National Library of Energy BETA

Sample records for transportation sector energy

  1. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for the Transport Sector Energy Outlook for the Transport Sector Energy Outlook for the Transport Sector PDF icon deer10_karsner.pdf More Documents & Publications The Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology

  2. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2.4 2.6 < 0.1 Manufacturing Energy and Carbon Footprint Sector: Transportation ... Steam Distribution Losses 1 3 23 1 3 7 6 23 16 0 3 0 275 44 132 0 1 2 Conventional Boilers ...

  3. Restructuring our Transportation Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pln001_rogers_2010_o.pdf More Documents & Publications Navistar-Driving efficiency with integrated technology Vehicle Technologies Office FY 2016 Budget At-A-Glance Overview of the DOE High Efficiency Engine Technologies R&D

  4. Annual Energy Outlook 2015 Modeling updates in the Transportation sector

    Gasoline and Diesel Fuel Update (EIA)

    For AEO2015 Working Group July 30, 2014 | Washington, DC By Nicholas Chase, Trisha Hutchins, John Maples Office of Energy Consumption and Efficiency Analysis Modeling updates in the transportation sector Data updates 2 * Update historical fuel consumption data to latest state energy data (2011), annual national data from Monthly Energy Review (2012), and most recent Short-Term Energy Outlook * Update historical light-duty vehicle attribute data through 2013 (pending) * Update historical

  5. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  6. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  7. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration NEMS Transportation Demand Model Documentation Report 2005 25 manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  8. Session 5: Renewable Energy in the Transportation and Power SectorsŽ

    U.S. Energy Information Administration (EIA) Indexed Site

    5: "Renewable Energy in the Transportation and Power Sectors" Mr. Michael Schaal: Well, let's get started and we'll have people come in as we move along. Welcome to the session which addresses the topic of renewable energy and the transportation and power sectors, a topic that is very much on the minds of the public at large, policymakers who are pondering the cost benefits and preferred outcomes of a variety of current and potential future laws and regulations, and also researchers

  9. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  10. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  11. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid

  12. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  13. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles | Department of Energy Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles This report, titled "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" is based

  14. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  15. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energys Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, Produce hydrogen for industrial processes and transportation fuels, and Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nations energy security through more effective utilization of our countrys resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  18. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  19. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of ...

  20. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Transportation Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of

  1. Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: April 19, 2010 Transportation Sector Revenue by Industry Fact #619: April 19, 2010 Transportation Sector Revenue by Industry According the latest Economic Census (2002), the trucking industry is the largest contributor of revenue in the transportation sector, contributing more than one-quarter of the sectors revenue. The air industry contributes just under one-quarter, as does other transportation and support activities, which include sightseeing, couriers and

  2. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Office of Environmental Management (EM)

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  3. Transitioning the Transportation Sector: Exploring the Intersection of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fuel Cell and Natural Gas Vehicles | Department of Energy Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Sandia National Laboratories, the American Gas Association, and Toyota, in support of the U.S. Department of Energy (DOE), held the Transitioning the Transportation Sector: Exploring the Intersection

  4. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  5. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  6. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  7. Energy Intensity Indicators: Transportation Energy Consumption | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet

  8. Transportation Sector Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  9. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication...

  10. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  11. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  12. Energy Intensity Indicators: Indicators for Major Sectors

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1.

  13. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  14. Chapter 2 - Energy Sectors and Systems | Department of Energy

    Office of Environmental Management (EM)

    2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Within and between the electricity, fuels, transportation, buildings, and manufacturing sectors, increasing interconnectedness and complexity are creating opportunities and challenges that can be approached from a systems perspective. Some of the most transformational opportunities exist at the systems level. They are enabled by the ability to understand, predict, and control very large

  15. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  16. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), October 2012 (MECS 2006)

    Broader source: Energy.gov (indexed) [DOE]

    4 Nonprocess Losses 904 106 Steam Distribution Losses 11 82 Nonprocess Energy 278 Electricity Generation Steam Generation 904 7 Prepared for the Advanced Manufacturing Office (AMO) by Energetics Incorporated 196 258 195 Generation and Transmission Losses Generation and Transmission Losses 3 422 Onsite Generation 455 415 65 480 617 9 51 0.6 37.2 37.8 4.2 3.8 6.4 29.4 19.6 53 15.3 53.2 5.2 Fuel Total Energy Total Primary Energy Use: Total Combustion Emissions: TBtu MMT CO 2 e Energy use data

  17. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect (OSTI)

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  18. Transportation | Open Energy Information

    Open Energy Info (EERE)

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  19. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon tiarravt043_erickson_2010_p.pdf More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Puget Sound Clean Cities Petroleum Reduction

  20. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  1. Energy Analysis by Sector | Department of Energy

    Office of Environmental Management (EM)

    Information Resources » Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use and trends by sector. Manufacturing Energy and Carbon Footprints Static Manufacturing Energy Sankey Diagrams Dynamic Manufacturing Energy Sankey Tool Energy & Environmental Profiles Bandwidth Studies Large Energy User Manufacturing Facilities by State MANUFACTURING ENERGY and carbon

  2. Sector Collaborative on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  3. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.

    2009-05-01

    Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

  4. EC-LEDS Transport | Open Energy Information

    Open Energy Info (EERE)

    Company Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis,...

  5. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  6. WINDExchange: Wind Energy Market Sectors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  7. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  8. End-Use Sector Flowchart | Department of Energy

    Office of Environmental Management (EM)

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  9. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert...

  10. Energy Efficiency and the Finance Sector | Open Energy Information

    Open Energy Info (EERE)

    and the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector AgencyCompany Organization United Nations Environment Programme Sector Energy...

  11. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

  12. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's...

  13. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  14. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  15. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Environmental Management (EM)

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications Transportation Equipment

  16. Manufacturing Energy and Carbon Footprint - Sector: Computer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computers, Electronics and Electrical Equipment (NAICS 334, 335) Process Energy ... Carbon Footprint Sector: Computers, Electronics and Electrical Equipment (NAICS 334, ...

  17. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  18. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction...

  19. Accounting for Co-benefits in Asia's Transportation Sector: Methods...

    Open Energy Info (EERE)

    Methods and Applications Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications...

  20. Electric energy sector in Argentina

    SciTech Connect (OSTI)

    Bastos, C.M.

    1994-06-01

    This article describes how the organization of the electric energy sector in Argentina has changed dramatically from a sector in which state-owned companies worked under a central planning to one in which private companies make their own decisions. The way that the electrical system used to work can be shown by these statements: demand growth estimated by central planning team; projects to be developed and the timetable determined by the same team; unit operations ruled by central dispatch, and under state-owned companies responsibility; integration with neighbor countries focused on physical projects, such as Salto Grande with Uruguay and Yacyreta with Paraguay. Today the electrical system works under these rules: the system has been vertically separated and the companies cannot be integrated; electric energy is considered as an ordinary wealth and the value that consumers give it is taken into account, (the distribution companies pay consumers a penalty for the energy that they cannot supply, the penalty is worth the economic damage consumers suffer due to its lack); producers have to compete for demand. They can sell in two ways: sell under private agreements or sell to the system. Both ways of selling compete with each other because the system buys giving priority to lower costs and, as a consequence, some of the producers do not sell at all.

  1. Transport Policy Note-Bangladesh | Open Energy Information

    Open Energy Info (EERE)

    of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policiesdeployment programs, Background analysis Website http:...

  2. Chapter 2: Energy Sectors and Systems

    Office of Environmental Management (EM)

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  3. DOE Issues Energy Sector Cyber Organization NOI

    Office of Environmental Management (EM)

    Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security

  4. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  5. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1982 and 2012 | Department of Energy 2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time - from about 26% to 28% of the energy consumed. The electric utility sector saw the greatest increase

  6. Fact #689: August 22, 2011 Energy Use by Sector and Source | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 9: August 22, 2011 Energy Use by Sector and Source Fact #689: August 22, 2011 Energy Use by Sector and Source The transportation sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility sector used little petroleum, but was dependent on coal for nearly half of the energy it consumed. Renewables, such as biofuels for transportation, were being used in every sector in

  7. Energy Sector Cybersecurity Framework Implementation Guidance

    Office of Environmental Management (EM)

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector Cybersecurity Framework Implementation Guidance │ Table of Contents TABLE OF CONTENTS 1. Introduction .............................................................................................................................................. 1 2. Preparing for Framework Implementation

  8. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  9. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  10. 2015 Energy Sector-Specific Plan

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas Subsectors; the Energy GCC represents government at various levels—Federal, State, local, territorial, and tribal—as well as international partners. The 2015 Energy SSP is closely aligned with the National Infrastructure Protection Plan 2013: Partnering for Critical Infrastructure Security and Resilience (NIPP 2013) and the joint national priorities, which were developed in collaboration by representatives from all critical infrastructure sectors, including Energy.

  11. EPA State and Local Transportation Resources | Open Energy Information

    Open Energy Info (EERE)

    EPA State and Local Transportation Resources AgencyCompany Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Transportation Phase:...

  12. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework...

  13. Energy Sector Cybersecurity Framework Implementation Guidance...

    Energy Savers [EERE]

    - Draft for Public Comment & Comment Submission Form (September 2014) Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission...

  14. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October...

  15. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014. The draft document...

  16. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the...

  17. Fact #582: August 3, 2009 Energy Shares by Sector and Source | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 2: August 3, 2009 Energy Shares by Sector and Source Fact #582: August 3, 2009 Energy Shares by Sector and Source The transportation sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility sector used little petroleum, but was dependent on coal for more than half of the energy it consumed. Renewables, such as biofuels for transportation, were being used in

  18. Property:ProgramSector | Open Energy Information

    Open Energy Info (EERE)

    + AGI-32 + Energy + ANL Wind Power Forecasting and Electricity Markets + Energy + APEC-Alternative Transport Fuels: Implementation Guidelines + Energy + APFED-Good Practice...

  19. Energy Sector Cybersecurity Framework Implementation Guidance | Department

    Energy Savers [EERE]

    of Energy Cybersecurity Framework Implementation Guidance Energy Sector Cybersecurity Framework Implementation Guidance On January 8, 2015, the Energy Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by the National Institutes of Standards and Technology (NIST) in February 2014. The voluntary Cybersecurity Framework consists of standards, guidelines, and

  20. Partnership for Energy Sector Climate Resilience | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership for Energy Sector Climate Resilience Partnership for Energy Sector Climate Resilience The Partnership for Energy Sector Climate Resilience is an initiative to enhance U.S. energy security by improving the resilience of energy infrastructure to extreme weather and climate change impacts. The goal is to accelerate investment in technologies, practices, and policies that will enable a resilient 21st century energy system. Under this Partnership, owners and operators of energy assets

  1. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9,...

  2. Dams and Energy Sectors Interdependency Study

    Office of Environmental Management (EM)

    Type text] Dams and Energy Sectors Interdependency Study September 2011 September 2011 Page 2 Abstract The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. 1 The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water

  3. New Report Highlights Growth of America's Clean Energy Job Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector August 23, 2012 - 12:20pm Addthis New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean Energy Job Sector New Report Highlights Growth of America's Clean

  4. US Energy Sector Vulnerabilities to Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .......................... 1 Figure 2. Climate change implications for the energy sector ..................................................................................................................... 4 Figure 3. Rate of warming in the United States by region, 1901-2011 .................................................................................................... 8 Figure 4. Wildfire disrupting electricity transmission

  5. US Energy Sector Vulnerabilities to Climate Change

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    .......................... 1 Figure 2. Climate change implications for the energy sector ..................................................................................................................... 4 Figure 3. Rate of warming in the United States by region, 1901-2011 .................................................................................................... 8 Figure 4. Wildfire disrupting electricity transmission

  6. Energy-Sector Stakeholders Attend the Department of Energy's 2010

    Energy Savers [EERE]

    Cybersecurity for Energy Delivery Systems Peer Review | Department of Energy Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, 2010 during which 28

  7. Energy-Sector Stakeholders Attend the Department of Energy's

    Office of Environmental Management (EM)

    Cybersecurity for Energy Delivery Systems Peer Review | Department of Energy Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review August 15, 2011 - 1:12pm Addthis The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22,

  8. Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options

    SciTech Connect (OSTI)

    Geffen, CA; Dooley, JJ; Kim, SH

    2003-08-24

    It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

  9. List of Companies in Geothermal Sector | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-212) Map of Geothermal energy companies Loading map......

  10. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  11. Renewable Energy Cross Sectoral Assessments Terms of Reference...

    Open Energy Info (EERE)

    Renewable Energy Cross Sectoral Assessments Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Cross Sectoral Assessments Terms of...

  12. Infrastructure opportunities in South America: Energy sector. Export trade information

    SciTech Connect (OSTI)

    1995-06-01

    The report, conducted by CG/LA, Inc., was funded by the U.S. Trade and Development Agency. The report was assembled for the South American Infrastructure Conference held in New Orleans. It contains a regional overview of infrastructure activities in ten countries represented at the conference. Also covered are project listings in five sectors, including Energy, Transportation, Environment, Telecommunications, and Industry. The study covers TDA case studies as well as project financeability. The ten countries covered in the report include the following: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. This volume focuses on the Energy Sector in South America.

  13. India-Low Carbon Transport | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name UNEP-Low Carbon Transport in India AgencyCompany Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area...

  14. Technology Mapping of the Renewable Energy, Buildings and Transport...

    Open Energy Info (EERE)

    Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  15. Department of Energy Releases New Report on Energy Sector Vulnerablities |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy New Report on Energy Sector Vulnerablities Department of Energy Releases New Report on Energy Sector Vulnerablities July 11, 2013 - 7:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Department of Energy released a new report which assesses how America's critical energy and electricity infrastructure is vulnerable to the impacts of climate change. Historically high temperatures in recent years have been accompanied by droughts and extreme heat waves,

  16. Energy Critical Infrastructure and Key Resources Sector-Specific...

    Broader source: Energy.gov (indexed) [DOE]

    The Energy Sector has developed a vision statement and six sector security goals that will be used as the framework for developing and implementing effective protective measures....

  17. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  18. U.S. Energy Sector Vulnerability Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Energy Sector Vulnerability Report U.S. Energy Sector Vulnerability Report As part of the Administration's efforts to support climate change preparedness and resilience planning -- and to advance the Energy Department's goal of promoting energy security -- the Department is assessing the threats of climate change and extreme weather to the Nation' energy system. Two reports have been released that examine the current and potential future impacts of climate change and extreme weather on the

  19. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  20. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Further insight with ...

  1. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  2. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  3. Sandia Energy - Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Be Featured on Upcoming Cover of Journal of Physical Chemistry B Analysis, Biofuels, Biomass, Capabilities, Energy, Facilities, Fuel Options, Highlights - Energy Research,...

  4. End-Use Sector Flowcharts, Energy Intensity Indicators

    Broader source: Energy.gov (indexed) [DOE]

    Economy Transportation Sector Commercial Sector Residential Sector Electric Power Sector Industrial Sector Manufacturing NAICS 311-339 Food, Beverages, & Tobacco NAICS 311/312 Textile Mills and Products NAICS 313/314 Apparel & Leather Products NAICS 315/316 Wood Products NAICS 321 Paper NAICS 322 Printing & Related Support NAICS 323 Petroleum & Coal Products NAICS 324 Chemicals NAICS 325 Plastics & Rubber Products NAICS 326 Nonmetallic Mineral Products NAICS 327 Primary

  5. Transportation Energy Futures Snapshot

    Broader source: Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  6. Westminster Energy Environment Transport Forum | Open Energy...

    Open Energy Info (EERE)

    Westminster Energy Environment Transport Forum Jump to: navigation, search Name: Westminster Energy, Environment & Transport Forum Place: United Kingdom Product: String...

  7. Sandia Energy Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c-liquids-create-more-sustainable-processesfeed 0 DOE Joint BioEnergy Institute Joins Elite '100500 Club' http:energy.sandia.govdoe-joint-bioenergy-institute-joins-elite-1005...

  8. Energy Critical Infrastructure and Key Resources Sector-Specific

    Office of Environmental Management (EM)

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector Government Coordinating Council Letter of Support i ii Energy Sector-Specific Plan (Redacted) Energy Sector Coordinating Councils Letter of Concurrence The National Infrastructure Protection Plan (NIPP) provides the unifying structure for the integration of federal critical infrastructures and key resources (CI/KR)

  9. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  10. List of Companies in Wind Sector | Open Energy Information

    Open Energy Info (EERE)

    Wind Sector Jump to: navigation, search WindTurbine-icon.png Companies in the Wind energy sector: Add a Company Download CSV (rows 1-1693) Map of Wind energy companies Loading...

  11. Energy Impact Illinois: Overcoming Barriers in the Multifamily Sector

    Broader source: Energy.gov [DOE]

    Presents how Energy Impact Illinois overcame barriers in the multifamily sector through financing partnerships and expert advice.

  12. Low Carbon Society Toward 2050: Indonesia Energy Sector | Open...

    Open Energy Info (EERE)

    for Global Environmental Strategies, Mizuho Information & Research Institute - Japan, Kyoto University, Institut Teknologi Bandung (ITB) - Indonesia Sector: Energy Focus...

  13. Retrocommissioning and the Public Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrocommissioning and the Public Sector Retrocommissioning and the Public Sector This presentation contains information on Retrocommissioning and the Public Sector. PDF icon Presentation Microsoft Office document icon Transcript More Documents & Publications retrocommissioning_public_sector.doc Transforming Commercial Building Operations - 2013 BTO Peer Review Energy Audit and Retro-Commissioning Policies for Public and Commercial Buildings

  14. Energy Sector Cybersecurity Framework Implementation Guidance - Draft for

    Office of Environmental Management (EM)

    Public Comment & Comment Submission Form (September 2014) | Department of Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission Form (September 2014) Energy Sector Cybersecurity Framework Implementation Guidance - Draft for Public Comment & Comment Submission Form (September 2014) On September 12, 2014, the Department issued a Federal Register Notice announcing the availability of the Energy Sector Cybersecurity Framework

  15. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  16. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  17. Static Sankey Diagram Full Sector Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Sector Manufacturing Static Sankey Diagram Full Sector Manufacturing The U.S. Manufacturing Sector Static Sankey diagram shows how total primary energy is used by U.S. manufacturing plants. Click on the Onsite Generation, Process Energy or Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the manufacturing Sankey data and compare energy consumption across

  18. DOE has published the revised 2010 Energy Sector Specific Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy announces the publication of the Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan 2010.

  19. User:GregZiebold/Sector test | Open Energy Information

    Open Energy Info (EERE)

    search Query all sector types for Companies: Bioenergy Biofuels Biomass Buildings Carbon Efficiency Geothermal energy Hydro Hydrogen Marine and Hydrokinetic Ocean Renewable Energy...

  20. Energy Efficiency Financing for Public Sector Projects | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Info Sector Name State Administrator California Energy Commission Website http:www.energy.ca.govefficiencyfinancingindex.html State California Program Type Loan Program...

  1. Dams and Energy Sectors Interdependency Study, September 2011 | Department

    Energy Savers [EERE]

    of Energy Dams and Energy Sectors Interdependency Study, September 2011 Dams and Energy Sectors Interdependency Study, September 2011 The U.S. Department of Energy (DOE) and the U.S. Department of Homeland Security (DHS) collaborated to examine the interdependencies between two critical infrastructure sectors - Dams and Energy. The study highlights the importance of hydroelectric power generation, with a particular emphasis on the variability of weather patterns and competing demands for

  2. Roadmap to Secure Control Systems in the Energy Sector

    Energy Savers [EERE]

    Roadmap to Secure Control Systems in the Energy Sector -  - Foreword T his document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improing cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and goernment to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors oer the next ten years. The Roadmap proides a strategic

  3. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  4. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  5. DOE Issues Energy Sector Cyber Organization NOI, Feb 2010

    Broader source: Energy.gov [DOE]

    The Department of Energys (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector...

  6. Transportation Energy Data Book | Open Energy Information

    Open Energy Info (EERE)

    for use as a desk-top reference, the Transportation Energy Data Book provides statistics and information characterizing transportation activity and energy use. The book...

  7. Energy Department Announces New Private Sector Partnership to Accelerate

    Office of Environmental Management (EM)

    Renewable Energy Projects | Department of Energy New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects October 9, 2009 - 1:09pm Addthis U.S. Energy Secretary Steven Chu today announced the Department of Energy (DOE) will provide up to $750 million in funding from the American Recovery and Reinvestment Act to help accelerate the development of conventional renewable energy

  8. Interacting vacuum energy in the dark sector

    SciTech Connect (OSTI)

    Chimento, L. P.; Carneiro, S.

    2015-03-26

    We analyse three cosmological scenarios with interaction in the dark sector, which are particular cases of a general expression for the energy flux from vacuum to matter. In the first case the interaction leads to a transition from an unstable de Sitter phase to a radiation dominated universe, avoiding in this way the initial singularity. In the second case the interaction gives rise to a slow-roll power-law inflation. Finally, the third scenario is a concordance model for the late-time universe, with the vacuum term decaying into cold dark matter. We identify the physics behind these forms of interaction and show that they can be described as particular types of the modified Chaplygin gas.

  9. Energy Information Administration - Transportation Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

  10. Commercial Sector Financing Needs and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Sector Financing Needs and Opportunities Commercial Sector Financing Needs and Opportunities Large commercial buildings use a great deal of energy and often offer attractive payback periods for energy efficiency investments. The clearest incentives in the large commercial building sector are usually for investment in buildings where the owner pays the energy bills or the tenant has a lease term that is longer than the payback period on the project. If the owner of the facility is

  11. Private Sector Outreach and Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The division's domestic capabilities have been greatly enhanced by the relationships that ... The relationships ISER maintains with energy sector owners and operators and public ...

  12. Commercial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  13. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries...

  14. Category:Public Sectors | Open Energy Information

    Open Energy Info (EERE)

    no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Feedback Contact needs updating Image needs updating...

  15. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  16. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 Fact 792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012 In the...

  17. Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS

    Office of Environmental Management (EM)

    3311, 3312), October 2012 (MECS 2006) | Department of Energy - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) PDF icon steel_footprint_2012.pdf More Documents & Publications MECS 2006 - Iron and Steel Iron and Steel (2010 MECS) MECS 2006 - Cement

  18. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  19. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  20. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  1. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  2. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  3. Energy Department Awards $45 Million to Deploy Advanced Transportation

    Office of Environmental Management (EM)

    Technologies | Department of Energy 45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that

  4. NREL: Transportation Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power ...

  5. Novolyte Charging Up Electric Vehicle Sector | Department of Energy

    Energy Savers [EERE]

    Novolyte Charging Up Electric Vehicle Sector Novolyte Charging Up Electric Vehicle Sector August 11, 2010 - 10:15am Addthis Electric vehicles are powered by electricity that comes in the form of electrically charged molecules known as ions. Those ions need a substance to transport them throughout the system as they travel from the anode to the cathode and back again. That substance is an electrolyte. | Staff Photo Illustration Electric vehicles are powered by electricity that comes in the form

  6. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect (OSTI)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment modelGlobal Change Assessment Model (GCAM)to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  7. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  8. Roadmap to Secure Control Systems in the Energy Sector 2006 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Presentation by Hank Kenchington on the 2006 roadmap to secure control ...

  9. Slideshow: Innovation in the Manufacturing Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow: Innovation in the Manufacturing Sector Slideshow: Innovation in the Manufacturing Sector December 12, 2013 - 5:00pm Addthis AEMC Summit 1 of 12 AEMC Summit In partnership with the Council on Competitiveness, the Energy Department hosted the first American Energy and Manufacturing Competitiveness (AEMC) Summit in Washington, DC. A culmination of a series of dialogues held across the country over the past year, the summit focused on how we can increase U.S. competitiveness in clean

  10. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

  11. Roadmap to Secure Control Systems in the Energy Sector - January 2006 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented collaboration between the energy sector and government to identify concrete steps to secure control systems used in the electricity, oil, and natural gas sectors over the next ten years.

  12. Energy Sector-Specific Plan: An Annex to the National Infrastructure

    Energy Savers [EERE]

    Protection Plan | Department of Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this updated 2010 Energy Sector-Specific Plan (SSP). Much of that work was conducted through the two Energy Sector

  13. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  14. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005 ...

  15. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities...

    Energy Savers [EERE]

    Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions ...

  16. LEDSGP/Transportation Toolkit | Open Energy Information

    Open Energy Info (EERE)

    the six key actions necessary to successfully implement a low emission development strategy for the transportation sector. Icon evaluate system.png Evaluate System LEDS icon...

  17. Sustainable Transport Systems STS | Open Energy Information

    Open Energy Info (EERE)

    STS Jump to: navigation, search Name: Sustainable Transport Systems (STS) Place: Santa Cruz, California Zip: 95062 Sector: Carbon, Efficiency Product: California-based...

  18. Policies to Reduce Emissions from the Transportation Sector ...

    Open Energy Info (EERE)

    Highlights This guide provides information on policy choices that can drive sustainability. Notes References "Policies To Reduce Emissions From The Transportation...

  19. NREL: Energy Analysis - Transportation Energy Futures Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graphic_tef_icon Transportation Energy Futures Project The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany the U.S. Department of Energy Office of

  20. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect (OSTI)

    Szybist, James P.; Curran, Scott

    2015-05-01

    Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However, using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.

  1. Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State Industrial Site Energy Consumption (TBtu) by State in 2010* Estimated Number of Large Energy User Manufacturing Facilities** by Sector (NAICS Code) and by State in 2005 Food Manufacturing & Beverage and Tobacco Product Manufacturing Wood Product Manufacturing & Paper Manufacturing Petroleum and Coal Products

  2. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies ...

  3. The Practice of Cost Benefit Analysis in the Transport Sector...

    Open Energy Info (EERE)

    the use of CBA for the social and economic evaluation of transport infrastructure in Mexico and is made from the point of view of the role of the Ministry of Finance's...

  4. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to bring together broad stakeholders in the transportation energy community to examine critical technologies, policies, and standards and their influence on technology evolution....

  5. Nexus of Energy Use and Technology in the Buildings Sector

    Gasoline and Diesel Fuel Update (EIA)

    Nexus of Energy Use and Technology in the Buildings Sector EIA Energy Conference July 15, 2014 | Washington, DC Tom Leckey, EIA Director, Office of Energy Consumption and Efficiency Statistics 2. Select segments 1. Select Primary Sampling Units (PSUs) - counties or groups of counties Main St Diagonal Ave 3. Select buildings How is CBECS Conducted? Nexus of Energy Use and and Technology, Buildings July 15, 2014 2 * No comprehensive source of buildings exists * Area frame - Randomly select small,

  6. Working to Achieve Cybersecurity in the Energy Sector | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Presentation covers cybersecurity in the energy sector and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting. PDF icon fupwg_spring11_wells.pdf More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan Cybersecurity for Energy Delivery Systems 2010 Peer Review Cybersecurity for Energy Delivery Systems (CEDS) Fact Sheets

  7. Sustainable Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Sustainable Transportation Bioenergy Bioenergy Read more Hydrogen and Fuel Cells Hydrogen and Fuel Cells Read more Vehicles Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices,

  8. Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Analysis - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  9. Transportation Energy Consortiums

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ... The U.S. China Clean Energy Research Center: CERC-Clean Vehicles Consortium ...

  10. Category:Sectors | Open Energy Information

    Open Energy Info (EERE)

    are in this category, out of 18 total. B Bioenergy Biofuels Biomass Buildings C Carbon E Efficiency G Geothermal energy H Hydro Hydrogen Hydropower M Marine and Hydrokinetic O...

  11. Public Sector Energy Efficiency Aggregation Program

    Broader source: Energy.gov [DOE]

    Please note that, like all Illinois Energy Now programs, the Aggregation Program is subject to the state appropriation process, and no funds can be committed or released until a final budget is...

  12. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  13. Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector

    Broader source: Energy.gov [DOE]

    While there has been considerable research focusing on energy efficiency and fuel substitution options for LDVs, much less attention has been given to non-LDV modes, even though they constitute close to half of the energy used in the transportation sector. We conducted an extensive literature review of the non-LDV modes, and in this report we bring together the salient findings concerning future energy efficiency options in the time period up to 2050. The studies reviewed provided potential energy savings for individual technologies within each mode, as well as an overall energy savings representing the case where all possible improvements are implemented.

  14. On-Line Tool to Boost Implementation of Energy Sector Roadmap for Control

    Energy Savers [EERE]

    Systems | Department of Energy On-Line Tool to Boost Implementation of Energy Sector Roadmap for Control Systems On-Line Tool to Boost Implementation of Energy Sector Roadmap for Control Systems News Release: Implementating the Roadmap to Secure Control Systems in the Energy Sector PDF icon On-Line Tool to Boost Implementation of Energy Sector Roadmap for Control Systems More Documents & Publications Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008

  15. FY 2016 EERE Budget Webinar—Sustainable Transportation Sector

    Broader source: Energy.gov [DOE]

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) hosted a webinar series featuring our deputy assistant secretaries and the technology office directors as they dove deep into EERE’s fiscal year (FY) 2016 budget request

  16. Transportation Energy Consumption Surveys

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Hydropower Biofuels: Ethanol & Biodiesel Wind Geothermal Solar Energy in Brief How much U.S. electricity is generated from renewable energy?...

  17. Secure Control Systems for the Energy Sector

    SciTech Connect (OSTI)

    Smith, Rhett; Campbell, Jack; Hadley, Mark

    2012-03-31

    Schweitzer Engineering Laboratories (SEL) will conduct the Hallmark Project to address the need to reduce the risk of energy disruptions because of cyber incidents on control systems. The goals is to develop solutions that can be both applied to existing control systems and designed into new control systems to add the security measures needed to mitigate energy network vulnerabilities. The scope of the Hallmark Project contains four primary elements: 1. Technology transfer of the Secure Supervisory Control and Data Acquisition (SCADA) Communications Protocol (SSCP) from Pacific Northwest National Laboratories (PNNL) to Schweitzer Engineering Laboratories (SEL). The project shall use this technology to develop a Federal Information Processing Standard (FIPS) 140-2 compliant original equipment manufacturer (OEM) module to be called a Cryptographic Daughter Card (CDC) with the ability to directly connect to any PC enabling that computer to securely communicate across serial to field devices. Validate the OEM capabilities with another vendor. 2. Development of a Link Authenticator Module (LAM) using the FIPS 140-2 validated Secure SCADA Communications Protocol (SSCP) CDC module with a central management software kit. 3. Validation of the CDC and Link Authenticator modules via laboratory and field tests. 4. Creation of documents that record the impact of the Link Authenticator to the operators of control systems and on the control system itself. The information in the documents can assist others with technology deployment and maintenance.

  18. Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type of Energy | Department of Energy Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Energy Intensity Changes by Sector, 1985-2011 - Alternative Measures by Type of Energy Further insight with regard to the comparison of intensity changes by sector can be gained by looking at how they differ with respect to different definitions of energy use. Source energy attributes all the energy used for electricity generation and transmission to the specific end-use sector,

  19. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt043_ti_erickson_2012_o

  20. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt043_ti_erickson_2011_p

  1. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  2. Transportation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Transportation Projects Transportation Projects Because highway vehicles account for a large share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially improve our energy security and air quality. However, few fuel-cell-powered vehicles are in use today; even fewer are available commercially. A number of fuel cell vehicle demonstrations are currently underway

  3. Workforce Training for the Electric Power Sector | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    04-08-2010_SG_Workforce_Selections.pdf More Documents & Publications Workforce Training for the Electric Power Sector: Awards Energy & Manufacturing Workforce Training Topics List - Version 1.7 (02.11.14) Microsoft Word - PSRP Updates 6-25-10_v2

  4. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  5. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  6. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  7. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  8. Energy and water sector policy strategies for drought mitigation.

    SciTech Connect (OSTI)

    Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

    2009-03-01

    Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

  9. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  10. Innovation Center for Energy and Transportation ICET | Open Energy...

    Open Energy Info (EERE)

    Innovation Center for Energy and Transportation ICET Jump to: navigation, search Logo: Innovation Center for Energy and Transportation (ICET) Name: Innovation Center for Energy and...

  11. Isotope Program Transportation | Department of Energy

    Office of Environmental Management (EM)

    Isotope Program Transportation Isotope Program Transportation PDF icon Isotope Program Transportation More Documents & Publications Nuclear Fuel Storage and Transportation Planning Project Overview Section 180(c) Ad Hoc Working Group DOE Office of Nuclear Energy

  12. Energy Efficiency Services Sector: Workforce Education and Training Needs

    SciTech Connect (OSTI)

    Goldman, Charles A.; Peters, Jane S.; Albers, Nathaniel; Stuart, Elizabeth; Fuller, Merrian C.

    2010-03-19

    This report provides a baseline assessment of the current state of energy efficiency-related education and training programs and analyzes training and education needs to support expected growth in the energy efficiency services workforce. In the last year, there has been a significant increase in funding for 'green job' training and workforce development (including energy efficiency), through the American Recovery and Reinvestment Act (ARRA). Key segments of the energy efficiency services sector (EESS) have experienced significant growth during the past several years, and this growth is projected to continue and accelerate over the next decade. In a companion study (Goldman et al. 2009), our research team estimated that the EESS will increase two- to four-fold by 2020, to 220,000 person-years of employment (PYE) (low-growth scenario) or up to 380,000 PYE (high-growth scenario), which may represent as many as 1.3 million individuals. In assessing energy efficiency workforce education and training needs, we focus on energy-efficiency services-related jobs that are required to improve the efficiency of residential and nonresidential buildings. Figure ES-1 shows the market value chain for the EESS, sub-sectors included in this study, as well as the types of market players and specific occupations. Our assessment does not include the manufacturing, wholesale, and retail distribution subsectors, or energy efficiency-focused operations and maintenance performed by facility managers.

  13. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    SciTech Connect (OSTI)

    Morrison, G.; Stephens, T.S.

    2011-10-11

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  14. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Process Energy in U.S. Manufacturing Sector Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector The Process Energy Static Sankey diagram shows how energy is used directly for production by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize the

  15. Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector |

    Energy Savers [EERE]

    Department of Energy Nonprocess Energy in U.S. Manufacturing Sector Static Sankey Diagram of Nonprocess Energy in U.S. Manufacturing Sector The Nonprocess Energy Static Sankey diagram shows how energy is used for supporting functions by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Process Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan, zoom, and customize

  16. Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector |

    Energy Savers [EERE]

    Department of Energy Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector Static Sankey Diagram of Process Energy in U.S. Manufacturing Sector The Process Energy Static Sankey diagram shows how energy is used directly for production by U.S. manufacturing plants. Click on the Full Sector, Onsite Generation, and Nonprocess Energy thumbnails below the diagram to see further detail on energy flows in manufacturing. Also, see the Dynamic Manufacturing Energy Sankey Tool to pan,

  17. Energy Sector-Specific Plan: An Annex to the National Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked closely with dozens of government and industry partners to prepare this...

  18. Roadmap to Secure Control Systems in the Energy Sector- January 2006

    Broader source: Energy.gov [DOE]

    This document, the Roadmap to Secure Control Systems in the Energy Sector, outlines a coherent plan for improving cyber security in the energy sector. It is the result of an unprecedented...

  19. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  20. Energy Critical Infrastructure and Key Resources Sector-Specific Plan as

    Energy Savers [EERE]

    input to the National Infrastructure Protection Plan (Redacted) | Department of Energy Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) The Energy Sector has developed a vision statement and six sector security goals that will be used as the framework for developing and

  1. Energy Department Awards $45 Million to Deploy Advanced Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transportation costs and protect the environment in communities nationwide. "By ... transportation sector that cuts harmful pollution, creates jobs and leads to a more ...

  2. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the

  3. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other

  4. Electrofuels: Versatile Transportation Energy Solutions

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: ARPA-Es Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

  5. Transportation Energy Pathways LDRD.

    SciTech Connect (OSTI)

    Barter, Garrett; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; Yoshimura, Ann S.; Peterson, Meghan; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressiveGHG emission reduction targets, even as the current electricity source mix shifts away from coal and towardsnatural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicleefficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towardsmeeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 AcknowledgmentThe authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. ChristopherYang for their suggestions over the course of this project. This work was funded by the Laboratory DirectedResearch and Development program at Sandia National Laboratories.4

  6. Transportation Energy Futures Series: Alternative Fuel Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel ... A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  7. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  8. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  9. South Africa-Danish Government Sector Programmes | Open Energy...

    Open Energy Info (EERE)

    Sector Programmes Jump to: navigation, search Name South Africa-Danish Government Sector Programmes AgencyCompany Organization Danish Government Partner Danish Ministry for...

  10. List of Companies in Hydrogen Sector | Open Energy Information

    Open Energy Info (EERE)

    Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-196) Map of Hydrogen companies Loading map......

  11. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  12. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2

  13. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  14. Macomb College Transportation and Energy Technology 126.09

    SciTech Connect (OSTI)

    2010-12-31

    The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

  15. Private Sector Outreach and Partnerships | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation. The division's domestic capabilities have been greatly enhanced by the relationships that have been created over years of collaborations with companies from all parts the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk and system

  16. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Building Activity (Table 1b) html table 1b excel table 1b pdf table 1b. Total Primary Energy Consumption (U.S. and Census Region) By Principal Building Activity (Table 1c) html...

  17. Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type, 2009 | Department of Energy 9: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009 Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009 Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks and buses is diesel. Transportation Energy Use by Mode and Fuel Type, 2009 Graph showing transporation energy

  18. Energy Sector Control Systems Working Group to Meet March 25, 2008 |

    Energy Savers [EERE]

    Department of Energy Control Systems Working Group to Meet March 25, 2008 Energy Sector Control Systems Working Group to Meet March 25, 2008 The Energy Sector Control Systems Working Group is a unique public-private partnership recently formed to help guide implementation of the priorities identified in the industry-led Roadmap to Secure Control Systems in the Energy Sector. The group seeks to provide a platform for pursuing innovative and practical activities that will improve the security

  19. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  20. List of Companies in Biofuels Sector | Open Energy Information

    Open Energy Info (EERE)

    List of Companies in Biofuels Sector Jump to: navigation, search BiomassImage.JPG Companies in the Biofuels sector: Add a Company Download CSV (rows 1-256) Map of Biofuels...

  1. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  2. Energy Assessment Training Reduces Energy Costs for the U.S. Coast Guard Sector Guam: Success Stories (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    U.S. Coast Guard Sector Guam experiences considerable energy cost and use savings after implementing training from NREL's energy assessment training.

  3. Hydrogen Energy Storage: Grid and Transportation Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  4. U.S. Building-Sector Energy Efficiency Potential

    SciTech Connect (OSTI)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  5. Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the 2008 ieRoadmap Workshop | Department of Energy Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Presentation by Hank Kenchington on the 2006 roadmap to secure control systems in the energy sector at the ieRoadmap Workshop in Chicago, May 28-29, 2008. PDF icon Roadmap to Secure Control Systems in the Energy Sector More

  6. Energy, Transportation Ministers from Asia-Pacific Nations Pledge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific ...

  7. Standardization of Transport Properties Measurements: Internal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agency (IEA-AMT) Annex on Thermoelectric | Department of Energy Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement PDF icon wang.pdf

  8. Forest Products Sector (NAICS 321 and 322) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    U.S. Manufacturing Energy Use and Greenhouse Gas Emissions Analysis 2.3 FOREST PRODUCTS SECTOR (NAICS 321 AND 322) 2.3.1. Overview of the Forest Products Manufacturing Sector The forest products sector produces thousands of products from renewable raw materials (wood) that are essential for communication, packaging, consumer goods, and construction. The sector is divided into two major categories: Wood Product Manufacturing (NAICS 321) and Paper Manufacturing (NAICS 322). These industries are

  9. EA-0513: Approaches for Acquiring Energy Savings in Commercial Sector Buildings, Bonneville Power Administration

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal for DOE's Bonneville Power Administration to use several diverse approaches to purchase or acquire energy savings from commercial sector...

  10. NAMA-Programme for the construction sector in Asia | Open Energy...

    Open Energy Info (EERE)

    United Nations Environment Programme (UNEP) Sector Climate Focus Area Renewable Energy, Buildings, Industry Topics Market analysis Website http:www.unep.orgsbcipdfs...

  11. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions

    Broader source: Energy.gov [DOE]

    This report examines current and potential future impacts of these climate trends on the U.S. energy sector by region, and explores possible resilience solutions.

  12. Badger Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Jump to: navigation, search Name: Badger Transport Place: Clintonville, Wisconsin Zip: 54929 Product: Heavy haul and specialty trucking company active in the US Midwest....

  13. Detection and Analysis of Threats to the Energy Sector: DATES

    SciTech Connect (OSTI)

    Alfonso Valdes

    2010-03-31

    This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together with third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008. This resulted in delays in finalizing agreements with commercial partners, and in particular the Invensys testbed was not installed until December 2008 (as opposed to the March 2008 plan). The project resulted in a number of conference presentations and publications, and was well received when presented at industry forums. In spite of some interest on the part of the utility sector, we were unfortunately not able to engage a utility for a full-scale pilot deployment.

  14. Mobilizing $4 Billion in Private-Sector Support for Clean Energy Innovation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Mobilizing $4 Billion in Private-Sector Support for Clean Energy Innovation Mobilizing $4 Billion in Private-Sector Support for Clean Energy Innovation June 16, 2015 - 9:00am Addthis Innovations in clean energy like wind power are a crucial part of fighting climate change. | Photo courtesy of the Department of Energy Loan Programs Office. Innovations in clean energy like wind power are a crucial part of fighting climate change. | Photo courtesy of the Department of

  15. Public Finance Mechanisms to Catalyze Sustainable Energy Sector...

    Open Energy Info (EERE)

    all aspects of the sector including technology innovation, project development, (SME) business and industry support, consumer awareness and end-user finance. Regardless of...

  16. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    (34) Machinery (35) El. Equip.(36) Instruments (38) Misc. (39) Appendices Survey Design Quality of Data Sector Description Nonobservation Errors Glossary Intensity Sites...

  17. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  18. Sustainable Transportation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Success Stories Sustainable Transportation Success Stories Sustainable Transportation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into sustainable transportation solutions are important steps in the drive toward cleaner vehicles for all purposes. Learn how EERE's investments in bioenergy, hydrogen and fuel cell research, and vehicle technologies are putting electric drive vehicles on the road and

  19. Transportation Energy Survey Data Book 1.1

    SciTech Connect (OSTI)

    Gurikova, T

    2002-06-18

    The transportation sector is the major consumer of oil in the United States. In 2000, the transportation sector's share of U.S. oil consumption was 68 percent (U.S. DOE/EIA, 2001a, Table 2.5, p. 33, Table 1.4, p.7). As a result, the transportation sector is one of the major producers of greenhouse gases. In 2000, the transportation sector accounted for one-third (33 percent) of carbon emissions (U.S. DOE/EIA, 2000b, Table 5, p.28). In comparison, the industrial sector accounted for 32 percent and residential and commercial sector for 35 percent of carbon emissions in 2000. Carbon emissions, together with other gases, constitute greenhouse gases that are believed to cause global warming. Because that the transportation sector is a major oil consumer and producer of greenhouse gases, the work of the Analytic Team of the Office of Transportation Technologies (OTT) focuses on two main objectives: (1) reduction of U.S. oil dependence and (2) reduction of carbon emissions from vehicles. There are two major factors that contribute to the problem of U.S. oil dependence. First, compared to the rest of the world, the United States does not have a large oil reserve. The United States accounts for only 9 percent of oil production (U.S. DOE/EIA, 2001c, Table 4.1C). In comparison, the Organization for Petroleum Exporting Countries (OPEC) produces 42 percent of oil, and the Persian Gulf accounts for 28 percent. (U.S. DOE/EIA, 2001c, Table 1.1A). More than half (54 percent) of oil consumed in the United States is imported (U.S. DOE/EIA, 2001a, Table 1.8, p. 15). Second, it is estimated that the world is approaching the point at which half of the total resources of conventional oil believed to exist on earth will have been used up (Birky et. al., 2001, p. 2). Given that the United States is highly dependent on imported oil and that half of the world's conventional oil reserves will have been used up in the near future, the OTT's goal is to ensure an adequate supply of fuel for vehicles. There are three ways to achieve this goal: efficiency, substitution, or less travel. A reduction in oil usage will result in a reduction of carbon emissions. Successful transition to alternative types of fuel and advanced technology vehicles may depend on awareness of U.S. dependence on imported oil and the U.S. energy situation. Successful transition may also depend on knowledge of alternative types of fuels and advanced technologies. The ''Transportation Energy Survey Data Book 1.1'' examines the public's knowledge, beliefs and expectations of the energy situation in the United States and transportation energy-related issues. The data presented in the report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation International (ORCI) for National Renewable Energy Laboratory (NREL) that are commissioned and funded by OTT, Gallup polls, ABC News/Washington Post polls, NBC News/Wall Street Journal polls, polls conducted by the Ipsos-Reid Corporation, as well articles from The Washington Post (2001) and other sources. All surveys are telephone interviews conducted with randomly selected national samples of adults 18 years of age and older. Almost all surveys were conducted before the September 11, 2001 terrorist attacks, with the only exceptions being the November 2001 ORCI survey and the November 2001 survey conducted by the Ipsos-Reid Corporation.

  20. International Association of Public Transport | Open Energy Informatio...

    Open Energy Info (EERE)

    search Name: International Association of Public Transport Address: Rue Sainte-Marie 6 (Quai des Charbonnages) Place: Brussels, Belgium Zip: B-1080 Sector: Vehicles Year...

  1. Fact #561: March 9, 2009 All Sectors' Petroleum Gap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: March 9, 2009 All Sectors' Petroleum Gap Fact #561: March 9, 2009 All Sectors' Petroleum Gap Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial, residential and commercial, and electric utilities. In 1973 the gap between what the U.S. produced and what was consumed was 5.6 million barrels per day. By 2030, the gap is expected to be at least 9.2 million

  2. Fact Sheet: Detection and Analysis of Threats to the Energy Sector (DATES)

    Office of Environmental Management (EM)

    and Analysis of Threats to the Energy Sector (DATES) A groundbreaking integrated capability in intrusion detection, security event management, and sector-wide threat analysis Detecting cyber attacks against digital control systems quickly and accurately is essential to energy sector security. Current intrusion detection systems (IDS) continuously scan control system communication paths and alert operators of suspicious network traffc. But existing IDS, often not tailored to the control

  3. U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather This report-part of the Administration's efforts to support national climate change adaptation planning through the Interagency Climate Change Adaptation Task Force and Strategic Sustainability Planning process established under Executive Order 13514 and to advance the U.S. Department of Energy's goal of promoting energy

  4. DOE Launches the "Partnership for Energy Sector Climate Resilience"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with 17 Electric Utilities | Department of Energy DOE Launches the "Partnership for Energy Sector Climate Resilience" with 17 Electric Utilities DOE Launches the "Partnership for Energy Sector Climate Resilience" with 17 Electric Utilities June 2, 2015 - 12:00pm Addthis Melanie A. Kenderdine Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis On April 30, Energy Secretary Moniz and Deputy Secretary Elizabeth Sherwood-Randall welcomed senior

  5. Issues in International Energy Consumption Analysis: Electricity Usage in Indias Housing Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of

  6. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  7. Transportation in Community Strategic Energy Plans

    Broader source: Energy.gov [DOE]

    This presentation features Caley Johnson, a fuel and vehicle market analyst with the National Renewable Energy Laboratory. Johnson provides an overview of how and why to incorporate transportation...

  8. Petroleum Reduction Planning Tool | Open Energy Information

    Open Energy Info (EERE)

    Energy Laboratory Sector: Energy Focus Area: Biomass, Energy Efficiency, Fuels & Efficiency, Hydrogen, Transportation Phase: Prepare a Plan Topics: Analysis Tools,...

  9. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  10. DOE Seeks Public-Private Sector Expressions of Interest for Global Nuclear Energy Partnership Initiative

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - U.S. Secretary of Energy Samuel Bodman today announced that the Department of Energy (DOE) is seeking expressions of interest from the public and private sectors by March 31, 2006,...

  11. Draft Energy Sector Cybersecurity Framework Implementation Guidance Available for Public Comment

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) has issued a Notice of Public Comment in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. The document is available for a 30 day comment period.

  12. Commercial Buildings Sector Agent-Based Model | Open Energy Informatio...

    Open Energy Info (EERE)

    OpenEI Keyword(s): EERE tool, Commercial Buildings Sector Agent-Based Model Language: English References: Building Efficiency: Development of an Agent-based Model of the US...

  13. Transportation of Nuclear Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of radioactive and hazardous materials. DOE has authority under the Atomic Energy Act of 1954 (AEA) to regulate activities related to the transportation of radioactive materials undertaken by DOE or on its behalf. DOE shipments generally are conducted in accordance with the requirements and standards of the Nuclear

  14. Transportation Energy Data Book, Edition 18

    SciTech Connect (OSTI)

    Davis, Stacy C.

    1998-09-01

    The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

  15. Transportation Energy Data Book, Edition 19

    SciTech Connect (OSTI)

    Davis, S.C.

    1999-09-01

    The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

  16. Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation

    Energy Savers [EERE]

    to the 2008 ieRoadmap Workshop | Department of Energy 2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Presentation by Hank Kenchington on the 2006 roadmap to secure control systems in the energy sector at the ieRoadmap Workshop in Chicago, May 28-29, 2008. PDF icon Roadmap to Secure Control Systems in the Energy Sector More Documents & Publications Security is Not an Option

  17. Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste Shipment Indiana Department of Homeland...

  18. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    adjustment due to scientific advances. LEARNCOSTMULTIPLIER 2 Cost adjustment due to manufacturing advances. LEARNCOSTMULTIPLIER 3 Cost adjustment due to design advances....

  19. Transportation Sector Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    steps have been taken for all vehicle classes, CAFE is calculated for each of the nine manufacturing groups. Each group is classified as either passing or failing the CAFE...

  20. Transportation Sector Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    adjustment due to scientific advances. LEARNCOSTMULTIPLIER 2 Cost adjustment due to manufacturing advances. LEARNCOSTMULTIPLIER 3 Cost adjustment due to design advances....

  1. Transportation Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    and historic yearly values for car prices at different production levels by applying an additive adjustment to the price of a gasoline-fueled vehicle. a) Car and Light Truck at...

  2. Energy Sector Stakeholders Attend the Department of Energy¬タルs 2010 Cybersecurity for Energy Delivery Systems Peer Review

    Office of Environmental Management (EM)

    Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review July 29, 2010 The Department of Energy conducted a Peer Review of its Cybersecurity for Energy Delivery Systems (CEDS) Research and Development Program on July 20-22, during which 28 R&D projects were presented for review by industry stakeholders. More than 65 energy sector stakeholders came to network, present, and learn about DOE projects, while more than 20 joined in by webinar. The

  3. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  4. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and Industry ...

  5. List of Companies in Services Sector | Open Energy Information

    Open Energy Info (EERE)

    n":"","group":"","inlineLabel":"","visitedicon":"","text":"EnergyCo." title"Able Energy Co.">Able Energy Co.","title":"Able Energy...

  6. Proposed Energy Transport Corridors: West-wide energy corridor programmatic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS, Draft Corridors - September 2007. | Department of Energy Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the

  7. Site Attracts Private Sector Investments for Reuse | Department of Energy

    Energy Savers [EERE]

    Attracts Private Sector Investments for Reuse Site Attracts Private Sector Investments for Reuse June 26, 2013 - 12:00pm Addthis This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. This 13,000-square-foot building constructed by Babcock Services, Inc. is a sign of continued success for the East Tennessee Technology Park Heritage Center. A new solar installation was recently dedicated at the

  8. Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as

    Energy Savers [EERE]

    input to the National Infrastructure Protection Plan (Redacted) | Department of Energy Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) Energy: Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) In June 2006, the U.S. Department of Homeland Security (DHS) announced completion of the National Infrastructure Protection Plan

  9. Energy Sector Vulnerability to Climate Change: Adaptation Options to Increase Resilience (Presentation)

    SciTech Connect (OSTI)

    Newmark, R. L.; Bilello, D.; Macknick, J.; Hallet, K. C.; Anderson, R.; Tidwell, V.; Zamuda, C.

    2013-02-01

    The U.S. Department of Energy is conducting an assessment of vulnerabilities of the U.S. energy sector to climate change and extreme weather. Emphasizing peer reviewed research, it seeks to quantify vulnerabilities and identify specific knowledge or technology gaps. It draws upon a July 2012 workshop, ?Climate Change and Extreme Weather Vulnerability Assessment of the US Energy Sector?, hosted by the Atlantic Council and sponsored by DOE to solicit industry input.

  10. Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline for Light Vehicles | Department of Energy 4: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles Fact #834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles Highway vehicles are responsible for the majority of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in medium and heavy trucks and buses is diesel.

  11. Transportation energy data book: edition 16

    SciTech Connect (OSTI)

    Davis, S.C.; McFarlin, D.N.

    1996-07-01

    The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

  12. Federal Sector Renewable Energy Project Implementation: "What's Working and Why"

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: "What's Working and Why" Implementation: What s Working and Why DOD-DOE Waste-to- Energy and Fuel Cell Workshop January 13, 2011 Bob Westby Bob Westby NREL Laboratory Program Manager: Federal Energy Management Program NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Innovation for Our Energy Future Contents Federal

  13. Market leadership by example: Government sector energy efficiency in developing countries

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

  14. Mexico-REEEP EERE Activities | Open Energy Information

    Open Energy Info (EERE)

    Efficiency Partnership Sector Energy Focus Area Energy Efficiency, Renewable Energy, Geothermal, Transportation Topics Policiesdeployment programs, Market analysis,...

  15. List of Companies in Efficiency Sector | Open Energy Information

    Open Energy Info (EERE)

    ":"","group":"","inlineLabel":"","visitedicon":"","text":"EnergyGroupInc" title"Acela Energy Group Inc">Acela Energy Group Inc<...

  16. ENECO Energie | Open Energy Information

    Open Energy Info (EERE)

    Place: Rotterdam, Netherlands Zip: 3000 CL Sector: Biomass, Renewable Energy, Solar, Wind energy Product: Dutch-based energy company that transports, produces, trades and sells...

  17. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  18. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  19. Transportation energy data book: Edition 12

    SciTech Connect (OSTI)

    Davis, S.C.; Morris, M.D.

    1992-03-01

    The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  20. Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report)

    Broader source: Energy.gov [DOE]

    This paper examines the behavioral assumptions that underlie California’s residential sector energy efficiency programs and recommends improvements that will help to advance the state’s ambitious greenhouse gas reduction goals.

  1. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities...

    Broader source: Energy.gov (indexed) [DOE]

    it in a modern browser. This report examines the current and potential future impacts of climate change and extreme weather on the U.S. energy sector at the regional level. It...

  2. Working with the Private Sector to Achieve a Clean Energy Economy |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Doug Schultz Program Director, Loan Programs Office of the Department of Energy. What does this project do? Brings more certainty to the market by incentivizing the capital markets. Increases non-government lending capacity to the renewable sector. Provides a bridge between innovative but high tech risk projects and commercial technology projects whose risk profiles banks readily assume. It's an example of how the Administration is working with the private sector to

  3. Sustainable Transportation Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy 1000 Independence Ave., SW Washington, D.C. 20585 Join us for Sustainable Transportation Day, an afternoon on the grounds of the Forrestal Building in ...

  4. Transportation energy data book: Edition 15

    SciTech Connect (OSTI)

    Davis, S.C.

    1995-05-01

    The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  5. Issues in Energy Economics Led by Emerging Linkages between the Natural Gas and Power Sectors

    SciTech Connect (OSTI)

    Platt, Jeremy B.

    2007-09-15

    Fuel prices in 2006 continued at record levels, with uranium continuing upward unabated and coal, SO{sub 2} emission allowances, and natural gas all softening. This softening did not continue for natural gas, however, whose prices rose, fell and rose again, first following weather influences and, by the second quarter of 2007, continuing at high levels without any support from fundamentals. This article reviews these trends and describes the remarkable increases in fuel expenses for power generation. By the end of 2005, natural gas claimed 55% of annual power sector fuel expenses, even though it was used for only 19% of electric generation. Although natural gas is enormously important to the power sector, the sector also is an important driver of the natural gas market-growing to over 28% of the market even as total use has declined. The article proceeds to discuss globalization, natural gas price risk, and technology developments. Forces of globalization are poised to affect the energy markets in new ways-new in not being only about oil. Of particular interest in the growth of intermodal traffic and its a little-understood impacts on rail traffic patterns and transportation costs, and expected rapidly expanding LNG imports toward the end of the decade. Two aspects of natural gas price risk are discussed: how understanding the use of gas in the power sector helps define price ceilings and floors for natural gas, and how the recent increase in the natural gas production after years of record drilling could alter the supply-demand balance for the better. The article cautions, however, that escalation in natural gas finding and development costs is countering the more positive developments that emerged during 2006. Regarding technology, the exploitation of unconventional natural gas was one highlight. So too was the queuing up of coal-fired power plants for the post-2010 period, a phenomenon that has come under great pressure with many consequences including increased pressures in the natural gas market. The most significant illustration of these forces was the early 2007 suspension of development plans by a large power company, well before the Supreme Court's ruling on CO{sub 2} as a tailpipe pollutant and President Bush's call for global goals on CO{sub 2} emissions.

  6. Departmental Energy, Renewable Energy and Transportation Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-02-27

    The order defines requirements and responsibilities for managing the Department's energy, building and fleets.

  7. List of Companies in Biomass Sector | Open Energy Information

    Open Energy Info (EERE)

    lygons":,"circles":,"rectangles":,"locations":"text":"Energy Ltd">A A Energy Ltd","title":"A A Energy...

  8. Federal Sector Renewable Energy Project Implementation: ""What's Working and Why

    Broader source: Energy.gov [DOE]

    Presentation by Robert Westby, National Renewable Energy Laboratory, at the Waste-to-Energy Using Fuel Cells Workshop held Jan. 13, 2011.

  9. Residential Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  10. Energy Department Announces New Private Sector Partnership to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the Department's Loan Guarantee Program. Energy and Climate Stakeholders Briefing (PDF) Media contact(s): (202) 586-4940 Addthis Related Articles Energy Department Announces...

  11. Energy Sector Framework Implementation Guidance Notice of Stakeholder Participation: Federal Register Notice Volume 79, No.- 119 June 20, 2014

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) invites public participation in DOE’s efforts to develop a guidance document entitled: Energy Sector Framework Implementation Guidance.

  12. Energy Sector Cybersecurity Framework Implementation Guidance- Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014

    Broader source: Energy.gov [DOE]

    The Department of Energy invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014.

  13. Probing surface & transport phenomena in energy materials under...

    Office of Scientific and Technical Information (OSTI)

    Probing surface & transport phenomena in energy materials under operating conditions. Citation Details In-Document Search Title: Probing surface & transport phenomena in energy...

  14. GIZ Sourcebook Module 5h: Urban Transport and Energy Efficiency...

    Open Energy Info (EERE)

    h: Urban Transport and Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ Sourcebook Module 5h: Urban Transport and Energy Efficiency AgencyCompany...

  15. 2013 US Department of Energy National Transportation Stakeholders...

    Office of Environmental Management (EM)

    3 US Department of Energy National Transportation Stakeholders Forum Hello Everyone, It's time to register for the 2013 U.S. Department of Energy National Transportation...

  16. Poland-Roadmap 2050 | Open Energy Information

    Open Energy Info (EERE)

    Company Organization European Climate Foundation Sector Energy Focus Area Non-renewable Energy, Buildings, Buildings - Commercial, Buildings - Residential, Transportation Topics...

  17. Jiangsu-California MOU | Open Energy Information

    Open Energy Info (EERE)

    California MOU AgencyCompany Organization Jiangsu, State of California Sector Energy Focus Area Energy Efficiency, Transportation Topics Policiesdeployment programs...

  18. Transportation Energy Data Book: Edition 27

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2008-06-01

    The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  19. Transportation Energy Data Book: Edition 34

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary

    2015-08-01

    The Transportation Energy Data Book: Edition 34 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  20. Transportation Energy Data Book. Edition 33

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary

    2014-07-01

    The Transportation Energy Data Book: Edition 33 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  1. Transportation Energy Data Book: Edition 26

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W

    2007-07-01

    The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  2. Transportation Energy Data Book: Edition 25

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W

    2006-06-01

    The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  3. Transportation Energy Data Book: Edition 23

    SciTech Connect (OSTI)

    Davis, S.C.

    2003-10-24

    The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  4. Transportation Energy Data Book: Edition 24

    SciTech Connect (OSTI)

    Davis, S.C.

    2005-03-08

    The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  5. Transportation Energy Data Book: Edition 28

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2009-06-01

    The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  6. Transportation Energy Data Book: Edition 32

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-08-01

    The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  7. Transportation Energy Data Book: Edition 30

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2011-07-01

    The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  8. Transportation Energy Data Book: Edition 29

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2010-07-01

    The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  9. Transportation Energy Data Book: Edition 31

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2012-08-01

    The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  10. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    7 Range 10 4 48 Clothes Dryer 359 (2) 4 49 Water Heating Water Heater-Family of 4 40 64 (3) 26 294 Water Heater-Family of 2 40 32 (3) 12 140 Note(s): Source(s): 1) $1.139/therm. 2) Cycles/year. 3) Gallons/day. A.D. Little, EIA-Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case, Sept. 2, 1998, p. 30 for range and clothes dryer; LBNL, Energy Data Sourcebook for the U.S. Residential Sector, LBNL-40297, Sept. 1997, p. 62-67 for water heating; GAMA,

  11. Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions

    Broader source: Energy.gov (indexed) [DOE]

    Climate Change and the U.S. Energy Sector: Regional Vulnerabilities and Resilience Solutions October 2015 U.S. Department of Energy Office of Energy Policy and Systems Analysis Acknowledgements This report was produced by the U.S. Department of Energy's Office of Energy Policy and Systems Analysis (DOE-EPSA) under the direction of Craig Zamuda. Matt Antes, C.W. Gillespie, Anna Mosby, and Beth Zotter of Energetics Incorporated provided analysis, drafting support, and technical editing.

  12. AEO2011: Energy Consumption by Sector and Source - Mountain ...

    Open Energy Info (EERE)

    comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 8, and contains only the reference...

  13. Transportation Energy Data Book: Edition 14

    SciTech Connect (OSTI)

    Davis, S.C.

    1994-05-01

    Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  14. Transportation Energy Data Book (Edition 20)

    SciTech Connect (OSTI)

    Davis, S.C.

    2000-10-09

    The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  15. Transportation Energy Data Book: Edition 21

    SciTech Connect (OSTI)

    Davis, S.C.

    2001-09-13

    The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  16. Property:Incentive/ImplSector | Open Energy Information

    Open Energy Info (EERE)

    Efficiency Programs (Texas) + Utility + AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + Utility + AEP Appalachian Power - Residential Energy...

  17. Utility Sector Leaders Make Firm Commitment to Energy Efficiency

    Broader source: Energy.gov [DOE]

    More than 80 energy, environmental and other organizations announced commitments and public statements in support of the National Action Plan for Energy Efficiency (NAPEE), released today, which provides energy consumers and providers information on policies and techniques to save money as well as protect the environment. By adopting the plan's recommendations on low-cost, under-used energy efficiency, Americans could save hundreds of billions of dollars on their gas and electric utility bills, cut greenhouse gas emissions, and lower the costs for energy and pollution controls.

  18. Study of energy R and D in the private sector

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This study supplies DOE with information pertinent to the formulation of realistic national energy research policies and facilitates cooperation between government and business in the development and commercialization of new and improved energy technologies. The study gathered information on the amount of energy-related research and development that private companies are doing, types of energy-related programs they report, and their perceptions about appropriate areas for government support. Mail questionnaires obtained data on the amount of corporate research funding in specific energy-related technology areas and the interviews gathered information on corporate energy strategies, major commercial activities, and specific research plans in four major areas - conservation, supply, energy production and transmission, and new products. (MCW)

  19. Petroleum Refining Sector (NAICS 324110) Energy and GHG Combustion Emissions Profile, November 2012

    Energy Savers [EERE]

    69 2.4 PETROLEUM REFINING SECTOR (NAICS 324110) 2.4.1. Overview of the Petroleum Refining Manufacturing Sector Petroleum refining is a complex industry that generates a diverse slate of fuel products and petrochemicals, from gasoline to asphalt. Refining requires a range of processing steps, including distillation, cracking, reforming, and treating. Most of these processes are highly reliant on process heating and steam energy. Petroleum refineries are an essential part of the U.S. economy.

  20. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy, U.S. Department of Energy (DOE) | Department of Energy Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies. PDF

  1. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy, U.S. Department of Energy (DOE) | Department of Energy Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies. PDF

  2. Dams and Energy Sectors Interdependency Study, September 2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    patterns and competing demands for water which determine the water available for hydropower production. Dams-Energy Interdependency Study.pdf More Documents & Publications 2014...

  3. New Report Highlights Growth of America's Clean Energy Job Sector...

    Broader source: Energy.gov (indexed) [DOE]

    Gerrity. INFOGRAPHIC | Made in America: Clean Energy Jobs Nebraska Biofuel Enzyme Plant Hosts Tour with Senior DOE Official Saft America Advanced Batteries Plant...

  4. Vietnam-Danish Government Sector Programmes | Open Energy Information

    Open Energy Info (EERE)

    Low emission development planning, -LEDS, Policiesdeployment programs Program End 2012 Country Vietnam South-Eastern Asia References Denmark1 Promoting wind energy in...

  5. List of Companies in Carbon Sector | Open Energy Information

    Open Energy Info (EERE)

    Cove Capital Advisors Novomer ORYXE Energy International Inc Osmosis Capital Pacific Fuel Cell Corp PFCE Paragon Airheater Technologies Plane Tree Capital LLP PlaneCarbon...

  6. Buildings Energy Data Book: 1.2 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Residential Sector Energy Consumption March 2012 1.2.9 Implicit Price Deflators (2005 = 1.00) Year Year Year 1980 0.48 1990 0.72 2000 0.89 1981 0.52 1991 0.75 2001 0.91 1982 0.55 1992 0.77 2002 0.92 1983 0.58 1993 0.78 2003 0.94 1984 0.60 1994 0.80 2004 0.97 1985 0.62 1995 0.82 2005 1.00 1986 0.63 1996 0.83 2006 1.03 1987 0.65 1997 0.85 2007 1.06 1988 0.67 1998 0.86 2008 1.09 1989 0.70 1999 0.87 2009 1.10 2010 1.11 Source(s): EIA, Annual Energy Review 2010, August 2011, Appendix D, p. 353.

  7. Profiles in Renewable Energy: Case Studies of Successful Utility-Sector

    Office of Scientific and Technical Information (OSTI)

    Projects Profiles in Renewable Energy: Case Studies of Successful Utility-Sector Projects The Shape of Renewable Energy Technologies Today Biomass Wood-Burning Plant Reduces Air Pollution Kettle Falls Wood-Fired Plant Washington Power Company Regulatory Changes Spur Wood-Fired Plant Grayling Generating Station Decker Energy International, Inc. Community Partnership Leads to Waste-Burning Plant Bristol Waste-to-Energy Plant Ogden Martin Systems Geothermal Geothermal Loan Encourages New Power

  8. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 Cost of a Generic Quad Used in the Residential Sector ($2010 Billion) (1) Residential 1980 10.45 1981 11.20 1982 11.58 1983 11.85 1984 11.65 1985 11.43 1986 10.90 1987 10.55 1988 10.18 1989 9.98 1990 10.12 1991 9.94 1992 9.78 1993 9.77 1994 9.78 1995 9.44 1996 9.44 1997 9.59 1998 9.23 1999 8.97 2000 9.57 2001 10.24 2002 9.33 2003 10.00 2004 10.32 2005 11.10 2006 11.60 2007 11.61 2008 12.29 2009 11.65 2010 9.98 2011 9.99 2012 9.87 2013 9.77 2014 9.76 2015 9.88 2016 9.85 2017 9.83 2018 9.86 2019

  9. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and

  10. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  11. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the

  12. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2003 Energy Expenditures per Square Foot of Commercial Floorspace, by Vintage ($2010) Vintage $/SF Prior to 1960 1.44 1960 to 1969 1.70 1970 to 1979 1.88 1980 to 1989 2.09 1990 to 1999 1.88 2000 to 2003 1.72 Average 1.77 Source(s): EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Table C4; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for price deflators

  13. List of Companies in Vehicles Sector | Open Energy Information

    Open Energy Info (EERE)

    Forge KPIT Cummins JV Bluebird Automotive Boston Power Brammo, Inc. CalCars California Fuel Cell Partnership CaFCP Century Asset Management China Titans Energy Technology Group Co...

  14. Industry Trends in the U.S. Wind Energy Sector

    Broader source: Energy.gov [DOE]

    Electricity supplied by wind energy exceeded 4.5 percent in the U.S. in 2013 and has the potential to reach as much as 35 percent by 2050. Join The Pew Charitable Trusts for a webinar with the...

  15. Energy Sector Management Assistance Program of the World Bank...

    Open Energy Info (EERE)

    that will help developing and middle-income countries integrate large shares of wind and solar energy into their electricity grids.

  16. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    SciTech Connect (OSTI)

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  17. GIZ Sourcebook Module 5d: The CDM in the Transport Sector | Open...

    Open Energy Info (EERE)

    on CDM and the GHG market; CDM transport projects; core elements of a transport methodology; and case studies in CDM. LEDSGP green logo.png This tool is included in the...

  18. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a

  19. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2005 Energy End-Use Expenditures for an Average Household, by Region ($2010) Northeast Midwest South West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and Lighting 827 665 715 716 725 Total (1) 2,554 1,975 1,970 1,655 2,003 Note(s): 1) Due to rounding, end-uses do not sum to totals. Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-15; EIA,

  20. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 Energy Service Company (ESCO) Industry Activity ($Million Nominal) (1) Low High 1990 143 342 Market Segment Share 1991 218 425 MUSH (2) 69% 1992 331 544 Federal 15% 1993 505 703 Commercial & Industrial 7% 1994 722 890 Residential 6% 1995 1,105 1,159 Public Housing 3% 1996 1,294 1,396 1997 1,394 1,506 1998 1,551 1,667 2008 Revenues by Project/Technology Type 1999 1,764 1,925 2000 1,876 2,186 Market Segment Share 2001 - - Energy Efficiency 75% 2002 - - Onsite Renewables 14% 2003 - -

  1. State & Local Sustainable Transportation Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Resources State & Local Sustainable Transportation Resources State & Local Sustainable Transportation Resources The DOE Office of Energy Efficiency and Renewable Energy provides tools, resources, and more on vehicles, bioenergy, and fuel cells to help state and local governments reduce transportation agency expenses, improve infrastructure, and decrease the impacts of transportation-associated activities on the environment by using advanced vehicles and

  2. Study of Long-Term Transport Action Plan for ASEAN | Open Energy...

    Open Energy Info (EERE)

    Partner Nippon Foundation, Ministry of Planning, Ministry of Transport Sector Climate, Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Background...

  3. Transportation Energy Futures (TEF) Data and Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Futures (TEF) National Renewable Energy Laboratory Build 241 search keywords clear search show bibliography show instructions ^(sprawl|density|population density|census|ppsm|metro area|single-family|weighted density|population center|populations?|mix|american housing survey|schools?|population-serving|density gradient|metropolitan|msas?|psas?|urban|blocks?)$ ^(co2|emissions?|rates?|transient|smooth|driving|gallons per mile|g/mile|average speed|speeds?|moves|miles per

  4. Changes in Energy Intensity in the Manufacturing Sector 1985...

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Introduction Rankeda EI Numbers of Total Inputs of Energy SIC Codeb Intensity for 1985c Intensity for 1994c 29 18.11 25.85 26 17.82 17.71 33 19.57 16.27 32 14.75 14.69 28 11.09...

  5. A Network-based View of the U.S. Energy Sector

    Gasoline and Diesel Fuel Update (EIA)

    A Network-based View of the U.S. Energy Sector Vipin Arora | Elizabeth Sendich | Julia Teng February 2016 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES February 2016 Vipin Arora, Elizabeth Sendich, and

  6. Kyiv institutional buildings sector energy efficiency program: Technical assessment

    SciTech Connect (OSTI)

    Secrest, T.J.; Freeman, S.L.; Popelka, A.; Shestopal, P.A.; Gagurin, E.V.

    1997-08-01

    The purpose of this assessment is to characterize the economic energy efficiency potential and investment requirements for space heating and hot water provided by district heat in the stock of state and municipal institutional buildings in the city of Kyiv. The assessment involves three activities. The first is a survey of state and municipal institutions to characterize the stock of institutional buildings. The second is to develop an estimate of the cost-effective efficiency potential. The third is to estimate the investment requirements to acquire the efficiency resource. Institutional buildings are defined as nonresidential buildings owned and occupied by state and municipal organizations. General categories of institutional buildings are education, healthcare, and cultural. The characterization activity provides information about the number of buildings, building floorspace, and consumption of space heating and hot water energy provided by the district system.

  7. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    1 Total Commercial Floorspace and Number of Buildings, by Year 1980 50.9 (1) N.A. 3.1 (3) 1990 64.3 N.A. 4.5 (3) 2000 (4) 68.5 N.A. 4.7 (5) 2008 78.8 15% N.A. 2010 81.1 26% N.A. 2015 84.1 34% N.A. 2020 89.2 43% N.A. 2025 93.9 52% N.A. 2030 98.2 60% N.A. 2035 103.0 68% N.A. Note(s): Source(s): EIA, Annual Energy Outlook 1994, Jan. 1994, Table A5, p. 62 for 1990 floorspace; EIA, AEO 2003, Jan. 2003, Table A5, p. 127-128 for 2000 floorspace; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012,

  8. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    6 Residential Heated Floorspace, as of 2005 (Percent of Total Households) Floorspace (SF) Fewer than 500 6% 500 to 999 26% 1,000 to 1,499 24% 1,500 to 1,999 16% 2,000 to 2,499 9% 2,500 to 2,999 7% 3,000 or more 11% Total 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC1-3.

  9. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    4 Share of Commercial Floorspace, by Census Region and Vintage, as of 2003 (Percent) Region Prior to 1960 1960 to 1989 1990 to 2003 Total Northeast 9% 8% 3% 20% Midwest 8% 11% 6% 25% South 5% 18% 14% 37% West 3% 9% 5% 18% 100% Source(s): EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A2, p. 3-4

  10. Buildings Energy Data Book: 3.2 Commercial Sector Characteristics

    Buildings Energy Data Book [EERE]

    6 Commercial Building Vintage, as of 2003 1919 or Before 5% 1920 to 1945 10% 1946 to 1959 10% 1960 to 1969 12% 1970 to 1979 17% 1980 to 1989 17% 1990 to 1999 20% 2000 to 2003 9% Total 100% Source(s): Percent of Total Floorspace EIA, 2003 Commercial Buildings Energy Consumption Survey: Building Characteristics Tables, Oct. 2006, Table A1, p. 1-

  11. Fuel Cells For Transportation - 1999 Annual Progress Report Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team ... 10.pdf More Documents & Publications Fuel Cells For Transportation - 2001 Annual Progress ...

  12. Energy Department Welcomes Department of Transportation as New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Welcomes Department of Transportation as New Workplace Charging Challenge Partner Energy Department Welcomes Department of Transportation as New Workplace Charging Challenge ...

  13. Production Costs of Alternative Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    ... further results Find Another Tool FIND TRANSPORTATION TOOLS This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil...

  14. Transportation Energy Data Book: Edition 34 (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant...

  15. California Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Jump to: navigation, search Name: California Department of Transportation Place: Sacramento, California References: California Department of Transportation1 This...

  16. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. PDF icon Transportation Storage Interface More Documents & Publications...

  17. Status of national CO{sub 2}-mitigation projects and initiatives in the Philippine energy sector

    SciTech Connect (OSTI)

    Tupas, C.T.

    1996-12-31

    The Philippines has a huge energy requirement for the next 30 years in order to achieve its economic growth target. Based on an expected annual GDP growth rate of 6.9 percent, the Philippines total energy requirement is estimated to increase at an average of 6.6 percent annually from 1996 to 2025. Gross energy demand shall increase from 219.0 million barrels of fuel oil equivalent (MMBFOE) in 1996 to 552.4 MMBFOE in 2010 and 1,392.6 MMBFOE by 2025. These energy demand levels shall be driven primarily by the substantial increase in fuel requirements for power generation whose share of total energy requirement is 28.3 percent in 1996, 48.0 percent in 2010 and 55.0 percent in 2025. With the expected increase in energy demand, there will necessarily be adverse impacts on the environment. Energy projects and their supporting systems - from fuel extraction and storage to distribution - can and will be major contributors not only to local but also to regional and global environmental pollution and degradation. International experiences and trends in greenhouse gas (GHG) emissions inventory have shown that the energy sector has always been the dominant source of carbon dioxide (CO{sub 2}) - the principal contributor to global climate change. The energy sector`s CO{sub 2} emissions come primarily from fossil fuels combustion. Since energy use is the dominant source of CO{sub 2} emissions, efforts should therefore be concentrated on designing a mitigation strategy in this sector.

  18. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    2 Share of Households, by Housing Type and Type of Ownership, as of 2005 (Percent) Housing Type Owned Rented Total Single-Family: 61.5% 10.3% 71.7% Detached 57.7% 7.2% 64.9% Attached 3.8% 3.1% 6.8% Multi-Family: 3.7% 18.3% 22.0% 2 to 4 units 1.6% 5.3% 6.9% 5 or more units 2.1% 13.0% 15.0% Mobile Homes 5.1% 1.1% 6.2% Total 70.3% 29.6% 100% Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table HC3-1 and HC4

  19. Buildings Energy Data Book: 2.2 Residential Sector Characteristics

    Buildings Energy Data Book [EERE]

    5 Characteristics of U.S. Housing by Vintage, as of 2005 Vintage Prior to 1950 20% | 2,677 1,021 775 1950 to 1969 23% | 2,433 927 775 1970 to 1979 17% | 2,666 869 948 1980 to 1989 17% | 2,853 909 1,008 1990 to 1999 16% | 3,366 940 1,245 2000 to 2005 8% | 3,680 1,047 1,425 111.1 2,838 941 1,062 Note(s): Source(s): Total U.S. Homes (millions) U.S. Average 1) Average home sizes include both heated and unheated floor space, including garages. EIA, 2005 Residential Energy Consumption Survey, Oct.

  20. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015

  1. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06

  2. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Commercial Energy Prices, by Year and Fuel Type ($2010) Electricity Natural Gas Distillate Oil Residual Oil ($/gal) ($/gal) 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 9.39 104.50 2.79 3.78 9.35 104.74 2.81 3.81 9.47 101.25 2.73 3.69 9.40 103.22 2.76 3.75 9.54 99.28 2.67 3.60 9.51 100.49 2.70

  3. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs

  4. Implementing Effective Enterprise Security Governance Outline for Energy Sector Executives and Boards

    Office of Environmental Management (EM)

    Implementing Effective Enterprise Security Governance Outline for Energy Sector Executives and Boards Introduction As recent attacks, Presidential Executive Order for Improving Critical Infrastructure Cybersecurity, and Presidential Policy Directive 21 for Critical Infrastructure Security and Resilience have illustrated, managing security risks to our most important organizations and systems, including the electric grid, has become a national security priority. Enterprise security program

  5. Employment-generating projects for the energy and minerals sectors of Honduras. Proyectos generadores de empleos para los sectores energetico y minero de Honduras

    SciTech Connect (OSTI)

    Frank, J.A.

    1988-12-01

    A mission to Honduras invited by the Government of Honduras and sponsored by the Organization of American States addressed the generation of employment in various areas of interest to the country. The mission was made up of experts from numerous countries and international agencies. In the energy sector, the mission recommended consolidating the sector under a coordinating body; carrying out projects to promote reforestation, tree farms, and rational forest utilization; encouraging industrial energy conservation; developing alternative energy sources; and promoting rural electrification and expansion of the electrical grid. In the mining sector, the mission supported promotion and technical assistance for small gold-leaching and placer operations, the national mineral inventory, detailed exploration of promising sites, and the development of a mining school. 13 refs., 7 tabs.

  6. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 Building Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Residential Buildings Commercial Buildings Building Electricity Natural Gas Petroleum (1) Avg. Electricity Natural Gas Petroleum (2) Avg. Avg. (3) 1980 36.40 8.35 16.77 17.64 37.22 7.70 13.06 18.52 17.99 1981 38.50 8.88 18.35 19.09 39.06 8.29 14.78 20.56 19.68 1982 40.15 10.08 17.28 19.98 40.15 9.40 13.28 21.21 20.48 1983 40.43 11.30 16.08 21.00 39.51 10.43 12.53 21.55 21.23 1984 38.80 11.02 15.61 20.20 38.68 10.00

  7. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Building Energy Prices, by Year and Fuel Type ($2010) (cents/therm) (cents/gal) ($/gal) 1980 12.42 83.51 1.53 2.24 12.70 77.01 1.43 2.05 1981 13.14 88.83 1.47 2.51 13.33 82.90 1.63 2.32 1982 13.70 100.83 1.54 2.30 13.70 93.95 1.40 2.11 1983 13.79 113.04 1.51 2.14 13.48 104.33 1.30 1.75 1984 13.24 110.16 1.46 2.10 13.20 100.01 1.37 1.68 1985 13.28 106.80 1.37 1.96 13.06 95.96 1.21 1.56 1986 13.05 99.76 1.25 1.54 12.66 86.86 0.71 1.01 1987 12.72 92.16 1.22 1.42 11.92 79.32 0.79 1.05 1988 12.36

  8. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Residential Buildings Commercial Buildings Total Building Electricity Natural Gas Petroleum (2) Total Electricity Natural Gas Petroleum (3) Total Expenditures 1980 89.1 40.5 28.9 158.5 70.9 20.5 17.2 108.6 267.2 1981 94.9 41.3 27.8 164.0 79.4 21.4 16.5 117.3 281.3 1982 99.9 47.9 24.5 172.3 83.4 25.1 13.7 122.2 294.5 1983 103.6 51.0 21.4 176.1 83.6 26.1 14.6 124.3 300.4 1984 103.3 51.6 23.6 178.5 87.6 25.9

  9. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet

  10. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4

  11. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3%

  12. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2%

  13. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993

  14. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other

  16. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7)

  17. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7)

  18. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7)

  19. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018

  20. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0

  1. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8%

  2. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5%

  3. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5

  4. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018

  5. Lost Opportunities in the Buildings Sector: Energy-Efficiency Analysis and Results

    SciTech Connect (OSTI)

    Dirks, James A.; Anderson, David M.; Hostick, Donna J.; Belzer, David B.; Cort, Katherine A.

    2008-09-12

    This report summarizes the results and the assumptions used in an analysis of the potential “lost efficiency opportunities” in the buildings sector. These targets of opportunity are those end-uses, applications, practices, and portions of the buildings market which are not currently being addressed, or addressed fully, by the Building Technologies Program (BTP) due to lack of resources. The lost opportunities, while a significant increase in effort and impact in the buildings sector, still represent only a small portion of the full technical potential for energy efficiency in buildings.

  6. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  7. Energy in Europe and Central Asia: A sector strategy for the World Bank Group

    SciTech Connect (OSTI)

    1998-12-31

    Many countries in the Europe and Central Asia region have had an excess production capacity, lower quality supply, decreasing demand, and inefficient consumption in the energy sector since the late 1980s. This report outlines the four main objectives that form the World Bank Group`s strategy for reform: assisting governments to protect the public interest, supporting economic transition, facilitating private investments, and promoting regional initiatives to increase energy trade.

  8. Transportation Policies and Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policies and Programs Transportation Policies and Programs State and local governments can support reduced petroleum use by implementing policies and programs that promote the use of alternative fuel vehicles and minimize vehicle miles traveled, both of which will also decrease the dependence on foreign oil and improve energy security. Alternative Fuels Alternative fuel vehicles use fuel types other than petroleum and include fuels such as electricity, ethanol, biodiesel, natural gas, hydrogen,

  9. Transport in PEMFC Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in PEMFC Stacks Transport in PEMFC Stacks Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon mittelsteadt_kickoff.pdf More Documents & Publications 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with Frozen-in Free Volume for use in High Temperature Fuel Cells Advanced Materials and Concepts for Portable Power Fuel Cells A Discussion on Improved HTMs

  10. Transportation Infrastructure Requirement Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Requirement Resources Transportation Infrastructure Requirement Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum reduction path as an alternative to the mandate. Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National

  11. Energy use and CO2 emissions of Chinas industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of Chinas final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of Chinas per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  12. Industry Partnerships for Cybersecurity of Energy Delivery Systems (CEDS) Research, Development and Demonstration for the Energy Sector Funding Opportunity Announcement

    Broader source: Energy.gov [DOE]

    Modernizing our electric power grid has long been a key priority for the Department of Energy, and this month the Department is moving forward on that front with a series of announcements related to our ongoing Grid Modernization Initiative. As part of that effort, the Office of Electricity Delivery and Energy Reliability announced approximately $23 million in funding for the research and development of advanced cybersecurity technologies to meet the unique requirements of the energy sector.

  13. Fact #699: October 31, 2011 Transportation Energy Use by Mode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009 Fact 699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009 Highway vehicles are ...

  14. Low energy beam transport system developments

    SciTech Connect (OSTI)

    Dudnikov, V.; Han, B.; Stockli, M.; Welton, R.; Dudnikova, G.

    2015-04-08

    For high brightness beam production it is important to preserve the brightness in the low energy beam transport system (LEBT) used to transport and match the ion beams to the next stage of acceleration, usually an RFQ. While electrostatic focusing can be problematic for high current beam transport, reliable electrostatic LEBT operation has been demonstrated with H{sup ?} beams up to 60?mA. Now, however, it is commonly accepted that an optimal LEBT for high current accelerator applications consists of focusing solenoids with space charge compensation. Two-solenoid LEBTs are successfully used for high current (>100?mA) proton beam transport. Preservation of low emittances (~0.15 ? mm-mrad) requires the addition of a heavy gas (Xe, Kr), which causes ~5% of proton loss in a 1?m long LEBT. Similar Xe densities would be required to preserve low emittances of H{sup ?} beams, but such gas densities cause unacceptably high H{sup ?} beam losses. A short LEBT with only one short solenoid, movable for RFQ matching, can be used for reduced negative ion stripping. A strong electrostatic-focusing LEBT has been successfully adopted for transport of high current H{sup ?} beams in the SNS Front End. Some modifications of such electrostatic LEBTs are expected to improve the reliable transport of intense positive and negative ion beams without greatly degrading their low emittances. We concentrate on processes that determine the beam brightness degradation and on their prevention. Proposed improvements to the SNS electrostatic LEBT are discussed.

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",19844...

  16. The World Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes...

  17. Ecolane Transport Conultancy | Open Energy Information

    Open Energy Info (EERE)

    Ecolane Transport Conultancy Jump to: navigation, search Name: Ecolane Transport Conultancy Place: Bristol, United Kingdom Zip: BS3 4UB Product: UK-based sustainable transport...

  18. Financing Sustainable Urban Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Toolkit Region(s): Global Related Tools Production Costs of Alternative Transportation Fuels Transport Regulation from Theory to Practice: General...

  19. Texas Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin,...

  20. VTPI-Transportation Statistics | Open Energy Information

    Open Energy Info (EERE)

    Area: Transportation Resource Type: Dataset Website: www.vtpi.orgtdmtdm80.htm Cost: Free VTPI-Transportation Statistics Screenshot References: VTPI-Transportation Statistics1...

  1. Sustainable Transportation Day 2015 at the Energy Department | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Sustainable Transportation Day 2015 at the Energy Department Sustainable Transportation Day 2015 at the Energy Department Addthis Sustainable Trucking 1 of 13 Sustainable Trucking The Freightliner SuperTruck stopped by Energy Department headquarters as part of Sustainable Transportation Day on Monday, June 22, 2015. The Energy Department-supported truck has achieved a fuel efficiency of 12.2 miles per gallon, more than double that of the baseline vehicle. Image: Matt Dozier, Energy

  2. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  3. Fuel Cells For Transportation - 1999 Annual Progress Report Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Team | Department of Energy 1999 Annual Progress Report Energy Conversion Team Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Developing Advanced PEM Fuel Cell Technologies for Transportation PDF icon 10.pdf More Documents & Publications Fuel Cells For Transportation - 2001 Annual Progress Report

  4. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...

    Energy Savers [EERE]

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies. PDF ...

  5. Table 3.6 Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by End-Use Sector, 1970-2010 (Million Dollars 1) Year Residential Commercial Industrial Transportation Natural Gas 2 Petroleum Retail Electricity 3 Total 4 Natural Gas 2 Petroleum 5 Retail Electricity 3 Total 6,7 Coal Natural Gas 2 Petroleum 5 Biomass 8 Retail Electricity 3 Total 7,9 Petroleum 5 Total 7,10 1970 5,272 4,186 10,352 20,112 1,844 1,440 7,319 10,678 2,082 2,625 6,069 366 5,624 16,691 35,327 35,379 1971 5,702 4,367 11,589 21,934 2,060 1,574

  6. Nuclear Transportation Management Services | Department of Energy

    Office of Environmental Management (EM)

    Transportation Management Services Nuclear Transportation Management Services PDF icon Nuclear Transportation Management Services More Documents & Publications Transportation and Program Management Services Pueblo de San Ildefonso Shoshone-Bannock Tribes

  7. The Greenhouse Gases, Regulated Emissions, and Energy Use in...

    Open Energy Info (EERE)

    Energy Use in Transportation Model (GREET Fleet) AgencyCompany Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase:...

  8. Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors (Transportation Energy Futures Series)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEMAND Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors TRANSPORTATION ENERGY FUTURES SERIES: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL

  9. Hydrogen Energy Storage: Grid and Transportation Services Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air

  10. Transportation Techniques LLC | Open Energy Information

    Open Energy Info (EERE)

    Techniques LLC Place: Denver, CO, Colorado Zip: 80205 Sector: Vehicles Product: Colorado-USA-based company that uses patented series hybrid technology to design and develop hybrid...

  11. Summary of Proposed Metrics - QER Technical Workshop on Energy Sector Resilience

    Broader source: Energy.gov (indexed) [DOE]

    Summary of Proposed Metrics - QER Technical Workshop on Energy Sector Resilience Metrics (4/29/2014) Theory - RAND presentation  Guidelines for measuring resilience o Resilience describes the state of service from a system in response to a disruption (e.g., % service provided/time) o Best metrics depend on who is measuring resilience and why (systems, disruptions, responses, timescales) o Resilience metrics are used for many purposes and at may levels (supporting both strategic and

  12. DOE - Fossil Energy: Coal Mining and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mining Fossil Energy Study Guides Coal Mining and Transportation Coal Miners - One type of mining, called "longwall mining", uses a rotating blade to shear coal away from the underground seam. - In the centuries since early humans learned that the black rocks they picked up on the ground would burn, we have had to look for coal below that was hidden below the earth's surface. One of the areas it was easiest to find was where it appeared as one of many layers of materials along the side

  13. Department of Energy Receives Highest Transportation Industry Safety Award

    Energy Savers [EERE]

    | Department of Energy Receives Highest Transportation Industry Safety Award Department of Energy Receives Highest Transportation Industry Safety Award May 1, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's highest transportation safety awards, for helping local communities in emergency preparedness and response. TRANSCAER is a voluntary

  14. Career Map: Transportation Worker | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Worker Career Map: Transportation Worker Transportation workers help to guide a large wind turbine component down a narrow road. Transportation Worker Position Title Transportation Worker Alternate Title(s) Railroad worker, truck driver, driver, long-haul truck driver, water transportation officer or engineer Education & Training Level Bachelor's degree generally not expected Education & Training Level Description Transportation workers' education and training requirements

  15. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    1993-01-01

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  16. Renewable Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    Transportation Fuels Jump to: navigation, search TODO: Add description List of Renewable Transportation Fuels Incentives Retrieved from "http:en.openei.orgw...

  17. Transport NAMA Database | Open Energy Information

    Open Energy Info (EERE)

    Website: www.transport-namadatabase.orgindex.phpMainPage Transport Toolkit Region(s): Latin America & Caribbean, Africa & Middle East, Europe, Asia Related Tools Climate...

  18. Transport Research Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Research Laboratory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Research Laboratory AgencyCompany Organization: Transport Research Laboratory Focus Area:...

  19. Victoria Transport Policy Institute | Open Energy Information

    Open Energy Info (EERE)

    Transport Policy Institute Jump to: navigation, search Name: Victoria Transport Policy Institute Address: 1250 Rudlin Street, Place: Victoria, British Columbia Website:...

  20. Caltrans Transportation Permits Manual | Open Energy Information

    Open Energy Info (EERE)

    Transportation Permits Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Caltrans Transportation Permits ManualLegal Abstract...

  1. Asian Development Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    sectorstransportmain Transport Toolkit Region(s): Asia Related Tools TRANSfer - Towards climate-friendly transport technologies and measures List of Publications from GIZ...

  2. Electric Drive Transportation Association EDTA | Open Energy...

    Open Energy Info (EERE)

    Transportation Association EDTA Jump to: navigation, search Name: Electric Drive Transportation Association (EDTA) Product: EDTA is the preeminent U.S. industry association...

  3. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    Climate Adaptation for Transportation (Redirected from 03 Climate Adaptation for Transportation) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 03 Climate Adaptation...

  4. Climate Adaptation for Transportation | Open Energy Information

    Open Energy Info (EERE)

    Climate Adaptation for Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 03 Climate Adaptation for Transportation AgencyCompany Organization: AASHTO...

  5. Montana Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Name: Montana Department of Transportation Address: 2701 Prospect Avenue P.O. Box 201001 Place: Helena, Montana Zip: 59620 Website: www.mdt.mt.gov Coordinates:...

  6. Nevada Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    of Transportation Name: Nevada Department of Transportation Address: 1263 S. Stewart St. Place: Carson City, Nevada Zip: 89712 Phone Number: 775-888-7000 Website:...

  7. How Do You Make Greener Transportation Choices? | Department of Energy

    Energy Savers [EERE]

    Make Greener Transportation Choices? How Do You Make Greener Transportation Choices? February 24, 2011 - 8:44am Addthis On Tuesday, Shannon told you about some innovations from airports, car rental companies, and taxi companies that reduce fuel use and provide some greener transportation options when you travel. How do you make greener transportation choices? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please

  8. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  9. Transportation Efficiency Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Transportation Efficiency Resources Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and state programs can play supportive roles in reducing VMT. Find transportation efficiency resources below. Improving Travel Efficiency at the Local Level: An ACEEE Policy Toolkit.

  10. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    3 Buildings Share of U.S. Primary Energy Consumption (Percent) Total Consumption Total Industry Transportation Total (quads) 1980(1) 20.1% 13.5% | 33.7% 41.1% 25.2% 100% | 78.1 1981 20.0% 13.9% | 33.9% 40.4% 25.6% 100% | 76.1 1982 21.2% 14.8% | 36.0% 37.9% 26.1% 100% | 73.1 1983 21.1% 15.0% | 36.1% 37.7% 26.3% 100% | 72.9 1984 20.8% 14.9% | 35.7% 38.7% 25.7% 100% | 76.6 1985 21.0% 15.0% | 35.9% 37.8% 26.3% 100% | 76.5 1986 20.8% 15.1% | 35.9% 37.0% 27.1% 100% | 76.6 1987 20.5% 15.1% | 35.6%

  11. Improving the Usability of Integrated Assessment for Adaptation Practice: Insights from the U.S. Southeast Energy Sector

    SciTech Connect (OSTI)

    de Bremond, Ariane; Preston, Benjamin; Rice, Jennie S.

    2014-10-01

    Energy systems comprise a key sector of the U.S. economy, and one that has been identified as potentially vulnerable to the effects of climate variability and change. However, understanding of adaptation processes in energy companies and private entities more broadly is limited. It is unclear, for example, the extent to which energy companies are well-served by existing knowledge and tools emerging from the impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities and/or what experiments, analyses, and model results have practical utility for informing adaptation in the energy sector. As part of a regional IAM development project, we investigated available evidence of adaptation processes in the energy sector, with a particular emphasis on the U.S. Southeast and Gulf Coast region. A mixed methods approach of literature review and semi-structured interviews with key informants from energy utilities was used to compare existing knowledge from the IAV community with that of regional stakeholders. That comparison revealed that much of the IAV literature on the energy sector is climate-centric and therefore disconnected from the more integrated decision-making processes and institutional perspectives of energy utilities. Increasing the relevance of research and assessment for the energy sector will necessitate a greater investment in integrated assessment and modeling efforts that respond to practical decision-making needs as well as greater collaboration between energy utilities and researchers in the design, execution, and communication of those efforts.

  12. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  13. Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation

    Broader source: Energy.gov [DOE]

    SAN FRANCISCO – Energy and transportation ministers from 21 economies in the Asia-Pacific region today agreed to continue progress on initiatives to make transportation in the region cleaner and...

  14. Calculating CO2 Emissions from Mobile Sources | Open Energy Informatio...

    Open Energy Info (EERE)

    AgencyCompany Organization: GHG Protocol Initiative Sector: Energy Focus Area: GHG Inventory Development, Industry, Transportation Topics: GHG inventory, Potentials &...

  15. Motor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization: United States Environmental Protection Agency Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Softwaremodeling...

  16. Energy Intensity Indicators: Industrial Source Energy Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industrial Source Energy Consumption Energy Intensity Indicators: Industrial Source Energy Consumption The industrial sector comprises manufacturing and other nonmanufacturing industries not included in transportation or services. Manufacturing includes 18 industry sectors, generally defined at the three-digit level of the North American Industrial Classification System (NAICS). The nonmanufacturing sectors are agriculture, forestry and fisheries, mining, and

  17. Transportation and Vehicle Energy Modeling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Vehicle Energy Modeling Transportation and Vehicle Energy Modeling For the past 15 years, Argonne has been at the forefront of research in energy-efficient transportation. In recent years, the vehicle technologies have become increasingly complex with the introduction of new powertrain configurations (such as electrified vehicles), new component technologies (such as advanced transmissions and engines) and control strategies (such eco-routing). In addition, with increased

  18. Energy Department Welcomes Department of Transportation as New Workplace

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charging Challenge Partner | Department of Energy Welcomes Department of Transportation as New Workplace Charging Challenge Partner Energy Department Welcomes Department of Transportation as New Workplace Charging Challenge Partner November 17, 2015 - 11:28am Addthis Today, the Energy Department is welcoming the Department of Transportation (DOT) as a partner in its Workplace Charging Challenge, which aims to make workplace charging for plug-in electric vehicles available to employees across

  19. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class

  20. RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION Citation Details In-Document Search Title: RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population

  1. Thermal Energy Storage Technology for Transportation and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. ...

  2. List of Renewable Transportation Fuels Incentives | Open Energy...

    Open Energy Info (EERE)

    Wind Biomass Renewable Transportation Fuels Fuel Cells Ground Source Heat Pumps Ethanol Methanol Biodiesel No Community Energy Project Grants (Michigan) State Grant Program...

  3. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  4. Energy use in Poland, 1970--1991: Sectoral analysis and international comparison

    SciTech Connect (OSTI)

    Meyers, S.; Schipper, L.; Salay, J.

    1993-07-01

    This report provides an analysis of how and why energy use has changed in Poland since the 1970s, with particular emphasis on changes since the country began its transition from a centrally planned to a market economy in 1989. The most important factors behind the large decline in Polish energy use in 1990 were a sharp fall in industrial output and a huge drop in residential coal use driven by higher prices. The structural shift away from heavy industry was slight. Key factors that worked to increase energy use were the rise in energy intensity in many heavy industries and the shift toward more energy intensive modes of transport. The growth in private activities in 1991 was nearly sufficient to balance out continued decline in industrial energy use in that year. We compared energy use in Poland and the factors that shape it with similar elements in the West. We made a number of modifications to the Polish energy data to bring it closer to a Western energy accounting framework, and augmented these with a variety of estimates in order to construct a sufficiently detailed portrait of Polish energy use to allow comparison with Western data. Per capita energy use in Poland was not much below W. European levels despite Poland`s much lower GDP per capita. Poland has comparatively high energy intensities in manufacturing and residential space heating, and a large share of heavy industries in manufacturing output, all factors that contribute to higher energy use per capita. The structure of passenger and freight transportation and the energy intensity of automobiles contribute to lower energy use per capita in Poland than in Western Europe, but the patterns in Poland are moving closer to those that prevail in the West.

  5. GIZ Transport & Mobility Compass | Open Energy Information

    Open Energy Info (EERE)

    Transport Toolkit Region(s): Global Related Tools Global EV Outlook Pay-As-You-Drive Pricing in British Columbia GIZ Sourcebook Module 5f: Adapting Urban Transport to Climate...

  6. Detection and Analysis of Threatsto the Energy Sector (DATES) May 2008

    Broader source: Energy.gov [DOE]

    A groundbreaking integrated capability in intrusion detection, security event management, and sector-wide threat analysis.

  7. Water Transport Exploratory Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exploratory Studies Water Transport Exploratory Studies This presentation, which focuses on water transport exploratory studies, was given by Rod Borup of Los Alamos National laboratory at a DOE fuel cell meeting in February 2007. PDF icon new_fc_borup_lanl.pdf More Documents & Publications Visualization of Fuel Cell Water Transport and Characterization under Freezing Conditions Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization Water

  8. Packaging and Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012

  9. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  10. National Transportation Stakeholders Forum | Department of Energy

    Office of Environmental Management (EM)

    Transportation Stakeholders Forum National Transportation Stakeholders Forum Presentation by Ahmad Al-Daouk, Director of National Security Department NNSA Service Center PDF icon National Transportation Stakeholders Forum More Documents & Publications National Nuclear Security Administration Overview Meeting Summary Notes 2011 NTSF Meeting Summary

  11. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Hasanbeigi, Ali; Sathaye, Jayant

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure progress over time in the State of California.

  12. 2013 Second Quarter Clean Energy/Clean Transportation Jobs Report

    Broader source: Energy.gov [DOE]

    Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

  13. Hydrogen Energy Storage for Grid and Transportation Services Workshop

    Broader source: Energy.gov [DOE]

    View presentations from the U.S. Department of Energy (DOE) and Industry Canada Hydrogen Energy Storage for Grid and Transportation Services Workshop, held on May 14–15, 2014, in Sacramento, California.

  14. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  15. Transportation Energy Futures Study Reveals Potential for Deep Cuts to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Use and Carbon Emissions - News Releases | NREL Transportation Energy Futures Study Reveals Potential for Deep Cuts to Petroleum Use and Carbon Emissions Collaborative NREL and ANL project reveals opportunities for 80% reductions by 2050 March 15, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and Argonne National Laboratory (ANL) today announced the release of the Transportation Energy Futures (TEF) study, an assessment of avenues to reach

  16. Energy Transport Corridor Draft Environmental Impact Statement Available

    Office of Environmental Management (EM)

    for Review | Department of Energy Transport Corridor Draft Environmental Impact Statement Available for Review Energy Transport Corridor Draft Environmental Impact Statement Available for Review August 1, 2008 - 3:08pm Addthis The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense are anticipating a summer release of a Final Programmatic Environmental Impact Statement (PEIS) proposing designation of energy

  17. SEADS 3.0 Sectoral Energy/Employment Analysis and Data System

    SciTech Connect (OSTI)

    Roop, Joseph M.; Anderson, David A.; Schultz, Robert W.; Elliott, Douglas B.

    2007-12-17

    SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, is a revision and upgrading of SEADS--PC, a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments (Roop, et al., 1995). If a question can be formulated so that implications can be translated into changes in final demands for goods and services, then SEADS 3.0 provides a quick and easy tool to assess preliminary impacts. And SEADS 3.0 should be considered just that: a quick and easy way to get preliminary results. Often a thorough answer, even to such a simple question as, What would be the effect on U. S. energy use and employment if the Federal Government doubled R&D expenditures? requires a more sophisticated analytical framework than the input-output structure embedded in SEADS 3.0. This tool uses a static, input-output model to assess the impacts of changes in final demands on first industry output, then employment and energy use. The employment and energy impacts are derived by multiplying the industry outputs (derived from the changed final demands) by industry-specific energy and employment coefficients. The tool also allows for the specification of regional or state employment impacts, though this option is not available for energy impacts.

  18. Liquid Transportation Fuels from Coal and Biomass | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Fuels from Coal and Biomass Liquid Transportation Fuels from Coal and Biomass Presented at the U.S. Department of Energy sponsored a Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon liquid_trans_tech.pdf More Documents & Publications February GBTL Webinar GBTL Workshop GHG Emissions Department of Energy Quadrennial Technology Review Alternative Fuels Workshop

  19. Transportation Energy Futures Series: Projected Biomass Utilization for

    Office of Scientific and Technical Information (OSTI)

    Fuels and Power in a Mature Market (Technical Report) | SciTech Connect Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this

  20. Packaging and Transportation News | Department of Energy

    Energy Savers [EERE]

    Packaging and Transportation News Packaging and Transportation News January 14, 2016 Ron Hafner with Lawrence Livermore National Laboratory lectures for a course in San Ramon, Calif. on packaging and transporting radioactive material. EM, University of Nevada, Reno Team on "Packaging University" A burgeoning relationship between EM and the University of Nevada, Reno (UNR) is giving new depth and breadth to a program that trains students and nuclear industry professionals in packing and

  1. Transportation Sector Module

    Gasoline and Diesel Fuel Update (EIA)

    cost changes due to production volume economies of scale and potential scientific, manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  2. Annual Energy Outlook (AEO) 2006 - Supplemental Tables - All Tables

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing regional energy consumption and prices by sector; residential, commercial, and industrial demand sector data; transportation demand sector; electricity and renewable fuel; and petroleum, natural gas, and coal data.

  3. Massachusetts Bay Transportation Authority | Open Energy Information

    Open Energy Info (EERE)

    Authority Name: Massachusetts Bay Transportation Authority Address: 10 Park Plaza, Suite 3910 Boston, MA 02116 Zip: 02116 Website: www.mbta.com Coordinates:...

  4. Sustainable Transport Illustrative Scenarios Tool | Open Energy...

    Open Energy Info (EERE)

    Tools International Council on Clean Transportation Mobilising private finance for low-carbon development Implementing Sustainable Urban Travel Policies in Mexico ... further...

  5. International Transport Forum | Open Energy Information

    Open Energy Info (EERE)

    ernationaltransportforum.orgaboutstaff.html "The International Transport Forum at the OECD is an intergovernmental organisation with 52 member countries. It acts as a strategic...

  6. Transportation Assessment Toolkit | Open Energy Information

    Open Energy Info (EERE)

    development and growth Is equitable Respects and preserves local cultural and natural landmarks Well-designed transport systems enable economic development and growth by:...

  7. Modernizing Public Transport Webinar | Open Energy Information

    Open Energy Info (EERE)

    EMBARQNetworkmodernizing-public-transport-webinar This webinar presents lessons learned from bus reform in Latin America and Asia. References Retrieved from...

  8. Transportation Energy Futures: Project Overview and Findings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... include potential impact from demand-side measures such as VMT reduction and mode shifting. ... electrification and service demand management could lower transportation fuel demand ...

  9. Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    is a federal agency in the United States. Retrieved from "http:en.openei.orgwindex.php?titleDepartmentofTransportation&oldid335946" Feedback Contact needs updating...

  10. Access and Transportation | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAccessandTransportation&oldid647797" Feedback Contact needs updating Image needs...

  11. Gender and Transport | Open Energy Information

    Open Energy Info (EERE)

    from the LEDS Global Partnership. When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these...

  12. Integration for Seamless Transport | Open Energy Information

    Open Energy Info (EERE)

    from the LEDS Global Partnership. When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these...

  13. Alternatives to Traditional Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. References Retrieved from...

  14. Institute for Transportation & Development Policy | Open Energy...

    Open Energy Info (EERE)

    & North America, Latin America & Caribbean, Asia Related Tools Production Costs of Alternative Transportation Fuels Mobilising private finance for low-carbon development...

  15. Internal Labeling Technique Tracks Nanoparticle Transport - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing SummaryTo track the transport of nanoscale particles and core-shell particles in biological and environmental systems, ORNL researchers developed a way to...

  16. Phoenix Area Transportation Information for Energy Exchange ...

    Broader source: Energy.gov (indexed) [DOE]

    Information about traveling from the airport and getting around downtown Phoenix. View transportation information. More Documents & Publications 2012 Transmission Forum - Travel...

  17. Oregon Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    services; transportation safety programs; driver and vehicle licensing; and motor carrier regulation. ODOT is actively involved in developing Oregon's system of...

  18. TransportToolkit Prototype | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization: Nick Langle ComplexityEase of Use: Not Available Cost: Free Transport Toolkit Region(s): Asia, Europe, Africa & Middle East, Australia & North...

  19. Transportation Demand Management (TDM) Encyclopedia | Open Energy...

    Open Energy Info (EERE)

    Implementation Resource Type: Guidemanual Website: www.vtpi.orgtdmtdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute1 "The Online TDM...

  20. International Air Transport Association (IATA) | Open Energy...

    Open Energy Info (EERE)

    Name: International Air Transport Association (IATA) Address: 800 Place Victoria PO Box 113 Place: Montreal, Quebec Phone Number: 1 514 874 0202 Website: www.iata.org...

  1. Idaho Transportation Department | Open Energy Information

    Open Energy Info (EERE)

    Department Name: Idaho Transportation Department Address: 3311 W. State St. PO Box 7129 Place: Boise, Idaho Zip: 83707-1129 Region: Rockies Area Phone Number:...

  2. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Share of U.S. Petroleum Consumption (Percent) U.S. Petroleum Site Consumption Primary Consumption Total Buildings Industry Electric Gen. Transportation Buildings Industry Transportation (quads) 1980 9% 28% 8% 56% | 14% 31% 56% 34.2 1981 8% 26% 7% 59% | 12% 29% 59% 31.9 1982 8% 26% 5% 61% | 11% 28% 61% 30.2 1983 8% 25% 5% 62% | 12% 27% 62% 30.1 1984 9% 26% 4% 61% | 11% 27% 61% 31.1 1985 8% 25% 4% 63% | 11% 26% 63% 30.9 1986 8% 24% 5% 63% | 11% 26% 63% 32.2 1987 8% 25% 4% 63% | 11% 26%

  3. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 Commercial Buildings Share of U.S. Natural Gas Consumption (Percent) Site Consumption Primary Consumption Total Commercial Industry Electric Gen. Transportation Commercial Industry Transportation (quads) 1980 13% 41% 19% 3% | 18% 49% 3% 20.22 1981 13% 42% 19% 3% | 18% 49% 3% 19.74 1982 14% 39% 18% 3% | 20% 45% 3% 18.36 1983 14% 39% 17% 3% | 19% 46% 3% 17.20 1984 14% 40% 17% 3% | 19% 47% 3% 18.38 1985 14% 40% 18% 3% | 19% 46% 3% 17.70 1986 14% 40% 16% 3% | 19% 46% 3% 16.59 1987 14% 41% 17% 3% |

  4. Buildings Energy Data Book: 3.1 Commercial Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    5 Commercial Buildings Share of U.S. Petroleum Consumption (Percent) Site Consumption Primary Consumption Total Commercial Industry Electric Gen. Transportation Commercial Industry Transportation (quads) 1980 4% 28% 8% 56% | 6% 31% 56% 34.2 1981 4% 26% 7% 59% | 5% 29% 59% 31.9 1982 3% 26% 5% 61% | 5% 28% 61% 30.2 1983 4% 25% 5% 62% | 5% 27% 62% 30.1 1984 4% 26% 4% 61% | 5% 27% 61% 31.1 1985 3% 25% 4% 63% | 5% 26% 63% 30.9 1986 4% 24% 5% 63% | 5% 26% 63% 32.2 1987 3% 25% 4% 63% | 5% 26% 63% 32.9

  5. Clean Transportation Education Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Education Project Clean Transportation Education Project 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ti018_tazewell_2011_p.pdf More Documents & Publications Clean Cities Education & Outreach Activities Vehicle Technologies Office Merit Review 2014: Alternative Fuels Implementation Team (AFIT) for North Carolina Puget Sound Clean Cities Petroleum Reduction Project

  6. Mexico-EC-LEDS in the Agriculture Sector | Open Energy Information

    Open Energy Info (EERE)

    EC-LEDS in the Agriculture Sector Jump to: navigation, search Name Mexico-EC-LEDS in the Agriculture Sector AgencyCompany Organization United States Department of Agriculture,...

  7. India-Improving Walkability in Indian Cities | Open Energy Information

    Open Energy Info (EERE)

    Sustainable Energy Foundation Partner Ministry of Planning, Ministry of Transport Sector Land Focus Area People and Policy, Transportation Topics Co-benefits assessment, -...

  8. Vietnam-EC-LEDS in the Agriculture Sector | Open Energy Information

    Open Energy Info (EERE)

    Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS,...

  9. Costa Rica-EC-LEDS in the Agriculture Sector | Open Energy Information

    Open Energy Info (EERE)

    Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS,...

  10. Kenya-EC-LEDS in the Agriculture Sector | Open Energy Information

    Open Energy Info (EERE)

    Sector Climate, Land Focus Area Agriculture, Economic Development, Greenhouse Gas, Land Use Topics Adaptation, Implementation, Low emission development planning, -LEDS,...

  11. Chemicals Sector (NAICS 325) Energy and GHG Combustion Emissions Profile, November 2012

    Office of Environmental Management (EM)

    39 2.2 CHEMICALS SECTOR (NAICS 325) 2.2.1. Overview of the Chemicals Manufacturing Sector The chemicals manufacturing sector is an integral component of the U.S. economy, converting raw materials such as petroleum, natural gas, minerals, coal, air, and water into more than 70,000 diverse products. Chemical products are critical components of consumer goods and are found in everything from automobiles to plastics to electronics. This sector creates its diverse output from raw materials of two

  12. Enhancing Transportation Energy Security through Advanced Combustion and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Technologies | Department of Energy Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_wall.pdf More Documents & Publications The Non-Petroleum Based Fuel Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative

  13. Thermal Energy Storage Technology for Transportation and Other Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak | Department of Energy Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon

  14. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2012-11-01

    The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

  15. Buildings Energy Data Book: 1.1 Buildings Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    0 Buildings Share of U.S. Natural Gas Consumption (Percent) Total Buildings Industry Electric Gen. Transportation Buildings Industry Transportation 1980 37% 41% 19% 3% | 48% 49% 3% 20.22 1981 36% 42% 19% 3% | 48% 49% 3% 19.74 1982 40% 39% 18% 3% | 51% 45% 3% 18.36 1983 40% 39% 17% 3% | 51% 46% 3% 17.20 1984 39% 40% 17% 3% | 50% 47% 3% 18.38 1985 39% 40% 18% 3% | 51% 46% 3% 17.70 1986 41% 40% 16% 3% | 51% 46% 3% 16.59 1987 39% 41% 17% 3% | 50% 47% 3% 17.63 1988 40% 42% 15% 3% | 50% 47% 3% 18.44

  16. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    9 Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 24% 41% 19% 3% | 30% 49% 3% 20.22 1981 23% 42% 19% 3% | 30% 49% 3% 19.74 1982 26% 39% 18% 3% | 32% 45% 3% 18.36 1983 26% 39% 17% 3% | 32% 46% 3% 17.20 1984 25% 40% 17% 3% | 31% 47% 3% 18.38 1985 25% 40% 18% 3% | 32% 46% 3% 17.70 1986 26% 40% 16% 3% | 32% 46% 3% 16.59 1987 25% 41% 17% 3% | 31% 47% 3% 17.63 1988 26% 42% 15% 3% | 31% 47% 3% 18.44 1989 25% 41% 16% 3% | 30% 47% 3% 19.56 1990 23%

  17. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    20 Site Consumption Primary Consumption Total Residential Industry Electric Gen. Transportation Residential Industry Transportation (quads) 1980 5% 28% 8% 56% | 8% 31% 56% 34.2 1981 5% 26% 7% 59% | 7% 29% 59% 31.9 1982 5% 26% 5% 61% | 6% 28% 61% 30.2 1983 4% 25% 5% 62% | 6% 27% 62% 30.1 1984 5% 26% 4% 61% | 6% 27% 61% 31.1 1985 5% 25% 4% 63% | 6% 26% 63% 30.9 1986 5% 24% 5% 63% | 6% 26% 63% 32.2 1987 5% 25% 4% 63% | 6% 26% 63% 32.9 1988 5% 24% 5% 63% | 6% 26% 63% 34.2 1989 5% 24% 5% 63% | 7% 25%

  18. Energy Intensity Indicators Data | Department of Energy

    Office of Environmental Management (EM)

    Intensity Indicators Data Energy Intensity Indicators Data The files listed below contain energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions). Package icon Entire Set File Economywide File Transportation Sector File Industrial Sector File Residential Buildings Sector File Commercial Buildings Sector File Electricity Sector More Documents & Publications Home Performance

  19. Chapter 47 - Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 47.1TransportationAirCharterServices0.pdf More Documents & Publications AcqGuide47pt1.doc&0; TEC Working Group Topic Groups Manual Review Key Documents Paducah ...

  20. Sustainable Transport Illustrative Scenarios Tool | Open Energy...

    Open Energy Info (EERE)

    Scenarios Tool has been developed as a high-level calculator (not an in-depth model) to help provide indicative estimates of the possible impacts of policy on transport...