Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

2

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

3

"Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual" Total Delivered Transportation Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",23.62,24.08,24.45,24.72,25.06,25.38,25.74,26.16,26.49,26.85,27.23,27.55,27.91,28.26,28.61,28.92,29.18,29.5 "AEO 1995",,23.26,24.01,24.18,24.69,25.11,25.5,25.86,26.15,26.5,26.88,27.28,27.66,27.99,28.25,28.51,28.72,28.94 "AEO 1996",,,23.89674759,24.08507919,24.47502899,24.84881783,25.25887871,25.65527534,26.040205,26.38586426,26.72540092,27.0748024,27.47158241,27.80837631,28.11616135,28.3992157,28.62907982,28.85912895,29.09081459 "AEO 1997",,,,24.68686867,25.34906006,25.87225533,26.437994,27.03513145,27.52499771,27.96490097,28.45482063,28.92999458,29.38239861,29.84147453,30.26097488,30.59760475,30.85550499,31.10873222,31.31938744

4

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans-Alaska Pipeline that is consumed in pumping.  

E-Print Network (OSTI)

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans m). So we can toss this out. Now estimate the energy content of gasoline: Many of you tried figuring

Nimmo, Francis

5

State Residential Commercial Industrial Transportation Total  

Gasoline and Diesel Fuel Update (EIA)

schedules 4A-D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total 2012 Total Electric Industry- Average Retail Price (centskWh) (Data from...

6

Energy Perspectives, Total Energy - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections this will be filled with a highchart PREVIOUSNEXT Energy Perspectives 1949-2011 September 2012 PDF | previous editions Release Date: September 27, 2012 Introduction Energy Perspectives is a graphical overview of energy history in the United States. The 42 graphs shown here reveal sweeping trends related to the Nation's production, consumption, and trade of energy from 1949 through 2011. Energy Flow, 2011 (Quadrillion Btu) Total Energy Flow diagram image For footnotes see here. Energy can be grouped into three broad categories. First, and by far the largest, is the fossil fuels-coal, petroleum, and natural gas. Fossil fuels have stored the sun's energy over millennia past, and it is primarily

7

total energy | OpenEI  

Open Energy Info (EERE)

total energy total energy Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

8

Table E6. Transportation Sector Energy Price Estimates, 2012  

Annual Energy Outlook 2012 (EIA)

E6. Transportation Sector Energy Price Estimates, 2012 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation...

9

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

10

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the Total Energy USA...

11

1. [M] Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans-Alaska Pipeline that is consumed in pumping. As always, try not to look anything up.  

E-Print Network (OSTI)

1. [M] Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans to this (which is 1 bend per 10 m). So we can toss this out. Now estimate the energy content of gasoline: Many

Nimmo, Francis

12

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... ment of the total energy and vice versa. From a measurement of spectral irradi- ance ... unit energy (for the wavelength region specified).

2000-01-02T23:59:59.000Z

13

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

14

Sandia National Laboratories: Transportation Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Energy Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy...

15

Relation between total quanta and total energy for aquatic ...  

Science Journals Connector (OSTI)

Jan 22, 1974 ... havior of the ratio of total quanta to total energy (Q : W) within the spectral region of photosynthetic ..... For blue-green waters, where hRmax lies.

2000-01-02T23:59:59.000Z

16

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

17

Solar total energy project Shenandoah  

SciTech Connect

This document presents the description of the final design for the Solar Total Energy System (STES) to be installed at the Shenandoah, Georgia, site for utilization by the Bleyle knitwear plant. The system is a fully cascaded total energy system design featuring high temperature paraboloidal dish solar collectors with a 235 concentration ratio, a steam Rankine cycle power conversion system capable of supplying 100 to 400 kW(e) output with an intermediate process steam take-off point, and a back pressure condenser for heating and cooling. The design also includes an integrated control system employing the supervisory control concept to allow maximum experimental flexibility. The system design criteria and requirements are presented including the performance criteria and operating requirements, environmental conditions of operation; interface requirements with the Bleyle plant and the Georgia Power Company lines; maintenance, reliability, and testing requirements; health and safety requirements; and other applicable ordinances and codes. The major subsystems of the STES are described including the Solar Collection Subysystem (SCS), the Power Conversion Subsystem (PCS), the Thermal Utilization Subsystem (TUS), the Control and Instrumentation Subsystem (CAIS), and the Electrical Subsystem (ES). Each of these sections include design criteria and operational requirements specific to the subsystem, including interface requirements with the other subsystems, maintenance and reliability requirements, and testing and acceptance criteria. (WHK)

None

1980-01-10T23:59:59.000Z

18

National Fuel Cell and Hydrogen Energy Overview: Total Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012 Presentation by Sunita Satyapal at the...

19

Storing and transporting energy  

DOE Patents (OSTI)

Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

McClaine, Andrew W. (Lexington, MA); Brown, Kenneth (Reading, MA)

2010-09-07T23:59:59.000Z

20

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Information Administration - Transportation Energy Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

22

Compare All CBECS Activities: Total Energy Use  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Use Total Energy Use Compare Activities by ... Total Energy Use Total Major Fuel Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 5.7 quadrillion Btu of all major fuels (electricity, natural gas, fuel oil, and district steam or hot water) in 1999. Office buildings used the most total energy of all the building types, which was not a surprise since they were the most common commercial building type and had an above average energy intensity. Figure showing total major fuel consumption by building type. If you need assistance viewing this page, please call 202-586-8800. Major Fuel Consumption per Building by Building Type Because there were relatively few inpatient health care buildings and they tend to be large, energy intensive buildings, their energy consumption per building was far above that of any other building type.

23

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

24

Sandia National Laboratories: Transportation Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors & Optical Diagnostics, Systems Analysis, Systems Engineering, Transportation Energy Sandia and industrial giant Caterpillar Inc. have signed their first...

25

NREL: Transportation Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

26

Sustainable Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation Sustainable Transportation Sustainable Transportation Bioenergy Read more Hydrogen and Fuel Cells Read more Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices, EERE advances the development of next-generation technologies to improve plug-in electric and other alternative-fuel vehicles, advanced combustion engine and vehicle efficiency, and produce low-carbon domestic transportation fuels. SUSTAINABLE TRANSPORTATION Vehicles Bioenergy Hydrogen & Fuel Cells Vehicles Bioenergy

27

Transportation energy data book: edition 16  

SciTech Connect

The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

1996-07-01T23:59:59.000Z

28

TENESOL formerly known as TOTAL ENERGIE | Open Energy Information  

Open Energy Info (EERE)

TENESOL formerly known as TOTAL ENERGIE TENESOL formerly known as TOTAL ENERGIE Jump to: navigation, search Name TENESOL (formerly known as TOTAL ENERGIE) Place la Tour de Salvagny, France Zip 69890 Sector Solar Product Makes polycrystalline silicon modules, and PV-based products such as solar powered pumps. References TENESOL (formerly known as TOTAL ENERGIE)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. TENESOL (formerly known as TOTAL ENERGIE) is a company located in la Tour de Salvagny, France . References ↑ "TENESOL (formerly known as TOTAL ENERGIE)" Retrieved from "http://en.openei.org/w/index.php?title=TENESOL_formerly_known_as_TOTAL_ENERGIE&oldid=352112" Categories:

29

Sandia National Laboratories: Transportation Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities, News, News & Events, Research & Capabilities, Systems Analysis, Transportation Energy By combining advanced theory and high-fidelity large eddy simulation,...

30

Sandia National Laboratories: Transportation Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science, News, News & Events, Research & Capabilities, Systems Analysis, Transportation Energy On May 19th, the DOE announced 7M for six projects (five in California +...

31

TRANSPORTATION ENERGY RESEARCH PIER Transportation Research  

E-Print Network (OSTI)

engine and an Eaton Fuller 10speed manual transmission as the study's representative baseline vehicle beginning in 2017 while providing net savings over the life of the vehicle. Also, fuel cost savings far.energy.ca.gov/research/ transportation/ January 2011 Heavy-Duty Vehicle Emissions and Fuel Consumption Improvement Illustration

32

Transportation energy data book: Edition 15  

SciTech Connect

The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1995-05-01T23:59:59.000Z

33

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the world’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nation’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

34

Transportation Energy Consumption Surveys  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption (RTECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses...

35

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Flow, (Quadrillion Btu) Total Energy Flow, (Quadrillion Btu) Total Energy Flow diagram image Footnotes: 1 Includes lease condensate. 2 Natural gas plant liquids. 3 Conventional hydroelectric power, biomass, geothermal, solar/photovoltaic, and wind. 4 Crude oil and petroleum products. Includes imports into the Strategic Petroleum Reserve. 5 Natural gas, coal, coal coke, biofuels, and electricity. 6 Adjustments, losses, and unaccounted for. 7 Natural gas only; excludes supplemental gaseous fuels. 8 Petroleum products, including natural gas plant liquids, and crude oil burned as fuel. 9 Includes 0.01 quadrillion Btu of coal coke net exports. 10 Includes 0.13 quadrillion Btu of electricity net imports. 11 Total energy consumption, which is the sum of primary energy consumption, electricity retail sales, and electrical system energy losses.

36

Transportation Energy and Alternatives  

E-Print Network (OSTI)

Station in Indonesia Hydrogen refueling in Munich, Germany "You will never see widespread use of the fuel fuels" Potentially used for Transportation · Biogas (primarily for onsite electrical generation) LFG

Handy, Susan L.

37

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

consumption), and fuel carbon intensity. We can estimate transportation GHG emissions by plugging these four of the total human population (P) and transport intensity (T). The amount of carbon emitted per mile of transport is a product of energy intensity (E) and carbon intensity (C). By working out this equation

California at Davis, University of

38

Transportation Energy Data Book: Edition 14  

SciTech Connect

Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1994-05-01T23:59:59.000Z

39

Total Energy Facilities Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Total Energy Facilities Biomass Facility Total Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type Non-Fossil Waste Location Los Angeles County, California Coordinates 34.3871821°, -118.1122679° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3871821,"lon":-118.1122679,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Energy transport in the solar transition layer  

Science Journals Connector (OSTI)

...research-article Research Article Energy transport in the solar transition layer J...emission measure in the solar transition layer, which...the heat transport. solar transition layer|differential emission measure|energy transport|ion-acoustic...

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

September 2012 PDF | previous editions September 2012 PDF | previous editions Release Date: September 27, 2012 A report of historical annual energy statistics. For many series, data begin with the year 1949. Included are data on total energy production, consumption, and trade; overviews of petroleum, natural gas, coal, electricity, nuclear energy, renewable energy, as well as financial and environmental indicators; and data unit conversion tables. About the data Previous Editions + EXPAND ALL Annual Energy Review 2011 Edition PDF (Full issue) Annual Energy Review 2011 - Released on September 27, 2012 PDF Annual Energy Review 2010 Edition PDF (Full issue) Annual Energy Review 2010 - Released on October 19, 2011 PDF Annual Energy Review 2009 Edition PDF (Full issue) Annual Energy Review 2009 - Released on August 19, 2010 PDF

42

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

43

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

44

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

45

Residential Energy Consumption Survey Results: Total Energy Consumption,  

Open Energy Info (EERE)

Survey Results: Total Energy Consumption, Survey Results: Total Energy Consumption, Expenditures, and Intensities (2005) Dataset Summary Description The Residential Energy Consumption Survey (RECS) is a national survey that collects residential energy-related data. The 2005 survey collected data from 4,381 households in housing units statistically selected to represent the 111.1 million housing units in the U.S. Data were obtained from residential energy suppliers for each unit in the sample to produce the Consumption & Expenditures data. The Consumption & Expenditures and Intensities data is divided into two parts: Part 1 provides energy consumption and expenditures by census region, population density, climate zone, type of housing unit, year of construction and ownership status; Part 2 provides the same data according to household size, income category, race and age. The next update to the RECS survey (2009 data) will be available in 2011.

46

Serck standard packages for total energy  

Science Journals Connector (OSTI)

Although the principle of combined heat and power generation is attractive, practical problems have hindered its application. In the U.K. the scope for small scale combined heat and power (total energy) systems has been improved markedly by the introduction of new Electricity Board regulations which allow the operation of small a.c. generators in parallel with the mains low voltage supply. Following this change, Serck have developed a standard total energy unit, the CG100, based on the 2.25 1 Land Rover gas engine with full engine (coolant and exhaust gas) heat recovery. The unit incorporates an asynchronous generator, which utilising mains power for its magnetising current and speed control, offers a very simple means of generating electricity in parallel with the mains supply, without the need for expensive synchronising controls. Nominal output is 15 kW 47 kW heat; heat is available as hot water at temperatures up to 85C, allowing the heat output to be utilised directly in low pressure hot water systems. The CG100 unit can be used in any application where an appropriate demand exists for heat and electricity, and the annual utilisation will give an acceptable return on capital cost; it produces base load heat and electricity, with LPHW boilers and the mains supply providing top-up/stand-by requirements. Applications include residential use (hospitals, hotels, boarding schools, etc.), swimming pools and industrial process systems. The unit also operates on digester gas produced by anaerobic digestion of organic waste. A larger unit based on a six cylinder Ford engine (45 kWe output) is now available.

R. Kelcher

1984-01-01T23:59:59.000Z

47

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

48

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Total Energy Total Energy Glossary › FAQS › Overview Data Monthly Annual Analysis & Projections All Reports Most Requested Annual Monthly Projections U.S. States Annual Energy Review September 2012 PDF | previous editions Release Date: September 27, 2012 Important notes about the data Note: The emphasis of the Annual Energy Review (AER) is on long-term trends. Analysts may wish to use the data in this report in conjunction with EIA's monthly releases that offer updates to the most recent years' data. In particular, see the Monthly Energy Review for statistics that include updates to many of the annual series in this report. Data Years Displayed: For tables beginning in 1949, some early years (usually 1951-1954, 1956-1959, 1961-1964, 1966-1969, and 1971-1974) are not

49

Clean Cities & Transportation Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Transportation Tools Clean Cities & Transportation Tools U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation on...

50

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

51

Transportation Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Transportation Energy Data Book Transportation Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Energy Data Book Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Other, Transportation Topics: Potentials & Scenarios, Technology characterizations Resource Type: Dataset Website: cta.ornl.gov/data/ Country: United States Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Transportation Security | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Security Transportation Security Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste...

53

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

54

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

55

Transportation Energy Pathways LDRD.  

SciTech Connect

This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressiveGHG emission reduction targets, even as the current electricity source mix shifts away from coal and towardsnatural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicleefficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towardsmeeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 AcknowledgmentThe authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. ChristopherYang for their suggestions over the course of this project. This work was funded by the Laboratory DirectedResearch and Development program at Sandia National Laboratories.4

Barter, Garrett; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A. [Sandia National Laboratories, Albuquerque, NM] [Sandia National Laboratories, Albuquerque, NM; Yoshimura, Ann S.; Peterson, Meghan; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

2012-09-01T23:59:59.000Z

56

(en transport pblic) Temps total del trajecte: 40 minuts  

E-Print Network (OSTI)

addicionals (CO2): 3,78 Kg Emissions addicionals (SO2): 0,002 Kg Durada: 40 min. Cost mitjà del viatge2 : 1,90 Emissions addicionals (CO2): 0 kg Emissions addicionals (SO2): 0 kg Transport públicTransport privat.188,35 Emissions addicionals (CO2): 1.329,32 Kg Emissions addicionals (SO2): 0,82 Kg Temps acumulat: 9,78 dies

Oro, Daniel

57

(en transport pblic) Temps total del trajecte: 123 minuts  

E-Print Network (OSTI)

addicionals (CO2): 13,96 Kg Emissions addicionals (SO2): 0,009 Kg Durada: 123 min. Cost mitjà del viatge2 : 1,52 Emissions addicionals (CO2): 0 kg Emissions addicionals (SO2): 0 kg Transport públicTransport privat.392'96 Emissions addicionals (CO2): 4.914,07 Kg Emissions addicionals (SO2): 3,02 Kg Temps acumulat: 30,07 dies

Oro, Daniel

58

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

59

Achieving Total Employee Engagement in Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

Ratheon and GM share their experiences with employee engagement to achieve energy efficiency and sustainability goals in this presentation.

60

Transportation Analysis | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY  

E-Print Network (OSTI)

.......................................................................................................................4 PROPOSED CALIFORNIA TRANSPORTATION FUEL PRICE FORECASTS......... 6 Summary....................................................................................................6 Petroleum Transportation Fuel Price Forecast Assumptions .............................................................6 California Transportation Fuel Price Forecasts

62

The Geography of Transport Systems-Maritime Transportation | Open Energy  

Open Energy Info (EERE)

The Geography of Transport Systems-Maritime Transportation The Geography of Transport Systems-Maritime Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Geography of Transport Systems-Maritime Transportation Agency/Company /Organization: Hofstra University Sector: Energy Focus Area: Transportation Topics: Technology characterizations Resource Type: Publications, Technical report Website: people.hofstra.edu/geotrans/eng/ch3en/conc3en/ch3c4en.html Cost: Free Language: English References: Maritime Transportation[1] "Maritime transportation, similar to land and air modes, operates on its own space, which is at the same time geographical by its physical attributes, strategic by its control and commercial by its usage. While geographical considerations tend to be constant in time, strategic and

63

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

64

Achieving Total Employee Engagement in Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Raytheon Employee Engagement Raytheon Employee Engagement in Energy Conservation Department of Energy August 5, 2010 Steve Fugarazzo Raytheon Company Enterprise Energy Team Copyright © 2007 Raytheon Company. All rights reserved. Customer Success Is Our Mission is a trademark of Raytheon Company. Page 2 8/9/2010 Presentation Overview  Company Background  Communication & Outreach Initiatives - Internal Partnerships - Energy Champions - Energy Citizens - Energy Awareness Events & Contests Page 3 8/9/2010 Raytheon ... What We Do Raytheon is a global technology company that provides innovative solutions to customers in 80 nations. Through strategic vision, disciplined management and world-class talent, Raytheon is delivering operational advantages for customers every day while helping them prepare for the

65

Property:TotalValue | Open Energy Information  

Open Energy Info (EERE)

TotalValue TotalValue Jump to: navigation, search This is a property of type Number. Pages using the property "TotalValue" Showing 25 pages using this property. (previous 25) (next 25) 4 44 Tech Inc. Smart Grid Demonstration Project + 10,000,000 + A ALLETE Inc., d/b/a Minnesota Power Smart Grid Project + 3,088,007 + Amber Kinetics, Inc. Smart Grid Demonstration Project + 10,000,000 + American Transmission Company LLC II Smart Grid Project + 22,888,360 + American Transmission Company LLC Smart Grid Project + 2,661,650 + Atlantic City Electric Company Smart Grid Project + 37,400,000 + Avista Utilities Smart Grid Project + 40,000,000 + B Baltimore Gas and Electric Company Smart Grid Project + 451,814,234 + Battelle Memorial Institute, Pacific Northwest Division Smart Grid Demonstration Project + 177,642,503 +

66

SolarTotal | Open Energy Information  

Open Energy Info (EERE)

SolarTotal SolarTotal Jump to: navigation, search Name SolarTotal Place Bemmel, Netherlands Zip 6681 LN Sector Solar Product The company sells and installs PV solar instalations Coordinates 51.894112°, 5.89881° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.894112,"lon":5.89881,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

68

ENERGY TRANSPORT IN STOCHASTICALLY PERTURBED LATTICE DYNAMICS  

E-Print Network (OSTI)

of the energy when initially deposited close to the origin. If #12; = 0, the energy spreading is ballisticENERGY TRANSPORT IN STOCHASTICALLY PERTURBED LATTICE DYNAMICS GIADA BASILE, STEFANO OLLA according to a linear transport equation describing inelastic collisions. For an energy and momentum

Recanati, Catherine

69

Energy use by biological protein transport pathways  

E-Print Network (OSTI)

residing within energy-conserving membranes use transmembrane ion gradients to drive substrate transport receptors impart specificity to a targeting route, and transport across or into the membrane is typicallyEnergy use by biological protein transport pathways Nathan N. Alder1 and Steven M. Theg2 1

Economou, Tassos

70

Department of Energy Office of Science Transportation Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy (DOE) Department of Energy (DOE) Office of Science (SC) Transportation Overview Jon W. Neuhoff, Director N B i k L b t New Brunswick Laboratory 1 DOE National Transportation Stakeholders Forum May 26, 2010 About the Office of Science The Office of Science (SC) with a budget of approximately $5 Billion...  Single largest supporter of basic research in the physical sciences in the U.S. (> 40% of the total funding) ( g)  Principal Federal funding agency for the Nation's research programs in high energy physics, nuclear physics, and fusion energy sciences  Manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science

71

EQUUS Total Return Inc | Open Energy Information  

Open Energy Info (EERE)

EQUUS Total Return Inc EQUUS Total Return Inc Jump to: navigation, search Name EQUUS Total Return Inc Place Houston, Texas Product A business development company and VC investor that trades as a closed-end fund. EQUUS is managed by MCC Global NV, a Frankfurt stock exchange listed management and merchant banking group. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

72

Correlation Of Surface Heat Loss And Total Energy Production...  

Open Energy Info (EERE)

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Correlation...

73

Department of Energy Office of Science Transportation Overview...  

Office of Environmental Management (EM)

Department of Energy Office of Science Transportation Overview Department of Energy Office of Science Transportation Overview Overview of the Office of Science for Transportation....

74

Total Pollution Effect and Total Energy Cost per Output of Different Products for Polish Industrial System  

Science Journals Connector (OSTI)

For many years a broad use has been made of the indices of total energy requirements in the whole large production system corresponding to unit output of particular goods (Boustead I., Hancock G.F., 1979). The...

Henryk W. Balandynowicz

1988-01-01T23:59:59.000Z

75

Energy Outlook for the Transport Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

76

Measuring Transport Protocol Potential for Energy Efficiency  

E-Print Network (OSTI)

Measuring Transport Protocol Potential for Energy Efficiency S. Kontogiannis, L. Mamatas, I. Psaras, Greece {skontog, emamatas, ipsaras, vtsaousi}@ee.duth.gr Abstract. We investigate the energy-saving potential of transport pro- tocols. We focus on the system-related aspect of energy. Do we have to damage

Tsaoussidis, Vassilis

77

Transportation in Community Strategic Energy Plans  

Energy.gov (U.S. Department of Energy (DOE))

This presentation features Caley Johnson, a fuel and vehicle market analyst with the National Renewable Energy Laboratory. Johnson provides an overview of how and why to incorporate transportation...

78

Estimated United States Transportation Energy Use 2005  

SciTech Connect

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

79

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

80

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Transportation energy demand: Model development and use  

Science Journals Connector (OSTI)

This paper describes work undertaken and sponsored by the Energy Commission to improve transportation energy demand forecasting and policy analysis for California. Two ... , the paper discusses some of the import...

Chris Kavalec

1998-06-01T23:59:59.000Z

82

Transportation Energy Data Book, Edition 18  

SciTech Connect

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

83

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

Estimating Total Energy Consumption and Emissions of Chinasof Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

84

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of Chinas total energy consumption mix. However,about 19% of Chinas total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

85

Total and Peak Energy Consumption Minimization of Building HVAC Systems Using Model Predictive Control  

E-Print Network (OSTI)

combination of the total energy consumption and the peakalso reduces the total energy consumption of the occupancyTotal and Peak Energy Consumption Minimization of Building

Maasoumy, Mehdi; Sangiovanni-Vincentelli, Alberto

2012-01-01T23:59:59.000Z

86

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

87

Proposed Energy Transport Corridors: West-wide energy corridor programmatic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Transport Corridors: West-wide energy corridor Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the environmental impacts from the proposed action and the range of reasonable alternatives. The proposed action calls for designating more than 6,000 miles of energy transport corridors across the West. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. More Documents & Publications

88

Transport Energy Use and Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

89

Transportation Energy Futures | OpenEI  

Open Energy Info (EERE)

Energy Futures Energy Futures Dataset Summary Description The 2009 National Household Travel Survey (NHTS) provides information to assist transportation planners and policy makers who need comprehensive data on travel and transportation patterns in the United States. The 2009 NHTS updates information gathered in the 2001 NHTS and in prior Nationwide Personal Transportation Surveys (NPTS) conducted in 1969, 1977, 1983, 1990, and 1995. Source U.S. Department of Transportation, Federal Highway Administration Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords NHTS TEF transportation Transportation Energy Futures travel trip Data application/zip icon Travel Day Trip File (zip, 42.6 MiB) application/zip icon Household File (zip, 5 MiB) application/zip icon Person File (zip, 17.4 MiB)

90

Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation  

Science Journals Connector (OSTI)

A detailed vertically integrated atmospheric heat and energy budget is presented along with estimated heat budgets at the surface and top-of-atmosphere for the subtropics. It is shown that the total energy transports are remarkably seamless in ...

Kevin E. Trenberth; David P. Stepaniak

2003-11-01T23:59:59.000Z

91

EC-LEDS Transport | Open Energy Information  

Open Energy Info (EERE)

EC-LEDS Transport EC-LEDS Transport Jump to: navigation, search Name EC-LEDS Transport Agency/Company /Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Country Global References Transportation Assessment Toolkit[1] "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the growth of greenhouse

92

Transportation Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a large share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially...

93

Total  

Gasoline and Diesel Fuel Update (EIA)

Total Total .............. 16,164,874 5,967,376 22,132,249 2,972,552 280,370 167,519 18,711,808 1993 Total .............. 16,691,139 6,034,504 22,725,642 3,103,014 413,971 226,743 18,981,915 1994 Total .............. 17,351,060 6,229,645 23,580,706 3,230,667 412,178 228,336 19,709,525 1995 Total .............. 17,282,032 6,461,596 23,743,628 3,565,023 388,392 283,739 19,506,474 1996 Total .............. 17,680,777 6,370,888 24,051,665 3,510,330 518,425 272,117 19,750,793 Alabama Total......... 570,907 11,394 582,301 22,601 27,006 1,853 530,841 Onshore ................ 209,839 11,394 221,233 22,601 16,762 1,593 180,277 State Offshore....... 209,013 0 209,013 0 10,244 260 198,509 Federal Offshore... 152,055 0 152,055 0 0 0 152,055 Alaska Total ............ 183,747 3,189,837 3,373,584 2,885,686 0 7,070 480,828 Onshore ................ 64,751 3,182,782

94

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

95

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

TotalProjectCost TotalProjectCost Jump to: navigation, search Property Name Geothermal/TotalProjectCost Property Type Number Description Total Project Cost Pages using the property "Geothermal/TotalProjectCost" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + 14,571,873 + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + 2,155,497 + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + 6,135,381 + A new analytic-adaptive model for EGS assessment, development and management support Geothermal Project + 1,629,670 +

96

Energy cost of galactoside transport to Escherichia coli.  

Science Journals Connector (OSTI)

...research-article Research Article Energy cost of galactoside transport to Escherichia...facilitated diffusion system. Energy cost of galactoside transport to Escherichia...No. 3 Printed in U.S.A. Energy Cost of Galactoside Transport to Escherichia...

D R Purdy; A L Koch

1976-09-01T23:59:59.000Z

97

TRANSPORTATION ENERGY DATA BOOK: EDITION 20  

NLE Websites -- All DOE Office Websites (Extended Search)

59 59 (Edition 20 of ORNL-5 198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 20 Stacy C. Davis Oak Ridge National Laboratory October 2000 Prepared for Office of Transportation Technologies U.S. Department of Energy Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 3783 l-6073 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-OOOR22725 Users of the Transportation Energy Data Book are encouraged to comment on errors, omissions, emphases, and organization of this report to one of the persons listed below. Requests for additional complementary copies of this report, additional data, or information on an existing table should be referred to Ms. Stacy Davis, Oak Ridge National Laboratory.

98

Category:Transportation Toolkits | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Transportation Toolkits Jump to: navigation, search Add a new Transportation Toolkit Pages in category "Transportation Toolkits" The following 86 pages are in this category, out of 86 total. A A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 A Review of HOV Lane Performance and Policy Options in the United States - Final Report A Roadmap to Funding Infrastructure Development Adapting Urban Transport to Climate Change- Module 5f - Sustainable transport: a sourcebook for policy-makers in developing cities Africa's Transport Infrastructure Mainstreaming Maintenance and Management

99

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

100

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

What's New in Monthly Energy Review What's New in Monthly Energy Review December 2013 PDF | previous editions Release Date: December 24, 2013 Next Update: January 28, 2014 Listed below are changes in Monthly Energy Review content. Only months with changes beyond the standard updates are shown. CONTENT CHANGES + EXPAND ALL Changes in 2013 December 2013 Release Electricity statistics have been revised in coordination with EIA's Electric Power Annual 2012. Revisions affect data series in Energy Overview, Energy Consumption, Petroleum, Natural Gas, Coal, Electricity, Nuclear Energy, Energy Prices, Renewable Energy, and Environment. Final 2012 heat content values for electricity (Table A6) have also been incorporated. October 2013 Release Excel and CSV files now include pre-1973 data for all series except for Section 12. The Excel files now have two worksheets, one for monthly data and one for annual data.

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

102

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

103

GIZ Sourcebook Module 5h: Urban Transport and Energy Efficiency...  

Open Energy Info (EERE)

h: Urban Transport and Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ Sourcebook Module 5h: Urban Transport and Energy Efficiency AgencyCompany...

104

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Office of Environmental Management (EM)

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

105

SciTech Connect: Transportation Energy Futures Series: Projected...  

Office of Scientific and Technical Information (OSTI)

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures...

106

Total............................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Total................................................................... Total................................................................... 111.1 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546

107

Total...................  

Gasoline and Diesel Fuel Update (EIA)

4,690,065 52,331,397 2,802,751 4,409,699 7,526,898 209,616 1993 Total................... 4,956,445 52,535,411 2,861,569 4,464,906 7,981,433 209,666 1994 Total................... 4,847,702 53,392,557 2,895,013 4,533,905 8,167,033 202,940 1995 Total................... 4,850,318 54,322,179 3,031,077 4,636,500 8,579,585 209,398 1996 Total................... 5,241,414 55,263,673 3,158,244 4,720,227 8,870,422 206,049 Alabama ...................... 56,522 766,322 29,000 62,064 201,414 2,512 Alaska.......................... 16,179 81,348 27,315 12,732 75,616 202 Arizona ........................ 27,709 689,597 28,987 49,693 26,979 534 Arkansas ..................... 46,289 539,952 31,006 67,293 141,300 1,488 California ..................... 473,310 8,969,308 235,068 408,294 693,539 36,613 Colorado...................... 110,924 1,147,743

108

National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

109

Sandia National Laboratories: Transportation Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

for industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based...

110

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Superseded -- see MER for key annual tables Superseded -- see MER for key annual tables Annual Energy Review archives for data year: 2011 2010 2009 2008 all archives Go CONTENT CHANGES + EXPAND ALL Changes in Annual Energy Review 2011 Annual Energy Review 2011 Release: September 27, 2012 1. Energy Consumption, Expenditures, and Emissions Indicators Estimates (Table 1.5) has been modified to include columns for Gross Output and Energy Expenditures as Share of Gross Output and remove Greenhouse Gas Emissions per Real Dollar of Gross Domestic Product. 2. Sales of Fossil Fuels Produced on Federal and American Indian Lands (Table 1.14) was previously titled "Fossil Fuel Production on Federally Administered Lands." It has been redesigned and now provides data on sales of fossil fuels from Federal and American Indian lands for fiscal years 2003 through 2011.

111

Sustainable Transportation Energy Pathways Research  

E-Print Network (OSTI)

Modeling Vehicle Technology Evaluation Energy, Environmental & Economic Cost Analysis Scenarios · Fuel cell electric Climate change, Air quality, Energy security A comprehensive energy strategy should · Electricity · Low-carbon liquid fuels (coal / NG with sequestration) #12;POTENTIAL FOR VEHICLE ENERGY

Handy, Susan L.

112

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPORTATION ENERGY FUTURES TRANSPORTATION ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is essential to our economy and quality of life, and currently accounts for 71% of the nation's total petroleum use and 33% of our total carbon emissions. Energy-efficient transportation strategies could reduce both oil consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an

113

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

114

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector, 2011 (Quadrillion Btu) Primary Energy Consumption by Source and Sector diagram image Footnotes: 1 Does not include biofuels that have been blended with petroleum-biofuels are included in "Renewable Energy." 2 Excludes supplemental gaseous fuels. 3 Includes less than 0.1 quadrillion Btu of coal coke net exports. 4 Conventional hydroelectric power, geothermal, solar/PV, wind, and biomass. 5 Includes industrial combined-heat-and-power (CHP) and industrial electricity-only plants. 6 Includes commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 Electricity-only and combined-heat-and-power (CHP) plants whose primary business is to sell electricity, or electricity and heat, to the public.

115

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

116

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

117

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...  

Energy Savers (EERE)

Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies,...

118

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

Norway International Council on Clean Transportation University of British Columbia University of Maine UC Davis Energy

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

119

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY  

E-Print Network (OSTI)

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY Institute of Transportation in January 2011, building on the many advances of our Sustainable Transportation Energy Pathways (STEPS Analyze sustainability issues including land use change effects, water use, resource constraints

California at Davis, University of

120

Potential Energy Total electric potential energy, U, of a system of  

E-Print Network (OSTI)

Potential Energy Total electric potential energy, U, of a system of charges is obtained from of work done by the field, W*= -W. Bring q1 from , W *= 0 since no electric F yet #12;Potential Energy Total electric potential energy, U, of a system of charges is obtained from the work done by an external

Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transportation Energy Data Book: Edition 25  

SciTech Connect

The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2006-06-01T23:59:59.000Z

122

Transportation Energy Data Book: Edition 29  

SciTech Connect

The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2010-07-01T23:59:59.000Z

123

Transportation Energy Data Book: Edition 32  

SciTech Connect

The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL] [ORNL; Diegel, Susan W [ORNL] [ORNL; Boundy, Robert Gary [ORNL] [ORNL

2013-08-01T23:59:59.000Z

124

Transportation Energy Data Book: Edition 28  

SciTech Connect

The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2009-06-01T23:59:59.000Z

125

Transportation Energy Data Book: Edition 27  

SciTech Connect

The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2008-06-01T23:59:59.000Z

126

Transportation Energy Data Book: Edition 31  

SciTech Connect

The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2012-08-01T23:59:59.000Z

127

Transportation Energy Data Book: Edition 30  

SciTech Connect

The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2011-07-01T23:59:59.000Z

128

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Renter- Occupied Housing Units (millions) Type of Renter-Occupied Housing Unit U.S. Housing Units (millions Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005

129

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Single-Family Units Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table HC2.7 Air Conditioning Usage Indicators by Type of Housing Unit, 2005 Million U.S. Housing Units Air Conditioning Usage Indicators Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings With-- Housing Units (millions) At Home Behavior Home Used for Business

130

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Q Q Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 Living Space Characteristics by Owner-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Million U.S. Housing Units Owner- Occupied Housing Units (millions) Type of Owner-Occupied Housing Unit Housing Units (millions)

131

Executive Order 13423: Strengthening Federal Environmental, Energy, and Transportation Management  

Office of Energy Efficiency and Renewable Energy (EERE)

Full text of Executive Order 13423: Strengthening Federal Environmental, Energy, and Transportation Management.

132

Isotope Program Transportation | Department of Energy  

Office of Environmental Management (EM)

Isotope Program Transportation Isotope Program Transportation Isotope Program Transportation More Documents & Publications Nuclear Fuel Storage and Transportation Planning Project...

133

Nuclear Transportation Management Services | Department of Energy  

Office of Environmental Management (EM)

Nuclear Transportation Management Services Nuclear Transportation Management Services Nuclear Transportation Management Services More Documents & Publications Transportation and...

134

Sandia National Laboratories: Transportation Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

135

Sandia National Laboratories: Transportation Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Internship Opportunities - Apply by January 10, 2014 On December 4, 2013, in CRF, Energy, Facilities, Job Listing, News, News & Events, Office of Science, Research &...

136

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

137

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 19.0 22.7 22.3 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 2.1 0.6 Q 0.4 500 to 999........................................................... 23.8 13.6 3.7 3.2 3.2 1,000 to 1,499..................................................... 20.8 9.5 3.7 3.4 4.2 1,500 to 1,999..................................................... 15.4 6.6 2.7 2.5 3.6 2,000 to 2,499..................................................... 12.2 5.0 2.1 2.8 2.4 2,500 to 2,999..................................................... 10.3 3.7 1.8 2.8 2.1 3,000 to 3,499..................................................... 6.7 2.0 1.4 1.7 1.6 3,500 to 3,999..................................................... 5.2 1.6 0.8 1.5 1.4 4,000 or More.....................................................

138

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

0.7 0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7 1.3 2,500 to 2,999..................................................... 10.3 3.0 1.8 0.5 0.7 3,000 to 3,499..................................................... 6.7 2.1 1.2 0.5 0.4 3,500 to 3,999..................................................... 5.2 1.5 0.8 0.3 0.4 4,000 or More.....................................................

139

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

25.6 25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1 2.6 2,500 to 2,999..................................................... 10.3 2.2 2.7 3.0 2.4 3,000 to 3,499..................................................... 6.7 1.6 2.1 2.1 0.9 3,500 to 3,999..................................................... 5.2 1.1 1.7 1.5 0.9 4,000 or More.....................................................

140

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

4.2 4.2 7.6 16.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 1.0 0.2 0.8 500 to 999........................................................... 23.8 6.3 1.4 4.9 1,000 to 1,499..................................................... 20.8 5.0 1.6 3.4 1,500 to 1,999..................................................... 15.4 4.0 1.4 2.6 2,000 to 2,499..................................................... 12.2 2.6 0.9 1.7 2,500 to 2,999..................................................... 10.3 2.4 0.9 1.4 3,000 to 3,499..................................................... 6.7 0.9 0.3 0.6 3,500 to 3,999..................................................... 5.2 0.9 0.4 0.5 4,000 or More.....................................................

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Total.........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Floorspace (Square Feet) Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3 2,500 to 2,999.................................................... 10.3 1.5 2.3 2.7 2.1 1.7 3,000 to 3,499.................................................... 6.7 1.0 2.0 1.7 1.0 1.0 3,500 to 3,999.................................................... 5.2 0.8 1.5 1.5 0.7 0.7 4,000 or More.....................................................

142

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

. . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to 2,999..................................................... 10.3 2.2 1.7 0.6 3,000 to 3,499..................................................... 6.7 1.6 1.0 0.6 3,500 to 3,999..................................................... 5.2 1.1 0.9 0.3 4,000 or More.....................................................

143

Total..........................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

7.1 7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4 2,500 to 2,999..................................................... 10.3 0.5 0.5 0.4 1.1 3,000 to 3,499..................................................... 6.7 0.3 Q 0.4 0.3 3,500 to 3,999..................................................... 5.2 Q Q Q Q 4,000 or More.....................................................

144

Total..........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7 0.4 2,139 1,598 Q Q Q Q 2,500 to 2,999........................................ 10.1 Q Q Q Q Q Q Q 3,000 or More......................................... 29.6 0.3 Q Q Q Q Q Q Heated Floorspace (Square Feet) None...................................................... 3.6 1.8 1,048 0 Q 827 0 407 Fewer than 500......................................

145

Total...................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

2,033 2,033 1,618 1,031 791 630 401 Total Floorspace (Square Feet) Fewer than 500............................................... 3.2 357 336 113 188 177 59 500 to 999....................................................... 23.8 733 667 308 343 312 144 1,000 to 1,499................................................. 20.8 1,157 1,086 625 435 409 235 1,500 to 1,999................................................. 15.4 1,592 1,441 906 595 539 339 2,000 to 2,499................................................. 12.2 2,052 1,733 1,072 765 646 400 2,500 to 2,999................................................. 10.3 2,523 2,010 1,346 939 748 501 3,000 to 3,499................................................. 6.7 3,020 2,185 1,401 1,177 851 546 3,500 to 3,999................................................. 5.2 3,549 2,509 1,508

146

TRANSPORTATION ENERGY DATA BOOK: EDITION 22  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 (Edition 22 of ORNL-5198) Center for Transportation Analysis Engineering Science & Technology Division TRANSPORTATION ENERGY DATA BOOK: EDITION 22 Stacy C. Davis Susan W. Diegel Oak Ridge National Laboratory September 2002 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by the Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6073 Managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the

147

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Sustainable Transportation  

Office of Energy Efficiency and Renewable Energy (EERE)

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Sustainable Transportation, May 2013.

148

Energy and Transportation Science Division (ETSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

149

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

26.7 26.7 28.8 20.6 13.1 22.0 16.6 38.6 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................... 3.2 1.9 0.9 Q Q Q 1.3 2.3 500 to 999........................................... 23.8 10.5 7.3 3.3 1.4 1.2 6.6 12.9 1,000 to 1,499..................................... 20.8 5.8 7.0 3.8 2.2 2.0 3.9 8.9 1,500 to 1,999..................................... 15.4 3.1 4.2 3.4 2.0 2.7 1.9 5.0 2,000 to 2,499..................................... 12.2 1.7 2.7 2.9 1.8 3.2 1.1 2.8 2,500 to 2,999..................................... 10.3 1.2 2.2 2.3 1.7 2.9 0.6 2.0 3,000 to 3,499..................................... 6.7 0.9 1.4 1.5 1.0 1.9 0.4 1.4 3,500 to 3,999..................................... 5.2 0.8 1.2 1.0 0.8 1.5 0.4 1.3 4,000 or More...................................... 13.3 0.9 1.9 2.2 2.0 6.4 0.6 1.9 Heated Floorspace

150

Total...........................................................  

U.S. Energy Information Administration (EIA) Indexed Site

14.7 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9 1.8 1.4 2.2 2.1 1.6 0.8 2,500 to 2,999..................................... 10.3 1.6 0.9 1.1 1.1 1.5 1.5 1.7 0.8 3,000 to 3,499..................................... 6.7 1.0 0.5 0.8 0.8 1.2 0.8 0.9 0.8 3,500 to 3,999..................................... 5.2 1.1 0.3 0.7 0.7 0.4 0.5 1.0 0.5 4,000 or More...................................... 13.3

151

Total................................................  

U.S. Energy Information Administration (EIA) Indexed Site

.. .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to 2,499.............................. 12.2 11.9 2,039 1,731 1,055 2,143 1,813 1,152 Q Q Q 2,500 to 2,999.............................. 10.3 10.1 2,519 2,004 1,357 2,492 2,103 1,096 Q Q Q 3,000 or 3,499.............................. 6.7 6.6 3,014 2,175 1,438 3,047 2,079 1,108 N N N 3,500 to 3,999.............................. 5.2 5.1 3,549 2,505 1,518 Q Q Q N N N 4,000 or More...............................

152

Energy transport through rare collisions  

E-Print Network (OSTI)

We study a one-dimensional hamiltonian chain of masses perturbed by an energy conserving noise. The dynamics is such that, according to its hamiltonian part, particles move freely in cells and interact with their neighbors through collisions, made possible by a small overlap of size $\\epsilon > 0$ between near cells. The noise only randomly flips the velocity of the particles. If $\\epsilon \\rightarrow 0$, and if time is rescaled by a factor $1/{\\epsilon}$, we show that energy evolves autonomously according to a stochastic equation, which hydrodynamic limit is known in some cases. In particular, if only two different energies are present, the limiting process coincides with the simple symmetric exclusion process.

Franois Huveneers

2011-07-14T23:59:59.000Z

153

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Electricity Flow, (Quadrillion Btu) Electricity Flow, (Quadrillion Btu) Electricity Flow diagram image Footnotes: 1 Blast furnace gas, propane gas, and other manufactured and waste gases derived from fossil fuels. 2 Batteries, chemicals, hydrogen, pitch, purchased steam, sulfur, miscellaneous technologies, and non-renewable waste (municipal solid waste from non-biogenic sources, and tire-derived fuels). 3 Data collection frame differences and nonsampling error. Derived for the diagram by subtracting the "T & D Losses" estimate from "T & D Losses and Unaccounted for" derived from Table 8.1. 4 Electric energy used in the operation of power plants. 5 Transmission and distribution losses (electricity losses that occur between the point of generation and delivery to the customer) are estimated

154

Total Energy - Data - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Flow, (Million Barrels per Day) Petroleum Flow, (Million Barrels per Day) Petroleum Energy Flow diagram image Footnotes: 1 Unfinished oils, hydrogen/oxygenates/renewables/other hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.972), net imports (1.164) and adjustments (0.122) minus stock change (0.019) and product supplied (0.001). 3 Finished petroleum products, liquefied petroleum gases, and pentanes plus. 4 Natural gas plant liquids. 5 Field production (2.183) and renewable fuels and oxygenate plant net production (-.019) minus refinery and blender net imputs (0.489). 6 Production minus refinery input. (s)= Less than 0.005. Notes: * Data are preliminary. * Values are derived from source data prior to rounding for publication.

155

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

for the information in this report; nor does any party represent that the uses of this information will not infringe of transportation fuel and crude oil import requirements to establish the quantitative baseline to support its fuels, integration of energy use and land use planning, and transportation fuel infrastructure

156

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathways: An Examination of Timing and Investment Constraints Non-Light-Duty Vehicles Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector Fuels Alternative...

157

ECE 465: Realistic Sustainable Energy -Energy use in transportation,  

E-Print Network (OSTI)

- Wave and tidal power generation possibilities - Role of heat pipes in modern HVAC systems - RecyclingECE 465: Realistic Sustainable Energy - Energy use in transportation, HVAC and electric generation is detailed in units of kW-Hr - Alternative Energy sources for fuels and electric generation are covered

Schumacher, Russ

158

Energy demand and economic consequences of transport policy  

Science Journals Connector (OSTI)

Transport sector is a major consumer of energy. Concern of energy scarcity and price fluctuations enhanced significance of ... sector in national planning. This paper analyses energy demand for transport services...

J. B. Alam; Z. Wadud; J. B. Alam

2013-09-01T23:59:59.000Z

159

The Energy Efficiency Potential of Global Transport to 2050 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to 2050 The Energy Efficiency Potential of Global Transport to 2050 Broad view of sustainability of global transportation deer11greene.pdf More Documents & Publications...

160

HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE  

E-Print Network (OSTI)

..........................................................................................................16 #12;2 1. Summary The global energy scene is currently dominated by two overriding concerns relies almost 100 % on oil, and in 2004 transport energy use amounted to 26% of total world energy useHOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

18 Figure 6 Primary Energy Consumption by End-Use in24 Figure 7 Primary Energy Consumption by Fuel in Commercialbased on total primary energy consumption (source energy),

Fridley, David G.

2008-01-01T23:59:59.000Z

162

Energy, Transportation Ministers from Asia-Pacific Nations Pledge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation September 13, 2011 - 7:44pm Addthis SAN FRANCISCO - Energy and transportation ministers from 21 economies in the Asia-Pacific region today agreed to continue progress on initiatives to make transportation in the region cleaner and more energy-efficient, U.S. Transportation Secretary Ray LaHood and U.S. Energy Secretary Steven Chu announced today. The announcement came during the first-ever joint Transportation and Energy Ministerial Conference held by the Asia-Pacific Economic Cooperation (APEC), the principal economic organization for the region. Secretaries

163

Advances in Transportation Technologies | Department of Energy  

Office of Environmental Management (EM)

Advances in Transportation Technologies Advances in Transportation Technologies Advances in Transportation Technologies More Documents & Publications TEC Working Group Topic Groups...

164

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

165

VIM continuous energy Monte Carlo transport code  

SciTech Connect

VIM is a continuous energy neutron and photon transport code. VIM solves the steady-state neutron or photon transport problem in any detailed three-dimensional geometry using either continuous energy-dependent ENDF nuclear data or multigroup cross sections. Neutron transport is carried out in a criticality mode, or in a fixed source mode (optionally incorporating subcritical multiplication). Photon transport is simulated in the fixed source mode. The geometry options are infinite medium, combinatorial geometry, and hexagonal or rectangular lattices of combinatorial geometry unit cells, and rectangular lattices of cells of assembled plates. Boundary conditions include vacuum, specular and white reflection, and periodic boundaries for reactor cell calculations. VIM was developed primarily as a reactor criticality code. Its tally and edit features are very easy to use, and automatically provide fission, fission production, absorption, capture, elastic scattering, inelastic scattering, and (n,2n) reaction rates for each edit region, edit energy group, and isotope, as well as the corresponding macroscopic information, including group scalar fluxes. Microscopic and macroscopic cross sections, including microscopic P{sub N} group-to-group cross sections are also easily produced.

Blomquist, R.N. [Argonne National Lab., IL (United States)

1995-12-31T23:59:59.000Z

166

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 4: POLICY AND SUSTAINABLE TRANSPORTATION Part 4: Policy and Sustainable Transportation We have explored and compared advanced vehicle and fuel pathways and imagined

California at Davis, University of

167

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3 CHAPTER 10: OPTIMIZING THE TRANSPORTATION CLIMATE MITIGATION WEDGE Chapter

California at Davis, University of

168

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3: SCENARIOS FOR A LOW-CARBON TRANSPORTATION FUTURE PART 3 Part 3: Scenarios

California at Davis, University of

169

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

170

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Worldwide electricity consumption in 2020 is projected to be 76 percent higher than its 1997 level. Long-term growth in electricity consumption is expected to be strongest in the developing economies of Asia, followed by Central and South America. The projected growth rates for electricity consumption in the developing Asian nations are close to 5 percent per year over the International Energy Outlook 2000 (IEO2000) forecast period (Table 20), and the growth rate for Central and South America averages about 4.2 percent per year. As a result, the developing nations in the two regions

171

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

carbon content of transport fuels by 2020, measured as lifecycle greenhouse gas emissions per unit of energy.

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

172

Molecular Structure and Free Energy Landscape for Electron Transport...  

NLE Websites -- All DOE Office Websites (Extended Search)

Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF. Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome...

173

Harmony Search Algorithm for Transport Energy Demand Modeling  

Science Journals Connector (OSTI)

The transport sector is one of the major consumers of energy production throughout the world. Thus, the estimation of medium and long-term energy consumption based on socio-economic and transport related indic...

Halim Ceylan; Huseyin Ceylan

2009-01-01T23:59:59.000Z

174

Table 16. Total Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual" Total Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",88.02,89.53,90.72,91.73,92.71,93.61,94.56,95.73,96.69,97.69,98.89,100,100.79,101.7,102.7,103.6,104.3,105.23 "AEO 1995",,89.21,89.98,90.57,91.91,92.98,93.84,94.61,95.3,96.19,97.18,98.38,99.37,100.3,101.2,102.1,102.9,103.88 "AEO 1996",,,90.6,91.26,92.54,93.46,94.27,95.07,95.94,96.92,97.98,99.2,100.38,101.4,102.1,103.1,103.8,104.69,105.5 "AEO 1997",,,,92.64,93.58,95.13,96.59,97.85,98.79,99.9,101.2,102.4,103.4,104.7,105.8,106.6,107.2,107.9,108.6 "AEO 1998",,,,,94.68,96.71,98.61027527,99.81855774,101.254303,102.3907928,103.3935776,104.453476,105.8160553,107.2683716,108.5873566,109.8798981,111.0723877,112.166893,113.0926208

175

Measurement of energy-saving effect by intermodal freight transport in Thailand  

Science Journals Connector (OSTI)

In Thailand, transport sector is the largest energy consuming sector (38%). Road haulage of freight transport accounts for approximately 92% of total domestic freight movements. Accordingly, it is one of the largest contributors to adverse environmental impacts. This study presents one option to reduce energy consumption through modal shift from trailer to intermodal transport involving railway and waterway. It focuses on freight movements between Bangkok and Hat Yai in Thailand. Energy savings are measured by multi-objective optimisation model using decision variables consisting of three mode options: trailer only, intermodal-rail and intermodal-waterway. In addition to energy consumption, the objective function also includes time and charge of shipment factor.

Shinya Hanaoka; Taqsim Husnain; Tomoya Kawasaki; Pichet Kunadhamraks

2011-01-01T23:59:59.000Z

176

The Excitation Energy Dependence of the Total Kinetic Energy Release in 235U(n,f)  

E-Print Network (OSTI)

The total kinetic energy release in the neutron induced fission of $^{235}$U was measured (using white spectrum neutrons from LANSCE) for neutron energies from E$_{n}$ = 3.2 to 50 MeV. In this energy range the average post-neutron total kinetic energy release drops from 167.4 $\\pm$ 0.7 to 162.1 $\\pm$ 0.8 MeV, exhibiting a local dip near the second chance fission threshold. The values and the slope of the TKE vs. E$_{n}$ agree with previous measurements but do disagree (in magnitude) with systematics. The variances of the TKE distributions are larger than expected and apart from structure near the second chance fission threshold, are invariant for the neutron energy range from 11 to 50 MeV. We also report the dependence of the total excitation energy in fission, TXE, on neutron energy.

R. Yanez; L. Yao; J. King; W. Loveland; F. Tovesson; N. Fotiades

2014-03-18T23:59:59.000Z

177

Energy Department Awards $45 Million to Deploy Advanced Transportation...  

Energy Savers (EERE)

is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy...

178

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

were used to calculate the energy mix in manufacturing,of Chinas total energy consumption mix. However, accuratelyof Chinas total energy consumption mix. However, accurately

Fridley, David G.

2008-01-01T23:59:59.000Z

179

Innovation Center for Energy and Transportation ICET | Open Energy  

Open Energy Info (EERE)

Center for Energy and Transportation ICET Center for Energy and Transportation ICET Jump to: navigation, search Logo: Innovation Center for Energy and Transportation (ICET) Name Innovation Center for Energy and Transportation (ICET) Place Beijing, China Zip 100020 Sector Carbon Product Beijing-based independent non-profit organization to mitigate climate change through the promotion of clean, low carbon and energy efficient policies and technologies in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Transportation of Nuclear Materials | Department of Energy  

Energy Savers (EERE)

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

VTPI-Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

Area: Transportation Resource Type: Dataset Website: www.vtpi.orgtdmtdm80.htm Cost: Free VTPI-Transportation Statistics Screenshot References: VTPI-Transportation Statistics1...

182

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

183

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

184

"Table A15. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption for" Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Economic Characteristics(a)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

185

"Table A45. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

5. Selected Energy Operating Ratios for Total Energy Consumption" 5. Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Value of Shipment Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

186

"Table A46. Selected Energy Operating Ratios for Total Energy Consumption"  

U.S. Energy Information Administration (EIA) Indexed Site

Selected Energy Operating Ratios for Total Energy Consumption" Selected Energy Operating Ratios for Total Energy Consumption" " for Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Employment Size Categories, 1994" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

187

"Table A48. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Selected Energy Operating Ratios for Total Energy Consumption for" 8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, and Economic" " Characteristics of the Establishment, 1994" ,,,"Consumption","Major" " "," ","Consumption","per Dollar","Byproducts(b)","Fuel Oil(c)"," " " ","Consumption","per Dollar","of Value","as a Percent","as a Percent","RSE" " ","per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row"

188

"Table A8. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

A8. Selected Energy Operating Ratios for Total Energy Consumption for" A8. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Industry Group, and" " Selected Industries, 1991" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumsption","Natural Gas","Row" "Code(a)","Industry Groups and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(PERCENT)","(percent)","Factors"

189

"Table A51. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Energy Operating Ratios for Total Energy Consumption for" 1. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region and Economic" " Characteristics of the Establishment, 1991 " ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(percent)","(percent)","Factors"

190

"Table A47. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Selected Energy Operating Ratios for Total Energy Consumption for" 7. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Census Region, Census Division, Industry Group, and" " Selected Industries, 1994" ,,,,,"Major" ,,,,"Consumption","Byproducts(b)" ,,,"Consumption","per Dollar","as a","Fuel Oil(c) as" ,,"Consumption","per Dollar","of Value","Percent of","a Percent of","RSE" "SIC"," ","per Employee","of Value Added","of Shipments","Consumption","Natural Gas","Row" "Code(a)","Industry Group and Industry","(million Btu)","(thousand Btu)","(thousand Btu)","(percents)","(percents)","Factors"

191

"Table A50. Selected Energy Operating Ratios for Total Energy Consumption for"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Selected Energy Operating Ratios for Total Energy Consumption for" 0. Selected Energy Operating Ratios for Total Energy Consumption for" " Heat, Power, and Electricity Generation by Industry Group," " Selected Industries, and Economic Characteristics of the" " Establishment, 1991 (Continued)" ,,,,,"Major" ,,,"Consumption","Consumption per","Byproducts(c)","Fuel Oil(d)" ,,"Consumption","per Dollar","Dollar of Value","as a Percent of","as a Percent","RSE" "SIC",,"per Employee","of Value Added","of Shipments","of Consumption","of Natural Gas","Row" "Code(a)","Economic Characteristics(b)","(million Btu)","(thousand Btu)","(thousand Btu)","(Percent)","(percent)","Factors"

192

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

193

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

194

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

195

Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual Total Delivered Commercial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.6 AEO 1995 6.9 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0 8.0 8.1 AEO 1997 7.4 7.4 7.4 7.5 7.5 7.6 7.7 7.7 7.8 7.8 7.9 7.9 8.0 8.1 8.1 8.2 AEO 1998 7.5 7.6 7.7 7.8 7.9 8.0 8.0 8.1 8.2 8.3 8.4 8.4 8.5 8.6 8.7 AEO 1999 7.4 7.8 7.9 8.0 8.1 8.2 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 AEO 2000 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.5 8.7 8.7 8.8 AEO 2001 7.8 8.1 8.3 8.6 8.7 8.9 9.0 9.2 9.3 9.5 9.6 9.7 AEO 2002 8.2 8.4 8.7 8.9 9.0 9.2 9.4 9.6 9.7 9.9 10.1

196

Table 16. Total Energy Consumption, Projected vs. Actual Projected  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Consumption, Projected vs. Actual Total Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 88.0 89.5 90.7 91.7 92.7 93.6 94.6 95.7 96.7 97.7 98.9 100.0 100.8 101.7 102.7 103.6 104.3 105.2 AEO 1995 89.2 90.0 90.6 91.9 93.0 93.8 94.6 95.3 96.2 97.2 98.4 99.4 100.3 101.2 102.1 102.9 103.9 AEO 1996 90.6 91.3 92.5 93.5 94.3 95.1 95.9 96.9 98.0 99.2 100.4 101.4 102.1 103.1 103.8 104.7 105.5 AEO 1997 92.6 93.6 95.1 96.6 97.9 98.8 99.9 101.2 102.4 103.4 104.7 105.8 106.6 107.2 107.9 108.6 AEO 1998 94.7 96.7 98.6 99.8 101.3 102.4 103.4 104.5 105.8 107.3 108.6 109.9 111.1 112.2 113.1 AEO 1999 94.6 97.0 99.2 100.9 102.0 102.8 103.6 104.7 106.0 107.2 108.5 109.7 110.8 111.8

197

Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual Total Delivered Industrial Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 25.4 25.9 26.3 26.7 27.0 27.1 26.8 26.6 26.9 27.2 27.7 28.1 28.3 28.7 29.1 29.4 29.7 30.0 AEO 1995 26.2 26.3 26.5 27.0 27.3 26.9 26.6 26.8 27.1 27.5 27.9 28.2 28.4 28.7 29.0 29.3 29.6 AEO 1996 26.5 26.6 27.3 27.5 26.9 26.5 26.7 26.9 27.2 27.6 27.9 28.2 28.3 28.5 28.7 28.9 29.2 AEO 1997 26.2 26.5 26.9 26.7 26.6 26.8 27.1 27.4 27.8 28.0 28.4 28.7 28.9 29.0 29.2 29.4 AEO 1998 27.2 27.5 27.2 26.9 27.1 27.5 27.7 27.9 28.3 28.7 29.0 29.3 29.7 29.9 30.1 AEO 1999 26.7 26.4 26.4 26.8 27.1 27.3 27.5 27.9 28.3 28.6 28.9 29.2 29.5 29.7 AEO 2000 25.8 25.5 25.7 26.0 26.5 26.9 27.4 27.8 28.1 28.3 28.5 28.8 29.0

198

Table 17. Total Delivered Residential Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Residential Energy Consumption, Projected vs. Actual Total Delivered Residential Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5 10.5 10.5 10.5 10.5 10.6 10.6 AEO 1995 11.0 10.8 10.8 10.8 10.8 10.8 10.8 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 AEO 1996 10.4 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.0 11.2 11.2 11.3 11.4 11.5 11.6 11.7 11.8 AEO 1997 11.1 10.9 11.1 11.1 11.2 11.2 11.2 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.9 12.0 AEO 1998 10.7 11.1 11.2 11.4 11.5 11.5 11.6 11.7 11.8 11.9 11.9 12.1 12.1 12.2 12.3 AEO 1999 10.5 11.1 11.3 11.3 11.4 11.5 11.5 11.6 11.6 11.7 11.8 11.9 12.0 12.1 AEO 2000 10.7 10.9 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

199

Alternative and Transitional Energy Sources for Urban Transportation  

Science Journals Connector (OSTI)

In urban areas, the transportation sector is one of the principal sources of substantial energy consumption. Although public modes of transportation have ... cities still prefer owning and using their private cars

Linna Li; Becky P. Y. Loo

2014-03-01T23:59:59.000Z

200

Technology Mapping of the Renewable Energy, Buildings and Transport  

Open Energy Info (EERE)

Technology Mapping of the Renewable Energy, Buildings and Transport Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary Name: Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Energy Focus Area: Energy Efficiency, Renewable Energy, Buildings, Industry, Transportation Topics: Implementation, Market analysis, Policies/deployment programs, Pathways analysis Resource Type: Publications, Guide/manual Website: ictsd.org/downloads/2010/06/synthesis-re-transport-buildings.pdf Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Screenshot

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Transportation and Energy Use Data Files  

U.S. Energy Information Administration (EIA) Indexed Site

Data Files Data Files Transportation and Energy Use Data Files Data from the last two Residential Transportation Energy Consumption Surveys are available on-line. These data include fuel consumption and expenditures, vehicle-miles traveled, vehicle characteristics, and household characteristics from national samples of over 3,000 households. To protect respondent confidentiality, these data files do not contain any information which could be used to identify individual households. The lowest level of geographic detail provided is the Census Division (a grouping of 3 to 5 States.) 1994 RTECS Public Use Data 1991 RTECS Public Use Data 1994 RTECS Public Use Data The data from the 1994 RTECS is distributed in dBase and ASCII formats. The data in each set has been compressed using PKZIP. After downloading either the ASCII or dBase set, place the downloaded file in a separate directory and expand it using pkunzip. If you don't have pkunzip.exe, you can download that package here. PKUNZIP.EXE is in PKZ204g.exe. PKUNZIP.EXE is the only file you need, but the developers of the product have asked that the entire package be distributed and not the individual files. You can however find pkunzip.exe on several other Internet sites. If you download PKZ204g.exe to a separate directory, type PKZ204g and press ENTER.

202

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

of Central Government Buildings. Available at: http://Energy Commission, PIER Building End-Use Energy Efficiencythe total lifecycle of a building such as petroleum and

Fridley, David G.

2008-01-01T23:59:59.000Z

203

Chapter 47 - Transportation | Department of Energy  

Office of Environmental Management (EM)

7 - Transportation Chapter 47 - Transportation 47.1TransportationAirCharterServices0.pdf More Documents & Publications AcqGuide47pt1.doc&0; TEC Working Group Topic Groups...

204

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

205

GIZ Transport & Mobility Compass | Open Energy Information  

Open Energy Info (EERE)

Region(s): Global Related Tools Promoting Clean Cars: Case Study of Stockholm and Sweden Technology Roadmap: Biofuels for Transport Navigating Transport NAMAs ... further results...

206

Arizona Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Arizona Department of Transportation Name: Arizona Department of Transportation Abbreviation: ADOT Address: 7330 N Shannon Rd Place: Tuscon, Arizona Zip: 85741 Phone Number: (520)...

207

Clean Transportation Education Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Education Project Clean Transportation Education Project 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

208

Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation is a federal agency in the United States. Retrieved from "http:en.openei.orgwindex.php?titleDepartmentofTransportation&oldid335946"...

209

Texas Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin, Texas Zip: 78701 Number of Employees: 10,000+ Website: http:...

210

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

211

Transport NAMA Database | Open Energy Information  

Open Energy Info (EERE)

AgencyCompany Organization: Ecofys Website: www.transport-namadatabase.orgindex.phpMainPage Transport Toolkit Region(s): Latin America & Caribbean, Africa & Middle East,...

212

Sandia National Laboratories: energy for transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

for transportation Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation On August 28, 2013, in Center for Infrastructure Research and...

213

Green Growth and Transport | Open Energy Information  

Open Energy Info (EERE)

Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Growth and Transport AgencyCompany Organization: ITF ComplexityEase of Use: Not Available Website:...

214

Chemistry and Transport - Combustion Energy Frontier Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Transport Chemistry and Transport The overall goal of the flame chemistry working group is to obtain fundamental combustion and emission properties of low and high...

215

An Adaptive Tree Code for Computing Total Potential Energy in Classical Molecular Systems  

E-Print Network (OSTI)

An Adaptive Tree Code for Computing Total Potential Energy in Classical Molecular Systems Zhong, 2000 Abstract A tree code algorithm is presented for rapid computation of the total potential energy are presented for a variety of systems. Keywords: adaptive tree code; total potential energy; nonbonded

Duan, Zhong-Hui

216

THE USE OF TRUST REGIONS IN KOHN-SHAM TOTAL ENERGY MINIMIZATION  

E-Print Network (OSTI)

-consistent and the Kohn-Sham (KS) total energy function associated with the system reaches the global minimum. It has longTHE USE OF TRUST REGIONS IN KOHN-SHAM TOTAL ENERGY MINIMIZATION CHAO YANG , JUAN C. MEZA , AND LIN system, is viewed in this paper as an optimization procedure that minimizes the Kohn- Sham total energy

Geddes, Cameron Guy Robinson

217

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Gases, Regulated Emissions, and Energy Use in Transportation Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/main Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET References: GREET Fleet Main Page[1] Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet)

218

INL Site Executable Plan for Energy and Transportation Fuels Management  

SciTech Connect

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

219

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

Lee, Henry. 2009. Oil Security and the TransportationCanadian Oil Sands: Energy Security and Climate Change.is closely tied to oil security. Any discussion of oil

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

220

Packaging and Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transportation Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012 Annual Report. SUPPORTING PROGRAMS SAFE TRANSPORTATION OF RADIOLOGICAL SHIPMENTS Transportation Emergency Preparedness Program (TEPP) TEPP provides the tools for planning, training and exercises, and technical assistance to assist State and Tribal authorities in preparing for response

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Sandia National Laboratories: Sandia Transportation-Energy Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

limateECEnergyComputational Modeling & SimulationSandia Transportation-Energy Research Project Funded as a Part of DOE's "EV Everywhere" Funding Program Sandia...

222

Fact #636: August 16, 2010 Transportation Energy Use by Mode...  

Energy Savers (EERE)

by Mode, 2008 Bar graph showing the transportation energy use by mode (buses, rail, pipeline, water, air, mediumheavy trucks, and light vehicles) for 2008. For more detailed...

223

Technology Mapping of the Renewable Energy, Buildings and Transport...  

Open Energy Info (EERE)

of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects AgencyCompany Organization: International Centre for Trade and...

224

Energy Transport by Classical Waves through Multilayers of Diffusing Slabs  

Science Journals Connector (OSTI)

We describe the effect of interfaces on classical wave propagation through diffusing layered media. A series resistor model for wave energy transport is introduced and we derive a...

Gerritsen, Sijmen; Bauer, Gerrit E

225

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

226

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

227

Total China Investment Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Total China Investment Co Ltd Total China Investment Co Ltd Jump to: navigation, search Name Total (China) Investment Co. Ltd. Place Beijing, China Zip 100004 Product Total has been present in China for about 30 years through its activities of Exploration & Production, Gas & Power, Refining & Marketing, and Chemicals. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Indonesia-GTZ Emissions Reductions in Urban Transport | Open Energy  

Open Energy Info (EERE)

Reductions in Urban Transport Reductions in Urban Transport Jump to: navigation, search Logo: Indonesia-GTZ Emissions Reductions in Urban Transport Name Indonesia-GTZ Emissions Reductions in Urban Transport Agency/Company /Organization GTZ Partner Ministry of Transportation Sector Energy Focus Area Transportation Topics Background analysis Website http://www.gtz.de/en/themen/um Program Start 2008 Program End 2012 Country Indonesia UN Region South-Eastern Asia References GTZ Transport & Climate Change Website[1] GTZ is working with Indonesia on this program with the following objective: "Indonesian cities increasingly plan and implement measures for a transport system that is energy efficient as well as environmentally and climate friendly." Background of the project is the absence of a national policy on

229

Barge Truck Total  

Annual Energy Outlook 2012 (EIA)

Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

230

Property:Building/TotalFloorArea | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/TotalFloorArea Jump to: navigation, search This is a property of type Number. Total floor area (BRA), m2 Pages using the property "Building/TotalFloorArea" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,855 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 13,048 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,310 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 +

231

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

Total Total Jump to: navigation, search This is a property of type Number. Pages using the property "RenewableFuelStandard/Total" Showing 15 pages using this property. R Renewable Fuel Standard Schedule + 13.95 + Renewable Fuel Standard Schedule + 26 + Renewable Fuel Standard Schedule + 15.2 + Renewable Fuel Standard Schedule + 28 + Renewable Fuel Standard Schedule + 16.55 + Renewable Fuel Standard Schedule + 30 + Renewable Fuel Standard Schedule + 18.15 + Renewable Fuel Standard Schedule + 9 + Renewable Fuel Standard Schedule + 33 + Renewable Fuel Standard Schedule + 20.5 + Renewable Fuel Standard Schedule + 11.1 + Renewable Fuel Standard Schedule + 36 + Renewable Fuel Standard Schedule + 22.25 + Renewable Fuel Standard Schedule + 12.95 + Renewable Fuel Standard Schedule + 24 +

232

"Table A28. Total Expenditures for Purchased Energy Sources by Census Region"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Expenditures for Purchased Energy Sources by Census Region" Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

233

Hydrogen Energy Storage for Grid and Transportation Services Workshop  

Energy.gov (U.S. Department of Energy (DOE))

View presentations from the U.S. Department of Energy (DOE) and Industry Canada Hydrogen Energy Storage for Grid and Transportation Services Workshop, held on May 1415, 2014, in Sacramento, California.

234

Triplet Energy Transport in Platinum-Acetylide Light Harvesting Arrays  

Science Journals Connector (OSTI)

Light harvesting and triplet energy transport is investigated in chromophore-functionalized polystyrene polymers featuring light harvesting and energy acceptor chromophores (traps) at varying loading. The series of precision polymers was constructed via ...

Zhuo Chen; Hsien-Yi Hsu; Mert Arca; Kirk S. Schanze

2014-10-22T23:59:59.000Z

235

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report  

Energy.gov (U.S. Department of Energy (DOE))

Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

236

Energy Demand and Emission from Transport Sector in China  

Science Journals Connector (OSTI)

This paper aims to present a comprehensive overview of the current status and future trends of energy demand and emissions from transportation sector in China. ... a brief review of the national profile of energy

Yin Huang; Mengjun Wang

2013-01-01T23:59:59.000Z

237

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

238

Department of Energy Receives Highest Transportation Industry Safety Award  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receives Highest Transportation Industry Receives Highest Transportation Industry Safety Award Department of Energy Receives Highest Transportation Industry Safety Award May 1, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's highest transportation safety awards, for helping local communities in emergency preparedness and response. TRANSCAER is a voluntary national organization that assists communities in emergency preparedness and response. "I'm very proud that The Department of Energy has raised the bar for community-based transportation emergency preparedness," Secretary of Energy Samuel W. Bodman said. "Safety is our number one priority, and we will

239

Folk Quantification of Transportation Energy: An initial investigation of perceptions of automobile energy use  

E-Print Network (OSTI)

energy use for both residential and transportation activities, informants used dollars to provide a common unit of measurement.

Silvis, Julia; Leighty, Wayne; Karner, Alex

2007-01-01T23:59:59.000Z

240

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Freight Transportation Modal Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Property:Building/FloorAreaTotal | Open Energy Information  

Open Energy Info (EERE)

FloorAreaTotal FloorAreaTotal Jump to: navigation, search This is a property of type Number. Total Pages using the property "Building/FloorAreaTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 19,657 + Sweden Building 05K0002 + 7,160 + Sweden Building 05K0003 + 4,454 + Sweden Building 05K0004 + 25,650 + Sweden Building 05K0005 + 2,260 + Sweden Building 05K0006 + 14,348 + Sweden Building 05K0007 + 24,155 + Sweden Building 05K0008 + 7,800 + Sweden Building 05K0009 + 34,755 + Sweden Building 05K0010 + 437 + Sweden Building 05K0011 + 15,300 + Sweden Building 05K0012 + 22,565 + Sweden Building 05K0013 + 19,551 + Sweden Building 05K0014 + 1,338.3 + Sweden Building 05K0015 + 1,550 + Sweden Building 05K0016 + 2,546 +

242

Property:Building/SPElectrtyUsePercTotal | Open Energy Information  

Open Energy Info (EERE)

SPElectrtyUsePercTotal SPElectrtyUsePercTotal Jump to: navigation, search This is a property of type String. Total Pages using the property "Building/SPElectrtyUsePercTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 100.0 + Sweden Building 05K0002 + 100.0 + Sweden Building 05K0003 + 100.0 + Sweden Building 05K0004 + 100.0 + Sweden Building 05K0005 + 100.0 + Sweden Building 05K0006 + 100.0 + Sweden Building 05K0007 + 100.0 + Sweden Building 05K0008 + 100.0 + Sweden Building 05K0009 + 100.0 + Sweden Building 05K0010 + 100.0 + Sweden Building 05K0011 + 100.0 + Sweden Building 05K0012 + 100.0 + Sweden Building 05K0013 + 100.0 + Sweden Building 05K0014 + 100.0 + Sweden Building 05K0015 + 100.0 + Sweden Building 05K0016 + 100.0 +

243

Energy and Environmental Policy Analysis - Center for Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy and Energy and Environmental Policy Analysis The Center for Transportation Analysis does specialty research and development in Energy and Environmental Policy Analysis. Transportation systems in the U.S. and around the world face the challenge of providing for increased mobility of people and goods while reducing impacts on the environment and finding sustainable sources of energy. Governmental policies, from investment in research to information, efficiency or emissions standards and fiscal measures, play a critical role in the effort to create a sustainable transportation system. The Transportation Energy and Environmental Policy program conducts research and policy analysis to support the development of efficient, effective and equitable policies to achieve a sustainable transportation system.

244

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

245

TransportToolkit Prototype | Open Energy Information  

Open Energy Info (EERE)

TransportToolkit Prototype TransportToolkit Prototype Jump to: navigation, search Tool Summary Name: TransportToolkit Prototype Agency/Company /Organization: Nick Langle Complexity/Ease of Use: Not Available Cost: Free Related Tools Journal of Public Transportation Handbook for Handling, Storing, and Dispensing E85 Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks ... further results Find Another Tool FIND TRANSPORTATION TOOLS This is a test tool to set values needed for Exhibit search results When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these key phases of the process: Evaluate System - Assessing the current transportation situation Create Baseline - Developing a business-as-usual scenario

246

Sustainable Transport Systems STS | Open Energy Information  

Open Energy Info (EERE)

Transport Systems STS Transport Systems STS Jump to: navigation, search Name Sustainable Transport Systems (STS) Place Santa Cruz, California Zip 95062 Sector Carbon, Efficiency Product California-based company providing assistance to firms looking to cut their carbon footprint through advice about how they can improve efficiency. References Sustainable Transport Systems (STS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Transport Systems (STS) is a company located in Santa Cruz, California . References ↑ "Sustainable Transport Systems (STS)" Retrieved from "http://en.openei.org/w/index.php?title=Sustainable_Transport_Systems_STS&oldid=351924"

247

The World Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

The World Bank - Transport The World Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The World Bank - Transport Agency/Company /Organization: The World Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: go.worldbank.org/0SYYVJWB40 This website provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes international publications and toolkits classified by type of transport and/or region/country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

248

Transport Research Laboratory | Open Energy Information  

Open Energy Info (EERE)

Transport Research Laboratory Transport Research Laboratory Jump to: navigation, search Tool Summary Name: Transport Research Laboratory Agency/Company /Organization: Transport Research Laboratory Focus Area: Governance - Planning - Decision-Making Structure Topics: Potentials & Scenarios Resource Type: Website Website: www.trl.co.uk/ The UK's Transport Research Laboratory is an internationally recognised centre of excellence providing world-class research, consultancy, testing and certification for all aspects of transport. The website provides publications, news, software and many other products and services related to transport How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

249

Victoria Transport Policy Institute | Open Energy Information  

Open Energy Info (EERE)

Transport Policy Institute Transport Policy Institute Jump to: navigation, search Name Victoria Transport Policy Institute Address 1250 Rudlin Street, Place Victoria, British Columbia Website http://www.vtpi.org/ References http://www.vtpi.org/ No information has been entered for this organization. Add Organization "The Victoria Transport Policy Institute is an independent research organization dedicated to developing innovative and practical solutions to transportation problems. We provide a variety of resources available free at this website to help improve transportation planning and policy analysis. We are funded primarily through consulting and project grants. Our research is among the most current available and has been widely applied." References Retrieved from "http://en.openei.org/w/index.php?title=Victoria_Transport_Policy_Institute&oldid=375887"

250

AEO2011: Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics

251

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

Post-2012 Climate Instruments in the transport sector Post-2012 Climate Instruments in the transport sector Jump to: navigation, search Name Post-2012 Climate Instruments in the transport sector Agency/Company /Organization Energy Research Centre of the Netherlands Partner Asian Development Bank Sector Energy Focus Area Transportation Topics Finance Resource Type Presentation Website http://www.slocat.net Program Start 2009 Program End 2010 UN Region South-Eastern Asia References Post-2012 Climate Instruments in the transport sector (CITS)[1] The post 2012 Climate Instruments in the transport sector (CITS) project implemented by the Asian Development Bank (ADB), in cooperation with the Inter-American Development Bank (IDB), is a first step to help ensure that the transport sector can benefit from the revised/new climate change

252

IEP - Water-Energy Interface: Total Maximum Daily Load Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Total Maximum Daily Loads (TMDLs) Total Maximum Daily Loads (TMDLs) The overall goal of the Clean Water Act is to "restore and maintain the chemical, physical, and biological integrity of the Nation’s waters." In 1999, EPA proposed changes to Section 303(d), to establish Total Maximum Daily Loads (TMDLs) for watersheds that do not meet this goal. The TMDL is the highest amount of a given pollutant that is permissible in that body of water over a given period of time. TMDLs include both waste load allocation (WLA) for point sources and load allocations for non-point sources. In Appalachia, acid mine drainage (AMD) is the single most damaging non-point source. There is also particular concern of the atmospheric deposition of airborne sulfur, nitrogen, and mercury compounds. States are currently in the process of developing comprehensive lists of impaired waters and establishing TMDLs for those waters. EPA has recently proposed a final rule that will require states to develop TMDLs and implement plans for improving water quality within the next 10 years. Under the new rule, TMDL credits could be traded within a watershed.

253

"Table A36. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Total Expenditures for Purchased Energy Sources by Census Region," 6. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Group and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States"

254

Toward understanding the exchange-correlation energy and total-energy density functionals  

Science Journals Connector (OSTI)

If an accurate ground-state electron density ?0 for a system is known, it is shown from calculations on atoms that a strikingly good estimate for the total electronic energy of atoms is provided by the formula E[?0]=tsumi?i-(1-1/N)J[?0], where N is the number of electrons, J[?0] is the classical Coulomb repulsion energy for ?0, and the ?i are the Kohn-Sham orbital energies determined by the Zhao-Morrison-Parr procedure [Phys. Rev. A 50, 2138 (1994)] for implementation of the Levy-constrained search determination of the Kohn-Sham kinetic energy. The surprising accuracy of this formula is attributed to the fact that the exchange-correlation functional is equal to -J/N plus a functional that behaves as if it were approximately homogeneous, of degree 1 in the electron density. A corresponding exact formula is given, and various approximate models are constructed.

Robert G. Parr and Swapan K. Ghosh

1995-05-01T23:59:59.000Z

255

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP(Redirected from Transportation Toolkit) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation LEDS Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low emission transportation systems that support economic growth. This toolkit website helps users navigate a variety of resources in order to identify the most effective tools necessary to build and implement low

256

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low-emission transportation systems that support economic growth. This toolkit helps users navigate a variety of resources to identify the most effective tools to build and implement low emission development strategies (LEDS) for the transport sector. Learn more in the report on

257

Transport Activity Measurement Toolkit (TAMT) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Transport Activity Measurement Toolkit (TAMT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Activity Measurement Toolkit (TAMT) Agency/Company /Organization: World Bank Sector: Energy Focus Area: Transportation Topics: GHG inventory, Low emission development planning Resource Type: Dataset, Maps, Software/modeling tools, Video, Training materials User Interface: Website, Desktop Application Website: code.google.com/p/tamt/ Cost: Free Transport Activity Measurement Toolkit (TAMT) Screenshot References: TAMT Presentation[1] TAMT Google Site Page[2] TAMT Demonstration Videos[3] "The World Bank Latin America and the Caribbean Region Sustainable Development Department Transport Cluster in conjunction with the World

258

Intelligent Transportation Systems Deployment Analysis System | Open Energy  

Open Energy Info (EERE)

Intelligent Transportation Systems Deployment Analysis System Intelligent Transportation Systems Deployment Analysis System Jump to: navigation, search Tool Summary Name: Intelligent Transportation Systems Deployment Analysis System Agency/Company /Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools Website: idas.camsys.com/ Country: United States Northern America References: http://idas.camsys.com/ The ITS Deployment Analysis System (IDAS) is software developed by the Federal Highway Administration that can be used in planning for Intelligent Transportation System (ITS) deployments. State, regional, and local planners can use IDAS to estimate the benefits and costs of ITS investments - which are either alternatives to or enhancements of traditional highway

259

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

260

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in Trillion...

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Constrained Optimization Algorithm for Total Energy Minimization in Electronic Structure Calculation  

E-Print Network (OSTI)

Functionals for Electronic Structure Calculations. J. Comp.Minimization in Electronic Structure Calculation ? ChaoKey words: electronic structure calculation, total energy

Yang, Chao; Meza, Juan C.; Wang, Lin-Wang

2005-01-01T23:59:59.000Z

262

Transportation Policies and Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Policies and Programs State and local governments can support reduced petroleum use by implementing policies and programs that promote the use of alternative fuel...

263

Navigating Transport NAMAs | Open Energy Information  

Open Energy Info (EERE)

in Transport Feebates: A Legislative Option to Encourage Continuous Improvements to Automobile Efficiency London Congestion Pricing: Implications for Other Cities ... further...

264

Financing Sustainable Urban Transport | Open Energy Information  

Open Energy Info (EERE)

for a successful sustainable transport agenda in a city. The great importance of political will and the considerable input needed from the local and national governments when...

265

National Transportation Stakeholders Forum | Department of Energy  

Office of Environmental Management (EM)

Stakeholders Forum National Transportation Stakeholders Forum Presentation by Ahmad Al-Daouk, Director of National Security Department NNSA Service Center National...

266

Caltrans Transportation Permits Manual | Open Energy Information  

Open Energy Info (EERE)

Permits Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Caltrans Transportation Permits ManualLegal Abstract...

267

Transportation Energy Futures Study: The Key Results and Conclusions  

Open Energy Info (EERE)

Transportation Energy Futures Study: The Key Results and Conclusions Transportation Energy Futures Study: The Key Results and Conclusions Webinar Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 1 May, 2013 - 11:38 This webinar will outline the key results and conclusions from EERE's Transportation Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be time for questions from attendees at the end of the webinar. Principal Deputy Assistant Secretary Mike Carr will introduce the study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy

268

ECUT energy data reference series: lightweight materials for ground transportation  

SciTech Connect

This report summarizes information that describes the use of lightweight materials in automobiles. The information on this mode of transportation represents the largest potential energy savings for substitution of lightweight materials in the transportation sector. Included are data on energy conversion efficiency of the engine and its relationship to vehicle weight, the capital stock, the amount of energy used, and the service activity level as measured in ton-miles.

Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

269

Measuring total longshore sediment transport with a LISST instrumented mini-sled.  

E-Print Network (OSTI)

A surf zone sediment transport study was conducted in Jamaica Beach, Texas, using new oceanographic equipment. A mini-sled was constructed and outfitted with an instrument package that consisted of two velocimeters, one current profiler, three OBS...

Huchzermeyer, Erick Karl

2006-04-12T23:59:59.000Z

270

Sustainable Transportation Decision-Making: Spatial Decision Support Systems (SDSS) and Total Cost Analysis  

E-Print Network (OSTI)

is to develop a Spatial Decision Support System (SDSS) that will lead to more balanced decision-making in transportation investment and optimize the most sustainable high-speed rail (HSR) route. The decision support system developed here explicitly elaborates...

Kim, Hwan Yong

2013-04-04T23:59:59.000Z

271

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

272

Modal and Nonmodal Symmetric Perturbations. Part II: Nonmodal Growths Measured by Total Perturbation Energy  

Science Journals Connector (OSTI)

Maximum nonmodal growths of total perturbation energy are computed for symmetric perturbations constructed from the normal modes presented in Part I. The results show that the maximum nonmodal growths are larger than the energy growth produced by ...

Qin Xu; Ting Lei; Shouting Gao

2007-06-01T23:59:59.000Z

273

Transportation Energy Data Book: Edition 32, from the Center for Transportation Analysis (CTA)  

DOE Data Explorer (OSTI)

The Transportation Energy Data Book: Edition 32 is a statistical compendium designed for use as a reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions.

Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. (Roltek, Inc.)

274

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties  

E-Print Network (OSTI)

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface and as an energy conversion technology. Aviram and Ratner's revolutionary suggestion that molecules could behave

Malen, Jonathan A.

275

UNEP-Low Carbon Transport in India | Open Energy Information  

Open Energy Info (EERE)

in India in India Jump to: navigation, search Name UNEP-Low Carbon Transport in India Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area Transportation Topics Low emission development planning Website http://www.unep.org/transport/ Program Start 2010 Program End 2013 Country India Southern Asia References Low Carbon Transport in India[1] UNEP-Low Carbon Transport in India Screenshot "India is currently the fourth largest greenhouse gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. The sector also provokes road congestion, local air pollution, noise and accidents, particularly in urban areas. Opportunities exist to make India's transport growth more sustainable by

276

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

APEC-Alternative Transport Fuels: Implementation Guidelines APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary Name: APEC-Alternative Transport Fuels: Implementation Guidelines Agency/Company /Organization: Asia-Pacific Economic Cooperation Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.egnret.ewg.apec.org/news/Alternative%20Transport%20Fuels%20Final%2 Cost: Free Language: English References: APEC-Alternative Transport Fuels: Implementation Guidelines[1] "Worldwide, there are at least 35 million vehicles already operating on some form of alternative transport fuel and many millions more that are fuelled by blends with conventional gasoline and diesel or powered by electricity. Many alternative fuel programs are being, or have been,

277

EPA State and Local Transportation Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » EPA State and Local Transportation Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EPA State and Local Transportation Resources Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/oms/stateresources/policy/pag_transp.htm Cost: Free References: Transportation-Related Documents[1] Provides a variety of resources discussing approaches to reducing transportation energy use. Overview This EPA website gathers together a number of guidance documents covering various approaches to reducing emissions and energy use in the

278

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 11:31am Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

279

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 4:31pm Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

280

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in the West to

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program  

SciTech Connect

This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

NONE

1995-08-01T23:59:59.000Z

282

Total electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV  

E-Print Network (OSTI)

, it is found that the most critical factor is the assumption made on the energy of the auroral protonsTotal electron and proton energy input during auroral substorms: Remote sensing with IMAGE-FUV B and proton energy fluxes. The proton energy flux is derived from the Lyman a measurements on the basis

California at Berkeley, University of

283

Montana Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Montana Department of Transportation Name Montana Department of Transportation Address 2701 Prospect Avenue P.O. Box 201001 Place Helena, Montana Zip 59620 Website http://www.mdt.mt.gov/ Coordinates 46.589151°, -111.992175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.589151,"lon":-111.992175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Idaho Transportation Department | Open Energy Information  

Open Energy Info (EERE)

Idaho Transportation Department Idaho Transportation Department Jump to: navigation, search Logo: Idaho Transportation Department Name Idaho Transportation Department Address 3311 W. State St. PO Box 7129 Place Boise, Idaho Zip 83707-1129 Phone number 208-334-8000 Website http://itd.idaho.gov/ Coordinates 43.635205°, -116.230588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.635205,"lon":-116.230588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Oregon Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Jump to: navigation, search Logo: Oregon Department of Transportation Name Oregon Department of Transportation Address 355 Capitol Street NE Place Salem, Oregon Zip 97301-3871 Year founded 1969 Phone number 888-275-6368 Website http://www.oregon.gov/ODOT/Pag Coordinates 44.940436°, -123.028211° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.940436,"lon":-123.028211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

287

Utah Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Utah Department of Transportation Name Utah Department of Transportation Address 4501 South 2700 West Place Salt Lake City, Utah Zip 84114 Phone number 801.965.4000 Website http://www.udot.utah.gov/main/ Coordinates 40.6724141°, -111.9579795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6724141,"lon":-111.9579795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Integration for Seamless Transport | Open Energy Information  

Open Energy Info (EERE)

the reasons for the relative failure of integrated transport polices with particular reference to experience in the UK. LEDSGP green logo.png This tool is included in the...

289

Thermal Energy Transport in the Solar Wind  

Science Journals Connector (OSTI)

This paper is intended to summarize the present status of measurements of heat flux in the solar wind and to provide a comparison of these measurements with the theory for collision-dominated heat transport in...

Michael D. Montgomery

1972-01-01T23:59:59.000Z

290

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

291

Nevada Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Nevada Department of Transportation Nevada Department of Transportation Jump to: navigation, search Logo: Nevada Department of Transportation Name Nevada Department of Transportation Address 1263 S. Stewart St. Place Carson City, Nevada Zip 89712 Phone number 775-888-7000 Website http://www.nevadadot.com/defau Coordinates 39.157202°, -119.764694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.157202,"lon":-119.764694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

"Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Total Expenditures for Purchased Energy Sources by Census Region," 7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke"," ","Row" "Economic Characteristics(a)","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors"

293

Table A14. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" 4. Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

294

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

295

Table A30. Total Primary Consumption of Energy for All Purposes by Value of  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Primary Consumption of Energy for All Purposes by Value of" 0. Total Primary Consumption of Energy for All Purposes by Value of" "Shipment Categories, Industry Group, and Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," ","(million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row"," "," "," ",," "," "," "," " "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "," ",," "

296

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

297

"Table A11. Total Primary Consumption of Combustible Energy for Nonfuel"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Total Primary Consumption of Combustible Energy for Nonfuel" 1. Total Primary Consumption of Combustible Energy for Nonfuel" " Purposes by Census Region and Economic Characteristics of the Establishment," 1991 " (Estimates in Btu or Physical Units)" " "," "," "," ","Natural"," "," ","Coke"," "," " " ","Total","Residual","Distillate","Gas(c)"," ","Coal","and Breeze","Other(d)","RSE" " ","(trillion","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","(trillion","Row"

298

Impact of Transportation on Cost, Energy and Particulate Emissions for Recycled Concrete Aggregate.  

E-Print Network (OSTI)

??IMPACT OF TRANSPORTATION ON COST, ENERGY AND PARTICULATE EMISSIONS FOR RECYCLED CONCRETE AGGREGATE Transportation distances can have a huge impact on cost, energy, and particulate (more)

Hameed, Mohamed

2009-01-01T23:59:59.000Z

299

Table 17. Total Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption, Projected vs. Actual Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 79.1 79.6 79.9 80.8 82.1 83.3 AEO 1983 78.0 79.5 81.0 82.4 83.9 84.6 89.0 AEO 1984 78.5 79.4 81.2 83.1 85.1 86.4 93.0 AEO 1985 77.6 78.5 79.8 81.2 82.7 83.3 84.2 85.0 85.7 86.3 87.2 AEO 1986 77.0 78.8 79.8 80.7 81.5 82.9 83.8 84.6 85.3 86.0 86.6 87.4 88.3 89.4 90.2 AEO 1987 78.9 80.0 82.0 82.8 83.9 85.1 86.2 87.1 87.9 92.5 AEO 1989* 82.2 83.8 84.5 85.4 86.2 87.1 87.8 88.7 89.5 90.4 91.4 92.4 93.5 AEO 1990 84.2 85.4 91.9 97.4 102.8 AEO 1991 84.4 85.0 86.0 87.0 87.9 89.1 90.4 91.8 93.1 94.3 95.6 97.1 98.4 99.4 100.3 101.4 102.5 103.6 104.7 105.8 AEO 1992 84.7 87.0 88.0 89.2 90.5 91.4 92.4 93.4 94.5 95.6 96.9 98.0 99.0 100.0 101.2 102.2 103.2 104.3 105.2 AEO 1993 87.0 88.3 89.8 91.4 92.7 94.0 95.3 96.3 97.5 98.6

300

Table 20. Total Industrial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Industrial Energy Consumption, Projected vs. Actual Industrial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 24.0 24.1 24.4 24.9 25.5 26.1 AEO 1983 23.2 23.6 23.9 24.4 24.9 25.0 25.4 AEO 1984 24.1 24.5 25.4 25.5 27.1 27.4 28.7 AEO 1985 23.2 23.6 23.9 24.4 24.8 24.8 24.4 AEO 1986 22.2 22.8 23.1 23.4 23.4 23.6 22.8 AEO 1987 22.4 22.8 23.7 24.0 24.3 24.6 24.6 24.7 24.9 22.6 AEO 1989* 23.6 24.0 24.1 24.3 24.5 24.3 24.3 24.5 24.6 24.8 24.9 24.4 24.1 AEO 1990 25.0 25.4 27.1 27.3 28.6 AEO 1991 24.6 24.5 24.8 24.8 25.0 25.3 25.7 26.2 26.5 26.1 25.9 26.2 26.4 26.6 26.7 27.0 27.2 27.4 27.7 28.0 AEO 1992 24.6 25.3 25.4 25.6 26.1 26.3 26.5 26.5 26.0 25.6 25.8 26.0 26.1 26.2 26.4 26.7 26.9 27.2 27.3 AEO 1993 25.5 25.9 26.2 26.8 27.1 27.5 27.8 27.4 27.1 27.4 27.6 27.8 28.0 28.2 28.4 28.7 28.9 29.1 AEO 1994 25.4 25.9

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Table 18. Total Residential Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Residential Energy Consumption, Projected vs. Actual Residential Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 10.1 10.1 10.1 10.1 10.2 10.2 AEO 1983 9.8 9.9 10.0 10.1 10.2 10.1 10.0 AEO 1984 9.9 9.9 10.0 10.2 10.3 10.3 10.5 AEO 1985 9.8 10.0 10.1 10.3 10.6 10.6 10.9 AEO 1986 9.6 9.8 10.0 10.3 10.4 10.8 10.9 AEO 1987 9.9 10.2 10.3 10.3 10.4 10.5 10.5 10.5 10.5 10.6 AEO 1989* 10.3 10.5 10.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 AEO 1990 10.4 10.7 10.8 11.0 11.3 AEO 1991 10.2 10.7 10.7 10.8 10.8 10.8 10.9 10.9 10.9 11.0 11.0 11.0 11.1 11.2 11.2 11.3 11.4 11.4 11.5 11.6 AEO 1992 10.6 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.3 11.3 11.4 11.5 11.5 11.6 11.7 11.8 11.8 11.9 12.0 AEO 1993 10.7 10.9 11.0 11.0 11.0 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.3 11.3 11.4 11.4 11.5 AEO 1994 10.3 10.4 10.4 10.4

302

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Office of Energy Efficiency and Renewable Energy (EERE)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

303

The Biomass Energy Data Book Center for Transportation Analysis  

E-Print Network (OSTI)

The Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, policymakers and analysts need to be well-informed about current biomass energy production activity and the potential contribution biomass resources and technologies can make toward meeting the nation's energy

304

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Agency/Company /Organization: Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools Website: greet.es.anl.gov/ This full life-cycle model evaluates the energy and emission impacts of advanced vehicle technologies and new transportation fuels. The model allows users to evaluate various vehicle and fuel combinations. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

305

Recent Trends in Emerging Transportation Fuels and Energy Consumption  

Science Journals Connector (OSTI)

Several recent trends indicate current developments in energy and transportation fuels. World trade in biofuels is developing in ethanol, wood chips, and vegetable oil / biodiesel with some countries being exp...

B. G. Bunting

2012-01-01T23:59:59.000Z

306

Table 19. Total Commercial Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Commercial Energy Consumption, Projected vs. Actual Commercial Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 6.6 6.7 6.8 6.8 6.8 6.9 AEO 1983 6.4 6.6 6.8 6.9 7.0 7.1 7.2 AEO 1984 6.2 6.4 6.5 6.7 6.8 6.9 7.3 AEO 1985 5.9 6.1 6.2 6.3 6.4 6.5 6.7 AEO 1986 6.2 6.3 6.4 6.4 6.5 7.1 7.4 AEO 1987 6.1 6.1 6.3 6.4 6.6 6.7 6.8 6.9 6.9 7.3 AEO 1989* 6.6 6.7 6.9 7.0 7.0 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 AEO 1990 6.6 6.8 7.1 7.4 7.8 AEO 1991 6.7 6.9 7.0 7.1 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.6 8.7 AEO 1992 6.8 7.1 7.2 7.3 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 AEO 1993 7.2 7.3 7.4 7.4 7.5 7.6 7.7 7.7 7.8 7.9 7.9 8.0 8.0 8.1 8.1 8.1 8.2 8.2 AEO 1994 6.8 6.9 6.9 7.0 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 AEO 1995 6.94 6.9 7.0 7.0 7.0 7.1 7.1 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 AEO 1996 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.6 7.6 7.7 7.7 7.8 7.9 8.0

307

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

for the U.S. Department of Energy by National Renewable Energy Laboratory, Golden, CO. DOEGO-102013-3710. 101 pp. vi REPORT CONTRIBUTORS AND ROLES National Renewable Energy...

308

Sandia National Laboratories: Transportation Energy Center  

NLE Websites -- All DOE Office Websites (Extended Search)

industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF is...

309

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

310

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

311

ECUT energy data reference series: Otto cycle engines in transportation  

SciTech Connect

Information that describes the use of the Otto cycle engines in transportation is summarized. The transportation modes discussed in this report include the following: automobiles, light trucks, heavy trucks, marine, recreational vehicles, motorcycles, buses, aircraft, and snowmobiles. These modes account for nearly 100% of the gasoline and LPG consumed in transportation engines. The information provided on each of these modes includes descriptions of the average energy conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles. Estimates are provided for the years 1980 and 2000.

Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

312

Journal of Public Transportation | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Journal of Public Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Journal of Public Transportation Agency/Company /Organization: National Center for Transit Research Focus Area: Public Transit & Infrastructure Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.nctr.usf.edu/jpt/pdf/JPT13-1.pdf This document have like principal topics: Evaluating the Congestion Relief Impacts of Public Transport in Monetary Terms, The Operating Characteristics of Intercity Public Van Service in Lampung, Indonesia,

313

Colorado Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Name Colorado Department of Transportation Address 4201 E Arkansas Ave Place Denver, Colorado Zip 80222 Year founded 1917 Phone number 303-757-9011 Coordinates 39.6911535°, -104.9384066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6911535,"lon":-104.9384066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

National Transportation Stakeholders Forum (NTSF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) The U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE communicates at a national level with states and tribes about the Department's shipments of radioactive waste and materials, as well as occasional high-visibility shipments that are nonradioactive. The purpose of the NTSF is to bring transparency, openness, and accountability to DOE's offsite transportation activities through collaboration with state and tribal governments. The NTSF meetings and webinars will be particularly relevant for personnel with responsibilities in packaging and transportation, emergency management, security, inspection and enforcement, and radiation protection. Send your

315

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

316

Molecular Ion Beam Transportation for Low Energy Ion Implantation  

SciTech Connect

A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A. [Institute for Theoretical and Experimental Physics, Moscow, 117218 (Russian Federation); Hershcovitch, A.; Johnson, B. M. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Oks, E. M. [High Current Electronics Institute Russian Academy of Sciences, Tomsk, 634055 (Russian Federation); Polozov, S. M. [Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409 (Russian Federation); Poole, H. J. [PVI, Oxnard, California 93031-5023 (United States)

2011-01-07T23:59:59.000Z

317

"Table A24. Total Expenditures for Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

4. Total Expenditures for Purchased Energy Sources by Census Region," 4. Total Expenditures for Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Million Dollars)" ,,,,,,,,,,,"RSE" "SIC"," "," "," ","Residual","Distillate ","Natural"," "," ","Coke"," ","Row" "Code(a)","Industry Groupsc and Industry","Total","Electricity","Fuel Oil","Fuel Oil(b)","Gas(c)","LPG","Coal","and Breeze","Other(d)","Factors" ,,"Total United States" ,"RSE Column Factors:","0.6 ",0.6,1.3,1.3,0.7,1.2,1.2,1.5,1.1

318

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $45 Million to Deploy Advanced Awards $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs and protect the environment in communities nationwide. "By partnering with universities, private industry and our national labs, the Energy Department is helping to build a strong 21st century

319

Energy for Cleaner Transportation Hydro-Quebec  

E-Print Network (OSTI)

W. Yu, X. Yang, P. Wang, and L. Meng 19 Rotating Rate Dependency of Methanol Oxidation on a Smooth and Methanol Transport in Direct Methanol Proton Exchange Membrane Fuel Cells M. Lefebvre and D. Olmeijer 35 solution-based room temperature reduction technique whereby nanoscale iron powder is produced. This new

Azad, Abdul-Majeed

320

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table A20. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" Total First Use (formerly Primary Consumption) of Energy for All Purposes by Census" " Region, Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke",,"Shipments" " "," ","Net","Residual","Distillate","Natural Gas(e)"," ","Coal","and Breeze"," ","of Energy Sources","RSE" " ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

322

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

323

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

324

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Orr, Director, Global Climate and Energy Project, StanfordDirector, Global Climate and Energy Project, Stanford

Yang, Christopher

2011-01-01T23:59:59.000Z

325

E-Print Network 3.0 - advanced energy transport Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Center Transportation Improving efficiency by cutting energy use, improving quality... The Energy Efficiency and Renewable Energy Program develops sustainable energy...

326

AEO2011:Total Energy Supply, Disposition, and Price Summary | OpenEI  

Open Energy Info (EERE)

Total Energy Supply, Disposition, and Price Summary Total Energy Supply, Disposition, and Price Summary Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion Btu and the U.S. Dollar. The data is broken down into production, imports, exports, consumption and price. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption disposition energy exports imports Supply Data application/vnd.ms-excel icon AEO2011:Total Energy Supply, Disposition, and Price Summary- Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

327

California Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Place Sacramento, California Coordinates 38.5815719°, -121.4943996° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5815719,"lon":-121.4943996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

328

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

interest is technical and economic assessment of new energy technologies, especially in the areas in transportation and stationary power production. She has served on California state committees on hydrogen and on California's greenhouse gas regulation AB 32, the U.S. Department of Energy Hydrogen Technical Advisory

California at Davis, University of

329

H{sup -} beam transport experiments in a solenoid low energy beam transport  

SciTech Connect

The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

Gabor, C. [ASTeC Intense Beams Group, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Back, J. J. [High Energy Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P. [ISIS Pulsed Spallation Neutron Source, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Izaola, Z. [ESS Bilbao, Accelerator Physics Group, Edificio Cosimet Paseo Landabarri, 2, 1 Planta. 48940 Leioa (Spain)

2012-02-15T23:59:59.000Z

330

Ab initio total energy study of brucite, diaspore and hypothetical hydrous wadsleyite  

Science Journals Connector (OSTI)

Ab initio total energy calculations based on the local density approximation (LDA) and the generalised gradient approximation (GGA) of density functional theory have been performed for brucite, Mg(OH)2, diaspore,...

B. Winkler; V. Milman; B. Hennion; M. C. Payne

1995-10-01T23:59:59.000Z

331

E-Print Network 3.0 - ab-initio total energy Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

ab-initio total energy Page: << < 1 2 3 4 5 > >> 1 INSTITUTE OF PHYSICS PUBLISHING MEASUREMENT SCIENCE AND TECHNOLOGY Meas. Sci. Technol. 16 (2005) 296301 doi:10.10880957-0233...

332

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

commodity and energy prices, and alternative advancedany alternative fuel system, gravimetric energy density (MJ/and hydrogen as alternative fuels is in energy storage. The

Yang, Christopher

2011-01-01T23:59:59.000Z

333

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

travel demand, reducing energy intensity and reducing carbonVehicles Vehicle Energy Intensity (E) MPGGE 1990 CA Fleetthe improvements in energy intensity that could be achieved

Yang, Christopher

2011-01-01T23:59:59.000Z

334

Enhancing Transportation Energy Security through Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The Pathway to Energy Security...

335

Energy Savers in the Community: Green Transportation Rally | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savers in the Community: Green Transportation Rally Savers in the Community: Green Transportation Rally Energy Savers in the Community: Green Transportation Rally September 22, 2009 - 12:31pm Addthis John Lippert This year marks the seventh year that I'm organizing a Green Transportation Rally in my city's Labor Day parade. I think it's a great way to educate the public, plus it's a lot of fun. I started out organizing a group of local residents who own hybrid-electric vehicles (HEVs). Each year my grandchildren and I lead the group on foot carrying a banner proclaiming "Green Transportation." I produce signs that we tape to the windows or attach to the doors and hoods with magnets. One neighbor produces her own huge cardboard sign that she attaches to the roof, proudly proclaiming that she achieves more than 50 mpg in her hybrid-averaged over nearly 100,000

336

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions  

E-Print Network (OSTI)

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

Peletier, Reynier

337

Decision Models for Bulk Energy Transportation  

E-Print Network (OSTI)

(ISU - Randy Larabee) · City of Ames (Ames - Merlin Hove) · MidAmerican Energy (Des Moines - Alan O of emission allowances? 5. What data can be made available to us? 6. Would you be interested in employing one in a description/depiction, a clear articulation of the "other flows" in the US energy system: · Information

Tesfatsion, Leigh

338

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

339

"Table A22. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Quantity of Purchased Energy Sources by Census Region," 2. Total Quantity of Purchased Energy Sources by Census Region," " Industry Group, and Selected Industries, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Groups and Industry","Btu)","kWh)","(1000 bbls)","(1000 bbls)","cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

340

Table A9. Total Primary Consumption of Energy for All Purposes by Census  

U.S. Energy Information Administration (EIA) Indexed Site

A9. Total Primary Consumption of Energy for All Purposes by Census" A9. Total Primary Consumption of Energy for All Purposes by Census" " Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical Units)" ,,,,,,,,"Coke" " "," ","Net","Residual","Distillate","Natural Gas(d)"," ","Coal","and Breeze"," ","RSE" " ","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","(billion","LPG","(1000","(1000","Other(e)","Row" "Economic Characteristics(a)","(trillion Btu)","(million kWh)","(1000 bbls)","(1000 bbls)","(cu ft)","(1000 bbls)","short tons)","short tons)","(trillion Btu)","Factors"

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

342

Table A17. Total First Use (formerly Primary Consumption) of Energy for All P  

U.S. Energy Information Administration (EIA) Indexed Site

Total First Use (formerly Primary Consumption) of Energy for All Purposes" Total First Use (formerly Primary Consumption) of Energy for All Purposes" " by Employment Size Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," "," Employment Size(b)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",1000,"Row" "Code(a)","Industry Group and Industry","Total","Under 50","50-99","100-249","250-499","500-999","and Over","Factors" ,"RSE Column Factors:",0.6,1.5,1.5,1,0.9,0.9,0.9 , 20,"Food and Kindred Products",1193,119,207,265,285,195,122,6

343

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

344

2013 US Department of Energy National Transportation Stakeholders Forum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 US Department of Energy National Transportation 3 US Department of Energy National Transportation Stakeholders Forum Hello Everyone, It's time to register for the 2013 U.S. Department of Energy National Transportation Stakeholders Forum being held in Buffalo, New York on May 14-16. Please access the entitled link to proceed directly to the official registration website. Once you have entered the site you will be able to register for the meeting, select activities (regional/working meetings, group breakout sessions, TRANSCOM training and the West Valley tour) to attend, view the draft agenda and make lodging reservations. While the event is over two months away, please register at your earliest opportunity as it will greatly

345

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

346

The relative cost of biomass energy transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori

2007-01-01T23:59:59.000Z

347

The Relative Cost of Biomass Energy Transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori

2007-01-01T23:59:59.000Z

348

U.S. Department of Energy Releases Revised Total System Life Cycle Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Revised Total System Life Cycle Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project U.S. Department of Energy Releases Revised Total System Life Cycle Cost Estimate and Fee Adequacy Report for Yucca Mountain Project August 5, 2008 - 2:40pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today released a revised estimate of the total system life cycle cost for a repository at Yucca Mountain, Nevada. The 2007 total system life cycle cost estimate includes the cost to research, construct and operate Yucca Mountain during a period of 150 years, from the beginning of the program in 1983 through closure and decommissioning in 2133. The new cost estimate of $79.3 billion, when updated to 2007 dollars comes to $96.2 billion, a 38 percent

349

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

350

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

351

Benchmark quality total atomization energies of small polyatomic Jan M. L. Martin  

E-Print Network (OSTI)

Benchmark quality total atomization energies of small polyatomic molecules Jan M. L. Martin Successive coupled-cluster CCSD T calculations in basis sets of spdf, spdfg, and spdfgh quality, combined with separate Schwartz-type extrapolations A B/(l 1/2) of the self-consistent field SCF and correlation energies

Martin, Jan M.L.

352

Table A33. Total Primary Consumption of Energy for All Purposes by Employment  

U.S. Energy Information Administration (EIA) Indexed Site

Primary Consumption of Energy for All Purposes by Employment" Primary Consumption of Energy for All Purposes by Employment" " Size Categories, Industry Group, and Selected Industries, 1991 (Continued)" " (Estimates in Trillion Btu)" ,,,,,"Employment Size" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," ",,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "," "," "

353

Transportation Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country

354

Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants  

SciTech Connect

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

Su-Jong Yoon; Piyush Sabharwall

2014-07-01T23:59:59.000Z

355

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

energy use and emissions in 2050. The ultimate marketmarket introduction of FCVs and associated refueling infrastructure. Vehicle EnergyEnergy Use in California Studying these factors will also help determine the rate of adoption and also maximum market

Yang, Christopher

2011-01-01T23:59:59.000Z

356

Low-energy positron scattering from methanol and ethanol: Total cross sections  

Science Journals Connector (OSTI)

We report total cross sections for positron scattering from two primary alcohols, methanol (CH3OH) and ethanol (C2H5OH). The energy range of the present study is 0.140eV. The ethanol measurement appears to be original while for methanol we compare our data to the only previous result from Kimura and colleagues [Adv. Chem. Phys. 111, 537 (2000)], with a significant discrepancy between them being found at the lower energies. Positronium formation threshold energies for both species, deduced from the present respective total cross section data sets, are found to be consistent with those expected on the basis of their known ionization energies. There are currently no theoretical results against which we can compare our total cross sections.

Antonio Zecca, Luca Chiari, A. Sarkar, Kate L. Nixon, and Michael J. Brunger

2008-08-05T23:59:59.000Z

357

Resonance energy transport in an oscillator chain  

E-Print Network (OSTI)

We investigate energy transfer and localization in a linear time-invariant oscillator chain weakly coupled to a forced nonlinear actuator. Two types of perturbation are studied: (1) harmonic forcing with a constant frequency is applied to the actuator (the Duffing oscillator) with slowly changing parameters; (2) harmonic forcing with a slowly increasing frequency is applied to the nonlinear actuator with constant parameters. In both cases, stiffness of linear oscillators as well as linear coupling remains constant, and the system is initially engaged in resonance. The parameters of the systems and forcing are chosen to guarantee autoresonance (AR) with gradually increasing energy in the nonlinear actuator. As this paper demonstrates, forcing with constant frequency generates oscillations with growing energy in the linear chain but in the system excited by forcing with slowly time-dependent frequency energy remains localized on the nonlinear actuator whilst the response of the linear chain is bounded. This means that the systems that seem to be almost identical exhibit different dynamical behavior caused by their different resonance properties. Numerical examples a good agreement between exact (numerical) solutions and their asymptotic approximations found by the multiple time scales method.

Agnessa Kovaleva

2015-01-03T23:59:59.000Z

358

Transport Policy Note-Bangladesh | Open Energy Information  

Open Energy Info (EERE)

Note-Bangladesh Note-Bangladesh Jump to: navigation, search Name Transport Policy Note-Bangladesh Agency/Company /Organization Government of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policies/deployment programs, Background analysis Website http://siteresources.worldbank Program Start 2009 Country Bangladesh UN Region South-Eastern Asia References Bangladesh-Transportation[1] Abstract "This policy note provides an overview of the main characteristics of the transport sector in Bangladesh and the challenges going forward. It also provides guidance to the Bank in its dialogue with the Government of Bangladesh on the strategic priorities in the sector and the areas where the Bank can provide the most support consistent with the overall strategic

359

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

360

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

Yang, Christopher

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Decision Analysis Tool to Compare Energy Pathways for Transportation  

SciTech Connect

With the goals of reducing greenhouse gas emissions, oil imports, and energy costs, a wide variety of automotive technologies are proposed to replace the traditional gasoline-powered internal combustion engine (g-ICE). A prototype model, Analytica Transportation Energy Analysis Model (ATEAM), has been developed using the Analytica decision modeling environment, visualizing the structure as a hierarchy of influence diagrams. The report summarized the FY2010 ATEAM accomplishments.

Bloyd, Cary N.; Stork, Kevin

2011-02-01T23:59:59.000Z

362

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

363

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;171 SUSTAINABLE that has been done so far comparing the sustainability of different fuel/vehicle pathways along these lines

California at Davis, University of

364

LOW ENERGY ELECTRON TRANSPORT BY RECONNECTED MAGNETIC FIELDS AROUND MARS  

E-Print Network (OSTI)

presents a significant ionospheric obstacle to the solar wind. Moreover, the presence of strong crustalLOW ENERGY ELECTRON TRANSPORT BY RECONNECTED MAGNETIC FIELDS AROUND MARS A DISSERTATION SUBMITTED;Abstract The solar wind interaction with Mars has been studied extensively through satellite observations

365

Integrated transport and renewable energy systems B. V. Mathiesen*  

E-Print Network (OSTI)

, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning2 emissions, electricity and heating have traditionally been in focus. As more and more countries have been successful within electricity and heating where political focus has produced actions

366

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

367

Energy transport by acoustic modes of harmonic lattices  

E-Print Network (OSTI)

We study the large scale evolution of a scalar lattice excitation which satisfies a discrete wave-equation in three dimensions. We assume that the dispersion relation associated to the elastic coupling constants of the wave-equation is acoustic, i.e., it has a singularity of the type |k| near the vanishing wave vector, k=0. To derive equations that describe the macroscopic energy transport we introduce the Wigner transform and change variables so that the spatial and temporal scales are of the order of epsilon. In the continuum limit, which is achieved by sending the parameter epsilon to 0, the Wigner transform disintegrates into three different limit objects: the transform of the weak limit, the H-measure and the Wigner-measure. We demonstrate that these three limit objects satisfy a set of decoupled transport equations: a wave-equation for the weak limit of the rescaled initial data, a dispersive transport equation for the regular limiting Wigner measure, and a geometric optics transport equation for the H-measure limit of the initial data concentrating to k=0. A simple consequence of our result is the complete characterization of energy transport in harmonic lattices with acoustic dispersion relations.

Lisa Harris; Jani Lukkarinen; Stefan Teufel; Florian Theil

2006-11-21T23:59:59.000Z

368

A Total Quality Management (TQM) Approach for Energy Savings Through Employee Awareness and Building Upgrades to Improve Energy Efficiency  

E-Print Network (OSTI)

A TOTAL QUALIn' MANAGEMENT (TQM) APPROACH FOR ENERGY SAVINGS THROUGH EMPLOYEE AWARENESS AND BUILDING UPGRADES TO IMPROVE ENERGY EFFICIENCY Daniel H. Stewart, Principal Engineer, Facilities Department, Rh6oe-Poulenc. Inc., Cranbury, NJ...) approach depends on the input from the end-users, clients, employees, power companies, various consultants and site operation management. This paper discusses the energy efficiency projects that are currently in progress at Rhone Poulenc's Corporate...

Stewart, D. H.

369

Energy transport between two pure-dephasing reservoirs  

E-Print Network (OSTI)

A pure-dephasing reservoir acting on an individual quantum system induces loss of coherence without energy exchange. When acting on composite quantum systems, dephasing reservoirs can lead to a radically different behavior. Transport of energy between two pure-dephasing markovian reservoirs is predicted in this work. They are connected through a chain of coupled sites. The baths are kept in thermal equilibrium at distinct temperatures. Quantum coherence between sites is generated in the steady-state regime and results in the underlying mechanism sustaining the effect. A quantum model for the reservoirs is a necessary condition for the existence of stationary energy transport. A microscopic derivation of the non-unitary system-bath interaction is employed, valid in the ultrastrong inter-site coupling regime. The model assumes that each site-reservoir coupling is local.

T. Werlang; D. Valente

2014-08-21T23:59:59.000Z

370

Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Path Transportation Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good against today's technologies, but that's really not what people will be judging them against.....the best "reference vehicle" is one customers will be seeing on showroom floors, in that year.  Understand your model! -- Some of your "key results" may be coming

371

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

372

Total electron scattering cross sections for methanol and ethanol at intermediate energies  

Science Journals Connector (OSTI)

Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the BeerLambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

D G M Silva; T Tejo; J Muse; D Romero; M A Khakoo; M C A Lopes

2010-01-01T23:59:59.000Z

373

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

374

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

375

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

2" 2" " (Estimates in Trillion Btu)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ",," ","Shipments","RSE" "SIC"," ",,"Net","Residual","Distillate",," ",,"Coke and"," ","of Energy Sources","Row" "Code(a)","Industry Group and Industry","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","LPG","Coal","Breeze","Other(f)","Produced Onsite(g)","Factors"

376

Accelerating the convergence of the total energy evaluation in density functional theory calculations  

E-Print Network (OSTI)

Accelerating the convergence of the total energy evaluation in density functional theory.1063/1.2821101 I. INTRODUCTION Density functional theory DFT ,1,2 one of the most widely used first functional theory OO-DFT B. Zhou and Y. A. Wang, J. Chem. Phys. 124, 081107 2006 is that the second

Wang, Yan Alexander

377

Total cross section of neutron-proton scattering at low energies in quark-gluon model  

E-Print Network (OSTI)

We show that analysis of nonrelativistic neutron-proton scattering in a framework of relativistic QCD based quark model can give important information about QCD vacuum structure. In this model we describe total cross section of neutron-proton scattering at kinetic energies of projectile neutron from 1 eV up to 1 MeV.

V. A. Abramovsky; N. V. Radchenko

2011-07-30T23:59:59.000Z

378

Table A1. Total First Use (formerly Primary Consumption) of Energy for All Pu  

U.S. Energy Information Administration (EIA) Indexed Site

1 " 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," "," "," "," ",," " " "," "," ",," "," ",," "," ","Coke and"," ","Shipments"," " " "," ",,"Net","Residual","Distillate","Natural Gas(e)"," ","Coal","Breeze"," ","of Energy Sources","RSE" "SIC"," ","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","(billion","LPG","(1000","(1000","Other(f)","Produced Onsite(g)","Row"

379

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

Transport Co-benefits Calculator Transport Co-benefits Calculator Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Transport Co-benefits Calculator Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.iges.or.jp/en/archive/cp/activity20101108.html Cost: Free Related Tools Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool SimCLIM SEAGA Intermediate Level Handbook ... further results Characterizes co-benefits in terms of accidents, emissions, travel time, and vehicle operating costs. Approach A co-benefits approach capitalizes on synergies between current local

380

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

SciTech Connect

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy, Industry, and Transport in South-Central Africas History  

E-Print Network (OSTI)

Energy must be seen in interaction with transportation and industry in order for its role in South-Central Africa to be fully understood. All threeenergy, industry, and transportationare themselves always socialized and ...

Mavhunga, Clapperton Chakanets

2014-01-01T23:59:59.000Z

382

Measurement of the total energy of an isolated system by an internal observer  

E-Print Network (OSTI)

We consider the situation in which an observer internal to an isolated system wants to measure the total energy of the isolated system (this includes his own energy, that of the measuring device and clocks used, etc...). We show that he can do this in an arbitrarily short time, as measured by his own clock. This measurement is not subjected to a time-energy uncertainty relation. The properties of such measurements are discussed in detail with particular emphasis on the relation between the duration of the measurement as measured by internal clocks versus external clocks.

S. Massar; S. Popescu

2004-12-10T23:59:59.000Z

383

2011 APTA Public Transportation Fact Book | Open Energy Information  

Open Energy Info (EERE)

2011 APTA Public Transportation Fact Book 2011 APTA Public Transportation Fact Book Jump to: navigation, search Tool Summary Name: 2011 APTA Public Transportation Fact Book Agency/Company /Organization: American Public Transportation Association Sector: Energy Focus Area: Transportation Resource Type: Publications Website: www.apta.com/resources/statistics/Documents/FactBook/APTA_2011_Fact_Bo Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Energy stability bounds on convective heat transport: Numerical study  

SciTech Connect

The concept of nonlinear energy stability has recently been extended to deduce bounds on energy dissipation and transport in incompressible flows, even for turbulent flows. In this approach an effective stability condition on {open_quotes}background{close_quotes} flow or temperature profiles is derived, which when satisfied ensures that the profile produces a rigorous upper estimate to the bulk dissipation. Optimization of the test background profiles in search of the lowest upper bounds leads to nonlinear Euler-Lagrange equations for the extremal profile. In this paper, in the context of convective heat transport in the Boussinesq equations, we describe numerical solutions of the Euler-Lagrange equations for the optimal background temperature and present the numerical computation of the implied bounds. {copyright} {ital 1997} {ital The American Physical Society}

Doering, C.R. [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109 (United States)] [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109 (United States); Hyman, J.M. [Theoretical Division and Center for Nonlinear Studies, MS-B284, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division and Center for Nonlinear Studies, MS-B284, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1997-06-01T23:59:59.000Z

385

Baseline projections of transportation energy consumption by mode: 1981 update  

SciTech Connect

A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

1982-04-01T23:59:59.000Z

386

Solar Energy for Transportation Fuel (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

Lewis, Nate

2011-04-28T23:59:59.000Z

387

Opportunities for the Use of Renewable Energy in Road Transport | Open  

Open Energy Info (EERE)

Opportunities for the Use of Renewable Energy in Road Transport Opportunities for the Use of Renewable Energy in Road Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Opportunities for the Use of Renewable Energy in Road Transport Agency/Company /Organization: Renewable Energy Technology Deployment Sector: Energy Focus Area: Renewable Energy, Transportation Topics: Implementation, Policies/deployment programs Resource Type: Publications, Guide/manual Website: www.iea-retd.org/files/RETRANS_PolicyMakersReport_final.pdf Opportunities for the Use of Renewable Energy in Road Transport Screenshot References: Opportunities for the Use of Renewable Energy in Road Transport[1] "This report discusses the current state of the art of the use of options for using renewable energies in road transport, and explores possible

388

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

389

TRANSPORTATION ENERGY SURVEY DATA BOOK 1.1  

NLE Websites -- All DOE Office Websites (Extended Search)

SUB/02-4000008627/01 SUB/02-4000008627/01 TRANSPORTATION ENERGY SURVEY DATA BOOK 1.1 Tatyana Gurikova Macrosystems, Inc. Under Subcontract No. 4000008627 Stacy C. Davis Oak Ridge National Laboratory May 2002 Prepared for OAK RIDGE NATIONAL LABORATORY P.O. Box 2008 Oak Ridge, Tennessee 37831-6285 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 ii iii TABLE OF CONTENTS Page LIST OF FIGURES ..................................................................................................................... v LIST OF TABLES ....................................................................................................................... v FOREWORD ............................................................................................................................... ix

390

EM Office of Packaging and Transportation | Department of Energy  

Office of Environmental Management (EM)

EM Office of Packaging and Transportation EM Office of Packaging and Transportation EM Office of Packaging and Transportation More Documents & Publications 2009 TEPP Annual Report...

391

Transportation Plan Ad Hoc Working Group | Department of Energy  

Office of Environmental Management (EM)

Transportation Plan Ad Hoc Working Group Transportation Plan Ad Hoc Working Group Transportation Plan Ad Hoc Working Group More Documents & Publications Nuclear Fuel Storage and...

392

International Council on Clean Transportation | Open Energy Informatio...  

Open Energy Info (EERE)

Name: International Council on Clean Transportation AgencyCompany Organization: International Council on Clean Transportation Website: www.theicct.org Transport Toolkit...

393

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

Emissions Impact of a Bus Rapid Transport Project in Mexicoemissions from the main classes of transport emitters in the Mexico

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

394

"Table 21. Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" Total Energy Related Carbon Dioxide Emissions, Projected vs. Actual" "Projected" " (million metric tons)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",5060,5129.666667,5184.666667,5239.666667,5287.333333,5335,5379,5437.666667,5481.666667,5529.333333,5599,5657.666667,5694.333333,5738.333333,5797,5874,5925.333333,5984 "AEO 1995",,5137,5173.666667,5188.333333,5261.666667,5309.333333,5360.666667,5393.666667,5441.333333,5489,5551.333333,5621,5679.666667,5727.333333,5775,5841,5888.666667,5943.666667 "AEO 1996",,,5181.817301,5223.645142,5294.776326,5354.687297,5416.802205,5463.67395,5525.288005,5588.52771,5660.226888,5734.87972,5812.398031,5879.320068,5924.814575,5981.291626,6029.640422,6086.804077,6142.120972

395

Correlation Of Surface Heat Loss And Total Energy Production For Geothermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Correlation Of Surface Heat Loss And Total Energy Production For Geothermal Systems Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal systems lose their heat by a site-specific combination of conduction (heat flow) and advection (surface discharge). The conductive loss at or near the surface (shallow heat flow) is a primary signature and indication of the strength of a geothermal system. Using a database of

396

"Table A32. Total Quantity of Purchased Energy Sources by Census Region,"  

U.S. Energy Information Administration (EIA) Indexed Site

Quantity of Purchased Energy Sources by Census Region," Quantity of Purchased Energy Sources by Census Region," " Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Btu or Physical Units)" ,,,,,,"Natural",,,"Coke" " "," ","Total","Electricity","Residual","Distillate","Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","(trillion","(million","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000","Other(d)","Row" "Code(a)","Industry Group and Industry","Btu)","kWh)","(1000 bbl)","(1000 bbl)","cu ft)","(1000 bbl)","short tons)","short tons)","(trillion Btu)","Factors"

397

Total energy and band structure of the 3d, 4d, and 5d metals  

Science Journals Connector (OSTI)

We performed total-energy calculations by the scalar-relativistic augmented-plane-wave method in the local-density and muffin-tin approximations for all 3d, 4d, and 5d transition metals in the fcc and bcc structures. These calculations predict the correct equilibrium structure and give good agreement with experiment and other calculations for lattice constants and bulk moduli.

M. Sigalas; D. A. Papaconstantopoulos; N. C. Bacalis

1992-03-15T23:59:59.000Z

398

Abstract--Numerous studies have shown that households' consumption is an important part of the total energy consumed  

E-Print Network (OSTI)

appropriate strategies of giving households' effective feedback on their energy consumption. This study, Energy efficiency. I. INTRODUCTION HE energy consumption of households in buildings attracts a lot in the housing sector. Energy consumption in buildings accounts for 39% of Sweden's total final energy

Beigl, Michael

399

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

400

Solar energy in the context of energy use, energy transportation and energy storage  

Science Journals Connector (OSTI)

...Roberto Amendolia and Can Li Solar energy in the context of energy use...cost of systems for storing energy. Appendix A. Solar farm data...co.jp/en/challenge/energy/megasolar/ ). Data for most...denver-meetings-conventions/green-meetings/colorado-convention-center...

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The energy consumption and economic costs of different vehicles used in transporting woodchips  

Science Journals Connector (OSTI)

Abstract One of the weak points in the energy-wood chain is the transport of woodchips from the forestry yard to the power station. This operation is critical because the vehicles used must be very versatile to operate under different conditions while maintaining low operating costs. The goal of this study is to implement the information on this topic by examining the different categories of vehicles that are considered to be appropriate for this purpose. For each category of vehicle, the working time, working rate, fuel consumption, energy costs and economic costs were processed. Tests were conducted using both agricultural convoys (tractor+trailer) and industrial vehicles (lorries). All vehicles were tested on short itineraries of approximately 5, 15 and 25km and on long itineraries of 50, 100 and 200km. The study showed that on routes longer than 25km, lorries had the highest average transfer speed (42kmh?1) whereas agricultural vehicles had the lowest (24kmh?1). The transport costs depending on the distance, the type of vehicle used and the unit cost (km?1) were high, especially for distances less than 20km (up to 5km?1). The application of these values to a biomass-fed thermal power unit of 1MW with an annual use of 2000h and a supply of biofuels in the radius of 75km shows that 1500hyear?1 are needed for the bestowal of chips to power the unit (3700tss). The total cost for a lorry is approximately 148,000year?1 and approximately four times higher for agricultural convoys. The energy required to transport the woodchips is approximately 90MJm?3 loose chips for agricultural vehicles and 35MJm?3 loose chips for lorries. In both cases, these values represent a small claim (2%) of the energy value of the biomass transported.

Marco Manzone; Paolo Balsari

2015-01-01T23:59:59.000Z

402

Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States  

Gasoline and Diesel Fuel Update (EIA)

ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2011, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu 1970 0.45 0.36 0.38 1.27 0.93 0.59 1.16 0.73 1.43 2.85 0.42 1.38 1.71 0.18 1.29 1.08 0.32 4.98 1.65 1975 1.65 0.90 1.03 2.37 3.47 1.18 2.60 2.05 2.96 4.65 1.93 2.94 3.35 0.24 1.50 2.19 0.97 8.61 3.33 1980 2.10 1.38 1.46 2.54 3.19 2.86 6.70 6.36 5.64 9.84 3.88 7.04 7.40 0.43 2.26 4.57 1.77 13.95 6.89 1985 2.03 1.67 1.69 2.76 2.99 4.61 7.22 5.91 6.63 9.01 4.30 R 7.62 R 7.64 0.71 2.47 4.93 1.91 19.05

403

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

404

Energy deposition in t in films calculated using ellectron transport theory Theodore Biewer and Peter Rez  

E-Print Network (OSTI)

Energy deposition in t in films calculated using ellectron transport theory Theodore Biewer damage which can be related to the energy deposited in the specimen. We derive an expression for the energy deposition using the electron transport equation and give results for beam energies of l-10 k

Biewer, Theodore

405

1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle  

E-Print Network (OSTI)

1 1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle transport in D-T plasmas) is a central issue in fusion reactor de- velopment. Important effects dependent on fp transport-7 are concerned with fp wall bombardment and focus on two types of charged, high-energy fp losses from

Hively, Lee M.

406

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

SciTech Connect

Recently it has been discovered - contrary to expectations of physicists as well as biologists - that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Patel, Apoorva D. [Centre for High Energy Physics and Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India)

2011-09-23T23:59:59.000Z

407

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

E-Print Network (OSTI)

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Apoorva D. Patel

2011-04-07T23:59:59.000Z

408

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

E-Print Network (OSTI)

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Patel, Apoorva D

2011-01-01T23:59:59.000Z

409

Solar energy in the context of energy use, energy transportation and energy storage  

Science Journals Connector (OSTI)

...average primary energy consumption per unit area, which for...as a national unit of energy storage. (Dinorwig...4], and area measurements using Google maps...Average powers per unit area are sometimes...meteorology and Solar Energy (eosweb.larc...

2013-01-01T23:59:59.000Z

410

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis  

Science Journals Connector (OSTI)

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis ... An energy balance, in broad outline, is presented for the production of a high-quality liquid transportation fuel from residual crop biomass. ... That is, 40% of the initial energy in the biomass will be found in the final liquid fuel after subtracting out external energy supplied for complete processing, including transportation as well as material losses. ...

J. Manganaro; B. Chen; J. Adeosun; S. Lakhapatri; D. Favetta; A. Lawal; R. Farrauto; L. Dorazio; D. J. Rosse

2011-04-20T23:59:59.000Z

411

Transport, energy and greenhouse gases: perspectives on demand limitation. Guest editorial  

Science Journals Connector (OSTI)

The current economic recession results in reduced industrial output and energy consumption, and thus reduces freight transport activity ... , but everything indicates that growth in transport demand should re-sta...

Charles Raux; Martin E. H. Lee-Gosselin

2010-05-01T23:59:59.000Z

412

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

413

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Sustainable Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dr. Kathleen Hogan, Deputy Assistant Secretary Dr. Kathleen Hogan, Deputy Assistant Secretary May 2, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Sustainable Transportation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation * Enhancing energy security by reducing our dependence on foreign oil and gas * Saving money by cutting energy costs for American

414

Total Neutron Cross Section of Xe135 as a Function of Energy  

Science Journals Connector (OSTI)

The total neutron cross section of Xe135 as a function of energy has been remeasured at Oak Ridge National Laboratory under more favorable conditions than obtained in earlier measurements. A sample thickness of 2.51018 atoms of Xe135 gas per cm2 was procured from the gases generated in a homogeneous reactor. A mechanical time-of-flight chopper was used to select neutrons in the energy range from 0.01 ev to several thousand ev. The number of Xe135 atoms in the sample was determined by means of mass spectrometer measurements on the long-lived daughter, Cs135. The data of the low-energy resonance were fitted to the single-level Breit-Wigner formula, taking into account Doppler corrections, equally well with the following two sets of parameters: statistical weight factor g=38; resonance energy ?0=0.084720.00027 ev; neutron width at energy ?0, ?n0=0.034770.00021 ev; capture width, ??=0.0833030.00062 ev; for g=58, ?0=0.084150.00028 ev; ?n0=0.020570.00012 ev; ?a=0.094930.00071 ev. The errors quoted are the standard deviations derived from the statistics of the measurements. Systematic errors are discussed in the body of the paper. No evidence for resonances at energies greater than 0.085 ev was observed. The results described are interpreted in terms of recent considerations on the statistics of the properties of nuclear energy levels.

E. C. Smith, G. S. Pawlicki, P. E. F. Thurlow, G. W. Parker, W. J. Martin, G. E. Creek, P. M. Lantz, and S. Bernstein

1959-09-15T23:59:59.000Z

415

A Path to More Sustainable Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Path to More Sustainable Transportation A Path to More Sustainable Transportation 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: U.S. Environmental...

416

RITA-Bureau of Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

RITA-Bureau of Transportation Statistics Jump to: navigation, search Tool Summary LAUNCH TOOL Name: RITA-Bureau of Transportation Statistics AgencyCompany Organization: United...

417

Production Costs of Alternative Transportation Fuels | Open Energy...  

Open Energy Info (EERE)

Production Costs of Alternative Transportation Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Production Costs of Alternative Transportation Fuels AgencyCompany...

418

Sustainable Transport and Climate Change | Open Energy Information  

Open Energy Info (EERE)

Sustainable Transport and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Day 1, Module 1: Sustainable Transport and Climate Change AgencyCompany...

419

"Table 19. Total Delivered Industrial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Industrial Energy Consumption, Projected vs. Actual" Total Delivered Industrial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",25.43,25.904,26.303,26.659,26.974,27.062,26.755,26.598,26.908,27.228,27.668,28.068,28.348,28.668,29.068,29.398,29.688,30.008 "AEO 1995",,26.164,26.293,26.499,27.044,27.252,26.855,26.578,26.798,27.098,27.458,27.878,28.158,28.448,28.728,29.038,29.298,29.608 "AEO 1996",,,26.54702756,26.62236823,27.31312376,27.47668697,26.90313339,26.47577946,26.67685979,26.928811,27.23795407,27.58448499,27.91057103,28.15050595,28.30145734,28.518,28.73702901,28.93001263,29.15872662 "AEO 1997",,,,26.21291769,26.45981795,26.88483478,26.67847443,26.55107968,26.78246968,27.07367604,27.44749539,27.75711339,28.02446072,28.39156621,28.69999783,28.87316602,29.01207631,29.19475644,29.37683575

420

"Table 18. Total Delivered Commercial Energy Consumption, Projected vs. Actual"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Commercial Energy Consumption, Projected vs. Actual" Total Delivered Commercial Energy Consumption, Projected vs. Actual" "Projected" " (quadrillion Btu)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 "AEO 1994",6.82,6.87,6.94,7,7.06,7.13,7.16,7.22,7.27,7.32,7.36,7.38,7.41,7.45,7.47,7.5,7.51,7.55 "AEO 1995",,6.94,6.9,6.95,6.99,7.02,7.05,7.08,7.09,7.11,7.13,7.15,7.17,7.19,7.22,7.26,7.3,7.34 "AEO 1996",,,7.059859276,7.17492485,7.228339195,7.28186655,7.336973667,7.387932777,7.442782879,7.501244545,7.561584473,7.623688221,7.684037209,7.749266148,7.815915108,7.884147644,7.950204372,8.016282082,8.085801125 "AEO 1997",,,,7.401538849,7.353548527,7.420701504,7.48336792,7.540113449,7.603093624,7.663851738,7.723834991,7.783358574,7.838726044,7.89124918,7.947964668,8.008976936,8.067288399,8.130317688,8.197405815

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network (OSTI)

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important

422

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network (OSTI)

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes

423

Visualization and analysis of multiobjective solutions to the energy and transportation investment optimization problem  

E-Print Network (OSTI)

ABSTRACT Most U.S. energy usage is for electricity production and vehicle transportation, two, accelerated by public con- cern over global warming. The U.S. Energy Information Administration suggests and transportation accounted for almost 60% of US greenhouse emissions. Intentional and strategic energy system

424

AN ADAPTIVE MIXED SCHEME FOR ENERGY-TRANSPORT SIMULATIONS OF FIELD-EFFECT TRANSISTORS  

E-Print Network (OSTI)

AN ADAPTIVE MIXED SCHEME FOR ENERGY-TRANSPORT SIMULATIONS OF FIELD-EFFECT TRANSISTORS #3; STEFAN HOLST, ANSGAR J  UNGEL y AND PAOLA PIETRA z Abstract. Energy-transport models are used in semiconductor and energy of the electrons, coupled to the Poisson equation for the electrostatic potential. The movement

Pietra, Paola

425

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors  

E-Print Network (OSTI)

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors Stefan Holst #12;tting mixed #12;nite-element method is used to discretize the stationary energy. Energy-transport models describe the ow of electrons through a semi- conductor device, in uenced by di

Pietra, Paola

426

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

427

Energy Unit lecture outline & graphics Fritz Stahr Tues 1/21/03 -Transportation of Energy & Energy of Transportation an intricate link  

E-Print Network (OSTI)

- rail transport developed because steam engine (developed 1769) created way to take significant energy mobile ­ initially wood burning, but supplies and safety created shift to coal (now old engines left typically burn oil) - oil generated road system after perfection of internal combustion engine ~1930's

428

Nuclear Physics A 772 (2006) 113137 Total prompt energy release in the neutron-induced  

E-Print Network (OSTI)

This study addresses, for the first time, the total prompt energy release and its components for the fission of 235U, 238U, and 239Pu as a function of the kinetic energy of the neutron inducing the fission. The components are extracted from experimental measurements, where they exist, together with model-dependent calculation, interpolation, and extrapolation. While the components display clear dependencies upon the incident neutron energy, their sums display only weak, yet definite, energy dependencies. Also addressed is the total prompt energy deposition in fission for the same three systems. Results are presented in equation form. New measurements are recommended as a consequence of this study.

D. G. Madland

2006-01-01T23:59:59.000Z

429

USDOT-Transportation and Climate Change Clearinghouse | Open Energy  

Open Energy Info (EERE)

USDOT-Transportation and Climate Change Clearinghouse USDOT-Transportation and Climate Change Clearinghouse Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USDOT-Transportation and Climate Change Clearinghouse Agency/Company /Organization: United States Department of Transportation Sector: Climate Focus Area: Transportation Topics: GHG inventory, Market analysis Resource Type: Guide/manual, Publications, Software/modeling tools User Interface: Website Website: climate.dot.gov/methodologies/analysis-resources.html Cost: Free USDOT-Transportation and Climate Change Clearinghouse Screenshot References: USDOT-Transportation and Climate Change Clearinghouse[1] "Assessments of available models and analytical tools can be used to compare greenhouse gas measurement methods and analytical approaches. This

430

UN-Glossary for Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

UN-Glossary for Transportation Statistics UN-Glossary for Transportation Statistics Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UN-Glossary for Transportation Statistics Agency/Company /Organization: United Nations Focus Area: Transportation Resource Type: Dataset, Publications Website: www.internationaltransportforum.org/Pub/pdf/GloStat3e.pdf Cost: Free UN-Glossary for Transportation Statistics Screenshot References: UN-Glossary for Transportation Statistics[1] Logo: UN-Glossary for Transportation Statistics "The Glossary for Transport Statistics was published for the first time in 1994 with the purpose of assisting member countries during the collection of data on transport made by the UNECE, ECMT and Eurostat through the Common Questionnaire." References ↑ "UN-Glossary for Transportation Statistics"

431

The Department of Energy's Transportation Electrification Program, 0AS-RA-12-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Electrification Transportation Electrification Program OAS-RA-12-11 May 2012 Department of Energy Washington, DC 20585 May 10, 2012 MEMORANDUM FOR THE DEPUTY ASSISTANT SECRETARY FOR ENERGY EFFICIENCY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on "The Department of Energy's Transportation Electrification Program" INTRODUCTION The Department of Energy established the Transportation Electrification Program (Program) to demonstrate and evaluate the deployment of plug-in hybrid vehicles and their associated infrastructure needs. Funded by the American Recovery and Reinvestment Act of 2009, the Program provided about $400 million to 18 grant recipients-12 non-profit entities and 6 for-

432

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

Science Journals Connector (OSTI)

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy ... Current status of ion exchange membranes for power generation from salinity gradients ...

Geoffrey M. Geise; Michael A. Hickner; Bruce E. Logan

2013-08-22T23:59:59.000Z

433

Reduced Total Energy Requirements For The Original Alcubierre and Natario Warp Drive Spacetimes-The Role Of Warp Factors.  

E-Print Network (OSTI)

Reduced Total Energy Requirements For The Original Alcubierre and Natario Warp Drive Spacetimes Alcubierre and Natario themselves the Warp Drive violates all the known energy conditions because the stress energy momentum tensor(the right side of the Einstein Field Equations) for the Einstein tensor G00

Boyer, Edmond

434

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

435

LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Contact Us LEDSGP/Transportation Toolkit/Contact Us < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Contact Us) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Contacts for the LEDS GP Transport Working Group The Transportation Toolkit is provided by the Transport Working Group as part of the Low Emission Development Strategies (LEDS) Global Partnership. If you have questions or comments about this toolkit, . Remote Expert Assistance on LEDS The LEDS Global Partnership provides timely, high-quality, no-fee technical assistance on transportation issues as part of the Remote Expert Assistance on LEDS (REAL) service. Experts from institutions around the world are available to provide objective advice, conduct reviews and brief

436

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Strategies/Avoid LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Avoid) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg Avoid trips taken and reduce travel demand by integrating land use planning, transport infrastructure planning, and transport demand

437

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network (OSTI)

material intensity, energy intensity of materials, buildingtypes manufacturing energy intensity (how much energy itthe manufacturing energy intensity of each type of building

Fridley, David G.

2008-01-01T23:59:59.000Z

438

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

439

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

Policies to Reduce Emissions from the Transportation Sector Policies to Reduce Emissions from the Transportation Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies to Reduce Emissions from the Transportation Sector Agency/Company /Organization: PEW Center Sector: Climate Focus Area: Transportation, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Other Website: www.pewclimate.org/DDCF-Briefs/Transportation Cost: Free References: Policies To Reduce Emissions From The Transportation Sector[1] Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Overview Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Outputs include: General Information

440

Transportation Assessment Toolkit/Home | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit/Home < Transportation Assessment Toolkit Jump to: navigation, search Home Transport Topics Ask an Expert Training Contact us What are the key actions necessary to implementing a transportation system LEDS? Action 1: Evaluate the existing transport system Action 2: Develop BAU scenario Action 3: Assess opportunities Avoid-Shift-Improve framework of strategies Action 4: Develop alternative scenarios Action 5: Prioritize and plan Action 6: Implement and monitor Transportation Assessment Toolkit Train licensed.png Transportation Assessment Toolkit Information licensed.png Transportation Assessment Toolkit Learning licensed.png

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

TOTAL Full-TOTAL Full-  

E-Print Network (OSTI)

Conducting - Orchestral 6 . . 6 5 1 . 6 5 . . 5 Conducting - Wind Ensemble 3 . . 3 2 . . 2 . 1 . 1 Early- X TOTAL Full- Part- X TOTAL Alternative Energy 6 . . 6 11 . . 11 13 2 . 15 Biomedical Engineering 52 English 71 . 4 75 70 . 4 74 72 . 3 75 Geosciences 9 . 1 10 15 . . 15 19 . . 19 History 37 1 2 40 28 3 3 34

Portman, Douglas

442

Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production  

Science Journals Connector (OSTI)

Abstract This paper presents an analysis of total costs (TPC) and energy efficiency of enzymatic ethanol production. The analysis is parametrized with respect to plant capacity and polysaccharides content (pc) of lignocellulosic feedstock. The feedstock is based on wheat straw whose price is proportional to its pc ranging from new straw with high pc and high cost to agro-wastes with limited pc but lower cost. The plant flowsheet was built using a conventional biochemical platform with co-saccharification and fermentation (SHF) technologies. A parametric analysis of TPC as a function of plant capacity (1002100ton DB/day) and pc (i.e. feedstock price) (80% (75 USD/ton DB)35% (6 USD/ton DB)) was performed with Net Present Value (NPV) techniques. Current data from Mexican economics and the agro-industrial sector were used as an illustrative case. A quasi-linear section of the TCP surface was identified delimited by (3001100ton DB/day) and (8055% pc) with increments no larger than 21% of the minimum TPC obtained (0.99 USD/l etOH for 2100ton DB/day and 80% pc). Major cost contributions are detailed and quantified for boundary cases of this surface. Energy consumption and production were also calculated for all the plant capacity and feedstock pc cases, taking into consideration the Maximum Energy Recovery (MER) obtained from a Pinch analysis. The end-use energy index eer was less than 0.82 for all cases, thus stressing the need to use process equipment with lower energy requirements. TPC are compared against previously published results for SHF technology between 500 and 2100ton DB/day plant capacities. These values were updated and normalized with respect to feedstock and enzyme costs employed in this work. Differences among TPC and recently published normalized results are within a 5% range, thus confirming the dependence of TPC from feedstock and enzyme prices, regardless of flowsheet technology and economic conditions.

A. Sanchez; V. Sevilla-Gitrn; G. Magaa; L. Gutierrez

2013-01-01T23:59:59.000Z

443

On the energy transported by exact plane gravitational-wave solutions  

E-Print Network (OSTI)

The energy and momentum transported by exact plane gravitational-wave solutions of Einstein equations are computed using the teleparallel equivalent formulation of Einstein's theory. It is shown that these waves transport neither energy nor momentum. A comparison with the usual linear plane gravitational-waves solution of the linearized Einstein equation is presented.

Yuri N. Obukhov; J. G. Pereira; Guillermo F. Rubilar

2009-09-24T23:59:59.000Z

444

Energy Department Joins Agriculture and Navy in the Fight for Clean Energy Transportation  

Office of Energy Efficiency and Renewable Energy (EERE)

Earlier this month, on September 19, 2014, Energy Department (DOE) Deputy Secretary Daniel Poneman joined Secretary Tom Vilsack of the Department of Agriculture (USDA), and Secretary Ray Mabus of the Department of Navy (Navy) to announce three projects that will produce renewable jet and diesel for the military. DOE, USDA, and Navy are working with private industry to produce advanced drop-in biofuels that can be used by the Department of Defense and the private transportation sector.

445

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Strategies) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low emissions transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand

446

Transportation Emergency Preparedness Program (TEPP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Emergency Preparedness Program (TEPP) Transportation Emergency Preparedness Program (TEPP) Transportation Emergency Preparedness Program (TEPP) In an effort to address responder concerns, the Department retooled its approach to emergency responder preparedness and implemented the more simplified and responder-friendly Transportation Emergency Preparedness Program (TEPP). TEPP is a component of the overall comprehensive emergency management system established by DOE Order (DOE O) 151.1, Comprehensive Emergency Management System. TEPP integrates a basic approach to transportation emergency planning and preparedness activities under a single program with the goal to ensure DOE, its operating contractors, and state, tribal, and local emergency responders are prepared to respond promptly, efficiently, and effectively to accidents involving DOE

447

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

Actions Actions < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport sector, choosing from relevant resources to achieve a comprehensive action

448

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Improve < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Improve) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and

449

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Tools for Low-Emission Development Strategies in Transportation Use one of the search methods below to find tools for building sustainable, low-emission development strategies (LEDS) for your country's transportation system. These resources focus on strategies to limit air pollutants and greenhouse gas emissions. Learn more in the report on LEDS for transportation. Search Method: Category Keyword Choose one or more items from the following categories. Key Actions Implement & Monitor Evaluate System Create Baseline Assess Opportunities Develop Alternatives Prioritize & plan Strategies Resource Types Topics Regions Powered by OpenEI

450

Quantitative determination of energy enhanced interlayer transport in pulsed laser deposition of SrTiO3  

Science Journals Connector (OSTI)

We show that the analysis of single-shot surface x-ray diffraction transients in terms of time-dependent coverages allows quantitative determination of interlayer transport in pulsed-laser deposition of SrTiO3. The fast interlayer transport during and immediately after the arrival of the laser plume and before crystallization represents the dominant mechanism for redistribution of the deposited material that is completed on a ?s-range or faster time scale. Following crystallization interlayer transport is more than four orders of magnitude slower because it is driven only by sluggish thermally activated processes, which represent a small fraction of total interlayer transport that decreases with increasing laser repetition rate. The analysis of growth kinetics shows that it is fast interlayer transport driven by hyperthermal energy species and not thermal annealing that governs layer completion that determines the growth mode and the formation of atomically sharp interfaces in pulsed-laser deposition of epitaxial oxide films and similar energy-enhanced growth processes.

Gyula Eres; J. Z. Tischler; C. M. Rouleau; P. Zschack; H. M. Christen; B. C. Larson

2011-11-28T23:59:59.000Z

451

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01T23:59:59.000Z

452

The fluctuation energy balance in non-suspended fluid-mediated particle transport  

E-Print Network (OSTI)

Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an ...

Phtz, Thomas; Ho, Tuan-Duc; Valance, Alexandre; Kok, Jasper F

2015-01-01T23:59:59.000Z

453

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Tools < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Tools) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Tools for Low Emission Development Strategies in Transportation Use one of the search methods below to find tools for building sustainable, low emission development strategies (LEDS) for your country's transportation system. These resources focus on strategies to limit air pollutants and greenhouse gas emissions. Learn more in the report on LEDS for transportation. If you are aware of a relevant technical resource not

454

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Training) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are

455

Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA  

E-Print Network (OSTI)

Energetics, Rochester, New York 14623, USA 3 Los Alamos National Laboratory, Los Alamos, New Mexico 87545Total energy loss to fast ablator-ions and target capacitance of direct-drive implosions on OMEGA N 19, 093101 (2012) Target normal sheath acceleration sheath fields for arbitrary electron energy

456

A three-dimensional total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical transport model  

E-Print Network (OSTI)

Assimilation System (GEOS-STRAT DAS). A new algorithm is used to estimate the lightning flash rates needed to calculate NOy emission by lightning. This algorithm parameterizes the flash rate in terms of upper. The lightning algorithm reproduces the temporally and spatially averaged total flash rate accurately; however

Stenchikov, Georgiy L.

457

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

from 15 years of alternative fuels experience19882003. Learned from 15 Years of Alternative Fuels Experience: 1988-Challenges for Alternative Fuel Vehicle and Transportation

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

458

Transport-related impacts and instruments for sensitive areas | Open Energy  

Open Energy Info (EERE)

Transport-related impacts and instruments for sensitive areas Transport-related impacts and instruments for sensitive areas Jump to: navigation, search Tool Summary Name: Transport-related impacts and instruments for sensitive areas Agency/Company /Organization: European Commission Complexity/Ease of Use: Not Available Website: ec.europa.eu/environment/air/pdf/sat/4_annexes.pdf Transport Toolkit Region(s): Europe Related Tools Global Bus Rapid Transit (BRT) Database Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Transportation Energy Data Book ... further results Find Another Tool FIND TRANSPORTATION TOOLS This report is a study on transport-related impacts on environmentally sensitive areas, and possible measures and policy instruments to address them. When to Use This Tool While building a low emission strategy for your country's transportation

459

CCAP-Data and Capacity Needs for Transportation NAMAs | Open Energy  

Open Energy Info (EERE)

CCAP-Data and Capacity Needs for Transportation NAMAs CCAP-Data and Capacity Needs for Transportation NAMAs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CCAP-Data and Capacity Needs for Transportation NAMAs Agency/Company /Organization: Center for Clean Air Policy Sector: Climate, Energy Focus Area: Transportation Topics: Low emission development planning, -NAMA Website: www.ccap.org/docs/resources/973/Transport_NAMA_Capacity-Building.pdf Cost: Free Language: English CCAP-Data and Capacity Needs for Transportation NAMAs Screenshot References: CCAP-Data and Capacity Needs for Transportation NAMAs[1] Report 1: Data Availability "The current report is the first in a series exploring the issue of data and capacity needs to support effective implementation and evaluation of transportation NAMAs. The purpose of this research is to support the

460

Institute for Transportation & Development Policy | Open Energy Information  

Open Energy Info (EERE)

Institute for Transportation & Development Policy Institute for Transportation & Development Policy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Institute for Transportation & Development Policy Agency/Company /Organization: Institute for Transportation & Development Policy Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: www.itdp.org/ The Institute for Transportation and Development Policy (ITDP) works with cities worldwide to bring about sustainable transport solutions that cut greenhouse gas emissions, reduce poverty, and improve the quality of urban life. The ITDP website provides summaries of the organization's work in the areas of bus rapid transit, bike sharing, and others. How to Use This Tool This tool is most helpful when using these strategies:

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are links to relevant online training/learning sites. To suggest additional

462

The Sourcebook on Sustainable Urban Transport | Open Energy Information  

Open Energy Info (EERE)

Sourcebook on Sustainable Urban Transport Sourcebook on Sustainable Urban Transport Jump to: navigation, search Tool Summary Name: The Sourcebook on Sustainable Urban Transport Agency/Company /Organization: GIZ Focus Area: Other Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.sutp.org/index.php?option=com_content&task=view&id=426&Itemid=189& The Sourcebook addresses the key areas of a sustainable transport policy framework for developing cities. It consists of more than twenty modules addressing the following themes: institutional and policy orientation; land use planning and demand management; transit, walking, and cycling; vehicles and fuels; environment and health; and social issues in transport. References Retrieved from "http://en.openei.org/w/index.php?title=The_Sourcebook_on_Sustainable_Urban_Transport&oldid=515034"

463

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Key Actions < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Key Actions) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a

464

Alternatives to Traditional Transportation Fuels 2009 | Open Energy  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels 2009 Alternatives to Traditional Transportation Fuels 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternatives to Traditional Transportation Fuels 2009 Focus Area: Propane Topics: Policy Impacts Website: www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.p Equivalent URI: cleanenergysolutions.org/content/alternatives-traditional-transportati Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use and the amount of alternative transportation fuels consumed in the United States in 2009. References Retrieved from "http://en.openei.org/w/index.php?title=Alternatives_to_Traditional_Transportation_Fuels_2009&oldid=514311

465

Surface excess properties from energy transport measurements during water evaporation Fei Duan and C. A. Ward*  

E-Print Network (OSTI)

Surface excess properties from energy transport measurements during water evaporation Fei Duan condi- tions, accounts for as little as 50% of the energy required to evaporate water at the measured moles per unit surface area , surface in- ternal energy uLV excess energy per excess mole , and spe

Ward, Charles A.

466

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

production plant, processing them to produce transportation fuels, providing refueling sites, and delivering has developed over a century, encompassing worldwide oil exploration and production, long

California at Davis, University of

467

Sustainable Urban Transport Project (SUTP) | Open Energy Information  

Open Energy Info (EERE)

www.sutp.org Transport Toolkit Region(s): Global Related Tools Canada's Fuel Consumption Guide Recent Trends in Car Usage in Advanced Economies - Slower Growth Ahead?...

468

Washington State Department of Transportation | Open Energy Informatio...  

Open Energy Info (EERE)

Washington State Department of Transportation Abbreviation: WDOT Place: Olympia, Washington Phone Number: 360-705-7000 Website: http:www.wsdot.wa.gov References: Washington...

469

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

470

Wind turbines application for energy savings in Gas transportation system.  

E-Print Network (OSTI)

?? The Thesis shows the perspectives of involving renewable energy resources into the energy balance of Russia, namely the use of wind energy for the (more)

Mingaleeva, Renata

2014-01-01T23:59:59.000Z

471

Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles Dataset  

Energy.gov (U.S. Department of Energy (DOE))

Excel file with dataset for Fact #834: About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles

472

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

473

LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information  

Open Energy Info (EERE)

Contact Us Contact Us < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Contacts for the LEDS GP Transport Working Group If you have questions or comments about the Transportation Toolkit, . Powered by OpenEI ledsgp.org is built on the same platform as the popular Wikipedia site. Like Wikipedia, it is a "wiki" or website developed collaboratively by a community of users. Thanks to our unique relationship with OpenEI.org, you can add or edit most content on ledsgp.org. For more information about this unique collaboration, contact us. View or edit this page on OpenEI.org. Retrieved from "http://en.openei.org/w/index.php?title=LEDSGP/Transportation_Toolkit/Contact_Us&oldid=690462

474

Property:TransportToolkit/Regions | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:TransportToolkit/Regions Jump to: navigation, search Property Name TransportToolkit/Regions Property Type String Description Transport Toolkit property to help filter pages Valid values are Africa & Middle East, Asia, Australia & North America, Europe, Latin America & Caribbean and Global Used in Form/Template Tool Allows Values Africa & Middle East;Asia;Australia & North America;Europe;Latin America & Caribbean;Global Pages using the property "TransportToolkit/Regions" Showing 6 pages using this property. A Africa's Transport Infrastructure Mainstreaming Maintenance and Management + Africa & Middle East + Assessment of the type of cycling infrastructure required to attract new cyclists + Australia & North America +

475

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Improve < LEDSGP‎ | Transportation Toolkit‎ | Strategies Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low emissions transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

476

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

477

Beryllium and Graphite High-Accuracy Total Cross-Section Measurements in the Energy Range from 24 to 900 keV  

E-Print Network (OSTI)

Beryllium and Graphite High-Accuracy Total Cross-Section Measurements in the Energy Range from 24 new measurements of the carbon and beryllium neutron total cross section in the energy range of 24 the measurement of the energy-dependent total cross section st ~Ei ! by applying Eq. ~1! for every TOF channel i

Danon, Yaron

478

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

479

Energy Policy Act transportation rate study: Interim report on coal transportation  

SciTech Connect

The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

NONE

1995-10-01T23:59:59.000Z

480

Total Crude by Pipeline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Product: Total Crude by All Transport Methods Domestic Crude by All Transport Methods Foreign Crude by All Transport Methods Total Crude by Pipeline Domestic Crude by Pipeline Foreign Crude by Pipeline Total Crude by Tanker Domestic Crude by Tanker Foreign Crude by Tanker Total Crude by Barge Domestic Crude by Barge Foreign Crude by Barge Total Crude by Tank Cars (Rail) Domestic Crude by Tank Cars (Rail) Foreign Crude by Tank Cars (Rail) Total Crude by Trucks Domestic Crude by Trucks Foreign Crude by Trucks Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View

Note: This page contains sample records for the topic "transportation total energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Particle transport in low-energy ventilation systems. Part 1: theory of steady states  

E-Print Network (OSTI)

of the global population. According to the Energy Information Administration (http://www.eia.doe.gov/) the US of this energy is spent on ventilation of buildings with summer time cooling account for almost 10% of the US total energy budget. To reduce energy consumption various low-energy systems such as displacement

Bolster, Diogo

482

Department of Energy Announces Selection of Transportation Contractors at the Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Announces Selection of Transportation Department of Energy Announces Selection of Transportation Contractors at the Waste Isolation Pilot Plant Carlsbad, N.M., August 21, 2000 -- The U.S. Department of Energy (DOE) today announced the selection of Tri-State Motor Transit Co. (TSMT) and CAST Transportation, Inc. (CAST) to transport radioactive transuranic waste from DOE generator sites throughout the United States to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Following a request for proposals issued on January 14, 2000, DOE determined that TSMT and CAST submitted the most advantageous offer to the government to transport transuranic waste to WIPP. TSMT, based in Joplin, MO, is a nationwide carrier with experience hauling hazardous and radiological shipments for DOE. CAST, based in Henderson, CO, is the current carrier

483

FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund (NWF) Fee as required by Section 302 of the Nuclear Waste Policy Act of 1982 (NWPA), as amended. In addition, the TSLCC analysis provides a basis for the calculation of the Government's share of disposal costs for government-owned and managed SNF and HLW. The TSLCC estimate includes both historical costs and

484

MIT- Center for Transportation and Logistics | Open Energy Information  

Open Energy Info (EERE)

MIT- Center for Transportation and Logistics MIT- Center for Transportation and Logistics Jump to: navigation, search Logo: MIT- Center for Transportation and Logistics Name MIT- Center for Transportation and Logistics Address 77 Massachusetts Avenue Place Cambridge, Massachusetts Zip 02139 Region Greater Boston Area Coordinates 42.359089°, -71.093412° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.359089,"lon":-71.093412,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

LEDSGP/Transportation Toolkit/Strategies/Shift | Open Energy...  

Open Energy Info (EERE)

objectives by connecting with all forms of transit - motorized & non-motorized. Train or rail