National Library of Energy BETA

Sample records for transportation stationary combustion

  1. Transportation and Stationary Power Integration Workshop Attendees...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation and Stationary Power Integration Workshop Attendees List List of attendees for the Transportation and Stationary Power Integration Workshop PDF icon ...

  2. Transportation and Stationary Power Integration Workshop Agenda...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda, October 27, 2008, Phoenix, Arizonia Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Agenda for the Transportation and ...

  3. Transportation and Stationary Power Integration Workshop Session...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration Workshop Session II: State and Industry Perspectives Transportation and Stationary Power Integration Workshop Session II: State and Industry Perspectives Opportunities ...

  4. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings for the Transportation and Stationary Power Integration Workshop held on ... U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure ...

  5. Transportation and Stationary Power Integration: Workshop Proceedings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop held on October 27, 2008 in Phoenix, Arizona tspi_proceedings.pdf (525.7 KB) More Documents & Publications U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010

  6. Transportation and Stationary Power Integration Workshop Session II: State

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Industry Perspectives | Department of Energy Integration Workshop Session II: State and Industry Perspectives Transportation and Stationary Power Integration Workshop Session II: State and Industry Perspectives Opportunities and questions regarding transportation and stationary power integration tspi_devlin.pdf (130.36 KB) More Documents & Publications Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Transportation and Stationary

  7. Transportation and Stationary Power Integration: Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation and Stationary Power Integration WORKSHOP PROCEEDINGS Phoenix, Arizona October 27, 2008 Acknowledgements This workshop was planned under the guidance of Marc Melaina of the National Renewable Energy Laboratory (NREL) and Fred Joseck of the Department of Energy's Hydrogen, Fuel Cells & Infrastructure Technologies Program. Workshop organization and facilitation was provided by Energetics, Incorporated in Columbia, Maryland. Breakout group facilitators included Shawna McQueen,

  8. Transportation and Stationary Power Integration Workshop Agenda, October

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27, 2008, Phoenix, Arizonia | Department of Energy Agenda, October 27, 2008, Phoenix, Arizonia Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia Agenda for the Transportation and Stationary Power Integration Workshop held on October 27, 2008 in Phoenix, AZ tspi_agenda.pdf (84.52 KB) More Documents & Publications Transportation and Stationary Power Integration Workshop Attendees List Transportation and Stationary Power Integration:

  9. Transportation and Stationary Power Integration Workshop Attendees List |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Attendees List Transportation and Stationary Power Integration Workshop Attendees List List of attendees for the Transportation and Stationary Power Integration Workshop tspi_attendees.pdf (84.9 KB) More Documents & Publications Transportation and Stationary Power Integration: Workshop Proceedings DOE Fuel Cell Pre-Solicitation Workshop Participants 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees

  10. Transportation and Stationary Power Integration Workshop: A California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A California Perspective Transportation and Stationary Power Integration Workshop: A California Perspective Overview of California regulations, latest funded hydrogen stations, and ...

  11. Transportation and Stationary Power Integration Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell

  12. Transportation and Stationary Power Integration Workshop: A California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective | Department of Energy A California Perspective Transportation and Stationary Power Integration Workshop: A California Perspective Overview of California regulations, latest funded hydrogen stations, and funding mechanisms tspi_tollstrup.pdf (398.75 KB) More Documents & Publications QER - Comment of California Air Resources Board Transportation and Stationary Power Integration: Workshop Proceedings National Idling Reduction Network News - March 2013

  13. Practical approaches to field problems of stationary combustion systems

    SciTech Connect (OSTI)

    Lee, S.W.

    1997-09-01

    The CANMET Energy Technology Centre (CETC) business plan dictates collaboration with industrial clients and other government agencies to promote energy efficiency, health and safety, pollution reduction and productivity enhancement. The Advanced Combustion Technologies group of CETC provides consultation to numerous organizations in combustion related areas by conducting laboratory and field investigations of fossil fuel-fired combustion equipment. CETC, with its modern research facilities and technical expertise, has taken this practical approach since the seventies and has assisted many organizations in overcoming field problems and in providing cost saving measures and improved profit margins. This paper presents a few selected research projects conducted for industrial clients in north and central America. The combustion systems investigated are mostly liquid fuel fired, with the exception of the utility boiler which was coal-fired. The key areas involved include fuel quality, fuel storage/delivery system contamination, waste derived oils, crude oil combustion, unacceptable pollutant emissions, ambient soot deposition, slagging, fouling, boiler component degradation, and particulate characterization. Some of the practical approaches taken to remedy these field problems on several combustion systems including residential, commercial and industrial scale units are discussed.

  14. Transportation and Stationary Power Integration with Hydrogen and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology in Connecticut | Department of Energy with Hydrogen and Fuel Cell Technology in Connecticut Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut Overview of strengths, weaknesses, and barriers, deployment phases, military sites, environmental value, and potential partnerships tspi_rinebold.pdf (2.22 MB) More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

  15. Transportation and Stationary Power Integration Workshop: A California Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NERL Workshop October 27th 1 of 18 Mike Tollstrup Transportation and Stationary Power Integration Workshop A California Perspective Monday, October 27th, 2008 Mike Tollstrup California Air Resources Board DOE/NERL Workshop October 27th 2 of 18 Mike Tollstrup Fuel Cell Sites in California Tulare * Wastewater treatment * Hydrogen refueling * College campuses * Manufacturing * Hotels * Offices * Military * CHP DOE/NERL Workshop October 27th 3 of 18 Mike Tollstrup Horizontal lines indicate 2007 CARB

  16. PEM fuel cells for transportation and stationary power generation applications

    SciTech Connect (OSTI)

    Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

    1996-05-01

    We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

  17. Novel metal-organic frameworks for efficient stationary sources via oxyfuel combustion

    SciTech Connect (OSTI)

    Nenoff, Tina M.; Sava Gallis, Dorina Florentina; Parkes, Marie Vernell; Greathouse, Jeffery A.; Rodriguez, Mark A.; Paap, Scott M; Williams, Timothy; Shaddix, Christopher R.

    2015-09-01

    Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O₂ . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.

  18. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  19. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2005-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  20. RECOVERY AND SEQUESTRATION OF CO{sub 2} FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-07-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run first pilot scale production run with coal combustion gas to microalgae. Aquasearch started the second full scale carbon sequestration tests with propane combustion gases. Aquasearch also conducted modeling work to study the change in alkalinity in the medium resulting form microalgal photosynthesis and growth. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  1. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2004-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run the first set of experiments with actual coal combustion gases with two different strains of microalgae. In addition further, full scale carbon sequestration tests with propane combustion gases were conducted. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns.

  2. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    SciTech Connect (OSTI)

    Takashi Nakamura; Miguel Olaizola; Stephen M. Masutani

    2003-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch and PSI continued preparation work on direct feeding of coal combustion gas to microalgae. Aquasearch started the first full scale carbon sequestration tests with propane combustion gases. Aquasearch started to model the costs associated with biomass harvest from different microalgal strains. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  3. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Dr. T. Nakamura

    2003-05-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 January to 31 March 2003 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, PSI conducted preparation work on direct feeding of coal combustion gas to microalgae and developed a design concept for photobioreactors for biofixation of CO{sub 2} and photovoltaic power generation. Aquasearch continued their effort on characterization of microalgae suitable for CO{sub 2} sequestration and preparation for pilot scale demonstration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  4. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  5. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    SciTech Connect (OSTI)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  6. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    SciTech Connect (OSTI)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  7. Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation

  8. Chemistry and Transport - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Transport Chemistry and Transport The overall goal of the flame chemistry working group is to obtain fundamental combustion and emission properties of low and high pressure flames, to validate kinetic and transport models, and to develop accurate and computationally efficient models capable of predicting turbulent combustion of future transportation fuels. Experimental data of laminar and turbulent flame speeds, flame structures, extinction/ignition limits, and soot/NOx emissions

  9. Transportation and Stationary Power Integration Workshop Session II: State and Industry Perspectives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pete Devlin U.S. DOE Hydrogen Program October 27, 2008 Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop Session II: State and Industry Perspectives 2 Opportunities * Potential multi-use options for CHP-hydrogen deployment - Forklifts in warehouses, replacing battery usage - Backup power applications - Bus routes, with fuel cell buses replacing conventional diesel transit buses - LDV Commercial Fleets - Airports: ground service

  10. NREL: Transportation Research - Fuel Combustion Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict a fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition, as well as the potential emissions impacts, we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the Renewable

  11. Enhancing Transportation Energy Security through Advanced Combustion and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Technologies | Department of Energy Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_wall.pdf (616.56 KB) More Documents & Publications The Non-Petroleum Based Fuel Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative

  12. 8th International symposium on transport phenomena in combustion

    SciTech Connect (OSTI)

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  13. Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MONDAY, OCTOBER 27, 2008 7:30 am Registration and Continental Breakfast (Room 211A) 8:15 am Welcome and Opening Remarks 8:30 am Session I: Project Overview and Federal Perspective Moderator: Marc Melaina, NREL 1. Transportation and Stationary Power Integration Analysis Scope and Approach Fred Joseck, U.S. Department of Energy 2. H2A Stationary Systems Model Darlene Steward, National Renewable Energy Laboratory 3. Facility Locations and Hydrogen Storage/Delivery Logistics Nicholas Josefik,

  14. Transportation and Stationary Power Integration Workshop: ""An Automaker's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Views on the Transition to Hydrogen and Fuel Cell Vehicles | Department of Energy ""An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles Transportation and Stationary Power Integration Workshop: ""An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles Overview of electricity and fuel cell vehicles, commercialization, where we are, observations, next steps tspi_gross.pdf (2.78 MB) More Documents & Publications NREL Alt Fuel

  15. Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation and Stationary Power Integration with Hydrogen and Fuel Cell Technology in Connecticut Connecticut Center for Advanced Technology, Inc. CCAT Energy Initiatives: Joel M. Rinebold 2 Strengths, Weaknesses, Barriers * Strengths - Value for Energy - Value for Environment - Value for Economy * Weaknesses - Lack of Planning and Analysis - Lack of Value Internalization * Barriers - Market Acceptance for D.G. - High Cost Due to Low Production - Predictable Investment 3 Hydrogen Roadmap

  16. NREL: Transportation Research - Fuel Combustion and Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in advanced engine technologies. Photo by Dennis Schroeder, NREL NREL's combustion research and development bridges fundamental chemical kinetics and applied engine research to investigate how new engine technologies can be co-developed with fuels and lubricants to maximize energy-efficient vehicle performance. Through

  17. Stationary zonal flows during the formation of the edge transport barrier in the JET tokamak

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hillesheim, J. C.; Meyer, H.; Maggi, C. F.; Meneses, L.; Poli, E.; Delabie, E.

    2016-02-10

    In this study, high spatial resolution Doppler backscattering measurements in JET have enabled new insights into the development of the edge Er. We observe fine-scale spatial structures in the edge Er well with a wave number krρi ≈ 0.4-0.8, consistent with stationary zonal flows, the characteristics of which vary with density. The zonal flow amplitude and wavelength both decrease with local collisionality, such that the zonal flow E x B shear increases. Above the minimum of the L-H transition power threshold dependence on density, the zonal flows are present during L mode and disappear following the H-mode transition, while belowmore » the minimum they are reduced below measurable amplitude during L mode, before the L-H transition.« less

  18. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Fuels Spray Combustion Spray CombustionAshley Otero2015-10-28T02:17:06+00:00 Fuel...

  19. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive DISI Combustion DISI CombustionAshley Otero2015-10-28T02:06:42+00:00 DISI...

  20. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry DISI Combustion DISI CombustionAshley Otero2015-10-28T02:44:30+00:00...

  1. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive Spray Combustion Spray CombustionAshley Otero2015-10-28T02:10:49+00:00...

  2. Sandia Energy - Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spray Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty Spray Combustion Spray CombustionAshley Otero2015-10-28T02:00:56+00:00...

  3. Sandia Energy - DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DISI Combustion Home Transportation Energy Predictive Simulation of Engines Engine Combustion Fuels DISI Combustion DISI CombustionAshley Otero2015-10-28T02:15:13+00:00 In order to...

  4. Advanced Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

  5. The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...

    Open Energy Info (EERE)

    Interface: Spreadsheet Website: www.ghgprotocol.orgcalculation-toolsall-tools Cost: Free References: Stationary Combustion Guidance1 The Greenhouse Gas Protocol tool for...

  6. Stationary Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  7. Overview of Options to Integrate Stationary Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Power Generation ...

  8. Transportation and Stationary Power Integration Workshop: "An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seminar 2008 Transportation and Stationary Power Integration Workshop "An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles" Phoenix, AZ 27 October 2008 Britta Gross General Motors - Hydrogen and Electrical Infrastructure Gas-Friendly to Gas-Free Gas-Friendly to Gas-Free Project Driveway: 100 Fuel Cell Vehicles in LA, NYC, WDC Project Driveway: 100 Fuel Cell Vehicles in LA, NYC, WDC 15 High Volume Is Key! High Volume Is Key! Fuel Cell Commercialization Overview

  9. Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  10. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  11. Summary Report on the Transportation Combustion Engine Efficiency Colloquium Held at USCAR, March 3 and 4, 2010

    SciTech Connect (OSTI)

    Daw, C Stuart; Graves, Ronald L; Caton, Jerald A; Wagner, Robert M

    2010-11-01

    This report summarizes results from an invited two-day colloquium of twenty-nine combustion engine experts from academia, industry, and national labs that was convened March 3rd and 4th, 2010, at the headquarters of the United States Council for Automotive Research (USCAR) in Southfield, Michigan. The colloquium was held at the request of The Department of Energy (DOE) Office of Freedom Car and Vehicle Technologies (OFCVT) to review and assess the current state of transportation combustion engine technology from theoretical and practical perspectives. In the ensuing discussions, the experts were able to reach a broad consensus on some important questions regarding current fuel efficiency limits. They also identified technology barriers and recommended specific near and longer-term R&D priorities for DOE's consideration. Internal combustion engines currently play a dominant role in U.S. transportation and are expected to continue to do so well beyond 2020 [1]. Because of this, the Department of Energy (DOE) has placed high priority on promoting technologies that maximize combustion engine fuel efficiency while minimizing greenhouse gas emissions. Identification of the most promising paths to achieve these goals has recently become more complicated as non-traditional transportation fuels and hybrid electric vehicles become widely available. To reassess the state of combustion engine science and identify new opportunities for technology breakthroughs, an invited colloquium of combustion engine experts was convened on March 3rd and 4th, 2010, at the headquarters of the United States Council for Automotive Research (USCAR) in Southfield, Michigan. The colloquium objectives were: (1) Review and assess the current state of transportation combustion engine technology from both theoretical and practical perspectives; (2) Arrive at a consensus on the theoretical and practical fuel efficiencies that can be achieved; and (3) Recommend near and longer-term R&D priorities for

  12. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Internal Combustion Engines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internal Combustion Engines Chapter 8: Technology Assessments Introduction to the Technology/System Overview of Internal Combustion Engines and Potential Role Internal Combustion Engines (ICEs) already offer outstanding drivability and reliability to over 240 million on-road passenger vehicles in the U.S. Over 16 million ICE-powered new passenger and commercial vehicles are sold annually, some replacing older vehicles and the remainder adding to the vehicle population. Currently, on-road

  13. Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production

    SciTech Connect (OSTI)

    D. w. Hahn; K. r. Hencken; H. A. Johnsen; J. R. Ross; P. M. Walsh

    1998-12-10

    Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 {micro}m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 {micro}g/m{sup 3}. The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 {micro}g/m{sup 3}, respectively. A possible source of silicon is the water injected into the

  14. Trends in stationary energy

    SciTech Connect (OSTI)

    2013-04-01

    Trends in Stationary Energy Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review

  15. Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines Transportation Energy Consortiums Engine Combustion ... Schematic representation of the experimental set-up. Shown in the figure is the jet-stirre...

  16. DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Chemistry/DISI Combustion DISI Combustion admin 2015-10-28T02:44:30+00:00

  17. DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels/DISI Combustion DISI Combustion admin 2015-10-28T02:15:13+00:00 In order to reduce our dependence on petroleum and to reduce CO2emissions, it is important to both supplement traditional gasoline with renewable fuels and to improve the fuel efficiency of automotive engines. Under the Energy Independence and Security Act (EISA) of 2007, the volume of renewable fuel required to be blended into transportation fuel will increase from 9 billion gallons in 2008 to 36 billion gallons by 2022. At

  18. Pressurized Combustion and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pressurized Combustion and Gasification - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  19. Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels

    SciTech Connect (OSTI)

    McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

    2006-11-01

    To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

  20. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy CRF_climatechange Permalink Gallery Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change CRF, Global Climate & Energy, News, News & Events, Transportation Energy Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change By Micheal Padilla Researchers at Sandia's Combustion Research Facility are developing the understanding necessary to build cleaner combustion technologies that will in turn

  1. Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels/Spray Combustion Spray Combustion admin 2015-10-28T02:17:06+00:00

  2. Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  3. Combustion Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  4. Applied Turbulent Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulent Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  5. Stationary nonlinear Airy beams

    SciTech Connect (OSTI)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-08-15

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  6. DOE/BES Workshop on Clean and Efficient Combustion of 21st Century...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEBES Workshop on Clean and Efficient Combustion of 21st Century Transportation Fuels DOEBES Workshop on Clean and Efficient Combustion of 21st Century Transportation Fuels ...

  7. Combustion and Emissions Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion and Emissions Modeling This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background Modern transportation engines are designed to use the available fuel resources efficiently and minimize harmful emissions. Optimization of these designs is based on a wealth of practical design, construction and operating experiences, and use of modern testing facilities and sophisticated analyses of the combustion

  8. Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The chemistry that drives combustion is a highly complicated web of reactions. To describe the combustion of a single fuel compound, say iso-octane, in full chemical detail ...

  9. Sealed Combustion

    SciTech Connect (OSTI)

    2009-05-12

    This information sheet discusses the benefits of sealed combustion appliance units in order to ensure good indoor air quality.

  10. Coal combustion system

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  11. Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.

    SciTech Connect (OSTI)

    Ekoto, Isaac W.; Barlow, Robert S.

    2012-12-01

    Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

  12. Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition and Char Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  13. Cummins Executives Visit Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EnergyWater History Water Monitoring & Treatment Technology Decision Models for ... Sandia's transportation Energy Center) low-temperature gasoline combustion (LTGC) engine ...

  14. Computational Combustion

    SciTech Connect (OSTI)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J; Smith, P J; Warnatz, J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surface and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.

  15. Transportation and Stationary Power Integration with Hydrogen...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of strengths, weaknesses, and barriers, deployment phases, military sites, environmental value, and potential partnerships tspirinebold.pdf (2.22 MB) More Documents & ...

  16. Transportation and Stationary Power Integration Workshop: ""An...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of electricity and fuel cell vehicles, commercialization, where we are, observations, next steps PDF icon tspigross.pdf More Documents & Publications NREL Alt Fuel ...

  17. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-05

    Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

  18. Spray Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heavy Duty/Spray Combustion Spray Combustion admin 2015-10-28T02:00:56+00:00 Optically accessible high-temperature, high-pressure spray chamber Optically accessible high-temperature, high-pressure spray chamber Fuel spray injection is expected to be one of the key elements for enabling high-efficiency, low-emission engines of the future. Understanding the details of the spray combustion process is therefore now more important than ever. But investigating engine combustion processes is

  19. Advanced Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to ... development of large-scale Ni-based superalloy castings for power plant applications. ...

  20. "1. Carbon Dioxide Emission Factors for Stationary Combustion1...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... composition for 2006 reported in U.S. Environmental Protection Agency, 2006 MSW Characterization Data Tables, http:www.epa.govepaoswernon-hwmuncplpubs06data.pdf. " "8 ...

  1. Combustion Engine

    Broader source: Energy.gov [DOE]

    Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

  2. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  3. Stationary Fuel Cell Evaluation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-05-01

    This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

  4. Biofuels combustion*

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  5. Biofuels combustion*

    SciTech Connect (OSTI)

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  6. DISI Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automotive/DISI Combustion DISI Combustion admin 2015-10-28T02:06:42+00:00 DISI engine in all-metal configuration with lower oil-collection cylinder installed. DISI engine in all-metal configuration with lower oil-collection cylinder installed. In order to reduce our dependence on petroleum and to reduce CO2emissions, it is important to both supplement traditional gasoline with renewable fuels and to improve the fuel efficiency of automotive engines. Under the Energy Independence and Security

  7. Combustion Energy Research Fellows - Combustion Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Energy Research Fellows Combustion Energy Research Fellows Enoch Dames Co-sponsored by Professor William H. Green, MIT, Professor Ronald K. Hanson, Stanford University, ...

  8. Combustion Kinetics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kinetics - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  9. Turbulent combustion

    SciTech Connect (OSTI)

    Talbot, L.; Cheng, R.K.

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  10. Regenerative combustion device

    DOE Patents [OSTI]

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  11. Advanced Combustion

    SciTech Connect (OSTI)

    Holcomb, Gordon R.

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  12. Understanding Hazardous Combustion Byproducts Reduces Factors Impacting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Change Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery

  13. Light Duty Combustion Research: Advanced Light-Duty Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and ...

  14. Sandia Energy - Sandia Combustion Chemist to Be Awarded Polanyi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Medal Home Energy Transportation Energy CRF Facilities Partnership News News & Events Research & Capabilities Sandia Combustion Chemist to Be Awarded Polanyi Medal Previous...

  15. Sandia Energy - Turbulent Mixed-Mode Combustion Studied in a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulent Mixed-Mode Combustion Studied in a New Piloted Burner Home Transportation Energy CRF Office of Science Capabilities News News & Events Research & Capabilities Fuel...

  16. Sandia Energy - The CRF's Turbulent Combustion Lab (TCL) Captures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRF's Turbulent Combustion Lab (TCL) Captures the Moment of Hydrogen Ignition Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities The CRF's...

  17. International Stationary Fuel Cell Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTERNATIONAL STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to

  18. Advanced Combustion FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q: What is advanced combustion? A: State-of-the-art, coal-fired boilers use air for the ... Q: What could an advanced combustion power plant look like? A: An oxy-combustion power ...

  19. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  20. Pressurized Combustion and Gasification

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... However, properly designing new pressurized combustion burners and boilers requires accurate data on coal devolatilization and combustion rates under these conditions. Similarly, ...

  1. Combustion Energy Postdoctoral Research Fellowships - Combustion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frontier Research Center Application Schedule Sample Projects How to Apply Combustion Energy Research Fellows 2016 Combustion Summer School News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » Combustion Energy Postdoctoral Research Fellowships Program Description Two-year positions as Combustion Energy Research Fellows are available for co-sponsored postdoctoral or more senior research associates to perform joint, high-risk/high-payoff

  2. Combustion chemistry

    SciTech Connect (OSTI)

    Brown, N.J.

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  3. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Le, L.K.

    1990-11-20

    This patent describes an internal combustion engine comprising; a rotary compressor mechanism; a rotary expander mechanism; and combustion chamber means disposed between the compressor mechanism and the expander mechanism, whereby compressed air is delivered to the combustion chamber through the compressor discharge port, and pressurized gas is delivered from the combustion chamber into the expander mechanism through the pressurized gas intake port.

  4. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul chugh; James Hower

    2008-08-31

    This paper discusses the roles and responsibilities of each position within the Combustion Byproducts Recyclcing Consortium.

  5. Trends in stationary energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trends in stationary energy Trends in stationary energy Trends in Stationary Energy Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review stationaryenergy_mccormick_040213.pdf (816.41 KB) More Documents & Publications The Water-Energy Nexus: Challenges and Opportunities Capturing the Benefits of Integrated Resource Management for Water & Electricity Utilities and their Partners QER Public Meeting in San Francisco, CA: The Water-Energy Nexus

  6. Combustion | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Combustion Combustion To develop a more thorough understanding of combustion, scientists and engineers must be able to analyze the interaction of many different chemical species at high temperatures and pressures. Making combustion more efficient requires a holistic view of chemical reactions that integrate theoretical and applied chemistry, physics, and advanced computing. Combustion research at Argonne emphasizes studies of the dynamics and rates of gas-phase chemical reactions and the

  7. Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model Darlene Steward/ Mike Penev National Renewable Energy Laboratory Integrated Stationary Power and Transportation Workshop Phoenix, Arizona October 27, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future 2 Introduction Goal: Develop a cost analysis tool that will be flexible and comprehensive enough to realistically analyze a wide variety of potential combined heat and power/hydrogen production

  8. Combustion 2000

    SciTech Connect (OSTI)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  9. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report | Department of Energy Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion Engine R&D subprogram that focuses on developing advanced ICE technologies for all highway transportation vehicles. 2011_adv_combustion_engine.pdf (16.85 MB) More Documents & Publications Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report

  10. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  11. High Efficiency, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-03-31

    Energy use in trucks has been increasing at a faster rate than that of automobiles within the U.S. transportation sector. According to the Energy Information Administration (EIA) Annual Energy Outlook (AEO), a 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected between 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow between 2009 and 2050 while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. economy. An essential part of a stable and vibrant U.S. economy is a productive U.S. trucking industry. Studies have shown that the U.S. gross domestic product (GDP) is strongly correlated to freight transport. Over 90% of all U.S. freight tonnage is transported by diesel power and over 75% is transported by trucks. Given the vital role that the trucking industry plays in the economy, improving the efficiency of the transportation of goods was a central focus of the Cummins High Efficient Clean Combustion (HECC) program. In a commercial vehicle, the diesel engine remains the largest source of fuel efficiency loss, but remains the greatest opportunity for fuel efficiency improvements. In addition to reducing oil consumption and the dependency on foreign oil, this project will mitigate the impact on the environment by meeting US EPA 2010 emissions regulations. Innovation is a key element in sustaining a U.S. trucking industry that is competitive in global markets. Unlike passenger vehicles, the trucking industry cannot simply downsize the vehicle and still transport the freight with improved efficiency. The truck manufacturing and supporting industries are faced with numerous

  12. Low-Temperature Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  13. Longer life for glyco-based stationary engine coolants

    SciTech Connect (OSTI)

    Hohlfeld, R.

    1996-07-01

    Large, stationary diesel engines used to compress natural gas that is to be transported down pipelines generate a great deal of heat. Unless this heat is dissipated efficiently, it will eventually cause an expensive breakdown. Whether the coolant uses ethylene glycol or propylene glycol, the two major causes of glycol degradation are heat and oxidation. The paper discusses inhibitors that enhance coolant service life and presents a comprehensive list of do`s and don`ts for users to gain a 20-year coolant life.

  14. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2001-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

  15. DOE Technical Targets for Fuel Cell Systems for Stationary (Combined...

    Energy Savers [EERE]

    Stationary (Combined Heat and Power) Applications DOE Technical Targets for Fuel Cell ... is running. g Battelle preliminary 2015 cost assessment of stationary CHP systems, ...

  16. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

  17. Cost Analysis of NOx Control Alternatives for Stationary Gas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of ...

  18. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is ...

  19. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download ...

  20. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This ...

  1. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision ...

  2. Study of Stationary Phase Metabolism Via Isotopomer Analysis...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein Citation Details In-Document Search Title: Study of Stationary ...

  3. Stationary/Distributed Generation Projects | Department of Energy

    Office of Environmental Management (EM)

    StationaryDistributed Generation Projects Stationary power is the most mature application for fuel ... co-generation (in which excess thermal energy from electricity generation ...

  4. Intergovernmental Stationary Fuel Cell System Demonstration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intergovernmental Stationary Fuel Cell System Demonstration Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7bplugpwr.pdf More ...

  5. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range

    SciTech Connect (OSTI)

    1980-02-01

    Initial work in a project on the design and development of Stirling engines for stationary integrated energy systems is reported. Information is included on a market assessment, design methodology, evaluation of engine thermodynamic performance, and preliminary system design. It is concluded that Stirling engines employing clean fossil fuels cannot compete with diesel engines. However, combustion technology exists for the successful burning of coal-derived fuels in a large stationary stirling engine. High thermal efficiency is predicted for such an engine and further development work is recommended. (LCL)

  6. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R.; Lewis, Patrick R.; Dirk, Shawn M.; Trudell, Daniel E.

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  7. Self-Organized Stationary States of Tokamaks

    SciTech Connect (OSTI)

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-01

    We demonstrate that in a 3D resistive magnetohydrodynamic simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to nonlinearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary nonsawtoothing "hybrid" discharges, often referred to as "flux pumping."

  8. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel

  9. Sandia and General Motors: Advancing Clean Combustion Engines with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation Tools General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid

  10. Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Temperature & Diesel Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  11. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOE Patents [OSTI]

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  12. Boiler using combustible fluid

    DOE Patents [OSTI]

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  13. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  14. Transportation and Stationary Power Integration Workshop Attendees List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Last Name First Name Company Apicella Doug Henkel Barber Nicole Chevron Blair Larry Consultant Bouwkamp Nico California Fuel Cell Partnership Boyd Bob The Linde Group Byron Robert UTC Power Christensen John NREL subcontractor Christner Larry LGC Consultant LLC Colella Whitney Sandia National Laborotories Cun David Honda R&D Americas Devlin Pete US DOE Domask Anna Energetics Inc. Dunwoody Catherine California Fuel Cell Partnership Elgowainy Amgad Argonne National Laboratory Elrick Bill CaFCP

  15. Internal combustion engine

    SciTech Connect (OSTI)

    Perrin, G.; Bergmann, H.

    1984-06-12

    An externally auto-ignited four-stroke internal combustion engine which includes a combustion chamber disposed in an upper surface of a piston such that, in an upper dead-center position of the piston, the combustion chamber receives almost all of the fuel-air mixture. The combustion chamber includes a planar bottom portion and has a cross-sectional shape of a truncated cone expanding in a direction of the cylinder head. The internal combustion engine also includes a recess or depression provided in the cylinder head and disposed eccentrically with respect to a longitudinal center axis of the cylinder. The depression or recess in the cylinder head has the shape of a truncated cone expanding in a direction of the piston, with a spark plug projecting or penetrating into the recess or depression in the cylinder head. In order to enable the achievement of good combustion, increased overall engine performance, and the minimum amount of harmful components in the exhaust gases from the engine when different types of fuel are used, predetermined constructional parameters are selected with respect to the combustion chamber and recess or depression disposed above the combustion chamber as well as the disposition of the combustion chamber with respect to a longitudinal center axis of the cylinder.

  16. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  17. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2008-10-21

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  18. Low NOx combustion

    DOE Patents [OSTI]

    Kobayashi; Hisashi , Bool, III; Lawrence E.

    2007-06-05

    Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

  19. Supersonic combustion engine and method of combustion initiation and distribution

    SciTech Connect (OSTI)

    Stickler, D.B.; Ballantyne, A.; Kyuman Jeong.

    1993-06-29

    A supersonic combustion ramjet engine having a combustor with a combustion zone intended to channel gas flow at relatively high speed therethrough, the engine comprising: means for substantially continuously supplying fuel into the combustion zone; and means for substantially instantaneously igniting a volume of fuel in the combustion zone for providing a spatially controlled combustion distribution, the igniting means having means for providing a diffuse discharge of energy into the volume, the volume extending across a substantially complete cross-sectional area of the combustion zone, the means for discharging energy being capable of generating free radicals within the volume of reactive fuel in the combustion zone such that fuel in the volume can initiate a controlled relatively rapid combustion of fuel in the combustion zone whereby combustion distribution in relatively high speed gas flows through the combustion zone can be initiated and controlled without dependence upon a flame holder or relatively high local static temperature in the combustion zone.

  20. Self-Organized Stationary States of Tokamaks

    SciTech Connect (OSTI)

    Jardin, S. C.; Ferraro, N.; Krebs, I.

    2015-11-17

    We demonstrate that in a 3D resistive magnetohydrodynamic (MHD) simulation, for some parameters it is possible to form a stationary state in a tokamak where a saturated interchange mode in the center of the discharge drives a near helical flow pattern that acts to non-linearly sustain the configuration by adjusting the central loop voltage through a dynamo action. This could explain the physical mechanism for maintaining stationary non-sawtoothing “hybrid” discharges, often referred to as “flux-pumping”.

  1. 2016 Combustion Summer School - Combustion Energy Frontier Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To provide the next generation of combustion researchers with a comprehensive knowledge in the technical areas of combustion theory, experiment, computation, fundamentals, and ...

  2. Fifteenth combustion research conference

    SciTech Connect (OSTI)

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  3. Particle Ignition and Char Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... reactivity of lignin residues that remain after biomass is processed and on quantifying the residue's ignition delay and char combustion rates during oxy-fuel combustion of coal. ...

  4. Plum Combustion | Open Energy Information

    Open Energy Info (EERE)

    Plum Combustion Place: Atlanta, Georgia Product: Combustion technology, which reduces NOx-emissions. Coordinates: 33.748315, -84.391109 Show Map Loading map......

  5. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulent combustion simulations, which provide input to the design of more fuel-efficient ... simulations, which play an important role in designing more efficient combustion systems. ...

  6. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-10-01

    This quarterly technical progress report will summarize work accomplished for the Program through the second quarter July--September 2000 in the following task areas: Task 1-Oxygen Enhanced Combustion, Task 2-Oxygen Transport Membranes and Task 4-Program Management. The program is proceeding in accordance with the objectives for the first year. OTM tube characterization is well underway, the design and assembly of the high pressure permeation test facility is complete and the facility will be in full operation during the next quarter. Combustion testing has been initiated at both the University of Arizona and Praxair. Testing at the University of Arizona has experienced some delays; steps have been take to get the test work back on schedule. Completion of the first phase of the testing is expected in next quarter. Combustion modeling has been started at both REI and Praxair, preliminary results are expected in the next quarter.

  7. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy admin 2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  8. Stratified cross combustion engine

    SciTech Connect (OSTI)

    Rhoads, J.L.

    1981-06-23

    A piston engine is provided in which adjacent cylinder pairs share a common combustion chamber and the pistons are mounted to reciprocate substantially in phase, one of the pistons in each piston pair receiving a rich mixture which is ignited by a sparkplug in that cylinder, with the other cylinder in the cylinder pair being passive in its preferred form, and receiving through a separate intake valve either pure air or a leaner mixture into which the combusted richer mixture pours, insuring that the greatest combustion possible resulting in the greatest percentage of carbon dioxide formation as opposed to carbon monoxide is created.

  9. Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines 2012 DOE Hydrogen and Fuel Cells ...

  10. Enhancing Transportation Energy Security through Advanced Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    The Non-Petroleum Based Fuel Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project ...

  11. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the second year. The first round of pilot scale testing with 3 bituminous coals was completed at the University of Utah. Full-scale testing equipment is in place and experiments are underway. Coal combustion lab-scale testing was completed at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. Combustion modeling activities continued with pilot-scale combustion test furnace simulations. 75% of target oxygen flux was demonstrated with small PSO1 tube in Praxair's single tube high-pressure test facility. The production of oxygen with a purity of better than 99.999% was demonstrated. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host sites have been identified.

  12. Dry low combustion system with means for eliminating combustion noise

    DOE Patents [OSTI]

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  13. Sandia Combustion Research: Technical review

    SciTech Connect (OSTI)

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  14. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-08-01

    This quarterly technical progress report will summarize work accomplished for the Program through the ninth quarter April-June 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Full-scale testing using the Industrial Boiler Simulation Facility (ISBF) at Alstom Power was completed. The pilot scale experiments to evaluate the effect of air preheat and transport air stoichiometric ratio (SR) on NOx emissions were conducted at the University of Utah. Combustion modeling activities continued with full-scale combustion test furnace simulations. An OTM element was tested in Praxair's single tube high-pressure test facility and two thermal cycles were completed. PSO1d elements of new dimension were tested resulting in a lower flux than previous PSO1d elements of different dimensions, however, no element deformation was observed. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host beta sites have been identified and proposals submitted.

  15. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gap Analysis | Department of Energy Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells:

  16. Table IV: Technical Targets for Membranes: Stationary | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy IV: Technical Targets for Membranes: Stationary Table IV: Technical Targets for Membranes: Stationary "Technical targets for fuel cell membranes in stationary applications defined by the High Temperature Working Group (February 2003). " technical_targets_membr_stat.pdf (83.24 KB) More Documents & Publications Table II: Technical Targets for Membranes: Automotive Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Table I: Technical Targets for

  17. Stationary and Portable Fuel Cell Systems Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Portable Fuel Cell Systems Codes and Standards Citations Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (293.25 KB) More Documents & Publications Hydrogen Vehicle and Infrastructure Codes and Standards Citations National Template: Stationary & Portable Fuel

  18. Internal combustion engine

    SciTech Connect (OSTI)

    Bernauer, O.

    1980-10-07

    An internal combustion engine is described that has walls delimiting the working space or spaces of the internal combustion engine, in which a hydrogen-impervious, encapsulated metal hydride storage device is provided which is in heat-conducting contact with these walls; the interior of the encapsulation is adapted to be selectively connected to a source of hydrogen and/or to a separate further hydrogen storage device.

  19. Stationary High-Pressure Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary High-Pressure Hydrogen Storage Zhili Feng Oak Ridge National Laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy Technology Gap Analysis for Bulk Storage in Hydrogen Infrastructure Gaseous Hydrogen Delivery Pathway * Bulk storage in hydrogen delivery infrastructure * * Needed at central production plants, geologic storage sites, terminals, and refueling sites * Important to provide surge capacity for hourly, daily, and seasonal demand variations Technical challenges

  20. Sandia Combustion Research Program

    SciTech Connect (OSTI)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A.

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  1. Vehicle Technologies Office: Fuel Effects on Advanced Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Fuel Effects on Advanced Combustion Vehicle Technologies Office: Fuel Effects on Advanced Combustion More than 90 percent of transportation relies on petroleum-based fuels: gasoline and diesel. While alternative fuels and plug-in electric vehicles offer great promise to reduce America's petroleum consumption, petroleum-based fuels are likely to play a substantial role for years to come. However, the sources

  2. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.

    1993-07-20

    A multi bank power plant is described comprising at least a first and a second rotary internal combustion engine connectable together in series, each of the engines comprising: a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing and rotatable about a central axis; an output shaft extending axially from each the engine block, each output shaft being coaxial with the other; means for coupling the output shafts together so that the output shafts rotate together in the same direction at the same speed; at least one radially arranged cylinder assembly on each block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; a combustion chamber, means permitting periodic introduction of air and fuel into the combustion chamber, means for causing combustion of a compressed mixture of air and fuel within the combustion chamber, means permitting periodic exhaust of products of combustion of air and fuel from the combustion chamber, and means for imparting forces and motions of the piston within the cylinder to and from the cam track, the means comprising a cam follower operatively connected to the piston; wherein the cam track includes at least a first segment and at least a second segment thereof, the first segment having a generally positive slope wherein the segment has a generally increasing radial distance from the rotational axis of the engine block whereby as a piston moves outwardly in a cylinder on a power stroke while the cam follower is in radial register with the cam track segment, the reactive force of the respective cam follower against the cam track segment acts in a direction tending to impart rotation to the engine block.

  3. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Advanced Combustion Engine Annual Progress Report Vehicle Technologies Office: 2014 Advanced Combustion Engine Annual Progress Report The Advanced Combustion Engine research...

  4. Environmentally conscious coal combustion

    SciTech Connect (OSTI)

    Hickmott, D.D.; Brown, L.F.; Currier, R.P.

    1997-08-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to evaluate the environmental impacts of home-scale coal combustion on the Navajo Reservation and develop strategies to reduce adverse health effects associated with home-scale coal combustion. Principal accomplishments of this project were: (1) determination of the metal and gaseous emissions of a representative stove on the Navajo Reservation; (2) recognition of cyclic gaseous emissions in combustion in home-scale combustors; (3) `back of the envelope` calculation that home-scale coal combustion may impact Navajo health; and (4) identification that improved coal stoves require the ability to burn diverse feedstocks (coal, wood, biomass). Ultimately the results of Navajo home-scale coal combustion studies will be extended to the Developing World, particularly China, where a significant number (> 150 million) of households continue to heat their homes with low-grade coal.

  5. Experimental study of stationary flame propagation in a tube under conditions of weightlessness

    SciTech Connect (OSTI)

    Samsonov, V.P.; Abrukov, S.A.; Danilkin, V.A.; Davydov, A.E.; Tyameikin, V.Y.

    1983-05-01

    The development of detailed concepts of the effect of gravitational conditions on a wide class of combustion phenomena has been hindered by the lack of a sufficient amount of experimental data on combustion under conditions of weightlessness. The present study investigates the changes in form of a laminar flame under the influence of natural thermal convection with stationary propagation in a vertical tube under normal gravitational conditions and under conditions of weightlessness, in which case convection is absent. Lean propane/CO/air mixtures were ignited in a reaction tube suspended in a weightlessness simulation chamber. High speed photographic recording of the flame front revealed that for flame propagation from an open lower end under normal gravitational conditions the flame front is more convex than under weightless conditions. Under conditions of weightlessness the form of the flame front is the same for propagation from either end. Equations are derived describing the change in flame front convexity produced by convection. Some divergence of the calculation results from the experimental data may be explained by the fact that the equations do not consider factors such as thermal expansion and viscosity of the combustion products, and the peculiarities of convective ascent of these products.

  6. Modeled heating and surface erosion comparing motile (gas borne) and stationary (surface coating) inert particle additives

    SciTech Connect (OSTI)

    Buckingham, A.C.; Siekhaus, W.J.

    1982-09-27

    The unsteady, non-similar, chemically reactive, turbulent boundary layer equations are modified for gas plus dispersed solid particle mixtures, for gas phase turbulent combustion reactions and for heterogeneous gas-solid surface erosive reactions. The exterior (ballistic core) edge boundary conditions for the solutions are modified to include dispersed particle influences on core propellant combustion-generated turbulence levels, combustion reactants and products, and reaction-induced, non-isentropic mixture states. The wall surface (in this study it is always steel) is considered either bare or coated with a fixed particle coating which is conceptually non-reactive, insulative, and non-ablative. Two families of solutions are compared. These correspond to: (1) consideration of gas-borne, free-slip, almost spontaneously mobile (motile) solid particle additives which influence the turbulent heat transfer at the uncoated steel surface and, in contrast, (2) consideration of particle-free, gas phase turbulent heat transfer to the insulated surface coated by stationary particles. Significant differences in erosive heat transfer are found in comparing the two families of solutions over a substantial range of interior ballistic flow conditions. The most effective influences on reducing erosive heat transfer appear to favor mobile, gas-borne particle additives.

  7. Combustible structural composites and methods of forming combustible structural composites

    DOE Patents [OSTI]

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D; Swank, William D.

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  8. Combustible structural composites and methods of forming combustible structural composites

    DOE Patents [OSTI]

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  9. Table IV: Technical Targets for Membranes: Stationary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IV: Technical Targets for Membranes: Stationary All targets must be achieved simultaneously Characteristics Units Calendar year 2002 status a 2005 2010 Membrane conductivity, operating temperature Ω-cm 2 0.1 0.1 0.1 Oxygen cross-over b mA/cm 2 5 5 2 Hydrogen cross-over b mA/cm 2 5 5 2 Cost $/kW 50 5 Operating Temperature o C 160 160 170 Durability Hours 5000 >15000 >40000 Survivability o C -20 -30 -40 Notes: a) Status is present day 80 o C unless otherwise noted; targets are for new

  10. Fluidized-bed combustion

    SciTech Connect (OSTI)

    Botros, P E

    1990-04-01

    This report describes the activities of the Morgantown Energy Technology Center's research and development program in fluidized-bed combustion from October 1, 1987, to September 30, 1989. The Department of Energy program involves atmospheric and pressurized systems. Demonstrations of industrial-scale atmospheric systems are being completed, and smaller boilers are being explored. These systems include vortex, multi-solid, spouted, dual-sided, air-cooled, pulsed, and waste-fired fluidized-beds. Combustion of low-rank coal, components, and erosion are being studied. In pressurized combustion, first-generation, combined-cycle power plants are being tested, and second-generation, advanced-cycle systems are being designed and cost evaluated. Research in coal devolatilization, metal wastage, tube corrosion, and fluidization also supports this area. 52 refs., 24 figs., 3 tabs.

  11. Internal combustion rotary engine

    SciTech Connect (OSTI)

    Chen, S.P.

    1993-08-24

    An internal combustion rotary engine is described comprising: an internal combustion chamber wherein a combustible fuel-air mixture is ignited for producing a driving gas flow; a central rotor having an outer surface in which at least one group of curved channels circumferentially-and-axially extending without radially extending through the central rotor; and at least one annular rotor each enclosing the central rotor having an inner surface in which a corresponding number of curved channels circumferentially-and-axially extending without radially extending through the annular rotor; when the curved channels in the central rotor communicate with the curved channels in the annular rotor, the driving gas flow circumferentially-and-axially passing between the outer surface of the central rotor and the inner surface of the annular rotor for rotating the central rotor and the annular rotor in opposite directions.

  12. Internal combustion engine

    DOE Patents [OSTI]

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  13. Advanced Combustion Technology to Enable High Efficiency Clean Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions. deer08_stanton.pdf (1.23 MB) More Documents & Publications Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Development of Enabling

  14. Studies in combustion dynamics

    SciTech Connect (OSTI)

    Koszykowski, M.L.

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  15. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  16. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  17. Lean-Burn Stationary Natural Gas Reciprocating Engine Operation with a Prototype Miniature Diode Side Pumped Passively Q-switched Laser Spark Plug

    SciTech Connect (OSTI)

    McIntyre, D.L.; Woodruff, S.D.; McMillian, M.H.; Richardson, S.W.; Gautam, Mridul

    2008-04-01

    To meet the ignition system needs of large bore lean burn stationary natural gas engines a laser diode side pumped passively Q-switched laser igniter was developed and used to ignite lean mixtures in a single cylinder research engine. The laser design was produced from previous work. The in-cylinder conditions and exhaust emissions produced by the miniaturized laser were compared to that produced by a laboratory scale commercial laser system used in prior engine testing. The miniaturized laser design as well as the combustion and emissions data for both laser systems was compared and discussed. It was determined that the two laser systems produced virtually identical combustion and emissions data.

  18. Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on the combustion of fossil and alternative fuels to produce heat and power. The research team is led by 15 of the nation's leading combustion scientists from seven...

  19. Optimized Algorithms Boost Combustion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimized Algorithms Boost Combustion Research Optimized Algorithms Boost Combustion Research Methane Flame Simulations Run 6x Faster on NERSC's Hopper Supercomputer November 25, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov Turbulent combustion simulations, which provide input to the design of more fuel-efficient combustion systems, have gotten their own efficiency boost, thanks to researchers from the Computational Research Division (CRD) at Lawrence Berkeley National

  20. Improve Your Boiler's Combustion Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system.

  1. Optimization of Advanced Diesel Engine Combustion Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Computational Fluid Dynamics ...

  2. Transonic Combustion ’ - Injection Strategy Development for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transonic Combustion - Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine Transonic Combustion - Injection Strategy ...

  3. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications ...

  4. Combustion Air Zone (CAZ) Best Practices

    Broader source: Energy.gov [DOE]

    This webinar covered combustion safety testing, several tests, national standards, and implementing combustion safety testing in programs.

  5. Coal combustion research

    SciTech Connect (OSTI)

    Daw, C.S.

    1996-06-01

    This section describes research and development related to coal combustion being performed for the Fossil Energy Program under the direction of the Morgantown Energy Technology Center. The key activity involves the application of chaos theory for the diagnosis and control of fossil energy processes.

  6. Coal Combustion Products

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge.

  7. Reversed flow fluidized-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  8. Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 1999 | Department of Energy Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 Cost Analysis of NOx Control Alternatives for Stationary Gas Turbines, November 1999 The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. This study compares the costs of the principal emission control technologies being employed or nearing commercialization for control of oxides of

  9. Advanced Materials and Devices for Stationary Electrical Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to

  10. Power Generating Stationary Engines Nox Control: A Closed Loop Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-11_servati.pdf (355.97 KB) More Documents & Publications A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCR/DPF

  11. Advanced Materials and Devices for Stationary Electrical Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (e.g., the distributed grid and electric vehicles), and the projected increase in renewable energy sources. Advanced Materials and Devices for Stationary Electrical Energy...

  12. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) ...

  13. Fuel Quality Issues in Stationary Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    This report, prepared by Argonne National Laboratory, looks at impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells.

  14. Electron Broadening of Isolated Lines with Stationary Non-Equilibrium...

    Office of Scientific and Technical Information (OSTI)

    Title: Electron Broadening of Isolated Lines with Stationary Non-Equilibrium Level Populations It is shown that a quantum kinetic theory approach to line broadening, extended to ...

  15. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation slides from the May 8, 2012, Fuel Cell Technologies Program ...

  16. Stationary and Portable Fuel Cell Systems Codes and Standards...

    Broader source: Energy.gov (indexed) [DOE]

    and portable fuel cell systems. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (293.25 KB) More Documents & Publications Hydrogen Vehicle and ...

  17. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  18. Advanced Materials and Devices for Stationary Electrical Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials ... the U.S. economy, and electrical energy storage is an integral element in this system. ...

  19. Stationary Fuel Cell System Composite Data Products: Data through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Fuel Cell System Composite Data Products Data through Quarter 4 of 2014 Genevieve Saur, Jennifer Kurtz, Chris Ainscough, Sam Sprik, Matt Post April 2015 NREL...

  20. Low emission internal combustion engine

    DOE Patents [OSTI]

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  1. Chemical Kinetic Models for HCCI and Diesel Combustion

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

    2010-11-15

    Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

  2. Stationary turbine component with laminated skin

    DOE Patents [OSTI]

    James, Allister W.

    2012-08-14

    A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.

  3. Coal combustion products (CCPs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an

  4. APBF Effects on Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FT001 - APBF Effects on Combustion (advanced petroleum based fuels, DOE project # 18546) Bruce G. Bunting, Jim Szybist, Scott Sluder, John Storey, Sam Lewis, Robert Wagner, Jun Qu, Robert Crawford 2010 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review and Peer Evaluation Meeting, June 7-10, 2010 This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE management team: Kevin Stork, Drew Ronneberg, Dennis Smith, Steve Przesmitzki 2

  5. Combustion powered linear actuator

    DOE Patents [OSTI]

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  6. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  7. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2004-04-01

    concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

  8. Internal combustion engine using premixed combustion of stratified charges

    DOE Patents [OSTI]

    Marriott, Craig D.; Reitz, Rolf D. (Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  9. Internal combustion engine with rotary combustion chamber

    SciTech Connect (OSTI)

    Hansen, C.N.; Cross, P.C.

    1986-09-23

    This patent describes an internal combustion engine comprising: a block having at least one cylindrical wall surrounding a piston chamber, piston means located in the piston chamber means operable to reciprocate the piston means in the chamber, head means mounted on the block covering the chamber. The head means has an air and fuel intake passage, and exhaust gas passage, a rotary valve assembly operatively associated with the head means for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gas from rotary valve assembly and the piston chamber. The means has a housing with a bore open to the piston chamber accommodating the rotary valve assembly, the valve assembly comprising a cylindrical sleeve located in the bore, the sleeve having an inner surface, an ignition hole, and intake and exhaust ports aligned with the intake passage and exhaust gas passage, spark generating means mounted on the housing operable to generate a spark. The rotatable valving means is located within the sleeve for controlling the flow of air and fuel into the rotary valve assembly and piston chamber and the flow of exhaust gases out of the rotary valve assembly and piston chamber.

  10. Vehiculos de combustible flexible: brindando opciones en combustible...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    actualizada para convertidores de combustible alternativo de la EPA en su sitio web, www.epa.govotaq certdearmfrcisd0602.pdf. El E85 afecta el desempeo del...

  11. Advanced Combustion Technology to Enable High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins ...

  12. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstrator for High Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Applied low temperature combustion to the Navistar ...

  13. Fuel Effects on Mixing-Controlled Combustion Strategies for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion ...

  14. Irreversible reactions and diffusive escape: Stationary properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krapivsky, Paul L.; Ben-Naim, Eli

    2015-05-01

    We study three basic diffusion-controlled reaction processes—annihilation, coalescence, and aggregation. We examine the evolution starting with the most natural inhomogeneous initial configuration where a half-line is uniformly filled by particles, while the complementary half-line is empty. We show that the total number of particles that infiltrate the initially empty half-line is finite and has a stationary distribution. We determine the evolution of the average density from which we derive the average total number N of particles in the initially empty half-line; e.g. for annihilationmore » $$\\langle N\\rangle = \\frac{3}{16}+\\frac{1}{4\\π}$$ . For the coalescence process, we devise a procedure that in principle allows one to compute P(N), the probability to find exactly N particles in the initially empty half-line; we complete the calculations in the first non-trivial case (N = 1). As a by-product we derive the distance distribution between the two leading particles.« less

  15. Stationary power fuel cell commercialization status worldwide

    SciTech Connect (OSTI)

    Williams, M.C.

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  16. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory ALS Evidence Confirms Combustion Theory Print Wednesday, 22 October 2014 11:43 Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In

  17. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-02-01

    This quarterly technical progress report will summarize work accomplished for the Program through the eleventh quarter, October-December 2002, in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah were aimed at confirming the importance of oxygen injection strategy for different types of burners. CFD modeling at REI was used to better understand the potential for increased corrosion under oxygen enhanced combustion conditions. Data from a full-scale demonstration test in Springfield, MO were analyzed. OTM element development continued with preliminary investigation of an alternative method of fabrication of PSO1d elements. OTM process development continued with long-term testing of a PSO1d element. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. A first commercial proposal has been submitted. Economic analysis of a beta site test performance was conducted.

  18. Sensitivity of natural gas HCCI combustion to fuel and operating parameters using detailed kinetic modeling

    SciTech Connect (OSTI)

    Aceves, S; Dibble, R; Flowers, D; Smith, J R; Westbrook, C K

    1999-07-19

    This paper uses the HCT (Hydrodynamics, Chemistry and Transport) chemical kinetics code to analyze natural gas HCCI combustion in an engine. The HCT code has been modified to better represent the conditions existing inside an engine, including a wall heat transfer correlation. Combustion control and low power output per displacement remain as two of the biggest challenges to obtaining satisfactory performance out of an HCCI engine, and these are addressed in this paper. The paper considers the effect of natural gas composition on HCCI combustion, and then explores three control strategies for HCCI engines: DME (dimethyl ether) addition, intake heating and hot EGR addition. The results show that HCCI combustion is sensitive to natural gas composition, and an active control may be required to compensate for possible changes in composition. The three control strategies being considered have a significant effect in changing the combustion parameters for the engine, and should be able to control HCCI combustion.

  19. Tire gassification and combustion system

    SciTech Connect (OSTI)

    Nance, D.; Towne, G.A.

    1992-04-07

    This patent describes a system for disposing of a material such as vehicle tires and similar substantially organic matter and generating useful heat therefrom. It comprises gasification means for holding an amount of the material to be disposed while the material is allowed to partially combust and for containing combustible gas produced thereby, the gasification means comprising a substantially air tight gasification chamber having at least one access way for inserting the material therein; inlet means for receiving a controlled amount of oxygen containing gas into the gasification means, the inlet means comprising a tuyere disposed in the air tight gasification chamber and a blower connected to the tuyere; removal means for removing the combustible gas from the gasification means, the removal means comprising a gas outlet located above the tuyere in the gasification chamber such that substantially amounts of the combustible gases produced by the partially combusted material exits through the gas outlet; primary combustion means for receiving and mixing the combustible gas removed from the gasification means with an oxygen containing gas and burning the combustible gas; and means for directing the combustion products to a heat utilizing device.

  20. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Stanton, Donald W.

    2011-06-03

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of our objectives were met with fuel efficiency improvement targets exceeded.

  1. Improve Your Boiler's Combustion Efficiency

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  2. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and...

  3. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  4. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, clean coal combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered allowable under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  5. Hybrid fluidized bed combuster

    DOE Patents [OSTI]

    Kantesaria, Prabhudas P.; Matthews, Francis T.

    1982-01-01

    A first atmospheric bubbling fluidized bed furnace is combined with a second turbulent, circulating fluidized bed furnace to produce heat efficiently from crushed solid fuel. The bed of the second furnace receives the smaller sizes of crushed solid fuel, unreacted limestone from the first bed, and elutriated solids extracted from the flu gases of the first bed. The two-stage combustion of crushed solid fuel provides a system with an efficiency greater than available with use of a single furnace of a fluidized bed.

  6. Path planning during combustion mode switch

    DOE Patents [OSTI]

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  7. Rotary reciprical combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-20

    This patent describes a rotary-reciprocal combustion engine having a cycle which includes the four strokes of intake, compression, expansion and exhaustion, the engine. It comprises: a housing formed with a peripheral wall with side walls, a rotor in the housing, the inner surface of the peripheral inner wall being cylindrical; a shaft; mounted in the center of the housing, passing through the rotor's hub and extending through the side walls of the housing, the hub having means to allow the rotor to reciprocate on the shaft while the shaft is rotating with the rotor; a reciprocal and rotary guide having means to guide the rotary and reciprocal motions of the rotor while keeping the rotor's piston in continuous sealing contact with the cylinder chamber walls and varying the volume of the cylinder chambers enabling a compression of a gaseous mixture to take place after aspirating a gaseous mixture; an ignition system having means for igniting compressed gaseous mixture and expansion of the cylinder chambers due to pressure of the combustion products.

  8. Stationary market applications potential of solid oxide and solid polymer fuel cell systems

    SciTech Connect (OSTI)

    Baker, J.N.; Fletcher, W.H.

    1996-12-31

    The UK DTI`s Advanced Fuel Cells Programme currently focuses on two main fuel cell technologies, namely the solid oxide and solid polymer systems (SOFC and SPFC), respectively. The provision of accurate and timely market data is regarded as an important part of the overall programme objectives, such as to assist both Government and industry in their appraisals of the technologies. The present study was therefore commissioned against this background, with a complementary study addressing transportation and mobile applications. The results reported herein relate to the stationary market applications potential of both SOFC and SPFC systems.

  9. Method for in situ combustion

    DOE Patents [OSTI]

    Pasini, III, Joseph; Shuck, Lowell Z.; Overbey, Jr., William K.

    1977-01-01

    This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.

  10. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on ...

  11. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency ... system to manage multi-modemulti-fuel combustion events and achieve an up to 30 percent ...

  12. Hydrogen engine and combustion control process

    DOE Patents [OSTI]

    Swain, Michael R.; Swain, Matthew N.

    1997-01-01

    Hydrogen engine with controlled combustion comprises suction means connected to the crankcase reducing or precluding flow of lubricating oil or associated gases into the combustion chamber.

  13. Process Heater for Stoichiometric Combustion Control | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heater for Stoichiometric Combustion Control Process Heater for Stoichiometric Combustion Control An Enhanced, CO-Based, Low Excess Air Control System Saves Energy While Reducing ...

  14. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use ...

  15. Optimization of Advanced Diesel Engine Combustion Strategies...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies Use of Low Cetane Fuel to Enable Low Temperature ...

  16. Building America Technology Solutions Case Study: Combustion...

    Energy Savers [EERE]

    Combustion Safety Simplified Test Protocol Building America Technology Solutions Case Study: Combustion Safety Simplified Test Protocol Two U.S. Department of Energy Building ...

  17. AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures AVTA: Hydrogen Internal Combustion Engine Vehicle Specifications and Test Procedures HICEV Technical ...

  18. Biomass Combustion Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Biomass Combustion Systems Inc Retrieved from "http:en.openei.orgwindex.php?titleBiomassCombustionSystemsInc&oldid768602" Feedback Contact needs updating Image...

  19. Advanced Combustion Concepts - Enabling Systems and Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for ...

  20. advanced combustion engines | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing...

  1. Events - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CEFRC, Sept 23-24, 2010, Princeton, NJ Enoch Dames, " Soot Formation in Fuel Combustion - The Role of Aromatic Diradicals" Stephen J. Klippenstein, " Combustion at High...

  2. Stationary/Distributed Generation Projects- Non-DOE Projects

    Broader source: Energy.gov [DOE]

    In addition to the stationary/distributed generation technology validation projects sponsored by DOE, universities, along with state and local government entities across the U.S., are partnering...

  3. "Stationary Flowing Liquid Lithium System For Pumping Out Atomic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium System For Pumping Out Atomic Hydrogen Isotopes and Ions" Leonid E. Zakharov and Charles Gentile The system is comprised of a stationary closed loop for liquid lithium flow ...

  4. International Stationary Fuel Cell Demonstration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cell Demonstration International Stationary Fuel Cell Demonstration This presentation by John Vogel of Plug Power was given at the New Fuel Cell Projects Meeting in February 2007. new_fc_vogel_plugpower.pdf (1.72 MB) More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Open Discussion of Freeze Related Issues

  5. Geophysics-based method of locating a stationary earth object

    DOE Patents [OSTI]

    Daily, Michael R.; Rohde, Steven B.; Novak, James L.

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  6. Intergovernmental Stationary Fuel Cell System Demonstration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Intergovernmental Stationary Fuel Cell System Demonstration Intergovernmental Stationary Fuel Cell System Demonstration Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 7b_plugpwr.pdf (23.35 KB) More Documents & Publications State of the States: Fuel Cells in America 2011 State of the States: Fuel Cells in America 2012 State of the States: Fuel Cells in America 2010

  7. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.; Mosca, J.O.

    1992-02-25

    This patent describes a rotary internal combustion engine. It includes a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing, the engine block being relatively rotatable within the housing about a central axis; means connectable to an external drive member for translating the relative rotation of the engine block with respect to the housing into useful work; at least one radially arranged cylinder assembly on the block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; the piston, cylinder and cylinder end wall together.

  8. Management of dry flue gas desulfurization by-products in underground mines. The development and testing of collapsible intermodal containers for the handling and transport of coal combustion residues

    SciTech Connect (OSTI)

    Carpenter, J.L.; Thomasson, E.M.

    1995-07-01

    SEEC, Incorporated, is developing a collapsible intermodal container (CIC{trademark}) designed for containment and transport of fly ash and other dry-flowable bulk commodities. The CIC is specially configured to ride in open top rail cars, but as an intermodal container, it also rides in barges and on flat bed trailers. This allows SEEC to use unit coal train back haul capacity to transport fly ash to markets at and near coal mines. SEEC`s goals for this project were to design a CIC for handling and transporting dry fly ash, and then demonstrate the CIC technology. During this project, SEEC has performed extensive initial design work, leading to the manufacture of three prototype CICs for demonstration. Preliminary tests to examine safety issues included finite element analyses and an overload test in which the CIC was lifted while carrying weight in excess of its rated capacity. In both cases, the CIC met all safety requirements. With the above information satisfying possible safety concerns in hand, SEEC worked with SIU and other cooperators to plan and carry out field demonstration and testing of three CICs. This demonstration/testing including filling the CICs with fly ash, transporting them in a coal hopper car, handling with standard intermodal equipment, and emptying by inverting (two CICs) and by vacuuming (one CIC). Results were very positive. Filling with fly ash, transporting, and intermodal handling went very well, as did emptying by vacuum. Emptying by inverting was less successful, but most of the problems were predicted ahead of time, and were mostly due to lack of fly ash fluidizing equipment as much as anything. Throughout the testing, valuable information was gathered that will greatly accelerate refinement of both the CIC and the system of CIC handling.

  9. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Broader source: Energy.gov [DOE]

    Applied low temperature combustion to the Navistar 6.4L V8 engine with 0.2g NOx/bhp-hr operation attained at the rated 16.5 BMEP

  10. Combustible structural composites and methods of forming combustible...

    Office of Scientific and Technical Information (OSTI)

    The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the ...

  11. Combustion-gas recirculation system

    DOE Patents [OSTI]

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  12. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  13. Combustion Analysis Software Package for Internal Combustion Engines -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search Combustion Analysis Software Package for Internal Combustion Engines Colorado State University Contact CSU About This Technology Technology Marketing Summary Researchers at the Colorado State University Engines and Energy Conversion Laboratory have developed a complete software package for use with National

  14. APBF Effects on Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APBF Effects on Combustion APBF Effects on Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ft001_bunting_2010_o.pdf (1.06 MB) More Documents & Publications Fuel and Lubricant Effects APBF Effects on Combustion Non-Petroleum Based Fuel Effects on Advanced Combustion

  15. Putting combustion optimization to work

    SciTech Connect (OSTI)

    Spring, N.

    2009-05-15

    New plants and plants that are retrofitting can benefit from combustion optimization. Boiler tuning and optimization can complement each other. The continuous emissions monitoring system CEMS, and tunable diode laser absorption spectroscopy TDLAS can be used for optimisation. NeuCO's CombustionOpt neural network software can determine optimal fuel and air set points. Babcock and Wilcox Power Generation Group Inc's Flame Doctor can be used in conjunction with other systems to diagnose and correct coal-fired burner performance. The four units of the Colstrip power plant in Colstrips, Montana were recently fitted with combustion optimization systems based on advanced model predictive multi variable controls (MPCs), ABB's Predict & Control tool. Unit 4 of Tampa Electric's Big Bend plant in Florida is fitted with Emerson's SmartProcess fuzzy neural model based combustion optimisation system. 1 photo.

  16. Loop-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  17. Combustion modeling in waste tanks

    SciTech Connect (OSTI)

    Mueller, C.; Unal, C.; Travis, J.R. |

    1997-08-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data.

  18. Engine combustion and flow diagnostics

    SciTech Connect (OSTI)

    1995-12-31

    This informative publication discusses the application of diagnostic techniques to internal combustion engines. The papers included fall into three broad categories: flow diagnostics, combustion diagnostics, and fuel spray diagnostics. Contents include: controlling combustion in a spark ignition engine by quantitative fuel distribution; a model for converting SI engine flame arrival signals into flame contours; in-cylinder diesel flame imaging compared with numerical computations; ignition and early soot formation in a DI diesel engine using multiple 2-D imaging diagnostics; investigation of diesel sprays using diffraction-based droplet sizing; fuel distribution effects on the combustion of a direct-injection stratified-charge engine; and 2-D measurements of the liquid phase temperature in fuel sprays.

  19. Rotary-reciprocal combustion engines

    SciTech Connect (OSTI)

    Blount, D.H.

    1992-10-06

    This patent describes an internal combustion engine of the rotary-reciprocal type. It comprises a housing formed with a peripheral wall; a rotor; and a shaft for the rotor.

  20. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during these next phases of combustion. Research conducted by: D.S.N. Parker and R.I. Kaiser (University of Hawaii at Manoa ), T.P. Troy and M. Ahmed (Lawrence Berkeley National...

  1. Combustion Science for Cleaner Fuels

    SciTech Connect (OSTI)

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  2. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    Lawrence E. Bool; Jack C. Chen; David R. Thompson

    2000-07-01

    Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance

  3. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    } separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  4. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of

  5. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of

  6. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of

  7. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of

  8. ALS Evidence Confirms Combustion Theory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Evidence Confirms Combustion Theory Print Researchers recently uncovered the first step in the process that transforms gas-phase molecules into solid particles like soot and other carbon-based compounds. It's a discovery that could help combustion chemists make more efficient, less polluting fuels and help materials scientists fine-tune their carbon nanotubes and graphene sheets for faster, smaller electronics. In addition, the results could have implications for the burgeoning field of

  9. Reducing mode circulating fluid bed combustion

    DOE Patents [OSTI]

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  10. Oxy-Combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxy-Combustion oxy-combustion.jpg The combustion of fossil fuels in nearly pure oxygen-known as oxy-combustion-is a promising technology for capturing carbon dioxide (CO2) from fossil fuel power plants, and reducing greenhouse gas emissions. However, the cost, energy consumption, and operational challenges of oxygen separation are significant challenges that NETL researchers are helping to tackle. In an oxy-combustion process, a pure or enriched oxygen (O2) stream is used instead of air for

  11. Partially Premixed Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partially Premixed Combustion Partially Premixed Combustion Published materials on partial premixed combustion (PPC) combined with Volvo's own combustion research provides understanding of how to proceed for future work that enables PPC to reach the market deer11_andersson.pdf (560.85 KB) More Documents & Publications Combustion Model for Engine Concept Development Path to High Efficiency Gasoline Engine Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance

  12. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  13. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  14. Industrial Facility Combustion Energy Use

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  15. Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion

    SciTech Connect (OSTI)

    Ho, Min-Da.

    1993-05-25

    A method is described for combusting material with controlled generation of both nitrogen oxides and products of incomplete combustion comprising: (A) combusting material in a first combustion zone to produce gaseous exhaust containing products of incomplete combustion and products of complete combustion; (B) passing the gaseous exhaust from the first combustion zone into a second combustion zone having a width and an axial direction; (C) injecting through a lance with an orientation substantially parallel to said axial direction at least one stream of oxidant, without fuel, having a diameter less than 1/100 of the width of the second combustion zone and having an oxygen concentration of at least 30% into the second combustion zone at a high velocity of at least 300 feet per second; (D) aspirating products of incomplete combustion into the high velocity oxidant; (E) combusting products of incomplete combustion aspirated into the high velocity oxidant with high velocity oxidant within the second combustion zone to carry out a stable combustion by the mixing of the aspirated products of incomplete combustion with the high velocity oxidant; and (F) spreading out the combustion reaction by aspiration of products of complete combustion into the oxidant, said products of complete combustion also serving as a heat sink, to inhibit NO[sub x] formation.

  16. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2002-01-01

    This quarterly technical progress report will summarize work accomplished for the Program in the seventh quarter October-December 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. Computational fluid dynamic (CFD) modeling of oxygen injection strategies was performed during the quarter resulting in data that suggest the oxygen injection reduces NOx emissions while reducing LOI. Pilot-scale testing activities concluded at the University of Utah this quarter. Testing demonstrated that some experimental conditions can lead to NOx emissions well below the 0.15 lb/MMBtu limit. Evaluation of alternative OTM materials with improved mechanical properties continued this quarter. Powder procedure optimization continued and sintering trial began on an element with a new design. Several OTM elements were tested in Praxair's single tube high-pressure test facility under various conditions. A modified PSO1d element demonstrated stable oxygen product purity of >98% and oxygen flux of 68% of target. Updated test results and projected economic performance have been reviewed with the Utility Industrial Advisors. The economic comparison remains very favorable for O{sub 2} enhanced combustion. Discussions regarding possible Beta sites have been held with three other utilities in addition to the industrial advisors. Proposals will be prepared after the completion of full scale burner testing. Beta test cost estimating work has been initiated.

  17. OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL

    SciTech Connect (OSTI)

    David R. Thompson; Lawrence E. Bool; Jack C. Chen

    2003-04-01

    This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

  18. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  19. Jet plume injection and combustion system for internal combustion engines

    DOE Patents [OSTI]

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  20. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  1. Combustion fume structure and dynamics. Final report

    SciTech Connect (OSTI)

    Flagan, R.C.

    1995-06-29

    An investigation of the fundamental physical processes that govern the structures of fume particles that are produced from the vapor phase in a wide range of high temperature systems has been conducted. The key objective of this study has been to develop models of the evolution of fine particles of refractory materials that are produced from the vapor phase, with particular emphasis on those processes that govern the evolution of ash fumes produced from volatilized mineral matter during coal combustion. To accomplish this goal, the study has included investigations of a number of fundamental aspects of pyrogenous fumes: Structural characterization of agglomerate particles in terms of fractal structure parameters; the relationship between the structures of agglomerate particles and the aerodynamic drag forces they experience; coagulation kinetics of fractal-like particles; sintering of aerosol agglomerates past the early stage of neck formation and incorporating the simultaneous influences of several transport mechanisms.

  2. Advanced High Efficiency Clean Diesel Combustion with Low Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion ...

  3. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion ...

  4. Low Temperature Combustion Demonstrator for High Efficiency Clean...

    Broader source: Energy.gov (indexed) [DOE]

    Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Impact of Variable Valve Timing on Low Temperature Combustion Multicylinder Diesel Engine Design for ...

  5. H2 Internal Combustion Engine Research Towards 45% efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  6. Modeling of HCCI and PCCI Combustion Processes | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HCCI and PCCI Combustion Processes Modeling of HCCI and PCCI Combustion Processes 2005 ... More Documents & Publications Numerical Modeling of HCCI Combustion High Fidelity Modeling ...

  7. Combustor nozzle for a fuel-flexible combustion system (Patent...

    Office of Scientific and Technical Information (OSTI)

    The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber ...

  8. Low-Temperature Combustion Demonstrator for High-Efficiency Clean...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for High-Efficiency Clean Combustion Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  9. Turbulent Combustion in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  10. Method and apparatus for detecting combustion instability in continuous combustion systems

    DOE Patents [OSTI]

    Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

    2006-08-29

    An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

  11. Stratified charge internal combustion engine

    SciTech Connect (OSTI)

    Skopil, A.O.

    1991-01-01

    This patent describes an internal combustion engine. It comprises: a main cylinder, a main piston within the main cylinder, and means for delivering a combustible charge into the main cylinder; a smaller idle cylinder, and idle piston within the idle cylinder, and means for delivering a combustible charge into the idle cylinder; an ignition passageway leading from the idle cylinder to the main cylinder; and an ignition device within the ignition passageway operable to ignite a compressed charge discharged by the idle cylinder into the ignition passageway. The passageway being positioned to discharge the ignited compressed charge from the idle cylinder into the main cylinder to ignite the compressed charge within the main cylinder.

  12. Steam boosted internal combustion engine

    SciTech Connect (OSTI)

    Green, M.A.

    1987-01-20

    A device is described to supplement the power produced by burning fuel in an internal combustion engine with steam, the device comprising: a means for producing a constant flow of water past a boiler means; a means for allowing the water to flow in the direction of the boiler; a boiler means external to the internal combustion engine to convert the water into superheated steam; a means for controlling the pressure of the water such that the water pressure is greater than the pressure of the steam produced by the boiler; and a means for injection of the superheated steam directly into a cylinder of the internal combustion engine, a means for producing a constant flow of water at a pressure greater than the pressure of the superheated steam, wherein the constant flow means at greater pressure comprises a chamber with a gaseous component, with the gaseous component being of constant volume and exerting constant pressure upon water within the chamber.

  13. Combustion instability modeling and analysis

    SciTech Connect (OSTI)

    Santoro, R.J.; Yang, V.; Santavicca, D.A.; Sheppard, E.J.

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  14. Combustion synthesis method and products

    DOE Patents [OSTI]

    Holt, J.B.; Kelly, M.

    1993-03-30

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  15. Combustion synthesis method and products

    DOE Patents [OSTI]

    Holt, J. Birch; Kelly, Michael

    1993-01-01

    Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

  16. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  17. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  18. Engine Combustion Network Experimental Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. (Specialized Interface)

  19. Engine Combustion Network Experimental Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

  20. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A.

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  1. Improved Solvers for Advanced Engine Combustion Simulation

    Broader source: Energy.gov [DOE]

    Document:  ace076_mcnenly_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Matthew McNenlyPresenting Organization: Lawrence Livermore National Laboratory ...

  2. Pre-Combustion Carbon Capture Research

    Broader source: Energy.gov [DOE]

    Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and...

  3. Method for storing radioactive combustible waste

    DOE Patents [OSTI]

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  4. Open cycle, internal combustion Stirling engine

    SciTech Connect (OSTI)

    Thring, R.H.

    1991-09-24

    This patent describes an internal- combustion fluid engine. It comprises means, including a hot piston, for defining a combustion chamber; means for causing combustion within the combustion chamber; means, including a cold piston, for defining a compression chamber for pressurizing a fluid; inlet control means for controlling flow of the fluid into the compression chamber; cooling means for maintaining lower temperature in the compression chamber than in the combustion chamber; means, comprising linkage between the hot piston and the cold piston, for varying the volume of the compression chamber in relation to the volume of the combustion chamber in a manner characteristic of a conventional Stirling engine; a manifold connected in fluid communication between the combustion chamber and the compression chamber for enabling flow of the fluid from the compression chamber to the compression chamber; transfer control means for controlling the flow of the fluid from the compression chamber to the combustion chamber.

  5. Heavy Duty Low-Temperature & Diesel Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Lab Foundations Bioscience Computing & Info Sciences Geoscience Engineering ... diesel engines will likely require unconventional engine combustion and operating ...

  6. Oxygen-Enriched Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxygen-Enriched Combustion Oxygen-Enriched Combustion This tip sheet discusses how an increase in oxygen in combustion air can reduce the energy loss in the exhaust gases and increase process heating system efficiency. PROCESS HEATING TIP SHEET #3 Oxygen-Enriched Combustion (September 2005) (249.42 KB) More Documents & Publications Save Energy Now in Your Process Heating Systems Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A

  7. Preheated Combustion Air | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preheated Combustion Air Preheated Combustion Air This tip sheet describes how to improve process heating efficiency by preheating combustion air for burners. PROCESS HEATING TIP SHEET #1 Preheated Combustion Air (November 2007) (232.65 KB) More Documents & Publications Waste Heat Reduction and Recovery for Improving Furnace Efficiency, Productivity and Emissions Performance: A BestPractices Process Heating Technical Brief Install Waste Heat Recovery Systems for Fuel-Fired Furnaces Load

  8. Premix charge, compression ignition combustion system optimization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_gustafson.pdf (1.47 MB) More Documents & Publications Advanced Combustion Technology to Enable High Efficiency Clean Combustion Heavy-Duty HCCI Development

  9. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies on Particulate Matter Emissions Characteristics Effects of Advanced Combustion Technologies on Particulate Matter Emissions Characteristics ...

  10. Building America Case Study: Combustion Safety Simplified Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Safety Simplified Test Protocol Chicago, Illinois, and Minneapolis, Minnesota PROJECT INFORMATION Project Name: Combustion Safety Simplified Test Protocol Location: ...

  11. Reduced No.sub.x combustion method

    DOE Patents [OSTI]

    Delano, Mark A.

    1991-01-01

    A combustion method enabling reduced NO.sub.x formation wherein fuel and oxidant are separately injected into a combustion zone in a defined velocity relation, combustion gases are aspirated into the oxidant stream prior to intermixture with the fuel, and the fuel is maintained free from contact with oxygen until the intermixture.

  12. Chemistry: Theory - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theory Chemistry: Theory Presentations from 2010 CEFRC First Annual Conference MultireferenceCorrelated WavefunctionCalculations and Reaction Flux Analyses of Methyl Ester Combustion Emily A. Carter, Princeton University Constructing Accurate Combustion Chemistry Models William H. Green, MIT Theoretical Gas Phase Chemical Kinetics Stephen J. Klippenstein, Argonne National Laboratory Theoretical Chemical Kinetics and Combustion Modeling James A. Miller, Argonne National Laboratory Computation of

  13. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOE Patents [OSTI]

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  14. Combustor nozzle for a fuel-flexible combustion system

    DOE Patents [OSTI]

    Haynes, Joel Meier; Mosbacher, David Matthew; Janssen, Jonathan Sebastian; Iyer, Venkatraman Ananthakrishnan

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  15. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This fact sheet describes opportunities for interested stationary fuel cell developers and end users to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the current state of the technology and support industry growth.

  16. Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets

    SciTech Connect (OSTI)

    Nietert, R.E.

    1983-02-01

    The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)

  17. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Modeling | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace001_musculus_2011_o.pdf (1.84 MB) More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion

  18. Combustive management of oil spills

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris.

  19. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect (OSTI)

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  20. Stationary power applications for polymer electrolyte fuel cells

    SciTech Connect (OSTI)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.; Landgrebe, A.R.

    1996-02-01

    The benefits provided by Polymer Electrolyte Fuel Cells (PEFC) for power generation (e.g. low operating temperatures, and non-corrosive and stable electrolyte), as well as advances in recent years in lowering their cost and improving anode poisoning tolerance, are stimulating interest in the system for stationary power applications. A significant market potentially exists for PEFCs in certain stationary applications where PEFC technology is a more attractive alternative to other fuel cell technologies. A difficulty with the PEFC is its operation on reformed fuels containing CO, which poisons the anode catalyst. This difficulty can be alleviated in several ways. One possible approach is described whereby the product reformate is purified using a relatively low cost, high-throughput hydrogen permselective separator. Preliminary experiments demonstrate the utility of the concept.

  1. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers | Department of Energy Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, "Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers." Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar

  2. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems.

  3. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Units Greater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Than 100 kW Achieve 2015 Target for Electrical Efficiency Stationary Fuel Cell Units Greater Than 100 kW Achieve 2015 Target for Electrical Efficiency Project Technology Validation: Stationary Fuel Cell Evaluation Contact Genevieve Saur Related Publications Stationary Fuel Cell System Composite Data Products Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities In a newly released composite data product (CDP), NREL's National Fuel Cell Technology Evaluation Center (NFCTEC)

  4. DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power) Applications | Department of Energy Stationary (Combined Heat and Power) Applications DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat and Power) Applications These tables list the U.S. Department of Energy (DOE) technical targets for stationary fuel cell applications. These targets have been developed with input from developers of stationary fuel cell power systems. More information about targets can be found in the Fuel Cells section of the Fuel Cell

  5. Freeze drying for gas chromatography stationary phase deposition

    DOE Patents [OSTI]

    Sylwester, Alan P.

    2007-01-02

    The present disclosure relates to methods for deposition of gas chromatography (GC) stationary phases into chromatography columns, for example gas chromatography columns. A chromatographic medium is dissolved or suspended in a solvent to form a composition. The composition may be inserted into a chromatographic column. Alternatively, portions of the chromatographic column may be exposed or filled with the composition. The composition is permitted to solidify, and at least a portion of the solvent is removed by vacuum sublimation.

  6. Alpha Channeling in Rotating Plasma with Stationary Waves

    SciTech Connect (OSTI)

    A. Fetterman and N.J. Fisch

    2010-02-15

    An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n? can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

  7. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  8. Method of combustion for dual fuel engine

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  9. Light Duty Efficient, Clean Combustion

    SciTech Connect (OSTI)

    Donald Stanton

    2010-12-31

    Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx

  10. Combustion diagnostic for active engine feedback control

    DOE Patents [OSTI]

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  11. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    SciTech Connect (OSTI)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  12. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, Gary D.; Chick, Lawrence A.; Kurosky, Randal P.

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  13. Internal combustion engine fuel feed

    SciTech Connect (OSTI)

    Cochard, P.; Guicherd, C.

    1980-02-19

    In a method and apparatus for controlling the fuel feed to a stratified-charge internal combustion engine, from idle up to the position corresponding with the maximum flow of air, the overall richness (Rg) of the combustible mixture is reduced by acting simultaneously upon the flow of fuel feeding the main chamber and upon the flow of fuel injected into the auxiliary chamber. For higher loads the maximum flow of air is kept constant and rg is increased by continuing to act upon both fuel flows. By keeping the richness of the mixture in the auxiliary chamber substantially constant, it is possible to obtain the best compromise between the performance of the engine and the emission of pollutant gases.

  14. Combustion synthesis continuous flow reactor

    DOE Patents [OSTI]

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  15. Oxy-coal Combustion Studies

    SciTech Connect (OSTI)

    Wendt, J.; Eddings, E.; Lighty, J.; Ring, T.; Smith, P.; Thornock, J.; Y Jia, W. Morris; Pedel, J.; Rezeai, D.; Wang, L.; Zhang, J.; Kelly, K.

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  16. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  17. ABB Combustion Engineering nuclear technology

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  18. Homogeneous catalysts in hypersonic combustion

    SciTech Connect (OSTI)

    Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.

    1989-01-01

    Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.

  19. Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Post-Doctoral Position in Direct Numerical Simulations of Low-Dimensional Reacting Flows The Combustion EFRC seeks outstanding applicants for the position of post-doctoral research associate to perform research at the University of Southern California and the Sandia National Laboratories on multi-dimensional simulations of a number of experimental configurations. The development of detailed kinetic models describing the pyrolysis and oxidation of fuels depends heavily on experimental data that

  20. Oil shale combustion/retorting

    SciTech Connect (OSTI)

    Not Available

    1983-05-01

    The Morgantown Energy Technology Center (METC) conducted a number of feasibility studies on the combustion and retorting of five oil shales: Celina (Tennessee), Colorado, Israeli, Moroccan, and Sunbury (Kentucky). These studies generated technical data primarily on (1) the effects of retorting conditions, (2) the combustion characteristics applicable to developing an optimum process design technology, and (3) establishing a data base applicable to oil shales worldwide. During the research program, METC applied the versatile fluidized-bed process to combustion and retorting of various low-grade oil shales. Based on METC's research findings and other published information, fluidized-bed processes were found to offer highly attractive methods to maximize the heat recovery and yield of quality oil from oil shale. The principal reasons are the fluidized-bed's capacity for (1) high in-bed heat transfer rates, (2) large solid throughput, and (3) selectivity in aromatic-hydrocarbon formation. The METC research program showed that shale-oil yields were affected by the process parameters of retorting temperature, residence time, shale particle size, fluidization gas velocity, and gas composition. (Preferred values of yields, of course, may differ among major oil shales.) 12 references, 15 figures, 8 tables.

  1. Is combustion of plastics desirable?

    SciTech Connect (OSTI)

    Piasecki, B.; Rainey, D.; Fletcher, K.

    1998-07-01

    Managing waste will always entail some tradeoffs. All of the three options--recycling, landfilling and combustion--have some disadvantages. Even landfilling, which produces no emissions, fails to take advantage of the energy value inherent in plastic. Waste combustion, on the other hand, recovers the energy in plastic materials and reduces the volume of disposed solid waste by up to 90% of its initial preburn volumes. However, this management option generates emissions and produces an ash residue that must be managed. As demonstrated by recent test burns, improvements in combustion and air-pollution-control technology have dramatically reduced the health risks from emissions and ash. Recent studies have shown that plastics--in quantities even higher than those normally found in municipal solid waste--do not adversely affect levels of emissions or the quality of ash from waste-to-energy facilities. In addition, waste-to-energy facilities may be a relatively economical source of fuel, and may be a more economic solution to waste management than the other available options. A waste-to-energy plant generally produces electricity that is sold to the electric utilities for approximately six cents per kilowatt-hour, a rate that is competitive with those offered by nuclear power plants and power plants that generate energy by burning fossil fuels.

  2. US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Advanced Combustion and Emission Control Technical Team Roadmap US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap The ACEC focuses on advanced engine and aftertreatment technology for three major combustion strategies: (1) Low-Temperature Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion. acec_roadmap_june2013.pdf (1.29 MB) More Documents & Publications Overview of the Advanced Combustion Engine R&D Overview of DOE

  3. Impact of Variable Valve Timing on Low Temperature Combustion | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Variable Valve Timing on Low Temperature Combustion Impact of Variable Valve Timing on Low Temperature Combustion Documents effects of variable valve actuation in implementing low temperature combustion in production engine platform. deer10_de_ojeda.pdf (1.64 MB) More Documents & Publications Low-Temperature Combustion Demonstrator for High-Efficiency Clean Combustion Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion Multicylinder Diesel Engine for

  4. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOE Patents [OSTI]

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  5. The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector

    SciTech Connect (OSTI)

    Steinberg, M.; Dong, Yuanji; Borgwardt, R.H.

    1993-10-01

    Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

  6. Superconducting PM undiffused machines with stationary superconducting coils

    DOE Patents [OSTI]

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  7. Fuel Quality Issues in Stationary Fuel Cell Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Issues in Stationary Fuel Cell Systems ANL/CSE/FCT/FQ-2011-11 Chemical Sciences and Engineering Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Offce of Scientifc and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 reports@adonis.osti.gov

  8. Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary All targets must be achieved simultaneously Characteristics Units Calendar year 2002 status a 2005 2010 Membrane Areal Resistance in cell, operating temperature Ω-cm 2 0.1 0.1 0.1 Cost b $/kW --TBD 250 100 Operating Temperature o C 160 120-160 c 140-180 Durability Hours 5000 >15000 >40000 Survivability o C -20 -30 -40 Catalyst loading mg/cm 2 2 1 0.25 Performance (0.7 V) --EOL A/cm 2 0.15 0.25 0.35 G/kW for loading

  9. Sandia Combustion Research Program: Annual report, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  10. Industrial Combustion Vision: A Vision by and for the Industrial Combustion Community

    SciTech Connect (OSTI)

    none,

    1998-05-01

    The Industrial Combustion Vision is the result of a collaborative effort by manufacturers and users of burners, boilers, furnaces, and other process heating equipment. The vision sets bold targets for tomorrow's combustion systems.

  11. Constant Volume During Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Constant Volume During Combustion Constant Volume During Combustion This presentation covers constant volume during combustion and discusses how it can alter the kinematics of piston to crankshaft travel. deer08_joniec.pdf (88.76 KB) More Documents & Publications Utilizing the Rapid Ignition Region of HCCI to Attain > 60% BTE 50% thermo-mechanical efficiency utilizing a free-piston engine in Hybrid vehicles DOE-HDBK-1018/1-93

  12. Chemical Looping Combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Looping Combustion chemical-looping-combustion.jpg An economical option for using our abundant, domestic coal resources while eliminating CO2 emissions may sound like science fiction, but NETL researchers are working to bring this technology of the future into the present. Chemical looping is the solution. This cost-effective indirect combustion technology has CO2 capture "built in," effectively eradicating greenhouse gas emissions from coal. Although still a few years away

  13. 2010 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010 Session Course Descriptions Lecturers Lecture Notes 2016 FAQ Lecture Videos News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » 2016 Combustion Summer School » Past Sessions » 2010 Session 2010 Session The 2010 session, held from June 27 to July 3, offered the following two courses: (1) Combustion Theory, delivered by Professor Norbert Peters of RWTH-Aachen, Germany, and (2) Combustion Chemistry, jointly delivered by Dr. Charles K.

  14. 2011 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Descriptions Lecturers Lecture Notes FAQs 2010 Session 2016 FAQ Lecture Videos News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » 2016 Combustion Summer School » Past Sessions » 2011 Session 2011 Session The 2011 session, held from June 26 to July 1, offered the following three courses: (1) Combustion Theory, delivered by Professor Moshe Matalon of the University of Illinois at Urbana-Champaign, (2) Combustion Chemistry, delivered by

  15. 2012 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Descriptions Lecturers Lecture Notes 2011 Session 2010 Session 2016 FAQ Lecture Videos News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » 2016 Combustion Summer School » Past Sessions » 2012 Session 2012 Session The 2012 session, held from June 24 to June 29, offered the following courses: Combustion Theory, delivered by Professor Heinz Pitsch of the RWTH Aachen University; Combustion Chemistry, delivered by Professor Hai Wang of the

  16. 2013 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Descriptions Lecture Notes Lecture Videos 2012 Session 2011 Session 2010 Session 2016 FAQ Lecture Videos News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » 2016 Combustion Summer School » Past Sessions » 2013 Session 2013 Session The 2013 session, held from June 23 to June 28, offered the following courses: Combustion Theory, delivered by Professor Moshe Matalon of the University of Illinois at Urbana-Champaign; Combustion Chemistry,

  17. Combustion with reduced carbon in the ash

    DOE Patents [OSTI]

    Kobayashi, Hisashi; Bool, III, Lawrence E.

    2005-12-27

    Combustion of coal in which oxygen is injected into the coal as it emerges from burner produces ash having reduced amounts of carbon.

  18. Predicting Pressure-Dependent Combustion Chemical Reactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Chemical Reactions HomeCapabilities, Computational Modeling & Simulation, CRF, Energy, ... in combus-tion and atmospheric chemistry that is expected to benefit auto and ...

  19. Engine Valve Actuation For Combustion Enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  20. Engine valve actuation for combustion enhancement

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  1. Vehicle Technologies Office: 2015 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for ...

  2. Vehicle Technologies Office: 2014 Advanced Combustion Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for ...

  3. Stochastic (w*) Convergence for Turbulent Combustion | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stochastic (w*) Convergence for Turbulent Combustion PI Name: James Glimm PI Email: ... chemistry for LES, and (2) stochastic (w*) convergence based on probability ...

  4. Engine Combustion Network (ECN): Global sensitivity analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Date Published June 2015 Keywords diesel, Engine Combustion Network, global sensitivity ... The uncertainty in the fuel temperature was found to have a profound influence on the ...

  5. understanding the low-temperature combustion chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-temperature combustion chemistry - Sandia Energy Energy Search Icon Sandia Home ... EnergyWater History Water Monitoring & Treatment Technology Decision Models for ...

  6. Advancing Internal Combustion Engine Simulations using Sensitivity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing Internal Combustion Engine Simulations using Sensitivity Analysis PI Name: Sibendu Som PI Email: ssom@anl.gov Institution: Argonne National Laboratory Allocation Program:...

  7. Boiler Combustion Control and Monitoring System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... What Were the Benefits? boilercombustionchart.jpg The boiler combustion control and monitoring system was installed on a 25 MMBtuhr steam boiler located at the Watervliet ...

  8. Application Schedule - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Schedule Application Schedule Applications for the Combustion Energy Research Fellows program are considered on a rolling basis. Applicant selection occurs three times...

  9. Past Sessions - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home 2015 Combustion Summer School Past Sessions Past Sessions 2015 Session 2014 Session 2013 Session...

  10. Pyrolysis reactor and fluidized bed combustion chamber

    DOE Patents [OSTI]

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  11. Oxy-Combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to supply O2, atmospheric-pressure combustion for fuel conversion in a conventional supercritical pulverized-coal boiler; substantial flue gas recycle; conventional pollution ...

  12. Major Lectures & Conference Papers - Combustion Energy Frontier...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beijing, China, (2010). "Formation of Nascent Soot and Other Condensed-Phase Materials in Flames," by Hai Wang, 33rd International Symposium on Combustion, Beijing, China, ...

  13. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect (OSTI)

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  14. Stationary bubbles and their tunneling channels toward trivial geometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Pisin; Domènech, Guillem; Sasaki, Misao; Yeom, Dong-han

    2016-04-07

    In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. Ultimately, this may provide a resolution to the information loss dilemma.« less

  15. Rotary reciprocating internal combustion engine

    SciTech Connect (OSTI)

    Ogren, W.

    1992-06-23

    This patent describes a rotary reciprocating internal combustion engine. It comprises a housing which comprises a cylindrical head with two end and frame plates mounted on both ends of the head enclose the head, the head including a pair of fuel into ports and a pair of exhaust ports, a pair of ring gears; a rotor axially aligned in the cylindrical head and comprising a set of four radially extending cylinders and pistons reciprocable in the cylinders; a power take off shaft fixed to the crank support plates and axially aligned with the rotor; oiling means for oiling the rotary engine; and a set of eight crank gears.

  16. Theoretical studies of combustion dynamics

    SciTech Connect (OSTI)

    Bowman, J.M.

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  17. Chemical Kinetics of Combustion Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Combustion Processes Hai Wang B. Yang, J. Camacho, S. Lieb, S. Memarzadeh, S.-K. Gao and S. Koumlis University of Southern California 2010 CEFRC Conference Benzene + O( 3 P) → Products * Overall rate coefficient extensively studied, but the products and branching ratios not well known. * Theoretical challenges in dealing with spin-state crossing. Figure 1. Branching ratios observed as a function of temperature at 4 Torr for (a) m/z=94/93 and m/z=66/65 by magnetic sector mass spectrometer

  18. Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion ...

  19. Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Advanced Combustion R&D Annual Progress Report Vehicle Technologies Office: 2009 Advanced Combustion R&D Annual Progress Report The Advanced Combustion Engine R&D subprogram ...

  20. Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Combustion R&D Annual Progress Report Annual report on the work of the the Advanced Combustion ...

  1. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  2. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Decision Makers | Department of Energy Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Below is the text version of the webinar titled "Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers," originally presented on May 8, 2012. In addition to this text version of the audio, you can access the

  3. Balance of Plant Needs and Integration of Stack Components for Stationary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power and CHP Applications | Department of Energy Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications Presentation on Balance of Plant Needs and Integration of Stack Components for Stationary Power and CHP Applications for Fuel Cell Pre-solicitation Workshop March 10, 2010 fuelcell_pre-solicitation_wkshop_mar10_ainscough.pdf (525.4 KB) More

  4. Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Workshop | Department of Energy 1 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the IPHE Stationary Fuel Cell Workshop on March 1, 2011. Overview of Hydrogen and Fuel Cell Activities (1.4 MB) More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposi

  5. 1-10 kW Stationary Combined Heat and Power Systems Status and Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential: Independent Review | Department of Energy -10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  6. Development of Advanced Combustion Technologies for Increased Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on low-temperature combustion, particularly HCCI / PCCI combustion deer09_gehrke.pdf (669.71 KB) More Documents & Publications The Role of Advanced Combustion in Improving Thermal Efficiency Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Diesel HCCI

  7. Assessment of Combustion and Turbulence Models for the Simulation of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Processes in a DI Diesel Engine | Department of Energy Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Various applied combustion and turbulence models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine deer09_ren.pdf (497.22 KB) More Documents & Publications Low Temperature

  8. Method and system for controlled combustion engines

    DOE Patents [OSTI]

    Oppenheim, A. K.

    1990-01-01

    A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

  9. NETL- High-Pressure Combustion Research Facility

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  10. Injector tip for an internal combustion engine

    DOE Patents [OSTI]

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  11. NETL- High-Pressure Combustion Research Facility

    SciTech Connect (OSTI)

    2013-07-08

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  12. Sandia combustion research program: Annual report, 1987

    SciTech Connect (OSTI)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A.

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  13. Coal slurry combustion and technology. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  14. Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model

    Broader source: Energy.gov [DOE]

    Overview of H2A stationary model concept, results, strategy for analysis, Federal incentives for fuel cells, and summary of next steps

  15. File:5 CCR 1001-5 Colorado Stationary Source Permitting and Air...

    Open Energy Info (EERE)

    5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements.pdf Jump to: navigation, search File File history File usage Metadata...

  16. 5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...

    Open Energy Info (EERE)

    -5 Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: 5 CCR...

  17. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review This independent review ...

  18. Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C. W.; Rivkin, C. H.

    2010-09-01

    This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

  19. National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for stationary and portable fuel cell systems.

  20. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Peters, M.

    2014-05-01

    This report includes 25 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2013.

  1. Stationary Fuel Cell System Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-11-01

    This report includes 24 composite data products (CDPs) produced for stationary fuel cell systems, with data through the second quarter of 2013.

  2. Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers

    Broader source: Energy.gov [DOE]

    Presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers.

  3. COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES

    SciTech Connect (OSTI)

    Brinkman, K.; Gray, J.

    2012-03-30

    Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

  4. Combustion-Assisted CO2 Capture Using MECC Membranes

    SciTech Connect (OSTI)

    Sherman, Steven R; Gray, Dr. Joshua R.; Brinkman, Dr. Kyle S.; Huang, Dr. Kevin

    2012-01-01

    Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

  5. Improve Your Boiler's Combustion Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Your Boiler's Combustion Efficiency This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system. STEAM TIP SHEET 4 Improve...

  6. Improve Your Boiler's Combustion Efficiency, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Your Boiler's Combustion Efficiency Combustion Efficiency Operating your boiler with an optimum amount of excess air will minimize heat loss up the stack and improve ...

  7. Aceite vegetal puro como combustible diesel? (Straight Vegetable...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    sobre combustibles alternativos y vehculos de combustibles alternativos. El sitio web de la Oficina de Eficiencia Energtica y de Energa Renovable del DOE, www.eere....

  8. Fuel Modification t Facilitate Future Combustion Regimes? | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modification t Facilitate Future Combustion Regimes? Fuel Modification t Facilitate Future ... Merit Review 2015: RCM Studies to Enable Gasoline-Relevant Low Temperature Combustion

  9. Adaptive Control to Improve Low Temperature Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Control to Improve Low Temperature Diesel Engine Combustion Adaptive Control to Improve Low Temperature Diesel Engine Combustion Presentation given at DEER 2006, August 20-24, ...

  10. Enabling High Efficiency Clean Combustion with Micro-Variable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Combustion with Micro-Variable Circular-Orifice (MVCO) Fuel Injector and Adaptive PCCI Enabling High Efficiency Clean Combustion with Micro-Variable Circular-Orifice (MVCO) ...

  11. 2008 Annual Merit Review Results Summary - 7. Combustion Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7. Combustion Research 2008 Annual Merit Review Results Summary - 7. Combustion Research DOE Vehicle Technologies Annual Merit Review 2008meritreview7.pdf (1.84 MB) More ...

  12. 2012 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review Results Report - Advanced Combustion Engine Technologies 2012 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE ...

  13. 2014 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2014 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research ...

  14. Particulate Produced from Advanced Combustion Operation in a...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Produced from Advanced Combustion Operation in a Compression Ignition Engine Particulate Produced from Advanced Combustion Operation in a Compression Ignition Engine Determine ...

  15. 2013 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2013 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research ...

  16. Enabling Low Temperature Combustion Through Thermo-Chemical Recuperati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Through Thermo-Chemical Recuperation Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Poster presentation from the 2007 Diesel ...

  17. Heavy-Duty Low Temperature Combustion Development Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Development Activities at Caterpillar Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Presentation given at the 2007 Diesel ...

  18. Dilute Clean Diesel Combustion Achieves Low Emissions and High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High ...

  19. 3-D Combustion Simulation Strategy Status, Future Potential,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel ...

  20. Exploring Advanced Combustion Regimes for Efficiency and Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring Advanced Combustion Regimes for Efficiency and Emissions Exploring Advanced Combustion Regimes for Efficiency and Emissions 2003 DEER Conference Presentation: Oak Ridge ...

  1. Systems and methods of storing combustion waste products (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Systems and methods of storing combustion waste products Citation Details In-Document Search Title: Systems and methods of storing combustion waste products In one aspect, ...

  2. Demonstrating Optimum HCCI Combustion with Advanced Control Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimum HCCI Combustion with Advanced Control Technology Demonstrating Optimum HCCI Combustion with Advanced Control Technology Presentation given at the 2007 Diesel ...

  3. Syngas Enhanced High Efficiency Low Temperature Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant ...

  4. Cylinder Head Gasket with Integrated Combustion Pressure Sensors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cylinder Head Gasket with Integrated Combustion Pressure Sensors Cylinder Head Gasket with Integrated Combustion Pressure Sensors Poster presented at the 16th Directions in ...

  5. 2011 Annual Merit Review Results Report - Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Engine Technologies 2011 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research ...

  6. Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines Glow Plug Integrated Piezo-Ceramic Combustion Sensor for Diesel Engines 2005 Diesel Engine Emissions ...

  7. Combustion, Efficiency, and Fuel Effects in a Spark-Assisted...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline Engine 2004 Diesel ...

  8. Code Gaps and Future Research Needs of Combustion Safety: Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update Code Gaps and Future Research Needs of Combustion Safety: Building America Expert ...

  9. CFD Combustion Modeling with Conditional Moment Closure using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is ...

  10. Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Large Eddy Simulation (LES) Applied to Low-Temperature and Diesel Engine Combustion Research Vehicle ...

  11. Modeling Combustion Control for High Power Diesel Mode Switching...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in ...

  12. Computational Fluid Dynamics Modeling of Diesel Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions Computational Fluid Dynamics Modeling of Diesel Engine Combustion and Emissions 2005 Diesel Engine ...

  13. Sandia Energy - Low--Temperature Combustion Enables Cleaner,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-temperature diesel combustion," in Progress in Energy and Combustion Science hope to communicate the details of how LTC works to the broader engine research community....

  14. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions...

  15. Material Testing of Coated Alloys in a Syngas Combustion Environment...

    Office of Scientific and Technical Information (OSTI)

    Material Testing of Coated Alloys in a Syngas Combustion Environment Year 6 - Activity ... Title: Material Testing of Coated Alloys in a Syngas Combustion Environment Year 6 - ...

  16. Optimization of Direct-Injection H2 Combustion Engine Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions H2 Internal Combustion Engine Research Towards 45% ...

  17. Combustion Turbine CHP System for Food Processing Industry -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry - ...

  18. State Grid Biomass Fuel and Combustion Technology Laboratory...

    Open Energy Info (EERE)

    Biomass Fuel and Combustion Technology Laboratory Jump to: navigation, search Name: State Grid Biomass Fuel and Combustion Technology Laboratory Place: Beijing Municipality, China...

  19. Princeton-CEFRC Summer Program on Combustion: 2013 Session |...

    Office of Science (SC) Website

    on Combustion: 2013 Session Print Text Size: A A A Subscribe FeedbackShare Page June 23 - June 28, 2013 :: The Combustion Energy Frontier Research Center at Princeton...

  20. A University Consortium on High Pressure, Lean Combustion for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Pressure, Lean Combustion for Efficient and Clean IC Engines (UM - lead, MIT, UCB) A University Consortium on High Pressure, Lean Combustion for Efficient and Clean IC Engines ...

  1. High Efficiency Combustion and Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Controls High Efficiency Combustion and Controls 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010...

  2. CRADA with Cummins on Characterization and Reduction of Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins on Characterization and Reduction of Combustion Variations CRADA with Cummins on Characterization and Reduction of Combustion Variations 2012 DOE Hydrogen and Fuel Cells ...

  3. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Energy Savers [EERE]

    Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in ...

  4. Recuperative Reforming (RR) for H2 Enhanced Combustion | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recuperative Reforming (RR) for H2 Enhanced Combustion Recuperative Reforming (RR) for H2 Enhanced Combustion 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations ...

  5. US DRIVE Advanced Combustion and Emission Control Technical Team...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion and Emission Control Technical Team Roadmap US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap The ACEC focuses on advanced engine and ...

  6. General Motors Clean Combustion Engines Advanced with Predictive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motors Clean Combustion Engines Advanced with Predictive Simulation Tools Sandia National ... batteries and hydrogen storage; clean advanced combustion; and future generation ...

  7. Advanced Combustion Systems - Systems Analysis | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guidance for NETL's Oxy-combustion R&D Program: Chemical Looping Combustion Reference Plant Designs and Sensitivity Studies An emerging, coal-fired power plant technology, chemical ...

  8. Computationally Efficient Modeling of High-Efficiency Clean Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Computationally Efficient Modeling of High-Efficiency Clean Combustion ...

  9. Alternative battery systems for transportation uses

    ScienceCinema (OSTI)

    Michael Thackeray

    2013-06-05

    Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

  10. Alternative battery systems for transportation uses

    SciTech Connect (OSTI)

    Michael Thackeray

    2012-07-25

    Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

  11. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    DOE Patents [OSTI]

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  12. Fluidized-bed combustion fuel

    SciTech Connect (OSTI)

    Rich, J.W. Jr.

    1990-10-09

    This patent describes a process for producing from a solid carbonaceous refuse a high ash fuel for use in a circulating fluidized-bed combustion chamber. It comprises separating from the refuse a carbonaceous portion having an ash content in a selected range percent by weight; separating the carbonaceous portion into first and second fractions, the first fraction being at or above a selected size; crushing the first fraction; and combining the crushed first fraction with the second fraction. Also described is a process wherein the selected ash content range is between about 30 percent and about 50 percent, by weight. Also described is a process wherein the selected size is above about 1/4 inch.

  13. Real-time combustion controller

    DOE Patents [OSTI]

    Lindner, Jeffrey S.; Shepard, W. Steve; Etheridge, John A.; Jang, Ping-Rey; Gresham, Lawrence L.

    1997-01-01

    A method and system of regulating the air to fuel ratio supplied to a burner to maximize the combustion efficiency. Optical means are provided in close proximity to the burner for directing a beam of radiation from hot gases produced by the burner to a plurality of detectors. Detectors are provided for sensing the concentration of, inter alia, CO, CO.sub.2, and H.sub.2 O. The differences between the ratios of CO to CO.sub.2 and H.sub.2 O to CO are compared with a known control curve based on those ratios for air to fuel ratios ranging from 0.85 to 1.30. The fuel flow is adjusted until the difference between the ratios of CO to CO.sub.2 and H.sub.2 O to CO fall on a desired set point on the control curve.

  14. Real-time combustion controller

    DOE Patents [OSTI]

    Lindner, J.S.; Shepard, W.S.; Etheridge, J.A.; Jang, P.R.; Gresham, L.L.

    1997-02-04

    A method and system are disclosed for regulating the air to fuel ratio supplied to a burner to maximize the combustion efficiency. Optical means are provided in close proximity to the burner for directing a beam of radiation from hot gases produced by the burner to a plurality of detectors. Detectors are provided for sensing the concentration of, inter alia, CO, CO{sub 2}, and H{sub 2}O. The differences between the ratios of CO to CO{sub 2} and H{sub 2}O to CO are compared with a known control curve based on those ratios for air to fuel ratios ranging from 0.85 to 1.30. The fuel flow is adjusted until the difference between the ratios of CO to CO{sub 2} and H{sub 2}O to CO fall on a desired set point on the control curve. 20 figs.

  15. Assembly for directing combustion gas

    DOE Patents [OSTI]

    Charron, Richard C.; Little, David A.; Snyder, Gary D.

    2016-04-12

    An arrangement is provided for delivering gases from a plurality of combustors of a can-annular gas turbine combustion engine to a first row of turbine blades including a first row of turbine blades. The arrangement includes a gas path cylinder, a cone and an integrated exit piece (IEP) for each combustor. Each IEP comprises an inlet chamber for receiving a gas flow from a respective combustor, and includes a connection segment. The IEPs are connected together to define an annular chamber extending circumferentially and concentric to an engine longitudinal axis, for delivering the gas flow to the first row of blades. A radiused joint extends radially inward from a radially outer side of the inlet chamber to an outer boundary of the annular chamber, and a flared fillet extends radially inward from a radially inner side of the inlet chamber to an inner boundary of the annular chamber.

  16. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  17. Ozone transport commission developments

    SciTech Connect (OSTI)

    Joyce, K.M.

    1995-08-01

    On September 27, 1994, the states of the Ozone Transport Commission (OTC) signed an important memorandum of understanding (MOU) agreeing to develop a regional strategy for controlling stationary sources of nitrogen oxide emissions. Specifically, the states of the Ozone Transport Region, OTR, agreed to propose regulations for the control of NOx emissions from boilers and other indirect heat exchangers with a maximum gross heat input rate of at least 250 million BTU per hour. The Ozone Transport Region was divided into Inner, Outer and Northern Zones. States in the Outer Zone agreed to reduce NOx emissions by 55%. States in the Inner Zone agreed to reduce NOx emissions 65%. Facilities in both zones have the option to emit NOx at a rate no greater than 0.2 pounds per million Btu by May 1, 1999. This option provides fairness for the gas-fired plants which already have relatively low NOx emissions. Additionally, States in the Inner and Outer Zones agreed to reduce their NOx emissions by 75% or to emit NOx at a rate no greater than 0.15 pounds per million BTU by May 1, 2003. The Northern Zone States agree to reduce their rate of NOx emissions by 55% from base year levels by May 1, 2003, or to emit NOx at a rate no greater than 0.2 pounds per million BTU. As part of this MOU, States also agreed to develop a regionwide trading mechanism to provide a cost-effective mechanism for implementing the reductions.

  18. Partially-Premixed Flames in Internal Combustion Engines

    SciTech Connect (OSTI)

    Robert W. Pitz; Michael C. Drake; Todd D. Fansler; Volker Sick

    2003-11-05

    This was a joint university-industry research program funded by the Partnerships for the Academic-Industrial Research Program (PAIR). The research examined partially premixed flames in laboratory and internal combustion engine environments at Vanderbilt University, University of Michigan, and General Motors Research and Development. At Vanderbilt University, stretched and curved ''tubular'' premixed flames were measured in a unique optically accessible burner with laser-induced spontaneous Raman scattering. Comparisons of optically measured temperature and species concentration profiles to detailed transport, complex chemistry simulations showed good correspondence at low-stretch conditions in the tubular flame. However, there were significant discrepancies at high-stretch conditions near flame extinction. The tubular flame predictions were found to be very sensitive to the specific hydrogen-air chemical kinetic mechanism and four different mechanisms were compared. In addition, the thermo-diffusive properties of the deficient reactant, H2, strongly affected the tubular flame structure. The poor prediction near extinction is most likely due to deficiencies in the chemical kinetic mechanisms near extinction. At the University of Michigan, an optical direct-injected engine was built up for laser-induced fluorescence imaging experiments on mixing and combustion under stratified charge combustion conditions with the assistance of General Motors. Laser attenuation effects were characterized both experimentally and numerically to improve laser imaging during the initial phase of the gasoline-air mixture development. Toluene was added to the isooctane fuel to image the fuel-air equivalence ratio in an optically accessible direct-injected gasoline engine. Temperature effects on the toluene imaging of fuel-air equivalence ratio were characterized. For the first time, oxygen imaging was accomplished in an internal combustion engine by combination of two fluorescence trackers

  19. Multiple vane rotary internal combustion engine

    SciTech Connect (OSTI)

    Pangman, E.L.

    1994-01-11

    A three-piece housing enclosing a cavity has rotatably mounted therein a rotor having a plurality of slots, each slot supporting a vane. Each vane has a retention end guided in its revolution around the rotor by an internal, non-circular vane retention track. Two adjacent vanes define opposite sides of a combustion chamber, while the housing and the portion of the rotor between the adjacent vanes form the remaining surfaces of the combustion chamber. Each combustion chamber is rotated past an intake port, a diagonal plasma bleed-over groove, and an exhaust port to accomplish the phases of a combustion cycle. Fuel ignition is provided to more than one combustion chamber at a time by expanding gases passing through a plasma bleed-over groove and being formed into a vortex that ignites and churns the charge in a succeeding combustion chamber. Exhaust gases remaining after primary evacuation are removed by a secondary evacuation system utilizing a venturi creating negative pressure which evacuates the combustion chamber. Lubrication is circulated through the engine without the use of a lubricant pump. The centrifugal force of the rotating rotor causes the lubricant therein to be pressurized thereby drawing additional lubricant into the closed system and forcing lubricant within the engine to be circulated. 9 figs.

  20. Ceramic Stationary Gas Turbine Development. Technical progress report, April 1, 1993--October 31, 1994

    SciTech Connect (OSTI)

    1994-12-01

    This report summarizes work performed by Solar Technologies Inc. and its subcontractors, during the period April 1, 1993 through October 31, 1994 under Phase II of the DOE Ceramic Stationary Gas Turbine Development program. The objective of the program is to improve the performance of stationary gas turbines in cogeneration through the implementation of selected ceramic components.

  1. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    SciTech Connect (OSTI)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilae, Kai; Hupa, Mikko

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

  2. Misfire tolerant combustion-powered actuation

    DOE Patents [OSTI]

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Kuehl, Michael A.

    2001-01-01

    The present invention provides a combustion-powered actuator that is suitable for intermittent actuation, that is suitable for use with atmospheric pressure carburetion, and that requires little electrical energy input. The present invention uses energy from expansion of pressurized fuel to effectively purge a combustion chamber, and to achieve atmospheric pressure carburetion. Each purge-fill-power cycle can be independent, allowing the actuator to readily tolerate misfires. The present invention is suitable for use with linear and rotary operation combustion chambers, and is suitable for use in a wide variety of applications.

  3. Annual Report: Advanced Combustion (30 September 2012)

    SciTech Connect (OSTI)

    Hawk, Jeffrey; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  4. Post combustion trials at Dofasco's KOBM furnace

    SciTech Connect (OSTI)

    Farrand, B.L.; Wood, J.E.; Goetz, F.J.

    1992-01-01

    Post combustion trials were conducted at Dofasco's 300 tonne KOBM furnace as part of the AISI Direct Steelmaking Program. The purpose of the project work was to measure the post combustion ratio (PCR) and heat transfer efficiency (HTE) of the post combustion reaction in a full size steelmaking vessel. A method of calculating PCR and HTE using off gas analysis and gas temperature was developed. The PCR and HTE were determined under normal operating conditions. Trials assessed the effect of lance height, vessel volume, foaming slag and pellet additions on PCR and HTE.

  5. Internal combustion engine injection superheated steam

    SciTech Connect (OSTI)

    Mahoney, F.G.

    1991-01-22

    This patent describes a method for introducing water vapor to the combustion chambers of an internal combustion engine. It comprises: introducing a metered amount of liquid water into a heat exchanger; contacting the heat exchanger directly with hot exhaust gases emanating from the exhaust manifold; maintaining the water in the heat exchanger for a period sufficient to vaporize the water into steam and superheat same; reducing pressure and increasing temperature to create superheated steam; introducing the superheated steam into the air supply proximate to the air induction system, upstream of any carburetion, of the internal combustion engine.

  6. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  7. Development and evaluation of coal/water mixture combustion technology. Final report

    SciTech Connect (OSTI)

    Scheffee, R.S.; Rossmeissl, N.P.; Skolnik, E.G.; McHale, E.T.

    1981-08-01

    The objective was to advance the technology for the preparation, storage, handling and combustion of highly-loaded coal/water mixtures. A systematic program to prepare and experimentally evaluate coal/water mixtures was conducted to develop mixtures which (1) burn efficiently using combustion chambers and burners designed for oil, (2) can be provided at a cost less than that of No. 6 oil, and (3) can be easily transported and stored. The program consisted of three principal tasks. The first was a literature survey relevant to coal/water mixture technology. The second involved slurry preparation and evaluation of rheological and stability properties, and processing techniques. The third consisted of combustion tests to characterize equipment and slurry parameters. The first task comprised a complete search of the literature, results of which are tabulated in Appendix A. Task 2 was involved with the evaluation of composition and process variables on slurry rheology and stability. Three bituminous coals, representing a range of values of volatile content, ash content, and hardness were used in the slurries. Task 3 was concerned with the combustion behavior of coal/water slurry. The studies involved first upgrading of an experimental furnace facility, which was used to burn slurry fuels, with emphasis on studying the effect on combustion of slurry properties such as viscosity and particle size, and the effect of equipment parameters such as secondary air preheat and atomization.

  8. Internal combustion engine utilizing stratified charge combustion process

    SciTech Connect (OSTI)

    Artman, N.G.

    1991-07-16

    This patent describes an internal combustion engine in which a piston is reciprocal alternately toward and from the upper end of a cylinder within a variable volume space adjacent to such end, a cylinder head having a face in closing relation with such cylinder end and containing a precombustion chamber with a sidewall having an inner periphery constructed about an axis extending upwardly from the cylinder and the periphery having an open lower end in two-way communication through the face with the variable volume space, the lower open end being smaller in diameter than the diameter of the cylinder, the upper end of the chamber having an air inlet passage closable by a valve, the chamber being operable when the valve is open and attendant to movement of the piston downwardly from the upper cylinder end to receive from the inlet passage a main inlet air stream and conduct the same downwardly therein and discharge the same through the open end downwardly therein and discharge the same through the open end downwardly into the variable volume space.

  9. H2 Internal Combustion Engine Research Towards 45% efficiency and

    Broader source: Energy.gov (indexed) [DOE]

    Tier2-Bin5 emissions | Department of Energy ace_09_wallner.pdf (2.11 MB) More Documents & Publications Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions Optimization of Direct-Injection H2 Combustion Engine Performance, Efficiency, and Emissions Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling

  10. Numerical Modeling of PCCI Combustion | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PCCI Combustion Numerical Modeling of PCCI Combustion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Livermore National Laboratory/University of Michigan 2004_deer_flowers.pdf (252.97 KB) More Documents & Publications Modeling of HCCI and PCCI Combustion Processes Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Numerical Modeling of HCCI Combustion

  11. Pulse combustion: an assessment of opportunities for increased efficiency

    SciTech Connect (OSTI)

    Brenchley, D.L.; Bomelburg, H.J.

    1984-12-01

    The results of a literature review on pulse combustion are discussed. Current, near-future, and potential opportunities for pulse combustion applications are summarized, and the barriers to developing and using pulse combustion technology are discussed, along with research and development needs. Also provided are the proceedings of a pulse combustion workshop held in May, 1984 in Seattle, Washington. (LEW)

  12. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    SciTech Connect (OSTI)

    Nigel N. Clark

    2006-12-31

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, a percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions

  13. Coal Combustion Products Extension Program

    SciTech Connect (OSTI)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be

  14. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  15. Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion

    Broader source: Energy.gov (indexed) [DOE]

    Modeling | Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_01_musculus.pdf (2.77 MB) More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Vehicle Technologies Office Merit Review 2014: Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling Heavy-Duty Low-Temperature and Diesel

  16. Oil shale retorting and combustion system

    DOE Patents [OSTI]

    Pitrolo, Augustine A.; Mei, Joseph S.; Shang, Jerry Y.

    1983-01-01

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  17. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  18. Two phase exhaust for internal combustion engine

    DOE Patents [OSTI]

    Vuk, Carl T.

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  19. Flex-flame burner and combustion method

    DOE Patents [OSTI]

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  20. Engine combustion control via fuel reactivity stratification

    DOE Patents [OSTI]

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  1. Preheated Combustion Air; Industrial Technologies Program (ITP...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel-fired industrial heating processes, one of the most potent ways to improve efficiency and productivity is to preheat the combustion air going to the burners. The source of ...

  2. Fuel injector nozzle for internal combustion engine

    SciTech Connect (OSTI)

    Klomp, E.D.; Peters, B.D.

    1990-06-12

    This patent describes a fuel injection nozzle for a combustion chamber of an internal combustion engine. It comprises: a nozzle body with at least one fuel flow opening therethrough for feed fuel to the chamber, a resilient diaphragm normally sealing the opening and having orifice means therein for further atomizing and directing the pulses into the chamber, fastening means for fixing the diaphragm to the body so that diaphragm can deflect by a predetermined amount under low engine load operating conditions so that a wide angle cone of atomized fuel is injected into and generally at one end of the combustion chamber for the stratified charge thereof and deflect by an amount greater than the first amount of deflection under high engine load operating conditions. A narrow spray cone of atomized fuel is injected in a deeper pattern into and throughout the combustion chamber for optimizing the charge thereof and fuel burns under the low and high load engine operating conditions.

  3. Media - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School Posted Jan 07, 2015by Lilian Tsang The 2015 Princeton-CEFRC Summer School on Combustion is now accepting applications for the June 21 - 26 session. Apply online at http:...

  4. Transonic Combustion Inc | Open Energy Information

    Open Energy Info (EERE)

    focused on developing ultra-high efficiency automotive engines that run on gasoline and bio-renewable flex fuels. References: Transonic Combustion, Inc.1 This article is a stub....

  5. Energy-Efficient Glass Melting: Submerged Combustion

    SciTech Connect (OSTI)

    2004-01-01

    Oxy-gas-fired submerged combustion melter offers simpler, improved performance. For the last 100 years, the domestic glass industry has used the same basic equipment for melting glass on an industrial scale.

  6. Advanced Combustion Technologies | Department of Energy

    Office of Environmental Management (EM)

    Photo courtesy of NETL Multimedia. The workhorse of America's electric power sector is the coal-fired power plant. Today, coal combustion plants account for more than half of the ...

  7. Thermodynamical description of stationary, asymptotically flat solutions with conical singularities

    SciTech Connect (OSTI)

    Herdeiro, Carlos; Rebelo, Carmen; Radu, Eugen

    2010-05-15

    We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and nonconnected event horizons, using the thermodynamical description recently proposed in [C. Herdeiro, B. Kleihaus, J. Kunz, and E. Radu, Phys. Rev. D 81, 064013 (2010).]. The examples considered are the double-Kerr solution, the black ring rotating in either S{sup 2} or S{sup 1}, and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description, but also the thermodynamical angular momentum is the Arnowitt-Deser-Misner angular momentum. We also analyze the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.

  8. Internal combustion engine and method for control

    SciTech Connect (OSTI)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  9. Building America Expert Meeting: Combustion Safety

    SciTech Connect (OSTI)

    Brand, L.

    2013-03-01

    This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  10. Building America Expert Meeting. Combustion Safety

    SciTech Connect (OSTI)

    Brand, Larry

    2013-03-01

    This is an overview of "The Best Approach to Combustion Safety in a Direct Vent World," held June 28, 2012, in San Antonio, TX. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  11. Sample Projects - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample Projects Sample Projects These are only a few of the many possible research directions for Combustion Energy Research Fellows. For a more complete view on possible CEFRC postdoctoral research projects and collaborations please contact the Center Principal Investigators individually. Advanced Combustion Simulations with Dr. Jacqueline H. Chen and Prof. D. Haworth DNS/LES simulations with Prof. Stephen B. Pope and Dr. Jacqueline H. Chen. Simulations of experimental flames with Prof. Fokion

  12. Publication sites productive uses of combustion ash

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication Sites Productive Uses of Combustion Ash For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 23, 1997 -- A new technology brief published by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) describes how ash use can reduce the cost of waste management and not harm the environment. Communities in the United States typically dump municipal solid waste combustion ash in landfills. The new technology brief describes recent studies where ash

  13. 2014 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Description Lecturers Lecture Notes Lecture Videos 2013 Session 2012 Session 2011 Session 2010 Session 2016 FAQ Lecture Videos News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » 2016 Combustion Summer School » Past Sessions » 2014 Session 2014 Session The 2014 session, held from June 22 to June 27, offered the following courses: Combustion Theory and Applications in CFD, delivered by Professor Heinz Pitsch of RWTH Aachen University;

  14. 2015 Session - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Description Lecture Notes Lecture Videos Lecturers 2014 Session 2013 Session 2012 Session 2011 Session 2010 Session 2016 FAQ Lecture Videos News, Events & Publications Contact CEFRC CEFRC In Pictures CEFRC Intranet (Members Only) Home » 2016 Combustion Summer School » Past Sessions » 2015 Session 2015 Session The 2015 session, held from June 21 to June 26, offered the following courses: Dynamics of Combustion Waves: From Flames to Detonations, delivered by Professor Paul Clavin of

  15. Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  16. Combustion Model for Engine Concept Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model for Engine Concept Development Combustion Model for Engine Concept Development Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an advanced combustion model are used together for fast, reliable predictions deer12_andersson.pdf (1.12 MB) More Documents & Publications Partially Premixed Combustion Flex Fuel Optimized SI and HCCI Engine High-Efficiency, Ultra-Low Emission Combustion in a Heavy-Duty Engine via Fuel Reactivity Control

  17. chemical-looping-combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Looping Combustion Chemical Looping Combustion Advantages: Oxygen is created in-situ... Oxygen production requirement is eliminated ...reduces energy demand and system costs. Uses conventional construction materials and techniques ...decreases capital cost. The combustion of fossil fuels in nearly pure oxygen, rather than air, presents an opportunity to simplify carbon dioxide (CO2) capture in power plant applications. Oxy-combustion power generation provides oxygen to the combustion

  18. Progress of the Engine Combustion Network | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Engine Combustion Network Progress of the Engine Combustion Network ECN seeks to accelerate development of clean high-efficiency engines. deer09_pickett.pdf (1.91 MB) More Documents & Publications Spray Combustion Cross-Cut Engine Research Vehicle Technologies Office Merit Review 2015: Spray Combustion Cross-Cut Engine Research Vehicle Technologies Office Merit Review 2016: Spray Combustion Cross-Cut Engine Research

  19. Vehicle Technologies Office: Advanced Combustion Engines | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Advanced Combustion Engines Vehicle Technologies Office: Advanced Combustion Engines Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Researchers take laser-based velocity measurements at the Sandia National Laboratory's Combustion Research Facility. Improving the efficiency of internal combustion engines is one of the most promising and cost-effective

  20. Vehicle Technologies Office: Advanced Combustion Strategies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Technologies Office: Advanced Combustion Strategies Vehicle Technologies Office: Advanced Combustion Strategies On the left is real-time video of conventional diesel combustion. The fuel injector sprays 8 jets of liquid fuel into the combustion chamber. Compression-heating ignites the fuel, creating a flame. Soot forms in jets, which glow red, orange, and yellow. High temperature combustion has high efficiency, but also produces high emissions of nitrogen oxides. On the right