Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transportation and Stationary Power Integration: Workshop Proceedings  

Broader source: Energy.gov [DOE]

Proceedings for the Transportation and Stationary Power Integration Workshop held on October 27, 2008 in Phoenix, Arizona

2

Chemistry and Transport - Combustion Energy Frontier Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry and Transport Chemistry and Transport The overall goal of the flame chemistry working group is to obtain fundamental combustion and emission properties of low and high...

3

Transportation and Stationary Power Integration Workshop | Department...  

Broader source: Energy.gov (indexed) [DOE]

and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The...

4

Oxy-combustion: Oxygen Transport Membrane Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

combustion: Oxygen Transport combustion: Oxygen Transport Membrane Development Background The mission of the U.S. Department of Energy's (DOE) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The EPEC R&D

5

Transportation and Stationary Power Integration Workshop Agenda, October 27, 2008, Phoenix, Arizonia  

Broader source: Energy.gov [DOE]

Agenda for the Transportation and Stationary Power Integration Workshop held on October 27, 2008 in Phoenix, AZ

6

Fuel Cell Technologies Office: Transportation and Stationary Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell Council, and the National Renewable Energy Laboratory, and was held in conjunction with the Fuel Cell Seminar in Phoenix, Arizona. Plenary presentations provided an overview of the integration concept and perspective on the opportunity from federal, state and industry organizations. Workshop participants met in breakout sessions to consider the potential to leverage early hydrogen vehicle refueling infrastructure requirements by co-producing hydrogen in stationary fuel cell CHP applications at select facilities (e.g., military bases, postal facilities, airports, hospitals, etc.). The efficiency, reliability, and emissions benefits of these CHP systems have the potential to offset the up-front capital costs and financial risks associated with producing hydrogen for early vehicle markets.

7

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

8

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

9

Polymer electrolyte fuel cells: Potential transportation and stationary applications  

SciTech Connect (OSTI)

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scale transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.

Gottesfeld, S.

1993-01-01T23:59:59.000Z

10

Polymer electrolyte fuel cells: Potential transportation and stationary applications  

SciTech Connect (OSTI)

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scale transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.

Gottesfeld, S.

1993-04-01T23:59:59.000Z

11

RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE  

SciTech Connect (OSTI)

Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

Takashi Nakamura

2004-11-01T23:59:59.000Z

12

Capture and Sequestration of CO2 From Stationary Combustion Systems by Photosynthesis of Microalgae  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capture and Sequestration of CO Capture and Sequestration of CO 2 From Stationary Combustion Systems by Photosynthesis of Microalgae Takashi Nakamura (nakamura@psicorp.com; 925-743-1110) Constance Senior (senior@psicorp.com; 978-689-0003) Physical Sciences Inc Andover, MA 01810 Miguel Olaizola (molaizola@aquasearch.com; 808-326-9301 Michael Cushman (mcushman@aquasearch.com; 808-326-9301) Aquasearch Inc. Kailua-Kona, HI 96740 Stephen Masutani (masutan@wiliki.eng.hawaii.edu; 808-956-7388) University of Hawaii Honolulu, HI 96822 Introduction Emissions of carbon dioxide are predicted to increase this century 1 leading to increases in the concentrations of carbon dioxide in the atmosphere. While there is still much debate on the effects of increased CO 2 levels on global climate, many scientists agree that the projected increases could have a

13

Transition of combustion into detonation within a channel with the diameter less than the critical diameter of the existence of stationary detonation  

Science Journals Connector (OSTI)

An experimental investigation was carried out for transition of combustion into detonation of oxygen-hydrogen and hydrogen-air stoichiometric ... the critical diameter of the existence of stationary detonation in...

D. I. Baklanov; V. V. Golub; K. V. Ivanov; M. S. Krivokopytov

2012-04-01T23:59:59.000Z

14

Optimization of combustion bowl geometry for the operation of kapok biodiesel – Diesel blends in a stationary diesel engine  

Science Journals Connector (OSTI)

Abstract The purpose of this research work is to optimize the combustion bowl geometry of a single cylinder stationary diesel engine for the effective operation of KME (kapok methyl ester) – diesel blends. Considering that the reported design modification would render the benefit of adaptation of higher blends of KME, in this study, two different combustion chamber geometries such as TRCC (trapezoidal combustion chamber) and TCC (toroidal combustion chamber) were chosen in addition to the convention design of HCC (hemispherical combustion chamber). In the experimental investigation, suitable blends such as B25 (25% KME + 75% diesel), B50 (50% KME + 50% diesel), B75 (75% KME + 25% diesel) and B100 (100% KME) were tested in a diesel engine with various combustion chamber geometries as mentioned above. Based on the results obtained from this study, TCC was shown to exhibit better performance and emission than TRCC and HCC for all test blends. Further, when compared to diesel, B25 and B50 were found to be the optimum blends with HCC and TCC, respectively, while TRCC seldom evinced better engine characteristics for any of the blends. Categorically, B50 showed a 5.2% increase in BTE (brake thermal efficiency) than diesel with TCC, whereas emissions such as CO (carbon monoxide) and smoke were reduced by 15.7% and 7.8%, respectively, with a comparable NOX (nitrogen oxides) emission with diesel. Similarly, combustion for B50 with TCC was found to be better than diesel, manifesting an increase in maximum heat release rate that that of diesel. Conclusively, from the experimental study, TCC was recognized as an ideal choice of combustion chamber design for the operation of blends up to B50 in a diesel engine.

S. Vedharaj; R. Vallinayagam; W.M. Yang; C.G. Saravanan; P.S. Lee

2015-01-01T23:59:59.000Z

15

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

16

an inverse boundary value problem for the stationary transport ...  

E-Print Network [OSTI]

inverse problem (IP) for the time-dependent transport equation (?t ? T)u = 0, where T ... Then the pairs (?a,0) and (ˆ?a,0) (i.e. k = ˆk = 0) produce the same .... Note that Jf? is defined so that T1Jf? = 0, Jf?|?? = f?, therefore J is the solution ...

17

A statistical analysis of avalanching heat transport in stationary enhanced core confinement regimes  

SciTech Connect (OSTI)

We present a statistical analysis of heat transport in stationary enhanced confinement regimes obtained from flux-driven gyrofluid simulations. The probability density functions of heat flux in improved confinement regimes, characterized by the Nusselt number, show significant deviation from Gaussian, with a markedly fat tail, implying the existence of heat avalanches. Two types of avalanching transport are found to be relevant to stationary states, depending on the degree of turbulence suppression. In the weakly suppressed regime, heat avalanches occur in the form of quasi-periodic (QP) heat pulses. Collisional relaxation of zonal flow is likely to be the origin of these QP heat pulses. This phenomenon is similar to transient limit cycle oscillations observed prior to edge pedestal formation in recent experiments. On the other hand, a spectral analysis of heat flux in the strongly suppressed regime shows the emergence of a 1/f (f is the frequency) band, suggesting the presence of self-organized criticality (SOC)-like episodic heat avalanches. This episodic 1/f heat avalanches have a long temporal correlation and constitute the dominant transport process in this regime.

Tokunaga, S.; Jhang, Hogun; Kim, S. S. [WCI Center for Fusion Theory, National Fusion Research Institute, 52, Yeoeun-dong, Yusung-Gu, Daejon (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, National Fusion Research Institute, 52, Yeoeun-dong, Yusung-Gu, Daejon (Korea, Republic of); Center for Astrophysics and Space Sciences and Department of Physics, University of California San Diego, La Jolla, California 92093-0429 (United States)

2012-09-15T23:59:59.000Z

18

Systems-level design of ion transport membrane oxy-combustion power plants  

E-Print Network [OSTI]

Oxy-fuel combustion, particularly using an integrated oxygen ion transport membrane (ITM), is a thermodynamically attractive concept that seeks to mitigate the penalties associated with CO 2 capture from power plants. ...

Mancini, Nicholas D. (Nicholas David)

2011-01-01T23:59:59.000Z

19

Computations and modeling of oil transport between piston lands and liner in internal combustion engines  

E-Print Network [OSTI]

The consumption of lubricating oil in internal combustion engines is a continuous interest for engine developers and remains to be one of the least understood areas. A better understanding on oil transport is critical to ...

Fang, Tianshi

2014-01-01T23:59:59.000Z

20

NREL: Transportation Research - Fuel Combustion and Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in...

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Combustion | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Advanced Combustion Combustion engines drive a large percentage of our nation's transportation vehicles and power generation and manufacturing facilities. Today's...

22

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary  

Open Energy Info (EERE)

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Buildings, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free References: Stationary Combustion Guidance[1] The Greenhouse Gas Protocol tool for stationary combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically

23

Mechanism of Hydrocarbon Formation in Combustion Processes  

Science Journals Connector (OSTI)

Emissions from transportation systems that derive their energy directly from combustion processes include products of incomplete combustion, oxides of...

R. A. Matula

1973-01-01T23:59:59.000Z

24

The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary...  

Open Energy Info (EERE)

search Tool Summary LAUNCH TOOL Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Stationary Combustion AgencyCompany Organization: World Resources...

25

Summary Report on the Transportation Combustion Engine Efficiency Colloquium Held at USCAR, March 3 and 4, 2010  

SciTech Connect (OSTI)

This report summarizes results from an invited two-day colloquium of twenty-nine combustion engine experts from academia, industry, and national labs that was convened March 3rd and 4th, 2010, at the headquarters of the United States Council for Automotive Research (USCAR) in Southfield, Michigan. The colloquium was held at the request of The Department of Energy (DOE) Office of Freedom Car and Vehicle Technologies (OFCVT) to review and assess the current state of transportation combustion engine technology from theoretical and practical perspectives. In the ensuing discussions, the experts were able to reach a broad consensus on some important questions regarding current fuel efficiency limits. They also identified technology barriers and recommended specific near and longer-term R&D priorities for DOE's consideration. Internal combustion engines currently play a dominant role in U.S. transportation and are expected to continue to do so well beyond 2020 [1]. Because of this, the Department of Energy (DOE) has placed high priority on promoting technologies that maximize combustion engine fuel efficiency while minimizing greenhouse gas emissions. Identification of the most promising paths to achieve these goals has recently become more complicated as non-traditional transportation fuels and hybrid electric vehicles become widely available. To reassess the state of combustion engine science and identify new opportunities for technology breakthroughs, an invited colloquium of combustion engine experts was convened on March 3rd and 4th, 2010, at the headquarters of the United States Council for Automotive Research (USCAR) in Southfield, Michigan. The colloquium objectives were: (1) Review and assess the current state of transportation combustion engine technology from both theoretical and practical perspectives; (2) Arrive at a consensus on the theoretical and practical fuel efficiencies that can be achieved; and (3) Recommend near and longer-term R&D priorities for DOE to consider in developing their strategic planning for reaching efficiency goals. This report summarizes the main discussion points and recommendations that emerged from the meeting. Included are areas where there is widespread consensus and areas where there are still important technical uncertainties and wide ranging opinions.

Daw, C Stuart [ORNL; Graves, Ronald L [ORNL; Caton, Jerald A [ORNL; Wagner, Robert M [ORNL

2010-11-01T23:59:59.000Z

26

Soot Carbon and Excess Fine Potassium: Long-Range Transport of Combustion-Derived Aerosols  

Science Journals Connector (OSTI)

...identified in diesel engine soot (3). Sur-face...result of fossil-fuel combustion (14-15...combustion of fossil fuels, especially of...burning [the consumption of firewood is...of K,,55 (diesel and gasoline engines, oil-fired...

MEINRAT O. ANDREAE

1983-06-10T23:59:59.000Z

27

FCT Technology Validation: Stationary/Distributed Generation Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stationary/Distributed Stationary/Distributed Generation Projects to someone by E-mail Share FCT Technology Validation: Stationary/Distributed Generation Projects on Facebook Tweet about FCT Technology Validation: Stationary/Distributed Generation Projects on Twitter Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Google Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Delicious Rank FCT Technology Validation: Stationary/Distributed Generation Projects on Digg Find More places to share FCT Technology Validation: Stationary/Distributed Generation Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects DOE Projects Non-DOE Projects Integrated Projects Quick Links Hydrogen Production

28

A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines  

Science Journals Connector (OSTI)

Abstract The fundamental combustion and emissions properties of advanced biofuels are reviewed, and their impact on engine performance is discussed, in order to guide the selection of optimal conversion routes for obtaining desired fuel combustion properties. Advanced biofuels from second- and third-generation feedstocks can result in significantly reduced life-cycle greenhouse-gas emissions, compared to traditional fossil fuels or first-generation biofuels from food-based feedstocks. These advanced biofuels include alcohols, biodiesel, or synthetic hydrocarbons obtained either from hydrotreatment of oxygenated biofuels or from Fischer–Tropsch synthesis. The engine performance and exhaust pollutant emissions of advanced biofuels are linked to their fundamental combustion properties, which can be modeled using combustion chemical-kinetic mechanisms and surrogate fuel blends. In general, first-generation or advanced biofuels perform well in existing combustion engines, either as blend additives with petro-fuels or as pure “drop-in” replacements. Generally, oxygenated biofuels produce lower intrinsic nitric-oxide and soot emissions than hydrocarbon fuels in fundamental experiments, but engine-test results can be complicated by multiple factors. In order to reduce engine emissions and improve fuel efficiency, several novel technologies, including engines and fuel cells, are being developed. The future fuel requirements for a selection of such novel power-generation technologies, along with their potential performance improvements over existing technologies, are discussed. The trend in the biofuels and transportation industries appears to be moving towards drop-in fuels that require little changes in vehicle or fueling infrastructure, but this comes at a cost of reduced life-cycle efficiencies for the overall alternative-fuel production and utilization system. In the future, fuel-flexible, high-efficiency, and ultra-low-emissions heat-engine and fuel-cell technologies promise to enable consumers to switch to the lowest-cost and cleanest fuel available in their market at any given time. This would also enable society as a whole to maximize its global level of transportation activity, while maintaining urban air quality, within an energy- and carbon-constrained world.

Jeffrey M. Bergthorson; Murray J. Thomson

2015-01-01T23:59:59.000Z

29

Modelin combustion of multicomponent fuel droplets: formulation and application to transportation fuels  

E-Print Network [OSTI]

will be presented along with an organization of the new formulation and results, which will be presented in subsequent sections. 4 2. REVIEW OF LITERATURE 2.1 DROPLET COMBUSTION THEORY Research on evaporation/gasification... is motionless in a stagnant, gravity-free, oxidizing environment of infinite extent. The lack of either forced or natural convection implies the assumption of spherical symmetry. The basic mechanisms leading to the complete gasification of the droplet...

Vittilapuram Subramanian, Kannan

2006-04-12T23:59:59.000Z

30

Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols  

Science Journals Connector (OSTI)

Widespread biomass burning in the tropics has been identi fied as a major source of trace gases and particulate matter to the atmosphere (1?3). ... Corpus?Christi ... The largest primary source contributors to fine particle mass concns. in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions form food cooking and wood smoke, with smaller contributions from tire dust, plant fragments, a natural gas combustion aerosol, and cigarette smoke. ...

Matthew P. Fraser; Kalyan Lakshmanan

2000-09-22T23:59:59.000Z

31

Global uniqueness for a coefficient inverse problem for the non-stationary transport equation via Carleman estimate  

E-Print Network [OSTI]

is used to model a variety of processes of particle transport, such as neutron diffusion, scattering of light in the atmosphere, propagation of rays in scattering media, etc. (see, e.g., the book of Case of determining of the absorption coefficient, angular density of sources or scattering indicatrix. from an extra

32

Experimental characterization of an Ion Transport Membrane (ITM) reactor for methane oxyfuel combustion  

E-Print Network [OSTI]

Ion Transport Membranes (ITM) which conduct both electrons and oxygen ions have been investigated experimentally for oxygen separation and fuel (mostly methane) conversion purposes over the last three decades. The fuel ...

Apo, Daniel Jolomi

2012-01-01T23:59:59.000Z

33

Combustion regimes of particle-laden gaseous flames: influences of radiation, molecular transports, kinetic-quenching, stoichiometry  

Science Journals Connector (OSTI)

We study flat flames propagating steadily in a reactive gaseous premixture which is seeded with an inert solid suspension. Our main assumptions are: (i) the two-reactant, one-step overall reaction we choose as the combustion process has a rate which vanishes at and below a prescribed temperature (Tc) and resumes the Arrhenius form at higher temperatures; (ii) both phases are considered as continua and have the same local speed and temperature; (iii) radiation among the particles follows the Eddington approximation specialized to a grey medium and the attenuation length markedly exceeds the conduction - convection length in the gas; (iv) the activation energy is large. The first regimes we consider comprise a thin flame front (dominated by molecular transports, convection and chemistry) embedded in much thicker radiation - convection zones. Jump conditions across the former are derived analytically and then used as targets in a shooting method to analyse the thickest zones and compute the burning speed (U). Such regimes only exist for equivalence ratios () above a load-dependent critical value which corresponds to a turning point of the U() curve. This turning point is due to radiative heat losses from the thin flame front to the cooler adjacent zones, which lead to extinction. Over restricted, well defined ranges of composition other regimes may also exist, which have monotonic temperature profiles culminating slightly above Tc. When they are too thick to be affected by molecular transports and are thus similar to coal-dust -air flames, their structure, domain of existence and speed are investigated analytically and numerically. The corresponding U() curve exhibits an upper limit equivalence ratio * characterized by an end-point, beyond which such regimes cannot exist. The influence of molecular diffusion is then accounted for and shown to modify the results only slightly.

Rodolphe Blouquin; Guy Joulin; Younès Merhari

1997-01-01T23:59:59.000Z

34

A computational model for coal transport and combustion. Final technical report  

SciTech Connect (OSTI)

In this project, a comprehensive theoretical, computational and experimental study directed toward providing a fundamental understanding of particulate flows as applied to coal transport is performed. Thermodynamically admissible constitutive expressions for the phasic stress tensors, heat and fluctuation energy flux vectors for turbulent multiphase flows were derived. The material parameters of the model were evaluated from the limiting conditions of rapid flows of dry spherical granular particles, and single-phase turbulent fluid flows. The case of simple shear flows of glass beads-water mixtures was studied. The model was extended to cover chemically active gas-solid flows. A thermodynamically consistent model for rapid flows of granular materials in a rotating frame of reference, along with a transport equation for the granular kinetic stress tensor was developed. The model parameters for the special case of spherical nearly elastic particles were evaluated. The results for the granular stresses and the normal stress differences were compared with the available simulation data and good agreement was observed. Effects of frictional loss of energy on rapid granular shear flows were studied. The previously developed kinetic based model was used and the mean velocity, the fluctuation kinetic energy and the solid volume fraction profiles were evaluated under a variety of conditions and different friction coefficients. A computational model for analyzing rapid granular in complex geometries was developed. The discrete element scheme was used and the granular flow down a chute was analyzed. The results were compared with the available experimental data, the model predictions, and the existing simulation results, and good agreements were observed. The model was used to analyze granular flows in a duct with an obstructing block. The effect of boundary condition was also included and the granular gravity flow was analyzed in details.

Ahmadi, G.

1995-03-01T23:59:59.000Z

35

2011 2nd Annual CEFRC Conference - Combustion Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemistry and diagnostics (HansenYang) Chemical kinetics and transport of combustion processes (Wang) H2O number density measurements in an RCM and plasma combustion using...

36

DOE Hydrogen Analysis Repository: Potential for Stationary Fuel Cells to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Potential for Stationary Fuel Cells to Augment Hydrogen Availability for Hydrogen Vehicles Project Summary Full Title: Analyzing the Potential for Stationary Fuel Cells to Augment Hydrogen Availability in the Transition to Hydrogen Vehicles Project ID: 281 Principal Investigator: David Greene Brief Description: This analysis was focused on the role that combined heat and hydrogen power (CHHP) could play in increasing hydrogen refueling availability during the transition to hydrogen vehicles. Keywords: Stationary fuel cell; hydrogen; plug-in hybrid electric vehicle; hydrogen fuel cell vehicle; combined heat, hydrogen and power; internal combustion engine Performer Principal Investigator: David Greene Organization: Oak Ridge National Laboratory (ORNL)

37

DOE/BES Workshop on Clean and Efficient Combustion of 21st Century...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOEBES Workshop on Clean and Efficient Combustion of 21st Century Transportation Fuels DOEBES Workshop on Clean and Efficient Combustion of 21st Century Transportation Fuels...

38

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

39

Development of a Raman spectroscopy technique to detect alternate transportation fuel hydrocarbon intermediates in complex combustion environments.  

SciTech Connect (OSTI)

Spontaneous Raman spectra for important hydrocarbon fuels and combustion intermediates were recorded over a range of low-to-moderate flame temperatures using the multiscalar measurement facility located at Sandia/CA. Recorded spectra were extrapolated to higher flame temperatures and then converted into empirical spectral libraries that can readily be incorporated into existing post-processing analysis models that account for crosstalk from overlapping hydrocarbon channel signal. Performance testing of the developed libraries and reduction methods was conducted through an examination of results from well-characterized laminar reference flames, and was found to provide good agreement. The diagnostic development allows for temporally and spatially resolved flame measurements of speciated hydrocarbon concentrations whose parent is more chemically complex than methane. Such data are needed to validate increasingly complex flame simulations.

Ekoto, Isaac W.; Barlow, Robert S.

2012-12-01T23:59:59.000Z

40

Optimization of Stationary Concentrators  

Science Journals Connector (OSTI)

In this chapter, the main characteristics of stationary nonimaging solar concentrators are optimized in respect of the latitude of their installation and the direct fraction of solar radiation incident on the ...

Dr. Ralf Leutz; Dr. Akio Suzuki

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advanced Combustion  

SciTech Connect (OSTI)

Topics covered in this presentation include: the continued importance of coal; related materials challenges; combining oxy-combustion & A-USC steam; and casting large superalloy turbine components.

Holcomb, Gordon R. [NETL

2013-03-05T23:59:59.000Z

42

Trends in stationary energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trends in stationary energy Trends in stationary energy Colin McCormick Senior Advisor for R&D Office of the Under Secretary US Department of Energy Building Technologies Office Peer Review 2013 April 2013 2 Under Secretary of Energy * Oversee the applied energy programs * Efficiency & Renewables * Electric grid * Fossil energy * Nuclear energy * Indian energy * Support interactions with Office of Science, ARPA-E * Support cross-cutting topics in energy systems * Energy systems interaction * Water-energy nexus * Bulk energy storage * Energy finance * International Lab engagement * Quadrennial Technology Review (QTR) 3 2013: Already a busy year for energy 4 Some notable trends in stationary energy The water-energy nexus The rise of natural gas Global trends New models for the grid

43

Trends in stationary energy  

Broader source: Energy.gov (indexed) [DOE]

Trends in stationary energy Trends in stationary energy Colin McCormick Senior Advisor for R&D Office of the Under Secretary US Department of Energy Building Technologies Office Peer Review 2013 April 2013 2 Under Secretary of Energy * Oversee the applied energy programs * Efficiency & Renewables * Electric grid * Fossil energy * Nuclear energy * Indian energy * Support interactions with Office of Science, ARPA-E * Support cross-cutting topics in energy systems * Energy systems interaction * Water-energy nexus * Bulk energy storage * Energy finance * International Lab engagement * Quadrennial Technology Review (QTR) 3 2013: Already a busy year for energy 4 Some notable trends in stationary energy The water-energy nexus The rise of natural gas Global trends New models for the grid

44

Advanced Combustion Systems Project Information | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FC26-07NT43088 Recovery Act: Oxy-combustion: Oxygen Transport Membrane Development Praxair, Inc. Completed Projects FE0009686 High Efficiency Molten-Bed Oxy-Coal Combustion...

45

Combustion Noise  

E-Print Network [OSTI]

stabilize or destabilize the modes of the system, depending on the configuration of the combustor and the form of the coupling [26, 30]. In contrast to combustion instability, in broad-band combustion noise the unsteadiness in the rate of combustion... from th s in a mod on tempera , entropic a de of indir t frequenci r, open que sical theory assical expe s [14] who it by a spa d a transie le gases. A e bubble si idered as a flame was ent was o ng and dif depended udy it wa ion, ? ?,p r t? : (a...

Dowling, Ann P.; Mahmoudi, Yasser

2014-01-01T23:59:59.000Z

46

Combustion Engine  

Broader source: Energy.gov [DOE]

Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

47

Transport energy consumption in mountainous roads. A comparative case study for internal combustion engines and electric vehicles in Andorra  

Science Journals Connector (OSTI)

Abstract This paper analyses transport energy consumption of conventional and electric vehicles in mountainous roads. A standard round trip in Andorra has been modelled in order to characterise vehicle dynamics in hilly regions. Two conventional diesel vehicles and their electric-equivalent models have been simulated and their performances have been compared. Six scenarios have been simulated to study the effects of factors such as orography, traffic congestion and driving style. The European fuel consumption and emissions test and Artemis urban driving cycles, representative of European driving cycles, have also been included in the comparative analysis. The results show that road grade has a major impact on fuel economy, although it affects consumption in different levels depending on the technology analysed. Electric vehicles are less affected by this factor as opposed to conventional vehicles, increasing the potential energy savings in a hypothetical electrification of the car fleet. However, electric vehicle range in mountainous terrains is lower compared to that estimated by manufacturers, a fact that could adversely affect a massive adoption of electric cars in the short term.

Oriol Travesset-Baro; Marti Rosas-Casals; Eric Jover

2015-01-01T23:59:59.000Z

48

Pulse combustion  

Science Journals Connector (OSTI)

Pulse combustion has been gaining increased interest because of its potential for higher combustion efficiency greater combustion intensity and lower pollutant emissions. Unsteady combustion causes increased mass momentum and heat transfer. As a result reactants mix faster heat release is accelerated and heat transfer is enhanced in unsteady reacting flows. Many of these phenomena were discovered long ago by engineers looking for the cause of often detrimental combustion instabilities. Much more recently some of these enhanced transfer properties have been used to design efficient and compact pulse combustors. Although to date successful commercialization on a large scale has been limited to home heating units (e.g. the Lenox Pulse Furnace) highly efficient pulse spray dryers (Bepex Unison Dryer) pulse calciners and pulse waste incinerators have been designed. Pulsations have also been applied to carbon black fluidized bed gasifiers. Not all these designs will become economically viable. However the development of tunable pulse combustors that can be acoustically matched to the changing resonance frequency of these pulse processes have made many of them more promising. Recent findings that pulsation can enhance burning even in turbulent flows lend further encouragement to the developers of novel pulse combustion devices.

Jechiel I. Jagoda

2000-01-01T23:59:59.000Z

49

An experimental and numerical investigation of premixed syngas combustion dynamics in mesoscale channels with controlled wall temperature profiles  

Science Journals Connector (OSTI)

Abstract The dynamics in H2/CO/O2/N2 premixed combustion was investigated experimentally and numerically in a 7-mm height mesoscale channel at atmospheric pressure, fuel–lean equivalence ratios 0.25–0.42, volumetric CO:H2 ratios 1:1 to 20:1, and wall temperatures 550–1320 K. Experiments were performed in an optically-accessible channel-flow reactor and involved high-speed (up to 1 kHz) planar laser induced fluorescence (LIF) of the OH radical and thermocouple measurements of the upper and lower channel wall temperatures. Simulations were carried out with a transient 2-D code, which included an elementary syngas reaction mechanism and detailed species transport. Demarcation of the experimentally-observed parameter space separating stationary and oscillatory combustion modes indicated that the former were favored at the higher wall temperatures and higher CO:H2 volumetric ratios, while the latter predominately appeared at the lower wall temperatures and lower CO:H2 ratios. The numerical model reproduced very well all stationary combustion modes, which included V-shaped and asymmetric (upper or lower) modes, in terms of flame shapes and flame anchoring positions. Simulations of the oscillatory flames, which appeared in the form of ignition/extinction events of varying spatial extents, were very sensitive to the specific boundary conditions and reproduced qualitatively the flame topology, the ignition sequence (including the periodic reversion from upper-asymmetric to lower-asymmetric flame propagation), and the range of measured oscillation frequencies. Predicted emissions in the stationary modes ranged from 25 to 94 ppm-mass for CO and from 0.1 to 0.3 ppm-mass for H2, while in the oscillatory modes incomplete combustion of both CO and H2 was attested during their oscillation period.

Andrea Brambilla; Marco Schultze; Christos E. Frouzakis; John Mantzaras; Rolf Bombach; Konstantinos Boulouchos

2014-01-01T23:59:59.000Z

50

COMBUSTION RESEARCH - FY-1979  

E-Print Network [OSTI]

deposition due to the heat of combustion. The problem wedimensionless heat of combustion, QpYoxoolhw t transferredfraction of specie i heat of combustion per gram of fuel

,

2012-01-01T23:59:59.000Z

51

Small Business Stationary Source Technical and Environmental Compliance  

Broader source: Energy.gov (indexed) [DOE]

Stationary Source Technical and Environmental Stationary Source Technical and Environmental Compliance Assistance Program (Mississippi) Small Business Stationary Source Technical and Environmental Compliance Assistance Program (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State

52

Advanced Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

53

2010 1st Annual CEFRC Conference - Combustion Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Diagnostics Nils Hansen, Sandia National Laboratories Chemical Kinetics of Combustion Processes Hai Wang, University of Southern California Chemistry and Transport Flame and...

54

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

55

Turbulent combustion  

SciTech Connect (OSTI)

Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

56

Combustion & Health  

E-Print Network [OSTI]

FFCOMBUSTION & HEALTH Winifred J. Hamilton, PhD, SM Clear Air Through Energy Efficiency (CATEE) Galveston, TX October 9?11, 2012 FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? Biggest threat to world ecosystems (and to human health...) ? Combustion of fossil fuels for ? Electricity ? Industrial processes ? Vehicle propulsion ? Cooking and heat ? Other ? Munitions ? Fireworks ? Light ? Cigarettes, hookahs? FFCOMBUSTION & HEALTH FFCOMBUSTION: THE THREAT ? SCALE (think health...

Hamilton, W.

2012-01-01T23:59:59.000Z

57

Coal Combustion By-Products (Maryland)  

Broader source: Energy.gov [DOE]

The Department of the Environment is responsible for regulating fugitive air emissions from the transportation of coal combustion by-products and the permissible beneficial uses of these by...

58

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

59

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes 2012 DOE Hydrogen and Fuel...

60

Light Duty Combustion Research: Advanced Light-Duty Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments 2009 DOE Hydrogen Program and...

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Combustion Control  

E-Print Network [OSTI]

using a liquid fuel. The air and fuel valve designs are vastly different, with different flow characteristics. These factors make the initial adjustment of the system difficult, and proper maintenance of ratio accuracy unlikely. Linked valves... casing of the fuel control regulator with the combustion air piping. The upstream pressure on the burner air orifice is applied to the main diaphragm of the pressure balanced regulator. Assuming sufficient gas pressure at the regulator inlet...

Riccardi, R. C.

1984-01-01T23:59:59.000Z

62

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburg’s “eagle-car” changed society. On the one hand, motor vehicle transportation is an integral thread of society’s fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

63

Stationary Fuel Cell Evaluation (Presentation)  

SciTech Connect (OSTI)

This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-05-01T23:59:59.000Z

64

Combustion chemistry  

SciTech Connect (OSTI)

This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

65

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ace15daw.pdf More Documents & Publications Stretch Efficiency for Combustion Engines: Exploiting New Combustion Regimes Stretch Efficiency for Combustion Engines:...

66

Transportation | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation Analysis Vehicle Systems Energy Storage Propulsion Materials Lightweight Materials Bioenergy Fuel Cell Technologies Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Transportation SHARE Transportation Research ORNL researcher Jim Szybist uses a variable valve-train engine to evaluate different types of fuels, including ethanol blends, and their effects on the combustion process in an internal combustion engine. Oak Ridge National Laboratory brings together science and technology experts from across scientific disciplines to partner with government and industry in addressing transportation challenges. Research objectives are

67

Dual fuel engine control systems for transportation applications  

SciTech Connect (OSTI)

Microprocessor control systems have been developed for dual fuel diesel engines intended for transportation applications. Control system requirements for transportation engines are more demanding than for stationary engines, as the system must be able to cope with variable speed and load. Detailed fuel maps were determined for both normally aspirated and turbocharged diesel engines based on the criterion that the engine did not operate in the regimes where knock or incomplete combustion occurred. The control system was developed so that the engine would follow the detailed fuel map. The input variables to the control system are engine speed and load. Based on this, the system then controls the amount of natural gas and diesel fuel supplied to the engine. The performance of the system is briefly summarized.

Gettel, L.E.; Perry, G.C.; Boisvert, J.; O'Sullivan, P.J.

1987-10-01T23:59:59.000Z

68

Transforming California's Freight Transport System  

E-Print Network [OSTI]

Transforming California's Freight Transport System Policy Forum on the Role of Freight Transport Standard #12;2050 Vision- Key Conceptual Outcomes Technology Transformation Early Action Cleaner Combustion Multiple Strategies Federal Action Efficiency Gains Energy Transformation 9 #12;Further reduce localized

California at Davis, University of

69

Chemical Looping Combustion  

Science Journals Connector (OSTI)

Chemical looping combustion (CLC) and looping cycles in general represent an important new ... technologies, which can be deployed for direct combustion as well as be used in gasification...2...stream suitable fo...

Edward John (Ben) Anthony

2012-01-01T23:59:59.000Z

70

Chemistry of Combustion Processes  

Science Journals Connector (OSTI)

The quantitative description and understanding of combustion processes needs extreme computational efforts and has at ... treatment can give a lot of insight into combustion processes, as demonstrated in the foll...

J. Warnatz

2000-01-01T23:59:59.000Z

71

Overview of Biomass Combustion  

Science Journals Connector (OSTI)

The main combustion systems for biomass fuels are presented and the respective requirements ... etc.) in industrial boilers or for co-combustion in power plants. For fuels with high ... moving grate firings are u...

T. Nussbaumer; J. E. Hustad

1997-01-01T23:59:59.000Z

72

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

73

Vehicle Technologies Office: 2011 Advanced Combustion R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

Annual report on the work of the the Advanced Combustion Engine R&D subprogram that focuses on developing advanced ICE technologies for all highway transportation vehicles.

74

Cost analysis of NOx control alternatives for stationary gas turbines  

SciTech Connect (OSTI)

The use of stationary gas turbines for power generation has been growing rapidly with continuing trends predicted well into the future. Factors that are contributing to this growth include advances in turbine technology, operating and siting flexibility and low capital cost. Restructuring of the electric utility industry will provide new opportunities for on-site generation. In a competitive market, it maybe more cost effective to install small distributed generation units (like gas turbines) within the grid rather than constructing large power plants in remote locations with extensive transmission and distribution systems. For the customer, on-site generation will provide added reliability and leverage over the cost of purchased power One of the key issues that is addressed in virtually every gas turbine application is emissions, particularly NO{sub x} emissions. Decades of research and development have significantly reduced the NO{sub x} levels emitted from gas turbines from uncontrolled levels. Emission control technologies are continuing to evolve with older technologies being gradually phased-out while new technologies are being developed and commercialized. The objective of this study is to determine and compare the cost of NO{sub x} control technologies for three size ranges of stationary gas turbines: 5 MW, 25 MW and 150 MW. The purpose of the comparison is to evaluate the cost effectiveness and impact of each control technology as a function of turbine size. The NO{sub x} control technologies evaluated in this study include: Lean premix combustion, also known as dry low NO{sub x} (DLN) combustion; Catalytic combustion; Water/steam injection; Selective catalytic reduction (SCR)--low temperature, conventional, high temperature; and SCONO{sub x}{trademark}.

Bill Major

1999-11-05T23:59:59.000Z

75

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2001-04-01T23:59:59.000Z

76

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

77

Distributed/Stationary Fuel Cell Systems | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DistributedStationary Fuel Cell Systems DistributedStationary Fuel Cell Systems Photo of stationary fuel cell The Department of Energy (DOE) is developing high-efficiency fuel...

78

Table IV: Technical Targets for Membranes: Stationary  

Broader source: Energy.gov [DOE]

"Technical targets for fuel cell membranes in stationary applications defined by the High Temperature Working Group (February 2003). "

79

Trends in stationary energy | Department of Energy  

Energy Savers [EERE]

Stationary Energy Lunch Presentation for the 2013 Building Technologies Office's Program Peer Review stationaryenergymccormick040213.pdf More Documents & Publications The...

80

International Stationary Fuel Cell Demonstration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STATIONARY FUEL CELL DEMONSTRATION STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to differ materially from those projected. The forward-looking statements speak only as of the date of this presentation. The company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in the company's expectations or any change in

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Pre-Combustion Carbon Capture Research | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-Combustion Carbon Capture Research Pre-combustion capture refers to removing CO2 from fossil fuels before combustion is completed. For example, in gasification processes a feedstock (such as coal) is partially oxidized in steam and oxygen/air under high temperature and pressure to form synthesis gas. This synthesis gas, or syngas, is a mixture of hydrogen, carbon monoxide, CO2, and smaller amounts of other gaseous components, such as methane. The syngas can then undergo the water-gas shift reaction to convert CO and water (H2O) to H2 and CO2, producing a H2 and CO2-rich gas mixture. The concentration of CO2 in this mixture can range from 15-50%. The CO2 can then be captured and separated, transported, and ultimately sequestered, and the H2-rich fuel combusted.

82

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

83

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi; Hisashi (Putnam Valley, NY), Bool, III; Lawrence E. (Aurora, NY)

2007-06-05T23:59:59.000Z

84

Low NOx combustion  

SciTech Connect (OSTI)

Combustion of hydrocarbon liquids and solids is achieved with less formation of NOx by feeding a small amount of oxygen into the fuel stream.

Kobayashi, Hisashi (Putnam Valley, NY); Bool, III, Lawrence E. (Aurora, NY)

2008-10-21T23:59:59.000Z

85

Introduction to Biomass Combustion  

Science Journals Connector (OSTI)

Biomass was the major fuel in the world ... hundreds when coal then became dominant. The combustion of solid biofuels as a primary energy...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

86

The Combustion of Solid Biomass  

Science Journals Connector (OSTI)

The combustion of solid biomass is covered in this chapter. This covers the general mechanism of combustion, moisture evaporation, devolatilisation, the combustion of the volatiles gases and tars and finally char...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

87

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

88

Fifteenth combustion research conference  

SciTech Connect (OSTI)

The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

NONE

1993-06-01T23:59:59.000Z

89

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the second quarter July--September 2000 in the following task areas: Task 1-Oxygen Enhanced Combustion, Task 2-Oxygen Transport Membranes and Task 4-Program Management. The program is proceeding in accordance with the objectives for the first year. OTM tube characterization is well underway, the design and assembly of the high pressure permeation test facility is complete and the facility will be in full operation during the next quarter. Combustion testing has been initiated at both the University of Arizona and Praxair. Testing at the University of Arizona has experienced some delays; steps have been take to get the test work back on schedule. Completion of the first phase of the testing is expected in next quarter. Combustion modeling has been started at both REI and Praxair, preliminary results are expected in the next quarter.

Lawrence E. Bool; Jack C. Chen; David R. Thompson

2000-10-01T23:59:59.000Z

90

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the second year. The first round of pilot scale testing with 3 bituminous coals was completed at the University of Utah. Full-scale testing equipment is in place and experiments are underway. Coal combustion lab-scale testing was completed at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. Combustion modeling activities continued with pilot-scale combustion test furnace simulations. 75% of target oxygen flux was demonstrated with small PSO1 tube in Praxair's single tube high-pressure test facility. The production of oxygen with a purity of better than 99.999% was demonstrated. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host sites have been identified.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-04-01T23:59:59.000Z

91

Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and  

E-Print Network [OSTI]

combustion, biomass burning and soil emissions Lyatt Jaegle´ ,a Linda Steinberger,a Randall V. Martinbc anthropogenic emissions, mostly resulting from fossil fuel combustion and biomass burning, are superimposed-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel

Lyatt Jaeglé

92

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the ninth quarter April-June 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Full-scale testing using the Industrial Boiler Simulation Facility (ISBF) at Alstom Power was completed. The pilot scale experiments to evaluate the effect of air preheat and transport air stoichiometric ratio (SR) on NOx emissions were conducted at the University of Utah. Combustion modeling activities continued with full-scale combustion test furnace simulations. An OTM element was tested in Praxair's single tube high-pressure test facility and two thermal cycles were completed. PSO1d elements of new dimension were tested resulting in a lower flux than previous PSO1d elements of different dimensions, however, no element deformation was observed. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host beta sites have been identified and proposals submitted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-08-01T23:59:59.000Z

93

Longer life for glyco-based stationary engine coolants  

SciTech Connect (OSTI)

Large, stationary diesel engines used to compress natural gas that is to be transported down pipelines generate a great deal of heat. Unless this heat is dissipated efficiently, it will eventually cause an expensive breakdown. Whether the coolant uses ethylene glycol or propylene glycol, the two major causes of glycol degradation are heat and oxidation. The paper discusses inhibitors that enhance coolant service life and presents a comprehensive list of do`s and don`ts for users to gain a 20-year coolant life.

Hohlfeld, R. [Dow Chemical Co., Houston, TX (United States)

1996-07-01T23:59:59.000Z

94

NETL: NATCARB - CO2 Stationary Sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stationary Sources Stationary Sources NATCARB CO2 Stationary Sources CO2 Stationary Source Emission Estimation Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) employed carbon dioxide (CO2) emissions estimate methodologies that are based on the most readily available representative data for that particular industry type within the respective partnership area. Carbon dioxide emissions data provided by databases (for example, eGRID, IEA GHG, or NATCARB) were the first choice for all of the RCSPs, both for identifying major CO2 stationary sources and for providing reliable emission estimations. Databases are considered to contain reliable and accurate data obtained

95

Coal combustion products (CCPs  

Broader source: Energy.gov (indexed) [DOE]

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

96

Thermal ignition combustion system  

SciTech Connect (OSTI)

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

97

Sandia Combustion Research: Technical review  

SciTech Connect (OSTI)

This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

NONE

1995-07-01T23:59:59.000Z

98

Packed Bed Combustion: An Overview  

E-Print Network [OSTI]

;Packed Bed Combustion - University of Ottawa - CICS 2005 fuel fuel feed air products air fuel Retort) products Underfeed Combustion fuel feed air #12;Packed Bed Combustion - University of Ottawa - CICS 2005 required #12;Packed Bed Combustion - University of Ottawa - CICS 2005 Overfeed Bed fuel motion products air

Hallett, William L.H.

99

Engine Combustion & Efficiency - FEERC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Combustion & Efficiency Engine Combustion & Efficiency ORNL currently and historically supports the U.S. DOE on multi-cylinder and vehicle applications of diesel combustion, lean burn gasoline combustion, and low temperature combustion processes, and performs principal research on efficiency enabling technologies including emission controls, thermal energy recovery, and bio-renewable fuels. Research areas span from fundamental concepts to engine/vehicle integration and demonstration with a particular emphasis on the following areas: Thermodynamics for identifying and characterizing efficiency opportunities for engine-systems as well as the development of non-conventional combustion concepts for reducing fundamental combustion losses. Nonlinear sciences for improving the physical understanding and

100

Definition: Combustion | Open Energy Information  

Open Energy Info (EERE)

Combustion Combustion Jump to: navigation, search Dictionary.png Combustion The process of burning; chemical oxidation accompanied by the generation of light and heat.[1][2] View on Wikipedia Wikipedia Definition "Burning" redirects here. For combustion without external ignition, see spontaneous combustion. For the vehicle engine, see internal combustion engine. For other uses, see Burning (disambiguation) and Combustion (disambiguation). Error creating thumbnail: Unable to create destination directory This article's introduction section may not adequately summarize its contents. To comply with Wikipedia's lead section guidelines, please consider modifying the lead to provide an accessible overview of the article's key points in such a way that it can stand on its own as a

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Spontaneous Human Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spontaneous Human Combustion Spontaneous Human Combustion Name: S. Phillips. Age: N/A Location: N/A Country: N/A Date: N/A Question: One of our 8th grade students has tried to find information in our library about spontaneous human combustion, but to no avail. Could you tell us where we might locate a simple reference, or provide some in information about this subject for him. Replies: Sorry, but this is definitely "fringe science"...try asking in bookstores. I seem to recall one of those "believe it or not" type of TV shows did an episode on spontaneous human combustion a few years ago in which they reported on some British scientists who investigated this purported phenomenon. Remember that people (back in the Dark Ages, and before) used to believe in "spontaneous generation" of certain plants and animals because they were not aware of the reproduction methods used by those plants and animals.

102

Advanced diesel combustion  

Science Journals Connector (OSTI)

Future emission norms will further reduce the vehicle emissions of diesel engines. To meet the goal of achieving these stringent limits while maintaining attractive attributes of marketability, the combustion ...

Dirk Adolph; Hartwig Busch; Stefan Pischinger; Andreas Kolbeck…

2008-01-01T23:59:59.000Z

103

Advanced Combustion Technologies  

Broader source: Energy.gov [DOE]

The workhorse of America's electric power sector is the coal-fired power plant. Today, coal combustion plants account for more than half of the Nation's electric power generation. Largely because...

104

Catalytic Combustion Processes  

Science Journals Connector (OSTI)

This work presents experimental data on the effect of catalytic additives on the combustion characteristics of ammonium nitrate and perchlorate and the explosives of different classes. Burning rates are determ...

A. P. Glaskova

1991-01-01T23:59:59.000Z

105

Enhancing Transportation Energy Security through Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The Pathway to Energy Security...

106

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research...

107

Sandia Combustion Research Program  

SciTech Connect (OSTI)

During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

1988-01-01T23:59:59.000Z

108

Advanced Materials and Devices for Stationary Electrical Energy...  

Broader source: Energy.gov (indexed) [DOE]

Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to...

109

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...  

Broader source: Energy.gov (indexed) [DOE]

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop...

110

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the...

111

Procuring Fuel Cells for Stationary Power: A Guide for Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This...

112

Procuring Fuel Cells for Stationary Power: A Guide for Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation...

113

Combustion Model for Engine Concept Development | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Model for Engine Concept Development Presentation shows how 1-cylinder testing, 3D combustion CFD and 1D gas exchange with an advanced combustion model are used...

114

Assessment of combustion submodels for turbulent nonpremixed hydrocarbon flames  

Science Journals Connector (OSTI)

Data bases generated by direct numerical simulation (DNS) of nonpremixed combustion are used to evaluate stationary laminar flamelet and conditional moment closure (CMC) models of turbulent combustion. The chemical kinetics used for the simulation and modeling is a systematically reduced two-step mechanism for hydrocarbon combustion. Heat release effects on the chemistry are included but a constant density assumption is used. Three different Reynolds numbers and a range of Damköhler numbers are considered. Two different versions of stationary laminar flamelet models are considered. In one version, the instantaneous turbulent scalar dissipation rate at stoichiometry is used to match the laminar flamelets, whereas in another version the conditional average of scalar dissipation at stoichiometry is used. In the CMC calculations, turbulent mixing is modelled by a presumed beta function pdf with the mixture fraction variance being the only input quantity and this is obtained from the DNS. CMC predictions of major and minor species are excellent and are always within 6% despite the presence of some local extinction. Both versions of flamelet models predict the major species with much less accuracy than this. The minor species predictions, and hence the reaction rate predictions, are even less accurate.

N. Swaminathan; R.W. Bilger

1999-01-01T23:59:59.000Z

115

Virtual stationary timed automata for mobile networks  

E-Print Network [OSTI]

In this thesis, we formally define a programming abstraction for mobile networks called the Virtual Stationary Automata programming layer, consisting of real mobile clients, virtual timed I/O automata called virtual ...

Nolte, Tina Ann, 1979-

2009-01-01T23:59:59.000Z

116

Air Permitting for Stationary Sources (New Hampshire)  

Broader source: Energy.gov [DOE]

The permitting system implements the permitting requirements of RSA 125-C and 125-I to regulate the operation and modification of new and existing stationary sources, area sources, and devices to...

117

Stationary phase deposition based on onium salts  

DOE Patents [OSTI]

Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

Wheeler, David R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Dirk, Shawn M. (Albuquerque, NM); Trudell, Daniel E. (Albuquerque, NM)

2008-01-01T23:59:59.000Z

118

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents [OSTI]

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

2013-04-02T23:59:59.000Z

119

Combustible structural composites and methods of forming combustible structural composites  

DOE Patents [OSTI]

Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

Daniels, Michael A. (Idaho Falls, ID); Heaps, Ronald J. (Idaho Falls, ID); Steffler, Eric D (Idaho Falls, ID); Swank, William D. (Idaho Falls, ID)

2011-08-30T23:59:59.000Z

120

Combustion Safety Overview  

Broader source: Energy.gov (indexed) [DOE]

March 1-2, 2012 March 1-2, 2012 Building America Stakeholders Meeting Austin, Texas Combustion Safety in the Codes Larry Brand Gas Technology Institute Acknowledgement to Paul Cabot - American Gas Association 2 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Widely adopted fuel gas codes: * National Fuel Gas Code - ANSI Z223.1/NFPA 54, published by AGA and NFPA (NFGC) * International Fuel Gas Code - published by the International Code Council (IFGC) * Uniform Plumbing Code published by IAPMO (UPC) Safety codes become requirements when adopted by the Authority Having Jurisdiction (governments or fire safety authorities) 3 | Building America Program www.buildingamerica.gov Combustion Safety in the Codes Formal Relationships Between these codes: - The IFGC extracts many safety

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A MODEL FOR POROUS-MEDIUM COMBUSTION  

Science Journals Connector (OSTI)

......these applied in coal combustion appears in...understanding of the chemistry of combustion...GLASSMAN, Combustion (Academic Press...ESSENHIGH, In Chemistry of Coal Utilization...POROUS-MEDIUM COMBUSTION 177 8. D. A......

J. NORBURY; A. M. STUART

1989-02-01T23:59:59.000Z

122

Transportation and Stationary Power Integration Workshop: A California...  

Broader source: Energy.gov (indexed) [DOE]

October 27th 3 of 18 Mike Tollstrup Horizontal lines indicate 2007 CARB DG Standards * Combined cycle turbine placed for reference only. CO Standard NOx Standard VOC Standard...

123

Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary  

Broader source: Energy.gov [DOE]

Technical targets for CCMs in stationary applications defined by the High Temperature Working Group (February 2003).

124

Vehicle Technologies Office: Combustion Engine Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Engine Combustion Engine Research to someone by E-mail Share Vehicle Technologies Office: Combustion Engine Research on Facebook Tweet about Vehicle Technologies Office: Combustion Engine Research on Twitter Bookmark Vehicle Technologies Office: Combustion Engine Research on Google Bookmark Vehicle Technologies Office: Combustion Engine Research on Delicious Rank Vehicle Technologies Office: Combustion Engine Research on Digg Find More places to share Vehicle Technologies Office: Combustion Engine Research on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Combustion Engine Research

125

Vehicle Technologies Office: Advanced Combustion Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Combustion Advanced Combustion Engines to someone by E-mail Share Vehicle Technologies Office: Advanced Combustion Engines on Facebook Tweet about Vehicle Technologies Office: Advanced Combustion Engines on Twitter Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Google Bookmark Vehicle Technologies Office: Advanced Combustion Engines on Delicious Rank Vehicle Technologies Office: Advanced Combustion Engines on Digg Find More places to share Vehicle Technologies Office: Advanced Combustion Engines on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Combustion Engines Emission Control Waste Heat Recovery Fuels & Lubricants Materials Technologies Advanced Combustion Engines

126

Thermal ignition combustion system  

DOE Patents [OSTI]

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

127

Studies in combustion dynamics  

SciTech Connect (OSTI)

The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

128

Thermal ignition combustion system  

SciTech Connect (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

129

Nanoparticle Emissions from Internal Combustion Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanoparticle Emissions from Internal Combustion Engines Nanoparticle Emissions from Internal Combustion Engines 2004 Diesel Engine Emissions Reduction (DEER) Conference...

130

Improving alternative fuel utilization: detailed kinetic combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

131

Reversed flow fluidized-bed combustion apparatus  

DOE Patents [OSTI]

The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Wilson, John S. (Morgantown, WV)

1984-01-01T23:59:59.000Z

132

Aviation Combustion Toxicology: An Overview  

Science Journals Connector (OSTI)

......in a radiant heat furnace. Rats...the produced combustion products in...in both the combustion tube and radiant heat systems proved...literature data for CO2, low...acrolein, and heat expo- sures...primary toxic combustion gases and are...structures. The hydrocarbon constituents......

Arvind K. Chaturvedi

2010-01-01T23:59:59.000Z

133

Four Lectures on Turbulent Combustion  

E-Print Network [OSTI]

, combustion in a Diesel engine or in furnaces essentially taakes place under non-premixed conditions. In the Diesel engine a liquid fuel spray is injected into hot compressed air, the fuel evaporates and mixes combustion are in general subdivided into two classes: premixed or non-premixed combustion. For example

Peters, Norbert

134

Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Tri-Generation System Case Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model Darlene Steward/ Mike Penev National Renewable Energy Laboratory Integrated Stationary Power and Transportation Workshop Phoenix, Arizona October 27, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future 2 Introduction Goal: Develop a cost analysis tool that will be flexible and comprehensive enough to realistically analyze a wide variety of potential combined heat and power/hydrogen production scenarios Approach: Rely on the H2A discounted cash flow methodology to develop a new stationary systems model With the help of industry partners, develop and analyze a range of realistic case studies for tri-generation systems. National Renewable Energy Laboratory Innovation for Our Energy Future

135

Toxic oxide deposits from the combustion of landfill gas and biogas  

Science Journals Connector (OSTI)

Oxide deposits found in combustion systems of landfill gas fired power stations contain relatively high concentrations ... They are selectively transported as part of the landfill gas into the gas-burning devices...

Dietmar Glindemann; Peter Morgenstern…

1996-06-01T23:59:59.000Z

136

Numerical modeling of piston secondary motion and skirt lubrication in internal combustion engines  

E-Print Network [OSTI]

Internal combustion engines dominate transportation of people and goods, contributing significantly to air pollution, and requiring large amounts of fossil fuels. With increasing public concern about the environment and ...

McClure, Fiona

2007-01-01T23:59:59.000Z

137

FY2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Combustion and Emission Control for Advanced CIDI Engines Energy Efficiency and Renewable Energy Office of Transportation Technologies Approved by Steven Chalk November 2000 Combustion and Emission Control for Advanced CIDI Engines FY 2000 Progress Report CONTENTS Page iii I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 II. EMISSION CONTROL SUBSYSTEM DEVELOPMENT. . . . . . . . . . . . . . . . . . . . . . . . . . . .9 A. Emission Control Subsystem Evaluation for Light-Duty CIDI Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

138

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

139

NON-STATIONARY CONDITION MONITORING THROUGH EVENT  

E-Print Network [OSTI]

in large diesel engines used for propulsion and power generation. Such operation involves frequent changes the technique for non-stationary condition monitoring of large diesel engines based on acoustical emission that cannot be separated from alarms originating from real faults. MAN B&W Diesel has conducted experiments

140

8, 1084110872, 2008 Non-stationary  

E-Print Network [OSTI]

ACPD 8, 10841­10872, 2008 Non-stationary dispersion on complex terrain J. L. Palau et al. Title on complex terrain under summer conditions J. L. Palau 1 , G. P´erez-Landa 2 , and M. M. Mill´an 1 1 Fundaci ­ Published: 5 June 2008 Correspondence to: J. L. Palau (jlp@confluencia.biz) Published by Copernicus

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Full Counting Statistics of Stationary Particle Beams  

E-Print Network [OSTI]

We present a general scheme for treating particle beams as many particle systems. This includes the full counting statistics and the requirements of Bose/Fermi symmetry. In the stationary limit, i.e., for longer and longer beams, the total particle number diverges, and a description in Fock space is no longer possible. We therefore extend the formalism to include stationary beams. These beams exhibit a well-defined "local" counting statistics, by which we mean the full counting statistics of all clicks falling into any given finite interval. We treat in detail a model of a source, creating particles in a fixed state, which then evolve under the free time evolution, and we determine the resulting stationary beam in the far field. In comparison to the one-particle picture we obtain a correction due to Bose/Fermi statistics, which depends on the emission rate. We also consider plane waves as stationary many particle states, and determine the distribution of intervals between successive clicks in such a beam.

J. Kiukas; A. Ruschhaupt; R. F. Werner

2011-03-07T23:59:59.000Z

142

Test profiles for stationary energy storage applications  

SciTech Connect (OSTI)

Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

1998-09-01T23:59:59.000Z

143

Combustion powered linear actuator  

DOE Patents [OSTI]

The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

Fischer, Gary J. (Albuquerque, NM)

2007-09-04T23:59:59.000Z

144

US DRIVE Advanced Combustion and Emission Control Technical Team Roadmap  

Broader source: Energy.gov [DOE]

The ACEC focuses on advanced engine and aftertreatment technology for three major combustion strategies: (1) Low-Temperature Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion.

145

Assessment of Combustion and Turbulence Models for the Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine Assessment of Combustion and Turbulence Models for the Simulation of Combustion...

146

US DRIVE Advanced Combustion and Emission Control Technical Team...  

Energy Savers [EERE]

for three major combustion strategies: (1) Low-Temperature Combustion, (2) Dilute Gasoline combustion, and (3) Clean Diesel Combustion. acecroadmapjune2013.pdf More Documents...

147

Sustainable Transportation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Transportation Sustainable Transportation Sustainable Transportation Bioenergy Read more Hydrogen and Fuel Cells Read more Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices, EERE advances the development of next-generation technologies to improve plug-in electric and other alternative-fuel vehicles, advanced combustion engine and vehicle efficiency, and produce low-carbon domestic transportation fuels. SUSTAINABLE TRANSPORTATION Vehicles Bioenergy Hydrogen & Fuel Cells Vehicles Bioenergy

148

NETL: Combustion Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abbreviations & Acronyms Abbreviations & Acronyms Reference Shelf Solicitations & Awards Abbreviations & Acronyms The Combustion Technologies Product uses a number of abbreviations and acronyms. This web page gives you a definition of frequently used terms, as follows: 1½-Generation PFBC -- A PFBC plant where the hot (about 1400ºF) PFBC exhaust gases are used as a vitiated air supply for a natural gas combustor supplying high-temperature gas (above 2000ºF) to a combustion turbine expander (synonym for "PFB-NGT"). 1st-Generation PFBC -- Commercial PFBC technology where an unfired low-temperature (below 1650ºF) ruggedized turbine expander expands PFBC exhaust gases (synonym for "PFB-EGT"). 2nd-Generation PFBC (see synonyms: "APFBC," "PFB-CGT") -- Advanced PFBC where a carbonizer (mild gasifier) provides hot (about 1400ºF) coal-derived synthetic fuel gas to a special topping combustor. The carbonizer char is burned in the PFBC, and the PFBC exhaust is used as a hot (about 1400ºF) vitiated air supply for the topping combustor. The syngas and vitiated air are burned in a topping combustor to provide high-temperature gas (above 1700ºF) to a combustion turbine expander.

149

NETL: Combustion Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nebraska Public Power District's Sheldon Station with APFBC Technology Nebraska Public Power District's Sheldon Station with APFBC Technology FBC Repower APFBC AES Greenidge APFBC Dan River FBC, APFBC Four Corners CHIPPS H.F. Lee Products Summary Sheldon Summary APFBC Sheldon GFBCC Sheldon APFBC L.V. Sutton Contents: APFBC Repowering Project Summary Key Features Site Layout Performance Environmental Characteristics Cost Other Combustion Systems Repowering Study Links: A related study is underway that would repower Sheldon Unit 1 and Unit 2 with gasification fluidized-bed combined cycle technology (GFBCC). CLICK HERE to find out more about repowering the Sheldon station with GFBCC instead. APFBC Repowering Project Summary Click on picture to enlarge Advanced circulating pressurized fluidized-bed combustion combined cycle systems (APFBC) are systems with jetting-bed pressurized fluidized-bed (PFB) carbonizer/gasifier and circulating PFBC combustor. The PFB carbonizer and PFBC both operate at elevated pressures (10 to 30 times atmospheric pressure) to provide syngas for operating a gas turbine topping combustor giving high cycle energy efficiency. The remaining char from the PFB carbonizer is burned in the pressurized PFBC. The combustion gas from the PFB also feeds thermal energy to the gas turbine topping combustor. This provides combined cycle plant efficiency on coal by providing the opportunity to generate electricity using both high efficiency gas turbines and steam.

150

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the eleventh quarter, October-December 2002, in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah were aimed at confirming the importance of oxygen injection strategy for different types of burners. CFD modeling at REI was used to better understand the potential for increased corrosion under oxygen enhanced combustion conditions. Data from a full-scale demonstration test in Springfield, MO were analyzed. OTM element development continued with preliminary investigation of an alternative method of fabrication of PSO1d elements. OTM process development continued with long-term testing of a PSO1d element. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. A first commercial proposal has been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-02-01T23:59:59.000Z

151

Stretch Efficiency for Combustion Engines: Exploiting New Combustion...  

Broader source: Energy.gov (indexed) [DOE]

boost. * H 2 enrichment extends lean limit, improves C p C v ratio, lowers cylinder heat loss, assists cold start, lowers combustion irreversibility. IC Engine Work Reformer...

152

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...produce liquid hydrocarbon fuel. In our proposal...production of liquid hydrocarbons. Thus, the goal...sustainable production of hydrocarbon fuel for the transportation...The resulting combustion energy not only provides heat for the endothermic...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

153

Sandia National Laboratories: Diesel Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diesel Combustion Caterpillar, Sandia CRADA Opens Door to Multiple Research Projects On April 17, 2013, in Capabilities, Computational Modeling & Simulation, CRF, Materials...

154

Improve Your Boiler's Combustion Efficiency  

SciTech Connect (OSTI)

This revised ITP tip sheet on boiler combustion efficiency provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

Not Available

2006-01-01T23:59:59.000Z

155

Municipal Waste Combustion (New Mexico)  

Broader source: Energy.gov [DOE]

This rule establishes requirements for emissions from, and design and operation of, municipal waste combustion units. "Municipal waste" means all materials and substances discarded from residential...

156

ALS Evidence Confirms Combustion Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are produced, generally, when insufficient oxygen or other factors result in incomplete combustion of organic matter (e.g., in engines and incinerators, when biomass burns in...

157

Numerical Modeling of HCCI Combustion  

Broader source: Energy.gov (indexed) [DOE]

Numerical Modeling of HCCI Combustion Salvador M. Aceves, Daniel L. Flowers, J. Ray Smith, Joel Martinez-Frias, Francisco Espinosa-Loza, Tim Ross, Bruce Buchholz, Nick...

158

HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HICEV AMERICA: HICEV AMERICA: HYDROGEN INTERNAL COMBUSTION ENGINE VEHICLE (HICEV) TECHNICAL SPECIFICATIONS Revision 0 November 1, 2004 Prepared by Electric Transportation Applications HICEV America Vehicle Specification i TABLE OF CONTENTS Minimum Vehicle Requirements 1 1. Regulatory Requirements 7 2. Chassis 8 3. Vehicle Characteristics 10 4. Drive System 11 5. Vehicle Performance 12 6. Hydrogen Fuel Storage System (HFSS) 14 7. Additional Vehicle Systems 17 8. Documentation 18 Appendices Appendix A - Vehicle Data 19 Appendix B - FMVSS Certification Methodology 26 DB12/7/04 HICEV America Vehicle Specification 2 MINIMUM VEHICLE REQUIREMENTS The HICEV America Program is sponsored by the U.S. Department of Energy Office of Transportation Technology to provide for independent assessment of hydrogen fueled, internal

159

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

160

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

2008-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Space shuttle based microgravity smoldering combustion experiments  

E-Print Network [OSTI]

zone, and smolder heat of combustion (energy per unit massand Q is the smolder heat of combustion. The mass fluxes ofdata. The smolder heat of combustion is not well determined

Walther, David C; Fernandez-Pello, Carlos; Urban, David L

1999-01-01T23:59:59.000Z

162

Combustion Catalysts in Industry- An Update  

E-Print Network [OSTI]

applications of combustion catalysts for coal are presented. Combustion efficiency and calculations are discussed, followed by an explanation of the theories of combustion catalysis and a review of three case histories....

Merrell, G. A.; Knight, R. S.

163

Self-tuning regulators for combustion oscillations  

Science Journals Connector (OSTI)

...interaction of acoustic waves and combustion processes. An abundant literature...numerical simulations of the combustion processes and coupled fluid dynamics...nonlinear analysis of controlled combustion processes. In Proc. 1999 IEEE Int...

2003-01-01T23:59:59.000Z

164

MERCURY IN THE ENVIRONMENT: Transport, Fate and Policy  

E-Print Network [OSTI]

Division and Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology increased 3-5X since industrialization Major anthropogenic source is stationary combustion (coal evidence to warrant international action U.S.: Clean Air Mercury Rule: established "cap and trade" approach

Selin, Noelle Eckley

165

Energy Storage Technologies: State of Development for Stationary and  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

166

Combustion-thermoelectric tube  

SciTech Connect (OSTI)

In direct combustion-thermoelectric energy conversion, direct fuel injection and reciprocation of the air flowing in a solid matrix are combined with the solid conduction to allow for obtaining super-adiabatic temperatures at the hot junctions. While the solid conductivity is necessary, the relatively large thermal conductivity of the available high-temperature thermoelectric materials (e.g., Si-Ge alloys) results in a large conduction loss from the hot junctions and deteriorates the performance. Here a combustion-thermoelectric tube is introduced and analyzed. Radially averaged temperatures are used for the fluid and solid phases. A combination of external cooling of the cold junctions, and direct injection of the fuel, has been used to increase the energy conversion efficiency for low thermal conductivity, high-melting temperature thermoelectric materials. The parametric study (geometry, flow, stoichiometry, materials) shows that with the current high figure of merit, high temperature Si{sub 0.7}Ge{sub 0.3} properties, a conversion efficiency of about 11% is achievable. With lower thermal conductivities for these high-temperature materials, efficiencies about 25% appear possible. This places this energy conversion in line with the other high efficiency, direct electric power generation methods.

Park, C.W.; Kaviany, M.

1999-07-01T23:59:59.000Z

167

Ultrarich Filtration Combustion of Ethane  

Science Journals Connector (OSTI)

Ultrarich filtration combustion of ethane is studied in a porous medium composed of alumina spheres with the aim to achieve optimized conversion to hydrogen and syngas. ... Dhamrat, R. S.; Ellzey, J. L.Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor Combust. ...

Mario Toledo; Khriscia Utria; Alexei V. Saveliev

2014-01-28T23:59:59.000Z

168

A Generalized Pyrolysis Model for Combustible Solids  

E-Print Network [OSTI]

model. ?H c is the heat of combustion, and the ratio ?H c /?may have widely varying heats of combustion (CO vs. gaseous

Lautenberger, Chris

2007-01-01T23:59:59.000Z

169

Optimization of Advanced Diesel Engine Combustion Strategies...  

Broader source: Energy.gov (indexed) [DOE]

Optimization of Advanced Diesel Engine Combustion Strategies Optimization of Advanced Diesel Engine Combustion Strategies 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

170

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

engine * Integration of proposed air path and HCCI combustion control strategies into ECU software * Prototype level 2 updates and proof of combustion concept for vehicle readiness...

171

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

engine installed and vehicle available for application, emission and fuel economy optimization with advanced combustion modes. 4 Advanced combustion control strategy, capable of...

172

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

173

Vehicle Technologies Office: Advanced Combustion Engines | Department...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

174

Sandia Hydrogen Combustion Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sandia Hydrogen Combustion Research Sandia Hydrogen Combustion Research Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008...

175

Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...  

Broader source: Energy.gov (indexed) [DOE]

Spray, Combustion, & Emission Modeling using KH-ACT Primary Breakup Model & Detailed Chemistry Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling using KH-ACT Primary...

176

Hydrogen Internal Combustion Engine (ICE) Vehicle Testing Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internal Combustion Internal Combustion Engine (ICE) Vehicle Testing Activities James Francfort Idaho National Laboratory 2 Paper #2006-01-0433 Presentation Outline Background and goal APS Alternative Fuel (Hydrogen) Pilot Plant - design and operations Fuel dispensing and prototype dispenser Hydrogen (H2) and HCNG (compressed natural gas) internal combustion engine (ICE) vehicle testing WWW Information 3 Paper #2006-01-0433 Background Advanced Vehicle Testing Activity (AVTA) is part of DOE's FreedomCAR and Vehicle Technologies Program These activities are conducted by the Idaho National Laboratory (INL) and the AVTA testing partner Electric Transportation Applications (ETA) 4 Paper #2006-01-0433 AVTA Goal Provide benchmark data for technology modeling, research and development programs, and help fleet managers and

177

Novel Reactor Design for Solid Fuel Chemical Looping Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Reactor Design for Solid Fuel Novel Reactor Design for Solid Fuel Chemical Looping Combustion Opportunity Research is active on the patent pending technology, titled "Apparatus and Method for Solid Fuel Chemical Looping Combustion." This technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview The removal of CO2 from power plants is challenging because existing methods to separate CO2 from the gas mixture requires a significant fraction of the power plant output. Chemical-looping combustion (CLC) is a novel technology that utilizes a metal oxide oxygen carrier to transport oxygen to the fuel thereby avoiding direct contact between fuel and air. The use of CLC has the advantages of reducing the energy penalty while

178

A thermodynamic analysis of alternative approaches to chemical looping combustion  

SciTech Connect (OSTI)

In this article, we review and clarify some of the points made by previous authors regarding chemical looping combustion (CLC). While much of the recent interest in chemical looping combustion has been associated with carbon sequestration, our primary interest here is its potential to increase the thermodynamic efficiency of converting fuel chemical energy into useful work. We expand on several points about the details of CLC that we feel have not previously been sufficiently explored, and suggest alternative (and possibly more practical) approaches that exploit some of the same thermodynamic concepts. We illustrate our key points with {First} and {Second} Law analyses of ideal conceptual processes, which in addition to {CLC} also include isothermal, non-equilibrium, preheated combustion and combustion with thermochemical recuperation. Our results suggest that a significant portion of the potential efficiency benefit of CLC might be achieved without the need to handle and transport large quantities of solid oxygen storage material. Exploitation of this fact may lead to higher efficiency approaches for power generation from hydrocarbon fuels combustion.

Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Pihl, Josh A [ORNL

2011-01-01T23:59:59.000Z

179

Coal slurry combustion optimization on single cylinder engine  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

Not Available

1992-09-01T23:59:59.000Z

180

Combustion of viscous hydrocarbons  

SciTech Connect (OSTI)

A method is described for utilizing viscous hydrocarbons as combustible pre-atomized fuels, comprising: (A) forming a hydrocarbon-in-water emulsion using an effective amount of a surfactant package comprising at least one water-soluble surfactant, the hydrocarbon-in-water emulsion (1) comprising a hydrocarbon characterized by API gravity of about 20/sup 0/ API or less, viscosity of about 1000 centipoise or greater at 212/sup 0/F., a paraffin content of about 50% by weight or less and, an aromatic content of about 15% by weight or greater, and (2) having a hydrocarbon water ratio from about 60:40 to about 90:10 by volume; and (B) burning the resultant hydrocarbon-in-water emulsion.

Hayes, M.E.; Hrebenar, K.R.; Murphy, P.L.; Futch, L.E. Jr.; Deal, J.F. III; Bolden, P.L. Jr.

1987-08-04T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Combustion of viscous hydrocarbons  

SciTech Connect (OSTI)

A method is described for utilizing viscous hydrocarbons as combustible fuels comprising: (A) forming a hydrocarbosol using a surfactant package in a proportion of about 1:100 to about 1:20,000 by weight based on hydrocarbon, (1) the surfactant package comprising (a) at least one water-soluble surfactant, an effective amount of which surfactant promotes emulsification of a hydrocarbon with API gravity of about 20/sup 0//sup o/ API or less; and (b) at least one water-soluble bioemulsifier, being a microboally-derived substance which predominantly resides at hydrocarbon/water interfaces to substantially surround hydrocarbon droplets in hydrocarbon-in-water emulsions; (2) the hydrocarbosol (a) comprising a hydrocarbon characterized by an API gravity of about 20/sup 0//sup o/ API or less; (b) having a hydrocarbon:water ratio of about 70:30 by volume; and (B) burning the resultant hydrocarbosol.

Hayes, M.E.; Hrebenar, K.R.; Murphy, P.L.; Futch, L.E. Jr.; Deal, J.F. III

1986-10-21T23:59:59.000Z

182

NETL: Combustion Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Turbines for APFBC Gas Turbines for APFBC FBC Repower Simple Description Detailed Description APFBC Specs GTs for APFBC Suited for Repowering Existing Power Plants with Advanced Pressurized Fluidized-Bed Combined Cycles APFBC combined cycles have high energy efficiency levels because they use modern, high-temperature, high-efficiency gas turbines as the core of a combined power cycle. This web page discusses a current U.S. Department of Energy project that is evaluating combustion turbines suited for repowering existing steam plants. The natural-gas-fueled version of the Siemens Westinghouse Power Corporation W501F. Modified versions of this gas turbine core are suited for operating in APFBC power plants. Contents: Introduction APFBC Repowering Considerations

183

Coal slurry combustion optimization on single cylinder engine. Task 1.1.2.2.2, Combustion R&D  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

Not Available

1992-09-01T23:59:59.000Z

184

Detailed numerical simulation of syngas combustion under partially premixed combustion engine conditions  

Science Journals Connector (OSTI)

Two-dimensional detailed numerical simulation is performed to study syngas/air combustion under partially premixed combustion (PPC) engine conditions. Detailed chemical kinetics and transport properties are employed in the study. The fuel, a mixture of CO and H2 with a 1:1 molar ratio, is introduced to the domain at two different instances of time, corresponding to the multiple injection strategy of fuel used in PPC engines. It is found that the ratio of the fuel mass between the second injection and the first injection affects the combustion and emission process greatly; there is a tradeoff between NO emission and CO emission when varying the fuel mass ratio. The ignition zone structures under various fuel mass ratios are examined. A premixed burn region and a diffusion burn region are identified. The premixed burn region ignites first, followed by the ignition of mixtures at the diffusion burn region, and finally a thin diffusion flame is formed to burn out the remaining fuel. NO is produced mainly in the premixed burn region, and later from the diffusion burn region in mixtures close to stoichiometry, whereas unburned CO emission is mainly from the diffusion burn region. An optimization of the fuel mass in the two regions can offer a better tradeoff between NO emission and CO emission. The effects of initial temperature and turbulence on the premixed burn and diffusion burn regions are investigated.

F. Zhang; R. Yu; X.S. Bai

2012-01-01T23:59:59.000Z

185

Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion  

Broader source: Energy.gov [DOE]

Applied low temperature combustion to the Navistar 6.4L V8 engine with 0.2g NOx/bhp-hr operation attained at the rated 16.5 BMEP

186

Modeling of Combustion Processes in Internal Combustion Engines  

Science Journals Connector (OSTI)

Improving internal combustion engines (ICE) and increasing the quality of operation are linked with the necessity of maximally increasing the degree of compression. For ICE with spark ignition (otto cycle), th...

V. A. Vinokurov; V. A. Kaminskii; V. A. Frost…

2000-11-01T23:59:59.000Z

187

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance. A specific goal is to achieve a material that will sinter to desired density without compromising other variables such as reaction to binder systems or phase purity. Oxygen-enhanced combustion requires a facility which is capable of supplying high purity oxygen (>99.5%) at low costs. This goal can be achieved through the thermal integration of high temperature air separation with ceramic OTM. The objective of the OTM process development program (Task 2.3) is to demonstrate successfully the program objectives on a lab-scale single OTM tube reactor under process conditions comparable to those of an optimum large-scale oxygen facility. This quarterly technical progress report will summarize work accomplished for the Program through the first quarter April--June 2000 in the following task areas: Task 1 Oxygen Enhanced Coal Combustion; Task 2 Oxygen Transport Membranes; and Task 4 Program Management.

Lawrence E. Bool; Jack C. Chen; David R. Thompson

2000-07-01T23:59:59.000Z

188

Some recent advances in droplet combustion  

Science Journals Connector (OSTI)

This paper reviews the theoretical and experimental advances in droplet combustion since the 1982 Second International Colloquium on Drops and Bubbles. Specific topics discussed include multicomponent droplet combustion and microexplosion convection droplet combustion the combustion of slurries propellants and hazardous wastes soot formation in droplet burning and several miscellaneous subjects. Areas of further research are suggested.

C. K. Law

1990-01-01T23:59:59.000Z

189

Computational fluid dynamics combustion modelling--A comparison of secondary air system designs  

SciTech Connect (OSTI)

A newly developed computer simulation of the combustion process in a kraft recovery furnace uses computational fluid dynamics to model the processes of mass, momentum, and energy transport. This paper describes two models and a presentation of the flow fields obtained. The results predict a dramatic improvement in combustion behavior using a refined secondary air system with reduction in particulate carryover, enhanced operating temperatures, more uniform gas flow, and less carbon monoxide at the furnace exit.

Jones, A.K. (ABB Combustion Engineering Systems, Ottawa, Ontario (Canada)); Chapman, P.J. (ABB Combustion Engineering Systems, Windsor, CT (United States))

1993-07-01T23:59:59.000Z

190

Hybrid Combustion-Gasification Chemical Looping  

SciTech Connect (OSTI)

For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

2009-01-07T23:59:59.000Z

191

The application of unattended ground sensors to stationary targets  

SciTech Connect (OSTI)

The unattended sensing of stationary (i.e. non-mobile) targets is important in applications ranging from counter-proliferation to law enforcement. With stationary targets, sources of seismic, acoustic, and electro-magnetic emissions can potentially be used to detect, identify, and locate the target. Stationary targets have considerably different sensing requirements than the traditional mobile-target unattended ground sensor applications. This paper presents the novel features and requirements of a system for sensing stationary targets. In particular, issues associated with long-listen time signal processing for signal detection, and array processing techniques for signal localization are presented. Example data and signal processing outputs from a stationary target will be used to illustrate these issues. The impact on sensor, electronic signal processing, battery subsystem, and communication requirements will also be discussed. The paper will conclude with a detailed comparison between mobile-target and stationary-target unattended ground sensor architectures.

Sleefe, G.E. [Sandia National Labs., Albuquerque, NM (United States); Peglow, S. [Lawrence Livermore National Lab., CA (United States); Hamrick, R. [ENSCO Inc., Springfield, VA (United States)

1997-05-01T23:59:59.000Z

192

Staged Combustion of Pulverized Coal  

Science Journals Connector (OSTI)

The emissions of nitrogen oxides are much higher with the combustion of fossil fuels containing organic bound nitrogen compounds than with clean fuels like natural gas and light distillate oil. During combusti...

H. Kremer; R. Mechenbier; W. Schulz

1987-01-01T23:59:59.000Z

193

Light Duty Efficient Clean Combustion  

Broader source: Energy.gov (indexed) [DOE]

fuel efficiency over the FTP city drive cycle by 10.5% over today's state-of-the-art diesel engine. Develop & design an advanced combustion system that synergistically meets...

194

20 - Chemical looping combustion (CLC)  

Science Journals Connector (OSTI)

Abstract: Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of the greenhouse gas CO2. The technology involves the use of a metal oxide as an oxygen carrier which transfers oxygen from combustion air to the fuel, and hence a direct contact between air and fuel is avoided. Two inter-connected fluidized beds, i.e. fuel reactor and air reactor, are used in the process. The outlet gas from the fuel reactor consists ideally of CO2 and H2O, and the latter is easily removed by condensation. This chapter presents the basic principles, gives an overview of oxygen-carrier materials and operational experiences, discusses the application to gaseous, liquid and solid fuels, and the use for combustion as well as for hydrogen production.

A. Lyngfelt

2013-01-01T23:59:59.000Z

195

Chemical Kinetics of Combustion Processes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Combustion Processes Hai Wang B. Yang, J. Camacho, S. Lieb, S. Memarzadeh, S.-K. Gao and S. Koumlis University of Southern California 2010 CEFRC Conference Benzene + O( 3 P) ...

196

Plum Combustion | Open Energy Information  

Open Energy Info (EERE)

Plum Combustion Plum Combustion Jump to: navigation, search Name Plum Combustion Place Atlanta, Georgia Product Combustion technology, which reduces NOx-emissions. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-04-01T23:59:59.000Z

198

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program in the seventh quarter October-December 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. Computational fluid dynamic (CFD) modeling of oxygen injection strategies was performed during the quarter resulting in data that suggest the oxygen injection reduces NOx emissions while reducing LOI. Pilot-scale testing activities concluded at the University of Utah this quarter. Testing demonstrated that some experimental conditions can lead to NOx emissions well below the 0.15 lb/MMBtu limit. Evaluation of alternative OTM materials with improved mechanical properties continued this quarter. Powder procedure optimization continued and sintering trial began on an element with a new design. Several OTM elements were tested in Praxair's single tube high-pressure test facility under various conditions. A modified PSO1d element demonstrated stable oxygen product purity of >98% and oxygen flux of 68% of target. Updated test results and projected economic performance have been reviewed with the Utility Industrial Advisors. The economic comparison remains very favorable for O{sub 2} enhanced combustion. Discussions regarding possible Beta sites have been held with three other utilities in addition to the industrial advisors. Proposals will be prepared after the completion of full scale burner testing. Beta test cost estimating work has been initiated.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-01-01T23:59:59.000Z

199

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

200

Fuel Quality Issues in Stationary Fuel Cell Systems  

Broader source: Energy.gov [DOE]

This report, prepared by Argonne National Laboratory, looks at impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells.

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Power Generating Stationary Engines Nox Control: A Closed Loop...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCRDPF ApplicationsData-Logger for Vehicle Data Acquisition Active DPF for Off-Road...

202

Procuring Fuel Cells for Stationary Power: A Guide for Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Federal Facilities Guide to Fuel Cells May 8, 2012 - Outline * Distributed Generation and...

203

Stationary/Distributed Generation Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation...

204

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Broader source: Energy.gov [DOE]

Presentation covers stationary fuel cells and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

205

Control Strategies for HCCI Mixed-Mode Combustion  

SciTech Connect (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to expand the operational range of Homogenous Charge Compression Ignition (HCCI) mixed-mode combustion for gasoline en-gines. ORNL has extensive experience in the analysis, interpretation, and control of dynamic engine phenomena, and Delphi has extensive knowledge and experience in powertrain compo-nents and subsystems. The partnership of these knowledge bases was important to address criti-cal barriers associated with the realistic implementation of HCCI and enabling clean, efficient operation for the next generation of transportation engines. The foundation of this CRADA was established through the analysis of spark-assisted HCCI data from a single-cylinder research engine. This data was used to (1) establish a conceptual kinetic model to better understand and predict the development of combustion instabilities, (2) develop a low-order model framework suitable for real-time controls, and (3) provide guidance in the initial definition of engine valve strategies for achieving HCCI operation. The next phase focused on the development of a new combustion metric for real-time characterization of the combustion process. Rapid feedback on the state of the combustion process is critical to high-speed decision making for predictive control. Simultaneous to the modeling/analysis studies, Delphi was focused on the development of engine hardware and the engine management system. This included custom Delphi hardware and control systems allowing for flexible control of the valvetrain sys-tem to enable HCCI operation. The final phase of this CRADA included the demonstration of conventional and spark assisted HCCI on the multi-cylinder engine as well as the characterization of combustion instabilities, which govern the operational boundaries of this mode of combustion. ORNL and Delphi maintained strong collaboration throughout this project. Meetings were held on a bi-weekly basis with additional reports, presentation, and meetings as necessary to maintain progress. Delphi provided substantial support through modeling, hardware, data exchange, and technical consultation. This CRADA was also successful at establishing important next steps to further expanding the use of an HCCI engine for improved fuel efficiency and emissions. These topics will be address in a follow-on CRADA. The objectives are: (1) Improve fundamental understanding of the development of combustion instabilities with HCCI operation through modeling and experiments; (2) Develop low-order model and feedback combustion metrics which are well suited to real-time predictive controls; and (3) Construct multi-cylinder engine system with advanced Delphi technologies and charac-terize HCCI behavior to better understand limitations and opportunities for expanded high-efficiency operation.

Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL

2010-03-01T23:59:59.000Z

206

Combustion method for simultaneous control of nitrogen oxides and products of incomplete combustion  

SciTech Connect (OSTI)

A method is described for combusting material with controlled generation of both nitrogen oxides and products of incomplete combustion comprising: (A) combusting material in a first combustion zone to produce gaseous exhaust containing products of incomplete combustion and products of complete combustion; (B) passing the gaseous exhaust from the first combustion zone into a second combustion zone having a width and an axial direction; (C) injecting through a lance with an orientation substantially parallel to said axial direction at least one stream of oxidant, without fuel, having a diameter less than 1/100 of the width of the second combustion zone and having an oxygen concentration of at least 30% into the second combustion zone at a high velocity of at least 300 feet per second; (D) aspirating products of incomplete combustion into the high velocity oxidant; (E) combusting products of incomplete combustion aspirated into the high velocity oxidant with high velocity oxidant within the second combustion zone to carry out a stable combustion by the mixing of the aspirated products of incomplete combustion with the high velocity oxidant; and (F) spreading out the combustion reaction by aspiration of products of complete combustion into the oxidant, said products of complete combustion also serving as a heat sink, to inhibit NO[sub x] formation.

Ho, Min-Da.

1993-05-25T23:59:59.000Z

207

Acoustic measurements for the combustion diagnosis of diesel engines fuelled with biodiesels  

Science Journals Connector (OSTI)

In this paper, an experimental investigation was carried out on the combustion process of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The effects of biodiesel on the combustion process and engine dynamics were analysed for non-intrusive combustion diagnosis based on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine. The signals of vibration, acoustic and in-cylinder pressure were measured simultaneously to find their inter-connection for diagnostic feature extraction. It was found that the sound energy level increases with the increase of engine load and speed, and the sound characteristics are closely correlated with the variation of in-cylinder pressure and combustion process. The continuous wavelet transform (CWT) was employed to analyse the non-stationary nature of engine noise in a higher frequency range. Before the wavelet analysis, time synchronous average (TSA) was used to enhance the signal-to-noise ratio (SNR) of the acoustic signal by suppressing the components which are asynchronous. Based on the root mean square (RMS) values of CWT coefficients, the effects of biodiesel fractions and operating conditions (speed and load) on combustion process and engine dynamics were investigated. The result leads to the potential of airborne acoustic measurements and analysis for engine condition monitoring and fuel quality evaluation.

Dong Zhen; Tie Wang; Fengshou Gu; Belachew Tesfa; Andrew Ball

2013-01-01T23:59:59.000Z

208

Chemical Looping Combustion Kinetics  

SciTech Connect (OSTI)

One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

Edward Eyring; Gabor Konya

2009-03-31T23:59:59.000Z

209

Particulate emissions from combustion of biomass in conventional combustion (air) and oxy-combustion conditions.  

E-Print Network [OSTI]

??Oxy-fuel combustion is a viable technology for new and existing coal-fired power plants, as it facilitates carbon capture and thereby, can reduce carbon dioxide emissions.… (more)

Ruscio, Amanda

2013-01-01T23:59:59.000Z

210

Advanced High Efficiency Clean Diesel Combustion with Low Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines Clean, in-cylinder combustion...

211

Low-Temperature Automotive Diesel Combustion | Department of...  

Office of Environmental Management (EM)

in Low Temperature Automotive Diesel Combustion Systems Mixture Formation in a Light-Duty Diesel Engine Light Duty Combustion Research: Advanced Light-Duty Combustion Experiments...

212

Oxy-Combustion CO2 Control | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Combustion Oxy-Combustion Chemical Looping Combustion Program Plan Project Portfolio Project Information POSTED January 27, 2015 - Funding Opportunity Announcement DE-FOA-...

213

PARAMETRIC STUDY OF SUBMICRON PARTICULATES FROM PULVERIZED COAL COMBUSTION  

E-Print Network [OSTI]

D. , Trace Element Chemistry of Coal during Combustion andthe Emissions from Coal-Fired Plants. Prog. Energy Combust.Combustion of Pulverized Coal, Lawrence Berkeley Laboratory

Pennucci, J.

2014-01-01T23:59:59.000Z

214

Fuel Effects on Mixing-Controlled Combustion Strategies for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency...

215

Separable geodesic action slicing in stationary spacetimes  

E-Print Network [OSTI]

A simple observation about the action for geodesics in a stationary spacetime with separable geodesic equations leads to a natural class of slicings of that spacetime whose orthogonal geodesic trajectories represent freely falling observers. The time coordinate function can then be taken to be the observer proper time, leading to a unit lapse function. This explains some of the properties of the original Painlev\\'e-Gullstrand coordinates on the Schwarzschild spacetime and their generalization to the Kerr-Newman family of spacetimes, reproducible also locally for the G\\"odel spacetime. For the static spherically symmetric case the slicing can be chosen to be intrinsically flat with spherically symmetric geodesic observers, leaving all the gravitational field information in the shift vector field.

Donato Bini; Andrea Geralico; Robert T. Jantzen

2014-08-22T23:59:59.000Z

216

Stationary flywheel energy storage systems. Final report  

SciTech Connect (OSTI)

The aim of this system study is to find out industrial applications of Stationary Flywheel Energy Accumulators. The economic value for the consumer and the effects on the power supply grid should be investigated. As to overall economy, compensation of short time maximum power out-put seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combination with wind energy converters needs further investigation.

Gilhaus, A.; Hau, E.; Gassner, G.; Huss, G.; Schauberger, H.

1982-01-01T23:59:59.000Z

217

The Effects of Ethanol/Gasoline Blends on Advanced Combustion Strategies in Internal Combustion Engines.  

E-Print Network [OSTI]

??This dissertation presents the effects of blending ethanol with gasoline on advanced combustion strategies in internal combustion engines. The unique chemical, physical and thermal properties… (more)

Fatouraie, Mohammad

2014-01-01T23:59:59.000Z

218

Jet plume injection and combustion system for internal combustion engines  

DOE Patents [OSTI]

An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

Oppenheim, Antoni K. (Kensington, CA); Maxson, James A. (Berkeley, CA); Hensinger, David M. (Albany, CA)

1993-01-01T23:59:59.000Z

219

Combustion Byproducts Recycling Consortium  

SciTech Connect (OSTI)

The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F-fly ash. Some developed technologies have similar potential in the longer term. (3) Laboratory studies have been completed that indicate that much higher amounts of fly ash could be added in cement-concrete applications under some circumstances. This could significantly increase use of fly ash in cement-concrete applications. (4) A study of the long-term environmental effects of structural fills in a surface mine in Indiana was completed. This study has provided much sought after data for permitting large-volume management options in both beneficial as well as non-beneficial use settings. (5) The impact of CBRC on CCBs utilization trends is difficult to quantify. However it is fair to say that the CBRC program had a significant positive impact on increased utilization of CCBs in every region of the USA. Today, the overall utilization of CCBs is over 43%. (6) CBRC-developed knowledge base led to a large number of other projects completed with support from other sources of funding. (7) CBRC research has also had a large impact on CCBs management across the globe. Information transfer activities and visitors from leading coal producing countries such as South Africa, Australia, England, India, China, Poland, Czech Republic and Japan are truly noteworthy. (8) Overall, the CBRC has been a truly successful, cooperative research program. It has brought together researchers, industry, government, and regulators to deal with a major problem facing the USA and other coal producing countries in the world.

Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

2008-08-31T23:59:59.000Z

220

Energy Storage Technologies: State of Development for Stationary and  

Broader source: Energy.gov (indexed) [DOE]

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 3

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Turbulent Combustion in SDF Explosions  

SciTech Connect (OSTI)

A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

Kuhl, A L; Bell, J B; Beckner, V E

2009-11-12T23:59:59.000Z

222

HCCI Combustion: Analysis and Experiments  

SciTech Connect (OSTI)

Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

Salvador M. Aceves; Daniel L. Flowers; Joel Martinez-Frias; J. Ray Smith; Robert Dibble; Michael Au; James Girard

2001-05-14T23:59:59.000Z

223

Major research topics in combustion  

SciTech Connect (OSTI)

The Institute for Computer Applications in Science and Engineering (ICASE) and NASA Langley Research Center (LaRC) hosted a workshop on October 2--4, 1989 to discuss some combustion problems of technological interest to LaRC and to foster interaction with the academic community in these research areas. The topics chosen for this purpose were flame structure, flame holding/extinction, chemical kinetics, turbulence-kinetics interaction, transition to detonation, and reacting free shear layers. This document contains the papers and edited versions of general discussions on these topics. The lead paper set the stage for the meeting by discussing the status and issues of supersonic combustion relevant to the scramjet engine. Experts were then called upon to review the current knowledge in the aforementioned areas, to focus on how this knowledge can be extended and applied to high-speed combustion, and to suggest future directions of research in these areas.

Hussaini, M.Y.; Kumar, A.; Voigt, R.G. (eds.)

1992-01-01T23:59:59.000Z

224

Natural Ores as Oxygen Carriers in Chemical Looping Combustion  

Science Journals Connector (OSTI)

Natural Ores as Oxygen Carriers in Chemical Looping Combustion ... Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. ...

Hanjing Tian; Ranjani Siriwardane; Thomas Simonyi; James Poston

2013-01-02T23:59:59.000Z

225

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network [OSTI]

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology… (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

226

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

1983-09-21T23:59:59.000Z

227

Combustion heater for oil shale  

DOE Patents [OSTI]

A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

1985-01-01T23:59:59.000Z

228

Chemical kinetics and combustion modeling  

SciTech Connect (OSTI)

The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

229

Combustion synthesis method and products  

DOE Patents [OSTI]

Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

Holt, J.B.; Kelly, M.

1993-03-30T23:59:59.000Z

230

Combustion synthesis method and products  

DOE Patents [OSTI]

Disclosed is a method of producing dense refractory products, comprising: (a) obtaining a quantity of exoergic material in powder form capable of sustaining a combustion synthesis reaction; (b) removing absorbed water vapor therefrom; (c) cold-pressing said material into a formed body; (d) plasma spraying said formed body with a molten exoergic material to form a coat thereon; and (e) igniting said exoergic coated formed body under an inert gas atmosphere and pressure to produce self-sustained combustion synthesis. Also disclosed are products produced by the method.

Holt, J. Birch (San Jose, CA); Kelly, Michael (West Alexandria, OH)

1993-01-01T23:59:59.000Z

231

Engine Combustion Network Experimental Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Maintained by the Engine Combustion Department of Sandia National Laboratories, data currently available on the website includes reacting and non-reacting sprays in a constant-volume chamber at conditions typical of diesel combustion. The data are useful for model development and validation because of the well-defined boundary conditions and the wide range of conditions employed. A search utility displays data based on experimental conditions such as ambient temperature, ambient density, injection pressure, nozzle size, fuel, etc. Experiment-related visualizations are also available. The search utility for experimental data is located at http://public.ca.sandia.gov/ecn/cvdata/frameset.html (Specialized Interface)

232

Transonic Combustion Inc | Open Energy Information  

Open Energy Info (EERE)

Transonic Combustion Inc Transonic Combustion Inc Jump to: navigation, search Name Transonic Combustion, Inc. Place Camarillo, California Zip CA 93012 Sector Efficiency, Renewable Energy Product Transonic Combustion, Inc. is a US based research & development company focused on developing ultra-high efficiency automotive engines that run on gasoline and bio-renewable flex fuels. References Transonic Combustion, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Transonic Combustion, Inc. is a company located in Camarillo, California . References ↑ "Transonic Combustion, Inc." Retrieved from "http://en.openei.org/w/index.php?title=Transonic_Combustion_Inc&oldid=352376

233

Biomass Combustion: Carbon Capture and Storage  

Science Journals Connector (OSTI)

This chapter deals with the capture and storage of carbon dioxide produced by the combustion of biomass. Since biomass combustion is potentially carbon neutral, this technique could provide a method of reducing t...

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

234

Coal Characterization in Relation to Coal Combustion  

Science Journals Connector (OSTI)

Most coals are used worldwide for combustion today. Generally all kinds of coals are applicable for combustion. The major methods of burning are fixed bed firing, fluidized bed firing and suspension firing. Th...

Harald Jüntgen

1987-01-01T23:59:59.000Z

235

Practical Use of Coal Combustion Research  

Science Journals Connector (OSTI)

Laboratory measurements of coal rapid pyrolysis char yield and char reactivity, together with a simple model of pulverized coal combustion, have been used to predict coal combustion efficiency in utility boile...

P. T. Roberts; C. Morley

1987-01-01T23:59:59.000Z

236

Emissions and Heat Transfer in Combustion Systems  

Science Journals Connector (OSTI)

A variety of combustion systems that employ turbulent diffusion combustion have been major sources of air pollutants such as NOx, particulates and hydrocarbons in spite of their high thermal efficiency compare...

Y. Daisho

1993-01-01T23:59:59.000Z

237

Simulation of lean premixed turbulent combustion  

E-Print Network [OSTI]

combustion systems that can burn fuels such as hydrogen or syngas.syngas, which is obtained from coal gasi?cation. E?ective utilization of these fuels requires combustion

2008-01-01T23:59:59.000Z

238

Combustion of Solid Biomass: Classification of Fuels  

Science Journals Connector (OSTI)

The combustion of solid biomass and the classification of these fuels are considered. Firstly the different methods of combustion appliances and plants are outlined from a ... view. The forms and types of solid biomass

Jenny M. Jones; Amanda R. Lea-Langton…

2014-01-01T23:59:59.000Z

239

Volatile Organic Compounds — Emissions from Biomass Combustion  

Science Journals Connector (OSTI)

The emissions of Volatile Organic Compounds (VOC) from biomass combustion have been investigated. VOC contribute both to ... 0.5–10 MW. A variety of biomass fuel types and combustion equipment was covered. The su...

Lennart Gustavsson; Mats-Lennart Karlsson

1993-01-01T23:59:59.000Z

240

Fuel Modification t Facilitate Future Combustion Regimes? | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modification t Facilitate Future Combustion Regimes? Fuel Modification t Facilitate Future Combustion Regimes? 2005 Diesel Engine Emissions Reduction (DEER) Conference...

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Modeling of HCCI and PCCI Combustion Processes  

Broader source: Energy.gov (indexed) [DOE]

combustion timing control - Startup - Fuel air ratio measurement and control - Low Power Density - Hydrocarbon and CO emissions Approach: Fundamental and...

242

Oxy-combustion Boiler Material Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-combustion Boiler Material Oxy-combustion Boiler Material Development Background In an oxy-combustion system, combustion air (79 percent nitrogen, 21 percent oxygen) is replaced by oxygen and recycled flue gas (carbon dioxide [CO 2 ] and water), eliminating nitrogen in the flue gas stream. When applied to an existing boiler, the flue gas recirculation rate is adjusted to enable the boiler to maintain its original air-fired heat absorption performance, eliminating the need to derate the boiler

243

Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Although internal combustion engines have been used Although internal combustion engines have been used for more than a century, significant improvements in energy efficiency and emissions reduction are still possible. In fact, boosting the efficiency of internal combustion engines is one of the most promising and cost-effective approaches to increasing vehicle fuel economy over the next 30 years. The United States can cut its transportation fuel use 20%-40% through commercialization of advanced engines-resulting in greater economic, environmental, and energy security. Using these engines in hybrid and plug-in hybrid electric vehicles will enable even greater fuel savings benefits. The Advanced Combustion Engine R&D subprogram of the U.S. Department of Energy's Vehicle Technologies Program (VTP) is improving the fuel economy of

244

Polymer combustion: effects of flame emissivity  

Science Journals Connector (OSTI)

...gas phase. Polymer combustion chemistry is modelled...investigating polymer combustion it has proven advantageous...properties and treat the heat flux from the ignition...luminous flames from hydrocarbon fuels, it is common...A (1999) Polymer combustion: effects of flame emissivity...

1999-01-01T23:59:59.000Z

245

Fundamental Study of Single Biomass Particle Combustion  

E-Print Network [OSTI]

Fundamental Study of Single Biomass Particle Combustion Maryam Momeni #12;Fundamental Study of Single Biomass Particle Combustion Maryam Momeni Dissertation submitted to the Faculty of Engineering Fundamental Study of Single Biomass Particle Combustion This thesis is a comprehensive study of single biomass

Berning, Torsten

246

Combustion of oil on water: an experimental program  

SciTech Connect (OSTI)

This study determined how well crude and fuel oils burn on water. Objectives were: (1) to measure the burning rates for several oils; (2) to determine whether adding heat improves the oils' combustibility; (3) to identify the conditions necessary to ignite fuels known to be difficult to ignite on ocean waters (e.g., diesel and Bunker C fuel oils); and (4) to evaluate the accuracy of an oil-burning model proposed by Thompson, Dawson, and Goodier (1979). Observations were made about how weathering and the thickness of the oil layer affect the combustion of crude and fuel oils. Nine oils commonly transported on the world's major waterways were tested. Burns were first conducted in Oklahoma under warm-weather conditions (approx. 30/sup 0/C) and later in Ohio under cold-weather conditions (approx. 0/sup 0/C to 10/sup 0/C).

None

1982-02-01T23:59:59.000Z

247

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

248

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

249

Modeling of Laser-Induced Metal Combustion  

SciTech Connect (OSTI)

Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

Boley, C D; Rubenchik, A M

2008-02-20T23:59:59.000Z

250

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or  

Open Energy Info (EERE)

Transport or Transport or Mobil Sources Jump to: navigation, search Tool Summary Name: The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport or Mobil Sources Agency/Company /Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Transportation, Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Software/modeling tools User Interface: Spreadsheet Website: www.ghgprotocol.org/calculation-tools/all-tools Cost: Free The Greenhouse Gas Protocol tool for mobile combustion is a free Excel spreadsheet calculator designed to calculate GHG emissions specifically from mobile combustion sources, including vehicles under the direct control

251

Advanced Materials and Devices for Stationary Electrical Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Materials and Devices for Stationary Electrical Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to provide reliable, affordable electricity, jeopardizing the transformational changes envisioned for a modernized grid. Investment in energy storage is essential for keeping pace with the increasing demands for electricity arising from continued growth in U.S. productivity, shifts in and continued expansion of national cultural imperatives (e.g., the distributed

252

Measurement and simulation of swirling coal combustion  

Science Journals Connector (OSTI)

Particle image velocimetry (PIV), thermocouples and flue gas analyzer are used to study swirling coal combustion and NO formation under different secondary-air ratios. Eulerian–Lagrangian large-eddy simulation (LES) using the Smagorinsky–Lilly sub-grid scale stress model, presumed-PDF fast chemistry and eddy-break-up (EBU) gas combustion models, particle devolatilization and particle combustion models, are simultaneously used to simulate swirling coal combustion. Statistical LES results are validated by measurement results. Instantaneous LES results show that the coherent structures for swirling coal combustion are stronger than those for swirling gas combustion. Particles are shown to concentrate along the periphery of the coherent structures. Combustion flame is located in the high vorticity and high particle concentration zones. Measurement shows that secondary-air ratios have little effect on final NO formation at the exit of the combustor.

Liyuan Hu; Lixing Zhou; Yonghao Luo; Caisong Xu

2013-01-01T23:59:59.000Z

253

Geophysics-based method of locating a stationary earth object  

DOE Patents [OSTI]

A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

Daily, Michael R. (Albuquerque, NM); Rohde, Steven B. (Corrales, NM); Novak, James L. (Albuquerque, NM)

2008-05-20T23:59:59.000Z

254

Investigation of combustive flows and dynamic meshing in computational fluid dynamics  

E-Print Network [OSTI]

of methane mass fraction contour plots using combustion model A. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70 21 Series of carbon monoxide mass fraction contour plots using com- bustion model A... in the domain. The unknowns are the dependent variables of the transport equations that must be solved. For example, if the transport equation is the species balance equation for carbon monoxide then the species mass fraction is the dependent variable...

Chambers, Steven B.

2005-02-17T23:59:59.000Z

255

Static- and Stationary-complete Spacetimes: Algebraic and Causal Structures  

E-Print Network [OSTI]

This is intended as an analysis of the global properties of static and stationary spacetimes with complete (timelike) Killing field, with particular attention to quotients by group actions. This is presented in terms of algebraic structures which are fairly simple for the static case and more involved for the stationary case; the most important tool, the fundamental cocycle, is a cohomological class for static spacetimes but of somewhat looser structure in the stationary case. In particular: (1) A new measurement, similar to the spacetime interval in Minkowski space, is devised for detecting whether two points are causally related in a stationary spacetime; this proves very useful for analysis. (2) All stationary spacetimes are categorized by how they behave with respect to the fundamental cocycle; this enables a complete characterization of global causality properties. (3) It is shown how these tools determine whether global hyperbolicity of a stationary spacetime is inherited by its quotients. (4) Examples are examined in detail, a large range including both ones of mathematical curiosity and ones of physical interest, such as cosmic strings in flat, accelerated, Schwarzschild, Kerr, and other backgrounds.

Steven G. Harris

2014-12-24T23:59:59.000Z

256

Directed transport in equilibrium  

E-Print Network [OSTI]

We investigate how a microscopic system, which can move only in one direction, comes to equilibrium with a heat-bath. To understand this problem, we investigate a symmetry broken dimer constrained to move in a particular direction when in contact with a uniform heat-bath at a constant temperature. The dimer is not driven by any external force. The system gains kinetic energy from the heat-bath and that the system can only use in directed transport. At the hard core collision limit between the particles of the dimer, we show by exact analytic calculations and complementary numerical results that the dimer undergoes steady directed transport by attaining a stationary distribution for a relevant degree of freedom. Our observation, being perfectly consistent with the {\\it second law of thermodynamics}, leads to a generalization of the existing {\\it Brownian ratchet} paradigm and points out some important limitations of {\\it Fokker-Planck} dynamics.

Bhattacharyay, A

2010-01-01T23:59:59.000Z

257

Combustion synthesis continuous flow reactor  

DOE Patents [OSTI]

The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

1998-01-01T23:59:59.000Z

258

Homogeneous catalysts in hypersonic combustion  

SciTech Connect (OSTI)

Density and residence time both become unfavorably small for efficient combustion of hydrogen fuel in ramjet propulsion in air at high altitude and hypersonic speed. Raising the density and increasing the transit time of the air through the engine necessitates stronger contraction of the air flow area. This enhances the kinetic and thermodynamic tendency of H/sub 2/O to form completely, accompanied only by N/sub 2/ and any excess H/sub 2/(or O/sub 2/). The by-products to be avoided are the energetically expensive fragment species H and/or O atoms and OH radicals, and residual (2H/sub 2/ plus O/sub 2/). However, excessive area contraction raises air temperature and consequent combustion-product temperature by adiabatic compression. This counteracts and ultimately overwhelms the thermodynamic benefit by which higher density favors the triatomic product, H/sub 2/O, over its monatomic and diatomic alternatives. For static pressures in the neighborhood of 1 atm, static temperature must be kept or brought below ca. 2400 K for acceptable stability of H/sub 2/O. Another measure, whose requisite chemistry we address here, is to extract propulsive work from the combustion products early in the expansion. The objective is to lower the static temperature of the combustion stream enough for H/sub 2/O to become adequately stable before the exhaust flow is massively expanded and its composition ''frozen.'' We proceed to address this mechanism and its kinetics, and then examine prospects for enhancing its rate by homogeneous catalysts. 9 refs.

Harradine, D.M.; Lyman, J.L.; Oldenborg, R.C.; Pack, R.T.; Schott, G.L.

1989-01-01T23:59:59.000Z

259

EXPERIMENTAL INVESTIGATION AND HIGH RESOLUTION SIMULATOR OF IN-SITU COMBUSTION PROCESSES  

SciTech Connect (OSTI)

Accurate simulation of in-situ combustion processes is computationally very challenging because the spatial and temporal scales over which the combustion process takes place are very small. In this sixth quarter of our DoE funded research, we continued the development of our new simulation tool which is based on an efficient Cartesian Adaptive Mesh Refinement technique. This methodology allows much higher grid densities to be used near typical fronts than current simulators. We improved the upscaling strategy on these grids, and derived an effective way to generate upscaled permeabilities that preserve local fluxes. We have started more in-depth research into splitting methods for stiff PDEs such as those found in in-situ combustion simulation. We will report on these new developments extensively in the next quarterly report. This quarterly report, we focus on experimental work. On the experimental side, we have fleshed out a mechanism of improved in-situ combustion with aqueous metallic salts using scanning electron microscopy (SEM) and the transport phenomenon of such additives through porous media. Based on the observations from SEM analysis, we propose cation exchange of metallic salts with clay as a mechanism to create activated sites that enhance combustion reactions between oil and oxygen. Moreover, the empirical ranking of the success of metallic ions as catalytic additives for in-situ combustion is interpreted as originating from three factors: cation replacing power, distribution of metallic additive adsorption sites, and cation catalytic power for oxidation and cracking of hydrocarbon.

Margot Gerritsen; Anthony R. Kovscek

2005-04-01T23:59:59.000Z

260

Waste gas combustion in a Hanford radioactive waste tank  

SciTech Connect (OSTI)

It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion.

Travis, J.R.; Fujita, R.K.; Spore, J.W.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

System issues and tradeoffs associated with syngas production and combustion  

SciTech Connect (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed/moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Casleton, K.H.; Richards, G.A.; Breault, R.W.

2008-06-01T23:59:59.000Z

262

System Issues and Tradeoffs Associated with Syngas Production and Combustion  

SciTech Connect (OSTI)

The purpose of this article is to provide an overview of the basic technology of coal gasification for the production of syngas and the utilization of that syngas in power generation. The common gasifier types, fixed=moving bed, fluidized bed, entrained flow, and transport, are described, and accompanying typical product syngas compositions are shown for different coal ranks. Substantial variation in product gas composition is observed with changes in gasifier and coal feed type. Fuel contaminants such as sulfur, nitrogen, ash, as well as heavy metals such as mercury, arsenic, and selenium, can be removed to protect the environment and downstream processes. A variety of methods for syngas utilization for power production are discussed, including both present (gas turbine and internal combustion engines) and future technologies, including oxy-fuel, chemical looping, fuel cells, and hybrids. Goals to improve system efficiencies, further reduce NOx emissions, and provide options for CO2 sequestration require advancements in many aspects of IGCC plants, including the combustion system. Areas for improvements in combustion technology that could minimize these tradeoffs between cost, complexity, and performance are discussed.

Kent H. Casleton; Ronald W. Breault; George A. Richards

2008-06-01T23:59:59.000Z

263

Characteristics of biomass in flameless combustion: A review  

Science Journals Connector (OSTI)

Abstract The demands of energy and pollutant emissions reduction have motivated the combustion researchers to work on combustion improvement. Flameless combustion or high temperature air combustion has many features such as flame stability, low pollutant emission and uniform profiles of temperature compared to the other modes of combustion. Combustion of solid fuels likes biomass and wastes in flameless combustion conditions has not been investigated as comprehensive as combustion of gaseous fuels. The aim of using biomass in combustion is to reduce the pollutant emissions and to decrease the rate of fossil fuel consumption. In this review, combustion characteristics of biomass in flameless combustion are explained. The paper summarizes the research on the mass loss, ignition time, and \\{NOx\\} emissions during biomass flameless combustion. These summaries show that biomass under flameless combustion gives low pollutant emissions, low mass loss and it decreases the ignition time.

A.A.A. Abuelnuor; M.A. Wahid; Seyed Ehsan Hosseini; A. Saat; Khalid M. Saqr; Hani H. Sait; M. Osman

2014-01-01T23:59:59.000Z

264

Coal combustion science: Task 1, Coal char combustion: Task 2, Fate of mineral matter. Quarterly progress report, July--September 1993  

SciTech Connect (OSTI)

Progress reports are presented for the following tasks: (1) kinetics and mechanisms of pulverized coal char combustion and (2) fate of inorganic material during coal combustion. The objective of Task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. In Sandia`s Coal Combustion Laboratory (CCL), optical techniques are used to obtain high-resolution images of individual burning coal char particles and to measure, in situ, their temperatures, sizes, and velocities. Detailed models of combustion transport processes are then used to determine kinetic parameters describing the combustion behavior as a function of coal type and combustion environment. Partially reacted char particles are also sampled and characterized with advanced materials diagnostics to understand the critical physical and chemical transformations that influence reaction rates and burnout times. The ultimate goal of the task is the establishment of a data base of the high temperature reactivities of chars from strategic US coals, from which important trends may be identified and predictive capabilities developed. The overall objectives for task 2 are: (1) to complete experimental and theoretical investigation of ash release mechanisms; (2) to complete experimental work on char fragmentation; (3) to establish the extent of coal (as opposed to char) fragmentation as a function of coal type and particle size; (4) to develop diagnostic capabilities for in situ, real-time, qualitative indications of surface species composition during ash deposition, with work continuing into FY94; (5) to develop diagnostic capabilities for in situ, real-time qualitative detection of inorganic vapor concentrations; and (6) to conduct a literature survey on the current state of understanding of ash deposition, with work continuing into FY94.

Hardesty, D.R. [ed.; Hurt, R.H.; Davis, K.A.; Baxter, L.L.

1994-07-01T23:59:59.000Z

265

Numerical analysis of nanoaluminum combustion in steam  

Science Journals Connector (OSTI)

Abstract The comprehensive analysis of chain mechanism development in the Al–H2O system is performed on the base of novel reaction mechanism taking into account quantum chemistry studies of potential energy surfaces of the elementary reactions with Al-containing species and estimations of rate constants of corresponding reaction channels. As well the physical properties of Al-containing species involved in the reaction mechanism and needed for the calculation of their transport coefficients are reported. The developed reaction mechanism makes it possible to describe with reasonable accuracy the experimental data on ignition temperature in Al–O2–Ar and Al–H2O systems and obtain the qualitative agreement with measured value of laminar flame speed. The two-stage regime of ignition in the Al–H2O reacting system was revealed both when the aluminum is in the liquid phase and when it comes into steam environment in the gas phase. It was shown that decreasing the ignition temperature one can increase the hydrogen yield in the combustion exhaust.

Alexander M. Starik; Pavel S. Kuleshov; Alexander S. Sharipov; Nataliya S. Titova; Chuen-Jinn Tsai

2014-01-01T23:59:59.000Z

266

Sandia Combustion Research Program: Annual report, 1986  

SciTech Connect (OSTI)

This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

Not Available

1986-01-01T23:59:59.000Z

267

NETL: IEP – Post-Combustion CO2 Emissions Control - Oxy-Combustion Boiler  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Combustion Boiler Material Development Oxy-Combustion Boiler Material Development Project No.: DE-NT0005262 CLICK ON IMAGE TO ENLARGE Foster Wheeler Oxy-combustion CFD Graphic The objectives of this Foster Wheeler Corporation-managed program are to assess the corrosion characteristics of oxy-combustion relative to air-fired combustion; identify the corrosion mechanisms involved; and determine the effects of oxy-combustion on conventional boiler tube materials, conventional protective coatings, and alternative materials and coatings when operating with high to low sulfur coals. The program involves the prediction of oxy-combustion gas compositions by computational fluid dynamic calculations, exposure of coupons of boiler materials and coverings coated with coal ash deposit to simulated oxy-combustion gases in electric

268

A fundamental study of biomass oxy-fuel combustion and co-combustion.  

E-Print Network [OSTI]

??While oxy-fuel combustion research is developing and large scale projects are proceeding, little information is available on oxy-biomass combustion and cocombustion with coal. To address… (more)

Farrow, Timipere Salome

2013-01-01T23:59:59.000Z

269

Estimating heat of combustion for waste materials  

SciTech Connect (OSTI)

Describes a method of estimating the heat of combustion of hydrocarbon waste (containing S,N,Q,C1) in various physical forms (vapor, liquid, solid, or mixtures) when the composition of the waste stream is known or can be estimated. Presents an equation for predicting the heat of combustion of hydrocarbons containing some sulfur. Shows how the method is convenient for estimating the heat of combustion of a waste profile as shown in a sample calculation.

Chang, Y.C.

1982-11-01T23:59:59.000Z

270

Supersonic combustion studies using a multivariate quadrature based method for combustion modeling  

E-Print Network [OSTI]

of predictive models for supersonic combustion is a critical step in design and development of scramjet engines

Raman, Venkat

271

Coal–biomass co-combustion: An overview  

Science Journals Connector (OSTI)

Abstract The energy sector in the global scenario faces a major challenge of providing energy at an affordable cost and simultaneously protecting the environment. The energy mix globally is primarily dominated by fossil fuels, coal being the major contributor. Increasing concerns on the adverse effect of the emissions arising from coal conversion technologies on the environment and the gradual depletion of the fossil fuel reserves had led to global initiatives on using renewables and other opportunity resources to meet the future energy demands in a sustainable manner. Use of coal with biomass as a supplementary fuel in the combustion or gasification based processes is a viable technological option for reducing the harmful emissions. Co-combustion of coal with biomass for electricity generation is gradually gaining ground in spite of the fact that their combustion behavior differ widely due to wide variations in their physical and chemical properties. This article deals with the technical aspects of co-combustion with emphasis on the fundamentals of devolatilization, ignition, burnout and ash deposition behavior along with the constraints and uncertainties associated with the use of different types of biomass of diverse characteristics and the likely impact of partial replacement of coal by biomass on the emission of CO2, SOx, NOx. Other issues of no less importance like sustained availability of biomass, transportation and storage, effect on biodiversity, etc., are left out in the study. The investigations reported in the study reflect the potential of biomass as co-fuel, and the scope of maximizing its proportion in the blend in the coal based power plants and the derived benefits.

S.G. Sahu; N. Chakraborty; P. Sarkar

2014-01-01T23:59:59.000Z

272

Researchers create successful predictions of combustion reaction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical reactions that take place during the combustion process, said Sandia's Ahren Jasper, the study's lead author. As they determine and understand the speeds and outcomes of...

273

combustion index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in electricity cost. Advanced Combustion Research Overview Experience with steam boilers has provided information on existing boiler alloys, but limited data is available at...

274

Optimization of Advanced Diesel Engine Combustion Strategies  

Broader source: Energy.gov (indexed) [DOE]

B, extending combustion duration Location B with dummy plug installed Location A with optics installed fiber to FTIR common rail injector common rail fuel spray Location B with...

275

Chemical Kinetic Models for Advanced Engine Combustion  

Broader source: Energy.gov (indexed) [DOE]

barriers to increased engine efficiency and decreased emissions by allowing optimization of fuels with advanced engine combustion 6 LLNL-PRES-652979 2014 DOE Merit Review...

276

Oxygen-Enriched Combustion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tip sheet discusses how an increase in oxygen in combustion air can reduce the energy loss in the exhaust gases and increase process heating system efficiency. PROCESS HEATING...

277

Vehicle Technologies Office: Advanced Combustion Strategies ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

element of LTC - is achieved by controlling the timing of the autoignition and rate of heat release. This process works to eliminate excessive combustion rates that can cause...

278

Advanced Combustion Concepts - Enabling Systems and Solutions...  

Broader source: Energy.gov (indexed) [DOE]

Fuel efficiency as key market driver Stringent emission requirements System cost of advanced combustion Targets 30% fuel efficiency improvement SULEV emissions...

279

Laser in situ monitoring of combustion processes  

Science Journals Connector (OSTI)

Several examples of laser in situ monitoring of combustion processes are presented. Using a frequency modulated 13CO2 waveguide laser, in situ concentrations of...

Arnold, A; Becker, H; Hemberger, R; Hentschel, W; Ketterle, W; Kollner, M; Meienburg, W; Monkhouse, P; Neckel, H; Schafer, M; Schindler, K P; Sick, V; Suntz, R; Wolfrum, J

1990-01-01T23:59:59.000Z

280

Supersonic Jet Sampling for Combustion Diagnostics  

Science Journals Connector (OSTI)

The purpose of this note is to describe a novel application of supersonic molecular beam spectrometry to the study of combustion processes in piston engines. In this technique,...

Whitten, W B

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced Control Methodology for Biomass Combustion.  

E-Print Network [OSTI]

??This thesis presents a feasibility study for a low cost sensor-based combustion control system using a predictive chemical kinetic model that captures efficiencies and pollution… (more)

Bjornsson, Stefan

2014-01-01T23:59:59.000Z

282

Partially Premixed Combustion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

that enables PPC to reach the market deer11andersson.pdf More Documents & Publications Combustion Model for Engine Concept Development Path to High Efficiency Gasoline Engine...

283

Research Teams - Combustion Energy Frontier Research Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Teams Research Teams Associates Greg Smith, Senior Research Chemist, SRI International Jeffrey A. Sutton, Assistant Professor, Ohio State Univeristy Combustion Energy...

284

Integrated Nozzle Flow, Spray, Combustion, & Emission Modeling...  

Broader source: Energy.gov (indexed) [DOE]

Combustion, and Emission Modeling Using KH-ACT Primary Breakup Model & Detailed Chemistry Sibendu Som, Douglas E. Longman Engine and Emissions Group (Energy Systems Division)...

285

Chemistry: Mechanism and Experiment - Combustion Energy Frontier...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry: Mechanism and Experiment Chemistry: Mechanism and Experiment The Mechanism and Experiment DWG uses an array of advanced experimental apparatus to probe the combustion...

286

File:FormAInstructionsStationarySource.pdf | Open Energy Information  

Open Energy Info (EERE)

FormAInstructionsStationarySource.pdf FormAInstructionsStationarySource.pdf Jump to: navigation, search File File history File usage File:FormAInstructionsStationarySource.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 75 KB, MIME type: application/pdf, 12 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:48, 1 November 2012 Thumbnail for version as of 11:48, 1 November 2012 1,275 × 1,650, 12 pages (75 KB) Dklein2012 (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information)

287

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Broader source: Energy.gov (indexed) [DOE]

& & Renewable Energy Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership Working Group April 14 th , 2010 2 * DOE Fuel Cell Market Transformation Overview * Overview of CHP Concept * Stationary Fuel Cells for CHP Applications * Partnering and Financing (Sam Logan) * Example Project Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power)

288

Theoretical studies of combustion dynamics  

SciTech Connect (OSTI)

The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

1993-12-01T23:59:59.000Z

289

Circulating fluidised-bed combustion  

SciTech Connect (OSTI)

Steam generators with circulating fluidized-bed combustion systems (CFBC) are characterized by a high degree of environmental comparability and a wide acceptance for FBC boiler plants involving a wide fuel spectrum which ranges from dried brown coal to high-ash coal and low-volatile bituminous coal as well as wood waste and bark. These plants incorporate a variety of CFBC systems. The choice in favor of different system options was not motivated by the inherent fuel properties but has evolved from the progressive advancement in power station FBC technology. The article elucidates several FBC system variants.

Rettemeier, W.; von der Kammer, G. (Steinmueller (L.u.C.) GmbH, Gummersbach (Germany, F.R.))

1990-01-01T23:59:59.000Z

290

COMBUSTION-ASSISTED CO2 CAPTURE USING MECC MEMBRANES  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO{sub 2} from power plant flue gas. Here a modified MECC CO{sub 2} capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO{sub 2} driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO{sub 2} in the flue gas may be captured, and a compressed CO{sub 2} product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO{sub 2} capture system, and has the potential to meet U.S. DOE's goal that deployment of a CO{sub 2} capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Brinkman, K.; Gray, J.

2012-03-30T23:59:59.000Z

291

Combustion-Assisted CO2 Capture Using MECC Membranes  

SciTech Connect (OSTI)

Mixed Electron and Carbonate ion Conductor (MECC) membranes have been proposed as a means to separate CO2 from power plant flue gas. Here a modified MECC CO2 capture process is analyzed that supplements retentate pressurization and permeate evacuation as a means to create a CO2 driving force with a process assisted by the catalytic combustion of syngas on the permeate side of the membrane. The combustion reactions consume transported oxygen, making it unavailable for the backwards transport reaction. With this change, the MECC capture system becomes exothermic, and steam for electricity production may be generated from the waste heat. Greater than 90% of the CO2 in the flue gas may be captured, and a compressed CO2 product stream is produced. A fossil-fueled power plant using this process would consume 14% more fuel per unit electricity produced than a power plant with no CO2 capture system, and has the potential to meet U.S. DOE s goal that deployment of a CO2 capture system at a fossil-fueled power plant should not increase the cost of electricity from the combined facility by more than 30%.

Sherman, Steven R [ORNL; Gray, Dr. Joshua R. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Brinkman, Dr. Kyle S. [Savannah River National Laboratory (SRNL), Aiken, S.C.; Huang, Dr. Kevin [University of South Carolina, Columbia

2012-01-01T23:59:59.000Z

292

Simulation of dust streaming in toroidal traps: Stationary flows  

SciTech Connect (OSTI)

Molecular-dynamic simulations were performed to study dust motion in a toroidal trap under the influence of the ion drag force driven by a Hall motion of the ions in E x B direction, gravity, inter-particle forces, and friction with the neutral gas. This article is focused on the inhomogeneous stationary streaming motion. Depending on the strength of friction, the spontaneous formation of a stationary shock or a spatial bifurcation into a fast flow and a slow vortex flow is observed. In the quiescent streaming region, the particle flow features a shell structure which undergoes a structural phase transition along the flow direction.

Reichstein, Torben; Piel, Alexander [IEAP, Christian-Albrechts-Universitaet, D-24098 Kiel (Germany)

2011-08-15T23:59:59.000Z

293

Alternative battery systems for transportation uses  

ScienceCinema (OSTI)

Argonne Distinguished Fellow Michael Thackeray highlights the need for alternative battery systems for transportation uses. Such systems will not only need to be smaller, lighter and more energy dense, but also able to make electric vehicles more competitive with internal combustion engine vehicles.

Michael Thackeray

2013-06-05T23:59:59.000Z

294

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...in the internal combustion engine will be highly beneficial. Clearly, the proposed...Transportation 1 SI Appendix General information and Assumption Total...of CH4 = 891 kJ/mol LHV of diesel assuming C15H32 = 43.987 MJ/kg. This...the gasifier. 5. Amount of diesel produced from ASPEN model using...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

295

Chemical looping combustion of coal in interconnected fluidized beds  

Science Journals Connector (OSTI)

Chemical looping combustion is the indirect combustion by use of oxygen carrier. It can...2...capture in power generating processes. In this paper, chemical looping combustion of coal in interconnected fluidized ...

LaiHong Shen; Min Zheng; Jun Xiao; Hui Zhang…

2007-04-01T23:59:59.000Z

296

Fuel reforming for scramjet thermal management and combustion optimization  

E-Print Network [OSTI]

Fuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ in a Scramjet combustion chamber. Another critical point is that mixing and combustion should be sufficiently

Paris-Sud XI, Université de

297

Pyrogenic Remobilization And Transport Of Toxic Metals  

E-Print Network [OSTI]

emissions during biomass combustion: Controlling factors andemissions during biomass combustion: Controlling factors andemissions during biomass combustion: Controlling factors and

Odigie, Kingsley O.

2014-01-01T23:59:59.000Z

298

Internal combustion engine intake valve  

SciTech Connect (OSTI)

In a inlet valve for use in an internal combustion engine in which the valve has a stem and a head, the head having, when seated, a first side positioned within a combustion chamber of an engine block and a second, opposite, side attached to the stem, the second side including that piston of the head forming the seat with the engine block when the valve is in a seated position, and first side including that portion of the head from the seat toward the chamber when the valve is in the seated position, and the engine including means for moving the valve from the closed position to an open position to allow a fuel mixture to enter the chamber, the improvement in the valve comprising: an extension ridge from the first side, positioned in alignment with the periphery of the valve head, the ridge forming with the seat a single, continuous, smooth outer surface along the periphery thereof for reducing the coefficient of drag of the fuel entering the chamber around the valve head when the valve is in the open position.

Mosler, W.B.

1988-10-25T23:59:59.000Z

299

Magnetic field effects on the thermonuclear combustion front of Chandrasekhar mass white dwarfs  

E-Print Network [OSTI]

The explosion of a type Ia supernova starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities, in particular, the Rayleigh-Taylor instability, begin to act. A cellular stationary combustion and a turbulent combustion regime are rapidly achieved by the flame and maintained up to the end of the so-called flamelet regime when the transition to detonation is believed to occur. The burning velocity at these regimes is well described by the fractal model of combustion. Using a semi-analytic approach, we describe the effect of magnetic fields on the fractalization of the front considering a white dwarf with a nearly dipolar magnetic field. We find an intrinsic asymmetry on the velocity field that may be maintained up to the free expansion phase of the remnant. Considering the strongest values inferred for a white dwarf's magnetic fields with strengths up to $10^{8}-10^{9}$ G at the surface and assuming that the field near the centre is roughly 10 times greater, asymmetries in the velocity field higher than $10-20 %$ are produced between the magnetic polar and the equatorial axis of the remnant which may be related to the asymmetries found from recent spectropolarimetric observations of very young SN Ia remnants. Dependence of the asymmetry with white dwarf composition is also analyzed.

Cristian R. Ghezzi; Elisabete M. de Gouveia Dal Pino; Jorge E. Horvath

2000-12-06T23:59:59.000Z

300

Method and system for controlled combustion engines  

DOE Patents [OSTI]

A system for controlling combustion in internal combustion engines of both the Diesel or Otto type, which relies on establishing fluid dynamic conditions and structures wherein fuel and air are entrained, mixed and caused to be ignited in the interior of a multiplicity of eddies, and where these structures are caused to sequentially fill the headspace of the cylinders.

Oppenheim, A. K. (Berkeley, CA)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Cool Flame Combustion of Ethanol  

Science Journals Connector (OSTI)

...research-article The Cool Flame Combustion of Ethanol J. Brown C. F. H. Tipper The kinetics...products of the cool flame combustion of ethanol between about 280 and 330 C have been...much less for a 1 : 2 than for a 1 : 1 ethanol/oxygen mixture at constant T and varied...

1969-01-01T23:59:59.000Z

302

Numerical modelling of MILD combustion for coal  

Science Journals Connector (OSTI)

Emissions of nitrogen oxides from coal combustion are a major environmental problem because they have been shown to contribute to the formation of acid rain and photochemical smog. Moderate and Intensive Low oxygen Dilution (MILD) combustion is a promising technology for decreasing pollutant emissions and improving combustion efficiency. A combination of air preheating and fuel dilution with combustion products of low oxygen concentration are the main features of this technique. In the MILD combustion mode, preheated air and fuel are gradually mixed with large amounts of recirculated exhaust gas. The objective of the present work is to investigate the capability of present fuel NO mechanisms for pulverised coal combustion to predict the observed nitrogen oxide levels in MILD combustion mode. For this purpose, knowledge of the fate of coal nitrogen during the combustion process is vital. The interaction between turbulence and chemistry is modelled by an advanced Eddy Dissipation Concept (EDC). The NOx model is used to predict NO profiles that are compared to measurements obtained from semi-industrial scale experiments.

Ju Pyo Kim; U. Schnell; G. Scheffknecht; A.C. Benim

2007-01-01T23:59:59.000Z

303

Redeeming features of in situ combustion  

SciTech Connect (OSTI)

In situ combustion remains the most tantalizing enhanced oil recovery method. It has been tested extensively - in over 150 field tests - in both heavy and light oil reservoirs. What we have learned from this experience is that in situ combustion works under most conditions, but the nature of the problems is such that it is seldom profitable. Also, looking at many previous in situ combustion tests, steam injection, and even waterflooding, would have been a better choice. Yet in situ combustion has unique features not found in any other EOR method. These must be weighed against its shortcomings to evaluate a potential application. This paper discusses the redeeming features of in situ combustion, in particular the reservoir conditions under which in situ combustion may be superior to other EOR methods are outlined. All variations of in situ combustion - forward, reverse, wet, dry - as well as combinations with other EOR methods are considered. The conclusions is that in situ combustion still has a place, and its future application would depend on research on certain crucial aspects of the process.

Farouq Ali, S.M. [Univ. of Alberta, Edmonton (Canada)

1995-02-01T23:59:59.000Z

304

NETL- High-Pressure Combustion Research Facility  

SciTech Connect (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2013-07-08T23:59:59.000Z

305

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

306

Coal slurry combustion and technology. Volume 2  

SciTech Connect (OSTI)

Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

Not Available

1983-01-01T23:59:59.000Z

307

NETL- High-Pressure Combustion Research Facility  

ScienceCinema (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2014-06-26T23:59:59.000Z

308

Pulse Combustion Characteristics of Various Gaseous Fuels  

Science Journals Connector (OSTI)

Pulse combustion performance of fuels with low and high heating values is also compared. ... Selected gaseous fuels such as low molecular weight hydrocarbons, high molecular weight hydrocarbons, biofuels, and mixed fuels are tested for pulse combustion, and their operational properties are presented and compared. ... Heat transfer data for several exptl. ...

Wu Zhonghua; Arun S. Mujumdar

2008-02-06T23:59:59.000Z

309

Combustion Modeling for Diesel Engine Control Design  

E-Print Network [OSTI]

Combustion Modeling for Diesel Engine Control Design Von der Fakult¨at f¨ur Maschinenwesen der Combustion Modeling for Diesel Engine Control Design WICHTIG: D 82 überprüfen !!! #12;Bibliographic research stays at General Motors R&D in Warren, MI, USA, possible. Furthermore, I would like thank Tom

Peters, Norbert

310

Boiler Combustion Control and Monitoring System  

Broader source: Energy.gov [DOE]

Efficiency of existing boilers can be improved in three ways; replacement with new boilers, replacement of the burner, or installation of a combustion control system. While installation of a new boiler or replacement of the burner can lead to the greatest efficiency gains, the higher costs associated with these measures typically leads to longer payback periods than combustion control systems.

311

Collaborative Combustion Research with BES | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Research with BES Collaborative Combustion Research with BES 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

312

Overview of Sonex Combustion Systems (SCS) for DI Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sonex Combustion Systems (SCS) for DI Engines Overview of Sonex Combustion Systems (SCS) for DI Engines The SCS system has undergone computational and experimental verification and...

313

Sandia National Laboratories: Low--Temperature Combustion Enables...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECFacilitiesCRFLow--Temperature Combustion Enables Cleaner, More Efficient Engines Low--Temperature Combustion Enables Cleaner, More Efficient Engines Assessing the Economic...

314

Evaluation of High Efficiency Clean Combustion (HECC) Strategies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion (HECC) Strategies for Meeting Future Emissions Regulations in Light-Duty Engines Evaluation of High Efficiency Clean Combustion (HECC) Strategies for Meeting Future...

315

2008 DOE Annual Merit Review Advanced Combustion Engines and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Combustion Engines and Fuels R&DTechnology Integration Plenary Session Overview 2008 DOE Annual Merit Review Advanced Combustion Engines and Fuels R&DTechnology...

316

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

317

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

318

Syngas Enhanced High Efficiency Low Temperature Combustion for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines Syngas Enhanced High Efficiency Low Temperature Combustion for Clean Diesel Engines A significant...

319

Non-Petroleum-Based Fuel Effects on Advanced Combustion | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Petroleum-Based Fuel Effects on Advanced Combustion Non-Petroleum-Based Fuel Effects on Advanced Combustion 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit...

320

Catalyst for Improving the Combustion Efficiency of Petroleum...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines 2005 Diesel...

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

World's Largest Post-Combustion Carbon Capture Project Begins...  

Broader source: Energy.gov (indexed) [DOE]

World's Largest Post-Combustion Carbon Capture Project Begins Construction World's Largest Post-Combustion Carbon Capture Project Begins Construction July 15, 2014 - 9:55am Addthis...

322

The Role of Advanced Combustion in Improving Thermal Efficiency  

Broader source: Energy.gov [DOE]

Combustion plays an important role in enabling high thermal efficiencies. Technologies that deliver short combustion duration and low soot emissions are needed.

323

Low-Temperature Diesel Combustion Cross-Cut Research | Department...  

Broader source: Energy.gov (indexed) [DOE]

Low-Temperature Diesel Combustion A Conceptual Model for Partially PremixedLow-Temperature Diesel Combustion Based onIn-Cylinder Laser Diagnostics and Chemical Kinetics Modeling...

324

Enabling High Efficiency Clean Combustion with Micro-Variable...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of variable orifice fuel injector are described that will extend the operation maps of early PCCI combustion and enable dual-mode combustion over full operating maps....

325

Low-Temperature Diesel Combustion Cross-Cut Research | Department...  

Broader source: Energy.gov (indexed) [DOE]

Low-Temperature Diesel Combustion Cross-Cut Research Low-Temperature Diesel Combustion Cross-Cut Research 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review...

326

Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...  

Office of Environmental Management (EM)

Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in...

327

Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion  

E-Print Network [OSTI]

and volumetric heats of combustion in biofuels render themVaporization [kJ/kg] Heat of Combustion [kJ/kg] †Estimated

Sevilla Esparza, Cristhian Israel

2013-01-01T23:59:59.000Z

328

2014 Annual Merit Review Results Report - Advanced Combustion...  

Energy Savers [EERE]

Advanced Combustion Engine Technologies 2014 Annual Merit Review Results Report - Advanced Combustion Engine Technologies Merit review of DOE Vehicle Technologies research...

329

Advanced Combustion Technology to Enable High Efficiency Clean...  

Broader source: Energy.gov (indexed) [DOE]

Combustion System + Air Handling Air Handling + Sensors + Calibration Low P, High Flow Rate EGR + VVA - Simulated Robustness Advanced Combustion Concepts - Simulated 0.0...

330

2.61 Internal Combustion Engines, Spring 2004  

E-Print Network [OSTI]

Fundamentals of how the design and operation of internal combustion engines affect their performance, operation, fuel requirements, and environmental impact. Study of fluid flow, thermodynamics, combustion, heat transfer ...

Heywood, John B.

331

Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines  

Broader source: Energy.gov [DOE]

Document:  ace012_flowers_2013_o.pdfTechnology Area: Advanced Combustion; Combustion and Emissions ControlPresenter: Dan FlowersPresenting Organization: Lawrence Livermore National Laboratory (LLNL...

332

Haraldrud Municipal Solid Waste Combustion Plant in Oslo.  

E-Print Network [OSTI]

??This thesis has studied Haraldrud MSW combustion process. Haraldrud is a realcombustion plant burning waste for citizens of Oslo. A thoroughly description ofthe combustion process… (more)

Gudim, Simen Johan

2011-01-01T23:59:59.000Z

333

Combustion Turbine CHP System for Food Processing Industry -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Turbine CHP System for Food Processing Industry - Presentation by Frito-Lay North America, June 2011 Combustion Turbine CHP System for Food Processing Industry -...

334

Oxygen-Enriched Combustion for Military Diesel Engine Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

335

Modeling Combustion Control for High Power Diesel Mode Switching...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Control for High Power Diesel Mode Switching Modeling Combustion Control for High Power Diesel Mode Switching Poster presentation given at the 16th Directions in...

336

High Efficiency Clean Combustion for Heavy-Duty Engine  

Broader source: Energy.gov [DOE]

Explore advancements in engine combustion systems using high-efficiency clean combustion (HECC) techniques to minimize engine-out emissions while optimizing fuel economy.

337

Low Temperature Combustion and Diesel Emission Reduction Research...  

Broader source: Energy.gov (indexed) [DOE]

Low Temperature Combustion and Diesel Emission Reduction Research Low Temperature Combustion and Diesel Emission Reduction Research Presentation given at DEER 2006, August 20-24,...

338

Dilute Clean Diesel Combustion Achieves Low Emissions and High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dilute Clean Diesel Combustion Achieves Low Emissions and High Efficiency While Avoiding Control Problems of HCCI Dilute Clean Diesel Combustion Achieves Low Emissions and High...

339

Unregulated Emissions from High-Efficiency Clean Combustion Modes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Unregulated Emissions from High-Efficiency Clean Combustion Modes - ORNL-FEERC Poster presentation at...

340

Low-Temperature Automotive Diesel Combustion | Department of...  

Energy Savers [EERE]

Diesel Combustion Low-Temperature Automotive Diesel Combustion 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

State Grid Biomass Fuel and Combustion Technology Laboratory...  

Open Energy Info (EERE)

Combustion Technology Laboratory Jump to: navigation, search Name: State Grid Biomass Fuel and Combustion Technology Laboratory Place: Beijing Municipality, China Sector: Biomass...

342

Fuel Effects on Ignition and Their Impact on Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ignition and Their Impact on Advanced Combustion Engines Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24,...

343

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

344

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

345

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of hydrogen...

346

Heavy-Duty Low Temperature Combustion Development Activities...  

Broader source: Energy.gov (indexed) [DOE]

soot emissions - Cylinder pressure and rise rate limits - Low load combustion stabilityignition Robust combustion control - Cylinder-to-cylinder variability - Ambient...

347

Modeling of High Efficiency Clean Combustion Engines | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

merit08flowers.pdf More Documents & Publications Modeling of HCCI and PCCI Combustion Processes Numerical Modeling of HCCI Combustion Improving alternative fuel utilization:...

348

Modeling of HCCI and PCCI Combustion Processes | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HCCI and PCCI Combustion Processes Modeling of HCCI and PCCI Combustion Processes 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

349

Factors Affecting HCCI Combustion Phasing for Fuels with Single...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry Factors Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry 2004...

350

CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry  

Broader source: Energy.gov [DOE]

A method is presented that allows for efficient conditional moment closure combustion simulations through the use of a progress variable based parameterization of the combustion chemistry.

351

CFD Combustion Modeling with Conditional Moment Closure using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry A method is...

352

Accurate Predictions of Fuel Effects on Combustion and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Combustion and Emissions in Engines Using CFD Simulations With Detailed Fuel Chemistry Accurate Predictions of Fuel Effects on Combustion and Emissions in Engines Using...

353

Numerical Modeling of PCCI Combustion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling of HCCI and PCCI Combustion Processes Numerical Modeling of HCCI Combustion Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines...

354

Fuel Effects on Advanced Combustion Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Greenpower Trap Mufflerl System Low-Temperature Diesel Combustion...

355

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen...

356

Light-Duty Diesel Combustion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Light-Duty Diesel Combustion Light-Duty Diesel Combustion 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting...

357

Light Duty Efficient Clean Combustion | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Efficient Clean Combustion Light Duty Efficient Clean Combustion 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

358

Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Advanced Diesel Combustion with Low Hydrocarbon and Carbon Monoxide Emissions Poster presented at the 16th Directions...

359

Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle  

DOE Patents [OSTI]

A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

2013-12-17T23:59:59.000Z

360
Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oxy-coal Combustion Studies  

SciTech Connect (OSTI)

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?¢ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?¢ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?¢ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?¢ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?¢ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?¢ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

362

Argonne TTRDC - Engines - Combustion Visualization - emissions,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Visualization Combustion Visualization Exploring Combustion Using Advanced Imaging Techniques In the photo, the GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Fig. 1. The GM diesel test cell is shown with vehicle exhaust aftertreatment hardware (diesel particulate filtration and diesel oxidation catalyst) along with other advanced technology-such as a variable geometry turbocharger, cooled exhaust gas recirculation and a common-rail fuel injection system. Two-dimensional image of hydrogen combustion OH chemiluminescence. Fig. 2. Two-dimensional image of hydrogen combustion OH chemiluminescence.

363

Fine Particle Emissions from Combustion Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fine Particle Emissions from Combustion Systems Fine Particle Emissions from Combustion Systems Speaker(s): Allen Robinson Date: November 11, 2005 - 12:00pm Location: 90-3122 Combustion systems such as motor vehicles and power plants are major sources of fine particulate matter. This talk describes some of the changes in fine particle emissions that occur as exhaust from combustion systems mix with background air. This mixing cools and dilutes the exhaust which influences gas-particle partitioning of semi-volatile species, the aerosol size distribution, and the fine particle mass. Dilution sampling is used to characterize fine particle emissions from combustion systems because it simulates the rapid cooling and dilution that occur as exhaust mixes with the atmosphere. Results from dilution sampler

364

Advanced Combustion Technologies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Science & Innovation » Clean Coal » Advanced Combustion Science & Innovation » Clean Coal » Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant emissions in advanced power cycles using gas turbines. Photo courtesy of NETL Multimedia. Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses laser-based Rayleigh light scattering to measure flame density and speed over a flat flame burner. Oxyfuel combustion, using oxygen in place of air with diluents such as steam or carbon dioxide, can reduce pollutant

365

STATIONARY MEASURES FOR PROJECTIVE TRANSFORMATIONS: THE BLACKWELL AND  

E-Print Network [OSTI]

STATIONARY MEASURES FOR PROJECTIVE TRANSFORMATIONS: THE BLACKWELL AND FURSTENBERG MEASURES B. B´AR´ANY, M. POLLICOTT AND K. SIMON Abstract. In this paper we study the Blackwell and Furstenberg measures. For the Blackwell measure we determine parameter domains of singularity and give upper bounds for the Hausdorff

Pollicott, Mark

366

Ceramic stationary gas turbine development. Final report, Phase 1  

SciTech Connect (OSTI)

This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.

NONE

1994-09-01T23:59:59.000Z

367

Information In The Non-Stationary Case Vincent Q. Vu  

E-Print Network [OSTI]

Information In The Non-Stationary Case Vincent Q. Vu , Bin Yu , Robert E. Kass {vqv, binyu Information estimates such as the "direct method" of Strong et al. (1998) sidestep the difficult problem, it tempts the practitioner to ignore the role of the stimulus and the meaning of mutual information. We show

Yu, Bin

368

Energy and Momentum of a Stationary Beam of Light  

E-Print Network [OSTI]

The energy-momentum complexes of Einstein, Landau-Lifshitz, Papapetrou, and Weinberg give the same and meaningful results for the energy and momentum of the Bonnor spacetime describing the gravitational field of a stationary beam of light. The results support the Cooperstock hypothesis.

Thomas T. Bringley

2002-04-02T23:59:59.000Z

369

Comparing the greenhouse gas emissions from three alternative waste combustion concepts  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.

Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Tsupari, Eemeli; Sipilae, Kai [VTT, Koivurannantie 1, FIN 40101 Jyvaeskylae (Finland); Hupa, Mikko [Aabo Akademi Process Chemistry Centre, Piispankatu 8, FIN 20500 Turku (Finland)

2012-03-15T23:59:59.000Z

370

Vehicle Technologies Office: 2008 Oak Ridge Transportation Technology Program Annual Report  

Broader source: Energy.gov [DOE]

Oak Ridge National Laboratory supports the Vehicle Technologies Office by conducting work in advanced power electronics and electric machines; transportation policy and analysis; fuel economy outreach; fuels technologies; advanced combustion engines; propulsion materials; and vehicle systems.

371

Transport reactor development status  

SciTech Connect (OSTI)

This project is part of METC`s Power Systems Development Facility (PSDF) located at Wilsonville, Alabama. The primary objective of the Advanced Gasifier module is to produce vitiated gases for intermediate-term testing of Particulate Control Devices (PCDs). The Transport reactor potentially allows particle size distribution, solids loading, and particulate characteristics in the off-gas stream to be varied in a number of ways. Particulates in the hot gases from the Transport reactor will be removed in the PCDs. Two PCDs will be initially installed in the module; one a ceramic candle filter, the other a granular bed filter. After testing of the initial PCDs they will be removed and replaced with PCDs supplied by other vendors. A secondary objective is to verify the performance of a Transport reactor for use in advanced Integrated Gasification Combined Cycle (IGCC), Integrated Gasification Fuel Cell (IG-FC), and Pressurized Combustion Combined Cycle (PCCC) power generation units. This paper discusses the development of the Transport reactor design from bench-scale testing through pilot-scale testing to design of the Process Development Unit (PDU-scale) facility at Wilsonville.

Rush, R.E.; Fankhanel, M.O.; Campbell, W.M.

1994-10-01T23:59:59.000Z

372

An important challenge in magnetic fusion research is to obtain high energy confinement in a stationary plasma that will be co  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ways to reduce your tokamak heating bill: Gaining control of edge transport Ways to reduce your tokamak heating bill: Gaining control of edge transport barriers on Alcator C-Mod A crucial challenge in magnetic fusion is to obtain high energy confinement in a stationary plasma that is compatible with the engineering requirements of a fusion reactor. The triggering of edge transport barriers at the boundary of confined plasma is a common approach to obtaining high energy confinement, in a regime known as H-mode, which extrapolates to high performance in ITER and other burning plasma devices. However, barriers to energy transport can sometimes be self-defeating, since they also provide a strong barrier to particle transport. This can lead to enhanced confinement of impurities in the plasma core, excessive radiated power and deterioration of performance for a given

373

Axial cylinder internal combustion engine  

SciTech Connect (OSTI)

This patent describes improvement in a barrel type internal combustion engine including an engine block having axial-positioned cylinders with reciprocating pistons arranged in a circular pattern: a drive shaft concentrically positioned within the cylinder block having an offset portion extending outside the cylinder block; a wobble spider rotatably journaled to the offset portion; connecting rods for each cylinder connecting each piston to the wobble spider. The improvement comprising: a first sleeve bearing means supporting the drive shaft in the engine block in a cantilevered manner for radial loads; a second sleeve bearing means rotatably supporting the wobble spider on the offset portion of the drive shaft for radial loads; a first roller bearing means positioned between the offset portion of the drive shaft and the wobble spider carrying thrust loadings only; a second roller bearing means carrying thrust loads only reacting to the first roller bearing located on the opposite end of the driveshaft between the shaft and the engine block.

Gonzalez, C.

1992-03-10T23:59:59.000Z

374

Advances in pulverized coal combustion  

SciTech Connect (OSTI)

A combustion system has been developed to operate cost effectively in the difficult regulatory and economic climate of the 1980's. The system is designed to reduce auxiliary fuel oil comsumption by at least 30% while meeting all relevant emissions limits. This is achieved with the fewest components consistent with practical reliable design criteria. The Controlled Flow Split/Flame low NO/sub x/ burner, MBF pulverizer and Two-Stage ignition system are integrated into a mutually supporting system which is applicable to both new steam generators and, on a retrofit basis, to existing units. In the future, a pulverized coal ignition system will be available to eliminate fuel oil use within the boiler.

Vatsky, J.

1981-01-01T23:59:59.000Z

375

Economic Comparison of Automobiles with Electric and with Combustion Engines: An Analytical Study  

Science Journals Connector (OSTI)

Abstract Automobiles with electric motor are becoming increasingly attractive alternative to the car with combustion engine, considering the effects on the environment as well as economic factors such as gradual increasing price of fluid fossil fuels and others. The European Union and therefore all member countries try to produce the least possible impact of activities on the environment in which we live. Transport is a sector of the national economy, which largely affects the environment. An effort to reduce the impact of road transport is therefore logical. The actual trend is the promotion of electric cars and the gradual replacement of combustion vehicles with “electro mobiles”. The aim of the paper is to analyze the impact of production, operation and fluidation of automobiles with electric and with combustion engines on the environment and economic interpretation of their effects on the economy. Direct and indirect effects of individual automobile types on the environment, with emphasis on air pollution, are described in the paper. The economic analysis is aimed to evaluate the effectiveness of investment comparing electric powered and combustion engine powered cars, considering the use by individuals and companies.

Rastislav Rajnoha; Martin Jankovský; Martina Merková

2014-01-01T23:59:59.000Z

376

PHYSICAL REVIEW E 85, 026211 (2012) Weakly subcritical stationary patterns: Eckhaus instability and homoclinic snaking  

E-Print Network [OSTI]

PHYSICAL REVIEW E 85, 026211 (2012) Weakly subcritical stationary patterns: Eckhaus instability from subcritical to supercritical stationary periodic patterns is described by the one of localized structures in systems exhibiting homoclinic snaking during the transition from subcriticality

Knobloch, Edgar

377

Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset 2005 Diesel Engine Emissions...

378

Vehicle Technologies Office: Advanced Combustion Engines  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Engines Combustion Engines Improving the efficiency of internal combustion engines is one of the most promising and cost-effective near- to mid-term approaches to increasing highway vehicles' fuel economy. The Vehicle Technologies Office's research and development activities address critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles. This technology has great potential to reduce U.S. petroleum consumption, resulting in greater economic, environmental, and energy security. Already offering outstanding drivability and reliability to over 230 million passenger vehicles, internal combustion engines have the potential to become substantially more efficient. Initial results from laboratory engine tests indicate that passenger vehicle fuel economy can be improved by more than up to 50 percent, and some vehicle simulation models estimate potential improvements of up to 75 percent. Advanced combustion engines can utilize renewable fuels, and when combined with hybrid electric powertrains could have even further reductions in fuel consumption. As the EIA reference case forecasts that by 2035, more than 99 percent of light- and heavy-duty vehicles sold will still have internal combustion engines, the potential fuel savings is tremendous.

379

Low NOx combustion system for heavy oil  

SciTech Connect (OSTI)

As a result of the increasing demand for white oil as one of countermeasures for pollution control and as a fuel for motor vehicle, coupled with the increasing import of heavy crude oil, heavy oils such as asphalt and distillation residue have become surplus in Japan. It is difficult by the conventional low NOx technology to control the NOx emission from the industrial small and medium capacity boilers, which use heavy oil as their fuels. The authors have been developing and improving NOx control technologies for boilers such as low NOx burners, two-stage combustion methods and so on. They have developed a new combustion system for heavy oil, which generates less NOx and soot than conventional systems, by applying the knowledge, obtained in the course of their development of Coal Partial Combustor (CPC). The conventional low NOx combustion method for oil firing boilers has been developed based on decreasing the flame temperature and delaying the combustion reaction. In the system, however, the heavy oil shall be combusted in the intense reducing atmosphere at the high flame temperature between 1,500 C and 1,600 C, and then the combustions gas shall be cooled and oxidized by two-stage combustion air. With this system, NOx emission can be suppressed below 100ppm (converted as O{sub 2}=4%).

Kurata, Chikatoshi; Sasaki, Hideki

1999-07-01T23:59:59.000Z

380

Anisotropic fluids in the case of stationary and axisymmetric spaces of General Relativity  

E-Print Network [OSTI]

We present a stationary axisymmetric solution belonging to Carter's family [A] of spaces and representing an anisotropic fluid configuration.

T. Papakostas

2001-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gas turbine alternative fuels combustion characteristics  

SciTech Connect (OSTI)

An experimental investigation was conducted to obtain combustion performance and exhaust pollutant concentrations for specific synthetic hydrocarbon fuels. Baseline comparison fuels used were gasoline and diesel fuel number two. Testing was done over a range of fuel to air mass ratios, total mass flow rates, and input combustion air temperatures in a flame-tube-type gas turbine combustor. Test results were obtained in terms of released heat and combustion gas emission values. The results were comparable to those obtained with the base fuels with variations being obtained with changing operating conditions. The release of carbon particles during the tests was minimal. 22 refs., 12 figs., 2 tabs.

Rollbuhler, R.J.

1989-02-01T23:59:59.000Z

382

In Situ NMR Spectroscopy of Combustion  

Science Journals Connector (OSTI)

In situ nuclear magnetic resonance spectroscopy (NMR) of high-temperature reactions is of potential value for the investigation of catalytic combustion and other high-temperature applications of catalysts such as partial oxidation of hydrocarbons and steam reforming. ... Two-dimensional (2D) studies of gas exchange within different heat zones of the combustion process provide valuable insights into the gas-phase dynamics. ... This may be the case at the high combustion temperatures, but neither experimental nor theoretical xenon chemical shift data is available in current literature for temperatures above 1000 K. ...

Satyanarayana Anala; Galina E. Pavlovskaya; Prakash Pichumani; Todd J. Dieken; Michael D. Olsen; Thomas Meersmann

2003-10-07T23:59:59.000Z

383

Combustion in cracks of PBX 9501  

SciTech Connect (OSTI)

Recent experiments involving the combustion of PBX 9501 explosive under confined conditions reveal the importance of crack and flaws in reaction violence. Experiments on room temperature confined disks of pristine and thermally damaged PBX 9501 reveal that crack ignition depends on hot gases entering existing or pressure induced cracks rather than on energy release at the crack tip. PBX 9501 slot combustion experiments show that the reaction propagation rate in the slot does not depend on the external pressure. We have observed 1500 d s in long slots of highly-confined PBX 9501. We present experiments that examine the combustion of mechanically and thermally damaged samples of PBX 9501.

Berghout, H. L. (Henry L.); Son, S. F. (Steven F.); Bolme, C. A. (Cynthia A.); Hill, L. G. (Larry G.); Asay, B. W. (Blaine W.); Dickson, P. M. (Peter M.); Henson, B. F. (Bryan F.); Smilowitz, L. B. (Laura B.)

2002-01-01T23:59:59.000Z

384

Diesel knock noise from combustion phenomenon to perceived signals  

E-Print Network [OSTI]

Diesel knock noise from combustion phenomenon to perceived signals O. Sauvagea , A. Lauracb , M for reducing Diesel knock are modifications of engine parameters used for controlling combustion processes-acoustic properties, throught its noticeable combustion noise (also called "Diesel knock"). Combustion noise generated

Paris-Sud XI, Université de

385

Thermodynamic Analysis of Alternative Approaches to Chemical Looping Combustion  

Science Journals Connector (OSTI)

Thermodynamic Analysis of Alternative Approaches to Chemical Looping Combustion ... Because H2 and syngas have similar combustion irreversibilities, when reforming is done optimally (with TR close to 650 K), iso-octane can be combusted with the same efficiency as that of preheated, isothermal H2 combustion. ... A loop of chem. ...

V. Kalyana Chakravarthy; C. Stuart Daw; Josh A. Pihl

2011-01-19T23:59:59.000Z

386

US National Technical Meeting of the Combustion Institute  

E-Print Network [OSTI]

potential to enhance combustion performance in gas turbines and scramjet engines. Extensive efforts have

Ju, Yiguang

387

Robust Feedback Control of Combustion Instability with Modeling Uncertainty  

E-Print Network [OSTI]

to mod- ulate combustion processes in propulsion sys- tems has recently received extensive attention [1

Ray, Asok

388

Existence of quasi-stationary measures for asymmetric attractive particle systems on Z d .  

E-Print Network [OSTI]

exhibit a sequence of measures f#23; n g, whose !-limit set consists of quasi- stationary measures. For zero range processes, with stationary measure #23; #26; , we prove the existence of an L 2 (#23; #26 on the f#23; n g. Keywords and phrases: quasi-stationary measures, hitting time, Yaglom limit. AMS 2000

Castell, Fabienne

389

Transportation Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

390

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

391

Emission formation during wood log combustion in fireplaces â?? part I: volatile combustion stage  

Science Journals Connector (OSTI)

A CFD-based tool for the analysis of combustion and emissions in batch-fired wood log combustion is introduced. It consists of submodels for drying and pyrolysis of a wood log, for combustion of volatilised fuel and char, for radiative heat transfer, and for NO formation implemented in a commercial CFD-programme (Fluent) for turbulent flows. Comparing model predictions to experimental data in a test oven shows the applicability of the different submodels and combination of them.

M. Huttunen; J. Saastamoinen; P. Kilpinen; L. Kjaldman; H. Oravainen; S. Bostrom

2006-01-01T23:59:59.000Z

392

Feature-Based Statistical Analysis of Combustion Simulation Data  

SciTech Connect (OSTI)

We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing and reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.

Bennett, J; Krishnamoorthy, V; Liu, S; Grout, R; Hawkes, E; Chen, J; Pascucci, V; Bremer, P T

2011-11-18T23:59:59.000Z

393

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

394

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

SciTech Connect (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

395

Alpha Channeling in Rotating Plasma with Stationary Waves  

SciTech Connect (OSTI)

An extension of the alpha channeling effect to supersonically rotating mirrors shows that the rotation itself can be driven using alpha particle energy. Alpha channeling uses radiofrequency waves to remove alpha particles collisionlessly at low energy. We show that stationary magnetic fields with high n? can be used for this purpose, and simulations show that a large fraction of the alpha energy can be converted to rotation energy.

A. Fetterman and N.J. Fisch

2010-02-15T23:59:59.000Z

396

Biomass Combustion Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Combustion Systems Inc Combustion Systems Inc Jump to: navigation, search Name Biomass Combustion Systems Inc Address 67 Millbrook St Place Worcester, Massachusetts Zip 01606 Sector Biomass Product Combustion systems for wood fuel Website http://www.biomasscombustion.c Coordinates 42.290195°, -71.799627° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.290195,"lon":-71.799627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Chemical Looping for Combustion and Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ChemiCal looping for Combustion and ChemiCal looping for Combustion and hydrogen produCtion Objective The objective of this project is to determine the benefits of chemical looping technology used with coal to reduce CO 2 emissions. Background Chemical looping is a new method to convert coal or gasified coal to energy. In chemical looping, there is no direct contact between air and fuel. The chemical looping process utilizes oxygen from metal oxide oxygen carrier for fuel combustion, or for making hydrogen by "reducing" water. In combustion applications, the products of chemical looping are CO 2 and H 2 O. Thus, once the steam is condensed, a relatively pure stream of CO 2 is produced ready for sequestration. The production of a sequestration ready CO 2 stream does not require any additional separation units

398

Coal fuel slurry for internal combustion engines  

Science Journals Connector (OSTI)

A technoeconomic study of the production of coal-water fuel slurry for internal combustion engines and thermal power plants was performed. Based on the accumulated experimental data, it was found that, in the ...

N. I. Red’kina; G. S. Khodakov; E. G. Gorlov

2013-09-01T23:59:59.000Z

399

The Role of Volatiles in Coal Combustion  

Science Journals Connector (OSTI)

Our knowledge of the role of volatiles in coal combustion ranges at this time from the self-evident to the ambiguous. The clearest point on which all agree is that pyrolysis will occur during the total coal co...

Robert H. Essenhigh; Eric M. Suuberg

1987-01-01T23:59:59.000Z

400

Oil shale retorting and combustion system  

DOE Patents [OSTI]

The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Control of NOx by combustion process modifications  

E-Print Network [OSTI]

A theoretical and experimental study was carried out to determine lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel oil. Thermodynamic and chemical kinetic calculations have shown minimum NOx emissions ...

Ber?, J. M.

1981-01-01T23:59:59.000Z

402

Virtual Design of Stirling Engine Combustion Chamber  

Science Journals Connector (OSTI)

The paper deals with the designing of a combustion chamber of the Stirling engine using the CFD approach. Virtual prototypes enabled ... . The presented results help to increase the Stirling engine efficiency tog...

Z. Kaplan; P. Novotný; V. Píšt?k

2010-01-01T23:59:59.000Z

403

Vortex driven flame dynamics and combustion instability  

E-Print Network [OSTI]

Combustion instability in premixed combustors mostly arises due to the coupling between heat release rate dynamics and system acoustics. It is crucial to understand the instability mechanisms to design reliable, high ...

Altay, Hurrem Murat

2005-01-01T23:59:59.000Z

404

State of Industrial Fluidized Bed Combustion  

E-Print Network [OSTI]

A new combustion technique has been developed in the last decade that permits the burning of low quality coal, lignite and other fuels, while maintaining stack emissions within State and Federal limits. Low quality fuels can be burned directly...

Mesko, J. E.

1982-01-01T23:59:59.000Z

405

Stationary Nonaxisymmetric Configurations of Magnetized Singular Isothermal Disks  

E-Print Network [OSTI]

Accepted.... Received...; in original form... We construct both aligned and unaligned (logarithmic spiral) stationary configurations of nonaxisymmetric magnetohydrodynamic (MHD) disks from either a full or a partial razor-thin power-law axisymmetric magnetized singular isothermal disk (MSID) that is embedded with a coplanar azimuthal magnetic field B? of a non-force-free radial scaling r?1/2 and that rotates differentially with a flat rotation curve of speed aD, where a is the isothermal sound speed and D is the dimensionless rotation parameter. Analytical solutions and stability criteria for determining D2 are derived. For aligned nonaxisymmetric MSIDs, eccentric m = 1 displacements may occur at arbitrary D2 in a full MSID but are allowed only with a2D2 = C2 A /2 in a partial MSID (CA is the Alfvén speed), while each case of |m | ? 1 gives two possible values of D2 for purely azimuthal propagations of fast and slow MHD density waves (FMDWs and SMDWs) that appear stationary in an inertial frame of reference. For disk galaxies modeled by a partial MSID resulting from a massive dark-matter halo with a flat rotation curve and a2D2 ? C2 A, stationary aligned perturbations of m = 1 are not allowed. For

Yu-qing Lou

2003-01-01T23:59:59.000Z

406

Non-stationary measurements of Chiral Magnetic Effect  

SciTech Connect (OSTI)

We discuss the Chiral Magnetic Effect from the quantum theory of measurements point of view for non-stationary measurements. The effect of anisotropy for fluctuations of electric currents in a magnetic field is addressed. It is shown that anisotropy caused by nonzero axial chemical potential is indistinguishable in this framework from anisotropy caused by finite measurement time or finite lifetime of the magnetic field, and in all cases it is related to abelian triangle anomaly. Possible P-odd effects in central heavy-ion collisions (where the Chiral Magnetic Effect is absent) are discussed in this context. This paper is dedicated to the memory of Professor Mikhail Polikarpov (1952–2013). -- Highlights: •Asymmetry in the response function for vector currents of massless fermions in the magnetic field is computed. •Asymmetry caused by axial chemical potential is practically indistinguishable from the one caused by non-stationarity. •The CME current is non-dissipative in the stationary case and dissipative in the non-stationary case. •Importance of studies of P-odd signatures in central collisions is emphasized.

Shevchenko, V.I., E-mail: vladimir.i.shevchenko@gmail.com

2013-12-15T23:59:59.000Z

407

Coal Combustion Products Extension Program  

SciTech Connect (OSTI)

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

408

Fundamental Studies in Syngas Premixed Combustion Dynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studies Studies in Syngas Premixed Combustion Dynamics Ahmed F. Ghoniem, Anuradha M. Annaswamy, Raymond L. Speth, H. Murat Altay Massachusetts Institute of Technology SCIES Project 05-01-SR121 Project Awarded (08/01/2005, 36 Month Duration) Needs & Objectives Gas Turbine Needs Flexibility to operate with variable syngas compositions Ensure stable operation over a wide range of conditions Reduce emissions of CO and NO x Project Objectives Study experimentally lean premixed syngas combustion

409

Building America Expert Meeting: Combustion Safety  

SciTech Connect (OSTI)

This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

Brand, L.

2013-03-01T23:59:59.000Z

410

The dynamics of combustion fronts in porous media  

SciTech Connect (OSTI)

In this report, a method for solving this problem by treating the reaction region as a place of discontinuities in the appropriate variables, which include, for example, fluxes of heat and mass was proposed. Using a rigorous perturbation approach, similar to that used in the propagation of flames and smoldering combustion, appropriate jump conditions that relate the change in these variables across the front was derived. These conditions account for the kinetics of the reaction between the oxidant and the fuel, the changes in the morphology of the pore space and the heat and mass transfer in the reaction zone. The modeling of the problem reduces to the modeling of the dynamics of a combustion front, on the regions of either side of which transport of momentum (fluids), heat and mass, but not chemical reactions, must be considered. Properties of the two regions are coupled using the derived jump conditions. This methodology allows one to explicitly incorporate permeability heterogeneity effects in the process description, without the undue complexity of the coupled chemical reactions.

Akkutlu, I. Yucel; Yortsos, Yannis C.

2000-06-15T23:59:59.000Z

411

A spray-suppression model for turbulent combustion  

SciTech Connect (OSTI)

A spray-suppression model that captures the effects of liquid suppressant on a turbulent combusting flow is developed and applied to a turbulent diffusion flame with water spray suppression. The spray submodel is based on a stochastic separated flow approach that accounts for the transport and evaporation of liquid droplets. Flame extinguishment is accounted for by using a perfectly stirred reactor (PSR) submodel of turbulent combustion. PSR pre-calculations of flame extinction times are determined using CHEMKIN and are compared to local turbulent time scales of the flow to determine if local flame extinguishment has occurred. The PSR flame extinguishment and spray submodels are incorporated into Sandia's flow fire simulation code, VULCAN, and cases are run for the water spray suppression studies of McCaffrey for turbulent hydrogen-air jet diffusion flames. Predictions of flame temperature decrease and suppression efficiency are compared to experimental data as a function of water mass loading using three assumed values of drop sizes. The results show that the suppression efficiency is highly dependent on the initial droplet size for a given mass loading. A predicted optimal suppression efficiency was observed for the smallest class of droplets while the larger drops show increasing suppression efficiency with increasing mass loading for the range of mass loadings considered. Qualitative agreement to the experiment of suppression efficiency is encouraging, however quantitative agreement is limited due to the uncertainties in the boundary conditions of the experimental data for the water spray.

DESJARDIN,PAUL E.; TIESZEN,SHELDON R.; GRITZO,LOUIS A.

2000-02-14T23:59:59.000Z

412

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect (OSTI)

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

413

Effect of Oxyfuel Combustion on Superheater Corrosion  

SciTech Connect (OSTI)

Combustion of coal in an oxygen environment (as opposed to air) will facilitate the sequestering of carbon dioxide by minimizing the amount of nitrogen in the exit gas stream. The presence of higher levels of certain gases associated with oxyfuel combustion (eg, CO2, SO2, and H2O) may impact the corrosion of waterwalls, superheaters, headers, reheaters, and other boiler components. Research is being conducted on bare and ash-embedded boiler tube materials in simulated oxyfuel- combustion and air-combustion environments at a superheater temperature of 675°C. Alloys were exposed at temperature to two different gaseous environments. Preliminary results show: (1) an increase in corrosion rate of bare K02707, K11547, K21590, K91560, K92460, S30409, S34700, and N06617 exposed to the oxyfuel combustion environment when compared to the air combustion environment; (2) an increase in corrosion rate of alloys K21590, K92460, S34700, and N06617, when embedded in ash in comparison to bare exposure; and (3) no effect of gaseous environment on alloy corrosion rate when embedded in ash.

Covino, B.S., Jr.; Matthes, S.A.; Bullard, S.J.

2008-03-16T23:59:59.000Z

414

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

interest is technical and economic assessment of new energy technologies, especially in the areas in transportation and stationary power production. She has served on California state committees on hydrogen and on California's greenhouse gas regulation AB 32, the U.S. Department of Energy Hydrogen Technical Advisory

California at Davis, University of

415

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors  

E-Print Network [OSTI]

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors Stefan Holst #12;tting mixed #12;nite-element method is used to discretize the stationary energy. Energy-transport models describe the ow of electrons through a semi- conductor device, in uenced by di

Pietra, Paola

416

Measures to Reduce Grate Material Wear in Fixed-Bed Combustion  

Science Journals Connector (OSTI)

In a grate furnace the fuel forms a burning bed resting on a grate. ... The grate is typically sloping from the fuel inlet to the ash pit and the fuel is transported by reciprocating or vibrating movements of the grate or by adjusting the slope to allow the fuel to be transported by gravity (fixed grates). ... The symbol (×) is the measured temperature between the grate and the bed during burn-out of wood char(15) and the symbol (+) is the measured temperature inside a grate rod during combustion of wood chips. ...

Sven Hermansson; Henrik Thunman

2011-03-15T23:59:59.000Z

417

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect (OSTI)

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

418

Combustion kinetics and reaction pathways  

SciTech Connect (OSTI)

This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-01T23:59:59.000Z

419

Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California Lightning Series fires  

E-Print Network [OSTI]

, Ketone, Biomass burning, Fossil fuel combustion 1. Introduction Globally the two largest sources of primary organic aerosol are fossil fuel combustion (2-28 Tg C yr-1 ) and biomass burning (31-45 Tg C yr-1Oxidation of ketone groups in transported biomass burning aerosol from the 2008 Northern California

Russell, Lynn

420

Reducible Oxide Based Oxygen Carriers for Chemical Looping Combustion and Partial Oxidation of Methane.  

E-Print Network [OSTI]

??Chemical looping combustion (CLC) is a novel combustion technology that offers a highly efficient route towards clean combustion of fuel with inherent CO2 capture. In… (more)

Bhavsar, Saurabh

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

An In-Cylinder Imaging Survey of Low-Temperature, High-Efficiency Combustion Strategies  

Broader source: Energy.gov [DOE]

High speed imaging of in-cylinder spray and combustion luminosity of low temperature combustion strategies are contrasted to conventional gasoline and diesel engine combustion

422

Advanced High Efficiency Clean Diesel Combustion with Low Cost for Hybrid Engines  

Broader source: Energy.gov [DOE]

Clean, in-cylinder combustion can be enabled by a micro-variable circular orifice, dual mode PCCI, dew film combustion, and a novel combustion chamber design

423

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network [OSTI]

emissions during biomass combustion: Controlling factors andfrom smoldering combustion of biomass measured by open-pathduring the open combustion of biomass in the laboratory

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

424

Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...

425

Combustion Synthesis of Silicon Carbide 389 Combustion Synthesis of Silicon Carbide  

E-Print Network [OSTI]

Combustion Synthesis of Silicon Carbide 389 X Combustion Synthesis of Silicon Carbide Alexander S velocity and 17 #12;Properties and Applications of Silicon Carbide390 reaction rate throughout the mixture by graphite during SHS of carbides. Local reaction initiation is typically accomplished by hot tungsten wire

Mukasyan, Alexander

426

A new BML-based RANS modelling for the description of gas turbine typical combustion processes  

Science Journals Connector (OSTI)

The work is concentrated on the formulation and validation of integral models within RANS framework for the numerical prediction of the premixed and partially premixed flames occurring in gas turbine combustors. The premixed combustion modelling is based on the BML approach coupled to the mixing transport providing variable equivalence ratio. Chemistry is described by means of ILDM model solving transport equations for reaction progress variables conditioned on the flame front. Multivariate presumed PDF model is used for the turbulence-chemistry interaction treatment. Turbulence is modelled using the second moment closure (SMC) and the standard ?-? model as well. The influence of non-gradient turbulent transport is investigated comparing the gradient diffusion closure and the solution of the scalar flux transport equations. Different model combinations are assessed simulating several premixed and partially premixed flame configurations and comparing results to the experimental data. The proposed model provides good predictions particularly in combination with SMC.

A. Maltsev; A. Sadiki; J. Janicka

2004-01-01T23:59:59.000Z

427

Utilization of Combustion?Driven Oscillations  

Science Journals Connector (OSTI)

The possible applications of combustion?driven oscillations fall into two categories. The first category includes applications that are related to the combustion process itself such as those concerned with the possibility of alterlog space heat?release rate combustion efficiency heat transfer to surfaces and agglomeration of solid or liquid products of combustion. A consideration of available experimental and theoreticalinformation indicates that none of these applications are too promising when compared with alternative methods of performing the same functions. The second category includes applications that use pulsatory phenomena to do a particular iob. Examples are the application of valveless pulse jets to (a) the propulsion of drones (b) helicopter blade?tip propulsion (c) cutting of Arctic ice and (d) inducing pressure rises in through?flow combustion systems. For one reason or another most of these ideas have been dropped. However the use of the pulsating?combustion process to supply both the air at a high flow velocity to a combustor and the products of combustion at a high velocity to a heat exchanger thereby making possible a compact self?contained unit appears to have great promise. One such unit of residential boiler size is already available. Although this unit is valved as was the V?1 conversion to a valveless unit appears possible. The development of industrial?sized units appears equally feasible. Apparently the development of such units is contingent upon (a) adequate understanding of how to design effective aerodynamic valves and (b) the collaboration of an inventor experimentalist analyst and financier on a specific program.

Abbott A. Putnam

1963-01-01T23:59:59.000Z

428

NETL: IEP – Post-Combustion CO2 Emissions Control - Oxy-Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP - Oxy-Combustion CO2 Emissions Control IEP - Oxy-Combustion CO2 Emissions Control Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications Project No.: DE-NT0005290 Alstom oxy-combustion test facility Alstom oxy-combustion test facility. Alstom will develop an oxyfuel firing system design specifically for retrofit to tangential-fired (T-fired) boilers and provide information to address the technical gaps for commercial boiler design. Several oxyfuel system design concepts, such as internal flue gas recirculation and various oxygen injection schemes, will be evaluated for cost-effectiveness in satisfying furnace design conditions in a T-fired boiler. The evaluation will use an array of tools, including Alstom's proprietary models and design codes, along with 3-D computational fluid dynamics modeling. A

429

Biomass combustion with in situ CO2 capture by CaO in a 300 kWth circulating fluidized bed facility  

Science Journals Connector (OSTI)

Abstract This paper reports experimental results from a new 300 kWth calcium looping pilot plant designed to capture CO2 “in situ” during the combustion of biomass in a fluidized bed. This novel concept relies on the high reactivity of biomass as a fuel, which allows for effective combustion around 700 °C in air at atmospheric pressure. In these conditions, CaO particles fed into the fluidized bed combustor react with the CO2 generated during biomass combustion, allowing for an effective CO2 capture. A subsequent step of regeneration of CaCO3 in an oxy-fired calciner is also needed to release a concentrated stream of CO2. This regeneration step is assumed to be integrated in a large scale oxyfired power plant and/or a larger scale post-combustion calcium looping system. The combustor-carbonator is the key reactor in this novel concept, and this work presents experimental results from a 300 kWth pilot to test such a reactor. The pilot involves two 12 m height interconnected circulating fluidized bed reactors. Several series of experiments to investigate the combustor-carbonator reactor have been carried out achieving combustion efficiencies close to 100% and CO2 capture efficiencies between 70 and 95% in dynamic and stationary state conditions, using wood pellets as a fuel. Different superficial gas velocities, excess air ratios above stoichiometric requirements, and solid circulating rates between combustor-carbonator and combustor-calciner have been tested during the experiments. Closure of the carbon and oxygen balances during the combustion and carbonation trials has been successful. A simple reactor model for combustion and CO2 capture in the combustor-carbonator has been applied to aid in the interpretation of results, which should facilitate the future scaling up of this process concept.

M. Alonso; M.E. Diego; C. Pérez; J.R. Chamberlain; J.C. Abanades

2014-01-01T23:59:59.000Z

430

DOE/NERL Workshop October 27th 1 of 18Mike Tollstrup Transportation and Stationary Power  

E-Print Network [OSTI]

Feedstock Orange County Sanitation District 100% Biogas to H2 and electricity AC Transit 100% Onsite

431

Thermal Energy Transport in Nanostructured Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

432

Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FEMP Technology FEMP Technology Brief: Boiler Combustion Control and Monitoring System to someone by E-mail Share Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Facebook Tweet about Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Twitter Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Google Bookmark Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Delicious Rank Federal Energy Management Program: FEMP Technology Brief: Boiler Combustion Control and Monitoring System on Digg Find More places to share Federal Energy Management Program: FEMP

433

Flamelet model for pulverized coal combustion  

Science Journals Connector (OSTI)

Abstract A new flamelet model applicable to the simulation of pulverized coal combustion has been developed. First, a modeling approach that considers the coupling with both devolatilization and char combustion was adopted. We changed the fuel composition of the flamelet equation relative to the states of devolatilization and char combustion. In order to determine the fuel composition coming through the char combustion, all the gasified char was assumed to be converted into CO by the oxidation reaction. The validity of the developed flamelet model was examined in a simple two-dimensional pulverized coal jet field ignited by burnt co-flows. The accuracy of the model was evaluated by comparing its instantaneous distributions of temperature, CO2 mass fraction, and OH mass fraction with those of a detailed chemistry model. Good agreement was obtained in terms of the overall features of turbulent structures and combustion state, although the flamelet model showed slightly quicker ignition due to the transitional state in the ignition process being insufficiently reproducible.

Junya Watanabe; Kenji Yamamoto

2014-01-01T23:59:59.000Z

434

Reaction and diffusion in turbulent combustion  

SciTech Connect (OSTI)

The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

1993-12-01T23:59:59.000Z

435

Descargue Datos de Ahorro de Combustible  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Descargue Datos de Ahorro de Combustible Descargue Datos de Ahorro de Combustible Los datos de ahorro de combustible son el resultado de las pruebas realizadas en el Laboratorio de Emisiones de Combustible y Vehículos de la Agencia Nacional de Protección del Medio Ambiente en Ann Arbor, Michigan y por fabricantes de automóviles, con la supervisión de la EPA. Archivo Descargable de Ahorro de Combustible Archivo* de la Guía de Ahorremos Gasolina Archivo 2014 No Disponible Archivo 2013 de la Guía de Ahorremos Gasolina 2013 Ícono de Adobe Acrobat Archivo 2012 de la Guía de Ahorremos Gasolina 2012 Ícono de Adobe Acrobat Archivo 2011 de la Guía de Ahorremos Gasolina 2011 Ícono de Adobe Acrobat Archivo 2010 de la Guía de Ahorremos Gasolina 2010 Ícono de Adobe Acrobat Archivo 2009 de la Guía de Ahorremos Gasolina 2009 Ícono de Adobe Acrobat

436

Dirichlet problems for stationary von Neumann-Landau wave equations  

E-Print Network [OSTI]

It is known that von Neumann-Landau wave equation can present a mathematical formalism of motion of quantum mechanics, that is an extension of Schr\\"{o}dinger's wave equation. In this paper, we concern with the Dirichlet problem of the stationary von Neumann-Landau wave equation: {(- \\triangle_x + \\triangle_y) \\Phi (x, y) = 0, x, y \\in \\Omega, \\Phi|_{\\partial \\Omega \\times \\partial \\Omega} = f, where $\\Omega$ is a bounded domain in $\\mathbf{R}^n.$ By introducing anti-inner product spaces, we show the existence and uniqueness of the generalized solution for the above Dirichlet problem by functional-analytic methods.

Zeqian Chen

2007-05-25T23:59:59.000Z

437

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

at work or "corner" gas-stations, stations near freewaysvisiting a well-populated gas station. On the other hand, anHydrogen PEMFC E-Station Natural gas • Air High-pressure

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

438

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

costs • Economics with low electrical loads Weinert, Lipman, and Unnasch Natural Gas Reformer H2 Purifier HigTT-pressure hydrogen compressor

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

439

Stirling Engine Natural Gas Combustion Demonstration Program. Final report, October 1989-January 1991  

SciTech Connect (OSTI)

Fueled on natural gas, the Stirling engine is an inherently clean, quiet, and efficient engine. With increasing environmental concern for air quality and the increasingly more stringent requirements for low engine exhaust emissions, the Stirling engine may be an attractive alternative to internal combustion (IC) engines. The study has demonstrated that ultra low emissions can be attained with a Stirling-engine-driven electric generator configured to burn natural gas. Combustion parameters were optimized to produce the lowest possible exhaust emissions for a flame-type combustor without compromising overall engine thermal efficiency. A market application survey and manufacturing cost analysis indicate that a market opportunity potentially exists in the volumes needed to economically manufacture a newly designed Stirling engine (Mod III) for stationary applications and hybrid vehicles. The translation of such potential markets into actual markets does, however, pose difficult challenges as substantial investments are required. Also, the general acceptance of a new engine type by purchasers requires a considerable amount of time.

Ernst, W.; Moryl, J.; Riecke, G.

1991-02-01T23:59:59.000Z

440

Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions  

Science Journals Connector (OSTI)

Abstract Regarding the global warming due to CO2 emissions, the crude oil depletion and its corresponding rising prices, \\{OEMs\\} are exploring different solutions to increase the internal combustion engine efficiency, among which, the use of Low Viscosity Oils (LVO) represents one attractive cost-effective way to accomplish this goal. Reported in terms of fuel consumption, the effect of LVO is round 2%, depending on the test conditions, especially if the test has taken place in laboratory or “on road” conditions. This study presents the fuel consumption benefits of a commercial 5W20, compared against higher SAE grade oils, on a light duty diesel engine, when it is running under motored test, stationary fired test and the New European Driving Cycle (NEDC).

Vicente Macián; Bernardo Tormos; Vicente Bermúdez; Leonardo Ramírez

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Understanding the thermodynamic inefficiencies in combustion processes  

Science Journals Connector (OSTI)

Abstract The thermodynamic inefficiencies associated with any energy conversion process are expressed by the exergy destruction and the exergy losses associated with the process. Combustion processes exhibit very high thermodynamic inefficiencies caused by chemical reaction, heat transfer, friction, and mixing. In this paper, we discuss how to estimate the thermodynamic inefficiencies resulting from each one of these sources. The thermodynamic evaluation can be conducted with the aid of either a conventional exergetic analysis or an advanced one. The latter allows estimation of the potential for improvement of the process being considered and demonstrates the interactions among the components of the system in which combustion takes place. The paper discusses how advanced exergy-based evaluations can be used to reduce the thermodynamic inefficiencies, costs, and environmental impacts associated with energy conversion systems including combustion processes.

George Tsatsaronis; Tatiana Morosuk; Daniela Koch; Max Sorgenfrei

2013-01-01T23:59:59.000Z

442

Premixed Combustion of Hydrogen Augmented Natural Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Premixed Combustion of Hydrogen Premixed Combustion of Hydrogen Augmented Natural Gas * Lean premixed combustion * Effective for emission reduction with natural gas * High hydrogen flame speed requires care in premixer design for SGH fuels * UC Irvine study quantifies effectiveness of hydrogen augmentation strategy * Lean stability limit improves linearly with hydrogen augmentation * Emissions reduction can be achieved * Two OEM's and the California Energy Commission have used the results to help guide them on adapting to hydrogen fuel UC Irvine Scott Samuelsen / Vince McDonell Project 98-01-SR062 1200 1300 1400 1500 1600 1700 1800 1900 0 10 20 30 40 50 60 Hydrogen Volume in Main Fuel (%) Adiabatic Flame Temperature (K) P0(3/4) High Stability High Stability Low emission Low emission operational zone operational zone

443

Study of the potential valorization of metal contaminated Salix via phytoextraction by combustion  

E-Print Network [OSTI]

, different energy-recovery- techniques (incineration, combustion, gasification, pyrolysis, anaerobic

Paris-Sud XI, Université de

444

http://www.genie.uottawa.ca/~hallett/hallett.htm Combustion Research  

E-Print Network [OSTI]

Engineering Main themes: - solid fuel combustion/packed beds - liquid droplet combustion - biofuels (biomass, Mechanical Engineering #12;Liquid Droplet Combustion W. Hallett, Mechanical Engineering Recent Work - biomasshttp://www.genie.uottawa.ca/~hallett/hallett.htm Combustion Research W. Hallett, Mechanical

Hallett, William L.H.

445

Hydrothermal combustion of biofuels in supercritical water  

SciTech Connect (OSTI)

Supercritical water oxidation (SCWO) has long been recognized as a safe, clean and energy efficient method for destroying a wide range of organic materials and hazardous wastes. As SCWO systems operate at elevated pressure, all effluent streams are fully contained allowing efficient recovery of thermal energy using compact heat exchangers. Water vapor produced by the combustion efficiency, especially for fuels with increasing moisture content such as biomass. This paper compares the performance of a simple Rankine vapor power cycle which derives it`s heat input from (1) a hydrothermal combustion system, and (2) a conventionally-fired steam boiler. The study is based on a hypothetical cellulose-based organic fuel with a higher heating value of 7,000 BT/1bm (dry). For a constant organic feedrate of 100 tons/day (bone dry) mixed in 20:80 fuel/water ratio with water, the calculated net electric power output from the 31.93%. Whereas, for an organic feedrate of 100 tons/day (bone dry) with zero of 5,382 kW, at an overall thermal efficiency of 31.48%. The hydrothermal combustion power cycle is unaffected by free moisture in the fuel, and thereby uniquely well-suited for use in biomass power generation applications. The hydrothermal combustion process is exceptionally clean burning, and allows full control over carbon dioxide and SOx emissions. NOx levels are inherently ultra-low due to lower combustion temperatures. Hydrothermal combustion technology is ready for pilot-scale engineering development and demonstration.

McGuinness, T.G. [Summit Research Corporation, Sante Fe, NM (United States); Marentis, R. [Summit Research Corporation, Allentown, PA (United States)

1994-12-31T23:59:59.000Z

446

Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage  

Science Journals Connector (OSTI)

The oxy-fuel process is one of three carbon capture technologies which supply CO2 ready for sequestration – the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and results in significantly different flue gas compositions. Sulphur has been shown in the study to have impacts in the furnace, during ash collection, CO2 compression and transport as well as storage, with many options for its removal or impact control. In particular, the effect of sulphur containing species can pose a risk for corrosion throughout the plant and transport pipelines. This paper presents a technical review of all laboratory and pilot work to identify impacts of sulphur impurities from throughout the oxy-fuel process, from combustion, gas cleaning, compression to sequestration with removal and remedial options. An economic assessment of the optimum removal is not considered. Recent oxy-fuel pilot trials performed in support of the Callide Oxy-fuel Project and other pilot scale data are interpreted and combined with thermodynamic simulations to develop a greater fundamental understanding of the changes incurred by recycling the flue gas. The simulations include a sensitivity analysis of process variables and comparisons between air fired and oxy-fuel fired conditions - such as combustion products, SO3 conversion and limestone addition.

Rohan Stanger; Terry Wall

2011-01-01T23:59:59.000Z

447

Building America Expert Meeting: Combustion Safety  

Broader source: Energy.gov (indexed) [DOE]

Meeting: Combustion Safety Meeting: Combustion Safety L. Brand Partnership for Advanced Residential Retrofit March 2013 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

448

Building America Expert Meeting: Combustion Safety  

Broader source: Energy.gov [DOE]

This expert meeting, The Best Approach to Combustion Safety in a Direct Vent World, was conducted by the Partnership for Advanced Residential Retrofit team on June 28, 2012, in San Antonio, TX. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

449

Kinetic data base for combustion modeling  

SciTech Connect (OSTI)

The aim of this work is to develop a set of evaluated rate constants for use in the simulation of hydrocarbon combustion. The approach has been to begin with the small molecules and then introduce larger species with the various structural elements that can be found in all hydrocarbon fuels and decomposition products. Currently, the data base contains most of the species present in combustion systems with up to four carbon atoms. Thus, practically all the structural grouping found in aliphatic compounds have now been captured. The direction of future work is the addition of aromatic compounds to the data base.

Tsang, W.; Herron, J.T. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

1993-12-01T23:59:59.000Z

450

Resonance ionization detection of combustion radicals  

SciTech Connect (OSTI)

Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

1993-12-01T23:59:59.000Z

451

Past experiences with automotive external combustion engines  

SciTech Connect (OSTI)

GMR (General Motors Research Laboratories, now GM R and D Center) has a history of improving the internal combustion engine, especially as it relates to automotive use. During the quarter century from 1950--75, considerable effort was devoted to evaluating alternative powerplants based on thermodynamic cycles different from those on which the established spark-ignition and diesel engines are founded. Two of these, the steam engine and the Stirling engine, incorporated external combustion. Research on those two alternatives is reviewed. Both were judged to fall short of current needs for commercial success as prime movers for conventional automotive vehicles.

Amann, C.A.

1999-07-01T23:59:59.000Z

452

Evaluating the fluidized bed combustion options  

SciTech Connect (OSTI)

The proceedings from a conference on fluidized bed combustion are now available. The book discusses the immediate availability of atmospheric fluidized bed combustion technology as a practical, environmentally sound option for burning all grades of coal, wood, wood wastes, and biomass. The economics and technical fundamentals of atmospheric FBC are explained for the benefit of owners and managers of industrial boilers, boiler operators, architects/engineers, boiler manufacturers, and fuel suppliers. More than 15 FBC experts have contributed their expertise and experiences to the book.

Sheahan, R.T. (ed.)

1984-01-01T23:59:59.000Z

453

1 - Combustion processes of textile fibres  

Science Journals Connector (OSTI)

Abstract: This chapter reviews the current knowledge of the processes involved in the combustion behaviour of textiles and approaches to their flame retardant protection. Synthetic fibre-forming polymers, both thermoplastic and high temperature resistant, as well as naturally occurring fibre types are discussed. The combustion process is described with reference to the thermal stability, degradation and oxidative degradation of various individual polymer types. The significance of textile structure is considered with respect to the textile flammability. The mechanisms of the different flame retardant systems applied to various textiles are discussed as well as the more recent application of nano-composites. Finally, a prediction of potential future developments is presented.

D. Price; A.R. Horrocks

2013-01-01T23:59:59.000Z

454

Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement...  

Broader source: Energy.gov (indexed) [DOE]

Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement 13425) Non-Petroleum Based Fuel Effects on Advanced Combustion (Agreement 13425) Presentation from the U.S. DOE...

455

Conditions of realization of superwet in-situ combustion  

SciTech Connect (OSTI)

In in-situ combustion adding water to the air considerably improves the characteristics of the process: the combustible fuel concentration is reduced, the steam plateau ahead of the combustion front increases, less oxidizer is required to displace the oil, and the thermal wave has a higher propagation velocity. In wet combustion the temperature in the combustion zone reaches approx. 500/sup 0/C. In superwet combustion it depends on the reservoir pressure and may be 200-300/sup 0/C. It is not known in advance whether the heat of combustion will suffice to sustain the thermal wave, and if it does suffice, what will be the maximum values of the water-air ratio for the process. This paper attempts to construct a mathematical model of the superwet combustion process.

Bokserman, A.A.; Stepanov, V.P.

1985-07-01T23:59:59.000Z

456

A new type of self-organization in combustion  

Science Journals Connector (OSTI)

... a solid-phase gasless combustion3 which proceeds with the formation of a melt or a flameless gas3'4. ... gas3'4. Flameless combustion has recently been described for several tetrazole compounds5.

A. I. Lesnikovich; V. V. Sviridov; G. V. Printsev; O. A. Ivashkevich; P. N. Gaponik

1986-10-23T23:59:59.000Z

457

Large-Eddy Simulation of Swirling Pulverized-Coal Combustion  

Science Journals Connector (OSTI)

A Eulerian-Lagrangian large-eddy simulation (LES) with a Smagorinsky-Lilly sub-grid scale stress model, presumed-PDF fast chemistry and EBU gas combustion models, particle devolatilization and particle combustion

L. Y. Hu; L. X. Zhou; Y. H. Luo; C. S. Xu

2013-01-01T23:59:59.000Z

458

Carbonation of Fly Ash in Oxy-fuel CFB Combustion  

Science Journals Connector (OSTI)

Oxy-fuel combustion of fossil fuel is one of the most promising methods to produce a stream of concentrated CO2 ready for sequestration. Oxy-fuel FBC (fluidized bed combustion) can use limestone as a sorbent for

Chunbo Wang; Lufei Jia; Yewen Tan…

2007-01-01T23:59:59.000Z

459

A Comparison of Combustion and Emissions of Diesel Fuels and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

460

COMBUSTION RESEARCH PROGRAM. CHAPTER FROM ENERGY & ENVIRONMENT ANNUAL REPORT 1977  

E-Print Network [OSTI]

The pulverized coal has significant ash content, about 6%.of Ash and Trace Metals from Pulverized Coal Combustion P.of Ash and Trace Metals from Pulverized Coal Combustion P.

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MILD combustion for hydrogen and syngas at elevated pressures  

Science Journals Connector (OSTI)

As gas recirculation constitutes a fundamental condition for the realization of MILD combustion, it is necessary to determine gas recirculation ratio before designing MILD combustor. MILD combustion model with ga...

Mingming Huang; Zhedian Zhang; Weiwei Shao; Yan Xiong…

2014-02-01T23:59:59.000Z

462

Combustion of Low-Calorific Waste Biomass Syngas  

Science Journals Connector (OSTI)

The industrial combustion chamber designed for burning low-calorific syngas from gasification of waste biomass is presented. ... chips and turkey feathers the non-premixed turbulent combustion in the chamber is s...

Kamil Kwiatkowski; Marek Dudy?ski; Konrad Bajer

2013-12-01T23:59:59.000Z

463

The role played by self-inhibition in combustion processes  

Science Journals Connector (OSTI)

The absence of correlations between the heat of combustion of substances and substance combustion characteristics is shown to be caused by the special features of competition between reaction chain branching a...

V. V. Azatyan; I. A. Bolod’yan; Yu. N. Shebeko…

2006-04-01T23:59:59.000Z

464

Thermogravimetric analysis of co-combustion of biomass and biochar  

Science Journals Connector (OSTI)

The co-combustion of biomass and biochar was investigated by thermogravimetric analysis....R M...) for different blends were used to evaluate co-combustion features. As the biomass content increas...

Qiguo Yi; Fangjie Qi; Gong Cheng…

2013-06-01T23:59:59.000Z

465

The Inorganic Chemistry of Biomass Combustion: Problems and Solutions  

Science Journals Connector (OSTI)

High temperature molten products of the combustion of biomass present special problems related to fouling and ... performed calculations of the total inorganic chemistry of biomass combustion using a free energy ...

M. Blander

1997-01-01T23:59:59.000Z

466

Light-Duty Advanced Diesel Combustion Research | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Light-Duty Advanced Diesel Combustion Research Light-Duty Advanced Diesel Combustion Research Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008...

467

Novel New Oxygen Carriers for Chemical Looping Combustion of Solid Fuels  

Science Journals Connector (OSTI)

Novel New Oxygen Carriers for Chemical Looping Combustion of Solid Fuels ... A loop of chem. ... Energy Combust. ...

Yueying Fan; Ranjani Siriwardane

2014-02-21T23:59:59.000Z

468

E-Print Network 3.0 - advanced wall-fired combustion Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Animal Waste Combustion Energy Engine Emission Fuel Cells... Gasification Internal Combustion Engine Performance Pollutants Formation (NOx, Hg) and...

469

Using Parametrized Finite Combustion Stage Models to Characterize Combustion in Diesel Engines  

Science Journals Connector (OSTI)

Characterizing combustion in diesel engines is not only necessary when researching the instantaneous combustion phenomena but also when investigating the change of the combustion process under variable engine operating conditions. ... This project partly is financially supported by the Fundamental Research Funds for the Central Universities, Harbin Engineering University, China, HEUCF120307, and the International Science and Technology Cooperation Program of China. ... Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy (2011), 225 (3), 309-318 CODEN: PMAEET; ISSN:0957-6509. ...

Yu Ding; Douwe Stapersma; Hugo Grimmelius

2012-10-29T23:59:59.000Z

470

Oxygen-Enriched Combustion for Military Diesel Engine Generators  

Broader source: Energy.gov [DOE]

Substantial increases in brake power and considerably lower peak pressure can result from oxygen-enriched diesel combustion

471

Trash or treasure? Putting coal combustion waste to work  

SciTech Connect (OSTI)

The use of coal combustion wastes from power plants in construction materials, leaching and the impact of regulations are discussed.

Tenenbaum, D.J.

2009-11-15T23:59:59.000Z

472

Traveling-Wave Thermoacoustic Engines With Internal Combustion  

DOE Patents [OSTI]

Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

Weiland, Nathan Thomas (Blacksburg, VA); Zinn, Ben T. (Atlanta, GA); Swift, Gregory William (Sante Fe, NM)

2004-05-11T23:59:59.000Z

473

Advanced Combustion Modeling with STAR-CD using Transient Flemelet...  

Broader source: Energy.gov (indexed) [DOE]

occurs - Spray modeling is required * Autoignition, combustion, pollutant formation chemistry - Kinetic modeling required for various fuels - Soot, NOx models required *...

474

Simulation of High Efficiency Clean Combustion Engines and Detailed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ongoing work exploring fuel chemistry, analysis of and improving simulation methodologies for high efficiency clean combustion regimes, and computational performance...

475

Impact of Extreme Injection Pressure and EGR on the Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Analyse of the Injection System * Simulation * Hydraulic Characterisation * Optical Spray Diagnostics Engine Investigations * Experimental Results * Optical Combustion...

476

Stationary and Oscillatory Localized Patterns, and Subcritical Bifurcations Vladimir K. Vanag and Irving R. Epstein  

E-Print Network [OSTI]

Stationary and Oscillatory Localized Patterns, and Subcritical Bifurcations Vladimir K. Vanag of subcritical Hopf instability, subcritical Turing instability, and their combination. DOI: 10.1103/Phys

Epstein, Irving R.

477

Abatement of Air Pollution: Permit to Construct and Operate Stationary Sources (Connecticut)  

Broader source: Energy.gov [DOE]

Permits are required for the construction or major modification of a stationary source or emission unit. Some exemptions apply. These regulations describe permit requirements, authorized activities...

478

Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2013  

SciTech Connect (OSTI)

This report includes 25 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2013.

Saur, G.; Kurtz, J.; Ainscough, C.; Peters, M.

2014-05-01T23:59:59.000Z

479

Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers  

Broader source: Energy.gov [DOE]

Presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers.

480

Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers, originally presented on May 8, 2012.

Note: This page contains sample records for the topic "transportation stationary combustion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model  

Broader source: Energy.gov [DOE]

Overview of H2A stationary model concept, results, strategy for analysis, Federal incentives for fuel cells, and summary of next steps

482

Stationary Fuel Cell System Composite Data Products: Data through Quarter 2 of 2013  

SciTech Connect (OSTI)

This report includes 24 composite data products (CDPs) produced for stationary fuel cell systems, with data through the second quarter of 2013.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-11-01T23:59:59.000Z

483

5 CCR 1001-5 Colorado Stationary Source Permitting and Air Pollution...  

Open Energy Info (EERE)

Colorado Stationary Source Permitting and Air Pollution Control Emission Notice Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: 5 CCR...

484

Combustion Air Preheat Should Be More Than Simply Recycling Energy  

E-Print Network [OSTI]

Combustion air preheat can and should result in fuel savings far in excess of the energy added to the combustion air. In a typical installation of air preheat on a fired tubular reactor, the addition of 2.5 million BTU/hr to the combustion air...

Grantom, R. L.

1980-01-01T23:59:59.000Z

485

ME 374C Combustion Engine Processes ABET EC2000 syllabus  

E-Print Network [OSTI]

combustion engines, fuels, carburetion, combustion, exhaust emissions, knock, fuel injection, and factors engine, although diesels and 2-strokes are also discussed. Topics Covered (# of classes per topic): 1 of an Engineering System 4. Introduction to Engine Modeling 5. Fuels 6. Combustion and Knock 7. 4-stroke SI Engines

Ben-Yakar, Adela

486

Fast computation of multi-scale combustion systems  

Science Journals Connector (OSTI)

...consider a detailed combustion mechanism for air...The mean specific heat (under constant...being the specific heat of species i (mass...with a detailed combustion mechanism, where...between retrieved data and detailed solution...combustion mechanism for hydrocarbons. Moreover, on...

2011-01-01T23:59:59.000Z

487

Paper # A02 Topic: Laminar Flames US Combustion Meeting  

E-Print Network [OSTI]

been focused on synthetic fuel gas (syngas) combustion. Syngas is derived from coal throughPaper # A02 Topic: Laminar Flames 1 5th US Combustion Meeting Organized by the Western States Section of the Combustion Institute and Hosted by the University of California at San Diego March 25

Seitzman, Jerry M.

488

NOTE / NOTE Variability in organic matter lost by combustion in  

E-Print Network [OSTI]

) to the atmosphere through combustion of biomass. An estimated 1470 ± 59 km2 of peatland burns annually in boreal libère du carbone (C) directement dans l'atmosphère par la combustion de biomasse. AnnuellementNOTE / NOTE Variability in organic matter lost by combustion in a boreal bog during the 2001

Benscoter, Brian W.

489

Method for reducing NOx during combustion of coal in a burner  

DOE Patents [OSTI]

An organically complexed nanocatalyst composition is applied to or mixed with coal prior to or upon introducing the coal into a coal burner in order to catalyze the removal of coal nitrogen from the coal and its conversion into nitrogen gas prior to combustion of the coal. This process leads to reduced NOx production during coal combustion. The nanocatalyst compositions include a nanoparticle catalyst that is made using a dispersing agent that can bond with the catalyst atoms. The dispersing agent forms stable, dispersed, nano-sized catalyst particles. The catalyst composition can be formed as a stable suspension to facilitate storage, transportation and application of the catalyst nanoparticles to a coal material. The catalyst composition can be applied before or after pulverizing the coal material or it may be injected directly into the coal burner together with pulverized coal.

Zhou, Bing (Cranbury, NJ); Parasher, Sukesh (Lawrenceville, NJ); Hare, Jeffrey J. (Provo, UT); Harding, N. Stanley (North Salt Lake, UT); Black, Stephanie E. (Sandy, UT); Johnson, Kenneth R. (Highland, UT)

2008-04-15T23:59:59.000Z

490

NETL: IEP – Oxy-Combustion CO2 Emissions Control - OTM-Based Oxycombustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OTM-Based Oxycombustion for CO2 Recovery OTM-Based Oxycombustion for CO2 Recovery Project No.: FC26-01NT41147 & FC26-07NT43088 Praxair Advanced Boiler Praxair Advanced Boiler Praxair, Inc. will conduct two projects to develop and demonstrate the integration of a novel, ceramic oxygen transport membrane (OTM) with the combustion process to enhance boiler efficiency. The economics of oxy-combustion processes are currently limited by the parasitic power required for oxygen (O2) production using cryogenic air separation units (ASU). OTMs can be integrated such that there is minimal need for air compression and the parasitic power consumption required for O2 production is reduced by 70 to 80 percent as compared to a cryogenic ASU. Praxair will design, construct, and operate a bench-scale OTM at the

491

Beam deflection into a quadrant by a positionally stationary magnetic bending system  

SciTech Connect (OSTI)

A system of postionally stationary magnets is analyzed for the continuously variable deflection of a 50 MeV electron beam. The system is composed of a collection of horizontal and vertical bending magnets, quadrupoles, and a final deflection magnet that is conical in shape and capable of deflections of plus or minus 50 degrees simultaneously in both horizonal and vertical planes. Throughout the system the beam is assumed to be focused by its own magnetic self-field, the electric self-field being neutralized by background ions. The motion of the beam in the externally applied magnetic fields may then be considered as single particle motion. The system of bending magnets and quadrupoles pre-conditions the beam by introducing the proper displacements and angles at the entrance to the final deflection magnet for momentum deviations up to plus or minus one percent. The displacements and angles are determined by the chromaticity of the final deflection and are a function of the bending angles in the two planes. The total system is then doubly achromatic in both planes. The preconditioning magnets are of standard accelerator beam transport design while the conical deflection magnet is of a design fashioned from a television deflection coil scaled up by about a factor of 10 in size.

Paul, A.C.; Neil, V.K.

1980-06-20T23:59:59.000Z

492

Combustion Model for a CFB Boiler with Consideration of Post-Combustion in the Cyclone  

Science Journals Connector (OSTI)

Severe post combustion in the cyclone of CFB boilers could destroy heat absorbing balance among ... rarely considered in the design phase of a CFB boiler. Based on our previous experiment results ... added into a...

S. H. Li; H. R. Yang; H. Zhang; Y. X. Wu…

2010-01-01T23:59:59.000Z

493

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Journals Connector (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam machines into a single process.

E. A. Olenev

2002-07-01T23:59:59.000Z

494

Control of Combustion Processes in an Internal Combustion Engine by Low-Temperature Plasma  

Science Journals Connector (OSTI)

A new method of operation of internal combustion engines enhances power and reduces fuel consumption and exhaust toxicity. Low-temperature plasma control combines working processes of thermal engines and steam...

E. A. Olenev

2002-07-01T23:59:59.000Z

495

Assessment of Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine  

Broader source: Energy.gov [DOE]

Various applied combustion and turbulence models were investigated along with chemical kinetic mechanisms simulating a biodiesel-fueled engine

496

Multiphase CFD-based models for chemical looping combustion process: Fuel reactor modeling  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is a flameless two-step fuel combustion that produces a pure CO2 stream, ready for compression and sequestration. The process is composed of two interconnected fluidized bed reactors. The air reactor which is a conventional circulating fluidized bed and the fuel reactor which is a bubbling fluidized bed. The basic principle is to avoid the direct contact of air and fuel during the combustion by introducing a highly-reactive metal particle, referred to as oxygen carrier, to transport oxygen from the air to the fuel. In the process, the products from combustion are kept separated from the rest of the flue gases namely nitrogen and excess oxygen. This process eliminates the energy intensive step to separate the CO2 from nitrogen-rich flue gas that reduce the thermal efficiency. Fundamental knowledge of multiphase reactive fluid dynamic behavior of the gas–solid flow is essential for the optimization and operation of a chemical looping combustor. Our recent thorough literature review shows that multiphase CFD-based models have not been adapted to chemical looping combustion processes in the open literature. In this study, we have developed the reaction kinetics model of the fuel reactor and implemented the kinetic model into a multiphase hydrodynamic model, MFIX, developed earlier at the National Energy Technology Laboratory. Simulated fuel reactor flows revealed high weight fraction of unburned methane fuel in the flue gas along with CO2 and H2O. This behavior implies high fuel loss at the exit of the reactor and indicates the necessity to increase the residence time, say by decreasing the fuel flow rate, or to recirculate the unburned methane after condensing and removing CO2.

Jung, Jonghwun (ANL); Gamwo, I.K.

2008-04-21T23:59:59.000Z

497

Fuel quality issues in stationary fuel cell systems.  

SciTech Connect (OSTI)

Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

2012-02-07T23:59:59.000Z

498

Some Experimental Studies of Oscillatory Combustion  

Science Journals Connector (OSTI)

Measurements of the perturbations in pressure as recorded by flush?mounted transducers during the combustion of mixtures of air and natural gas in a cooled copper tube at atmospheric pressure are reported for a range of mixture ratios. Also presented are the residual quantities of the oxides of nitrogen as well as the principal components of the products of reaction. The results indicate two stable modes of oscillation. One was found predominantly at mixture ratios above stoichiometric. There was a region near stoichiometric where both modes existed. The quantities of the residual oxides of nitrogen were from 10–30 times as large during oscillatory combustion as during relatively steady combustion. In addition measurements in a smaller cooled copper combustor at pressures up to 50 lb/sq in. absolute are recorded. Again two stable modes of oscillation were encountered and the double amplitude of the oscillation for the mode near stoichiometric was nearly five times as great as that away from stoichiometric. The influence of mixture ratio and rates of flow was explored. The quantities of the oxides of nitrogen were determined after quenching the products of reaction at rates of approximately 5° per ?sec. Again the presence of oscillatory combustion appeared to exert a pronounced influence on the presence of oxides of nitrogen. In the case of the high?pressure combustor the premixed fuel and oxidant were introduced through a supersonic converging?diverging nozzle to avoid coupling between the feed system and the combustor.

B. H. Sage

1963-01-01T23:59:59.000Z

499

Starting apparatus for internal combustion engines  

DOE Patents [OSTI]

This report is a patent description for a system to start an internal combustion engine. Remote starting and starting by hearing impaired persons are addressed. The system monitors the amount of current being drawn by the starter motor to determine when the engine is started. When the engine is started the system automatically deactivates the starter motor. Five figures are included.

Dyches, G.M.; Dudar, A.M.

1995-01-01T23:59:59.000Z

500

A MODEL FOR POROUS-MEDIUM COMBUSTION  

Science Journals Connector (OSTI)

......usually taken from experiments; Vo is determined by the inlet gas velocity under consideration, and for the typical combustion processes where Vo is parallel to the z-axis in which we are interested it is natural to choose V3o~0-1 to 1-Oms......

J. NORBURY; A. M. STUART

1989-02-01T23:59:59.000Z