easy to build. The ion trap integrated with this microwave feed is successfully applied to measure the hyperfine splitting of the ground state of {sup 113}Cd{sup +}, thus demonstrating the practicality and reliability of the microwave feed.

  19. A study of the tropospheric oxidation of volatile organic compounds using chemical ionization mass spectrometry

    E-Print Network [OSTI]

    Broekhuizen, Keith Edward, 1974-

    2002-01-01

    The mechanisms and kinetics of reactions important to the troposphere have been investigated using a high pressure, turbulent, discharge-flow technique coupled to a chemical ionization mass spectrometer. The ability to ...

  20. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry

    E-Print Network [OSTI]

    Kroll, Jesse

    In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, ...

  1. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    E-Print Network [OSTI]

    Salcedo, D.

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations ...

  2. Emittance and Current of Electrons Trapped in a Plasma Wakefield...

    Office of Scientific and Technical Information (OSTI)

    Emittance and Current of Electrons Trapped in a Plasma Wakefield Accelerator Citation Details In-Document Search Title: Emittance and Current of Electrons Trapped in a Plasma...

  3. Real-Time Measurement of Diesel Trap Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement of Diesel Trap Efficiency Real-Time Measurement of Diesel Trap Efficiency 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

  4. Charge Trapping in High Efficiency Alternating Copolymers: Implication...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charge Trapping in High Efficiency Alternating Copolymers: Implications in Organic Photovoltaic Device Efficiency Home > Research > ANSER Research Highlights > Charge Trapping in...

  5. Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes...

    Office of Environmental Management (EM)

    Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes Atom-Probe Tomographic Measurement of Trapped Hydrogen Isotopes Presentation from the 34th Tritium Focus Group...

  6. Lean NOx Traps - Microstructural Studies of Real World and Model...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Emission Control Pre-Competitive Catalysis Research: Fundamental SulfationDesulfation Studies of Lean NOx Traps Investigation of Aging Mechanisms in Lean NOx Traps...

  7. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser

    SciTech Connect (OSTI)

    Wang, Chun; Lv, Shasha; Bi, Jin; Liu, Fang; Li, Liufeng; Chen, Lisheng

    2014-08-15

    We present the development of a dye-laser-based spectrometer operating at 550–600 nm. The spectrometer will be used to detect an ultra-narrow clock transition ({sup 1}S{sub 0}-{sup 3}P{sub 0}) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO{sub 4}-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 × 10{sup ?15} (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision.

  8. Compact standing-wave transform spectrometer based on integrated MEMS mirror and thin-film photodetector

    E-Print Network [OSTI]

    Miller, David A. B.

    Compact standing-wave transform spectrometer based on integrated MEMS mirror and thin an integrated standing-wave Fourier-transform spectrometer, 17 × 13 × 2 mm, with 32 nm spectral resolution spectrometer, based on the 1-D standing-wave transform spectrometer architecture [1], with an integrated

  9. The ALICE muon spectrometer: trigger detectors and quarkonia detection in p-p collisions

    E-Print Network [OSTI]

    Gagliardi, Martino

    This work was carried out in the context of the optimisation of the performances of the muon spectrometer of the forthcoming ALICE experiment at the Large Hadron Collider (LHC, CERN). The aim of ALICE is the study of nuclear matter at the highest energy densities ever accessed experimentally. More in detail, the focus is on the expected phase transition to a deconfined phase of matter where the degrees of freedom are those of quarks and gluons: the Quark-Gluon Plasma. The conditions for QGP formation are expected to be achieved in highly relativistic heavy ion collisions. The energy in the centre of mass of Pb-Pb collisions at the LHC will be 5.5 TeV per nucleon pair. The ALICE physics program also includes data-taking in p-p collisions at the centre-of-mass-energy of 14 TeV. The ALICE muon spectrometer has been designed for the detection of heavy quarkonia through their muon decay: both theoretical predictions and experimental data obtained at SPS and RHIC indicate that the production of these resonances sho...

  10. Trapping efficiency depending on particulate size

    SciTech Connect (OSTI)

    Mayer, A.; Czerwinski, J.; Scheidegger, P.

    1996-09-01

    There is growing concern about the risk potential of Diesel particulates. This prompted two Swiss R and D projects focused on the capabilities of different soot trap concepts for filtering finest particulates. Eight different filter media, some in numerous variants, were tested on four different Diesel engines. All traps attained their gravimetric target. However, there are noticeable performance differences for finest particulates at or smaller than 50 nm. Fiber deep filters seem to be noticeably better than other filter types. If the carcinogens are mainly the finest particulates, then this criterion may become important in future trap evaluation.

  11. Nonlinear Spectroscopy of Trapped Ions

    E-Print Network [OSTI]

    Frank Schlawin; Manuel Gessner; Shaul Mukamel; Andreas Buchleitner

    2014-10-07

    Nonlinear spectroscopy employs a series of laser pulses to interrogate dynamics in large interacting many-body systems, and has become a highly successful method for experiments in chemical physics. Current quantum optical experiments approach system sizes and levels of complexity which require the development of efficient techniques to assess spectral and dynamical features with scalable experimental overhead. However, established methods from optical spectroscopy of macroscopic ensembles cannot be applied straightforwardly to few-atom systems. Based on the ideas proposed in [M. Gessner et al. New J. Phys. 16 092001 (2014)], we develop a diagrammatic approach to construct nonlinear measurement protocols for controlled quantum systems and discuss experimental implementations with trapped ion technology in detail. These methods in combination with distinct features of ultra-cold matter systems allow us to monitor and analyze excitation dynamics in both the electronic and vibrational degrees of freedom. They are independent of system size, and can therefore reliably probe systems where, e.g., quantum state tomography becomes prohibitively expensive. We propose signals that can probe steady state currents, detect the influence of anharmonicities on phonon transport, and identify signatures of chaotic dynamics near a quantum phase transition in an Ising-type spin chain.

  12. Energy Savings Through Steam Trap Management 

    E-Print Network [OSTI]

    Gibbs, C.

    2008-01-01

    of continuous monitoring. In addition to energy loss failed open steam traps that go undetected can cause steam system issues. Over pressure on deairator tanks and return lines, electric condensate pump cavitation, and back pressure from undersized vent...

  13. Trapping cold rubidium in a fiber

    E-Print Network [OSTI]

    Brown, David Ross, S.B. Massachusetts Institute of Technology

    2007-01-01

    In this thesis, we demonstrate the novel technique of loading cold ??Rb into a red-detuned optical dipole trap within a hollow core photonic fiber. This confines the atoms to 6 microns in two dimensions. We initially cooled ...

  14. A quantum information processor with trapped ions

    E-Print Network [OSTI]

    Schindler, Philipp

    Quantum computers hold the promise to solve certain problems exponentially faster than their classical counterparts. Trapped atomic ions are among the physical systems in which building such a computing device seems viable. ...

  15. Cooling the motion of a trapped atom with a cavity field

    E-Print Network [OSTI]

    Marc Bienert; Giovanna Morigi

    2012-11-07

    We theoretically analyze the cooling dynamics of an atom which is tightly trapped inside a high-finesse optical resonator. Cooling is achieved by suitably tailored scattering processes, in which the atomic dipole transition either scatters a cavity photon into the electromagnetic field external to the resonator, or performs a stimulated emission into the cavity mode, which then dissipates via the cavity mirrors. We identify the parameter regimes in which the atom center-of-mass motion can be cooled into the ground state of the external trap. We predict, in particular, that for high cooperativities interference effects mediated by the atomic transition may lead to higher efficiencies. The dynamics is compared with the cooling dynamics of a trapped atom inside a resonator studied in [Phys. Rev. Lett. 95, 143001, (2005)] where the atom, instead of the cavity, is driven by a laser field.

  16. An all-optical trap for a gram-scale mirror

    E-Print Network [OSTI]

    T. Corbitt; Y. Chen; H. Mueller-Ebhardt; E. Innerhofer; D. Ottaway; H. Rehbein; D. Sigg; S. Whitcomb; C. Wipf; N. Mavalvala

    2007-07-26

    We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise; and we demonstrate the technique experimentally with a 1 gram mirror. The observed optical spring has an inferred Young's modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.

  17. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunschel, David S.; Rodland, Karin D.

    2004-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsinmore »digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.« less

  18. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    SciTech Connect (OSTI)

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunsch, David M.; Rodland, Karin D.

    2003-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  19. Wavelength calibration of the JWST-MIRI medium resolution spectrometer

    E-Print Network [OSTI]

    Martinez-Galarza, J R; Hernan-Caballero, A; Azzollini, R; Glasse, A; Kendrew, S; Brandl, B; Lahuis, F

    2010-01-01

    We present the wavelength and spectral resolution characterisation of the Integral Field Unit (IFU) Medium Resolution Spectrometer for the Mid-InfraRed Instrument (MIRI), to fly onboard the James Webb Space Telescope in 2014. We use data collected using the Verification Model of the instrument and develop an empirical method to calibrate properties such as wavelength range and resolving power in a portion of the spectrometer's full spectral range (5-28 microns). We test our results against optical models to verify the system requirements and combine them with a study of the fringing pattern in the instrument's detector to provide a more accurate calibration. We show that MIRI's IFU spectrometer will be able to produce spectra with a resolving power above R=2800 in the wavelength range 6.46-7.70 microns, and that the unresolved spectral lines are well fitted by a Gaussian profile.

  20. Photo-Spectrometer Realized In A Standard Cmos Ic Process

    DOE Patents [OSTI]

    Simpson, Michael L. (Knoxville, TN); Ericson, M. Nance (Knoxville, TN); Dress, William B. (Knoxville, TN); Jellison, Gerald E. (Oak Ridge, TN); Sitter, Jr., David N. (Tucson, AZ); Wintenberg, Alan L. (Knoxville, TN)

    1999-10-12

    A spectrometer, comprises: a semiconductor having a silicon substrate, the substrate having integrally formed thereon a plurality of layers forming photo diodes, each of the photo diodes having an independent spectral response to an input spectra within a spectral range of the semiconductor and each of the photo diodes formed only from at least one of the plurality of layers of the semiconductor above the substrate; and, a signal processing circuit for modifying signals from the photo diodes with respective weights, the weighted signals being representative of a specific spectral response. The photo diodes have different junction depths and different polycrystalline silicon and oxide coverings. The signal processing circuit applies the respective weights and sums the weighted signals. In a corresponding method, a spectrometer is manufactured by manipulating only the standard masks, materials and fabrication steps of standard semiconductor processing, and integrating the spectrometer with a signal processing circuit.

  1. Antihydrogen Trapped in the ALPHA Experiment

    ScienceCinema (OSTI)

    None

    2011-04-25

    In 2010 the ALPHA collaboration succeeded in trapping antihydrogen atoms for the first time.[i]  Stored antihydrogen promises to be a unique tool for making high precision measurements of the structure of this first anti-atom. Achieving this milestone presented several substantial experimental challenges and this talk will describe how they were overcome.   The unique design features of the ALPHA apparatus will be explained.[ii]  These allow a high intensity positron source and an antiproton imaging detector similar to the one used in the ATHENA[iii] experiment to be combined with an innovative magnet design of the anti-atom trap. This seeks to minimise the perturbations to trapped charged particles which may cause particle loss and heating[iv].   The diagnostic techniques used to measure the diameter, number, density, and temperatures of both plasmas will be presented as will the methods developed to actively compress and cool of both plasma species to sizes and temperatures [v],[vi], [vii] where trapping attempts with a reasonable chance of success can be tried.   The results of the successful trapping experiments will be outlined as well as some subsequent experiments to improve the trapping rate and storage time. [i] 'Trapped antihydrogen' G.B. Andresen et al., Nature 468, 673 (2010) [ii]'A Magnetic Trap for Antihydrogen Confinement' W. Bertsche et al., Nucl. Instr. Meth. Phys. Res. A566, 746 (2006) [iii] Production and detection of cold antihydrogen atoms M.Amoretti et al., Nature 419, 456 (2002). [iv]' Antihydrogen formation dynamics in a multipolar neutral anti-atom trap' G.B. Andresen et al., Phys. Lett. B 685, 141 (2010) [v]' Evaporative Cooling of Antiprotons to Cryogenic Temperatures',                                   G.B. Andresen et al. Phys. Rev. Lett 105, 013003 (2010) [vi]'Compression of Antiproton Clouds for Antihydrogen Trapping' G. B. Andresen et al. Phys. Rev. Lett 100, 203401 (2008) [vii]  'Autoresonant Excitation of Antiproton Plasmas' G.B. Andresen et al., Phys. Rev. Lett. 106, 025002 (2011) Organizer: Ferdinand Hahn PH/DT Detector Seminar webpage  

  2. Development of multichannel low-energy neutron spectrometer

    SciTech Connect (OSTI)

    Arikawa, Y., E-mail: arikawa-y@ile.osaka-u.ac.jp; Nagai, T.; Abe, Y.; Kojima, S.; Sakata, S.; Inoue, H.; Utsugi, M.; Iwasa, Y.; Sarukura, N.; Nakai, M.; Shiraga, H.; Fujioka, S.; Azechi, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan); Murata, T. [Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555 (Japan)

    2014-11-15

    A multichannel low-energy neutron spectrometer for down-scattered neutron (DSN) measurements in inertial confinement fusion (ICF) experiments has been developed. Our compact-size 256-channel lithium-glass-scintillator-based spectrometer has been implemented and tested in ICF experiments with the GEKKO XII laser. We have performed time calibration of the 256-channel analog-to-digital convertor system used for DSN measurements via X-ray pulse signals. We have clearly observed the DD-primary fusion neutron signal and have successfully studied the detector's impulse response. Our detector is soon to be implemented in future ICF experiments.

  3. Bragg x-ray survey spectrometer for ITER

    SciTech Connect (OSTI)

    Varshney, S. K.; Jakhar, S. [ITER-India, Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India); Barnsley, R. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); O'Mullane, M. G. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-10-15

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  4. Waveguide-integrated photonic crystal spectrometer with camera readout

    SciTech Connect (OSTI)

    Meng, Fan; Shiue, Ren-Jye; Li, Luozhou; Nie, Jing; Harris, Nicholas C.; Chen, Edward H.; Schröder, Tim; Englund, Dirk; Wan, Noel; Pervez, Nadia; Kymissis, Ioannis

    2014-08-04

    We demonstrate an infrared spectrometer based on waveguide-coupled nanocavity filters in a planar photonic crystal structure. The input light is coupled into the waveguide, from which spectral components are dropped into the cavities and radiated off-chip for detection on a commercial InGaAs camera. The spectrometer has a footprint of only 60??m by 8??m. The spectral resolution is about 1?nm in the operation bandwidth of 1522–1545?nm. By substituting the membrane material and structure parameters, this design can be easily extended into the visible regime and developed for a variety of highly efficient, miniature photonic applications.

  5. A broadband FFT spectrometer for radio and millimeter astronomy

    E-Print Network [OSTI]

    Arnold O. Benz; Paolo C. Grigis; V. Hungerbuhler; Hansueli Meyer; Cristian Monstein; Bruno Stuber; D. Zardet

    2005-09-22

    The core architecture, tests in the lab and first results of a Fast Fourier Transform (FFT) spectrometer are described. It is based on a commercially available fast digital sampler (AC240) with an on-board Field Programmable Gate Array (FPGA). The spectrometer works continuously and has a remarkable total bandwidth of 1 GHz, resolved into 16384 channels. The data is sampled with 8 bits, yielding a dynamic range of 48 dB. An Allan time of more than 2000 s and an SFDR of 37 dB were measured. First light observations with the KOSMA telescope show a perfect spectrum without internal or external spurious signals.

  6. Laser Mass Spectrometry in Planetary Science

    SciTech Connect (OSTI)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-06-16

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  7. Millikelvin cooling of an optically trapped microsphere in vacuum

    E-Print Network [OSTI]

    Tongcang Li; Simon Kheifets; Mark G. Raizen

    2011-01-07

    The apparent conflict between general relativity and quantum mechanics remains one of the unresolved mysteries of the physical world. According to recent theories, this conflict results in gravity-induced quantum state reduction of "Schr\\"odinger cats", quantum superpositions of macroscopic observables. In recent years, great progress has been made in cooling micromechanical resonators towards their quantum mechanical ground state. This work is an important step towards the creation of Schr\\"odinger cats in the laboratory, and the study of their destruction by decoherence. A direct test of the gravity-induced state reduction scenario may therefore be within reach. However, a recent analysis shows that for all systems reported to date, quantum superpositions are destroyed by environmental decoherence long before gravitational state reduction takes effect. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the center-of-mass motion from room temperature to a minimum temperature of 1.5 mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature. After cooling, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum. During free-fall, light scattering and other sources of environmental decoherence are absent, so this system is ideal for studying gravitational state reduction. A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales, measure the impact of a single air molecule, and even produce Schr\\"odinger cats of living organisms.

  8. Quantum control of the motional states of trapped ions through fast switching of trapping potentials

    E-Print Network [OSTI]

    J. Alonso; F. M. Leupold; B. C. Keitch; J. P. Home

    2012-12-21

    We propose a new scheme for supplying voltages to the electrodes of microfabricated ion traps, enabling access to a regime in which changes to the trapping potential are made on timescales much shorter than the period of the secular oscillation frequencies of the trapped ions. This opens up possibilities for speeding up the transport of ions in segmented ion traps and also provides access to control of multiple ions in a string faster than the Coulomb interaction between them. We perform a theoretical study of ion transport using these methods in a surface-electrode trap, characterizing the precision required for a number of important control parameters. We also consider the possibilities and limitations for generating motional state squeezing using these techniques, which could be used as a basis for investigations of Gaussian-state entanglement.

  9. Characterisation of individual airborne particles by using aerosol time-of-flight mass spectrometry (ATOFMS) at Mace Head, Ireland, 

    E-Print Network [OSTI]

    Dall'Osto, Manuel; Beddows, David C S; Kinnersley, Robert P; Harrison, Roy M; Donovan, Robert J; Heal, Mathew R

    2004-01-01

    An aerosol time-of-flight mass spectrometer was deployed at Mace Head (Ireland) during August 2002. The measurements provide qualitative chemical composition and size distribution (0.3–3 ?m) information for single ...

  10. Sulfate Storage and Stability on Common Lean NOx Trap Components

    SciTech Connect (OSTI)

    Ottinger, Nathan A; Toops, Todd J; Pihl, Josh A; Roop, Justin T; Choi, Jae-Soon; Partridge Jr, William P

    2012-01-01

    Components found in a commercial lean NO{sub x} trap have been studied in order to determine their impact on sulfate storage and release. A micro-reactor and a diffuse reflectance infrared Fourier transform spectrometer (DRIFTS) were used to compare components MgAl{sub 2}O{sub 4}, Pt/MgAl{sub 2}O{sub 4}, Pt/Al{sub 2}O{sub 3}, Pt/Ba/Al{sub 2}O{sub 3}, Pt/CeO{sub 2}-ZrO{sub 2}, and Pt/Ba/CeO{sub 2}-ZrO{sub 2}, as well as physical mixtures of Pt/Al{sub 2}O{sub 3} + MgAl{sub 2}O{sub 4} and Pt/Ba/CeO{sub 2}-ZrO{sub 2} + MgAl{sub 2}O{sub 4}. Desulfation temperature profiles as well as DRIFTS NO{sub x} and SO{sub x} storage spectra are presented for all components. This systematic approach highlighted the ability of the underlying support to impact sulfate stability, in particular when Ba was supported on ceria-zirconia rather than alumina the desulfation temperature decreased by 60-120 C. A conceptual model of sulfation progression on the ceria-zirconia support is proposed that explains the high uptake of sulfur and low temperature release when it is employed. It was also determined that the close proximity of platinum is not necessary for much of the sulfation and desulfation chemistry that occurs, as physical mixtures with platinum dispersed on only one phase displayed similar behavior to samples with platinum dispersed on both phases.

  11. An all-cryogenic THz transmission spectrometer P. J. Burkea)

    E-Print Network [OSTI]

    Eisenstein, Jim

    with an electrical current serves as a magnetic-field tunable source. The spectrometer is demonstrated at 4.2 K gas laser which couples optically to a cold sample from room temperature. The disadvantage, this technique can be car- ried out. One must construct a set of filters with the desired pass functions from

  12. Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane

    E-Print Network [OSTI]

    Texas at Austin, University of

    Photonic Crystal Slot Waveguide Spectrometer for Detection of Methane 1 Funded by Environmental. of Electrical and Computer Engineering, University of Texas, Austin #12;Motivation No other chip based optical Similar to: Doping of Semiconductor 3 #12;4 Photonic Crystal Bio-Chemical Sensors Loncar et al, Appl. Phys

  13. Pair spectrometer hodoscope for Hall D at Jefferson Lab

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barbosa, Fernando J.; Hutton, Charles L.; Sitnikov, Alexandre; Somov, Alexander S.; Somov, S.; Tolstukhin, Ivan

    2015-09-21

    We present the design of the pair spectrometer hodoscope fabricated at Jefferson Lab and installed in the experimental Hall D. The hodoscope consists of thin scintillator tiles; the light from each tile is collected using wave-length shifting fibers and detected using a Hamamatsu silicon photomultiplier. Light collection was measured using relativistic electrons produced in the tagger area of the experimental Hall B.

  14. Modulated optical solid-state spectrometer applications in plasma diagnostics

    E-Print Network [OSTI]

    Howard, John

    Modulated optical solid-state spectrometer applications in plasma diagnostics John Howard Plasma A new electro-optically modulated optical solid-state MOSS interferometer has been constructed for the measurement of the low order spectral moments of line emission from optically thin radiant media

  15. Mu2e Calibration: Electron Spectrometer and Magnetic Fields

    E-Print Network [OSTI]

    Gollin, George

    ,c , George Gollina,1 , Tim Hea , Guangyong Koha , Matthew McHugha , Daniel Persheya,b a Department of Physics calculations, MATLAB numerical integration, equivalent magnetic charge distributions, and series approximations Contact person: George Gollin, g-gollin@illinois.edu, +1 (217) 333-4451. - 1 - #12;Spectrometer

  16. GBT memo No. 292 Specifications for the GBT spectrometer

    E-Print Network [OSTI]

    Groppi, Christopher

    splitter Power 1PPS S/W sig o/p S/W sig i/p 100M/1G E switch To ROACH boards ROACH (Switching master technology. 1 Introduction A new spectrometer is being designed for the Green Bank Telescope (GBT polarizations (linear or circular) of a receiver. For many observations we need only the self spectral powers

  17. Ball-grid array architecture for microfabricated ion traps

    E-Print Network [OSTI]

    Nicholas D. Guise; Spencer D. Fallek; Kelly E. Stevens; K. R. Brown; Curtis Volin; Alexa W. Harter; Jason M. Amini; Robert E. Higashi; Son Thai Lu; Helen M. Chanhvongsak; Thi A. Nguyen; Matthew S. Marcus; Thomas R. Ohnstein; Daniel W. Youngner

    2015-05-05

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with $^{40}$Ca$^+$ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with $^{171}$Yb$^+$ ions in a second BGA trap.

  18. Signal enhancement using a switchable magnetic trap

    DOE Patents [OSTI]

    Beer, Neil Reginald (Pleasanton, CA)

    2012-05-29

    A system for analyzing a sample including providing a microchannel flow channel; associating the sample with magnetic nanoparticles or magnetic polystyrene-coated beads; moving the sample with said magnetic nanoparticles or magnetic polystyrene-coated beads in the microchannel flow channel; holding the sample with the magnetic nanoparticles or magnetic polystyrene-coated beads in a magnetic trap in the microchannel flow channel; and analyzing the sample obtaining an enhanced analysis signal. An apparatus for analysis of a sample includes magnetic particles connected to the sample, a microchip, a flow channel in the microchip, a source of carrier fluid connected to the flow channel for moving the sample in the flow channel, an electromagnet trap connected to the flow line for selectively magnetically trapping the sample and the magnetic particles, and an analyzer for analyzing the sample.

  19. Controlling fast transport of cold trapped ions

    E-Print Network [OSTI]

    Andreas Walther; Frank Ziesel; Thomas Ruster; Sam T. Dawkins; Konstantin Ott; Max Hettrich; Kilian Singer; Ferdinand Schmidt-Kaler; Ulrich Poschinger

    2012-06-02

    We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $\\pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

  20. Johann Spectrometer for High Resolution X-ray Spectroscopy

    SciTech Connect (OSTI)

    Machek, Pavel; Froeba, Michael; Welter, Edmund; Caliebe, Wolfgang; Brueggmann, Ulf; Draeger, Guenter

    2007-01-19

    A newly designed vacuum Johann spectrometer with a large focusing analyzer crystal for inelastic x-ray scattering and high resolution fluorescence spectroscopy has been installed at the DORIS III storage ring. Spherically bent crystals with a maximum diameter of 125 mm, and cylindrically bent crystals are employed as dispersive optical elements. Standard radius of curvature of the crystals is 1000 mm, however, the design of the mechanical components also facilitates measurements with smaller and larger bending radii. Up to four crystals are mounted on a revolving crystal changer which enables crystal changes without breaking the vacuum. The spectrometer works at fixed Bragg angle. It is preferably designed for the measurements in non-scanning mode with a broad beam spot, and offers a large flexibility to set the sample to the optimum position inside the Rowland circle. A deep depletion CCD camera is employed as a position sensitive detector to collect the energy-analyzed photons on the circumference of the Rowland circle. The vacuum in the spectrometer tank is typically 10-6 mbar. The sample chamber is separated from the tank either by 25 {mu}m thick Kapton windows, which allows samples to be measured under ambient conditions, or by two gate valves. The spectrometer is currently installed at wiggler beamline W1 whose working range is 4-10.5 keV with typical flux at the sample of 5x1010photons/s/mm2. The capabilities of the spectrometer are illustrated by resonant inelastic experiments on 3d transition metals and rare earth compounds, and by chemical shift measurements on chromium compounds.

  1. Results from the NSTX X-ray Crystal Spectrometer

    SciTech Connect (OSTI)

    M. Bitter; K. Hill; L. Roquemore; P. Beiersdorfer; D. Thorn; Ming Feng Gu

    2003-01-14

    A high-resolution X-ray crystal spectrometer has recently been installed at the National Spherical Torus Experiment to record the satellite spectra of helium-like argon, ArXVII, in the wavelength range from 3.94 to 4.00 {angstrom} for measurements of ion and electron temperatures, and measurements of the ionization equilibrium of argon, which is of interest for studies of ion transport. The instrument presently consists of a spherically bent quartz crystal and a conventional one-dimensional position-sensitive multi-wire proportional counter, but it will soon be upgraded to a new type of X-ray imaging crystal spectrometer by the installation of a large size (10 cm x 30 cm) two-dimensional position-sensitive detector that will allow us to obtain temporally and spatially resolved spectra from an 80 cm high cross-section of the plasma. In its present configuration, the spectrometer has been optimized for high throughput so that it is possible to record spectra with small statistical errors with a time resolution of 10 ms by adding only small, nonperturbing amounts of argon to the plasma. The spectrometer is most valuable for measurements of the ion temperature in the absence of a neutral beam in ohmically heated and radio-frequency heated discharges, when charge exchange recombination spectroscopy does not function. Electron temperature measurements from the satellite-to-resonance line ratios have been important for a quantitative comparison with (and verification of) the Thomson scattering data. The paper will describe the instrumental details of the present and future spectrometer configurations, and present recent experimental results.

  2. Screening the Hanford tanks for trapped gas

    SciTech Connect (OSTI)

    Whitney, P.

    1995-10-01

    The Hanford Site is home to 177 large, underground nuclear waste storage tanks. Hydrogen gas is generated within the waste in these tanks. This document presents the results of a screening of Hanford`s nuclear waste storage tanks for the presence of gas trapped in the waste. The method used for the screening is to look for an inverse correlation between waste level measurements and ambient atmospheric pressure. If the waste level in a tank decreases with an increase in ambient atmospheric pressure, then the compressibility may be attributed to gas trapped within the waste. In this report, this methodology is not used to estimate the volume of gas trapped in the waste. The waste level measurements used in this study were made primarily to monitor the tanks for leaks and intrusions. Four measurement devices are widely used in these tanks. Three of these measure the level of the waste surface. The remaining device measures from within a well embedded in the waste, thereby monitoring the liquid level even if the liquid level is below a dry waste crust. In the past, a steady rise in waste level has been taken as an indicator of trapped gas. This indicator is not part of the screening calculation described in this report; however, a possible explanation for the rise is given by the mathematical relation between atmospheric pressure and waste level used to support the screening calculation. The screening was applied to data from each measurement device in each tank. If any of these data for a single tank indicated trapped gas, that tank was flagged by this screening process. A total of 58 of the 177 Hanford tanks were flagged as containing trapped gas, including 21 of the 25 tanks currently on the flammable gas watch list.

  3. Miniature, high-speed imaging transform spectrometers and advanced sampling algorithms

    E-Print Network [OSTI]

    Chen, Yi, Ph. D. Massachusetts Institute of Technology

    2015-01-01

    This thesis describes the development of miniature imaging Fourier transform spectrometers and irregular sampling techniques. An imaging spectrometer is a device that takes a series of images that include information from ...

  4. Upgrade of the neon soft X-ray spectrometer for Alcator C-Mod

    E-Print Network [OSTI]

    Podpaly, Yuri Anatoly

    2007-01-01

    In order to study plasma rotation, temperature, and impurity density, a Neon Soft X-ray Spectrometer (NeSoXs) was installed on the Alcator C-Mod tokamak. This spectrometer used a spherically bent mica crystal as the ...

  5. A co-axially configured submillimeter spectrometer and investigations of hydrogen bound molecular complexes 

    E-Print Network [OSTI]

    McElmurry, Blake Anthony

    2009-05-15

    The development of a co-axially configured submillimeter spectrometer is reported. The spectrometer has been constructed to observe molecular complexes that exhibit non-covalent interactions with energies much less than ...

  6. A new spectrometer design for the x-ray spectroscopy of laser...

    Office of Scientific and Technical Information (OSTI)

    A new spectrometer design for the x-ray spectroscopy of laser-produced plasmas with high (sub-ns) time resolution Citation Details In-Document Search Title: A new spectrometer...

  7. Capturing Energy Savings with Steam Traps 

    E-Print Network [OSTI]

    Bockwinkel, R. G.; French, S. A.

    1997-01-01

    , flanges and other connections. The economic loss can be significant. To appre ciate the massive economic impact of wasting steam, let's again look at the very small trap leak on 30 pound pressure typical for many process applications. Chart 1 shows... how much steam will be lost each hour from various size orifices and pressure ranges and the example calcula tions show how much steam is lost per year. Chart 1. Steam Loss Comparison For Various Pressures and Orifice Sizes Drip &Tracer Traps "1...

  8. Fast separation of two trapped ions

    E-Print Network [OSTI]

    M. Palmero; S. Martínez-Garaot; U. G. Poschinger; A. Ruschhaupt; J. G. Muga

    2015-05-19

    We design fast protocols to separate or recombine two ions in a segmented Paul trap. By inverse engineering the time evolution of the trapping potential composed of a harmonic and a quartic term, it is possible to perform these processes in a few microseconds without final excitation. These times are much shorter than the ones reported so far experimentally. The design is based on dynamical invariants and dynamical normal modes. Anharmonicities beyond the harmonic approximation at potential minima are taken into account perturbatively. The stability versus an unknown potential bias is also studied.

  9. Thermal electric vapor trap arrangement and method

    DOE Patents [OSTI]

    Alger, T.

    1988-03-15

    A technique for trapping vapor within a section of a tube is disclosed herein. This technique utilizes a conventional, readily providable thermal electric device having a hot side and a cold side and means for powering the device to accomplish this. The cold side of this device is positioned sufficiently close to a predetermined section of the tube and is made sufficiently cold so that any condensable vapor passing through the predetermined tube section is condensed and trapped, preferably within the predetermined tube section itself. 4 figs.

  10. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    E-Print Network [OSTI]

    DeAngelis, Kristen

    2012-01-01

    of Trapped Lignin-Degrading Microbes in Tropical Forest Soilof Trapped Lignin-Degrading Microbes in Journals Tropicalof Trapped Lignin-Degrading Microbes in Tropical Forest Soil

  11. The 28th International Cosmic Ray Conference 1 The Alpha Magnetic Spectrometer on the International

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    The 28th International Cosmic Ray Conference 1 The Alpha Magnetic Spectrometer on the International", I.N.F.N Sez. Roma1, Roma, Italy Abstract The Alpha Magnetic Spectrometer (AMS) is a particle physics Academy Press, Inc. #12;2 Fig. 1. The Alpha Magnetic Spectrometer on the International Space Station. e

  12. High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source

    E-Print Network [OSTI]

    High-precision CO2 isotopologue spectrometer with a difference-frequency-generation laser source A precision laser spectrometer for the detection of CO2 isotopes is reported. The spectrometer measures the fundamental absorption signatures of 13 C and 12 C isotopes in CO2 at 4.32 m using a tunable mid-IR laser

  13. Exciton self-trapping in bulk polyethylene

    E-Print Network [OSTI]

    D. Ceresoli; M. C. Righi; E. Tosatti; S. Scandolo; G. Santoro; S. Serra

    2005-07-13

    We studied theoretically the behavior of an injected electron-hole pair in crystalline polyethylene. Time-dependent adiabatic evolution by ab-initio molecular dynamics simulations show that the pair will become self-trapped in the perfect crystal, with a trapping energy of about 0.38 eV, with formation of a pair of trans-gauche conformational defects, three C$_2$H$_4$ units apart on the same chain. The electron is confined in the inter-chain pocket created by a local, 120$^\\circ$ rotation of the chain between the two defects, while the hole resides on the chain and is much less bound. Despite the large energy stored in the trapped excitation, there does not appear to be a direct non-radiative channel for electron-hole recombination. This suggests that intrinsic self-trapping of electron-hole pairs inside the ideal quasi-crystalline fraction of PE might not be directly relevant for electrical damage in high-voltage cables.

  14. Steam Trap Maintenance as a Profit Center 

    E-Print Network [OSTI]

    Bouchillon, J. L.

    1996-01-01

    program at a large, 4000 trap chemical plant. The previously "good" maintenance program which was losing $565,000 per year in steam was turned into a $485,000 per year cost savings. This paper will also give the steps that can in as few as 3 months...

  15. Emerald Ash Borer TEXAS TRAPPING PROJECT

    E-Print Network [OSTI]

    Emerald Ash Borer TEXAS TRAPPING PROJECT East Texas 2012 H. A. (Joe) Pase III Texas Forest Service Forest Health #12;#12;How To Identify Ash Trees Consider these quick points when identifying ash trees the EAB survey, ash trees do not need to be identified to species) Texas is home to at least six (6

  16. Selection, Sizing, and Testing of Stream Traps in Commercial Buildings 

    E-Print Network [OSTI]

    Armer, A.; Risko, J. R.

    1984-01-01

    For maximum effectiveness in steam systems, steam traps should have operating characteristics which closely match the requirements of the applications for which they are used. A trap which holds back condensate until it is subcooled and some...

  17. Efficient light-trapping nanostructures in thin silicon solar cells

    E-Print Network [OSTI]

    Han, Sang Eon

    We examine light-trapping in thin crystalline silicon periodic nanostructures for solar cell applications. Using group theory, we show that light-trapping can be improved over a broad band when structural mirror symmetry ...

  18. Energy Efficient Steam Trapping of Trace Heating Systems 

    E-Print Network [OSTI]

    Krueger, R. G.; Wilt, G. W.

    1981-01-01

    required to achieve economic tracer lengths; 3. Maximum allowable trapping distance for specific applications 4.Data important to determine condensate loads; 5. Trap selection, sizing, good installation practices, and proper maintenance. Using...

  19. European Conference on Trapped Ions 1924 September 2010

    E-Print Network [OSTI]

    Hensinger, Winfried

    European Conference on Trapped Ions 1924 September 2010 Redworth Hall Conference Handbook Sponsored by: #12;ECTI 2010 Committees and Invited Wunderlich (Universität Siegen) ECTI 2010 1 #12;Scope of the Conference Ion traps are used as a basic tool

  20. Shuttling of ions for characterization of a microfabricated ion trap

    E-Print Network [OSTI]

    Fisher, Zachary (Zachary Kenneth)

    2012-01-01

    In this thesis, I present experimental results demonstrating the characterization of a planar Paul trap. I discuss the theory of ion trapping and analyze the voltages required for shuttling. Next, the characteristics of a ...

  1. Review of Orifice Plate Steam Traps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Orifice Plate Steam Traps Review of Orifice Plate Steam Traps This guide was prepared to serve as a foundation for making informed decisions about when orifice plate...

  2. Thermal Deactivation Mechanisms of Fully-Formed Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duty Linehaul Platform Project Update Effect of Thermal Aging on NO oxidation and NOx storage in a Fully-Formulated Lean NOx Trap Pt-free, Perovskite-based Lean NOx Trap Catalysts...

  3. Microfabrication of surface electrode ion traps for quantum manipulation

    E-Print Network [OSTI]

    Ge, Yufei, S.M. Massachusetts Institute of Technology

    2015-01-01

    Trapped ions are a promising approach to quantum computation. This approach uses a qubit state which is the atomic state and quantum motional state of a trapped ion to encode information, and uses laser-ion interactions ...

  4. Energy Savings with Computerized Steam Trap Maintenance Program 

    E-Print Network [OSTI]

    Klidzejs, A. M.

    1994-01-01

    This paper describes the efforts made at 3M Company plants to save energy in the steam distribution system by improving the maintenance of steam traps. The results from steam trap surveys for 17 facilities with over 6,400 ...

  5. Towards a cryogenic planar ion trap for Sr-88

    E-Print Network [OSTI]

    Bakr, Waseem (Waseem S.)

    2006-01-01

    This thesis describes experiments with ion traps constructed with electrodes in a single two-dimensional plane, and ion traps operated in a cryogenic environment at 77K and 4K temperatures. These two technologies address ...

  6. Carbon dioxide dissolution in structural and stratigraphic traps

    E-Print Network [OSTI]

    Hesse, M. A.

    The geologic sequestration of carbon dioxide (CO[subscript 2]) in structural and stratigraphic traps is a viable option to reduce anthropogenic emissions. While dissolution of the CO[subscript 2] stored in these traps ...

  7. Effective Steam Trap Selection/Maintenance - Its Payback 

    E-Print Network [OSTI]

    Garcia, E.

    1984-01-01

    In oil refineries and petrochemical plants large number of steam traps are used to discharge condensate from steam mains, tracers and process equipment. Early efforts on steam traps focused almost exclusively on their selection and sizing...

  8. Conversion electrons used to monitor the energy scale of electron spectrometer near tritium endpoint - a simulation study

    E-Print Network [OSTI]

    M. Rysavy

    2006-01-15

    Measurements of the endpoint region of the tritium beta-decay spectrum provides good possibility to determine neutrino mass. This, however, needs a perfect monitoring of the spectrometer energy scale. A parallel measurement of electron line of known energy - in particular the 83mKr conversion K-line - may serve well to this purpose. The 83Rb decaying to 83mKr seems to be a very suitable radioactive source due to its halflife of 86.2 day. In this work, we determine the amount of 83Rb which is necessary for a successful monitoring.

  9. An industrial hygiene survey of acetonitrile using a miniature quadrupole mass spectrometer 

    E-Print Network [OSTI]

    Bruss, Stacy M

    1999-01-01

    , the potential for worker exposure to acetonitrile vapors during the cleaning of a DNA-synthesizing process was demonstrated. Second, acetonitrile concentrations were measured from Tedlar bags filled in an organics-contaminated work environment and other bags...

  10. Investigation of gamma induced degradation of Amberlite 200 cation resin by mass spectrometer and liquid chromatograph 

    E-Print Network [OSTI]

    Freitag, Albert Antonio

    1977-01-01

    the liquid chromatograph setup. After the irradiations, the Cation Exchange Capacity (CEC), Salt-splitting Cation Capacity (SSCC) and solids content (both CEC and SSCC) of the control and irradiated resins were measured by the 6 following procedures. ~cd...' ' ' ? B f r t ~ t d h* i conditioned with the appropriate regenerant (4/ HC1 for CEC and 10E NaC1 for SSCC). The resin was partitioned into two columns, one for CEC and the other for SSCC. Ten bed volumes of the appropriate regenerant was passed...

  11. Multiple-ion-beam time-of-flight mass spectrometer Andreas Rohrbacher and Robert E. Continettia)

    E-Print Network [OSTI]

    Continetti, Robert E.

    spot was simultaneously irradiated by a beam of quadrupled Nd:YLF laser radiation 261.75 nm to produce with this detector. Experiments were performed using both metal atom cations Ti and Cr produced by laser desorption discovery of new catalysts,2,3 and the human ge- nome project4 have opened ways to attack important prob

  12. Development of a cold cathode ion source for a mass spectrometer type vacuum leak detector 

    E-Print Network [OSTI]

    Thomas, Harold Albert

    1947-01-01

    of cathode and ohmic loss of electrolyte significantly increases under reduced temperatures which lead to decreased cell performance and power output. To address the above issues, the efforts in this work are focused on engineering microstructure of cathode...

  13. The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach To Isomer-resolved Chemical Kinetics

    E-Print Network [OSTI]

    Osborne, David L.

    2009-01-01

    square-weave, yttria-stabilized zirconia cloth (ZYW-15, Zircar Zirconia, Inc. ) that is surrounded by the two

  14. Design and development of an ultrafine particle reflection-time-of-flight mass spectrometer 

    E-Print Network [OSTI]

    Das, Rishiraj

    2002-01-01

    by changing the upstream pressure of the inlet, which changes aerodynamic drag experienced by the particle. After its entry into the chamber, the particle is ablated by a high power excimer laser, which produces ions from the original molecular constituents...

  15. Evaluation of Technologies to Complement/Replace Mass Spectrometers in the Tritium Facilities

    SciTech Connect (OSTI)

    Tovo, L. L.; Lascola, R. J.; Spencer, W. A.; McWhorter, C. S.; Zeigler, K. E.

    2005-08-30

    The primary goal of this work is to determine the suitability of the Infraran sensor for use in the Palladium Membrane Reactor. This application presents a challenge for the sensor, since the process temperature exceeds its designed operating range. We have demonstrated that large baseline offsets, comparable to the sensor response to the analyte, are obtained if cool air is blown across the sensor. We have also shown that there is a strong environmental component to the noise. However, the current arrangement does not utilize a reference detector. The strong correlation between the CO and H{sub 2}O sensor responses to environmental changes indicate that a reference detector can greatly reduce the environmental sensitivity. In fact, incorporation of a reference detector is essential for the sensor to work in this application. We have also shown that the two sensor responses are adequately independent. Still, there are several small corrections which must to be made to the sensor response to accommodate chemical and physical effects. Interactions between the two analytes will alter the relationship between number density and pressure. Temperature and pressure broadening will alter the relationship between absorbance and number density. The individual effects are small--on the order of a few percent or less--but cumulatively significant. Still, corrections may be made if temperature and total pressure are independently measured and incorporated into a post-analysis routine. Such corrections are easily programmed and automated and do not represent a significant burden for installation. The measurements and simulations described above indicate that with appropriate corrections, the Infraran sensor can approach the 1-1.5% measurement accuracy required for effective PMR process control. It is also worth noting that the Infraran may be suitable for other gas sensing applications, especially those that do not need to be made in a high-temperature environment. Any gas with an infrared absorption (methane, ammonia, etc.) may be detected so long as an appropriate bandpass filter can be manufactured. Note that homonuclear diatomic molecules (hydrogen and its isotopes, nitrogen, oxygen) do not have infrared absorptions. We have shown that the sensor response may be adequately predicted using commercially available software. Measurement of trace concentrations is limited by the broad spectral bandpass, since the total signal includes non-absorbed frequencies. However, cells with longer pathlengths can be designed to address this problem.

  16. Organic magnetoresistance from deep traps N. J. Harmon1,a)

    E-Print Network [OSTI]

    Flatte, Michael E.

    ,16 Traps that exhibit strong spin-orbit effects can enhance organic light-emitting diode (OLED) emission

  17. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOE Patents [OSTI]

    Mowry, Curtis Dale (Albuquerque, NM); Thornberg, Steven Michael (Peralta, NM)

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  18. Commons as insurance: safety nets or poverty traps? Philippe Delacote

    E-Print Network [OSTI]

    Langerhans, Brian

    Commons as insurance: safety nets or poverty traps? Philippe Delacote Economics Department, EUI. The aim of this paper is to consider the potential poverty-trap implications of this use. If the capacity, the introduction of an insurance scheme could be an exit to the poverty trap and relax pressure on the resource

  19. Polarimeters and Energy Spectrometers for the ILC Beam Delivery System

    SciTech Connect (OSTI)

    Boogert, S.; /Royal Holloway, U. of London; Hildreth, M.; /Notre Dame U.; Kafer, D.; List, J.; Monig, K.; /DESY; Moffeit, K.C.; /SLAC; Moortgat-Pick, G.; /Durham U., IPPP; Riemann, S.; Schreiber, H.J.; Schuler, P.; /DESY; Torrence, E.; /Oregon U.; Woods, M.; /SLAC

    2009-02-24

    This article gives an overview of current plans and issues for polarimeters and energy spectrometers in the Beam Delivery System of the ILC. It is meant to serve as a useful reference for the Detector Letter of Intent documents currently being prepared. Concepts for high precision polarization and energy measurements exist. These concepts have resulted in detailed system layouts that are included in the RDR description for the Beam Delivery System. The RDR includes both upstream and downstream polarimeters and energy spectrometers for both beams. This provides needed complementarity and redundancy for achieving the precision required, with adequate control and demonstration of systematic errors. The BDS polarimeters and energy spectrometers need to be a joint effort of the ILC BDS team and the Detector collaborations, with collaboration members responsible for the performance and accuracy of the measurements. Details for this collaboration and assigning of responsibilities remain to be worked out. There is also a demonstrated need for Detector physicists to play an active role in the design and evaluation of accelerator components that impact beam polarization and beam energy capabilities, including the polarized source and spin rotator systems. A workshop was held in 2008 on ILC Polarization and Energy measurements, which resulted in a set of recommendations for the ILC design and operation. Additional input and action is needed on these from the Detector collaborations, the Research Director and the GDE. Work is continuing during the ILC engineering design phase to further optimize the polarimeter and energy spectrometer concepts and fully implement them in the ILC. This includes consideration for alternative methods, detailed design and cost estimates, and prototype and test beam activities.

  20. AMS - a magnetic spectrometer on the international space station

    E-Print Network [OSTI]

    Arruda, Luísa; Barão, Fernando; Barreira, Gaspar; Borges, João; Gonçalves, Patrícia; Pimenta, Mário

    2008-01-01

    The Alpha Magnetic Spectrometer (AMS) is a particle detector, designed to search for cosmic antimatter and dark matter and to study the elemental and isotopic composition of primary cosmic rays, that will be installed on the International Space Station (ISS) in 2008 to operate for at least three years. The detector will be equipped with a ring imaging Cherenkov detector (RICH) enabling measurements of particle electric charge and velocity with unprecedented accuracy. Physics prospects and test beam results are shortly presented.

  1. AMS - a magnetic spectrometer on the international space station

    E-Print Network [OSTI]

    Luísa Arruda; Rui Pereira; Fernando Barão; Gaspar Barreira; João Borges; Patrícia Gonçalves; Mário Pimenta

    2008-01-31

    The Alpha Magnetic Spectrometer (AMS) is a particle detector, designed to search for cosmic antimatter and dark matter and to study the elemental and isotopic composition of primary cosmic rays, that will be installed on the International Space Station (ISS) in 2008 to operate for at least three years. The detector will be equipped with a ring imaging Cherenkov detector (RICH) enabling measurements of particle electric charge and velocity with unprecedented accuracy. Physics prospects and test beam results are shortly presented.

  2. Extracting source parameters from beam monitors on a chopper spectrometer

    SciTech Connect (OSTI)

    Abernathy, Douglas L [ORNL; Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2015-01-01

    The intensity distributions of beam monitors in direct-geometry time-of-flight neutron spectrometers provide important information about the instrument resolution. For short-pulse spallation neutron sources in particular, the asymmetry of the source pulse may be extracted and compared to Monte Carlo source simulations. An explicit formula using a Gaussian-convolved Ikeda-Carpenter distribution is given and compared to data from the ARCS instrument at the Spallation Neutron Source.

  3. Polarization Measurements in Photoproduction with CEBAF Large Acceptance Spectrometer

    SciTech Connect (OSTI)

    E. Pasyuk

    2010-05-01

    A significant part of the experimental program in Hall-B of the Jefferson Lab is dedicated to the studies of the structure of baryons. CEBAF Large Acceptance Spectrometer (CLAS), availability of circularly and linearly polarized photon beams and recent addition of polarized targets provides remarkable opportunity for single, double and in some cases triple polarization measurements in photoproduction. An overview of the experiments will be presented.

  4. Time-of-flight direct recoil ion scattering spectrometer

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  5. A short working distance multiple crystal x-ray spectrometer

    SciTech Connect (OSTI)

    Dickinson, B.; Seidler, G. T.; Webb, Z. W.; Bradley, J. A.; Nagle, K. P. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Heald, S. M. [Advanced Photon Source, Argonne National Laboratories, Argonne, Illinois 60439 (United States); Gordon, R. A. [Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Chou, I. M. [U.S. Geological Survey, Reston, Virginia 20192 (United States)

    2008-12-15

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed {approx}1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K{beta} x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L{alpha}{sub 2} partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary.

  6. Non-vanishing ponderomotive AC electrophoretic effect for particle trapping

    SciTech Connect (OSTI)

    Guan, Weihau; Park, Jae Hyun nmn; Krstic, Predrag S; Reed, Mark A

    2011-01-01

    We present here a study on overlooked aspects of alternating current (AC) electrokinetics AC electrophoretic (ACEP) phenomena. The dynamics of a particle with both polarizability and net charges in a non-uniform AC electric trapping field is investigated. It is found that either electrophoretic (EP) or dielectrophoretic (DEP) effects can dominate the trapping dynamics, depending on experimental conditions. A dimensionless parameter gamma is developed to predict the relative strength of EP and DEP effects in a quadrupole AC field. An ACEP trap is feasible for charged particles in salt-free or low salt concentration solutions. In contrast to DEP traps, an ACEP trap favors the downscaling of the particle size.

  7. Dynamic trapping near a quantum critical point

    E-Print Network [OSTI]

    Michael Kolodrubetz; Emanuel Katz; Anatoli Polkovnikov

    2015-03-02

    The study of dynamics in closed quantum systems has recently been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins near a second order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon -- dynamic critical trapping -- in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus.

  8. Progress towards a practical multicell positron trap

    SciTech Connect (OSTI)

    Danielson, J. R. [Physics Department, University of California, San Diego La Jolla CA 92093-0319 (United States); Hurst, N. C.; Surko, C. M. [Physics Department, University of California, San Diego La Jolla CA 92093-0319 (United States)

    2013-03-19

    Described here is progress in an experimental program to develop a 21 cell multicell trap for the accumulation and storage of {approx} 10{sup 12} positrons. The basic architecture is an arrangement of multiple Penning-Malmberg (PM) trapped plasmas (i.e., cells) arranged in parallel in a common vacuum system and magnetic field. Experiments are described that are intended to address several key issues, including the effects of large space charge potentials and high plasma densities on: plasma heating, deterioration of confinement, and decreased efficiency of rotating electric fields in producing plasma compression. The confinement of PM plasmas displaced both radially and toward the ends of the uniform magnetic field region will also be investigated.

  9. Mexico City Aerosol Analysis During Milagro Using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0) - Part 1: Fine Particle Composition and Organic Source Apportionment.

    E-Print Network [OSTI]

    Aiken, A. C.

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive ...

  10. Transport quantum logic gates for trapped ions

    E-Print Network [OSTI]

    D. Leibfried; E. Knill; C. Ospelkaus; D. J. Wineland

    2007-08-28

    Many efforts are currently underway to build a device capable of large scale quantum information processing (QIP). Whereas QIP has been demonstrated for a few qubits in several systems, many technical difficulties must be overcome in order to construct a large-scale device. In one proposal for large-scale QIP, trapped ions are manipulated by precisely controlled light pulses and moved through and stored in multizone trap arrays. The technical overhead necessary to precisely control both the ion geometrical configurations and the laser interactions is demanding. Here we propose methods that significantly reduce the overhead on laser beam control for performing single and multiple qubit operations on trapped ions. We show how a universal set of operations can be implemented by controlled transport of ions through stationary laser beams. At the same time, each laser beam can be used to perform many operations in parallel, potentially reducing the total laser power necessary to carry out QIP tasks. The overall setup necessary for implementing transport gates is simpler than for gates executed on stationary ions. We also suggest a transport-based two-qubit gate scheme utilizing microfabricated permanent magnets that can be executed without laser light.

  11. Trapped ion scaling with pulsed fast gates

    E-Print Network [OSTI]

    C. D. B. Bentley; A. R. R. Carvalho; J. J. Hope

    2015-07-10

    Fast entangling gates for trapped ions offer vastly improved gate operation times relative to implemented gates, as well as approaches to trap scaling. Gates on neighbouring ions only involve local ions when performed sufficiently fast, and we find that even a fast gate between distant ions with few degrees of freedom restores all the motional modes given more stringent gate speed conditions. We compare pulsed fast gate schemes, defined by a timescale faster than the trap period, and find that our proposed scheme has less stringent requirements on laser repetition rate for achieving arbitrary gate time targets and infidelities well below $10^{-4}$. By extending gate schemes to ion crystals, we explore the effect of ion number on gate fidelity for coupling neighbouring pairs of ions in large crystals. Inter-ion distance determines the gate time, and a factor of five increase in repetition rate, or correspondingly the laser power, reduces the infidelity by almost two orders of magnitude. We also apply our fast gate scheme to entangle the first and last ions in a crystal. As the number of ions in the crystal increases, significant increases in the laser power are required to provide the short gate times corresponding to fidelity above 0.99.

  12. Further developments of capillary absorption spectrometers using small hollow-waveguide fibers

    SciTech Connect (OSTI)

    Kelly, James F.; Sams, Robert L.; Blake, Thomas A.; Kriesel, Jason M.

    2014-05-01

    Our objective is to enhance quantification of stable carbon and oxygen isotope ratios to better than 1‰ relative isotope precision for sample sizes < 1 pico-mole. A newer variant Capillary Absorption Spectrometer (CAS) is described using a proprietary linear-taper hollow waveguide in conjunction with wavelength and frequency modulation techniques of tunable laser absorption spectrometry. Previous work used circular capillaries with uniform 1 mm ID to measure 13C/12C ratios with ? 20 pico-mole samples to ? 10 ppm (1‰ precision against standards) [1]. While performing fairly well, it generated residual modal noise due to multipath propagation in the hollow-waveguides (HWGs). This system has been utilized with laser ablation-catalytic combustion techniques to analyze small resolution (~ 25 ?m spot diameter) laser ablation events on solids. Using smaller ID capillary waveguides could improve detection limits and spatial resolutions. Reducing an IR compatible hollow waveguide’s inner diameter (ID) to < 300 ?m, reduces modal noise significantly for mid-IR operation, but feedback noise with high gain semiconductor lasers can become problematic. A proprietary linear-taper small waveguide (mean ID = 0.35 mm, L = 1 m) was tested to understand whether modal noise and optical feedback effects could be simultaneously reduced. We see better mode filtering and, significant reductions of feedback noise under favorable coupling of a multi-spatial mode QC laser to the smaller ID of the linear-tapered HWG. We demonstrate that better modal coupling operation is consistent with Liouville’s theorem, where greater suppression of feedback from spurious scatter within the HWG occurs by injecting the laser into the smaller ID port. Our progress on developing lighter weight, potentially fieldable alternatives to Isotope Ratio Mass Spectrometers (IRMS) with a small volume (? 0.1 cm3) CAS system will be discussed and compared to other competitive systems.

  13. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    SciTech Connect (OSTI)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels, E.

    2006-05-15

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.

  14. Zinc-oxide charge trapping memory cell with ultra-thin chromium-oxide trapping layer

    SciTech Connect (OSTI)

    El-Atab, Nazek; Rizk, Ayman; Nayfeh, Ammar; Okyay, Ali K.; UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara

    2013-11-15

    A functional zinc-oxide based SONOS memory cell with ultra-thin chromium oxide trapping layer was fabricated. A 5 nm CrO{sub 2} layer is deposited between Atomic Layer Deposition (ALD) steps. A threshold voltage (V{sub t}) shift of 2.6V was achieved with a 10V programming voltage. Also for a 2V V{sub t} shift, the memory with CrO{sub 2} layer has a low programming voltage of 7.2V. Moreover, the deep trapping levels in CrO{sub 2} layer allows for additional scaling of the tunnel oxide due to an increase in the retention time. In addition, the structure was simulated using Physics Based TCAD. The results of the simulation fit very well with the experimental results providing an understanding of the charge trapping and tunneling physics.

  15. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    DOE Patents [OSTI]

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  16. Positron lifetime spectrometer using a DC positron beam

    DOE Patents [OSTI]

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  17. A 100-kc modulation system for an EPR microwave spectrometer 

    E-Print Network [OSTI]

    Stewart, Frank Edwin

    1964-01-01

    (1); how- ever, g will differ from the "spin-only" value given by Equation (3) ~ The deviation oi' g from that value is a measure of the degree to which the orbital angular momentum is effective in generating the paramagnetism associated... spectrometers require unpaired spin concentrations 10 greater than 10 for detection. The collective effects of a large number of electron paramagnets, called spina, will now be investigated. Let N be the total number of spins per unit volume in the 0 sample...

  18. The Alpha Magnetic Spectrometer on the International Space Station

    E-Print Network [OSTI]

    Carmen Palomares

    2005-05-20

    The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to operate on the International Space Station (ISS). The aim of AMS is the direct detection of charged particles in the rigidity range from 0.5 GV to few TV to perform high statistics studies of cosmic rays in space and search for antimatter and dark matter. This will be possible because of the large geometrical acceptance, a very accurate energy determination and a very precise particle identification through redundant measurements of its energy, velocity and electric charge. AMS is scheduled to be placed on the ISS at the beginning of 2008 for a 3 year exposure.

  19. Cryostat for Ultra-low-energy Threshold Germanium Spectrometers

    SciTech Connect (OSTI)

    Aalseth, Craig E.; Bonicalzi, Ricco; Fast, James E.; Hossbach, Todd W.; Orrell, John L.; Overman, Cory T.; VanDevender, Brent A.

    2013-04-01

    Abstract: This paper presents progress on the development of a cryostat intended to improve upon the low-energy threshold (below 0.5 keV) of p-type point contact germanium gamma-ray spectrometers. Ultra-low energy thresholds are important in the detection of low-energy nuclear recoils, an event class relevant to both dark matter direct detection and measurement of coherent neutrino-nucleus scattering. The cryostat design, including a thermal and electrical-field model, is presented. A prototype cryostat has been assembled and data acquired to evaluate its vacuum and thermal performance.

  20. Cryostat for Ultra-low-energy Threshold Germanium Spectrometers

    E-Print Network [OSTI]

    Craig E. Aalseth; Ricco M. Bonicalzi; James E. Fast; Todd W. Hossbach; John L. Orrell; Cory T. Overman; Brent A. Vandevender

    2012-10-08

    This paper presents progress on the development of a cryostat intended to improve upon the low-energy threshold (below 0.5 keV) of p-type point contact germanium gamma-ray spectrometers. Ultra-low energy thresholds are important in the detection of low-energy nuclear recoils, an event class relevant to both dark matter direct detection and measurement of coherent neutrino-nucleus scattering. The cryostat design, including a thermal and electrical-field model, is given. A prototype cryostat has been assembled and data acquired to evaluate its vacuum and thermal performance.

  1. Two RICH detectors as velocity spectrometers in the CKM experiment

    SciTech Connect (OSTI)

    Jurgen Engelfried et al.

    2002-09-04

    We present the design of two velocity spectrometers, to be used in the recently approved CKM experiment. CKM's main goal is the measurement of the branching ratio of K{sup +} {yields} {pi}{sup +} {nu}{bar {nu}} with a precision of 10%, via decays in flight of the K{sup +}. The design of both RICH detectors is based on the SELEX Phototube RICH. We will discuss the design and the expected performance, based on studies with SELEX data and Monte Carlo Simulations.

  2. Testing Wavefunction Collapse Models using Parametric Heating of a Trapped Nanosphere

    E-Print Network [OSTI]

    Daniel Goldwater; Mauro Paternostro; P. F. Barker

    2015-06-29

    We propose a mechanism for testing the theory of continuous spontaneous localization (CSL) by examining the parametric heating rate of a trapped nanosphere. The random localizations of the centre of mass for a given particle predicted by the CSL model can be modelled as a stochastic force embodying a source of heating for the nanosphere. We show that by utilising a Paul trap to levitate the particle coupled with optical cooling, it is possible to reduce environmental decoherence to such a level that CSL dominates the dynamics and contributes the main source of heating. We show that this approach allows measurements to be made on the timescale of seconds, and that the full parameter ranges given by Adler [J. Phys. A {\\bf 40} 2935 (2006)] and Bassi [EPL {\\bf 92} 5006 (2010)] ought to be testable using this scheme.

  3. Self-Trapping of Diskoseismic Corrugation Modes in Neutron Star Spacetimes

    E-Print Network [OSTI]

    Tsang, David

    2015-01-01

    We examine the effects of higher-order multipole contributions of rotating neutron star (NS) spacetimes on the propagation of corrugation (c-)modes within a thin accretion disk. We find that the Lense-Thirring precession frequency, which determines the propagation region of the low-frequency fundamental corrugation modes, can experience a turnover allowing for c-modes to become self-trapped for sufficiently high dimensionless spin $j$ and quadrupole rotational deformability $\\alpha$. If such self-trapping c-modes can be detected, e.g. through phase-resolved spectroscopy of the iron line for a high-spin low-mass accreting neutron star, this could potentially constrain the spin-induced NS quadrupole and the NS equation of state.

  4. Hidden in the Light: Magnetically Induced Afterglow from Trapped Chameleon Fields

    E-Print Network [OSTI]

    Holger Gies; David F. Mota; Douglas J. Shaw

    2008-01-07

    We propose an afterglow phenomenon as a unique trace of chameleon fields in optical experiments. The vacuum interaction of a laser pulse with a magnetic field can lead to a production and subsequent trapping of chameleons in the vacuum chamber, owing to their mass dependence on the ambient matter density. Magnetically induced re-conversion of the trapped chameleons into photons creates an afterglow over macroscopic timescales that can conveniently be searched for by current optical experiments. We show that the chameleon parameter range accessible to available laboratory technology is comparable to scales familiar from astrophysical stellar energy loss arguments. We analyze quantitatively the afterglow properties for various experimental scenarios and discuss the role of potential background and systematic effects. We conclude that afterglow searches represent an ideal tool to aim at the production and detection of cosmologically relevant scalar fields in the laboratory.

  5. A solenoidal electron spectrometer for a precision measurement of the neutron $?$-asymmetry with ultracold neutrons

    E-Print Network [OSTI]

    B. Plaster; R. Carr; B. W. Filippone; D. Harrison; J. Hsiao; T. M. Ito; J. Liu; J. W. Martin; B. Tipton; J. Yuan

    2008-06-12

    We describe an electron spectrometer designed for a precision measurement of the neutron $\\beta$-asymmetry with spin-polarized ultracold neutrons. The spectrometer consists of a 1.0-Tesla solenoidal field with two identical multiwire proportional chamber and plastic scintillator electron detector packages situated within 0.6-Tesla field-expansion regions. Select results from performance studies of the spectrometer with calibration sources are reported.

  6. Optical apparatus for forming correlation spectrometers and optical processors

    DOE Patents [OSTI]

    Butler, M.A.; Ricco, A.J.; Sinclair, M.B.; Senturia, S.D.

    1999-05-18

    Optical apparatus is disclosed for forming correlation spectrometers and optical processors. The optical apparatus comprises one or more diffractive optical elements formed on a substrate for receiving light from a source and processing the incident light. The optical apparatus includes an addressing element for alternately addressing each diffractive optical element thereof to produce for one unit of time a first correlation with the incident light, and to produce for a different unit of time a second correlation with the incident light that is different from the first correlation. In preferred embodiments of the invention, the optical apparatus is in the form of a correlation spectrometer; and in other embodiments, the apparatus is in the form of an optical processor. In some embodiments, the optical apparatus comprises a plurality of diffractive optical elements on a common substrate for forming first and second gratings that alternately intercept the incident light for different units of time. In other embodiments, the optical apparatus includes an electrically-programmable diffraction grating that may be alternately switched between a plurality of grating states thereof for processing the incident light. The optical apparatus may be formed, at least in part, by a micromachining process. 24 figs.

  7. ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC

    E-Print Network [OSTI]

    Valderanis, Chrysostomos; The ATLAS collaboration

    2015-01-01

    ATLAS Muon Spectrometer Upgrades for the High Luminosity LHC The luminosity of the LHC will increase up to 2x10^34 cm-2s-1 after the long shutdown in 2019 (phase-1 upgrade) and up to 7x10^34 cm-2s-1 after the long shutdown in 2025 (phase-2 upgrade). In order to cope with the increased particle fluxes, upgrades are envisioned for the ATLAS muon spectrometer. At phase-1, the current innermost stations of the ATLAS muon endcap tracking system (the Small Wheels) will be upgraded with 2x4-layer modules of Micromega detectors, sandwiched by two 4 layer modules of small strip Thin Gap Chambers on either side. Each 4-layer module of the so-called New Small Wheels covers a surface area of approximately 2 to 3 m2 for a total active area of 1200 m2 each for the two technologies. On such large area detectors, the mechanical precision (30 \\mu m along the precision coordinate and 80 \\mu m along the beam) is a key point and must be controlled and monitored along the process of construction and integration. The design and re...

  8. Light ion transfer reactions with the HELIOS spectrometer

    SciTech Connect (OSTI)

    Back, B. B.; Collaboration: HELIOS Collaboration

    2012-10-20

    Light-ion induced transfer and inelastic scattering reactions on stable or long-lived targets have been used extensively to study the structure of nuclei near the line of {beta}-stability, and much of the detailed information on the single-particle structure of nuclei has been derived from such studies. Recently, however, a substantial expansion of the range of isotopes, for which this nuclear structure information can be obtained, has presented itself by using radioactive beams in inverse kinematics reactions. Such beams are now available at a number of facilities around the world, including the in-flight production method and CARIBU facility at ATLAS. The HELIOS spectrometer, which has been used since August 2008 at ATLAS, circumvents many of the problems associated with inverse kinematics. In this talk I will discuss the principle of the spectrometer as well as some of main physics results that have been obtained to date in nuclei ranging from {sup 13}B to {sup 137}Xe using both stable and radioactive beams.

  9. Progress on the Modeling and Modification of the MICE Superconducting Spectrometer Solenoids

    E-Print Network [OSTI]

    Virostek, S.P.

    2013-01-01

    IEEE Transactions on Applied Superconductivity 15, No. 2, p.E E Transactions on Applied Superconductivity 15, No. 2, p.and Modeling of the MICE Superconducting Spectrometer

  10. Update on the Modification and Testing of the MICE Superconducting Spectrometer Solenoids

    E-Print Network [OSTI]

    Virostek, S.P.

    2013-01-01

    IEEE Transactions on Applied Superconductivity 15, No. 2, p.IEEE Transactions on Applied Superconductivity 15, No. 2, p.TESTING OF THE MICE SUPERCONDUCTING SPECTROMETER SOLENOIDS*

  11. A NOVEL X-RAY IMAGING CRYSTAL SPECTROMETER FOR DOPPLER MEASUREMENTS...

    Office of Scientific and Technical Information (OSTI)

    new spectrometer concept is also of interest for the diagnosis of burning plasmas on future machines. This paper presents recent experimental results from Aclator C-Mod and...

  12. Small system for tritium accelerator mass spectrometry

    DOE Patents [OSTI]

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  13. Two dipolar atoms in a harmonic trap

    E-Print Network [OSTI]

    O?dziejewski, Rafa?; Rz??ewski, Kazimierz

    2015-01-01

    Two identical dipolar atoms moving in a harmonic trap without an external magnetic field are investigated. Using the algebra of angular momentum a semi - analytical solutions are found. We show that the internal spin - spin interactions between the atoms couple to the orbital angular momentum causing an analogue of Einstein - de Haas effect. We show a possibility of adiabatically pumping our system from the s-wave to the d-wave relative motion. The effective spin-orbit coupling occurs at anti-crossings of the energy levels.

  14. Energy Conservation Through Effective Steam Trapping 

    E-Print Network [OSTI]

    Diamante, L.; Nagengast, C.

    1979-01-01

    the bottom edge and out, the bucket becomes bouyant, floats up, closes the valve and the flow stops. The slight static pressure the water around the bucket exerts on the steam inside will begin to drive it out through the small hole in the top we spoke... at which condensate is forming, thus steam will eventually flow into the trap. Steam unlike condensate, or air in a relative sense, is highly compressible and will undergo a substantial volume change in expanding from the inlet to outlet pressure...

  15. Cooling trapped atoms in optical resonators

    E-Print Network [OSTI]

    Stefano Zippilli; Giovanna Morigi

    2007-03-20

    We derive an equation for the cooling dynamics of the quantum motion of an atom trapped by an external potential inside an optical resonator. This equation has broad validity and allows us to identify novel regimes where the motion can be efficiently cooled to the potential ground state. Our result shows that the motion is critically affected by quantum correlations induced by the mechanical coupling with the resonator, which may lead to selective suppression of certain transitions for the appropriate parameters regimes, thereby increasing the cooling efficiency.

  16. Isotopic abundance in atom trap trace analysis

    DOE Patents [OSTI]

    Lu, Zheng-Tian; Hu, Shiu-Ming; Jiang, Wei; Mueller, Peter

    2014-03-18

    A method and system for detecting ratios and amounts of isotopes of noble gases. The method and system is constructed to be able to measure noble gas isotopes in water and ice, which helps reveal the geological age of the samples and understand their movements. The method and system uses a combination of a cooled discharge source, a beam collimator, a beam slower and magneto-optic trap with a laser to apply resonance frequency energy to the noble gas to be quenched and detected.

  17. Gas turbine engines with particle traps

    DOE Patents [OSTI]

    Boyd, Gary L. (Tempe, AZ); Sumner, D. Warren (Phoenix, AZ); Sheoran, Yogendra (Scottsdale, AZ); Judd, Z. Daniel (Phoenix, AZ)

    1992-01-01

    A gas turbine engine (10) incorporates a particle trap (46) that forms an entrapment region (73) in a plenum (24) which extends from within the combustor (18) to the inlet (32) of a radial-inflow turbine (52, 54). The engine (10) is thereby adapted to entrap particles that originate downstream from the compressor (14) and are otherwise propelled by combustion gas (22) into the turbine (52, 54). Carbonaceous particles that are dislodged from the inner wall (50) of the combustor (18) are incinerated within the entrapment region (73) during operation of the engine (10).

  18. Focused analyte spray emission apparatus and process for mass spectrometric analysis

    DOE Patents [OSTI]

    Roach, Patrick J. (Kennewick, WA); Laskin, Julia (Richland, WA); Laskin, Alexander (Richland, WA)

    2012-01-17

    An apparatus and process are disclosed that deliver an analyte deposited on a substrate to a mass spectrometer that provides for trace analysis of complex organic analytes. Analytes are probed using a small droplet of solvent that is formed at the junction between two capillaries. A supply capillary maintains the droplet of solvent on the substrate; a collection capillary collects analyte desorbed from the surface and emits analyte ions as a focused spray to the inlet of a mass spectrometer for analysis. The invention enables efficient separation of desorption and ionization events, providing enhanced control over transport and ionization of the analyte.

  19. Corrections to our results for optical nanofiber traps in Cesium

    E-Print Network [OSTI]

    D. Ding; A. Goban; K. S. Choi; H. J. Kimble

    2012-12-20

    Several errors in Refs. [1, 2] are corrected related to the optical trapping potentials for a state-insensitive, compensated nanofiber trap for the D2 transition of atomic Cesium. Section I corrects our basic formalism in Ref. [1] for calculating dipole-force potentials. Section II corrects erroneous values for a partial lifetime and a transition wavelength in Ref. [1]. Sections III and IV present corrected figures for various trapping configurations considered in Refs. [1] and [2], respectively.

  20. Gas insulated transmission line having tapered particle trapping ring

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA)

    1982-01-01

    A gas-insulated transmission line includes an outer sheath, an inner conductor, insulating supports and an insulating gas. A particle-trapping ring is secured to each insulating support, and it is comprised of a central portion and two tapered end portions. The ends of the particle trapping ring have a smaller diameter than the central portion of the ring, so as to enable the use of the particle trapping ring in a curved transmission line.

  1. High-resolution grazing-incidence grating spectrometer for temperature measurements of low-Z ions emitting in the 100–300 Å spectral band

    SciTech Connect (OSTI)

    Widmann, K., E-mail: widmann1@llnl.gov; Beiersdorfer, P.; Magee, E. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Boyle, D. P.; Kaita, R.; Majeski, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    We have constructed a high-resolution grazing-incidence spectrometer designed for measuring the ion temperature of low-Z elements, such as Li{sup +} or Li{sup 2+}, which radiate near 199 Å and 135 Å, respectively. Based on measurements at the Livermore Electron Beam Ion Trap we have shown that the instrumental resolution is better than 48 mÅ at the 200 Å setting and better than 40 mÅ for the 135-Å range. Such a high spectral resolution corresponds to an instrumental limit for line-width based temperature measurements of about 45 eV for the 199 Å Li{sup +} and 65 eV for the 135 Å Li{sup 2+} lines. Recently obtained survey spectra from the Lithium Tokamak Experiment at the Princeton Plasma Physics Laboratory show the presence of these lithium emission lines and the expected core ion temperature of approximately 70 eV is sufficiently high to demonstrate the feasibility of utilizing our high-resolution spectrometer as an ion-temperature diagnostic.

  2. Ion temperature gradient driven turbulence with strong trapped...

    Office of Scientific and Technical Information (OSTI)

    depends on ion free energy and electron dissipation, which implies that non-adiabatic electrons are essential to recover non-trivial dynamics of trapped ion granulations. Relevant...

  3. Dynamically adjustable annular laser trapping based on axicons

    SciTech Connect (OSTI)

    Shao, Bing; Esener, Sadik C.; Nascimento, Jaclyn M.; Botvinick, Elliot L.; Berns, Michael W

    2006-09-01

    To study the chemotactic response of sperm to an egg and to characterize sperm motility, an annular laser trap based on axicons is designed, simulated with the ray-tracing tool, and implemented. The diameter of the trapping ring can be adjusted dynamically for a range of over 400 {mu}m by simply translating one axicon along the optical axis. Trapping experiments with microspheres and dog sperm demonstrate the feasibility of the system,and the power requirement agrees with theoretical expectation. This new type of laser trapping could provide a prototype of a parallel, objective, and quantitative tool for animal fertility and biotropism study.

  4. Investigation of Aging Mechanisms in Lean NOx Traps | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigation of Aging Mechanisms in Lean NOx Traps Functionality of Commercial NOx Storage-Reduction Catalysts and the Development of a Representative Model Development...

  5. Bait formulations and longevity of navel orangeworm egg traps tested

    E-Print Network [OSTI]

    Kuenen, L.P.S. Bas; Bentley, Walt; Rowe, Heather; Ribeiro, Brian

    2008-01-01

    there were 1% or 3% crude almond oil received more eggshaving no letters crude almond oil or traps baited with inone standard error. crude almond oil received significantly

  6. Inspect and Repair Steam Traps, Energy Tips: STEAM, Steam Tip...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    installed steam traps may have failed-thus allowing live steam to escape into the condensate return system. In systems with a regularly scheduled maintenance program, leaking...

  7. Wavebreaking and Particle Trapping in Collisionless Plasmas: Final Report

    SciTech Connect (OSTI)

    Shadwick, Bradley A [University of Nebraska-Lincoln

    2013-08-01

    The final report describing accomplishments in understanding phase-space processes involved in particle trapping and in developing advance numerical models of laser-plasma interactions.

  8. Anomalous dynamic behaviour of optically trapped high aspect ratio nanowires

    E-Print Network [OSTI]

    Toe, Wen Jun; Angstmann, Christopher; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati; Henry, Bruce; Reece, Peter J

    2015-01-01

    We investigate the dynamics of high aspect ratio nanowires trapped axially in a single gradient force optical tweezers. A power spectrum analysis of the Brownian dynamics reveals a broad spectral resonance of the order of a kHz with peak properties that are strongly dependent on the input trapping power. Modelling of the dynamical equations of motion of the trapped nanowire that incorporate non-conservative effects through asymmetric coupling between translational and rotational degrees of freedom provides excellent agreement with the experimental observations. An associated observation of persistent cyclical motion around the equilibrium trapping position using winding analysis provides further evidence for the influence of non-conservative forces.

  9. Neutron-Mirror-Neutron Oscillations in a Trap

    E-Print Network [OSTI]

    B. Kerbikov; O. Lychkovskiy

    2008-06-01

    We calculate the rate of neutron-mirror-neutron oscillations for ultracold neutrons trapped in a storage vessel. Recent experimental bounds on the oscillation time are discussed.

  10. Light Trapping, Absorption and Solar Energy Harvesting by Artificial...

    Office of Scientific and Technical Information (OSTI)

    Org: USDOE Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY light-trapping, photonic crystals, high-efficiency thin-film solar cells Word Cloud...

  11. Ratchet Cellular Automata for Colloids in Dynamic Traps

    E-Print Network [OSTI]

    C. J. Olson Reichhardt; C. Reichhardt

    2006-02-13

    We numerically investigate the transport of kinks in a ratchet cellular automata geometry for colloids interacting with dynamical traps. We find that thermal effects can enhance the transport efficiency in agreement with recent experiments. At high temperatures we observe the creation and annihilation of thermally induced kinks that degrade the signal transmission. We consider both the deterministic and stochastic cases and show how the trap geometry can be adjusted to switch between these two cases. The operation of the dynamical trap geometry can be achieved with the adjustment of fewer parameters than ratchet cellular automata constructed using static traps.

  12. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Diesel Emission Control Technology Review Investigation of Aging Mechanisms in Lean NOx Traps Diesel Particulate Filters: Market Introducution...

  13. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers

    SciTech Connect (OSTI)

    Alejo, A.; Kar, S. Ahmed, H.; Doria, D.; Green, A.; Jung, D.; Lewis, C. L. S.; Nersisyan, G.; Krygier, A. G.; Freeman, R. R.; Clarke, R.; Green, J. S.; Notley, M.; Fernandez, J.; Fuchs, J.; Kleinschmidt, A.; Roth, M.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; and others

    2014-09-15

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C{sup 6+}, O{sup 8+}, etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser.

  14. Quark Masses

    SciTech Connect (OSTI)

    Gasser, Juerg

    2005-10-26

    In my talk, I reviewed some basic aspects of quark masses: what do they mean, how can they be determined, what is our present knowledge on them. The talk was addressed to non specialists in the field, and so is this write up.

  15. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-26

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  16. Plasma Mass Filters For Nuclear Waste Reprocessing

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-05-25

    Practical disposal of nuclear waste requires high-throughput separation techniques. The most dangerous part of nuclear waste is the fission product, which contains the most active and mobile radioisotopes and produces most of the heat. We suggest that the fission products could be separated as a group from nuclear waste using plasma mass filters. Plasmabased processes are well suited to separating nuclear waste, because mass rather than chemical properties are used for separation. A single plasma stage can replace several stages of chemical separation, producing separate streams of bulk elements, fission products, and actinoids. The plasma mass filters may have lower cost and produce less auxiliary waste than chemical processing plants. Three rotating plasma configurations are considered that act as mass filters: the plasma centrifuge, the Ohkawa filter, and the asymmetric centrifugal trap.

  17. Mesoscopic supersolid of dipoles in a trap

    SciTech Connect (OSTI)

    Golomedov, A. E.; Astrakharchik, G. E.; Lozovik, Yu. E.

    2011-09-15

    A mesoscopic system of dipolar bosons trapped by a harmonic potential is considered. The system has a number of physical realizations including dipole excitons, atoms with large dipolar moment, polar molecules, and Rydberg atoms in inhomogeneous electric field. We carry out a diffusion Monte Carlo simulation to define the quantum properties of a two-dimensional system of trapped dipoles at zero temperature. In dimensionless units the system is described by two control parameters, namely, the number of particles and the strength of the interparticle interaction. We have shown that when the interparticle interaction is strong enough a mesoscopic crystal is formed. As the strength of interactions is decreased a multistage melting takes place. Off-diagonal order in the system is tested using natural-orbitals analysis. We have found that the system might be Bose condensed even in the case of strong interparticle interactions. There is a set of parameters for which a spatially ordered structure is formed while simultaneously the fraction of Bose-condensed particles is nonzero. This might be considered as a realization of a mesoscopic supersolid.

  18. Energy trapping from Hagedorn densities of states

    E-Print Network [OSTI]

    Connor Behan; Klaus Larjo; Nima Lashkari; Brian Swingle; Mark Van Raamsdonk

    2013-04-26

    In this note, we construct simple stochastic toy models for holographic gauge theories in which distributions of energy on a collection of sites evolve by a master equation with some specified transition rates. We build in only energy conservation, locality, and the standard thermodynamic requirement that all states with a given energy are equally likely in equilibrium. In these models, we investigate the qualitative behavior of the dynamics of the energy distributions for different choices of the density of states for the individual sites. For typical field theory densities of states (\\log(\\rho(E)) ~ E^{\\alphaenergy spread out relatively quickly. For large N gauge theories with gravitational duals, the density of states for a finite volume of field theory degrees of freedom typically includes a Hagedorn regime (\\log(\\rho(E)) ~ E). We find that this gives rise to a trapping of energy in subsets of degrees of freedom for parametrically long time scales before the energy leaks away. We speculate that this Hagedorn trapping may be part of a holographic explanation for long-lived gravitational bound states (black holes) in gravitational theories.

  19. Eolian paleotopographic highs as stratigraphic traps: origin and distinction

    SciTech Connect (OSTI)

    Eschner, T.B.; Kocurek, G.A.

    1985-02-01

    Significant hydrocarbon accumulations occur where eolian paleotopographic highs are preserved beneath transgressive marine deposits. Paleotopographic highs can represent erosional remnants of an unconformity, or partly preserved eolian dunes, or combinations of both. Paleotopography reflects the extent of modification undergone by eolian units prior to or during transgression. Modification varies between extremes of (1) destruction - where eolian deposits are deeply eroded and the former dunal profile is lost, and (2) preservation - where dunes and interdune areas are preserved nearly intact. The extent of modification that occurs during transgression is controlled primarily by (1) the energy of the transgressing sea, (2) the speed of transgression, and (3) the abundance of sand-stabilizing early cements or plants. High-energy seas destroy dunes through persistent erosion by tides and waves and by initiating dune collapse and mass flowage of dune sands. Preservation occurs where quiescent seas flood interdune areas and create shallow to periodically emergent marine environments, such as interdune sabkhas or tidal flats. Gradual filling of interdune areas with shallow marine sediments can fortify and preserve adjacent dunes. These varied processes that interact between marine and eolian environments to create different types of topography are exemplified in ancient eolian-marine sequences of the Western Interior of North America, and preserved Holocene dunes of coastal Australia. Different types of eolian highs can be recognized by analysis of bounding surfaces in outcrop or core. An understanding of eolian-marine processes and environments that create topography allows for prediction of areas of potential stratigraphic traps.

  20. Chemical reactions between cold trapped Ba+ ions and neutral molecules in the gas phase

    E-Print Network [OSTI]

    Schiller, Stephan

    Chemical reactions between cold trapped Ba+ ions and neutral molecules in the gas phase B. Roth, D-cooled ion trapping apparatus, we have investigated laser-induced chemical reactions between cold trapped Ba is to investigate chemical reactions between cold atomic and molecular ions trapped in radio-frequency traps

  1. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, S.J.; Butler, M.A.; Frye, G.C.; Schubert, W.K.

    1998-08-04

    An apparatus and method are provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine). 6 figs.

  2. Ion mobility spectrometer using frequency-domain separation

    DOE Patents [OSTI]

    Martin, Stephen J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM); Frye, Gregory C. (Cedar Crest, NM); Schubert, W. Kent (Albuquerque, NM)

    1998-01-01

    An apparatus and method is provided for separating and analyzing chemical species in an ion mobility spectrometer using a frequency-domain technique wherein the ions generated from the chemical species are selectively transported through an ion flow channel having a moving electrical potential therein. The moving electrical potential allows the ions to be selected according to ion mobility, with certain of the ions being transported to an ion detector and other of the ions being effectively discriminated against. The apparatus and method have applications for sensitive chemical detection and analysis for monitoring of exhaust gases, hazardous waste sites, industrial processes, aerospace systems, non-proliferation, and treaty verification. The apparatus can be formed as a microelectromechanical device (i.e. a micromachine).

  3. Search for Antimatter in Space with the Alpha Magnetic Spectrometer

    E-Print Network [OSTI]

    Roberto Battiston

    1999-07-12

    The Alpha Magnetic Spectrometer (AMS) is a state of the art particle physics experiment for the extraterrestrial study of antimatter, matter and missing matter. AMS successfully completed the precursor STS91 Discovery flight (June 2nd-12th, 1998), completing 152 orbits at 52 degrees of latitude and about 400 km of height, collecting more than 100 million CR events. In this paper we report on the first flight experience and we present preliminary results on the search for nuclear antimatter. No antimatter nuclei with Z>=2 were detected. We obtain a model dependent upper limit on the anti-He /He flux 2, improving the results of previous published searches performed with stratospheric balloons.

  4. Physics Results From Alpha Magnetic Spectrometer 1998 Shuttle Flight

    E-Print Network [OSTI]

    Ming-Huey A. Huang

    2001-04-13

    The Alpha Magnetic Spectrometer (AMS) is a particle detector designed to detect antimatter. During the 10-day test flight on the space shuttle in June 1998, AMS detected $10^8$ events. Upon analysis, no antimatter was found and the antimatter limit was reduced to $1.1\\times10^{-6}$. The proton spectrum shows some differences with the cosmic ray flux used in atmospheric neutrino simulation. A large amount of protons, positrons, and electrons were found below the geomagnetic rigidity cutoff. The energy of these particles are as high as several GeV, one order of magnitude higher than any previously measured energy in radiation belts. These particles also exhibit many interesting features. This paper reviews the results in the four published papers of the AMS collaboration and provides explanation for some features of the albedo particles.

  5. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J.; Huntington, C.M.; Trantham, M.R.; Keiter, P.A; Drake, R.P.; Montgomery, David; Benage, John F.; Letzring, Samuel A.

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  6. THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect (OSTI)

    Warren, Harry P.; Ugarte-Urra, Ignacio; Landi, Enrico

    2014-07-01

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment on the Solar Dynamics Observatory. We also use extended observations of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  7. Isotopic response with small scintillator based gamma-ray spectrometers

    DOE Patents [OSTI]

    Madden, Norman W. (Sparks, NV); Goulding, Frederick S. (Lafayette, CA); Asztalos, Stephen J. (Oakland, CA)

    2012-01-24

    The intrinsic background of a gamma ray spectrometer is significantly reduced by surrounding the scintillator with a second scintillator. This second (external) scintillator surrounds the first scintillator and has an opening of approximately the same diameter as the smaller central scintillator in the forward direction. The second scintillator is selected to have a higher atomic number, and thus has a larger probability for a Compton scattering interaction than within the inner region. Scattering events that are essentially simultaneous in coincidence to the first and second scintillators, from an electronics perspective, are precluded electronically from the data stream. Thus, only gamma-rays that are wholly contained in the smaller central scintillator are used for analytic purposes.

  8. 30TH INTERNATIONAL COSMIC RAY CONFERENCE In-orbit performances of the magnetic spectrometer of PAMELA

    E-Print Network [OSTI]

    Morselli, Aldo

    of the spectrometer of PAMELA is generated by a permanent magnet composed of five identical modules put one on top microstrip sensors, which are placed inside the magnetic cavity of a permanent magnet. The apparatus is used30TH INTERNATIONAL COSMIC RAY CONFERENCE In-orbit performances of the magnetic spectrometer

  9. Cosmic-Ray Studies with an Alpha Magnetic Spectrometer (AMS Detector) on the International Space Station

    SciTech Connect (OSTI)

    Plyaskin, V.V. [Institute of Theoretical and Experimental Physics, Bol'shaya Cheremushkinskaya ul. 25, Moscow, 117259 (Russian Federation)

    2005-01-01

    A brief description of the physics research program implemented with an alpha magnetic spectrometer (AMS detector) by a large-scale international collaboration on board the International Space Station is presented. The features of the experimental facility under construction are given, along with some results obtained during the test flight of the prototype spectrometer on board a space shuttle.

  10. 2786 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005 The Alpha Magnetic Spectrometer

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    , superconducting spectrom- eter. I. INTRODUCTION THE Alpha Magnetic Spectrometer (AMS) is a high-energy particle2786 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005 The Alpha Magnetic Spectrometer on the International Space Station B. Borgia on behalf of AMS Collaboration Abstract--The Alpha

  11. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    E-Print Network [OSTI]

    A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA, 063502 (2014) A compact neutron spectrometer for characterizing inertial confinement fusion implosions-resolution spectroscopy used to measure inertial confinement fusion neutron spectra on Omega (invited)a) Rev. Sci. Instrum

  12. Passive Spectroscopy Bolometers, Grating- And X-Ray Imaging Crystal Spectrometers

    SciTech Connect (OSTI)

    Bitter, M; Hill, K W; Scott, S; Paul, S; Ince-Cushmann, A; Reinke, M; Rice, J; Beiersdorfer, P; Gu, M F; Lee, S G; Broennimann, C; Eikenberry, E F

    2007-11-07

    This tutorial gives a brief introduction into passive spectroscopy and describes the working principles of bolometers, a high-resolution grating spectrometer, and a novel X-ray imaging crystal spectrometer, which is of particular interest for profile measurements of the ion temperature and plasma rotation velocity on ITER and future burning plasma experiments.

  13. Simulation-guided optimization of small-angle analyzer geometry in the neutron backscattering spectrometer SPHERES

    SciTech Connect (OSTI)

    Wuttke, Joachim; Zamponi, Michaela [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)] [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science at MLZ, Lichtenbergstraße 1, 85747 Garching (Germany)

    2013-11-15

    The resolution of neutron backscattering spectrometers deteriorates at small scattering angles where analyzers deviate from exact backscattering. By reducing the azimuth angle range of the analyzers, the resolution can be improved with little loss of peak intensity. Measurements at the spectrometer SPHERES are in excellent agreement with simulations, which proves the dominance of geometric effects.

  14. Integrated standing-wave transform spectrometer for near infrared optical analysis

    E-Print Network [OSTI]

    Miller, David A. B.

    Integrated standing-wave transform spectrometer for near infrared optical analysis S. R. Bhalotra standing-wave Fourier-transform spectrometer design has been developed for applica- tions in the near IR. Whereas recent development of the standing-wave architecture has been focused on interferometric sensing

  15. Born-Oppenheimer description of two atoms in a combined oscillator and lattice trap

    E-Print Network [OSTI]

    Ole Søe Sørensen; Klaus Mølmer

    2012-06-26

    We analyze the quantum states of two atoms in a combined harmonic oscillator and periodic lattice trap in one spatial dimension. In the case of tight-binding and only nearest neighbor tunneling, the equations of motion are conveniently represented in the momentum representation. We show that in the case of strong attraction between the particles, the di?erent time scales of relative and center-of-mass motion validate a separation of the problem similar to the Born-Oppenheimer approximation applied in the description of electronic and nuclear motion in molecules.

  16. Born-Oppenheimer description of two atoms in a combined oscillator and lattice trap

    E-Print Network [OSTI]

    Sørensen, Ole Søe

    2012-01-01

    We analyze the quantum states of two atoms in a combined harmonic oscillator and periodic lattice trap in one spatial dimension. In the case of tight-binding and only nearest neighbor tunneling, the equations of motion are conveniently represented in the momentum representation. We show that in the case of strong attraction between the particles, the di?erent time scales of relative and center-of-mass motion validate a separation of the problem similar to the Born-Oppenheimer approximation applied in the description of electronic and nuclear motion in molecules.

  17. Successful Implementation of a Sustainable Trap Management Program. 

    E-Print Network [OSTI]

    Walter, J.

    2013-01-01

    significant cost penalty in delaying implementation of a program to manage the steam trap population. Plants typically embark on a trap management initiative by focusing on a survey, but may not maximize returns because they fail to execute or sustain possible...

  18. Blue Crab, Callinectes sapidus, Trap Selectivity Studies: Mesh Size

    E-Print Network [OSTI]

    Blue Crab, Callinectes sapidus, Trap Selectivity Studies: Mesh Size VINCENT GUILLORY and PAUL had replaced drop nets and trot lines as the dominant gear in the commercial blue crab, Callinectes, LA 70343. ABSTRACT-Catch rates and sizes of blue crabs, Callinectes sapidus, were com pared in traps

  19. Fundamental limit of nanophotonic light trapping in solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Fundamental limit of nanophotonic light trapping in solar cells Zongfu Yu1 , Aaswath Raman and is becoming increasingly urgent for current solar cell research. The standard theory of light trapping-generation solar cells. The ultimate success of photovoltaic (PV) cell technology requires great advancements

  20. Solar cell efficiency enhancement via light trapping in printable resonant

    E-Print Network [OSTI]

    Grandidier, Jonathan

    Solar cell efficiency enhancement via light trapping in printable resonant dielectric nanosphere, photovoltaics, resonant dielectric structures, solar cells * Corresponding author: e-mail jgrandid for addressing the key challenge of light trapping in thin-film solar cells. We experimentally and theoretically

  1. Optimized holographic optical traps Marco Polin, Kosta Ladavac,

    E-Print Network [OSTI]

    Grier, David

    approach for characterizing their performance. This combination makes possible real-time adaptive trap widely known as an optical tweezer [1]. Multiple beams of light pass- ing simultaneously through-time characterization and optimization of entire arrays of traps through digital video microscopy. Such adaptive

  2. Simulations of plasma confinement in an antihydrogen trap

    SciTech Connect (OSTI)

    Gomberoff, K.; Fajans, J.; Friedman, A.; Grote, D.; Vay, J.-L.; Wurtele, J.S.

    2007-10-15

    The three-dimensional particle-in-cell (3-D PIC) simulation code WARP is used to study positron confinement in antihydrogen traps. The magnetic geometry is close to that of a UC Berkeley experiment conducted, with electrons, as part of the ALPHA collaboration (W. Bertsche et al., AIP Conf. Proc. 796, 301 (2005)). In order to trap antihydrogen atoms, multipole magnetic fields are added to a conventional Malmberg-Penning trap. These multipole fields must be strong enough to confine the antihydrogen, leading to multipole field strengths at the trap wall comparable to those of the axial magnetic field. Numerical simulations reported here confirm recent experimental measurements of reduced particle confinement when a quadrupole field is added to a Malmberg-Penning trap. It is shown that, for parameters relevant to various antihydrogen experiments, the use of an octupole field significantly reducesthe positron losses seen with a quadrupole field. A unique method for obtaining a 3-D equilibrium of the positrons in the trap with a collisionless PIC code was developed especially for the study of the antihydrogen trap; however, it is of practical use for other traps as well.

  3. Surface-electrode ion trap with integrated light source

    E-Print Network [OSTI]

    Kim, Tony Hyun

    An atomic ion is trapped at the tip of a single-mode optical fiber in a cryogenic (8 K) surface-electrode ion trap. The fiber serves as an integrated source of laser light, which drives the quadrupolequbit transition of ...

  4. Steam Trap Testing and Evaluation: An Actual Plant Case Study 

    E-Print Network [OSTI]

    Feldman, A. L.

    1981-01-01

    With rising steam costs and a high failure rate on the Joliet Plants standard steam trap, a testing and evaluation program was begun to find a steam trap that would work at Olin-Joliet. The basis was to conduct the test on the actual process...

  5. Top-down mass spectrometry on low-resolution instruments: Characterization of phosphopantetheinylated carrier

    E-Print Network [OSTI]

    Nizet, Victor

    Top-down mass spectrometry on low-resolution instruments: Characterization October 2007 Available online 1 November 2007 Abstract--Mass spectrometry (MS) is an important tool using multi-stage tandem MS on a common ion trap instrument to obtain high-resolution mea- surements

  6. The magnetic centrifugal mass filter Abraham J. Fetterman and Nathaniel J. Fisch

    E-Print Network [OSTI]

    The magnetic centrifugal mass filter Abraham J. Fetterman and Nathaniel J. Fisch Department centrifugal and magnetic confinement of ions in a way similar to the asymmetric centrifugal trap. This magnetic centrifugal mass filter is shown to be more proliferation resistant than present technology

  7. Echelle grating multi-order imaging spectrometer utilizing a catadioptric lens

    DOE Patents [OSTI]

    Chrisp, Michael P; Bowers, Joel M

    2014-05-27

    A cryogenically cooled imaging spectrometer that includes a spectrometer housing having a first side and a second side opposite the first side. An entrance slit is on the first side of the spectrometer housing and directs light to a cross-disperser grating. An echelle immersions grating and a catadioptric lens are positioned in the housing to receive the light. A cryogenically cooled detector is located in the housing on the second side of the spectrometer housing. Light from the entrance slit is directed to the cross-disperser grating. The light is directed from the cross-disperser grating to the echelle immersions grating. The light is directed from the echelle immersions grating to the cryogenically cooled detector on the second side of the spectrometer housing.

  8. Ion source for high-precision mass spectrometry

    DOE Patents [OSTI]

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  9. Investigation of plasma hydrogenation and trapping mechanism for layer transfer

    SciTech Connect (OSTI)

    Chen Peng; Chu, Paul K.; Hoechbauer, T.; Lee, J.-K.; Nastasi, M.; Buca, D.; Mantl, S.; Loo, R.; Caymax, M.; Alford, T.; Mayer, J.W.; Theodore, N. David; Cai, M.; Schmidt, B.; Lau, S.S. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 (United States); Institut fuer Schicht- und Ionentechnik, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); IMEC, Kapeldreef 75, B - 3001 Leuven (Belgium); Department of Chemical and Materials Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Advanced Products R and D Lab., Motorola Inc., 2100 East Elliot Road, Tempe, Arizona 85284 (United States); University of California at San Diego, San Diego, California, 92093 (United States)

    2005-01-17

    Hydrogen ion implantation is conventionally used to initiate the transfer of Si thin layers onto Si wafers coated with thermal oxide. In this work, we studied the feasibility of using plasma hydrogenation to replace high dose H implantation for layer transfer. Boron ion implantation was used to introduce H-trapping centers into Si wafers to illustrate the idea. Instead of the widely recognized interactions between boron and hydrogen atoms, this study showed that lattice damage, i.e., dangling bonds, traps H atoms and can lead to surface blistering during hydrogenation or upon postannealing at higher temperature. The B implantation and subsequent processes control the uniformity of H trapping and the trap depths. While the trap centers were introduced by B implantation in this study, there are many other means to do the same without implantation. Our results suggest an innovative way to achieve high quality transfer of Si layers without H implantation at high energies and high doses.

  10. Ionization-Induced Electron Trapping inUltrarelativistic Plasma Wakes

    SciTech Connect (OSTI)

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; Barnes, C.D.; Blumenfeld, I.; Decker, F.J.; Emma, P.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.; Krejcik, P.; O'Connell, C.; Siemann, R.H.; Walz, D.; Auerbach, D.; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; /UCLA

    2007-04-06

    The onset of trapping of electrons born inside a highly relativistic, 3D beam-driven plasma wake is investigated. Trapping occurs in the transition regions of a Li plasma confined by He gas. Li plasma electrons support the wake, and higher ionization potential He atoms are ionized as the beam is focused by Li ions and can be trapped. As the wake amplitude is increased, the onset of trapping is observed. Some electrons gain up to 7.6 GeV in a 30.5 cm plasma. The experimentally inferred trapping threshold is at a wake amplitude of 36 GV/m, in good agreement with an analytical model and PIC simulations.

  11. A Pneumatic Actuated Microfluidic Beads-Trapping Device

    SciTech Connect (OSTI)

    Shao, Guocheng; Cai, Ziliang; Wang, Jun; Wang, Wanjun; Lin, Yuehe

    2011-08-20

    The development of a polydimethylsiloxane (PDMS) microfluidic microbeads trapping device is reported in this paper. Besides fluid channels, the proposed device includes a pneumatic control chamber and a beads-trapping chamber with a filter array structure. The pneumatic flow control chamber and the beads-trapping chamber are vertically stacked and separated by a thin membrane. By adjusting the pressure in the pneumatic control chamber, the membrane can either be pushed against the filter array to set the device in trapping mode or be released to set the device in releasing mode. In this paper, a computational fluid dynamics simulation was conducted to optimize the geometry design of the filter array structure; the device fabrication was also carried out. The prototype device was tested and the preliminary experimental results showed that it can be used as a beads-trapping unit for various biochemistry and analytical chemistry applications, especially for flow injection analysis systems.

  12. Simplified motional heating rate measurements of trapped ions

    E-Print Network [OSTI]

    R. J. Epstein; S. Seidelin; D. Leibfried; J. H. Wesenberg; J. J. Bollinger; J. M. Amini; R. B. Blakestad; J. Britton; J. P. Home; W. M. Itano; J. D. Jost; E. Knill; C. Langer; R. Ozeri; N. Shiga; D. J. Wineland

    2007-07-10

    We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 microns above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300 plus or minus 30 per second for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.

  13. Simplified motional heating rate measurements of trapped ions

    E-Print Network [OSTI]

    Epstein, R J; Leibfried, D; Wesenberg, J H; Bollinger, J J; Amini, J M; Blakestad, R B; Britton, J; Home, J P; Itano, W M; Jost, J D; Knill, E; Langer, C; Ozeri, R; Shiga, N; Wineland, D J

    2007-01-01

    We have measured motional heating rates of trapped atomic ions, a factor that can influence multi-ion quantum logic gate fidelities. Two simplified techniques were developed for this purpose: one relies on Raman sideband detection implemented with a single laser source, while the second is even simpler and is based on time-resolved fluorescence detection during Doppler recooling. We applied these methods to determine heating rates in a microfrabricated surface-electrode trap made of gold on fused quartz, which traps ions 40 microns above its surface. Heating rates obtained from the two techniques were found to be in reasonable agreement. In addition, the trap gives rise to a heating rate of 300 plus or minus 30 per second for a motional frequency of 5.25 MHz, substantially below the trend observed in other traps.

  14. Energy Transport in Trapped Ion Chains

    E-Print Network [OSTI]

    Michael Ramm; Thaned Pruttivarasin; Hartmut Häffner

    2013-12-20

    We experimentally study energy transport in chains of trapped ions. We use a pulsed excitation scheme to rapidly add energy to the local motional mode of one of the ions in the chain. Subsequent energy readout allows us to determine how the excitation has propagated throughout the chain. We observe energy revivals that persist for many cycles. We study the behavior with an increasing number of ions of up to 37 in the chain, including a zig-zag configuration. The experimental results agree well with the theory of normal mode evolution. The described system provides an experimental toolbox for the study of thermodynamics of closed systems and energy transport in both classical and quantum regimes.

  15. Contaminant trap for gas-insulated apparatus

    DOE Patents [OSTI]

    Adcock, James L. (Knoxville, TN); Pace, Marshall O. (Knoxville, TN); Christophorou, Loucas G. (Oak Ridge, TN)

    1984-01-01

    A contaminant trap for a gas-insulated electrical conductor is provided. A resinous dielectric body such as Kel-F wax, grease or other sticky polymeric or oligomeric compound is disposed on the inside wall of the outer housing for the conductor. The resinous body is sufficiently sticky at ambient temperatures to immobilize contaminant particles in the insulating gas on the exposed surfaces thereof. An electric resistance heating element is disposed in the resinous body to selectively raise the temperature of the resinous body to a molten state so that the contaminant particles collected on the surface of the body sink into the body so that the surface of the resinous body is renewed to a particle-less condition and, when cooled, returns to a sticky collecting surface.

  16. Debris trap in a turbine cooling system

    DOE Patents [OSTI]

    Wilson, Ian David (Clifton Park, NY)

    2002-01-01

    In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

  17. Characterization of Trapped Lignin-Degrading Microbes in Tropical Forest Soil

    E-Print Network [OSTI]

    DeAngelis, Kristen

    2012-01-01

    PLoS ONE: Characterization of Trapped Lignin-DegradingAccess For Readers Hubs Characterization of Trapped Lignin-11:36:02 AM] PLoS ONE: Characterization of Trapped Lignin-

  18. Fabrication and heating rate study of microscopic surface electrode ion traps

    E-Print Network [OSTI]

    Daniilidis, N.

    We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with a trapping height of approximately 240 ?m. Using the Doppler recooling method, we characterize the trap heating rates ...

  19. A velocity map imaging spectrometer for electron?ion and ion?ion coincidence experiments with synchrotron radiation

    E-Print Network [OSTI]

    Rolles, D.; Advanced Light Source

    2008-01-01

    map imaging (VMI) spectrometer optimized for angle-resolved photoionization experiments with synchrotron radiation (map imaging spectrometer for electron-ion and ion-ion coincidence experiments with synchrotron radiation

  20. Stochastic modeling and survival analysis of marginally trapped neutrons for a magnetic trapping neutron lifetime experiment

    E-Print Network [OSTI]

    K. J. Coakley; M. S. Dewey; M. G. Huber; P. R. Huffman; C. R. Huffer; D. E. Marley; H. P. Mumm; C. M. O'Shaughnessy; K. W. Schelhammer; A. K. Thompson; A. T. Yue

    2015-08-10

    In a variety of neutron lifetime experiments, in addition to $\\beta-$decay, neutrons can be lost by other mechanisms including wall losses. Failure to account for these other loss mechanisms produces systematic measurement error and associated systematic uncertainties in neutron lifetime measurements. In this work, we develop a physical model for neutron wall losses and construct a competing risks survival analysis model to account for losses due to the joint effect of $\\beta-$decay losses, wall losses of marginally trapped neutrons, and an additional absorption mechanism. We determine the survival probability function associated with the wall loss mechanism by a Monte Carlo method. Based on a fit of the competing risks model to a subset of the NIST experimental data, we determine the mean lifetime of trapped neutrons to be approximately 700 s -- considerably less than the current best estimate of (880.1 $\\pm$ 1.1) s promulgated by the Particle Data Group [1]. Currently, experimental studies are underway to determine if this discrepancy can be explained by neutron capture by ${}^3$He impurities in the trapping volume. Analysis of the full NIST data will be presented in a later publication.

  1. Quantum chaos of an ion trapped in a linear ion trap

    SciTech Connect (OSTI)

    Berman, Gennady P. [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); James, Daniel F. V. [Theoretical Division T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division T-4, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kamenev, Dimitri I. [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) [Theoretical Division T-13, and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Nizhny Novgorod State University, Nizhny Novgorod, 603600, Russia (Russian Federation)

    2000-06-01

    We describe the transition to quantum chaos of an ion trapped in a linear ion trap and interacting with two laser fields. Under the conditions of adiabatic illumination of the upper level of the ion, and when the frequencies of the two laser beams are slightly different, the system is reduced to a quantum linear oscillator interacting with a monochromatic wave. The property of localization over the quantum resonance cells is proposed to exploit in order to facilitate the process of measurement of the probability distribution of an ion on the vibrational levels. In the regime of strong chaos the time-averaged values of the energy and dispersion of energy are computed and compared with the corresponding classical quantities for different values of the perturbation amplitude. In the exact resonance case, the classical analog of the system possesses an infinite inhomogeneous stochastic web. We analyze the quantum dynamics inside the inhomogeneous web. It is shown that the quantum system mimics on average the dynamics of the corresponding classical system. Formation of the quantum resonance cells is illustrated in the case of a finite detuning from the exact resonance, and under increasing of the wave amplitude. The parameters of the model and the initial conditions are close to the real physical situation which can be realized in the system of cold trapped ion perturbed by two lasers fields with close frequencies. (c) 2000 American Institute of Physics.

  2. Neutron Spectrometry for D­T Plasmas in JET, using a Tandem Annular-radiator Proton-recoil Spectrometer

    E-Print Network [OSTI]

    Neutron Spectrometry for D­T Plasmas in JET, using a Tandem Annular-radiator Proton-recoil Spectrometer

  3. Progress towards high precision measurements on ultracold metastable hydrogen and trapping deuterium

    E-Print Network [OSTI]

    Steinberger, Julia K., 1974-

    2004-01-01

    (cont.) not achieve deuterium trapping through helium-surface cooling. It is proposed that buffer gas loading can be used to cryogenically cool and trap deuterium.

  4. Synergies of High-Efficiency Clean Combustion and Lean NOx Trap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts Synergies of High-Efficiency Clean Combustion and Lean NOx Trap Catalysts investigation of potential...

  5. Volumetric imaging of holographic optical traps Yohai Roichman, Ilias Cholis, and David G. Grier

    E-Print Network [OSTI]

    Grier, David

    Volumetric imaging of holographic optical traps Yohai Roichman, Ilias Cholis, and David G. Grier distributions. We create volumetric representations by by holographically translating the traps through

  6. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    SciTech Connect (OSTI)

    Jun, Ji Hyun

    2011-11-30

    High-spatial and high-mass resolution laser desorption ionization (LDI) mass spectrometric (MS) imaging technology was developed for the attainment of MS images of higher quality containing more information on the relevant cellular and molecular biology in unprecedented depth. The distribution of plant metabolites is asymmetric throughout the cells and tissues, and therefore the increase in the spatial resolution was pursued to reveal the localization of plant metabolites at the cellular level by MS imaging. For achieving high-spatial resolution, the laser beam size was reduced by utilizing an optical fiber with small core diameter (25 ?m) in a vacuum matrix-assisted laser desorption ionization-linear ion trap (vMALDI-LTQ) mass spectrometer. Matrix application was greatly improved using oscillating capillary nebulizer. As a result, single cell level spatial resolution of ~ 12 ?m was achieved. MS imaging at this high spatial resolution was directly applied to a whole Arabidopsis flower and the substructures of an anther and single pollen grains at the stigma and anther were successfully visualized. MS imaging of high spatial resolution was also demonstrated to the secondary roots of Arabidopsis thaliana and a high degree of localization of detected metabolites was successfully unveiled. This was the first MS imaging on the root for molecular species. MS imaging with high mass resolution was also achieved by utilizing the LTQ-Orbitrap mass spectrometer for the direct identification of the surface metabolites on the Arabidopsis stem and root and differentiation of isobaric ions having the same nominal mass with no need of tandem mass spectrometry (MS/MS). MS imaging at high-spatial and high-mass resolution was also applied to cer1 mutant of the model system Arabidopsis thaliana to demonstrate its usefulness in biological studies and reveal associated metabolite changes in terms of spatial distribution and/or abundances compared to those of wild-type. The spatial distribution of targeted metabolites, mainly waxes and flavonoids, was systematically explored on various organs, including flowers, leaves, stems, and roots at high spatial resolution of ~ 12-50 ?m and the changes in the abundance level of these metabolites were monitored on the cer1 mutant with respect to the wild-type. This study revealed the metabolic biology of CER1 gene on each individual organ level with very detailed high spatial resolution. The separate MS images of isobaric metabolites, i.e. C29 alkane vs. C28 aldehyde could be constructed on both genotypes from MS imaging at high mass resolution. This allows tracking of abundance changes for those compounds along with the genetic mutation, which is not achievable with low mass resolution mass spectrometry. This study supported previous hypothesis of molecular function of CER1 gene as aldehyde decarbonylase, especially by displaying hyper accumulation of aldehydes and C30 fatty acid and decrease in abundance of alkanes and ketones in several plant organs of cer1 mutant. The scope of analytes was further directed toward internal cell metabolites from the surface metabolites of the plant. MS profiling and imaging of internal cell metabolites were performed on the vibratome section of Arabidopsis leaf. Vibratome sectioning of the leaf was first conducted to remove the surface cuticle layer and it was followed by enzymatic treatment of the section to induce the digestion of primary cell walls, middle lamella, and expose the internal cells underneath to the surface for detection with the laser by LDI-MS. The subsequent MS imaging onto the enzymatically treated vibratome section allowed us to map the distribution of the metabolites in the internal cell layers, linolenic acid (C18:3 FA) and linoleic acid (C18:2 FA). The development of an assay for relative quantification of analytes at the single subcellular/organelle level by LDI-MS imaging was attempted and both plausibility and significant obstacles were seen. As a test system, native plant organelle, chloroplasts isolated from the spinach leaves were used

  7. Abstract--The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to measure charged cosmic rays spectra

    E-Print Network [OSTI]

    Roma "La Sapienza", Università di

    Abstract--The Alpha Magnetic Spectrometer (AMS) is a particle physics detector designed to measure Alpha Magnetic Spectrometer (AMS) is a high energy particle physics experiment in space to be placed hundred GeV. AMS is a superconducting spectrometer with large acceptance, long duration (3 years

  8. Method for analyzing the mass of a sample using a cold cathode ionization source mass filter

    DOE Patents [OSTI]

    Felter, Thomas E.

    2003-10-14

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  9. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Lu, B.; Wang, F.; Fu, J.; Li, Y.; Wan, B.; Shi, Y.; Bitter, M.; Hill, K. W.; Lee, S. G.

    2012-10-15

    Two imaging x-ray crystal spectrometers, the so-called 'poloidal' and 'tangential' spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T{sub i}), electron temperature (T{sub e}) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  10. NIST Report to the FBI: Plex-ID Electrospray Time-of-Flight Mass

    E-Print Network [OSTI]

    1 NIST Report to the FBI: Plex-ID Electrospray Time-of-Flight Mass Spectrometer for Mitochondrial. John Butler (NIST) Dr. Thomas Callaghan (FBI) Eric Pokorak (FBI) Points of view in this document of Investigation (FBI). Certain commercial equipment, instruments, and materials are identified in order to specify

  11. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  12. Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion

    E-Print Network [OSTI]

    J. M. Cornejo; M. Colombano; J. Doménech; M. Block; P. Delahaye; D. Rodríguez

    2015-07-08

    An open-ring ion trap, also referred to as transparent trap was initially built up to perform $\\beta$-$\

  13. The Results of Tests of the MICE Spectrometer Solenoids

    E-Print Network [OSTI]

    Green, Michael A.

    2010-01-01

    the liquid nitrogen tank on the shield. The connection fromnitrogen tank was attached directly to the outer shield ofshield and the cold mass intercepts were running too warm contributed to the added heat leak into the helium tank,

  14. Quantum information processing with trapped electrons and superconducting electronics

    E-Print Network [OSTI]

    Nikos Daniilidis; Dylan J Gorman; Lin Tian; Hartmut Häffner

    2013-04-17

    We describe a parametric frequency conversion scheme for trapped charged particles which enables a coherent interface between atomic and solid-state quantum systems. The scheme uses geometric non-linearities of the potential of a coupling electrode near a trapped particle. Our scheme does not rely on actively driven solid-state devices, and is hence largely immune to noise in such devices. We present a toolbox which can be used to build electron-based quantum information processing platforms, as well as quantum interfaces between trapped electrons and superconducting electronics.

  15. Steam Traps-The Oft Forgotten Energy Conservation Treasure 

    E-Print Network [OSTI]

    Pychewicz, F. S.

    1985-01-01

    of every steam system. It is common to find 10-60% of the team traps in any facility malfunctioning. The result ant waste can easily equal 5-15% of a plant' total steam generation with concomitant processing and safety problems from failed open... into the effective utilization of st l am traps and, hopefully, will serve as a guide or your energy saving efforts in this vital are CHAMPION The key to the success of an effective team trap program rests with a single individual the person selected...

  16. Trap seal for open circuit liquid cooled turbines

    DOE Patents [OSTI]

    Grondahl, Clayton M. (Clifton Park, NY); Germain, Malcolm R. (Ballston Lake, NY)

    1980-01-01

    An improved trap seal for open circuit liquid cooled turbines is disclosed. The trap seal of the present invention includes an annular recess formed in the supply conduit of cooling channels formed in the airfoil of the turbine buckets. A cylindrical insert is located in the annular recesses and has a plurality of axial grooves formed along the outer periphery thereof and a central recess formed in one end thereof. The axial grooves and central recess formed in the cylindrical insert cooperate with the annular recess to define a plurality of S-shaped trap seals which permit the passage of liquid coolant but prohibit passage of gaseous coolant.

  17. In-situ droplet monitoring for self-tuning spectrometers

    DOE Patents [OSTI]

    Montaser, Akbar (Potomac, MD); Jorabchi, Kaveh (Arlington, VA); Kahen, Kaveh (Kleinburg, CA)

    2010-09-28

    A laser scattering based imaging technique is utilized in order to visualize the aerosol droplets in an inductively coupled plasma (ICP) torch from an aerosol source to the site of analytical measurements. The resulting snapshots provide key information about the spatial distribution of the aerosol introduced by direct and indirect injection devices: 1) a direct injection high efficiency nebulizer (DIHEN); 2) a large-bore DIHEN (LB-DIHEN); and 3) a PFA microflow nebulizer with a PFA Scott-type spray chamber. Moreover, particle image velocimetry (PIV) is used to study the in-situ behavior of the aerosol before interaction with, for example, plasma, while the individual surviving droplets are explored by particle tracking velocimetry (PTV). Further, the velocity distribution of the surviving droplets demonstrates the importance of the initial droplet velocities in complete desolvation of the aerosol for optimum analytical performance in ICP spectrometries. These new observations are important in the design of the next-generation direct injection devices for lower sample consumption, higher sensitivity, lower noise levels, suppressed matrix effects, and for developing smart spectrometers. For example, a controller can be provided to control the output of the aerosol source by controlling the configuration of the source or the gas flow rate via feedback information concerning the aerosol.

  18. ASIC for SDD-Based X-ray Spectrometers

    SciTech Connect (OSTI)

    De Geronimo, G.; Fried, J.; Rehak, P.; Ackley, K.; Carini, G.; Chen, W.; Keister, J.; Li, S.; Li, Z.; Pinelli, D.A.; Siddons, D.P.; Vernon, E.; Gaskin, J.A.; Ramsey, B.D.; Tyson, T.A.

    2010-06-16

    We present an application-specific integrated circuit (ASIC) for high-resolution x-ray spectrometers (XRS). The ASIC reads out signals from pixelated silicon drift detectors (SDDs). The pixel does not have an integrated field effect transistor (FET); rather, readout is accomplished by wire-bonding the anodes to the inputs of the ASIC. The ASIC dissipates 32 mW, and offers 16 channels of low-noise charge amplification, high-order shaping with baseline stabilization, discrimination, a novel pile-up rejector, and peak detection with an analog memory. The readout is sparse and based on custom low-power tristatable low-voltage differential signaling (LPT-LVDS). A unit of 64 SDD pixels, read out by four ASICs, covers an area of 12.8 cm{sup 2} and dissipates with the sensor biased about 15 mW/cm{sup 2}. As a tile-based system, the 64-pixel units cover a large detection area. Our preliminary measurements at -44 C show a FWHM of 145 eV at the 5.9 keV peak of a {sup 55}Fe source, and less than 80 eV on a test-pulse line at 200 eV.

  19. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    DOE Patents [OSTI]

    Fan, N.Q.; Clarke, J.

    1993-10-19

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced. 7 figures.

  20. A field-deployable gamma-ray spectrometer utilizing xenon at high pressure

    SciTech Connect (OSTI)

    Smith, G.C.; Mahler, G.J.; Yu, B.; Salwen, C.; Kane, W.R.; Lemley, J.R.

    1996-10-01

    Prototype gamma-ray spectrometers utilizing xenon gas at high pressure, suitable for applications in the nuclear safeguards, arms control, and nonproliferation communities, have been developed at Brookhaven National Laboratory (BNL). These spectrometers function as ambient-temperature ionization chambers detecting gamma rays with good efficiency in the energy range 50 keV - 2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. They are capable of prolonged, low-power operation without a requirement for cryogenic fluids or other cooling mechanisms, and with the addition of small quantities of {sup 3}He gas, can function simultaneously as efficient thermal neutron detectors.

  1. A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas

    SciTech Connect (OSTI)

    Chen, Hui E-mail: bitter@pppl.gov; Magee, E.; Nagel, S. R.; Park, J.; Schneider, M. B.; Stone, G.; Williams, G. J.; Beiersdorfer, P.; Bitter, M. E-mail: bitter@pppl.gov; Hill, K. W.; Kerr, S.

    2014-11-15

    Adapting a concept developed for magnetic confinement fusion experiments, an imaging crystal spectrometer has been designed and tested for HED plasmas. The instrument uses a spherically bent quartz [211] crystal with radius of curvature of 490.8 mm. The instrument was tested at the Titan laser at Lawrence Livermore National Laboratory by irradiating titanium slabs with laser intensities of 10{sup 19}–10{sup 20} W/cm{sup 2}. He-like and Li-like Ti lines were recorded, from which the spectrometer performance was evaluated. This spectrometer provides very high spectral resolving power (E/dE > 7000) while acquiring a one-dimensional image of the source.

  2. Validation of a model for Radon-induced background processes in electrostatic spectrometers

    E-Print Network [OSTI]

    Wandkowsky, N; Fränkle, F M; Glück, F; Groh, S; Mertens, S

    2013-01-01

    The Karlsruhe Tritium Neutrino (KATRIN) experiment investigating tritium beta-decay close to the endpoint with unprecedented precision has stringent requirements on the background level of less than 10^(-2) counts per second. Electron emission during the alpha-decay of Rn-219 and Rn-220 atoms in the electrostatic spectrometers of KATRIN is a serious source of background exceeding this limit. In this paper we compare extensive simulations of Rn-induced background to specific measurements with the KATRIN pre-spectrometer to fully characterize the observed Rn-background rates and signatures and determine generic Rn emanation rates from the pre-spectrometer bulk material and its vacuum components.

  3. X-ray crystal spectrometer upgrade for ITER-like wall experiments at JET

    SciTech Connect (OSTI)

    Shumack, A. E.; Rzadkiewicz, J.; Chernyshova, M.; Czarski, T.; Karpinski, L.; Jakubowska, K.; Scholz, M.; Byszuk, A.; Cieszewski, R.; Kasprowicz, G.; Pozniak, K.; Wojenski, A.; Zabolotny, W.; Dominik, W.; Conway, N. J.; Dalley, S.; Tyrrell, S.; Zastrow, K.-D.; Figueiredo, J. [EFDA-CSU, Culham Science Centre, Abingdon OX14 3DB; Associação EURATOM and others

    2014-11-15

    The high resolution X-Ray crystal spectrometer at the JET tokamak has been upgraded with the main goal of measuring the tungsten impurity concentration. This is important for understanding impurity accumulation in the plasma after installation of the JET ITER-like wall (main chamber: Be, divertor: W). This contribution provides details of the upgraded spectrometer with a focus on the aspects important for spectral analysis and plasma parameter calculation. In particular, we describe the determination of the spectrometer sensitivity: important for impurity concentration determination.

  4. KATRIN: an experiment to measure the neutrino mass

    E-Print Network [OSTI]

    R. G. H. Robertson; for the KATRIN Collaboration

    2007-12-23

    KATRIN is a very large scale tritium-beta-decay experiment to determine the mass of the neutrino. It is presently under construction at the Forschungszentrum Karlsruhe, and makes use of the Tritium Laboratory built there for the ITER project. The combination of a very large retarding-potential electrostatic-magnetic spectrometer and an intense gaseous molecular tritium source makes possible a sensitivity to neutrino mass of 0.2 eV, about an order of magnitude below present laboratory limits. The measurement is kinematic and independent of whether the neutrino is Dirac or Majorana. The status of the project is summarized briefly in this report.

  5. 2100 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 59, NO. 8, AUGUST 2012 A Distributed Bulk-Oxide Trap Model

    E-Print Network [OSTI]

    Rodwell, Mark J. W.

    a distributed circuit model for bulk-oxide traps based on tunneling between the semiconductor surface and trap explained by the distributed bulk-oxide trap model. Index Terms--Bulk-oxide trap, III­V, MOS, tunneling. I-oxide traps or border traps, do have long time constants as they interact with the conduction band electrons

  6. Gravitational mass of relativistic matter and antimatter

    E-Print Network [OSTI]

    Tigran Kalaydzhyan

    2015-07-09

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, $m$, and gravitational, $m_g$, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no proof for the matter and antimatter at high energies. For the antimatter the situation is even less clear -- current direct observations of trapped antihydrogen suggest the limits $-65 International Linear Collider (ILC) and Compact Linear Collider (CLIC).

  7. Cast-to-shape electrokinetic trapping medium

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Franklin, Elizabeth; Prickett, Zane T.; Artau, Alexander

    2004-08-03

    A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.

  8. Cast-to-shape electrokinetic trapping medium

    DOE Patents [OSTI]

    Shepodd, Timothy J. (Livermore, CA); Franklin, Elizabeth (Rolla, MO); Prickett, Zane T. (Golden, CO); Artau, Alexander (Pleasanton, CA)

    2006-05-30

    A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium. Moreover, by virtue of its ability to retain charged protein species and quantitatively release the retained species the porous polymer monolith can serve as a means for concentrating charged protein species from, for example, a dilute solution.

  9. Cavity Sideband Cooling of a Single Trapped Ion

    E-Print Network [OSTI]

    Vuletic, Vladan

    We report a demonstration and quantitative characterization of one-dimensional cavity cooling of a single trapped [superscript 88]Sr[superscript +] ion in the resolved-sideband regime. We measure the spectrum of cavity ...

  10. Laser ablation loading of a surface-electrode ion trap

    E-Print Network [OSTI]

    David R. Leibrandt; Robert J. Clark; Jaroslaw Labaziewicz; Paul Antohi; Waseem Bakr; Kenneth R. Brown; Isaac L. Chuang

    2007-06-22

    We demonstrate loading by laser ablation of $^{88}$Sr$^+$ ions into a mm-scale surface-electrode ion trap. The laser used for ablation is a pulsed, frequency-tripled Nd:YAG with pulse energies of 1-10 mJ and durations of 3-5 ns. An additional laser is not required to photoionize the ablated material. The efficiency and lifetime of several candidate materials for the laser ablation target are characterized by measuring the trapped ion fluorescence signal for a number of consecutive loads. Additionally, laser ablation is used to load traps with a trap depth (40 meV) below where electron impact ionization loading is typically successful ($\\gtrsim$ 500 meV).

  11. What To Do With Cold Traps and Why 

    E-Print Network [OSTI]

    Risko, J. R.; Walter, J. P.

    2012-01-01

    Increased emphasis on energy management has helped sites reduce system cost through the diagnosis and repair of “Leaking” or “Blowing” steam traps (“Leakage Failures”). Timely maintenance response is a significant action to lower energy use and GHG...

  12. Construction and Operation of a Floating Alaska Salmon Trap

    E-Print Network [OSTI]

    Dismantling a trap Storage . . ... Acknowledgments ill Page 2 4 4 4 4 6 6 7 8 8 8 8 8 9 9 9 9 9 9 9 9 10 12 12

  13. SOLAR CELLS Low trap-state density and long

    E-Print Network [OSTI]

    Sargent, Edward H. "Ted"

    REPORTS SOLAR CELLS Low trap-state density and long carrier diffusion in organolead trihalide) perovskite solar cells (PSCs) have now achieved 20.1% certified power con- version efficiencies (1

  14. The Engineered Approach to Energy and Maintenance Effective Steam Trapping 

    E-Print Network [OSTI]

    Krueger, R. G.; Wilt, G. W.

    1980-01-01

    .0420" 21.85 0.0935" 51.84 0.1440" 91.20 0.1910" 1.10 0.0210" 4.62 0.0430" 21.94 0.0937" 54.02 0.1470" 93.60 0.1935" 1.26 0.0225" 5.40 0.0465" 23.04 0.0960" 55.87 0.1495" 96.04 0.1960" 1.44 0.0240" 5.49 0.0469" 24.01 0.0980" 57.76 0.1520" 99.00 0... and effective trap consumes 1-2 Ibs./hr. steam just to functionally efficient. Energy operating targets function properly. An inverted bucket trap loses 2-4 should include an analysis of steam trapping practices Ibs./hr. and a thermodynamic disc trap 0.5-1 lbs...

  15. Neutron lifetime measurements using gravitationally trapped ultracold neutrons

    E-Print Network [OSTI]

    A. P. Serebrov; V. E. Varlamov; A. G. Kharitonov; A. K. Fomin; Yu. N. Pokotilovski; P. Geltenbort; I. A. Krasnoschekova; M. S. Lasakov; R. R. Taldaev; A. V. Vassiljev; O. M. Zherebtsov

    2009-02-02

    Our experiment using gravitationally trapped ultracold neutrons (UCN) to measure the neutron lifetime is reviewed. Ultracold neutrons were trapped in a material bottle covered with perfluoropolyether. The neutron lifetime was deduced from comparison of UCN losses in the traps with different surface-to-volume ratios. The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. In this experiment, the UCN storage time is brought closer to the neutron lifetime than in any experiments before:the probability of UCN losses from the trap was only 1% of that for neutron beta decay. The neutron lifetime obtained,878.5+/-0.7stat+/-0.3sys s, is the most accurate experimental measurement to date.

  16. Stable Metal-Organic Frameworks Containing Single-Molecule Traps...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stable Metal-Organic Frameworks Containing Single-Molecule Traps for Enzyme Encapsulation Previous Next List Dawei Feng, Tian-Fu Liu, Jie Su, Mathieu Bosch, Zhangwen Wei, Wei Wan,...

  17. From transistor to trapped-ion computers for quantum chemistry

    E-Print Network [OSTI]

    M. -H. Yung; J. Casanova; A. Mezzacapo; J. McClean; L. Lamata; A. Aspuru-Guzik; E. Solano

    2013-07-16

    Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

  18. Light trapping limits in plasmonic solar cells: an analytical investigation

    E-Print Network [OSTI]

    Sheng, Xing

    We analytically investigate the light trapping performance in plasmonic solar cells with Si/metallic structures. We consider absorption enhancements for surface plasmon polaritons (SPPs) at planar Si/metal interfaces and ...

  19. Novel trapping techniques for shaping Bose-Einstein condensates

    E-Print Network [OSTI]

    Boyd, Micah (Micah Scott)

    2007-01-01

    A combination of radio frequency radiation and magnetic field gradients was used to trap atoms in dressed states. In a magnetic field with a quadrupole minimum. RF fields resonant with the (I F. m)) 11. -1) -- 1, 0) ...

  20. Tests of Lorentz Symmetry with Penning Traps and Antihydrogen

    E-Print Network [OSTI]

    Neil Russell

    2005-11-22

    Possibilities for testing Lorentz symmetry using precision experiments with antiprotons in Penning traps and with antihydrogen spectroscopy are reviewed. Estimates of bounds on relevant coefficients for Lorentz violation in the Standard-Model Extension (SME) are considered.