Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Electric vehicles and renewable energy in the transport sector energy system  

E-Print Network [OSTI]

energy resources, such as wind power. Economic aspects for electric vehicles interactingElectric vehicles and renewable energy in the transport sector ­ energy system consequences Main focus: Battery electric vehicles and hydrogen based fuel cell vehicles Lars Henrik Nielsen and Kaj

2

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect (OSTI)

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

3

Reduction in tribological energy losses in the transportation and electric utilities sectors  

SciTech Connect (OSTI)

This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

1985-09-01T23:59:59.000Z

4

Integration of renewable energy into the transport and electricity sectors through V2G  

E-Print Network [OSTI]

Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind energy systems allows integration of much higher levels of wind electricity without excess electric

Firestone, Jeremy

5

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

6

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

7

Towards a low carbon transport sector: electricity or hydrogen?y y g  

E-Print Network [OSTI]

i ti· Two possible innovations: - Electric vehicles H d f l ll hi l- Hydrogen fuel cell vehicles vehicle; PHEV: Hydrogen 6 ICE: internal combustion engine; FC: fuel cell; HEV: hybrid-electric vehicle; PHEV: plug-in hybrid-electric vehicle; EV: electric vehicle; HFCV: hydrogen fuel cell vehicle #12;The

8

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

9

Yucca MountainTransportation: Private Sector Perspective  

Broader source: Energy.gov (indexed) [DOE]

Transportation: Private Sector "Lessons Learned" US Transport Council David Blee Executive Director dblee@ustransportcouncil.org DOE Transportation External Coordination (TEC)...

10

Water Impacts of the Electricity Sector (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

Macknick, J.

2012-06-01T23:59:59.000Z

11

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,41 with journalist covering electricity sector, Vladivostok,

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

12

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

13

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

14

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum...

15

The Changing US Electric Sector Business Model  

E-Print Network [OSTI]

The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright 2013 Deloitte Development LLC. All rights reserved. Fundamentals of the US Electric Sector Business Model Todays Challenges Faced by U.S. Electric Sector The Math Does Not Lie: A Look into the Sectors Future Disruption to Today...

Aliff, G.

2013-01-01T23:59:59.000Z

16

Changes Sweeping Through the Electricity Sector: Moving toward...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century Electricity System Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century...

17

National Electric Sector Cybersecurity Organization Resource (NESCOR)  

SciTech Connect (OSTI)

The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

None, None

2014-06-30T23:59:59.000Z

18

To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the  

E-Print Network [OSTI]

grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value

Cañizares, Claudio A.

19

Public Sector Electric Efficiency Programs  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

20

Electricity sector restructuring and competition : lessons learned  

E-Print Network [OSTI]

We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

Joskow, Paul L.

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program 2012 DOE Hydrogen...

22

Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-08-05T23:59:59.000Z

23

Retail competition in the UK electricity sector  

E-Print Network [OSTI]

experience · Outcome: switching & market shares · Variety of contracts & Nordic market · Benefits and costs retail market #12;Schedule for UK market opening · 1990 large users (above 1 MW max demand) · about 30Retail competition in the UK electricity sector Stephen Littlechild Workshops on Retail Competition

Rudnick, Hugh

24

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

25

End use energy consumption data base: transportation sector  

SciTech Connect (OSTI)

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

26

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

27

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

Management (DSM) in the Electricity Sector: Urgent Need forrcan, 2007, Electricity and natural gas sectors in Korea: aand commercial sub-sectors, electricity use is distributed

McNeil, MIchael

2011-01-01T23:59:59.000Z

28

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

rates from the electricity sector to assumed values inrates from the electricity sector to assumed values intend to underestimate electricity sector emissions, and it

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

29

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

of coupling to the electricity sector. The chapter examinesfrom the transportation and electricity sectors together.transportation and electricity sectors will likely interact

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

30

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Policies in the Electricity Sector. Discussion Paper 99-51,emissions from the electricity sector. Several states have2020 emissions from the electricity sector by 18%. Extending

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

31

Sustainable fuel for the transportation sector  

SciTech Connect (OSTI)

A hybrid hydrogen-carbon (H{sub 2}CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H{sub 2} and CO{sub 2} recycled from the H{sub 2}-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H{sub 2}CAR process. The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. Whereras the literature estimates known processes to be able to produce {approx}30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H{sub 2}CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. The synthesized liquid provides H{sub 2} storage in an open loop system. Reduction to practice of the H{sub 2}CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H{sub 2} in the H{sub 2}CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H{sub 2}CAR is that there is no additional CO{sub 2} release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO{sub 2}.

Agrawal, R.; Singh, N.R.; Ribeiro, F.H.; Delgass, W.N. [Purdue Univ., West Lafayette, IN (United States). School of Chemical Engineering and Energy Center at Discovery Park

2007-03-20T23:59:59.000Z

32

ISSN 1745-9648 Electricity Sector Reform in Greece  

E-Print Network [OSTI]

ISSN 1745-9648 Electricity Sector Reform in Greece by Ekaterini Iliadou Lawyer - Legal Department of the electricity market reform in Greece which started in 2001 and is still developing slowly. This is related to the persisting dominance of the incumbent company and the specificities of the electricity sector of Greece

Feigon, Brooke

33

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

McNeil, Michael A.

2010-01-01T23:59:59.000Z

34

Notice of Public Comment on Electricity Sector Cybersecurity...  

Broader source: Energy.gov (indexed) [DOE]

The guideline describes a risk management process that is targeted to the specific needs of electricity sector organizations and adds to the body of resources that help refine...

35

DRAFT DRAFT Electricity and Natural Gas Sector Description  

E-Print Network [OSTI]

DRAFT DRAFT Electricity and Natural Gas Sector Description For Public Distribution AB 32 Scoping of electricity and natural gas; including electricity generation, combined heat and power, and electricity and natural gas end uses for residential and commercial purposes. Use of electricity and/or gas for industrial

36

Land Transport Sector in Bangladesh: An Analysis Toward Motivating...  

Open Energy Info (EERE)

Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG...

37

The Practice of Cost Benefit Analysis in the Transport Sector...  

Open Energy Info (EERE)

Practice of Cost Benefit Analysis in the Transport Sector a Mexican Perspective Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Practice of Cost Benefit Analysis in...

38

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Overview 3 Relevance FY09101112 Project: Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Project Objective: To promote economic growth and...

39

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

information. DOE Vehicle Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Robin Erickson, Executive Director Utah Clean Cities...

40

The Electricity and Transportation Infrastructure Convergence  

E-Print Network [OSTI]

The Electricity and Transportation Infrastructure Convergence Using Electrical Vehicles Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;#12;The Electricity and Transportation Infrastructure Convergence Using Electrical

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Allowance Allocation and Effects on the Electricity Sector  

E-Print Network [OSTI]

Allowance Allocation and Effects on the Electricity Sector Karen Palmer Resources for the Future of Earthweek #12;Allocation and Electricity · Prior cap-and-trade programs grandfather (GF) allowances on electricity markets depends on CO2 emissions rates · Different regional effect of GF on electricity markets

42

SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results  

E-Print Network [OSTI]

II Volume I: Non-Electricity Sectors and Overall ScenarioElectricity Sector Conditions Assumed for Electricity Sector and Building

Wei, Max

2014-01-01T23:59:59.000Z

43

Multi-project baselines for potential clean development mechanism projects in the electricity sector in South Africa  

E-Print Network [OSTI]

projects in the electricity sector in South Africa. JournalMechanism projects in the electricity sector in South AfricaCDM projects in the electricity sector References UNFCCC,

Winkler, H.; Spalding-Fecher, R.; Sathaye, J.; Price, L.

2002-01-01T23:59:59.000Z

44

MISCELLANEOUS ELECTRICITY USE IN THE U.S. RESIDENTIAL SECTOR  

E-Print Network [OSTI]

LBNL-40295 UC-1600 MISCELLANEOUS ELECTRICITY USE IN THE U.S. RESIDENTIAL SECTOR M. C. Sanchez, J. G-up model of the miscellaneous electricity end use. Using shipment data and a consistent stock accounting-2010). Our study has two components: a historical analysis of miscellaneous electricity use (1976- 1995

45

Foreign direct investment in the electricity sector: the Indian perspective  

SciTech Connect (OSTI)

So far, India is losing out in the competition against other emerging economies to attract more foreign direct investment to its electricity sector. This is in large part because the Indian approach towards power sector reforms is more haphazard than the more orderly and sensitive growth model of Singapore and Latin American economies. (author)

Sharma, A.K.; Vohra, Ekta

2008-08-15T23:59:59.000Z

46

Thermal and Electrical Transport in Oxide Heterostructures  

E-Print Network [OSTI]

2.3.1 Electrical transport . . . . . . . . . . . . . . . .3.5 Controlling electrical conductivity and opticalthe variation of electrical and thermal con- ductivity and

Ravichandran, Jayakanth

2011-01-01T23:59:59.000Z

47

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

electricity sector assets and prices to prevent de- industrialization and cushion the impact of hyperinflation on householdelectricity to households and other socially-important consumer groups at priceshousehold incomes, and price increases will not go unnoticed. 862 Russians also care about reliable electricity

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

48

Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options  

SciTech Connect (OSTI)

It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

Geffen, CA; Dooley, JJ; Kim, SH

2003-08-24T23:59:59.000Z

49

Global Climate Change and the Unique Challenges Posed by the Transportation Sector  

SciTech Connect (OSTI)

Addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and consumers on the planet. To date, however, most efforts to address climate change have focused on only a few sectors of the economy (e.g., refineries and fossil-fired electric power plants) and a handful of large industrialized nations. While useful as a starting point, these efforts must be expanded to include other sectors of the economy and other nations. The transportation sector presents some unique challenges, with its nearly exclusive dependence on petroleum based products as a fuel source coupled with internal combustion engines as the prime mover. Reducing carbon emissions from transportation systems is unlikely to be solely accomplished by traditional climate mitigation policies that place a price on carbon. Our research shows that price signals alone are unlikely to fundamentally alter the demand for energy services or to transform the way energy services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector.

Dooley, J.J.; Geffen, C.A.; Edmonds, J.A.

2002-08-26T23:59:59.000Z

50

Manufacturing Energy and Carbon Footprint - Sector: Transportation...  

Broader source: Energy.gov (indexed) [DOE]

for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

51

Electricity savings potentials in the residential sector of Bahrain  

SciTech Connect (OSTI)

Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

Akbari, H. [Lawrence Berkeley National Lab., CA (United States); Morsy, M.G.; Al-Baharna, N.S. [Univ. of Bahrain, Manama (Bahrain)

1996-08-01T23:59:59.000Z

52

NREL: Energy Analysis: Electric Sector Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley ColeElectric

53

Planning of feeding station installment for elec-tric urban public mass-transportation system  

E-Print Network [OSTI]

especially in the transportation sector, a key and viable approach is to use renewable energy such as wind 13th Swiss Transport Research Conference Monte Verit / Ascona, April 24 26, 2013 #12;Planning-based transportation infrastructure has led to renewed interest in electric transportation infrastructure, especially

Bierlaire, Michel

54

Carbon dioxide emissions from the U.S. electricity sector  

SciTech Connect (OSTI)

As climate change negotiators from around the world prepared together in 1996 to consider new international targets and policies for greenhouse-gas reductions, the US Department of Energy asked the authors to review the options available to the electricity sector to reduce CO{sub 2} emissions. The charge was to focus on supply-side options and utility demand-side management (DSM) programs because other researchers were considered energy efficiency options for the residential, commercial, and industrial sectors. The next section presents the EIA baseline projections of electricity production, use, and CO{sub 2} emissions to the year 2010. Subsequent sections briefly summarize the options available to the electricity industry to reduce its CO{sub 2} emissions, speculate on how industry restructuring might affect the ability of the industry and its regulators to reduce CO{sub 2} emissions, and discuss the policies available to affect those emissions: research and development, voluntary programs, regulation, and fiscal policies.

Hirst, E.; Baxter, L. [Oak Ridge National Lab., TN (United States)

1998-02-01T23:59:59.000Z

55

ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS  

E-Print Network [OSTI]

(CO2) emission reduction estimates were obtained for each of the measures. The package of measures the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions-makers will require estimates of both the potential emission reductions and the costs or benefits associated

56

Competition in the U.S. electric power sector : some recent developments  

E-Print Network [OSTI]

This paper examines recent efforts to expand competitive opportunities in the electric power sector in the US. I start with a brief overview of the structure and regulation of the US electricity sector as it existed in the ...

Joskow, Paul L.

1994-01-01T23:59:59.000Z

57

HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE  

E-Print Network [OSTI]

..........................................................................................................16 #12;2 1. Summary The global energy scene is currently dominated by two overriding concerns relies almost 100 % on oil, and in 2004 transport energy use amounted to 26% of total world energy useHOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

58

Climate change adaptation in the U.S. electric utility sector  

E-Print Network [OSTI]

The electric utility sector has been a focus of policy efforts to reduce greenhouse gas emissions, but even if these efforts are successful, the sector will need to adapt to the impacts of climate change. These are likely ...

Higbee, Melissa (Melissa Aura)

2013-01-01T23:59:59.000Z

59

Flexibility and reliability in long-term planning exercises dedicated to the electricity sector  

E-Print Network [OSTI]

Flexibility and reliability in long-term planning exercises dedicated to the electricity sector of these options. This paper focuses on the electricity sector and on problems of flexibility and reliability are assessed through the level of electrical losses they induced and a related cost. These approaches

Paris-Sud XI, Université de

60

MEW Efforts in Reducing Electricity and Water Consumption in Government and Private Sectors in Kuwait  

E-Print Network [OSTI]

of Engineers, membership No. 1715. MEW EFFORTS IN REDUCING ELECTRICITY AND WATER CONSUMPTION IN GOVERNMENT AND PRIVATE SECTORS IN KUWAIT Eng. Iqbal Al-Tayar Manager ? Technical Supervision Department Planning and Training Sector Ministry... of Electricity & Water (MEW) - Kuwait Historical Background - Electricity ? In 1913, the first electric machine was installed in Kuwait to operate 400 lambs for Al-Saif Palace. ? In 1934, two electric generators were installed with a total capacity of 60 k...

Al-Tayar, I.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)  

Reports and Publications (EIA)

Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use.

2007-01-01T23:59:59.000Z

62

Dynamic Electric Power Supply Chains and Transportation Networks  

E-Print Network [OSTI]

Dynamic Electric Power Supply Chains and Transportation Networks: an Evolutionary Variational energy Electric power supply chains, provide the foundations for theElectric power supply chains, provide and societies. Communication, transportation, heating, lighting, cooling,Communication, transportation, heating

Nagurney, Anna

63

Table 3. Top Five Retailers of Electricity, with End Use Sectors...  

U.S. Energy Information Administration (EIA) Indexed Site

of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",2477751,835602,896610,745539,0 2,"Central...

64

KEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study  

E-Print Network [OSTI]

supply 8 Electricity consumption 9 Supply and demand projections 9 Electricity exports and importsKEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study #12;This project Electricity Association The Canadian Electricity Association (CEA), founded in 1891, is the national forum

65

Center for Electric Drive Transportation at the University of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Drive Transportation at the University of Michigan - Dearborn Center for Electric Drive Transportation at the University of Michigan - Dearborn 2012 DOE Hydrogen and Fuel...

66

Electricity for road transport, flexible power systems and wind...  

Open Energy Info (EERE)

Electricity for road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power...

67

Electrical and Thermal Transport Optimization of High Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Work on...

68

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

in forecasting electricity consumption in the residentialmodeling, since household electricity consumption is largelyup forecasting of electricity consumption by combining

McNeil, Michael A.

2010-01-01T23:59:59.000Z

69

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

70

Electricity Sector Liberalisation and Innovation: An Analysis of the UK Patenting Activities  

E-Print Network [OSTI]

-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF- AID SETS; PUBLIC ADDRESS SYSTEMS H04S: STEREOPHONIC SYSTEMS H04W: WIRELESS COMMUNICATIONS NETWORKS H05B: ELECTRIC HEATING; ELECTRIC LIGHTING NOT OTHERWISE PROVIDED FOR H05C: ELECTRIC... technological progress in the sector. In order to maintain the pace of innovation, we discuss the need for a framework for innovation systems that is commensurate with the incentive mechanisms of a liberalised sector. Keywords Electricity, patent, innovation...

Jamasb, Tooraj; Pollitt, Michael G.

71

Electron Electric Dipole Moment from CP Violation in the Charged Higgs Sector  

E-Print Network [OSTI]

The leading contributions to the electron (or muon) electric dipole moment due to CP violation in the charged Higgs sector are at the two-loop level. A careful analysis of the model-independent contribution is provided. We also consider specific scenarios to demonstrate how charged Higgs sector CP violation can naturally give rise to large electric dipole moments. Numerical results show that the electron electric dipole moment in such models can lie at the experimentally accessible level.

David Bowser-Chao; Darwin Chang; Wai-Yee Keung

1997-12-02T23:59:59.000Z

72

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

sectors for example the Nord-Stream pipeline that willNovember 22, 2007. Nord-Stream and Siberia's Yuzhno-Russkoye

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

73

Welfare Impacts of Electricity Generation Sector Reform in the Philippines  

E-Print Network [OSTI]

the Government lost and there was an air pollution cost. The paper concludes that the reform with private sector participation increased social welfare....

Toba, Natsuko

2004-06-16T23:59:59.000Z

74

Abstract-A growing challenge in the restructuring of the electrical sector, where competition is introduced in the  

E-Print Network [OSTI]

Abstract- A growing challenge in the restructuring of the electrical sector, where competition have made drastic transformations in their electrical sectors, both in terms of segmentation into an agent that regulates those stages of the electrical sector that become natural monopolies

Catholic University of Chile (Universidad Catlica de Chile)

75

Beamforming in Intelligent Randomly Distributed Sensor Networks using Electrically-Small Dual-Sector Antennas for Planetary Exploration  

E-Print Network [OSTI]

Beamforming in Intelligent Randomly Distributed Sensor Networks using Electrically-Small Dual-Sector, an electrically small dual-sector antenna is developed which gives 100 MHz of 2:1 VSWR bandwidth from 2.61 GHz - 2 The antenna developed for each sensor is based on the electrically small inductively-loaded stacked sector

Singer, Andrew C

76

Abstract-A growing challenge in the restructuring of the electrical sector, where competition is introduced in the  

E-Print Network [OSTI]

Abstract- A growing challenge in the restructuring of the electrical sector, where competition in their electrical sectors, both in terms of segmentation and privatization of state monopolies. Because a producer and enterprise-owner agent into an agent that regulates those stages of the electrical sector

Catholic University of Chile (Universidad Catlica de Chile)

77

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

thousands of new private electricity companies modeled on5.5 Electricity company (russian/private) Norilsk Nickel 4.8of change: an electricity industry with private actors

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

78

QER- Comment of Electric Drive Transportation Association  

Broader source: Energy.gov [DOE]

Please find attached the comments of the Electric Drive Transportation Association regarding the first volume of the Department of Energys QER. If you have questions about our submittal or require further information, please contact me using the information provided below. Thank you for the opportunity to comment. Genevieve Cullen

79

Divestitures in the electricity sector: conceptual issues and lessons from international experiences  

SciTech Connect (OSTI)

Competition policy is an important tool of governments to establish functioning markets, particularly in the scope of liberalizing the energy sector. An examination of horizontal divestitures in several markets suggests that in appropriate cases divestiture can enhance competition in the electricity sector. (author)

Weigt, Hannes; Neumann, Anne; von Hirschhausen, Christian

2009-04-15T23:59:59.000Z

80

Deregulating and regulatory reform in the U.S. electric power sector  

E-Print Network [OSTI]

This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Long term infrastructure investments under uncertainty in the electric power sector using approximate dynamic programming techniques  

E-Print Network [OSTI]

A computer model was developed to find optimal long-term investment strategies for the electric power sector under uncertainty with respect to future regulatory regimes and market conditions. The model is based on a ...

Seelhof, Michael

2014-01-01T23:59:59.000Z

82

Technology investment decisions under uncertainty : a new modeling framework for the electric power sector  

E-Print Network [OSTI]

Effectively balancing existing technology adoption and new technology development is critical for successfully managing carbon dioxide (CO2) emissions from the fossil-dominated electric power generation sector. The long ...

Santen, Nidhi

2013-01-01T23:59:59.000Z

83

Electricity Sector Reform in Developing Countries: A Survey of Empirical Evidence on Determinants and Performance  

E-Print Network [OSTI]

This paper reviews the empirical evidence on electricity reform in developing countries. We find that country institutions and sector governance play an important role in success and failure of reform; reforms appear to have increased operating...

Jamasb, Tooraj; Mota, Raffaella L; Newbery, David; Pollitt, Michael G.

2004-07-09T23:59:59.000Z

84

Moving Forward with the Electric Sector Cybersecurity Risk Management Maturity Initiative  

Broader source: Energy.gov [DOE]

Since the January 5, 2012launch of the Electric Sector Cybersecurity Risk Management Maturity program, a White House initiative led by the Department of Energy in partnership with the Department...

85

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Barnes, Andrew. Owning Russia: The Struggle over Factories,The Siloviki in Putin's Russia: Who They Are and What TheyMarket Maker? Reforming Russia's Power Sector." In "Whither

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

86

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

governments goal of converting military facilities for civilian use. 789 In an interesting parallel to the electricity

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

87

Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy  

E-Print Network [OSTI]

Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

Paltsev, Sergey.

88

Technology detail in a multi-sector CGE model : transport under climate policy  

E-Print Network [OSTI]

A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

Schafer, Andreas.

89

Electrical Transport of Topological Insulator-Bi2Se3 and Thermoelectric Properties of Graphene  

E-Print Network [OSTI]

OF CALIFORNIA RIVERSIDE Electrical Transport of TopologicalOF THE DISSERTATION Electrical Transport of Topological30 2.3.2 Electrical transport

WEI, PENG

2011-01-01T23:59:59.000Z

90

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1  

SciTech Connect (OSTI)

This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

NONE

1998-01-01T23:59:59.000Z

91

Estimating carbon dioxide emission factors for the California electric power sector  

SciTech Connect (OSTI)

The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-08-01T23:59:59.000Z

92

Electric and hybrid vehicle project. Quarterly report of private-sector operations, first quarter 1982  

SciTech Connect (OSTI)

As of January 1, 1982 sixteen private-sector site operators at 30 sites in the US were involved in electric and hybrid electric-powered vehicle demonstration programs. Data for 1981 and the first quarter of 1982 are presented on vehicle selection, miles accumulated, energy usage, maintenance requirements, reliability and operating performance for demonstration vehicles at each site. (LCL)

None

1982-06-01T23:59:59.000Z

93

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

SciTech Connect (OSTI)

As described in the Department of Energy Office of Nuclear Energys Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, Produce hydrogen for industrial processes and transportation fuels, and Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nations energy security through more effective utilization of our countrys resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

94

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

95

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

company (russian/government) E.On Energy conglomerate (russian/private) E.On 3.3 Electricity company (foreign)power companies. The German E.On has gained a large stake in

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

96

Accounting for Co-benefits in Asia's Transportation Sector: Methods...  

Open Energy Info (EERE)

has two objectives. The first is to examine methodological issues involved in using guidelines to measure co-benefits from transport projects (developing baselines,...

97

FY 16 EERE Budget Webinar-Sustainable Transportation Sector ...  

Broader source: Energy.gov (indexed) [DOE]

requests) and an opportunity to ask questions. Deputy Assistant Secretary Reuben Sarkar will be leading the webinar for Sustainable Transportation on March 3, 2015, from 2:30...

98

Transport Analysis of Radial Electric Field in Helical Plasmas  

E-Print Network [OSTI]

condition for the neoclassical particle ux. The generation of the electric #12;eld in helical systems could in generating the radial electric #12;eld [8, 9]. We have used the transport model for anomalous di#11;usivitiesTransport Analysis of Radial Electric Field in Helical Plasmas S. Toda and K. Itoh National

99

Electricity Use in the Pacific Northwest: Utility Historical Sales by Sector, 1989 and Preceding Years.  

SciTech Connect (OSTI)

This report officially releases the compilation of regional 1989 retail customer sector sales data by the Bonneville Power Administration. This report is intended to enable detailed examination of annual regional electricity consumption. It gives statistics covering the time period 1970--1989, and also provides observations based on statistics covering the 1983--1989 time period. The electricity use report is the only information source that provides data obtained from each utility in the region based on the amount of electricity they sell to consumers annually. Data is provided on each retail customer sector: residential, commercial, industrial, direct-service industrial, and irrigation. The data specifically supports forecasting activities, rate development, conservation and market assessments, and conservation and market program development and delivery. All of these activities require a detailed look at electricity use. 25 figs., 34 tabs.

United States. Bonneville Power Administration.

1990-06-01T23:59:59.000Z

100

Modeling diffusion of electrical appliances in the residential sector  

SciTech Connect (OSTI)

This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

McNeil, Michael A.; Letschert, Virginie E.

2009-11-22T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2013-01-01T23:59:59.000Z

102

Cost Effectiveness of CO2 Mitigation Technologies and Policies in the Electricity Sector  

E-Print Network [OSTI]

i Cost Effectiveness of CO2 Mitigation Technologies and Policies in the Electricity Sector. The costs and benefits of low carbon technology options are unique and affect different market participants in different ways. In this thesis, we examine the cost effectiveness of carbon mitigation technologies

103

Rail Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.803 3.971Feet)06CoalRail

104

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE

105

Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47 62CarbonCubic

106

Electrical and Thermoelectrical Transport Properties of Graphene  

E-Print Network [OSTI]

OF CALIFORNIA RIVERSIDE Electrical and ThermoelectricalIn addition to the electrical conductivity, thermoelectricthe energy-dependent electrical conductivity under certain

Wang, Deqi

2011-01-01T23:59:59.000Z

107

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect (OSTI)

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

108

Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions  

E-Print Network [OSTI]

to the choice of coal over natural gas. External incentives such as low natural gas prices compared to coalImplications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG

Jaramillo, Paulina

109

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place: MissouriProgramsCentralMWacTampaInformation

110

A review of life-cycle analysis studies on liquid biofuel systems for the transport sector  

E-Print Network [OSTI]

"Advanced" (or second generation) biofuels Bioethanol (E100, E85, E10, ETBE) from lignocellu- losicA review of life-cycle analysis studies on liquid biofuel systems for the transport sector Eric D interest in biofuels for climate change mitigation. This article reviews the rich literature of published

111

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage, NewOR) JumpInformation transport

112

Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector  

SciTech Connect (OSTI)

DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

Not Available

1994-10-01T23:59:59.000Z

113

Climate mitigations impact on global and regional electric power sector water use in the 21st Century  

SciTech Connect (OSTI)

Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sectors use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sectors water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

Dooley, James J.; Kyle, G. Page; Davies, Evan

2013-08-05T23:59:59.000Z

114

Modeling Climate-Water Impacts on Electricity Sector Capacity Expansion: Preprint  

SciTech Connect (OSTI)

Climate change has the potential to exacerbate water availability concerns for thermal power plant cooling, which is responsible for 41% of U.S. water withdrawals. This analysis describes an initial link between climate, water, and electricity systems using the National Renewable Energy Laboratory (NREL) Regional Energy Deployment System (ReEDS) electricity system capacity expansion model. Average surface water projections from Coupled Model Intercomparison Project 3 (CMIP3) data are applied to surface water rights available to new generating capacity in ReEDS, and electric sector growth is compared with and without climate-influenced water rights. The mean climate projection has only a small impact on national or regional capacity growth and water use because most regions have sufficient unappropriated or previously retired water rights to offset climate impacts. Climate impacts are notable in southwestern states that purchase fewer water rights and obtain a greater share from wastewater and other higher-cost water resources. The electric sector climate impacts demonstrated herein establish a methodology to be later exercised with more extreme climate scenarios and a more rigorous representation of legal and physical water availability.

Cohen, S. M.; Macknick, J.; Averyt, K.; Meldrum, J.

2014-05-01T23:59:59.000Z

115

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

SciTech Connect (OSTI)

The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side management or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1.7 thousand TWh or 21percent of the 2030 projected base case electricity demand. Electricity savings potential ranges from a high of 38percent in India to a low of 9percent in Korea for the two sectors. Lighting, fans, and TV sets and lighting and refrigeration are the largest contributors to residential and commercial electricity savings respectively. This work presents a first estimates of the savings potential of DSM programs in APP countries. While the resulting estimates are based on detailed end-use data, it is worth keeping in mind that more work is needed to overcome limitation in data at this time of the project.

McNeil, MIchael; Letschert, Virginie; Shen, Bo; Sathaye, Jayant; de la Ru du Can, Stephane

2011-01-12T23:59:59.000Z

116

Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector  

SciTech Connect (OSTI)

This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

Bird, L.; Chapman, C.; Logan, J.; Sumner, J.; Short, W.

2010-05-01T23:59:59.000Z

117

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11 Natural Gas For Transportation or Electricity? Climate Change Implications  

E-Print Network [OSTI]

Projections of increased domestic supply, low prices, reduced reliance on foreign oil, and low environmental impacts are supporting the increased use of natural gas in the transportation and electricity sectors. For instance, a tax credit bill (H.R. 1380) introduced in the House earlier this year encourages natural gas use for transportation and anticipates reductions in greenhouse gases (GHGs) when it displaces gasoline and diesel. However, in reality, the amount of GHG emissions that can be reduced with natural gas is uncertain and depends on the end use. If natural gas displaces coal for electricity generation, GHG emissions are reduced by at least 45 % per kWh. But when natural gas is used as a transportation fuel there is up to a 35 % chance that emissions will increase and only a 3 % chance that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn ethanol. Given that future natural gas supply is limited, despite forecasts of increased domestic production, if one wants to be certain of reducing GHG emissions, then using natural gas to replace coalfired electricity is the best approach. Investigators at Carnegie Mellon University have conducted an analysis in the attached study (1) that highlights the following important findings. 1. High risk of policy failure: The use of compressed natural gas (CNG) instead of gasoline in cars and instead of diesel in buses does not lower GHG emissions significantly. In fact there is a 10-

Aranya Venkatesh; Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

118

The potential for electricity efficiency improvements in the US Residential Sector  

SciTech Connect (OSTI)

This study represents the most elaborate assessment to date of US residential sector electricity improvements. Previous analyses have estimated the conservation potential for other countries, states, or individual utility service territories. As concern over greenhouse gas emissions has increased, interest has grown in estimates of conservation potential for the US residential sector as a whole. The earliest detailed estimate of US conservation potential is now out of date, while more recent estimates are less detailed than is desirable for engineering-economic estimates of the costs of reducing carbon emissions. In this paper, we first describe the methodology for creating supply curves of conserved energy, and then illustrate the subtleties of assessing the technical conservation potential. Next we present the data and forecasts used in this assessment, including costs, baseline thermal characteristics, energy use, and energy savings. Finally, we present the main results and conclusions from the analysis, and discuss future work. 102 refs., 7 figs., 16 tabs.

Koomey, J.G.; Atkinson, C.; Meier, A.; McMahon, J.E.; Boghosian, S.; Atkinson, B.; Turiel, I.; Levine, M.D.; Nordman, B.; Chan, P.

1991-07-01T23:59:59.000Z

119

Electrical and Thermoelectrical Transport Properties of Graphene  

E-Print Network [OSTI]

IV Large Memory Effect in Graphene Based Devices IV-1Transport Properties of Graphene A Dissertation submitted into study the new material, graphene. By investigating the

Wang, Deqi

2011-01-01T23:59:59.000Z

120

Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security  

E-Print Network [OSTI]

on transportation sector's energy security Mohd Nor Azman Hassan a,n , Paulina Jaramillo a , W. Michael Griffin a sector accounts for 41% of the country's total energy use. The country is expected to become a net oil% of total energy consumption. This is expected to increase to about 1100 PJ in 2015 extrapolat- ing

Jaramillo, Paulina

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Transportation Center Seminar "Electric Vehicle Recharging: Decision Support  

E-Print Network [OSTI]

Transportation Center Seminar "Electric Vehicle Recharging: Decision Support Tools for Drivers Conference Center Refreshments available at 3:30 pm Abstract: Plug-in electric vehicles (PEVs) have become a practical and affordable alternative in recent years to conventional gasoline-powered vehicles

Bustamante, Fabián E.

122

Electrical and Electrothermal Transport Properties of n- and p-type InN  

E-Print Network [OSTI]

methods . . . . . . . . . . . . 2.3 Electrical and1997). [132] Look, D. Electrical characterization of GaAsElectrical and Electrothermal Transport Properties of n- and

Miller, Nathaniel Reed

2010-01-01T23:59:59.000Z

123

Lecture #2: Electric transport in graphene  

E-Print Network [OSTI]

et al., Nature 2001 #12;III) Ballistic and coherent transport Tworzydlo et al., PRL 2006 #12;III) Ballistic and coherent transport Tworzydlo et al., PRL 2006 #12;IV) Experiments: diffusive and incoherent al., PRL 2008 #12;Kim et al., PRL 2007 IV) Experiments: diffusive and incoherent #12;IV) Experiments

Paris-Sud 11, Université de

124

The Large Scale Roll-Out of Electric Vehicles  

E-Print Network [OSTI]

the emissions reduction targets. Within the transport sector, electric vehicles (EV) are considered as one of the important mitigation options. However the effect of EVs on emissions and the electricity sector is subject to debate. We use scenario analysis...

Talaei, Alireza; Begg, Katherine; Jamasb, Tooraj

2012-10-26T23:59:59.000Z

125

Dualmode transportation - impact on the electric grid  

E-Print Network [OSTI]

Continual increase in transport demand and uneven road capacity results in chaotic traffic congestion, brings with it high levels of air pollution, an elevated number of accidents, and an insatiable demand for oil to satisfy the motorized vehicles...

Azcarate Lara, Francisco Javier

2009-05-15T23:59:59.000Z

126

Dualmode transportation - impact on the electric grid  

E-Print Network [OSTI]

Continual increase in transport demand and uneven road capacity results in chaotic traffic congestion, brings with it high levels of air pollution, an elevated number of accidents, and an insatiable demand for oil to satisfy the motorized vehicles...

Azcarate Lara, Francisco Javier

2008-10-10T23:59:59.000Z

127

Natural Gas and the Transformation of the U.S. Energy Sector: Electricity  

SciTech Connect (OSTI)

The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

2012-11-01T23:59:59.000Z

128

Published assessments bearing on the future use of ceramic superconductors by the electric power sector  

SciTech Connect (OSTI)

Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report`s purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science & Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

Giese, R.F.; Wolsky, A.M.

1992-08-25T23:59:59.000Z

129

Published assessments bearing on the future use of ceramic superconductors by the electric power sector  

SciTech Connect (OSTI)

Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report's purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

Giese, R.F.; Wolsky, A.M.

1992-08-25T23:59:59.000Z

130

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergySavePEnergyDepartment ofSector

131

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)Smart ManufacturingDepartment ofSector

132

Biofuels in the U.S. Transportation Sector (released in AEO2007)  

Reports and Publications (EIA)

Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

2007-01-01T23:59:59.000Z

133

Vehicle remote charge-all electric transportation system  

SciTech Connect (OSTI)

The development of a pollution-free transportation system that utilizes technology from the defense industry combines two industries in a commercial venture. In conjunction with the abatement of pollution that an all-electric transportation system would realize, the defense industry is looking for a commercial market for the technology that it has developed over the years. This new transportation system will accomplish both these goals. To date, the most reliable electric source has been overhead tethered lines or on-ground tracks in public transportation. But these greatly reduce the convenience of route changes and are at the mercy of small traffic pattern changes which can cause traffic tie-ups. The ideal electric bus would have a completely mobile energy source, such as a battery pack. But the limited range of a battery powered vehicle has diminished its use to only specific cases. In private vehicles also, the limited range of zero-pollution battery power has reduced the desirability of all-electric transportation. The electric transportation system proposed here will eliminate these problems. Buses will be sent out on their routes with convenient in-route charging. There will be minimum route changes to accommodate vehicle recharging. The buses will have full mobility and can avoid any traffic tie-ups. The charging of these on-board electrical energy storage systems will take place via a wireless power transmission network that will be established along the roadside on existing power line (telephone) poles or new stand-alone poles that would be in conjunction with the existing poles. Radio frequency (RF) wavelengths such as a microwave or a millimeterwave system or optical frequencies (OF), a laser based system, are wireless energy transmission systems. Utilizing this means to establish a nationwide transportation system will take a technology that has been defense based and use it in a commercial application.

Parise, R.J.

1998-07-01T23:59:59.000Z

134

Electrical Transport in Schottky Barrier MOSFETs  

E-Print Network [OSTI]

Barrier (SB) MOSFET is one such device. It consists of metallic silicide source and drain contacts' that result in a reduced local potential at the abrupt metal/semiconductor interface. At relatively high at the Metal/Semiconductor Interface 66 4.3. Current Transport Limits 69 4.4. Sub-threshold Regime 72 4

Reed, Mark

135

Transportation Sector Model of the National Energy Modeling System. Volume 1  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

NONE

1998-01-01T23:59:59.000Z

136

Electrical characterization of non-Fickian transport in groundwater and hyporheic systems  

E-Print Network [OSTI]

Electrical characterization of non-Fickian transport in groundwater and hyporheic systems Kamini be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods

Singha, Kamini

137

Minimal Scalar Sector of 3-3-1 Models without Exotic Electric Charges  

E-Print Network [OSTI]

We study the minimal set of Higgs scalars, for models based on the local gauge group $SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X$ which do not contain particles with exotic electric charges. We show that only two Higgs $SU(3)_L$ triplets are needed in order to properly break the symmetry. The exact tree-level scalar mass matrices resulting from symmetry breaking are calculated at the minimum of the most general scalar potential, and the gauge bosons are obtained, together with their couplings to the physical scalar fields. We show how the scalar sector introduced is enough to produce masses for fermions in a particular model which is an $E_6$ subgroup. By using experimental results we constrain the scale of new physics to be above 1.3 TeV.

William A. Ponce; Yithsbey Giraldo; Luis A. Sanchez

2002-10-01T23:59:59.000Z

138

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

2006-01-01T23:59:59.000Z

139

Connecting Colorado's Renewable Resources to the Markets in a Cabon-Constrained Electricity Sector  

SciTech Connect (OSTI)

The benchmark goal that drives the report is to achieve a 20 percent reduction in carbon dioxide (CO{sub 2}) emissions in Colorado's electricity sector below 2005 levels by 2020. We refer to this as the '20 x 20 goal.' In discussing how to meet this goal, the report concentrates particularly on the role of utility-scale renewable energy and high-voltage transmission. An underlying recognition is that any proposed actions must not interfere with electric system reliability and should minimize financial impacts on customers and utilities. The report also describes the goals of Colorado's New Energy Economy5 - identified here, in summary, as the integration of energy, environment, and economic policies that leads to an increased quality of life in Colorado. We recognize that a wide array of options are under constant consideration by professionals in the electric industry, and the regulatory community. Many options are under discussion on this topic, and the costs and benefits of the options are inherently difficult to quantify. Accordingly, this report should not be viewed as a blueprint with specific recommendations for the timing, siting, and sizing of generating plants and high-voltage transmission lines. We convened the project with the goal of supplying information inputs for consideration by the state's electric utilities, legislators, regulators, and others as we work creatively to shape our electricity sector in a carbon-constrained world. The report addresses various issues that were raised in the Connecting Colorado's Renewable Resources to the Markets report, also known as the SB07-91 Report. That report was produced by the Senate Bill 2007-91 Renewable Resource Generation Development Areas Task Force and presented to the Colorado General Assembly in 2007. The SB07-91 Report provided the Governor, the General Assembly, and the people of Colorado with an assessment of the capability of Colorado's utility-scale renewable resources to contribute electric power in the state from 10 Colorado generation development areas (GDAs) that have the capacity for more than 96,000 megawatts (MW) of wind generation and 26,000 MW of solar generation. The SB07-91 Report recognized that only a small fraction of these large capacity opportunities are destined to be developed. As a rough comparison, 13,964 MW of installed nameplate capacity was available in Colorado in 2008. The legislature did not direct the SB07-91 task force to examine several issues that are addressed in the REDI report. These issues include topics such as transmission, regulation, wildlife, land use, permitting, electricity demand, and the roles that different combinations of supply-side resources, demand-side resources, and transmission can play to meet a CO{sub 2} emissions reduction goal. This report, which expands upon research from a wide array of sources, serves as a sequel to the SB07-91 Report. Reports and research on renewable energy and transmission abound. This report builds on the work of many, including professionals who have dedicated their careers to these topics. A bibliography of information resources is provided, along with many citations to the work of others. The REDI Project was designed to present baseline information regarding the current status of Colorado's generation and transmission infrastructure. The report discusses proposals to expand the infrastructure, and identifies opportunities to make further improvements in the state's regulatory and policy environment. The report offers a variety of options for consideration as Colorado seeks pathways to meet the 20 x 20 goal. The primary goal of the report is to foster broader discussion regarding how the 20 x 20 goal interacts with electric resource portfolio choices, particularly the expansion of utility-scale renewable energy and the high-voltage transmission infrastructure. The report also is intended to serve as a resource when identifying opportunities stemming from the American Recovery and Reinvestment Act of 2009.

None

2009-12-31T23:59:59.000Z

140

Electrical Transport in Single-Wall Carbon Nanotubes  

E-Print Network [OSTI]

. (a) Schematic view a nanotube field-effect transistor (b) The Dirac energy dispersion coneElectrical Transport in Single-Wall Carbon Nanotubes Michael J. Biercuk1,3 , Shahal Ilani2 metal and semiconducting single-wall carbon nanotubes. The fundamental scattering mechanisms governing

McEuen, Paul L.

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

142

From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector  

SciTech Connect (OSTI)

Thailand serves as a case study of the potential to conserve electricity in the fast-growing commercial sectors of the tropical developing world. We performed a field study of over 1100 Thai office workers in which a questionnaire survey and simultaneous physical measurements were taken. Both air-conditioned and non-air-conditioned buildings were included. We analyzed Thai subjective responses on the ASHRAE, McIntyre and other rating scales, relating them to Effective Temperature, demographics, and to rational indices of warmth such as PMV and TSENS. These results suggest that without sacrificing comfort, significant energy conservation opportunities exist through the relaxation of upper space temperature limits. To investigate the potential for conserving energy in a cost-effective manner, we performed a series of parametric simulations using the DOE-2.1D computer program on three commercial building prototypes based on actual buildings in Bangkok; an office, a hotel, and a shopping center. We investigated a wide range of energy conservation measures appropriate for each building type, from architectural measures to HVAC equipment and control solutions. The best measures applied in combination into high efficiency cases can generate energy savings in excess of 50%. Economic analyses performed for the high efficiency cases, resulted in costs of conserved energy of less than and internal rates of return in excess of 40%. Thermal cool storage, cogeneration, and gas cooling technology showed promise as cost-effective electric load management strategies.

Busch, J.F. Jr.

1990-08-01T23:59:59.000Z

143

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

Energy Through Greater Efficiency: The Potential for Conservation in Californias Residential Sector. Report

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

144

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

Battery, Hybrid and Fuel Cell Electric Vehicle SymposiumSystem. 23rd International Electric Vehicle Symposium andof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

145

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

owned integrated hydro electricity utilities prevail,s Loading Order for Electricity Resources”, Staff Report,International Developments in Electricity Demand Management

McNeil, MIchael

2011-01-01T23:59:59.000Z

146

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

Mains Pressure Electric Storage Water Heaters Small MainsElectric Storage Water Heaters (water heaters. The objective is to

McNeil, MIchael

2011-01-01T23:59:59.000Z

147

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

Mains Pressure Electric Storage Water Heaters Small MainsPressure Electric Storage Water Heaters (Storage & instantaneous water heaters Storage tanks

McNeil, MIchael

2011-01-01T23:59:59.000Z

148

The Higgs Sector and electron electric dipole moment in next-to-minimal supersymmetry with explicit CP violation  

E-Print Network [OSTI]

We study the explicit CP violation of the Higgs sector in the next--to--minimal supersymmetric model with a gauge singlet Higgs field. Our numerical predictions show that electric dipole moment of electron lies around the present experimental upper limits. The mass of the lightest Higgs boson is quite sensitive to the CP violating phases in the theory. It is observed that as the vacuum expectation value of the singlet gets higher values, CP violation increases.

Muge Boz

2005-11-07T23:59:59.000Z

149

Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors  

E-Print Network [OSTI]

hybrid (gas or diesel) electric vehicle technology (Langer,e.g. hybrid gasoline-electric vs. diesel vehicles). Dealing

Lutsey, Nicholas P.

2008-01-01T23:59:59.000Z

150

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

2007) Impacts of Electric-drive Vehicles on California'sInteractions between electric-drive vehicles and the powerin emissions found for electric- drive vehicles is a result

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

151

Fuel cells for electric utility and transportation applications  

SciTech Connect (OSTI)

This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

Srinivasan, S.

1980-01-01T23:59:59.000Z

152

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable costand Fuel Cell Electric Vehicle Symposium GHG emissions rate (CO 2 -eq/kWh) Cost

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

153

A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport  

E-Print Network [OSTI]

A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport Fred Y. Huanga) and Mark J. Kushnerb) Departm&t of Electrical and Computer Engineering, University of Illinois, 1406 West Green Street, Urbana, Illinois 61801

Kushner, Mark

154

Dynamic Electric Power Supply Chains and Transportation Networks: An Evolutionary Variational Inequality Formulation  

E-Print Network [OSTI]

Dynamic Electric Power Supply Chains and Transportation Networks: An Evolutionary Variational; Transportation Research E 43 (2007) pp 624-646. 1 #12;Abstract: In this paper, we develop a static electric power supernetwork. This equivalence yields a new interpretation of electric power supply chain network equilibria

Nagurney, Anna

155

Analysis of Michigan's demand-side electricity resources in the residential sector: Volume 3, End-use studies: Revised final report  

SciTech Connect (OSTI)

This volume of the ''Analysis of Michigan's Demand-Side Electricity Resources in the Residential Sector'' contains end-use studies on various household appliances including: refrigerators, freezers, lighting systems, water heaters, air conditioners, space heaters, and heat pumps. (JEF)

Krause, F.; Brown, J.; Connell, D.; DuPont, P.; Greely, K.; Meal, M.; Meier, A.; Mills, E.; Nordman, B.

1988-04-01T23:59:59.000Z

156

Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector  

E-Print Network [OSTI]

in electricity prices (Harrison and Radov 2002) could trigger higher electricity consumption, production, further increasing CO2 emissions. This approach will also have consequences on neighbouring jurisdictions. Figure 2 illustrates a case with two... into the electricity prices limits investment in energy efficiency and results in higher electricity consumption. Thus electricity production and national CO2 emissions increase. If all European countries implement such policies the suggested higher CO2 emissions...

Neuhoff, Karsten; Keats, Kim; Sato, Misato

157

The dynamics of technology diffusion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector  

E-Print Network [OSTI]

This paper presents an analysis of possible uses of climate policy instruments for the decarbonisation of the global electricity sector in a non-equilibrium economic and technology innovation-diffusion perspective. Emissions reductions occur through changes in technology and energy consumption; in this context, investment decision-making opportunities occur periodically, which energy policy can incentivise in order to transform energy systems and meet reductions targets. Energy markets are driven by innovation, dynamic costs and technology diffusion; yet, the incumbent systems optimisation methodology in energy modelling does not address these aspects nor the effectiveness of policy onto decision-making since the dynamics modelled take their source from the top-down `social-planner' assumption. This leads to an underestimation of strong technology lock-ins in cost-optimal scenarios of technology. Our approach explores the global diffusion of low carbon technology in connection to a highly disaggregated sector...

Mercure, J -F; Foley, A M; Chewpreecha, U; Pollitt, H

2013-01-01T23:59:59.000Z

158

A historical view and proposal analysis of the strategic role of the transportation sector in the economic development of post-war Liberia  

E-Print Network [OSTI]

This thesis examines the proposals for building and improving the transportation sector in Liberia, primarily the roads while providing immediate social opportunities and employment for many of the poor in Liberia. As ...

Kwame Corkrum, Ellen

2010-01-01T23:59:59.000Z

159

Do Mergers Improve Efficiency? Evidence from Restructuring the U.S. Electric Power Sector  

E-Print Network [OSTI]

-performing companies that apparently search out and acquire better performers and that selling firms efficiency declines rather than improves after merger. We comment on some possible explanations for this result, as well as its implications, at the end... regulation appears to transfer most of the gains to consumers. Leggio and Liens (2000) study of share prices for 76 electric 4 mergers in 1983-96 finds qualitatively similar effects. Berry (2000) examines 21 electric-electric and electric...

Kwoka, John; Pollitt, Michael G.

160

DSM Electricity Savings Potential in the Buildings Sector in APP Countries  

E-Print Network [OSTI]

Washers Dish Driers Rice Cookers Vacuum Cleaners Electricovens 20 Electric rice cookers 21 DVD recorders FY2006: oil-

McNeil, MIchael

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Biomass Energy for Transport and Electricity: Large scale utilization under low CO2 concentration scenarios  

SciTech Connect (OSTI)

This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to stabilize atmospheric concentrations of CO2 at 400ppm and 450ppm. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. The costs of processing and transporting biomass energy at much larger scales than current experience are also incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the dominant source. A key finding of this paper is the role that carbon dioxide capture and storage (CCS) technologies coupled with commercial biomass energy can play in meeting stringent emissions targets. Despite the higher technology costs of CCS, the resulting negative emissions used in combination with biomass are a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels and shows that both technologies are important contributors to liquid fuels production, with unique costs and emissions characteristics. Through application of the GCAM integrated assessment model, it becomes clear that, given CCS availability, bioenergy will be used both in electricity and transportation.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

2010-01-25T23:59:59.000Z

162

Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites  

Broader source: Energy.gov [DOE]

Work on optimizing electrical and thermal transport properties of n-type skutterudites via a multiple-element-void-filling approach is presented.

163

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

management in the US electricity sector, Energy Policy, 23(deep reductions in electricity sector GHG emissions requireson the electricity sector. 19 Table 3.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

164

Resilient design of recharging station networks for electric transportation vehicles  

SciTech Connect (OSTI)

As societies shift to 'greener' means of transportation using electricity-driven vehicles one critical challenge we face is the creation of a robust and resilient infrastructure of recharging stations. A particular issue here is the optimal location of service stations. In this work, we consider the placement of battery replacing service station in a city network for which the normal traffic flow is known. For such known traffic flow, the service stations are placed such that the expected performance is maximized without changing the traffic flow. This is done for different scenarios in which roads, road junctions and service stations can fail with a given probability. To account for such failure probabilities, the previously developed facility interception model is extended. Results show that service station failures have a minimal impact on the performance following robust placement while road and road junction failures have larger impacts which are not mitigated easily by robust placement.

Kris Villez; Akshya Gupta; Venkat Venkatasubramanian

2011-08-01T23:59:59.000Z

165

The impact of the European Union Emission Trading Scheme on electricity generation sectors  

E-Print Network [OSTI]

. This paper will be presented at the 2009 International Energy Workshop meeting (Venice, June 17th - 19th). 1 break, Non Parametric Approach, Energy prices. JEL classi...cation: C14 C32 C51 Q49 Q58 Centre d the energy1 and industrial sectors major emitters. The market is based on a mechanism of "cap and trade

Paris-Sud XI, Université de

166

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

if supplied with coal power; at emissions rates equal torates). If coal power Electricity GHG emissions rate (gCOlower GHG emissions rates than coal power supplying non-

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

167

Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector  

E-Print Network [OSTI]

. Energy densities of different energy storage systems. The num- bers are based on higher heats produce their energy mainly in the form of electricity. This means that if we want to decouple trans- port from the use of fossil fuels, we must find ways to use electric energy in vehicles. Electric trains

168

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network [OSTI]

costs Economics with low electrical loads Weinert, Lipman, and Unnasch Natural Gas Reformer H2 Purifier HigTT-pressure hydrogen compressor

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

169

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

E-Print Network [OSTI]

devoted to the power sector, electricity deficits continuethe sector by the sectors electricity consumption. In thewhile data on electricity consumption by sector are taken

Sathaye, Jayant

2010-01-01T23:59:59.000Z

170

The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector  

SciTech Connect (OSTI)

The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

Greene, D.L.

1997-07-01T23:59:59.000Z

171

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network [OSTI]

CO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITYCO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITY

Delucchi, Mark

1997-01-01T23:59:59.000Z

172

Regulating electricity and natural gas in Peru : solutions for a sustainable energy sector  

E-Print Network [OSTI]

Peru is one of the fastest growing countries in Latin America, thanks in part to industry fueled by generous endowments of hydro power capacity and natural gas reserves. However, investment in electricity generation capacity ...

Breckel, Alex Cade

2014-01-01T23:59:59.000Z

173

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network [OSTI]

The Market Value and Cost ofSolar Photovoltaic ElectricityCosts Capacities, Global Perspectives through 2012, Bernreuter Research, Photovoltaicto the cost of solar power. 5 European Photovoltaic Industry

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

174

Global Climate Change, Developing Countries and Transport Sector Options in South Africa  

E-Print Network [OSTI]

on Global Climate Change: Developing Countries and Transporton Global Climate Change: Developing Countries and Transporton Global Climate Change: Developing Countries and Transport

2000-01-01T23:59:59.000Z

175

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network [OSTI]

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

176

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

SciTech Connect (OSTI)

With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

Letschert, Virginie; McNeil, Michael A.

2008-05-13T23:59:59.000Z

177

The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.  

SciTech Connect (OSTI)

A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

Morrison, G.; Stephens, T.S. (Energy Systems); (Univ. of California at Davis); (ES)

2011-10-11T23:59:59.000Z

178

Interactions between Electric-drive Vehicles and the Power Sector in California  

E-Print Network [OSTI]

plants are given, as well as the assumed electricity marginal generationplants are needed and total generation from those less-efficient power plants. Median marginal electricityelectricity generation. Note that this will not be the case in regions with significant coal-fired power plant

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2009-01-01T23:59:59.000Z

179

Multi-project baselines for potential clean development mechanism projects in the electricity sector in South Africa  

SciTech Connect (OSTI)

The United Nations Framework Convention on Climate Change (UNFCCC) aims to reduce emissions of greenhouse gases (GHGs) in order to ''prevent dangerous anthropogenic interference with the climate system'' and promote sustainable development. The Kyoto Protocol, which was adopted in 1997 and appears likely to be ratified by 2002 despite the US withdrawing, aims to provide means to achieve this objective. The Clean Development Mechanism (CDM) is one of three ''flexibility mechanisms'' in the Protocol, the other two being Joint Implementation (JI) and Emissions Trading (ET). These mechanisms allow flexibility for Annex I Parties (industrialized countries) to achieve reductions by extra-territorial as well as domestic activities. The underlying concept is that trade and transfer of credits will allow emissions reductions at least cost. Since the atmosphere is a global, well-mixed system, it does not matter where greenhouse gas emissions are reduced. The CDM allows Annex I Parties to meet part of their emissions reductions targets by investing in developing countries. CDM projects must also meet the sustainable development objectives of the developing country. Further criteria are that Parties must participate voluntarily, that emissions reductions are ''real, measurable and long-term'', and that they are additional to those that would have occurred anyway. The last requirement makes it essential to define an accurate baseline. The remaining parts of section 1 outline the theory of baselines, emphasizing the balance needed between environmental integrity and reducing transaction costs. Section 2 develops an approach to multi-project baseline for the South African electricity sector, comparing primarily to near future capacity, but also considering recent plants. Five potential CDM projects are briefly characterized in section 3, and compared to the baseline in section 4. Section 5 concludes with a discussion of options and choices for South Africa regarding electricity sector baselines.

Winkler, H.; Spalding-Fecher, R.; Sathaye, J.; Price, L.

2002-06-26T23:59:59.000Z

180

Core Indicators for Determinants and Performance of Electricity Sector in Developing Countries  

E-Print Network [OSTI]

.g. IADB, 2001; Joskow, 1998; Newbery, 2002): i. Corporatisation of state-owned utilities; ii. Enactment of an electricity reform law; iii. Regulatory reform, including adoption of incentive regulation for the natural monopoly network activities; iv... to the components of our reform model are the key reform steps implemented (Table II), resource mix and endowments indicators (Table I), and country-level indicators (Table VII). iv. Incentive regulation and privatization improve cost and technical efficiency...

Jamasb, Tooraj; Newbery, David; Pollitt, Michael G.

2004-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

2006-01-01T23:59:59.000Z

182

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

SciTech Connect (OSTI)

Although solar costs are dropping rapidly, solar power is still more expensive than conventional and other renewable energy options. The solar sector still needs continuing government policy support. These policies are driven by objectives that go beyond the goal of achieving grid parity. The need to achieve multiple objectives and ensure sufficient political support for solar power makes it diffi cult for policy makers to design the optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints offered by broader economic, political and social conditions further complicates the task of policy making. This report presents an analysis of solar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India - in terms of their outlook, objectives, policy mechanisms and outcomes. The report presents key insights, primarily in qualitative terms, and recommendations for two distinct audiences. The first audience consists of global policy makers who are exploring various mechanisms to increase the penetration of solar power in markets to mitigate climate change. The second audience consists of key Indian policy makers who are developing a long-term implementation plan under the Jawaharlal Nehru National Solar Mission and various state initiatives.

Deshmukh, Ranjit; Bharvirkar, Ranjit; Gambhir, Ashwin; Phadke, Amol

2011-08-10T23:59:59.000Z

183

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

184

Issues in International Energy Consumption Analysis: Electricity Usage in Indias Housing Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity

185

Electron Irradiation Induced Changes of the Electrical Transport Properties of Graphene  

E-Print Network [OSTI]

. In addition, the effect of electron irradiation on a PMMA (Poly Methyl Methacrylate)/Graphene bilayer was studied. We observed a deterioration of the electrical transport properties of a graphene FET. Prior to electron irradiation, we observed that the PMMA...

Woo, Sung Oh

2014-08-06T23:59:59.000Z

186

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

187

Dark matter from the scalar sector of 3-3-1 models without exotic electric charges  

E-Print Network [OSTI]

We show that three SU(2) singlet neutral scalars (two CP-even and one CP-odd) in the spectrum of models based on the gauge symmetry SU(3)_c X SU(3)_L X U(1)_X, which do not contain exotic electric charges, are realistic candidates for thermally generated self-interacting dark matter in the Universe, a type of dark matter that has been recently proposed in order to overcome some difficulties of collisionless cold dark matter models at the galactic scale. These candidates arise without introducing a new mass scale in the model and/or without the need for a discrete symmetry to stabilize them, but at the expense of tuning several combinations of parameters of the scalar potential.

Simonetta Filippi; William A. Ponce; Luis A. Sanchez

2005-10-27T23:59:59.000Z

188

Analysis of charge transport during lightning using balloon-borne electric field sensors and Lightning  

E-Print Network [OSTI]

Analysis of charge transport during lightning using balloon-borne electric field sensors is developed to separate the background field associated with instrument rotation and cloud charging processes the background electric field that would have existed if the lightning had not occurred. The estimated background

Hager, William

189

The effect of electron induced hydrogenation of graphene on its electrical transport properties  

SciTech Connect (OSTI)

We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman D band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

Woo, Sung Oh [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States)] [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); Teizer, Winfried [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States) [Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843 (United States); WPI-Advanced Institute for Materials Research, Tohoku University, Sendai (Japan)

2013-07-22T23:59:59.000Z

190

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

none,

1993-01-01T23:59:59.000Z

191

SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results  

SciTech Connect (OSTI)

This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken here is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.

Wei, Max; Greenblatt, Jeffrey; Donovan, Sally; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel

2014-06-01T23:59:59.000Z

192

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network [OSTI]

B. Atanasiu (2006). Electricity Consumption and Efficiencywill see their electricity consumption rise significantly.the bulk of household electricity consumption in developing

Letschert, Virginie

2010-01-01T23:59:59.000Z

193

Model documentation report: Transportation sector model of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

Not Available

1994-03-01T23:59:59.000Z

194

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2  

SciTech Connect (OSTI)

The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

NONE

1998-01-01T23:59:59.000Z

195

The Implementation of California AB 32 and its Impact on Wholesale Electricity Markets  

E-Print Network [OSTI]

trade for Californias electricity sector. The paper surveyson two key sectors, the electricity sector and automotivefrom elsewhere. In the electricity sector, this is a net

Bushnell, Jim B

2007-01-01T23:59:59.000Z

196

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect (OSTI)

The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

Not Available

1991-07-01T23:59:59.000Z

197

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect (OSTI)

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

198

Estimated United States Transportation Energy Use 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

199

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

200

Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program  

SciTech Connect (OSTI)

The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plugin hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create webbased learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, fouryear colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and coordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit webbased learning resource and Google spinoff.

Caille, Gary

2013-12-13T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Plug-in electric vehicle introduction in the EU  

E-Print Network [OSTI]

Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

Sisternes, Fernando J. de $q (Fernando Jos Sisternes Jimnez)

2010-01-01T23:59:59.000Z

202

The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsby products 5 , and water heaters. Appliance diffusion isor endorsement levels. Water Heaters The share of electric

Letschert, Virginie

2010-01-01T23:59:59.000Z

203

Electric Drive Transportation Association Conference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQEnergyGovernment Officials.Electric Drive

204

Hydrogen and electricity: Parallels, interactions,and convergence  

E-Print Network [OSTI]

evolution with the electricity sector and lays out some ofinteraction with the electricity sector because of thefuel and stationary electricity sectors will converge and

Yang, Christopher

2008-01-01T23:59:59.000Z

205

Electricity Merger Policy in the Shadow of Regulation  

E-Print Network [OSTI]

For The Dutch Electricity Sector, NMa, June (available atanalysing horizontal electricity sector mergers, that is notfuel, gas into the electricity sector (exemplified by both

Gilbert, Richard J; Newberry, David M

2006-01-01T23:59:59.000Z

206

Modeling electron transport in the presence of electric and magnetic fields.  

SciTech Connect (OSTI)

This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.

Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David

2013-09-01T23:59:59.000Z

207

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

SciTech Connect (OSTI)

Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

Markel, T.

2010-04-01T23:59:59.000Z

208

Analysis of residential, industrial and commercial sector responses to potential electricity supply constraints in the 1990s  

SciTech Connect (OSTI)

There is considerable debate over the ability of electric generation capacity to meet the growing needs of the US economy in the 1990s. This study provides new perspective on that debate and examines the possibility of power outages resulting from electricity supply constraints. Previous studies have focused on electricity supply growth, demand growth, and on the linkages between electricity and economic growth. This study assumes the occurrence of electricity supply shortfalls in the 1990s and examines the steps that homeowners, businesses, manufacturers, and other electricity users might take in response to electricity outages.

Fisher, Z.J.; Fang, J.M.; Lyke, A.J.; Krudener, J.R.

1986-09-01T23:59:59.000Z

209

Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach  

E-Print Network [OSTI]

a corresponding increase in both diesel and electric trains.Diesel IEA Gas/Diesel Oil Estimated Electric IEA Heavy FuelDiesel use increased from 50% to 64%, and electric train

Zhou, Nan

2010-01-01T23:59:59.000Z

210

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

and some other sectors to electricity and hydrogen, liquidand some other sectors to electricity and hydrogen, liquidto electricity or hydrogen in the light-duty sector would

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

211

The Open Source Stochastic Building Simulation Tool SLBM and Its Capabilities to Capture Uncertainty of Policymaking in the U.S. Building Sector  

E-Print Network [OSTI]

2 reductions in the electricity sector. As the reader mightcarbon intensity of the electricity sector considerably (seeCommercial Building Sector Electricity Demand (mid value),

Stadler, Michael

2009-01-01T23:59:59.000Z

212

Making the Market Right for Environmentally Sound Energy-Efficient Technologies: U.S. Buildings Sector Successes that Might Work in Developing Countries and Eastern Europe  

E-Print Network [OSTI]

and operation of the electricity sector. In most developingservices. The electricity sector owns and controls veryIkWh for commercial sector electricity and a retail natural

Gadgil, A.J.

2008-01-01T23:59:59.000Z

213

Sharing the burden of climate change stabilization: An energy sector perspective  

E-Print Network [OSTI]

energy demand in the electricity sector and demand in all2070 when in the electricity sector coal is largely replaceddemand both in the electricity sector and the non-electric

Wagner, Fabian; Sathaye, Jayant

2006-01-01T23:59:59.000Z

214

Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid  

SciTech Connect (OSTI)

Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

2013-02-15T23:59:59.000Z

215

Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy  

SciTech Connect (OSTI)

This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

Brown, E.

2008-08-01T23:59:59.000Z

216

Cap-and-Trade Modeling and Analysis: Congested Electricity Market Equilibrium  

E-Print Network [OSTI]

on the Spanish electricity sector. The Energy Journal, 27 (markets in the electricity sector The case of wholesaleregulations in the electricity sector: market interactions,

Limpaitoon, Tanachai

2012-01-01T23:59:59.000Z

217

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

future compositions of the electricity sector in California.Similar to the electricity sector, we integrate performanceour modeling of the electricity sector, we defined typical

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

218

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

and corresponding direct electricity sector costs, includingand avoids electricity-sector water consumption. At the sameNew Wind Fig. 5. Electricity sector capacity by technology

Hand, Maureen

2008-01-01T23:59:59.000Z

219

SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast  

DOE Patents [OSTI]

Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

Jesse, Stephen (Knoxville, TN) [Knoxville, TN; Geohegan, David B. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael (Brooktondale, NY) [Brooktondale, NY

2009-02-17T23:59:59.000Z

220

Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries  

E-Print Network [OSTI]

Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

Kim, Hyunho, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Incentives to Accelerate the Penetration of Electricity in the Industrial Sector by Promoting New Technologies: A French Experiment  

E-Print Network [OSTI]

as costly and does not recover markedly, needs will only be wasteful of energy : this stems from a long period approximately 340 to 350 TWh. However, the French of low oil prices, as well as the still limited park of power stations (especially hydro-electric...-quarters of its energy mainly in the situation is least possible recourse to oil form of liquid hydro-carbons. National resources imports. On this basis, continuous recourse to were scarce -no oil, a little gas and coal, and electricity for new applications...

Bouchet, J.; Froehlich, R.

1983-01-01T23:59:59.000Z

222

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect (OSTI)

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

223

E-Print Network 3.0 - agriculture sector plan Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

identify trends in key economic sectors and demographic measures... primary sectors. Electricity consumed in private homes is included in the residential sector. ... Source:...

224

Electrical Engineering and Computer ScienceElectrical Engineering and Computer Science Many-to-One Transport Capacity  

E-Print Network [OSTI]

1 Electrical Engineering and Computer ScienceElectrical Engineering and Computer Science Daniel Marco, Enrique J. Duarte-Melo Mingyan Liu, David L. Neuhoff Electrical Engineering and Computer Science University of Michigan, Ann Arbor #12;2 Electrical Engineering and Computer ScienceElectrical

Liu, Mingyan

225

Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach  

SciTech Connect (OSTI)

Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

Zhou, Nan; McNeil, Michael A.

2009-05-01T23:59:59.000Z

226

202-328-5000 www.rff.orgSector Effects of the Shale Gas Revolution in the United States  

E-Print Network [OSTI]

This paper reviews the impact of the shale gas revolution on the sectors of electricity generation, transportation, and manufacturing in the United States. Natural gas is being substituted for other fuels, particularly coal, in electricity generation, resulting in lower greenhouse gas emissions from this sector. The use of natural gas in the transportation sector is currently negligible but is projected to increase with investments in refueling infrastructure and natural gas vehicle technologies. Petrochemical and other manufacturing industries have responded to lower natural gas prices by investing in domestically located manufacturing projects. This paper also speculates on the impact of a possible shale gas boom in China. Key Words: shale gas, electricity, transportation, and manufacturing JEL Classification Numbers: L71, L9, Q4 2013 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion.

227

On the Road to Transportation Efficiency (Video)  

SciTech Connect (OSTI)

Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation and the U.S. Department of Energy.

Not Available

2014-03-01T23:59:59.000Z

228

Energy efficiency in building sector in India through Heat  

E-Print Network [OSTI]

electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

Oak Ridge National Laboratory

229

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S  

SciTech Connect (OSTI)

This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

DeLuchi, M.A. [Argonne National Lab., IL (United States); [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-11-01T23:59:59.000Z

230

Influence of Si Co-doping on electrical transport properties of magnesium-doped boron nanoswords  

SciTech Connect (OSTI)

Magnesium-doped boron nanoswords were synthesized via a thermoreduction method. The as-prepared nanoswords are single crystalline and {beta}-rhombohedral ({beta}-rh) phase. Electrical transport measurements show that variable range hopping conductivity increases with temperature, and carrier mobility has a greater influence than carrier concentration. These results are consistent with the three dimensional Mott's model (M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969)) besides a high density of localized states at the Fermi level compared with bulk {beta}-rh boron. Conductivity of Mg-doped boron nanoswords is significantly lower than that of ''pure'' (free of magnesium) boron nanoswords. Electron energy loss spectroscopy studies confirm that the poorer conductivity arises from silicon against magnesium doping.

Tian Yuan; Lu Hongliang; Tian Jifa; Li Chen; Hui Chao; Shi Xuezhao; Huang Yuan; Shen Chengmin; Gao Hongjun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2012-03-05T23:59:59.000Z

231

Oxygen Transport Kinetics in Infiltrated SOFCs Cathode by Electrical Conductivity Relaxation Technique  

SciTech Connect (OSTI)

Infiltration has attracted increasing attention as an effective technique to modify SOFC cathodes to improve cell electrochemical performance while maintaining material compatibility and long-term stability. However, the infiltrated material's effect on oxygen transport is still not clear and detailed knowledge of the oxygen reduction reaction in infiltrated cathodes is lacking. In this work, the technique of electrical conductivity relaxation (ECR) is used to evaluate oxygen exchange in two common infiltrated materials, Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9} and La{sub 0.6}Sr{sub 0.4}CoO{sub 3-?}. The ECR technique is also used to examine the transport processes in a composite material formed with a backbone of La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-?} and possessing a thin, dense surface layer composed of the representative infiltrate material. Both the surface oxygen exchange process and the oxygen exchange coefficient at infiltrate/LSCF interface are reported. ECR testing results indicate that the application of infiltrate under certain oxygen partial pressure conditions produces a measureable increase in the fitted oxygen exchange parameter. It is presently only possible to generate hypotheses to explain the observation. However the correlation between improved electrochemical performance and increased oxygen transport measured by ECR is reliably demonstrated. The simple and inexpensive ECR technique is utilized as a direct method to optimize the selection of specific infiltrate/backbone material systems for superior performance.

Li, Yihong; Gerdes, Kirk; Liu, Xingbo

2013-07-01T23:59:59.000Z

232

DOE Issues Energy Sector Cyber Organization NOI  

Broader source: Energy.gov (indexed) [DOE]

sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. The cyber organization is...

233

Draft Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC)...

234

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

235

Spin-dependent thermal and electrical transport in a spin-valve system Zheng-Chuan Wang,1  

E-Print Network [OSTI]

Spin-dependent thermal and electrical transport in a spin-valve system Zheng-Chuan Wang,1 Gang Su,1 governed by thermal processes at high temperature. The so-called spin-valve phenomenon is clearly uncovered, the quantum size effect on the thermal conduc- tance and the Peltier coefficient,2 the diffusive thermopower

Gao, Song

236

Electric Flux Sectors and Confinement  

E-Print Network [OSTI]

We study the fate of static fundamental charges in the thermodynamic limit from Monte-Carlo simulations of SU(2) with suitable boundary conditions.

Lorenz von Smekal; Philippe de Forcrand

2002-04-30T23:59:59.000Z

237

Electric transport and oxygen permeation properties of lanthanum cobaltite membranes synthesized by different methods  

SciTech Connect (OSTI)

Dense perovskite-structured membranes with desired composition of La{sub 0.8}Sr{sub 0.2}Co{sub 0.6}Fe{sub 0.4}O{sub 3{minus}{delta}} (LSCF) were prepared from powders produced by four different methods. LSCF powders prepared by citrate, solid-state, and spray-pyrolysis methods had compositions close to the desired stoichiometry with a slight difference in cobalt concentration, whereas coprecipitated powders had a large strontium deficiency. The membrane composition was a determining factor that affected the electronic conductivity and therefore oxygen permeability. The membrane with a large strontium deficiency had much lower electronic conductivity and oxygen permeability (ionic conductivity) than the other three membranes with compositions close to the desired stoichiometry. The electronic conductivity of membranes prepared from citrate, solid-state, and spray-pyrolysis methods increases with the cobalt concentration of the membrane. For the three membranes with similar composition, the activation energy of oxygen flux decreases with increasing grain size. Oxygen pressure dependency of oxygen vacancy concentration is also influenced by the membrane microstructure and composition. LSCF membranes with same composition and similar microstructure should have similar electric and oxygen transport properties.

Qi, X.; Lin, Y.S.; Swartz, S.L.

2000-03-01T23:59:59.000Z

238

Multiple-Filled Skutterudites: High Thermoelectric Figure of Merit through Separately Optimizing Electrical and Thermal Transports  

SciTech Connect (OSTI)

Skutterudites CoSb{sub 3} with multiple cofillers Ba, La, and Yb were synthesized and very high thermoelectric figure of merit ZT = 1.7 at 850 K was realized. X-ray diffraction of the densified multiple-filled bulk samples reveals all samples are phase pure. High-resolution scanning transmission electron microscopy (STEM) and energy dispersive X-ray spectroscopy (EDS) analysis confirm that multiple guest fillers occupy the nanoscale-cages in the skutterudites. The fillers are further shown to be uniformly distributed and the Co-Sb skutterudite framework is virtually unperturbed from atomic scale to a few micrometers. Our results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, at the same time, lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials, through combining filler species of different rattling frequencies to achieve broad-frequency phonon scattering. Therefore, partially filled skutterudites with multiple fillers of different chemical nature render unique structural characteristics for optimizing electrical and thermal transports in a relatively independent way, leading to continually enhanced ZT values from single- to double-, and finally to multiple-filled skutterudites. The idea of combining multiple fillers with different charge states and rattling frequencies for performance optimization is also expected to be valid for other caged TE compounds.

Zhang, Weiqing [Chinese Academy of Sciences; Yang, Jiong [Chinese Academy of Sciences; Yang, Jihui [General Motors Corporation; Wang, Hsin [ORNL; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Shi, Xun [General Motors Corporation-R& D; Chi, Miaofang [ORNL; Cho, Jung Y [GM R& D and Planning, Warren, Michigan; Bai, Shengqiang [Chinese Academy of Sciences; Chen, Lidong [Chinese Academy of Sciences

2011-01-01T23:59:59.000Z

239

Published in IET Electrical Systems in Transportation Received on 2nd May 2013  

E-Print Network [OSTI]

of electric vehicles ­ integration of energy and information Ching Chuen Chan1,2, Linni Jian3, Dan Tu2,4 1 charging of electric vehicles. The study begins with the introduction of the engineering philosophy of electric vehicle system. Then the identification of key players in electric vehicles system

Leung, Ka-Cheong

240

Electrical and Electrothermal Transport Properties of n- and p-type InN  

E-Print Network [OSTI]

?2 ) (cm 2 /Vs) Summary of electrical and thermoelectricVs) GS1548 GS1547 GS1810 GS1650 101107A 101107B 101107C Table 2.1 Summary of electricalVs) S665 S696 S601 S697 S625 S629 S599 Sample Table 3.2 Summary of electrical

Miller, Nathaniel Reed

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fabrication and electrical transport properties of binary Co-Si nanostructures prepared by focused electron beam-induced deposition  

SciTech Connect (OSTI)

CoSi-C binary alloys have been fabricated by focused electron beam-induced deposition by the simultaneous use of dicobaltoctacarbonyl, Co{sub 2}(CO){sub 8}, and neopentasilane, Si{sub 5}H{sub 12}, as precursor gases. By varying the relative flux of the precursors, alloys with variable chemical composition are obtained, as shown by energy dispersive x-ray analysis. Room temperature electrical resistivity measurements strongly indicate the formation of cobalt silicide and cobalt disilicide nanoclusters embedded in a carbonaceous matrix. Temperature-dependent electrical conductivity measurements show that the transport properties are governed by electron tunneling between neighboring CoSi or CoSi{sub 2} nanoclusters. In particular, by varying the metal content of the alloy, the electrical conductivity can be finely tuned from the insulating regime into the quasi-metallic tunneling coupling regime.

Porrati, F.; Huth, M. [Physikalisches Institut, Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Kaempken, B.; Terfort, A. [Institut fr Anorganische und Analytische Chemie, Goethe-Universitaet, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main (Germany)

2013-02-07T23:59:59.000Z

242

Transportation  

E-Print Network [OSTI]

Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

Vinson, Steve

2013-01-01T23:59:59.000Z

243

ELECTRIC  

Office of Legacy Management (LM)

you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

244

Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity  

SciTech Connect (OSTI)

Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.

Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

2013-01-01T23:59:59.000Z

245

Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles  

SciTech Connect (OSTI)

Using ab initio molecular dynamics, the atomic structure and transport properties of eutectic Ga-In and Ga-In-Sn are investigated. The Kubo-Greenwood (K-G) and the Ziman-Faber (Z-F) formulations and the Wiedemann-Franz (W-F) law are used for the electrical and electronic thermal conductivity. The species diffusivity and the viscosity are also predicted using the mean square displacement and the Stokes-Einstein (S-E) relation. Alloying Ga causes more disordered structure, i.e., broadening the atomic distance near the In and Sn atoms, which reduces the transport properties and the melting temperature. The K-G treatment shows excellent agreement with the experimental results while Z-F treatment formula slightly overestimates the electrical conductivity. The predicted thermal conductivity also shows good agreement with the experiments. The species diffusivity and the viscosity are slightly reduced by the alloying of Ga with In and Sn atoms. Good agreements are found with available experimental results and new predicted transport-property results are provided.

Yu, Seungho; Kaviany, Massoud, E-mail: kaviany@umich.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2014-02-14T23:59:59.000Z

246

Tunable Electrical and Thermal Transport in Ice-Templated MultiLayer Graphene Nanocomposites  

E-Print Network [OSTI]

to electrical energy storage,1­3 thermal energy storage,4­13 and composite materials.14­21 Ice applications in thermal and electrical energy storage. Phase change thermal storage seeks to reduce building offsets in energy supply and demand.6 Thermal energy storage is also an appealing way to cool power

Maruyama, Shigeo

247

The energy sector in Sri Lanka is currently a hotbed of activity and change. A reform  

E-Print Network [OSTI]

the new reformed electricity struc- ture, private sector power developers will attempt to recover is underway in the power sector, and the debt-ridden state-owned electricity utility - the Ceylon Electricity of the electricity sector in this small island country in South Asia. The country's current installed power capacity

Kammen, Daniel M.

248

Surface State Transport and Ambipolar Electric Field Effect in Bi2Se3 Nanodevices  

E-Print Network [OSTI]

Electronic transport experiments involving the topologically protected states found at the surface of Bi[subscript 2]Se[subscript 3] and other topological insulators require fine control over carrier density, which is ...

Steinberg, Hadar

249

Pore-scale modeling of electrical and fluid transport in Berea sandstone  

E-Print Network [OSTI]

The purpose of this paper is to test how well numerical calculations can predict transport properties of porous permeable rock, given its 3D digital microtomography (?CT) image. For this study, a Berea 500 sandstone sample ...

Zhan, Xin

250

Secretary Chu to Kick-off the Electric Drive Transportation Associatio...  

Office of Environmental Management (EM)

that will start at the Department of Energy and travel around the city. Supporting electric vehicles will help the U.S. reach President Obama's bold but achievable goal of...

251

Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation  

E-Print Network [OSTI]

Improving the efficiency and utilization of battery systems can increase the viability and cost-effectiveness of existing technologies for electric vehicles (EVs). Developing smarter battery management systems and advanced ...

Northrop, Paul W. C.

252

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network [OSTI]

leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

253

Energy-economy interactions revisited within a comprehensive sectoral model  

SciTech Connect (OSTI)

This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

Hanson, D. A.; Laitner, J. A.

2000-07-24T23:59:59.000Z

254

Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.  

SciTech Connect (OSTI)

We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such as ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.

Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur; Siegal, Michael P.; Li, Qiming; Jones, Reese E.; Westover, Tyler; Wang, George T.; Zhou, Xiao Wang; Talin, Albert Alec; Bogart, Katherine Huderle Andersen; Harris, C. Thomas; Huang, Jian Yu

2010-09-01T23:59:59.000Z

255

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

256

An interfacial transport theory for electro-chemical phenomena with emphasis on electric double layers  

E-Print Network [OSTI]

relationship between the electric potential and the concentration of the species. The concentration of the species rr, 1& rz & n+1 and the electric potential can be obtained by solving the following nonlinear equations, Enikov and Boyd [5]. =?. V" + V. (?k4...'s constant Using equation (1. 6) in equation (1. 5) yields: d(hg) = ?d(inc ) ez (1, 7) Also, at equilibrium from equations (1. 4)-(1. 6), V, p = ? k6s7, . (inc )+ez V, tt which results in: e = c?exp (1. 9) where c is the concentration of species a far...

Ambati, Muralidhar S

2012-06-07T23:59:59.000Z

257

The technology path to deep greenhouse gas emissions cuts by 2050: The pivotal role of electricity  

E-Print Network [OSTI]

modeling of Californias electricity sector to 2020: UpdatedFig. 3B). In the electricity sector, three forms of de-options. Residual electricity-sector carbon emis- sions in

Williams, J.H.

2013-01-01T23:59:59.000Z

258

NATURAL GAS FOR TRANSPORTATION OR ELECTRICITY? CLIMATE CHANGE IMPLICATIONS Date: 27-Oct-11  

E-Print Network [OSTI]

for electricity generation, GHG emissions are reduced by at least 45% per kWh. But when natural gas is used that it will even meet the emissions reductions mandated by the Energy Independence and Security Act (EISA) for corn non-GHG emissions such as particulate matter, carbon monoxide and nitrous oxide. The trade-off between

McGaughey, Alan

259

Transport in polymer-gel composites: Theoretical methodology and response to an electric field  

E-Print Network [OSTI]

A theoretical model of electromigrative, diffusive and convectivetransport polymer-gel composites is presented. Bulk properties are derived from the standard electrokinetic model with an impenetrable charged sphere embedded in an electrolyte-saturated Brinkman medium. Because the microstructure can be carefully controlled, these materials are promising candidates for enhanced gel-electrophoresis, chemical sensing, drug delivery, and microfluidic pumping technologies. The methodology provides `exact' solutions for situations where perturbations from equilibrium are induced by gradients of electrostatic potential, concentration and pressure. While the volume fraction of the inclusions should be small, Maxwell's well-known theory of conduction suggests that the theory may also be accurate at moderate volume fractions. In this work, the model is used to compute ion fluxes, electrical current density, and convective flow induced by an applied electric field. The electric-field-induced (electro-osmotic) flow is a sensitive indicator of the inclusion zeta-potential and size, electrolyte concentration, and Darcy permeability of the gel, while the electrical conductivity increment is most often independent of the polymer gel, and is much less sensitive to particle and electrolyte characteristics.

Reghan J. Hill

2006-01-13T23:59:59.000Z

260

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An original method to evaluate the transport parameters and reconstruct the electric field in solid-state photodetectors  

SciTech Connect (OSTI)

A method for reconstructing the spatial profile of the electric field along the thickness of a generic bulk solid-state photodetector is proposed. Furthermore, the mobility and lifetime of both electrons and holes can be evaluated contextually. The method is based on a procedure of minimization built up from current transient profiles induced by laser pulses in a planar detector at different applied voltages. The procedure was tested in CdTe planar detectors for X- and Gamma rays. The devices were measured in a single-carrier transport configuration by impinging laser light on the sample cathode. This method could be suitable for many other devices provided that they are made of materials with sufficiently high resistivity, i.e., with a sufficiently low density of intrinsic carriers.

Santi, A.; Piacentini, G. [DiFeST, Department of Physics and Earth Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma (Italy); Zanichelli, M.; Pavesi, M., E-mail: maura.pavesi@unipr.it [DiFeST, Department of Physics and Earth Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma (Italy); IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Cola, A.; Farella, I. [IMM-CNR, Institute for Microelectronics and Microsystems, Via Monteroni, 73100 Lecce (Italy)

2014-05-12T23:59:59.000Z

262

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

SciTech Connect (OSTI)

The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

2009-03-31T23:59:59.000Z

263

Electrical transport properties of Ti-doped Fe2O3(0001) epitaxial films. |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTS OFElaineElectric826Lab

264

NREL: Transportation Research - Transportation and Hydrogen Newsletter...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Future of Sustainable Transportation This is the January 2015 issue of the Transportation and Hydrogen Newsletter. Illustration of an electric vehicle Illustration of an...

265

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

266

The dynamics of technology di?usion and the impacts of climate policy instruments in the decarbonisation of the global electricity sector  

E-Print Network [OSTI]

, for instance windy areas for wind power, or natural water basins and rivers for hydroelectric dams. Higher productivity sites offer lower costs of electricity production and tend to be chosen first by developers. Assuming this, the progression of renewable... reside in China (79%), where the lock-in of coal technology is very difficult to break given the near absence of alternatives (with the exception of hydroelectricity, which is driven to its natural resource limits). The choice of investors thus needs...

Mercure, J.-F.; Pollitt, H.; Chewpreecha, U.; Salas, P.; Foley, A. M.; Holden, P. B.; Edwards, N. R.

2014-07-16T23:59:59.000Z

267

Safety of high speed guided ground transportation systems: Comparison of magnetic and electric fields of conventional and advanced electrified transportation systems. Final report, September 1992-March 1993  

SciTech Connect (OSTI)

Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.

Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.

1993-08-01T23:59:59.000Z

268

Feasibility of Wholesale Electricity Competition in a Developing Country: Insights from Simulating a Market in Maharashtra State, India  

E-Print Network [OSTI]

Reform in the U.S. Electricity Sector. Journal of EconomicCrises in the Electricity Sector: The Case of Maharashtra.of the MH state electricity sector that create unique

Phadke, Amol

2007-01-01T23:59:59.000Z

269

Tampa Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Tampa Electric provides a variety of financial incentives to promote energy efficiency in the residential sector. The Ductwork Rebate Program gives Tampa Electric customers the opportunity to have...

270

Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development  

SciTech Connect (OSTI)

The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the worlds roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the worlds roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the worlds roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

National Energy Technology Laboratory

2002-07-31T23:59:59.000Z

271

Hysteretic electrical transport in BaTiO{sub 3}/Ba{sub 1?x}Sr{sub x}TiO{sub 3}/Ge heterostructures  

SciTech Connect (OSTI)

We present electrical transport measurements of heterostructures comprised of BaTiO{sub 3} and Ba{sub 1?x}Sr{sub x}TiO{sub 3} epitaxially grown on Ge. Sr alloying imparts compressive strain to the BaTiO{sub 3}, which enables the thermal expansion mismatch between BaTiO{sub 3} and Ge to be overcome to achieve c-axis oriented growth. The conduction bands of BaTiO{sub 3} and Ba{sub 1?x}Sr{sub x}TiO{sub 3} are nearly aligned with the conduction band of Ge, which facilitates electron transport. Electrical transport measurements through the dielectric stack exhibit rectifying behavior and hysteresis, where the latter is consistent with ferroelectric switching.

Ngai, J. H.; Kumah, D. P.; Walker, F. J. [Department of Applied Physics and Center for Research on Interface Structures and Phenomena, Yale University, 15 Prospect Street, New Haven, Connecticut 06520-8284 (United States); Ahn, C. H. [Department of Applied Physics and Center for Research on Interface Structures and Phenomena, Yale University, 15 Prospect Street, New Haven, Connecticut 06520-8284 (United States); Department of Mechanical Engineering and Materials Science, Yale University, 10 Hillhouse Avenue, New Haven, Connecticut 06520-8267 (United States)

2014-02-10T23:59:59.000Z

272

The Clean Development Mechanism and Power Sector Reforms in Developing  

E-Print Network [OSTI]

regions include stimulating private sector financing, increasing operational and managerial efficiencies and lowering electricity tariffs #12;The CDM and renewable energy · Power sector reforms could potentially require higher investments for electricity generation than conventional fuel projects · Can also offer

273

Sectoral targets for developing countries: Combining "Common but differentiated responsibilities"  

E-Print Network [OSTI]

, as also is the impact on the electricity price. Keywords Sectoral approach, sectoral target, developing-type absolute commitments, whilst developing countries adopt an emission trading system limited to electricity are auctioned by the government, which distributes its revenues lump-sum to households. In a second scenario

Paris-Sud XI, Universit de

274

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission SignTransport

275

Electrolysis: Information and Opportunities for Electric Power Utilities  

SciTech Connect (OSTI)

Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

2006-09-01T23:59:59.000Z

276

Electrical transport properties of (BN)-rich hexagonal (BN)C semiconductor alloys  

SciTech Connect (OSTI)

The layer structured hexagonal boron nitride carbon semiconductor alloys, h-(BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ?6.4 eV for h-BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped h-BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys were synthesized by metal-organic chemical vapor deposition (MOCVD) on (0001) sapphire substrates. Hall-effect measurements revealed that homogeneous (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys are naturally n-type. For alloys with x = 0.032, an electron mobility of about 20 cm{sup 2}/Vs at 650?K was measured. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition and analyze chemical bonding states. Both composition and chemical bonding analysis confirm the formation of alloys. XPS results indicate that the carbon concentration in the alloys increases almost linearly with the flow rate of the carbon precursor (propane (C{sub 3}H{sub 8})) employed during the epilayer growth. XPS chemical bonding analysis showed that these MOCVD grown alloys possess more C-N bonds than C-B bonds, which possibly renders the undoped h-(BN){sub 1-x}(C{sub 2}){sub x} alloys n-type and corroborates the Hall-effect measurement results.

Uddin, M. R.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Ziemer, K. S. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

2014-08-15T23:59:59.000Z

277

Vehicle Technologies Office: Transitioning the Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office: Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation...

278

Reducing Emissions Through Sustainable Transport: Proposal for...  

Open Energy Info (EERE)

Through Sustainable Transport: Proposal for a Sectoral Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reducing Emissions Through Sustainable Transport:...

279

Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)  

Reports and Publications (EIA)

Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

2009-01-01T23:59:59.000Z

280

SCENARIOS FOR DEEP CARBON EMISSION REDUCTIONS FROM ELECTRICITY BY 2050 IN WESTERN NORTH AMERICA USING THE SWITCH ELECTRIC POWER SECTOR PLANNING MODEL California's Carbon Challenge Phase II Volume II  

SciTech Connect (OSTI)

This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.

Collaboration/ University of California, Berkeley; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

282

Danish Energy Authority Poland -Electricity and gas  

E-Print Network [OSTI]

Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector analyses December 2004 #12;Danish Energy Authority Poland - Electricity and gas market development study and practical guidelines for using EU Funds Electricity sector

283

Rehabilitation project of some coal fired electricity generating units in compliance with RENEL`s development strategy  

SciTech Connect (OSTI)

The Romanian Authority of Electricity (RENEL) is a state-owned company for generation, transport, and distribution of electric and thermal power in Romania. The paper discusses the present situation regarding energy supply in Romania based on fossil fuels and RENEL`s strategy for energy sector development, namely, the rehabilitation of existing generating plants rather than new investments. The paper briefly describes RENEL`s rehabilitation programs, and the analysis of solutions suited for expanding RENEL`s rehabilitation program.

Octavian, P.; Cristian, T.

1996-12-31T23:59:59.000Z

284

Challenges for Creating a Comprehensive National Electricity Policy  

E-Print Network [OSTI]

This is a speech given to the National Press Club, September 26, 2008 outlining the need for comprehensive reform of the electric power sector in the U.S. It outlines the centrality of the electricity sector to the economy ...

Joskow, Paul

2008-01-01T23:59:59.000Z

285

Electric motors: Markets, trends, and applications  

SciTech Connect (OSTI)

Electric motors play an important role in nearly all sectors of the US economy. Typical motor applications range from air conditioning and appliances in the residential sector, to cooling and space heating in the commercial sector, to materials handling and processing in the industrial sectors. Motors in the residential sector consumed nearly 352 billion kilowatthours (BkWh) in 1985, in the commercial sector 279 BkWh, and the industrial sector 552 BkWh. Approximately 87% of electric motor electricity use in the industrial sector was consumed in manufacturing processes, while the process industries consumed more than half of the manufacturing sector's electric motor electricity use. The total motor population in all sectors in 1987 stood just shy of 1.02 billion, 90% of which are less than one horsepower (HP) in size. An increasing percentage of the motor population is comprised of high efficiency motors, as classified by the National Electrical Manufacturers Association (NEMA). High efficiency motors offer end-users greater energy and cost savings than do their standard efficiency counterparts. This report provides an overview of the history of the electric motor, a brief description of the electromechanical theory behind motor operations, and offers a statistical review of the size and distribution of the electric motor market. The report also presents data on sector motor electricity use, describes current and potential motor application opportunities, and details areas in which further research and development may be needed.

Not Available

1992-06-01T23:59:59.000Z

286

Electrical Characterization of Individual Semiconductor Nanocrystals  

E-Print Network [OSTI]

al. Structural, optical, and electrical properties of PbSeT. & Alivisatos, A. P. Electrical Transport through a SingleV. & Alivisatos, A. P. Electrical Contacts to Individual

Sheldon, Matthew Thomas

2010-01-01T23:59:59.000Z

287

Electrical and Mechanical Properties of Graphene  

E-Print Network [OSTI]

Nano Letters, 5 [67] G. Liu, Electrical Transport in CarbonOF CALIFORNIA RIVERSIDE Electrical and Mechanical PropertiesOF THE DISSERTATION Electrical and Mechanical Properties of

Bao, Wenzhong

2011-01-01T23:59:59.000Z

288

Eliminating Electricity Deficit through Energy Efficiency in India: An Evaluation of Aggregate Economic and Carbon Benefits  

E-Print Network [OSTI]

The cumulative electricity consumption deficit amounts toper unit of electricity consumption than the overalldata on value added and electricity consumption by sectors

Sathaye, Jayant

2010-01-01T23:59:59.000Z

289

Electricity sector restructuring and competition : lessons learned  

E-Print Network [OSTI]

I explore the advantages of tradable emission permits over uniform emission standards when the regulator has incomplete information on firms? emissions and costs of production and abatement (e.g., air pollution in large ...

Montero, Juan-Pablo

2004-01-01T23:59:59.000Z

290

Modelling Wind in the Electricity Sector  

E-Print Network [OSTI]

). For a HVDC grid concept scheme, the cost estimate rises to between 2500m and 3400m. Neuhoff (2001) estimates the cost of a new interconnection to be between 190,000/km and 500,000/km with additional converter costs of around 57m... environmental impacts of transmission expansions and the trade offs between onshore and offshore transmission lines in the planning process. Harmer 2GW (offshore) Harmer HVDC (offshore) Neuhoff (onshore) 200km 1170m 2500m 700km 2500m 3400m...

Neuhoff, Karsten; Cust, J; Keats, Kim

291

Climate VISION: Private Sector Initiatives: Electric Power  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite-- Energy, science, and technology -LettersLetters

292

NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

293

Training & Research in the Indian Power Sector  

E-Print Network [OSTI]

Training & Research in the Indian Power Sector An academic perspective Rangan Banerjee, Energy requirements, financing investments, providing reliable electricity at affordable costs #12;Need for Training France ­ Power Generation & Transmission Group ­ Average 80 hours of training/year (14% of budget) 3

Banerjee, Rangan

294

Abstract--The profound change in the electric industry worldwide in the last twenty years assigns an increasing  

E-Print Network [OSTI]

Value. I. INTRODUCTION He reformed electric industry scheme sets the transmission sector at the center

Catholic University of Chile (Universidad Católica de Chile)

295

Reducing the environmental impacts of intermodal transportation: a multi-criteria analysis based on ELECTRE and AHP methods  

E-Print Network [OSTI]

Reducing the environmental impacts of intermodal transportation: a multi-criteria analysis on a case of freight transport between Paris and Marseille. Keywords: Supply chain, Environmental impacts with lower environmental impacts, such as rail and waterways. The dilemma here is that all motorized modes

Boyer, Edmond

296

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

Ecosystems National Security Tourism Transportation Water Resources NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Service (NESDIS) National Climatic DataNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet AGRICULTURE Overview A wide

297

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

2010 NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Ecosystems National Security Tourism Transportation Water Resources Climate information can be usedNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet COASTAL HAZARDS OVERVIEW Global

298

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

be used most effectively. #12;NOAA Satellite and Information Service National Environmental Satellite Insurance Litigation Marine and Coastal Ecosystems National Security TOURISM Transportation WaterNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet TOURISM Overview Tourism

299

Sectoral trends in global energy use and greenhouse gas emissions  

E-Print Network [OSTI]

Agency (IEA), 2004c. CO2 emissions from fuel combustion,12. Global Energy-Related CO2 Emissions by End-Use Sector,2030. Energy-Related CO2 Emissions (GtC) Transport Buildings

2006-01-01T23:59:59.000Z

300

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Short-term CO? abatement in the European power sector  

E-Print Network [OSTI]

This paper focuses on the possibilities for short term abatement in response to a CO2 price through fuel switching in the European power sector. The model E-Simulate is used to simulate the electricity generation in Europe ...

Delarue, Erik D.

2008-01-01T23:59:59.000Z

302

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

38 3.2.1. SDG&E Residential Electric Rates and TheirFootprint of Single-Family Residential New Construction.Solar photovoltaic financing: residential sector deployment,

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

303

actuales del sector: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy...

304

african crop sectors: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy...

305

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Natural Gas Industrial and electric power sectors lead U.S. growth in natural gas consumption figure data U.S. total natural gas consumption grows from 24.4 trillion cubic feet in...

306

Transportation Electrification Load Development For a Renewable Future Analysis  

SciTech Connect (OSTI)

Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

2010-09-30T23:59:59.000Z

307

WHAT TO EXPECT FROM SECTORAL TRADING: A US-CHINA EXAMPLE  

E-Print Network [OSTI]

and increases electricity generation. Keywords: Climate; sectoral agreements; emissions trading; carbon leakage an Emissions Trading Scheme, international negotiations aim to foster wider agreements, particularly

308

Advanced Vehicle Electrification and Transportation Sector Electrification  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

309

Advanced Vehicle Electrification & Transportation Sector Electrification |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste

310

Advanced Vehicle Electrification and Transportation Sector Electrification  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste| Department

311

Advanced Vehicle Electrification and Transportation Sector Electrification  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste| Department|

312

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLE ENERGYWorld OilEnergyRestructuring our

313

Vehicle Technologies Office: Transitioning the Transportation Sector -  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is onModeling andReport ||Student Competitions

314

The Greenhouse Gas Protocol Initiative: GHG Emissions from Transport...  

Open Energy Info (EERE)

for emissions from purchased electricity, stationary combustion, refrigeration and air conditioning equipment, and several industrial sectors. References Retrieved from...

315

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

SciTech Connect (OSTI)

This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

Johnson, C.

2011-09-01T23:59:59.000Z

316

Sustainable Transportation Energy Pathways Research  

E-Print Network [OSTI]

/Security of Energy Supply, esp. in transportation sector · Air Pollutant Emissions · Greenhouse Gas Emissions (GHG of air pollutant emissions. · World transportation sector 97% dependent on oil. · # vehicles projected strategy should have a "portfolio" approach with multiple solutions Fuel Alternatives · Hydrogen · Biofuels

Handy, Susan L.

317

Fundamentals of public-private partnerships in the transportation sector : international methodologies of highway public-private partnerships and a framework to increase the probability of success and allocate risk  

E-Print Network [OSTI]

In 2009 the American Society of Civil Engineers (ASCE) gave the US infrastructure sector a grade D, based on the current and future needs of the nation's infrastructure and estimates that by year 2020, the US surface ...

Butler, Ryan, S.M. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

318

Notice of Publication of Electricity Subsector Cybersecurity...  

Broader source: Energy.gov (indexed) [DOE]

The guideline describes a risk management process that is targeted to the specific needs of electricity sector organizations. The objective of the guideline is to build upon...

319

Flathead Electric Cooperative- Commercial Lighting Rebate Program  

Broader source: Energy.gov [DOE]

Flathead Electric Cooperative, in conjunction with Bonneville Power Administration, encourages energy efficiency in the commercial sector by providing a commercial lighting retro-fit rebate program...

320

The Gas/Electric Partnership  

E-Print Network [OSTI]

The electric and gas industries are each in the process of restructuring and "converging" toward one mission: providing energy. Use of natural gas in generating electric power and use of electricity in transporting natural gas will increase...

Schmeal, W. R.; Royall, D.; Wrenn, K. F. Jr.

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U.S. Energy Information Administration (EIA) - Sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

-- -- Residential excluding electricity 6.4 6.6 6.0 5.0 -- Commercial 8.6 8.6 8.5 -- -- Commercial excluding electricity 4.1 4.1 4.0 4.0 -- Buildings sector 19.9 20.1 19.3 --...

322

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

Residential excluding electricity 6.7 6.5 6.2 6.0 -- -- Commercial 8.7 8.5 8.6 -- -- -- Commercial excluding electricity 4.2 3.9 4.0 4.0 -- -- Buildings sector 20.4 20.0 19.8...

323

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect (OSTI)

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

324

Process Intensification - Chemical Sector Focus  

Office of Environmental Management (EM)

Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ......

325

Transportation Management Research Collection /  

E-Print Network [OSTI]

, Peterbilt Motors, and General Electric. He was a national panel member of the American Arbitration, Noise and Environmental Pollution, Transportation Co-ordination and Consolidation, Transportation -- Docket 8613 1957 Civil Aeronautics Board General passenger fare investigation -- Docket 8008 et al

Handy, Todd C.

326

ELECTRICAL & INFORMATION  

E-Print Network [OSTI]

focuses on. Smart Grids: Electricity networks are designed to transport energy from where of energy and smarter management of the system. These are called Smart Grids. A number of research projects in medical informatics, smart cities, mining, energy, financial systems, etc. Bioinformatics

Wagner, Stephan

327

Reliability and competitive electricity markets  

E-Print Network [OSTI]

Despite all of the talk about ?deregulation? of the electricity sector, a large number of non-market mechanisms have been imposed on emerging competitive wholesale and retail markets. These mechanisms include spot market ...

Joskow, Paul L.

2004-01-01T23:59:59.000Z

328

Modeling regional transportation demand in China and the impacts of a national carbon constraint  

E-Print Network [OSTI]

Climate and energy policy in China will have important and uneven impacts on the countrys regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

Kishimoto, Paul

2015-01-30T23:59:59.000Z

329

Neurotransmitter Transporters  

E-Print Network [OSTI]

at specialized synaptic junctions where electrical excitability in the form of an action potential is translated membrane of neurons and glial cells. Transporters harness electrochemical gradients to force the movement.els.net #12;The response produced when a transmitter interacts with its receptors, the synaptic potential

Bergles, Dwight

330

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network [OSTI]

the Transport and Electricity Sectors Through V2G." Energyfootprint of the electricity sector. The technology hasfootprint of the electricity sector. Specifically, the

Wiser, Ryan H

2010-01-01T23:59:59.000Z

331

Laser experiments explore the hidden sector  

E-Print Network [OSTI]

Recently, the laser experiments BMV and GammeV, searching for light shining through walls, have published data and calculated new limits on the allowed masses and couplings for axion-like particles. In this note we point out that these experiments can serve to constrain a much wider variety of hidden-sector particles such as, e.g., minicharged particles and hidden-sector photons. The new experiments improve the existing bounds from the older BFRT experiment by a factor of two. Moreover, we use the new PVLAS constraints on a possible rotation and ellipticity of light after it has passed through a strong magnetic field to constrain pure minicharged particle models. For masses <~0.05 eV, the charge is now restricted to be less than (3-4)x10^(-7) times the electron electric charge. This is the best laboratory bound and comparable to bounds inferred from the energy spectrum of the cosmic microwave background.

M. Ahlers; H. Gies; J. Jaeckel; J. Redondo; A. Ringwald

2007-11-30T23:59:59.000Z

332

Electric Power Controller for Steering Wheel Management in Electric Cars  

E-Print Network [OSTI]

Electric Power Controller for Steering Wheel Management in Electric Cars Vicente Milanés, Joshué-- Autonomous vehicles, Power control, System analysis and design, Intelligent transportation systems. I they are named hydraulic power steering (HPS) systems. If an electric motor is used then they are named electric

Paris-Sud XI, Université de

333

Searching for Dark Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientists InSearchsuperconduct* FindDark Sector

334

Sector1 Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1

335

Sector4 FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1FAQs

336

Sector4 redirect  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b 0 % bP. May,2015Sector 1FAQs

337

Energy Sector Cybersecurity Framework Implementation Guidance  

Broader source: Energy.gov (indexed) [DOE]

DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

338

Behavioral Assumptions Underlying California Residential Sector...  

Broader source: Energy.gov (indexed) [DOE]

Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy...

339

Transportation Policy Analysis and Systems Planning Fall 2009/2010  

E-Print Network [OSTI]

SYLLABUS WWS 527a Transportation Policy Analysis and Systems Planning Fall 2009/2010 Course Description Part 1. Perspective on the Transportation Sector of the Economy: Its Function, Its Players, Its of Course Elements of the transportation sector of the economy, the player, the technologies

Singh, Jaswinder Pal

340

Minnesota Valley Electric Cooperative- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Valley Electric Cooperative (MVEC) offers financial incentives to encourage energy efficiency within the residential sector. Rebates are available for a variety of equipment including air...

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today's electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between refueling'' stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-01-01T23:59:59.000Z

342

Electric and Hybrid Vehicle Technology: TOPTEC  

SciTech Connect (OSTI)

Today, growing awareness of environmental and energy issues associated with the automobile has resulted in renewed interest in the electric vehicle. In recognition of this, the Society of Automotive Engineers has added a TOPTEC on electric vehicles to the series of technical symposia focused on key issues currently facing industry and government. This workshop on the Electric and Hybrid Vehicle provides an opportunity to learn about recent progress in these rapidly changing technologies. Research and development of both the vehicle and battery system has accelerated sharply and in fact, the improved technologies of the powertrain system make the performance of today`s electric vehicle quite comparable to the equivalent gasoline vehicle, with the exception of driving range between ``refueling`` stops. Also, since there is no tailpipe emission, the electric vehicle meets the definition of ``Zero Emission Vehicle: embodied in recent air quality regulations. The discussion forum will include a review of the advantages and limitations of electric vehicles, where the technologies are today and where they need to be in order to get to production level vehicles, and the service and maintenance requirements once they get to the road. There will be a major focus on the status of battery technologies, the various approaches to recharge of the battery systems and the activities currently underway for developing standards throughout the vehicle and infrastructure system. Intermingled in all of this technology discussion will be a view of the new relationships emerging between the auto industry, the utilities, and government. Since the electric vehicle and its support system will be the most radical change ever introduced into the private vehicle sector of the transportation system, success in the market requires an understanding of the role of all of the partners, as well as the new technologies involved.

Not Available

1992-12-01T23:59:59.000Z

343

According to the Canadian Electricity Association's (CEA) 2004 Canadian Electricity Human Resource Study (HR Study)  

E-Print Network [OSTI]

According to the Canadian Electricity Association's (CEA) 2004 Canadian Electricity Human Resource and grow the electricity supply. Other industry realities such as the need to build and replace and increase within the electricity sector. The ability of educational and training institutions to adequately

344

Methodological and Practical Considerations for Developing Multiproject Baselines for Electric Power and Cement Industry Projects in Central America  

E-Print Network [OSTI]

INDE, opening electricity generation to private investment.private sector companies willing to invest immediately in electricityscale private investment. By 1990, 92% of electricity was

Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion, Kristel

2008-01-01T23:59:59.000Z

345

NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet  

E-Print Network [OSTI]

2010 NOAA Satellite and Information Service National Environmental Satellite, Data, and Information Ecosystems National Security Tourism Transportation Water Resources Climate information can be usedNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet COAStAl HAzArDS Overview Global

346

Abstract--Three known use-based allocation methods for payments of electricity transmission systems are compared.  

E-Print Network [OSTI]

deregulation of the electrical sector has changed the electricity business from a centralized and vertically of the electricity markets. Electricity transmission has economies of scale and scope, making the transmission sectorAbstract-- Three known use-based allocation methods for payments of electricity transmission

Catholic University of Chile (Universidad Catlica de Chile)

347

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top Down  

E-Print Network [OSTI]

Two Paths to Transforming Markets through Public Sector Energy Efficiency: Bottom Up versus Top agencies, reduced demand on capacity-constrained electric utility systems, increased energy system sector's buying power and visible leadership offer a powerful, non-regulatory means to stimulate market

348

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

349

Technology Mapping of the Renewable Energy, Buildings and Transport...  

Open Energy Info (EERE)

of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects AgencyCompany Organization: International Centre for Trade and...

350

Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating...  

Open Energy Info (EERE)

Guide to Evaluating Transport Projects AgencyCompany Organization: Institute for Global Environmental Strategies Focus Area: Multi-sector Impact Evaluation Topics: Best Practices...

351

Energy Department Awards $45 Million to Deploy Advanced Transportation...  

Energy Savers [EERE]

is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy...

352

Transportation Energy Futures Study: The Key Results and Conclusions...  

Open Energy Info (EERE)

Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be...

353

Fact #699: October 31, 2011 Transportation Energy Use by Mode...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gas, and electricity) by various transporation sectors including light vehicles, mediumheavy trucks and buses, air, water, rail, and pipeline. Highway vehicles are responsible...

354

NREL: Transportation Research Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to heavy-duty freight trucks. Female researcher holding coin cell battery. NREL's transportation research spans from the materials to the systems level. Fuel cell electric sports...

355

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Broader source: Energy.gov (indexed) [DOE]

Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

356

CEC-500-2010-FS-002 Assess New Transportation  

E-Print Network [OSTI]

CEC-500-2010-FS-002 Assess New Transportation and Land-Use Patterns in a Carbon-Constrained Future TRANSPORTATION ENERGY RESEARCH PIER Transportation Research www.energy.ca.gov/research/ transportation/ March 2010 The Issue California's transportation sector is the single largest contributor of greenhouse gas

357

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas  

SciTech Connect (OSTI)

As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

Not Available

1993-12-01T23:59:59.000Z

358

Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption  

E-Print Network [OSTI]

Air-Conditioning Effect Estimation for Mid-Term Forecasts of Tunisian Electricity Consumption Tunisian electricity consumption (the residential sector represents 68% of this class of consumers). Nevertheless, with the Tunisian electricity consumption context, models elaborating which take account weather

Boyer, Edmond

359

Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers  

E-Print Network [OSTI]

press/105827/article.html Electric Drive TransportationAssociation (2005) Electric Drive Market and SalesGM's New Family of Electric-drive Propulsion Systems.

Heffner, Reid R.

2007-01-01T23:59:59.000Z

360

Electrical and Optical Enhancement in Internally Nanopatterned Organic Light-Emitting Diodes  

E-Print Network [OSTI]

Kao, K.C. , Hwang, W. Electrical Transport in Solids: withPress, 2009. Stallinga, P. Electrical Characterization offrom electrical model . 100

Fina, Michael Dane

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Transportation Energy and Alternatives  

E-Print Network [OSTI]

Station in Indonesia Hydrogen refueling in Munich, Germany "You will never see widespread use of the fuel fuels" Potentially used for Transportation · Biogas (primarily for onsite electrical generation) LFG

Handy, Susan L.

362

Climate Action Plans and Long-Range Transportation  

E-Print Network [OSTI]

Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

Bertini, Robert L.

363

Quantitative analysis of alternative transportation under environmental constraints  

E-Print Network [OSTI]

This thesis focuses on the transportation sector and its role in emissions of carbon dioxide (CO2) and conventional pollutant emissions. Specifically, it analyzes the potential for hydrogen based transportation, introducing ...

Sandoval Lpez, Reynaldo

2006-01-01T23:59:59.000Z

364

The political economy of electricity market liberalization  

E-Print Network [OSTI]

More than half of the countries in the world have introduced a reform process in their power sectors and billions of dollars have been spent on liberalizing electricity markets around the world. Ideological considerations, political composition...

Erdogdu, Erkan

2012-05-17T23:59:59.000Z

365

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

SciTech Connect (OSTI)

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

366

Development and Implementation of Degree Programs in Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Center for Electric Drive Transportation at the University of Michigan - Dearborn...

367

Federal Sector Renewable Energy Project Implementation: ""What...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

368

Electric and Hydrogen Vehicles Past and Progress  

E-Print Network [OSTI]

status and TSRC research ­ Future? · Hydrogen Fuel Cell Vehicles ­ 20 years ago ­ 10 years ago ­ Current · Transportation Propulsion, Fuels, & Emissions ­ Electric-drive vehicles (including plug-in hybrid and fuel-cell Electric and Fuel Cell Vehicles?Why Electric and Fuel Cell Vehicles? · Transportation accounts for about 33

Kammen, Daniel M.

369

Pricing and Firm Conduct in California's Deregulated Electricity Market  

E-Print Network [OSTI]

sector to competitive forces by restructuring the method of procuring electricity. Private electricPWP-080 Pricing and Firm Conduct in California's Deregulated Electricity Market Steven L. Puller.ucei.berkeley.edu/ucei #12;Pricing and Firm Conduct in California's Deregulated Electricity Market Steven L. Puller August

California at Berkeley. University of

370

ORNL/TM-2009/222 Center for Transportation Analysis  

E-Print Network [OSTI]

. ESTIMATION OF GASOLINE CONSUMPTION BY PUBLIC SECTOR..............41 5.1 Federal Civilian Motor/Commercial Sectors..............................................29 4.3 Off-highway Gasoline Consumption by EquipmentORNL/TM-2009/222 Center for Transportation Analysis Energy and Transportation Science Division OFF

371

Assessment of Future Vehicle Transportation Options and their...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional...

372

alternative transportation fuels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 3 Triangle Alternative Transportation Fuels...

373

alternative transportation fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 3 Triangle Alternative Transportation Fuels...

374

alternative transport fuels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 3 Triangle Alternative Transportation Fuels...

375

Electric power is an increasingly important aspect of modern society. We are extremely dependent on electric-  

E-Print Network [OSTI]

illustrates the structure of a local economy with a woody biomass energy sector and the links that im- pact a local economy. The businesses in the wood energy sector (such as timber growers, loggers, and electric & Service Suppliers Local Consumption & Intermediate Demand Economic Structure of the Wood Energy Industry

Florida, University of

376

Substrate-dependent post-annealing effects on the strain state and electrical transport of epitaxial La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} films  

SciTech Connect (OSTI)

Large scale electronic phase separation (EPS) between ferromagnetic metallic and charge-ordered insulating phases in La{sub 5/8-y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (y = 0.3) (LPCMO) is very sensitive to the structural changes. This work investigates the effects of post-annealing on the strain states and electrical transport properties of LPCMO films epitaxially grown on (001){sub pc} SrTiO{sub 3} (tensile strain), LaAlO{sub 3} (compressive strain) and NdGaO{sub 3} (near-zero strain) substrates. Before annealing, all the films are coherent-epitaxial and insulating through the measured temperature range. Obvious change of film lattice is observed during the post-annealing: the in-plane strain in LPCMO/LAO varies from ?1.5% to ?0.1% while that in LPCMO/STO changes from 1.6% to 1.3%, and the lattice of LPCMO/NGO keeps constant because of the good lattice-match between LPCMO and NGO. Consequently, the varied film strain leads to the emergence of metal-insulator transitions (MIT) and shift of the critical transition temperature in the electrical transport. These results demonstrate that lattice-mismatch combined with post-annealing is an effective approach to tune strain in epitaxial LPCMO films, and thus to control the EPS and MIT in the films.

Hu, Sixia; Wang, Haibo; Dong, Yongqi; Hong, Bing; He, Hao; Bao, Jun [National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Huang, Haoliang [CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China); Yang, Yuanjun; Luo, Zhenlin, E-mail: zlluo@ustc.edu.cn; Yang, Mengmeng; Gao, Chen, E-mail: cgao@ustc.edu.cn [National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2014-06-15T23:59:59.000Z

377

Economies of Scale and Scope in Network Industries: Lessons for the UK water and sewerage sectors  

E-Print Network [OSTI]

was directly transferred to 12 private firms. The government sold its remaining share of the power generators in the year 2000.4 The 2001 New Electricity Trading Arrangements (NETA) changed the mechanism for electricity trading and the latest major reform... sectors1 Michael G. Pollitt Steven J. Steer ESRC Electricity Policy Research Group University of Cambridge August 2011 Abstract Many studies of the water and sewerage industries place significant importance on the benefits of economies...

Pollitt, Michael G.; Steer, Stephen J.

378

Appendix A MIT Joint Program Report 193 1 Appendix A: Sectoral Trading between the EU-ETS and Emerging Countries1  

E-Print Network [OSTI]

impact on Chinese electricity generation but reverses changes in EU electricity generation driven decreases by 8% in 2030. Moderate impacts on Mexican electricity generation are observed while changes in EU electricity generation induced by the EU-ETS persist. Sectoral trading between the EU and the four countries

379

E-Print Network 3.0 - affordable nuclear electricity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

global warming... ), and unlike other alternatives it is proven - nuclear works. Nuclear electricity is more expensive than gas... and under private sector investment criteria a...

380

Pearl River Valley Electric Power Association- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Pearl River Valley Electric Power Association provides incentives through its Comfort Advantage Program to encourage energy efficiency within the residential sector. Rebates are available for heat...

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Sayano-Shushenskaia Hydroelectric Power Plant is Siberiascounts some of the largest hydroelectric power plants in theofficial at Bratsk hydroelectric dam, one of the worlds

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

382

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

the worlds largest natural gas reserves. Interview #53 withmeant that how much gas to reserve for domestic consumers

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

383

Statewide and Electricity-Sector Models for Economic Assessments of  

E-Print Network [OSTI]

economic models applied to such diverse fields as climate change policy, alternative- fueled vehicles, fuel Economic Research Organization and Affiliate Faculty with the Public Policy Center UHM. Paul Bernstein, Ph....................................................................................................................... 6 2. The Hawaii Computable General Equilibrium Model (H-CGE)............................ 8 2.a. Data

384

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

Energy Agency (2004). World Energy Outlook 2004, OECD. M.A.consumption. The World Energy Outlook (WEO) developed by thefrom the IEAs World Energy Outlook 2002 (2000 data), and

McNeil, Michael A.

2010-01-01T23:59:59.000Z

385

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

natural gas in the context of growing energy demand of the Russian economy. natural gas in the context of growing energy demand of the Russian economy.

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

386

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

energy consumption which includes the developing world. ThisWorld Energy Projection System (WEPS), for example, forecasts total energy consumptionto growth in energy consumption. The World Energy Outlook (

McNeil, Michael A.

2010-01-01T23:59:59.000Z

387

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

international integration through industrial policies, protection of infant industries and investment

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

388

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

31 2008. "Energy Liberalisation in Europe." The Economist,regional markets "Energy Liberalisation in Europe," The

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

389

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Sayano-Shushenskaia Hydroelectric Power Plant is Siberiassome of the largest hydroelectric power plants in the worldplant, Sayano-Shushenskaia Hydroelectric Power Plant (SSGES,

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

390

Table E14. Electric Power Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary

391

Table E7. Electric Power Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.E6.E7.

392

Workforce Training for the Electric Power Sector | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | DepartmentDeborahTanzimaJuly 30,Workforce Training

393

Novolyte Charging Up Electric Vehicle Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014 EIS-0474:November 16,8,

394

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

Charap. "The Siloviki in Putin's Russia: Who They Are andOlga, and Stephen White. "Putin's Militocracy." Post-Sovietthe Authoritarian Model: How Putin's Crackdown Holds Russia

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

395

Financial Analysis of Electric Sector Expansion Plans (FINPLAN) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart GridHomeFederatedCity Corporation

396

Workforce Training for the Electric Power Sector: Map of Projects |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.|Sindhu Jagadamma Women @TelecomIllnessEnergyDepartment

397

Workforce Training for the Electric Power Sector: Awards | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject isNovember 07,Energy Workforce Retention Work Group

398

Climate VISION: Private Sector Initiatives: Electric Power - Energy  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResources andPlans Work

399

Climate VISION: Private Sector Initiatives: Electric Power - Technology  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResources andPlans

400

Climate VISION: Private Sector Initiatives: Electric Power: GHG Information  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResources andPlansGHG

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResources

402

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks - EPICI

403

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks - EPICILinks -

404

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks - EPICILinks

405

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks - EPICILinksLinks

406

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks -

407

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks -Links - Software

408

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks -Links -

409

Climate VISION: Private Sector Initiatives: Electric Power: Results  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks -Links -Results

410

Climate VISION: Private Sector Initiatives: Electric Power: Work Plans  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, andPlansResourcesLinks -Links

411

Notice of Public Comment on Electricity Sector Cybersecurity Risk  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership ProgramDepartmentDakota7,2011 Mr.4,433 and

412

Modeling diffusion of electrical appliances in the residential sector  

E-Print Network [OSTI]

Error Distribution - Air Conditioners Error Distribution -televisions, and air conditioners 5 . The task of modelingfrom UNDESA. 2.1.3. Air Conditioner Climate Variable

McNeil, Michael A.

2010-01-01T23:59:59.000Z

413

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

414

BEEST: Electric Vehicle Batteries  

SciTech Connect (OSTI)

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-Es BEEST Project, short for Batteries for Electrical Energy Storage in Transportation, could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

415

Transportation and the Environment: Essays on Technology, Infrastructure, and Policy  

E-Print Network [OSTI]

Most locomotives used in the U.S. are diesel-electric.They use a diesel engine to power electric motors that driveElectric Transportation Systems and Electro-Motive Diesel (

Sangkapichai, Mana

2009-01-01T23:59:59.000Z

416

Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...  

Broader source: Energy.gov (indexed) [DOE]

Presented by Kay Kelly Utah Clean Cities Coalition May 3, 2010 Project ID ARRAVT043 This presentation does not contain any proprietary, confidential, or otherwise restricted...

417

FY 2016 EERE Budget Webinar-Sustainable Transportation Sector...  

Broader source: Energy.gov (indexed) [DOE]

3, 2015 2:30PM to 3:30PM EST Online The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) hosted a webinar series featuring our deputy assistant...

418

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color KineticsGrowth Jump to:

419

Table E13. Transportation Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic:0.1.3.

420

Table E6. Transportation Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.E6.

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Annual Energy Outlook 2015 Modeling updates in the Transportation sector  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan FebNaturalWorking Group1 st

422

Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012 - 08:20Emission Reduction

423

Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2: MarchDepartment of

424

Energy Outlook for the Transport Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOEDeploymentHenry C.February 4, 2011AprilOutlook

425

Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: EnergyElec AssnRedmond,OpenApproach |

426

Transitioning the Transportation Sector: Exploring the Intersection of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissa Howell | Department of

427

FY 2016 EERE Budget Webinar-Sustainable Transportation Sector |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, Safety and Health AssessmentsEthanolFEMA-6 VolumeHawaii

428

Copenhagen Accord NAMA Submissions Implications for the Transport Sector |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text is derivedCoReturnCookson Hills Elec

429

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......UraniumEfficiency |Using

430

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......UraniumEfficiency |UsingProgram |

431

Utah Clean Cities Transportation Sector Petroleum Reduction Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......UraniumEfficiency |UsingProgram

432

PUTTING TRANSPORT INTO CLIMATE POLICY AGENDA  

E-Print Network [OSTI]

sector in the climate change negotiation. WCTRS could help UNFCCC and the IPCC to promote this processPUTTING TRANSPORT INTO CLIMATE POLICY AGENDA World Conference on Transport Research Society (WCTRS Africa Other LA Brazil Middle East India Other Asia China Eastern Europe Asian TE Russia Korea Japan

Takahashi, Ryo

433

Analysis of fuel shares in the industrial sector  

SciTech Connect (OSTI)

These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

Roop, J.M.; Belzer, D.B.

1986-06-01T23:59:59.000Z

434

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network [OSTI]

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

435

Electric Motor Remanufacturing and Energy Savings Sahil Sahni1  

E-Print Network [OSTI]

Electric Motor Remanufacturing and Energy Savings Sahil Sahni1 , Avid Boustani1 , Timothy Gutowski to this study. #12;Contents 1 Introduction to Electric Motors 1 1.1 Motor Classifications of Figures 1 Motor System Electricity Consumption by Industrial Sectors (TWh) for 1994. A total of 691

Gutowski, Timothy

436

Electricity reform in developing and transition countries: A reappraisal  

E-Print Network [OSTI]

Electricity reform in developing and transition countries: A reappraisal J.H. Williams, R. Ghanadan-oriented reforms in their electric power sectors. Despite the widespread adoption of a standard policy model features of non-OECD electricity reform and reappraises reform policies and underlying assumptions

Kammen, Daniel M.

437

Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?  

E-Print Network [OSTI]

in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

2004-01-01T23:59:59.000Z

438

Captive power plants and industrial sector in the developing countries  

SciTech Connect (OSTI)

The electrical power and energy is essential for the industrial sector of the countries which are transferring its social structure to the industry oriented one from the agrarian society. In Asian countries, this kind of transformation has actively been achieved in this century starting from Japan and followed by Korea, Taiwan, and it is more actively achieved in the countries of Malaysia, Indonesia, Thailand, Philippine, India and China(PRC) in these days. It is valuable to review the effective utilizing of Power and Energy in the industrial sector of the developing countries. In this paper, it is therefore focussed to the captive power plants comparing those of utility companies such as government owned electrical power company and independent power company. It is noticed that major contribution to the electrical power generation in these days is largely dependent on the fossil fuel such as coal, oil and gas which are limited in source. Fossil energy reserves are assumed 1,194 trillion cubic meters or about 1,182 billion barrels of oil equivalent for natural gas 1,009 billion barrels for oil and at least 930 billion tons for coal in the world. According to the statistic data prepared by the World Energy Council, the fossil fuel contribution to electrical power generation records 92.3% in 1970 and 83.3% in 1990 in the world wide. Primary energy source for electrical power generation is shown in figure 1. It is therefore one of the most essential task of human being on how to utilize the limited fossil energy effectively and how to maximize the thermal efficiency in transferring the fossil fuel to usable energy either electrical power and energy or thermal energy of steam or hot/chilled water.

Lee, Rim-Taig [Hyundai Engineering Co. (Korea, Republic of)

1996-12-31T23:59:59.000Z

439

Private Sector Outreach and Partnerships | Department of Energy  

Energy Savers [EERE]

Private Sector Outreach and Partnerships Private Sector Outreach and Partnerships ISER's partnerships with the private sector are a strength which has enabled the division to...

440

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

SciTech Connect (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave  

E-Print Network [OSTI]

Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

Politècnica de Catalunya, Universitat

442

Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings  

SciTech Connect (OSTI)

Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

Price, Lynn; Worrell, Ernst; Khrushch, Marta

1999-09-01T23:59:59.000Z

443

Financial Sector Ups and Downs and the Real Sector: Up by the Stairs and Down by the Parachute  

E-Print Network [OSTI]

May 2012 Financial Sector Ups and Downs and the Real Sector:to reclassifying financial sector ups and downs as turning

Aizenman, Joshua; Pinto, Brian; Sushko, Vladyslav

2012-01-01T23:59:59.000Z

444

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

445

Meeting U.S. Liquid Transport Fuel Needs with a Nuclear Hydrogen Biomass System  

SciTech Connect (OSTI)

The two major energy challenges for the United States are replacing crude oil in our transportation system and eliminating greenhouse gas emissions. A domestic-source greenhouse-gas-neutral nuclear hydrogen biomass system to replace oil in the transportation sector is described. Some parts of the transportation system can be electrified with electricity supplied by nuclear energy sources that do not emit significant quantities of greenhouse gases. Other components of the transportation system require liquid fuels. Biomass can be converted to greenhouse-gas-neutral liquid fuels; however, the conversion of biomass-to-liquid fuels is energy intensive. There is insufficient biomass to meet U.S. liquid fuel demands and provide the energy required to process the biomass-to-liquid fuels. With the use of nuclear energy to provide heat, electricity, and hydrogen for the processing of biomass-to-liquid fuels, the liquid fuel production per unit of biomass is dramatically increased, and the available biomass could meet U.S. liquid fuel requirements.

Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

446

Essays on the Effect of Climate Change on Agriculture and Agricultural Transportation  

E-Print Network [OSTI]

climate change impacts on grain transportation flows, this study employs two modeling systems, a U.S. agricultural sector model and an international grain transportation model, with linked inputs/outputs. The main findings are that under climate change: 1...

Attavanich, Witsanu

2012-02-14T23:59:59.000Z

447

Electricity Reliability  

E-Print Network [OSTI]

Electricity Delivery and Energy Reliability High Temperature Superconductivity (HTS) Visualization in the future because they have virtually no resistance to electric current, offering the possibility of new electric power equipment with more energy efficiency and higher capacity than today's systems

448

DOPING AND BOND LENGTH CONTRIBUTIONS TO Mn K-EDGE SHIFT IN La1-xSrxMnO3 AND THEIR CORRELATION WITH ELECTRICAL TRANSPORT BEHAVIOUR.  

SciTech Connect (OSTI)

The experimental Mn K-edge x-ray absorption spectra of La{sub 1-x}Sr{sub x}MnO{sub 3}, x = 0 - 0.7 are compared with the band structure calculations using spin polarized density functional theory. It is explicitly shown that there is a correspondence between the inflection point on the absorption edge and the center of gravity of the unoccupied Mn 4p-band. This correspondence has been used to separate the doping and size contributions to edge shift due to variation in number of electrons in valence band and Mn-O bond lengths, respectively when Sr is doped into LaMnO{sub 3}. Such separation is helpful to find the localization behavior of charge carriers and to understand the observed transport properties and type of charge carrier participating in the conduction process in these compounds.

PANDEY,S.K.; KHALID,S.; BINDU, R.; KUMAR, A.; PIMPALE, A.V.

2006-12-04T23:59:59.000Z

449

Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen  

SciTech Connect (OSTI)

Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiencythe economic benefit derived from energy systems capital investment at a societal levelstrongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

Charles Forsberg; Steven Aumeier

2014-04-01T23:59:59.000Z

450

Electricity reform in Chile : lessons for developing countries  

E-Print Network [OSTI]

Chile was the first country in the world to implement a comprehensive reform of its electricity sector in the recent period. Among developing countries only Argentina has had a comparably comprehensive and successful reform. ...

Pollitt, Michael G.

2004-01-01T23:59:59.000Z

451

Electricity Reform in Argentina: Lessons for Developing Countries  

E-Print Network [OSTI]

Argentina was one of the first countries in the world to implement a comprehensivereform of its electricity sector in the recent period. Among developing countries onlyChile has had a comparably comprehensive and successful reform. This paper traces...

Pollitt, Michael G.

2006-03-14T23:59:59.000Z

452

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network [OSTI]

Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become...

Epstein, G. J.; Fuller, W. H.

453

Energy access scenarios to 2030 for the power sector in sub-Saharan Africa Morgan Bazilian a,*, Patrick Nussbaumer a  

E-Print Network [OSTI]

The World Bank, Washington DC, USA e International Institute for Applied Systems Analysis, Laxemberg Energy access Power system planning Electricity scenarios a b s t r a c t In order to reach a goal of universal access to modern energy services in Africa by 2030, consideration of various electricity sector

Kammen, Daniel M.

454

Techno-economic Assessment of Wind Energy to Supply the Demand of Electricity for a Residential Community in Ethiopia.  

E-Print Network [OSTI]

?? The electricity sector is a major source of carbon dioxide emission that contributes to the global climate change. Over the past decade wind energy (more)

Yebi, Adamu

2011-01-01T23:59:59.000Z

455

General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis  

E-Print Network [OSTI]

General equilibrium, electricity generation technologies and the cost of carbon abatement, and abatement in this sector is a key determinant of economy-wide regulation costs. The complexity. It follows that assessing abatement potentials and price changes in the electricity sector with a partial

456

Private Sector | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPrior Lake,Sector Jump to:

457

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3.Winter (Part 2) |IOCriticalCross-Sector Sign

458

Electric power annual 1995. Volume I  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric power industry statistics at national, regional, and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts, and the general public with data that may be used in understanding U.S. electricity markets. The Electric Power Annual is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S. Department of Energy. In the private sector, the majority of the users of the Electric Power Annual are researchers and analysts and, ultimately, individuals with policy- and decisionmaking responsibilities in electric utility companies. Financial and investment institutions, economic development organizations interested in new power plant construction, special interest groups, lobbyists, electric power associations, and the news media will find data in the Electric Power Annual useful. In the public sector, users include analysts, researchers, statisticians, and other professionals with regulatory, policy, and program responsibilities for Federal, State, and local governments. The Congress and other legislative bodies may also be interested in general trends related to electricity at State and national levels. Much of the data in these reports can be used in analytic studies to evaluate new legislation. Public service commissions and other special government groups share an interest in State-level statistics. These groups can also compare the statistics for their States with those of other jurisdictions.

NONE

1996-07-01T23:59:59.000Z

459

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect (OSTI)

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

460

U.S. Energy Sector Vulnerability Report | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sector Transportation EnergyGlossary API gravity: AnU.S.

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Macroscopic theory of dark sector  

E-Print Network [OSTI]

A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

Boris E. Meierovich

2014-10-06T23:59:59.000Z

462

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

463

A Brief History of Transportation  

E-Print Network [OSTI]

for steam generation) · Hand crank replaced by Kettering's electric starter · Radiator allowed IC engines Have we come full circle?? #12;Eras of Transport Boats Animal drawn transport 1800s steam power Henry Ford uses mass manufacturing techniques to bring low manufacturing costs to IC Engine 1914 WW1 IC

Handy, Susan L.

464

LABORATORY II ENERGY AND ELECTRIC CIRCUITS  

E-Print Network [OSTI]

LABORATORY II ENERGY AND ELECTRIC CIRCUITS Lab II - 1 It is often useful to study physical. An electric circuit illustrates how energy can be transformed within a system, transferred to different parts it is the electric charge that transports the energy from one place in the system to another

Minnesota, University of

465

NATURAL GAS ADVISORY COMMITTEE 2013-2015 Name Affiliation Phone E-mail Sector  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2013-2015 Name Affiliation Phone E-mail Sector Cocks, Michael BPA Natural Gas (503) 721-2475 randy.friedman@nwnatural.com Distribution Finklea Edward NW Ind. Gas Users (503@ci.tacoma.wa.us Electric Utility Defenbach, Byron Intermountain Gas (208) 377-6080 bdefen@intgas.com Distribution Dahlberg

466

NATURAL GAS ADVISORY COMMITTEE 2013-2015 Name Affiliation Phone E-mail Sector June 7  

E-Print Network [OSTI]

NATURAL GAS ADVISORY COMMITTEE 2013-2015 Name Affiliation Phone E-mail Sector June 7 meeting Cocks Friedman, Randy NW Natural Gas (503) 721-2475 randy.friedman@nwnatural.com Distribution Finklea Edward NW-8553 bdickens@ci.tacoma.wa.us Electric Utility Defenbach, Byron Intermountain Gas (208) 377-6080 bdefen

467

The role of natural gas as a vehicle transportation fuel  

E-Print Network [OSTI]

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

468

Energy and water sector policy strategies for drought mitigation.  

SciTech Connect (OSTI)

Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

2009-03-01T23:59:59.000Z

469

Decoupling limits in multi-sector supergravities  

SciTech Connect (OSTI)

Conventional approaches to cosmology in supergravity assume the existence of multiple sectors that only communicate gravitationally. In principle these sectors decouple in the limit M{sub pl}??. In practice such a limit is delicate: for generic supergravities, where sectors are combined by adding their Khler functions, the separate superpotentials must contain non-vanishing vacuum expectation values supplementing the nave global superpotential. We show that this requires non-canonical scaling in the nave supergravity superpotential couplings to recover independent sectors of globally supersymmetric field theory in the decoupling limit M{sub pl} ? ?.

Achcarro, Ana; Hardeman, Sjoerd; Schalm, Koenraad; Aalst, Ted van der [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden (Netherlands); Oberreuter, Johannes M., E-mail: achucar@lorentz.leidenuniv.nl, E-mail: j.m.oberreuter@uva.nl, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: vdaalst@lorentz.leidenuniv.nl [Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Science Park 904, Amsterdam (Netherlands)

2013-03-01T23:59:59.000Z

470

Geothermal: Sponsored by OSTI -- Industrial Sector Technology...  

Office of Scientific and Technical Information (OSTI)

Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report...

471

Accelerating Investments in the Geothermal Sector, Indonesia...  

Open Energy Info (EERE)

in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

472

Public Sector New Construction and Retrofit Program  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

473

Public Sector Energy Efficiency Aggregation Program  

Broader source: Energy.gov [DOE]

The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

474

Energy Sector Cybersecurity Framework Implementation Guidance...  

Broader source: Energy.gov (indexed) [DOE]

Cybersecurity Framework Implementation Guidance - Notice of Public Comment: Federal Register Notice, Volume 79, No. 177, September 12, 2014 Energy Sector Cybersecurity Framework...

475

FINAL REPORT: Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the Measurement and Modeling of Electrical Signatures of Microbe-Mineral Transformations Impacting Contaminant Transport  

SciTech Connect (OSTI)

This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.

PRODAN, CAMELIA; SLATER, LEE; NTARLAGIANNIS, DIMITRIOS

2012-09-01T23:59:59.000Z

476

Adopting Biophysics Methods in Pursuit of Biogeophysical Research: Advancing the measurement and modeling of electrical signatures of microbe-mineral transformations impacting contaminant transport  

SciTech Connect (OSTI)

This exploratory project involved laboratory experiments to investigate three hypotheses: (H1) Physics-based modeling of low-frequency dispersions (henceforth referred to as alpha) measured in broadband dielectric spectroscopy (DS) data can quantify pore-scale geometric changes impacting contaminant transport resulting from biomineralization; (H2) Physics-based modeling of high-frequency dispersions (henceforth referred to as beta) measured in broadband dielectric spectroscopy data can quantify rates of mineral growth in/on the cell wall; (H3) Application of this measurement and modeling approach can enhance geophysical interpretation of bioremediation experiments conducted at the RIFLE IFC by providing constraints on bioremediation efficiency (biomass concentration, mineral uptake within the cell wall, biomineralization rate). We tested H1 by performing DS measurements (alpha and beta range) on iron (Fe) particles of dimensions similar to microbial cells, dispersed within agar gels over a range of Fe concentrations. We have tested the ability of the physics-based modeling to predict volume concentrations of the Fe particles by assuming that the Fe particles are polarizable inclusions within an otherwise nonpolarizable medium. We evaluated the smallest volume concentration that can be detected with the DS method. Similar experiments and modeling have been performed on the sulfate-reducing bacteria D. vulgaris. Synchrotron x-ray absorption measurements were conducted to determine the local structure of biominerals coatings on D. vulgaris which were grown in the presence of different Fe concentrations. We imaged the mineral growth on cell wall using SEM. We used dielectric spectroscopy to differentiate between iron sulfide precipitates of biotic and abiotic nature. Biotic measurements were made on D. vulgaris bacteria grown in the presence of different concentrations of iron to form different thicknesses of iron sulfide precipitates around themselves and abiotic measurements were made on different concentrations of pyrrhotite particles suspended in agar. Results show a decrease in dielectric permittivity as a function of frequency for biotic minerals and an opposite trend is observed for abiotic minerals. Our results suggest that dielectric spectroscopy offers a noninvasive and fast approach for distinguishing between abiotic and biotic mineral precipitates.

Prodan, Camelia [NJIT

2013-06-14T23:59:59.000Z

477

Reference Models and Incentive Regulation of Electricity Distribution Networks: An Evaluation of Swedens Network Performance Assessment Model (NPAM)  

E-Print Network [OSTI]

The world-wide electricity sector reforms have led to a search for alternative and innovative approaches to regulation to promote efficiency improvement in the natural monopoly electricity networks. A number of countries have used incentive...

Jamasb, Tooraj; Pollitt, Michael G.

478

Feasibility of Wholesale Electricity Competition in a Developing Country: Insights from Simulating a Market in Maharashtra State, India  

E-Print Network [OSTI]

I assume that private firms in the MH electricity market actand private firms will play important roles in the electricityand private firms operate in the sector at the same time) on wholesale electricity

Phadke, Amol

2007-01-01T23:59:59.000Z

479

Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

2010-06-14T23:59:59.000Z

480

Central Electric Coop. Oregon Trail Electric Coop. Douglas Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Electric Coop. Oregon Trail Electric Coop. Douglas Electric Coop. Blachly- Lane Co. Coop Umatilla Electric Coop. Hermiston Milton- Freewater Idaho Co Light & Power Coop....

Note: This page contains sample records for the topic "transportation sector electricity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

REGULATION AND SYSTEM INTERDEPENDENCE: EFFECTS ON THE SITING OF CALIFORNIA ELECTRICAL ENERGY FACILITIES  

E-Print Network [OSTI]

Going to SQecific End Uses Hydroelectricity 100% electricity58% transportation Hydroelectricity ! Nuclear Geothermalsupply relied on hydroelectricity, the severe droughts,

Kooser, J.C.

2013-01-01T23:59:59.000Z

482

TRANSPORT INVOLVING CONDUCTING FIBERS IN A NON-CONDUCTING MATRIX  

E-Print Network [OSTI]

result is a material with high electrical conductivity and low thermal conductivity. Transport Models,2 , J. Rozen3 Introduction Thermal and electrical transport through a low-conductivity matrix containing conversion devices high electrical conductivity and low thermal conductivity are preferred for superior

Walker, D. Greg

483

Reshaping the electricity supply industry  

SciTech Connect (OSTI)

Cigre`s Electra magazine published this interview with Alfonso Limbruno, CEO of ENEL S.p.A. To put the interview in perspective, this article begins with a brief overview of ENEL and a biographical sketch of Alfonso Limbruno, and also carries comments from Y. Thomas, secretary general of CIGRE. ENEL is a vertically integrated nationwide electricity company engaged in the generation, transmission, distribution, and sale of electricity, predominantly in Italy. ENEL`s share accounts for approximately 80 percent of Italian electricity demand. Measured by amount of electricity sold, ENEL is the third largest electric utility in the OECD countries and the second largest electric utility in Europe. Measured by revenues, ENEL is one of the largest companies in Italy, with a turnover of Lit. 37,632 billion. In 1995, ENEL served approximately 28.5 million customers and sold 211,607 GWh of electricity. ENEL`s gross installed generating capacity at December 31, 1995 was 55,906 MW. Alfonso Limbruno made all his career in the Italian electricity supply industry (ESI) and has had quite a unique experience: he went through a complete cycle of change of the ESI in his country, the nationalization of the sector in 1962 with the merging in ENEL of over 1,200 undertakings, and now the privatization of the company, along with a far reaching restructuring of the industry. He was appointed CEO of ENEL in August 1992.

NONE

1997-03-01T23:59:59.000Z

484

Transportation Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

485

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

486

Greening Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

487

The Economics of Energy (and Electricity) Demand  

E-Print Network [OSTI]

home to charge up at night. 12 The Tesla Roadster is an electric sport car prototype manufactured by Tesla Motors (http://www.teslamotors.com/). 13 This is based on there being around 25 million homes... 25 3.3.2 Electrification of personal transport New sources of electricity demand may emerge which substantially change the total demand for electricity and the way electricity is consumed by the household. The Tesla Roadster12 stores 53 k...

Platchkov, Laura M.; Pollitt, Michael G.

488

Institute of Public Sector Accounting Research  

E-Print Network [OSTI]

THE STATE" New Public Sector Seminar, Edinburgh, 6-7th November 2014 Co-Chairs: Liisa Kurunmaki, Irvine and consultants depend on in the management of public service organisations, and what is the statusInstitute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services

Edinburgh, University of

489

Managing Technical Risk: Understanding Private Sector  

E-Print Network [OSTI]

action. Our study seeks to inform the decisions of both government managers and private entrepreneursApril 2000 Managing Technical Risk: Understanding Private Sector Decision Making on Early Stage 00-787 Managing Technical Risk Understanding Private Sector Decision Making on Early Stage Technology

490

Trends in Renewable Energy Consumption and Electricity  

Reports and Publications (EIA)

Presents a summary of the nations renewable energy consumption in 2010 along with detailed historical data on renewable energy consumption by energy source and end-use sector. Data presented also includes renewable energy consumption for electricity generation and for non-electric use by energy source, and net summer capacity and net generation by energy source and state. The report covers the period from 2006 through 2010.

2012-01-01T23:59:59.000Z

491

Electrical Engineer  

Broader source: Energy.gov [DOE]

This position is located in the Office of Electric Reliability. The Office of Electric Reliability helps protect and improve the reliability and security of the nation's bulk power system through...

492

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

493

College of Engineering University of Canterbury Electric Power Engineering Centre  

E-Print Network [OSTI]

distribution, communications, distribution equipment, facility management services, renewable generation span the electricity value chain from generation through to transportation services, to the end Island of New Zealand, with a range of interests, products and service offerings including: electricity

Hickman, Mark

494

Changes Sweeping Through the Electricity Sector: Moving toward a 21st Century Electricity System  

Broader source: Energy.gov [DOE]

Advanced Energy Economy Institute (AEEI) is engaging executives of utility companies, advanced energy companies, and regulators in discussions to identify new business and regulatory models that...

495

Putting electric vehicles to the test  

E-Print Network [OSTI]

the needs of the daily commuter? Can they match the performance we've come to expect from their fossil fuel sectors. Dr. Swan and his father have three electric vehicles two 2000 Ford Ranger EV trucks and a 2002 uses a full charge in a day. He uses a Ranger to get to work and hauls any cargo or trailers he needs

496

Case Study: Ebus Hybrid Electric Buses and Trolleys  

SciTech Connect (OSTI)

Evaluation focuses on the demonstration of hybrid electric buses and trolleys produced by Ebus Inc. at the Indianapolis Transportation Corporation and the Knoxville Area Transit.

Barnitt, R.

2006-07-01T23:59:59.000Z

497

2010 Plug-In Hybrid and Electric Vehicle Research  

E-Print Network [OSTI]

2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

498

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint  

SciTech Connect (OSTI)

Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

Melaina, M.; Sun, Y.; Bush, B.

2014-08-01T23:59:59.000Z

499

China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential  

SciTech Connect (OSTI)

Achieving Chinas goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

2011-09-30T23:59:59.000Z

500

Electron Electric Dipole Moment induced by Octet-Colored Scalars  

E-Print Network [OSTI]

An appended sector of two octet-colored scalars, each an electroweak doublet, is an interesting extension of the simple two Higgs doublet model motivated by the minimal flavor violation. Their rich CP violating interaction gives rise to a sizable electron electric dipole moment, besides the quark electric dipole moment via the two-loop contribution of Barr-Zee mechanism.

Jae Ho Heo; Wai-Yee Keung

2007-12-31T23:59:59.000Z