Sample records for transportation sector accounts

  1. Accounting for Co-benefits in Asia's Transportation Sector: Methods...

    Open Energy Info (EERE)

    has two objectives. The first is to examine methodological issues involved in using guidelines to measure co-benefits from transport projects (developing baselines,...

  2. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  3. Institute of Public Sector Accounting Research

    E-Print Network [OSTI]

    Edinburgh, University of

    THE STATE" New Public Sector Seminar, Edinburgh, 6-7th November 2014 Co-Chairs: Liisa Kurunmaki, Irvine and consultants depend on in the management of public service organisations, and what is the statusInstitute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services

  4. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  5. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01T23:59:59.000Z

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  6. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tiarravt043erickson2010p.pdf More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation...

  7. Sustainable fuel for the transportation sector

    SciTech Connect (OSTI)

    Agrawal, R.; Singh, N.R.; Ribeiro, F.H.; Delgass, W.N. [Purdue Univ., West Lafayette, IN (United States). School of Chemical Engineering and Energy Center at Discovery Park

    2007-03-20T23:59:59.000Z

    A hybrid hydrogen-carbon (H{sub 2}CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H{sub 2} and CO{sub 2} recycled from the H{sub 2}-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H{sub 2}CAR process. The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. Whereras the literature estimates known processes to be able to produce {approx}30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H{sub 2}CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. The synthesized liquid provides H{sub 2} storage in an open loop system. Reduction to practice of the H{sub 2}CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H{sub 2} in the H{sub 2}CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H{sub 2}CAR is that there is no additional CO{sub 2} release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO{sub 2}.

  8. Restructuring our Transportation Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuring our Transportation Sector

  9. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction...

  10. The Practice of Cost Benefit Analysis in the Transport Sector...

    Open Energy Info (EERE)

    Practice of Cost Benefit Analysis in the Transport Sector a Mexican Perspective Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Practice of Cost Benefit Analysis in...

  11. 14 ACCOUNTANTS TODAY September 2005 Real Estate Sector

    E-Print Network [OSTI]

    Quartly, Graham

    fiscal measures to stimulate the growth of real estate investment trusts (REITs) in Malaysia. A REIT growth of 4.9 and 6.5 per cent in the real estate sector for the years 2003 and 2004 (National Product treatment including tax treatment. Failure to com- ply with the rules and regulations may result

  12. Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security

    E-Print Network [OSTI]

    Jaramillo, Paulina

    on transportation sector's energy security Mohd Nor Azman Hassan a,n , Paulina Jaramillo a , W. Michael Griffin a sector accounts for 41% of the country's total energy use. The country is expected to become a net oil% of total energy consumption. This is expected to increase to about 1100 PJ in 2015 extrapolat- ing

  13. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01T23:59:59.000Z

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  14. Washington States Transportation Permit Efficiency and Accountability Committee (TPEAC)

    E-Print Network [OSTI]

    Aberle, Barbara

    2005-01-01T23:59:59.000Z

    as the Transportation Permit Efficiency and Accountability (the Transportation Permit Efficiency and Accountabilityrequired to obtain permits. Passage of the Transportation

  15. ANALYSIS OF MEASURES FOR REDUCING TRANSPORTATION SECTOR GREENHOUSE GAS

    E-Print Network [OSTI]

    (CO2) emission reduction estimates were obtained for each of the measures. The package of measures the problem of reducing greenhouse gas (GHG) emissions from the Canadian transportation sector. Reductions-makers will require estimates of both the potential emission reductions and the costs or benefits associated

  16. HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY WITH THE

    E-Print Network [OSTI]

    to these concerns, since it on the whole is based on fossil fuels and shows a very fast growth rate. The transport integrated in the energy system and increase the share of fuels based on sustainable energy. Around 90HOW DO WE CONVERT THE TRANSPORT SECTOR TO RENEWABLE ENERGY AND IMPROVE THE SECTOR'S INTERPLAY

  17. Reduction in tribological energy losses in the transportation and electric utilities sectors

    SciTech Connect (OSTI)

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01T23:59:59.000Z

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  18. Electric vehicles and renewable energy in the transport sector energy system

    E-Print Network [OSTI]

    in transport fuel consumption and fuel substitution, and the CO2-emission reduction achievable in the overall have direct implications for the road transport emissions. Options in the power sector, as to reduce CO2-emissions in particular, may become options for the transportation sector as well. Based

  19. Transportation Sector Energy Use by Type from EIA AEO 2011 Early...

    Open Energy Info (EERE)

    This dataset is an excerpt from the spreadsheet Supplemental Tables to the Annual Energy Outlook 2011, isolating Transportation Sector energy use by Type. Data and Resources...

  20. Transportation Sector Energy Use by Mode from EIA AEO 2011 Early...

    Open Energy Info (EERE)

    This dataset is an excerpt from the spreadsheet Supplemental Tables to the Annual Energy Outlook 2011, isolating Transportation Sector energy use by Mode. Data and Resources...

  1. Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the

    E-Print Network [OSTI]

    Pennycook, Steve

    Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one research and development agreements (CRADAs) and two large work-for-others projects. Ev- ery single one

  2. The role of private participation in enhancing the Indian transport sector

    E-Print Network [OSTI]

    Sharma, Nand, 1979-

    2004-01-01T23:59:59.000Z

    The Indian transport sector, one of the largest transport networks in the world, faces some serious issues. These may be identified as follows: * Unmet demand for service and infrastructure * Conflicting responsibilities ...

  3. Integration of renewable energy into the transport and electricity sectors through V2G

    E-Print Network [OSTI]

    Firestone, Jeremy

    Integration of renewable energy into the transport and electricity sectors through V2G Henrik Lund Renewable energy Wind powerQ1 a b s t r a c t Large-scale sustainable energy systems will be necessary replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy

  4. Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy

    E-Print Network [OSTI]

    Paltsev, Sergey.

    Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

  5. Technology detail in a multi-sector CGE model : transport under climate policy

    E-Print Network [OSTI]

    Schafer, Andreas.

    A set of three analytical models is used to study the imbedding of specific transport technologies within a multi-sector, multi-region evaluation of constraints on greenhouse emissions. Key parameters of a computable general ...

  6. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  7. FY 16 EERE Budget Webinar-Sustainable Transportation Sector ...

    Broader source: Energy.gov (indexed) [DOE]

    requests) and an opportunity to ask questions. Deputy Assistant Secretary Reuben Sarkar will be leading the webinar for Sustainable Transportation on March 3, 2015, from 2:30...

  8. Accountant

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as an accountant responsible for independently planning and conducting a variety of general accounting activities. The candidate will analyze...

  9. Policies to Reduce Emissions from the Transportation Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroupPerfectenergyInformation to Reduce Emissions from the Transportation

  10. FY 2016 EERE Budget Webinar-Sustainable Transportation Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy 1.Department ofDepartmentFY6

  11. Fact #619: April 19, 2010 Transportation Sector Revenue by Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of EnergyEnergy 5: March 22, 2010Statistics

  12. Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector

    E-Print Network [OSTI]

    Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector technologies and fuels based on renewable energy sources. Primary renewable energy sources and their conversion With the prominent exception of biomass, renewable energy resources--solar, wind, ocean, hydro--and nu- clear power

  13. Accounting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-01-06T23:59:59.000Z

    To prescribe the requirements and responsibilities for the accounting and financial management of the Department of Energy (DOE). Cancels DOE O 534.1A.

  14. Accountant

    Broader source: Energy.gov [DOE]

    This position is located in the Office of the Deputy Administrator, Finance, Accounting & Reporting. Additional vacancies may be filled through this vacancy announcement or if they become...

  15. Accounting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-05T23:59:59.000Z

    To prescribe the requirements and responsibilities for the accounting and financial management of the Department of Energy (DOE). Cancels DOE O 534.1. Canceled by DOE O 534.1B.

  16. Accounting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA Account Information Accounts and

  17. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01T23:59:59.000Z

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  18. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Policies in the Electricity Sector. Discussion Paper 99-51,emissions from the electricity sector. Several states have2020 emissions from the electricity sector by 18%. Extending

  19. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  20. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  1. Accounting for Co-benefits in Asia's Transportation Sector: Methods and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwiki HomeASN PowerApplications | Open Energy

  2. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  3. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01T23:59:59.000Z

    As described in the Department of Energy Office of Nuclear Energys Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, Produce hydrogen for industrial processes and transportation fuels, and Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nations energy security through more effective utilization of our countrys resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  4. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  5. A historical view and proposal analysis of the strategic role of the transportation sector in the economic development of post-war Liberia

    E-Print Network [OSTI]

    Kwame Corkrum, Ellen

    2010-01-01T23:59:59.000Z

    This thesis examines the proposals for building and improving the transportation sector in Liberia, primarily the roads while providing immediate social opportunities and employment for many of the poor in Liberia. As ...

  6. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    nuclear Historical Primary Energy Consumption by sector Energy Use by Sector (EJ Services Transportation Agriculture

  7. Developing the Fuels of the Future Road transport accounts for 21% of the CO2 emissions of the UK

    E-Print Network [OSTI]

    Developing the Fuels of the Future ·Road transport accounts for 21% of the CO2 emissions of the UK required to develop new fuels, reducing NOx, CO2, unburned hydrocarbons and particulates. All new secondary Where : ·One of the most important properties of a fuel. Affects many aspects of combustion. ·Defined

  8. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01T23:59:59.000Z

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  9. conf. International Society of Exposure Analysis, Stresa, Italy, 21-25 Sept. 2003 The stakes of air pollution in the transport sector

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    of air pollution in the transport sector Robert JOUMARD French National Institute for Transport@inrets.fr Abstract The main pollutants are listed for today and the future according to the progression of air of public concern regarding air pollution and environment. These pollutants are headed by carbon dioxide

  10. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    within fossil fuel electricity generation are (1) to shiftin electricity generation and transportation fuels. The GHGfossil fuel-based electricity generation, is assumed. After

  11. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    SciTech Connect (OSTI)

    Morrison, G.; Stephens, T.S. (Energy Systems); (Univ. of California at Davis); (ES)

    2011-10-11T23:59:59.000Z

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  12. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Transportation energy use grows slowly in comparison with historical trend figure data Transportation sector energy consumption grows at an...

  13. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy...

  14. How do we convert the transport sector to renewable energy and improve the sec-

    E-Print Network [OSTI]

    . Information Service Department Ris National Laboratory for Sustainable Energy Technical University of Denmark with the energy system? Edited by Hans Larsen and Leif Snderberg Petersen Ris-R-1703(EN) July 2009 Main findings with the energy system? Main findings and recommendations from the Workshop on Transport Renewable Energy

  15. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01T23:59:59.000Z

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. EXECUTIVE SUMMARY Transportation fuel is one of the top three energy use sectors in the United States, accounting

    E-Print Network [OSTI]

    . Through 2014, the Energy Commission is providing incentives up to $100 million annually, leveraging complements the Energy Commission's program in providing alternative fuel vehicle incentives. Each year investment plan, the Energy Commission has invested $189 million in alternative and renewable vehicle

  17. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECS 2006) | DepartmentTextiles

  18. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    none,

    1993-01-01T23:59:59.000Z

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  19. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  20. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  1. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

  2. FINANCE & ACCOUNTING FINANCE & ACCOUNTING

    E-Print Network [OSTI]

    Ponce, V. Miguel

    FINANCE & ACCOUNTING FINANCE & ACCOUNTING Director of Finance & Accounting Rich Rechif Accounts Katherine Ivko PURCHASING Purchasing Manager Small Business Liaison Officer Denise Carroll Finance

  3. Accountancy Accountancy and Finance

    E-Print Network [OSTI]

    Little, Tony

    BAcc(Hons) Accountancy BA(Hons) Finance BAcc(Hons) Accountancy and Finance Does it add up? Invest job in your chosen financial career #12;Did you know? BAcc(Hons)Accountancy andtheBA(Hons)Finance demonstrateyourstrengths andconnectwithfinancial employersworldwide. Why Study Accountancy and Finance? Accountancy

  4. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01T23:59:59.000Z

    of coupling to the electricity sector. The chapter examinesfrom the transportation and electricity sectors together.transportation and electricity sectors will likely interact

  5. Transportation accounts for a quarter of the United States green house gases. With this statistic being so high and the need for

    E-Print Network [OSTI]

    Toohey, Darin W.

    Ethanol Transportation accounts for a quarter of the United States green house gases at alternative fuels. Ethanol has recently been gaining popularity throughout recent years for it's clean burning properties and its availability. Ethanol is produced from plant matter (i.e. corn, sugar cane, wheat, barley

  6. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01T23:59:59.000Z

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  7. To appear in International Journal of Hydrogen Energy 1 Sustainable Convergence of Electricity and Transport Sectors in the

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model AFV Alternative-Fuel Vehicle. FCV Fuel Cell Vehicle. GV Gasoline Vehicle. HHV Higher Heating Value grid investments such as new power generation installations. Keywords: Hydrogen economy, fuel cell

  8. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    consumption reported in IEA India transportation energyin mobility, while the IEA data only shows a 1.7% growthWB, 2004). According to the IEA energy balance for India,

  9. Accounting and Finance Is Accounting and Finance right for me?

    E-Print Network [OSTI]

    Harman, Neal.A.

    Accounting and Finance Is Accounting and Finance right for me? A degree in Accounting and/or Finance will suit you if you have an interest in the banking, investment banking or finance sector an Accounting and/or Finance degree are wide- ranging and provide a good basis for employment in almost any

  10. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.

    2009-05-01T23:59:59.000Z

    Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

  11. Vehicle Technologies Office: Transitioning the Transportation...

    Energy Savers [EERE]

    Transitioning the Transportation Sector - Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles Vehicle Technologies Office: Transitioning the Transportation Sector -...

  12. COSMIC-RAY DIFFUSION IN A SECTORED MAGNETIC FIELD IN THE DISTANT HELIOSHEATH

    SciTech Connect (OSTI)

    Florinski, V. [Department of Physics, University of Alabama, Huntsville, AL 35899 (United States); Alouani-Bibi, F.; Guo, X. [Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL 35899 (United States); Kota, J. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2012-07-20T23:59:59.000Z

    Very high intensities of galactic cosmic rays measured by Voyager 1 in the heliosheath appear to be incompatible with the presence of a modulation 'wall' near the heliopause produced by a pile up of the heliospheric magnetic field. We propose that the modulation wall is a structure permeable to cosmic rays as a result of a sectored magnetic field topology compressed by plasma slowdown on approach to the heliopause and stretched to high latitudes by latitudinal flows in the heliosheath. The tightly folded warped current sheet permits efficient cosmic-ray transport in the radial direction via a drift-like mechanism. We show that when stochastic variations in the sector widths are taken into account, particle transport becomes predominantly diffusive both along and across the magnetic sectors. Using a test-particle model for cosmic rays in the heliosheath we investigate the dependence of the diffusion coefficients on the properties of the sector structure and on particle energy.

  13. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05T23:59:59.000Z

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  14. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to Berkeley...

  15. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Print Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to...

  16. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation Sector Energy Demand On This Page Growth in transportation energy... CAFE and greenhouse gas... Travel demand for personal... New technologies promise better......

  17. Transportation

    E-Print Network [OSTI]

    Vinson, Steve

    2013-01-01T23:59:59.000Z

    Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

  18. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  19. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01T23:59:59.000Z

    Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

  20. Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model

    E-Print Network [OSTI]

    Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

    2008-01-01T23:59:59.000Z

    leg/leginx.asp 4. EIA Annual Energy Outlook 2007 with22, (4), 10. EIA Annual Energy Outlook 2006 with Projectionsto the Annual Energy Outlook 2007. Transportation Demand

  1. Account Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as an Account Specialist responsible for executing Long Term (LT) surplus sales greater than 18 months, including energy, capacity, reserves...

  2. Climate VISION: Private Sector Initiatives: Aluminum: GHG Inventory...

    Office of Scientific and Technical Information (OSTI)

    Gas Protocol enhances and expands for the aluminum sector the World Business Council for Sustainable DevelopmentWorld Resources Institute greenhouse gas corporate accounting and...

  3. Gas Balancing Rules Must Take into account the Trade-off between Offering Pipeline Transport and Pipeline Flexibility in Liberalized Gas Markets

    E-Print Network [OSTI]

    Keyaerts, Nico

    This paper analyses the value and cost of line-pack flexibility in liberalized gas markets through the examination of the techno-economic characteristics of gas transport pipelines and the trade-offs between the different ...

  4. Mathematical modeling of liquid/liquid hollow fiber membrane contactor accounting for interfacial transport phenomena: Extraction of lanthanides as a surrogate for actinides

    SciTech Connect (OSTI)

    Rogers, J.D.

    1994-08-04T23:59:59.000Z

    This report is divided into two parts. The second part is divided into the following sections: experimental protocol; modeling the hollow fiber extractor using film theory; Graetz model of the hollow fiber membrane process; fundamental diffusive-kinetic model; and diffusive liquid membrane device-a rigorous model. The first part is divided into: membrane and membrane process-a concept; metal extraction; kinetics of metal extraction; modeling the membrane contactor; and interfacial phenomenon-boundary conditions-applied to membrane transport.

  5. Sector 30 - useful links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Links Sector 30 Printing from your laptop at the beamline Data retrival onsite from ftp:ftp.xray.aps.anl.govpubsector30 Sector Orientation Form HERIX experiment header...

  6. ANNUAL ACCOUNTS 2004 35 The accounts for the year ended 31 July 2004

    E-Print Network [OSTI]

    Birmingham, University of

    investment in facilities and infrastructure Maintenance of adequate cash resources for working capital Accounting Policies and Estimation Techniques 49 Consolidated Income and Expenditure Account 50 Balance this is staff costs, which have grown at 4.1%, reflecting both sector pay awards and the local desire to improve

  7. Fuel Cells for Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

  8. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers

    E-Print Network [OSTI]

    California at Davis, University of

    the total CO2 -equivalent GHG emissions from the entire transportation sector on a full fuel-cycle basis

  9. Indonesia-Facility for Environmentally Friendly Transport Technology...

    Open Energy Info (EERE)

    and developing nationally appropriate mitigation actions (NAMAs) in the transport sector. A handbook entitled Navigating Transport NAMAs, which is tailored to each target...

  10. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for) Electricity Export 1 Combustion Emissions (MMT CO 2 e Million Metric Tons Carbon Dioxide Equivalent) Total Emissions Offsite Emissions + Onsite Emissions Energy...

  12. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations Workshop Agenda Workshop Goals, Objectives, and Desired Outcomes, Reuben Sarkar, DOE Federal Perspective on Opportunities for Hydrogen and Natural Gas for...

  13. Vehicle Technologies Office: Transitioning the Transportation Sector -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data|ReportandofVehicle

  14. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmarkControlWasteDepartment

  15. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment ofBenchmarkControlWasteDepartment|

  16. Advanced Vehicle Electrification and Transportation Sector Electrification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment

  17. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Agency (IEA), 2004c. CO2 emissions from fuel combustion,12. Global Energy-Related CO2 Emissions by End-Use Sector,2030. Energy-Related CO2 Emissions (GtC) Transport Buildings

  18. Table 3. Top Five Retailers of Electricity, with End Use Sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",2477751,835602,896610,745539,0 2,"Central...

  19. Promoting Public Transportation for Sustainable Development

    E-Print Network [OSTI]

    Mauzerall, Denise

    allows societies to meet their present needs without compromising the environment for future generations, this report will analyze the United States' transportation systems. Trends in the US transportation sector from the US transportation sector amount to 5% of the global carbon emissions. That amounts to more

  20. Account Executive Account Manager of Sales

    E-Print Network [OSTI]

    Engineer Naval Surface Ship Warfare Officer Network Administrator Networking/Engineering Level II NetworkAccount Executive Account Manager of Sales Administrative Assistant Advanced Systems Engineer Engineer Assistant Administrator Assistant Analyst Assistant Development Engineer Assistant Director

  1. G1 Account: Guest Account Supporting Documentation

    E-Print Network [OSTI]

    Vertes, Akos

    G1 Account: Guest Account Supporting Documentation Phone: 202-994-7900 Fax: 202-994-4747 Email: acadtech@gwu.edu Web: http://acadtech.gwu.edu Supporting Documentation: Based on your role, please provide the Special Account Request Form along with reservation documentation from the Office of Academic Scheduling

  2. Fundamentals of public-private partnerships in the transportation sector : international methodologies of highway public-private partnerships and a framework to increase the probability of success and allocate risk

    E-Print Network [OSTI]

    Butler, Ryan, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    In 2009 the American Society of Civil Engineers (ASCE) gave the US infrastructure sector a grade D, based on the current and future needs of the nation's infrastructure and estimates that by year 2020, the US surface ...

  3. Reducing Emissions Through Sustainable Transport: Proposal for...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral Approach AgencyCompany Organization: GTZ...

  4. Sandia National Laboratories: Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transitioning the Transportation Sector: Exploring the Intersection of Biofuels and Electric Vehicles (October 5, 2010) Next Generation Biofuels and Advanced Engines for...

  5. Transportation Energy Survey Data Book 1.1

    SciTech Connect (OSTI)

    Gurikova, T

    2002-06-18T23:59:59.000Z

    The transportation sector is the major consumer of oil in the United States. In 2000, the transportation sector's share of U.S. oil consumption was 68 percent (U.S. DOE/EIA, 2001a, Table 2.5, p. 33, Table 1.4, p.7). As a result, the transportation sector is one of the major producers of greenhouse gases. In 2000, the transportation sector accounted for one-third (33 percent) of carbon emissions (U.S. DOE/EIA, 2000b, Table 5, p.28). In comparison, the industrial sector accounted for 32 percent and residential and commercial sector for 35 percent of carbon emissions in 2000. Carbon emissions, together with other gases, constitute greenhouse gases that are believed to cause global warming. Because that the transportation sector is a major oil consumer and producer of greenhouse gases, the work of the Analytic Team of the Office of Transportation Technologies (OTT) focuses on two main objectives: (1) reduction of U.S. oil dependence and (2) reduction of carbon emissions from vehicles. There are two major factors that contribute to the problem of U.S. oil dependence. First, compared to the rest of the world, the United States does not have a large oil reserve. The United States accounts for only 9 percent of oil production (U.S. DOE/EIA, 2001c, Table 4.1C). In comparison, the Organization for Petroleum Exporting Countries (OPEC) produces 42 percent of oil, and the Persian Gulf accounts for 28 percent. (U.S. DOE/EIA, 2001c, Table 1.1A). More than half (54 percent) of oil consumed in the United States is imported (U.S. DOE/EIA, 2001a, Table 1.8, p. 15). Second, it is estimated that the world is approaching the point at which half of the total resources of conventional oil believed to exist on earth will have been used up (Birky et. al., 2001, p. 2). Given that the United States is highly dependent on imported oil and that half of the world's conventional oil reserves will have been used up in the near future, the OTT's goal is to ensure an adequate supply of fuel for vehicles. There are three ways to achieve this goal: efficiency, substitution, or less travel. A reduction in oil usage will result in a reduction of carbon emissions. Successful transition to alternative types of fuel and advanced technology vehicles may depend on awareness of U.S. dependence on imported oil and the U.S. energy situation. Successful transition may also depend on knowledge of alternative types of fuels and advanced technologies. The ''Transportation Energy Survey Data Book 1.1'' examines the public's knowledge, beliefs and expectations of the energy situation in the United States and transportation energy-related issues. The data presented in the report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation International (ORCI) for National Renewable Energy Laboratory (NREL) that are commissioned and funded by OTT, Gallup polls, ABC News/Washington Post polls, NBC News/Wall Street Journal polls, polls conducted by the Ipsos-Reid Corporation, as well articles from The Washington Post (2001) and other sources. All surveys are telephone interviews conducted with randomly selected national samples of adults 18 years of age and older. Almost all surveys were conducted before the September 11, 2001 terrorist attacks, with the only exceptions being the November 2001 ORCI survey and the November 2001 survey conducted by the Ipsos-Reid Corporation.

  6. Modeling regional transportation demand in China and the impacts of a national carbon constraint

    E-Print Network [OSTI]

    Kishimoto, Paul

    2015-01-30T23:59:59.000Z

    Climate and energy policy in China will have important and uneven impacts on the countrys regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

  7. Hepp and Speer Sectors within Modern Strategies of Sector Decomposition

    E-Print Network [OSTI]

    A. V. Smirnov; V. A. Smirnov

    2008-12-26T23:59:59.000Z

    Hepp and Speer sectors were successfully used in the sixties and seventies for proving mathematical theorems on analytically or/and dimensionally regularized and renormalized Feynman integrals at Euclidean external momenta. We describe them within recently developed strategies of introducing iterative sector decompositions. We show that Speer sectors are reproduced within one of the existing strategies.

  8. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09T23:59:59.000Z

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  9. Transportation Policy Analysis and Systems Planning Fall 2009/2010

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    SYLLABUS WWS 527a Transportation Policy Analysis and Systems Planning Fall 2009/2010 Course Description Part 1. Perspective on the Transportation Sector of the Economy: Its Function, Its Players, Its of Course Elements of the transportation sector of the economy, the player, the technologies

  10. Advanced metering techniques in the federal sector

    SciTech Connect (OSTI)

    Szydlowski, R.F.; Chvala, W.D. Jr.; Halverson, M.A.

    1994-12-01T23:59:59.000Z

    The lack of utility metering in the federal sector has hampered introduction of direct billing of individual activities at most military installations. Direct billing will produce accountability for the amount of energy used and is a positive step toward self-directed energy conservation. For many installations, automatic meter reading (AMR) is a cost-effective way to increase the number of meters while reducing labor requirements and providing energy conservation analysis capabilities. The communications technology used by some of the AMR systems provides other demand-side management (DSM) capabilities. This paper summarizes the characteristics and relative merits of several AMR/DSM technologies that may be appropriate for the federal sector. A case study of an AMR system being installed at Fort Irwin, California, describes a cost-effective two-way radio communication system used for meter reading and load control.

  11. New Account Information page

    E-Print Network [OSTI]

    Information for new account holders ... for faculty, staff and students; Secure Purdue, including security news and tips and antivirus software downloads.

  12. Annual Report and Accounts

    E-Print Network [OSTI]

    's Report on the Accounts Presented to the House of Commons pursuant to Section 7 of The Government Resources and Accounts Act 2000 Ordered by the House of Commons to be printed 15 July 2010 Forest Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Centre for Human and Ecological Sciences

  13. Annual Report and Accounts

    E-Print Network [OSTI]

    ;#12;Forest Research Annual Report and Accounts 20102011 Presented to the House of Commons pursuant to Section 7 of The Government Resources and Accounts Act 2000 Ordered by the House of Commons to be printed ...................................................... 12 Centre for Human and Ecological Sciences

  14. Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating...

    Open Energy Info (EERE)

    Guide to Evaluating Transport Projects AgencyCompany Organization: Institute for Global Environmental Strategies Focus Area: Multi-sector Impact Evaluation Topics: Best Practices...

  15. Technology Mapping of the Renewable Energy, Buildings and Transport...

    Open Energy Info (EERE)

    Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL...

  16. Energy Department Awards $45 Million to Deploy Advanced Transportation...

    Energy Savers [EERE]

    is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy Secretary...

  17. Multi-Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept ofActing Chiefof Inks andmulti-sector

  18. Accountable Officers' Accounts Records | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDIT REPORT:PatriciaAccidentAccountable

  19. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

  20. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04T23:59:59.000Z

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

  1. Miscellaneous Electricity Services in the Buildings Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Residential and commercial electricity consumption for miscellaneous services has grown significantly in recent years and currently accounts for more electricity use than any single major end-use service in either sector (including space heating, space cooling, water heating, and lighting). In the residential sector, a proliferation of consumer electronics and information technology equipment has driven much of the growth. In the commercial sector, telecommunications and network equipment and new advances in medical imaging have contributed to recent growth in miscellaneous electricity use.

  2. Accounting | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA Account Information Accounts andAccounting

  3. Cross-Sector Impact Analysis of Industrial Efficiency Measures

    SciTech Connect (OSTI)

    Morrow, William [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); CreskoEngineering, Joe [Oak Ridge Institute for Science and Education (ORISE); Carpenter, Alberta [National Renewable Energy Laboratory (NREL)] [National Renewable Energy Laboratory (NREL); Masanet, Eric [Northwestern University, Evanston] [Northwestern University, Evanston; Nimbalkar, Sachin U [ORNL] [ORNL; Shehabi, Arman [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01T23:59:59.000Z

    The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

  4. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy...

    Broader source: Energy.gov (indexed) [DOE]

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that...

  5. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30T23:59:59.000Z

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  6. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  7. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01T23:59:59.000Z

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  8. Public Sector Electric Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

  9. Climate Action Plans and Long-Range Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

  10. Quantitative analysis of alternative transportation under environmental constraints

    E-Print Network [OSTI]

    Sandoval Lpez, Reynaldo

    2006-01-01T23:59:59.000Z

    This thesis focuses on the transportation sector and its role in emissions of carbon dioxide (CO2) and conventional pollutant emissions. Specifically, it analyzes the potential for hydrogen based transportation, introducing ...

  11. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  12. Transportation Center Seminar........ Patrice Marcotte

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Transportation Center Seminar........ Patrice Marcotte Professor and Acting Director Computer on a Transportation Network With Rigid Capacities" Abstract: Static network equilibrium is a well transportation network, taking into account that users behave selfishly, i.e., only travel on shortest paths

  13. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-12-24T23:59:59.000Z

    To establish Department of Energy (DOE) interim policy and to provide guidance for sealed radioactive source accountability. The directive does not cancel any directives. Extended by DOE N 5400.10 to 12-24-93 & Extended by DOE N 5400.12 to 12-24-94.

  14. STAR Facility Tritium Accountancy

    SciTech Connect (OSTI)

    R. J. Pawelko; J. P. Sharpe; B. J. Denny

    2007-09-01T23:59:59.000Z

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed.

  15. STAR facility tritium accountancy

    SciTech Connect (OSTI)

    Pawelko, R. J.; Sharpe, J. P.; Denny, B. J. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2008-07-15T23:59:59.000Z

    The Safety and Tritium Applied Research (STAR) facility has been established to provide a laboratory infrastructure for the fusion community to study tritium science associated with the development of safe fusion energy and other technologies. STAR is a radiological facility with an administrative total tritium inventory limit of 1.5 g (14,429 Ci) [1]. Research studies with moderate tritium quantities and various radionuclides are performed in STAR. Successful operation of the STAR facility requires the ability to receive, inventory, store, dispense tritium to experiments, and to dispose of tritiated waste while accurately monitoring the tritium inventory in the facility. This paper describes tritium accountancy in the STAR facility. A primary accountancy instrument is the tritium Storage and Assay System (SAS): a system designed to receive, assay, store, and dispense tritium to experiments. Presented are the methods used to calibrate and operate the SAS. Accountancy processes utilizing the Tritium Cleanup System (TCS), and the Stack Tritium Monitoring System (STMS) are also discussed. Also presented are the equations used to quantify the amount of tritium being received into the facility, transferred to experiments, and removed from the facility. Finally, the STAR tritium accountability database is discussed. (authors)

  16. Sealed Radioactive Source Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-12-22T23:59:59.000Z

    This Notice extends DOE N 5400.9, Sealed Radioactive Source Accountability, of 12-24-91, until 12-24-95, unless sooner superseded or rescinded. The contents of DOE N 5400.9 will be updated and incorporated in the revised DOE O 5480.11, Radiation Protection for Occupational Workers.

  17. MATERIAL CONTROL ACCOUNTING INMM

    SciTech Connect (OSTI)

    Hasty, T.

    2009-06-14T23:59:59.000Z

    Since 1996, the Mining and Chemical Combine (MCC - formerly known as K-26), and the United States Department of Energy (DOE) have been cooperating under the cooperative Nuclear Material Protection, Control and Accounting (MPC&A) Program between the Russian Federation and the U.S. Governments. Since MCC continues to operate a reactor for steam and electricity production for the site and city of Zheleznogorsk which results in production of the weapons grade plutonium, one of the goals of the MPC&A program is to support implementation of an expanded comprehensive nuclear material control and accounting (MC&A) program. To date MCC has completed upgrades identified in the initial gap analysis and documented in the site MC&A Plan and is implementing additional upgrades identified during an update to the gap analysis. The scope of these upgrades includes implementation of MCC organization structure relating to MC&A, establishing material balance area structure for special nuclear materials (SNM) storage and bulk processing areas, and material control functions including SNM portal monitors at target locations. Material accounting function upgrades include enhancements in the conduct of physical inventories, limit of error inventory difference procedure enhancements, implementation of basic computerized accounting system for four SNM storage areas, implementation of measurement equipment for improved accountability reporting, and both new and revised site-level MC&A procedures. This paper will discuss the implementation of MC&A upgrades at MCC based on the requirements established in the comprehensive MC&A plan developed by the Mining and Chemical Combine as part of the MPC&A Program.

  18. ORNL/TM-2009/222 Center for Transportation Analysis

    E-Print Network [OSTI]

    . ESTIMATION OF GASOLINE CONSUMPTION BY PUBLIC SECTOR..............41 5.1 Federal Civilian Motor/Commercial Sectors..............................................29 4.3 Off-highway Gasoline Consumption by EquipmentORNL/TM-2009/222 Center for Transportation Analysis Energy and Transportation Science Division OFF

  19. CEC-500-2010-FS-002 Assess New Transportation

    E-Print Network [OSTI]

    2010 The Issue California's transportation sector is the single largest contributor of greenhouse gas change. California must find strategies to reduce greenhouse gas emissions from the transportation sector. Research addressing additional land-use measures, shifts to less carbon emitting modes, and new policies

  20. BTU Accounting for Industry

    E-Print Network [OSTI]

    Redd, R. O.

    1979-01-01T23:59:59.000Z

    , salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

  1. Energy Sector Cybersecurity Framework Implementation Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

  2. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  3. Group Accounts on genepool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)GraphiteCollaboration Accounts on genepool

  4. NERSC Account Terminology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEESReadingAccounts »

  5. Accounting & Finance (BAcc) Induction 2014

    E-Print Network [OSTI]

    Glasgow, University of

    Accounting & Finance (BAcc) Induction 2014 Monday 15 September 2014 Induction Programme: 0945] Welcome from the Business School and Accounting & Finance 1000 The Accountancy Degrees 1015 Programme & 3 on Level 4 Accounting & Finance Bldg Tuesday 16 September 2014 Advising Session Lunch (provided

  6. 2012ANNUAL REPORT AND ACCOUNTS

    E-Print Network [OSTI]

    Birmingham, University of

    and Estimation Techniques 21 Consolidated Income and Expenditure Account 25 Balance Sheets 26 Consolidated Cash Flow Statement 28 Consolidated Statement of Total Recognised Gains and Losses 29 Notes to the Accounts2011 2012ANNUAL REPORT AND ACCOUNTS #12;Annual Report and Accounts 2011/12 32 Annual Report

  7. Should business and non-business accounting be different? A comparative perspective applied to the new French

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Should business and non-business accounting be different? A comparative perspective applied retains for public sector accounting the logic of financial reporting that had been in effect for business of LOLF has raised a number of questions about how to make non-business entities "accountable

  8. Annual Congress European Accounting Association Elisabeth Combes-Thuelin & Lionel Escaffre (2003)

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    2003-01-01T23:59:59.000Z

    Report about performances raises two sets of issues: first, the selection of a valuation method (at cost exposing the contextual analysis regarding to the accounting valuation methods. Safety and soundness regulations and accounting valuation in the banking sector. Conceptual framework and valuation methods. Then

  9. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05T23:59:59.000Z

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  10. United States General Accounting Office

    Broader source: Energy.gov (indexed) [DOE]

    where a Navy employee and a private-sector consultant wrote and edited the performance work statement and then prepared the management plan for in-house performance. 2. The Navy...

  11. SSRL Computer Account Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRLLCLS Computer Account Request Form August 2009 Fill in this form and sign the security statement mentioned at the bottom of this page to obtain an account. Your Name:...

  12. Accountability report - fiscal year 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This document contains the US NRC`s accountability report for fiscal year 1997. Topics include uses of funds, financial condition, program performance, management accountability, and the audited financial statement.

  13. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Broader source: Energy.gov (indexed) [DOE]

    economic growth and reduce petroleum use in Utah by increasing the number of CNG, LNG, Hybrid, and biodiesel vehicles on the road, creating an I-15 corridor for alternative...

  14. FY 2016 EERE Budget Webinar-Sustainable Transportation Sector...

    Broader source: Energy.gov (indexed) [DOE]

    3, 2015 2:30PM to 3:30PM EST Online The Energy Department's Office of Energy Efficiency and Renewable Energy (EERE) hosted a webinar series featuring our deputy assistant...

  15. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. DOE HYDROGEN and FUEL CELLS PROGRAM and VEHICLE TECHNOLOGIES PROGRAM ANNUAL MERIT REVIEW AND PEER EVALUATION MEETING MAY 14-18, 2012 This presentation does not contain any...

  16. Coal Transportation Rates to the Electric Power Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (Million Cubic 1.Year Jan Feb Mar‹ See

  17. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source:Additions to Capacity onThousand(Dollars2009Rail Coal

  18. Table E13. Transportation Sector Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks

  19. Table E6. Transportation Sector Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. ElectricE4.E5.E6.

  20. Copenhagen Accord NAMA Submissions Implications for the Transport Sector |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationinConcentratingEnergyCoosa Valley Electric Coop Inc Jump to:Open

  1. Post-2012 Climate Instruments in the transport sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: EnergyPiratiniEdwards,Posey County, Indiana: EnergyPositive

  2. Annual Energy Outlook 2015 Modeling updates in the Transportation sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1 Year-2CubicElectricity Analysis Team1 st

  3. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafely Delivering DOE'sEnergy3 SGIG ProgramtheConfidential,

  4. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact SheetConditionsOwnersUsing10Program |

  5. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact SheetConditionsOwnersUsing10Program

  6. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAXFact

  7. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.ofTrack 1shouldJune 20,

  8. Transitioning the Transportation Sector: Exploring the Intersection of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe|ofTransforming aMelissa Howell |

  9. Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou NewKorea PartsLLNLLaizhouLand O Lakes Inc Jump

  10. Technologies for Climate Change Mitigation: Transport Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with formSoutheastern ILSunseekerTallahatchie Valley ETaurusInformation for

  11. Reducing Emissions Through Sustainable Transport: Proposal for a Sectoral

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, searchRay

  12. Sector 1 Frequently Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Sector 1 Safety Plan (pdf) Useful X-Ray Related Numbers Si a0 5.4308 Angstrom CeO2 a05.411 Angstrom Cd-109 gamma 88.036 keV X-ray energywavelength conversion...

  13. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    SciTech Connect (OSTI)

    Sathaye, Jayant; de la Rue du Can, Stephane; Iyer, Maithili; McNeil, Michael; Kramer, Klaas Jan; Roy, Joyashree; Roy, Moumita; Chowdhury, Shreya Roy

    2011-04-15T23:59:59.000Z

    This report analyzed the potential for increasing energy efficiency and reducing greenhouse gas emissions (GHGs) in the non-residential building and the industrial sectors in India. The first two sections describe the research and analysis supporting the establishment of baseline energy consumption using a bottom up approach for the non residential sector and for the industry sector respectively. The third section covers the explanation of a modeling framework where GHG emissions are projected according to a baseline scenario and alternative scenarios that account for the implementation of cleaner technology.

  14. Essays on the Effect of Climate Change on Agriculture and Agricultural Transportation

    E-Print Network [OSTI]

    Attavanich, Witsanu

    2012-02-14T23:59:59.000Z

    climate change impacts on grain transportation flows, this study employs two modeling systems, a U.S. agricultural sector model and an international grain transportation model, with linked inputs/outputs. The main findings are that under climate change: 1...

  15. Transportation Energy Efficiency Trends, 1972--1992

    SciTech Connect (OSTI)

    Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

    1994-12-01T23:59:59.000Z

    The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

  16. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01T23:59:59.000Z

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  17. Biomass Resources for the Federal Sector

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  18. Nuclear Materials Control and Accountability

    Broader source: Energy.gov (indexed) [DOE]

    June 2011 DOE STANDARD Nuclear Materials Control and Accountability U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public...

  19. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

  20. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,41 with journalist covering electricity sector, Vladivostok,

  1. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01T23:59:59.000Z

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  2. Energy-economy interactions revisited within a comprehensive sectoral model

    SciTech Connect (OSTI)

    Hanson, D. A.; Laitner, J. A.

    2000-07-24T23:59:59.000Z

    This paper describes a computable general equilibrium (CGE) model with considerable sector and technology detail, the ``All Modular Industry Growth Assessment'' Model (AMIGA). It is argued that a detailed model is important to capture and understand the several rolls that energy plays within the economy. Fundamental consumer and industrial demands are for the services from energy; hence, energy demand is a derived demand based on the need for heating, cooling mechanical, electrical, and transportation services. Technologies that provide energy-services more efficiently (on a life cycle basis), when adopted, result in increased future output of the economy and higher paths of household consumption. The AMIGA model can examine the effects on energy use and economic output of increases in energy prices (e.g., a carbon charge) and other incentive-based policies or energy-efficiency programs. Energy sectors and sub-sector activities included in the model involve energy extraction conversion and transportation. There are business opportunities to produce energy-efficient goods (i.e., appliances, control systems, buildings, automobiles, clean electricity). These activities are represented in the model by characterizing their likely production processes (e.g., lighter weight motor vehicles). Also, multiple industrial processes can produce the same output but with different technologies and inputs. Secondary recovery, i.e., recycling processes, are examples of these multiple processes. Combined heat and power (CHP) is also represented for energy-intensive industries. Other modules represent residential and commercial building technologies to supply energy services. All sectors of the economy command real resources (capital services and labor).

  3. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politcnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energtica y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave elctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolucin y previsin de

  4. Financial Sector Ups and Downs and the Real Sector: Up by the Stairs and Down by the Parachute

    E-Print Network [OSTI]

    Aizenman, Joshua; Pinto, Brian; Sushko, Vladyslav

    2012-01-01T23:59:59.000Z

    May 2012 Financial Sector Ups and Downs and the Real Sector:to reclassifying financial sector ups and downs as turning

  5. The Changing US Electric Sector Business Model

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01T23:59:59.000Z

    The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright 2013 Deloitte Development LLC. All rights reserved. Fundamentals of the US Electric Sector Business Model Todays Challenges Faced by U.S. Electric Sector The Math Does Not Lie: A Look into the Sectors Future Disruption to Today...

  6. Local Transportation

    E-Print Network [OSTI]

    Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

  7. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

  8. The role of natural gas as a vehicle transportation fuel

    E-Print Network [OSTI]

    Murphy, Paul Jarod

    2010-01-01T23:59:59.000Z

    This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

  9. Flexible bureaucracies : discretion, creativity, and accountability in labor market regulation and public sector management

    E-Print Network [OSTI]

    Pires, Roberto Rocha Coelho

    2009-01-01T23:59:59.000Z

    This dissertation is about state bureaucracies and the conditions under which they learn, innovate, and play a positive role in social and economic development. It takes issue with the extant literature on the topic, which ...

  10. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17T23:59:59.000Z

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  11. The Higgs sector of the NMFV MSSM at the ILC

    E-Print Network [OSTI]

    Arana-Catania, M; Herrero, M J; Penaranda, S

    2012-01-01T23:59:59.000Z

    We calculate the one-loop corrections to the Higgs boson masses within the context of the MSSM with Non-Minimal Flavor Violation in the squark sector. We take into account all the relevant restrictions from BR(B -> X_s gamma), BR(B_s -> mu^+ mu^-) and \\Delta M_{B_s}. We find sizable corrections to the lightest Higgs boson mass that are considerably larger than the expected ILC precision for acceptable values of the mixing parameters deltas. We find delta^{LR}_{ct} and delta^{RL}_{ct} specially relevant, mainly at low tan beta.

  12. Interfuel Substitution and Energy Use in the UK Manufacturing Sector

    E-Print Network [OSTI]

    Steinbuks, Jevgenijs

    of the following reasons. First, studies based on the aggregate data fail to account for large dierences in technological requirements for fuel types used in speci?c industries. For ex- ample, most cement kilns today use coal and petroleum coke as primary fuels... in the manufacturing processes. Waverman (1992) pointed out that fuels used by industrial sectors for non-energy purposes, such as coking coal, petrochemical feedstocks, or lubricants, have few available substitutes, and should therefore be excluded from the data...

  13. Planning of feeding station installment for elec-tric urban public mass-transportation system

    E-Print Network [OSTI]

    Bierlaire, Michel

    especially in the transportation sector, a key and viable approach is to use renewable energy such as wind 13th Swiss Transport Research Conference Monte Verit / Ascona, April 24 26, 2013 #12;Planning-based transportation infrastructure has led to renewed interest in electric transportation infrastructure, especially

  14. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of EnergyCross-Sector Sign In About |

  15. Carbon Storage Monitoring, Verification and Accounting Research...

    Office of Environmental Management (EM)

    Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting...

  16. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  17. Macroscopic theory of dark sector

    E-Print Network [OSTI]

    Boris E. Meierovich

    2014-10-06T23:59:59.000Z

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

  18. Accounting

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29T23:59:59.000Z

    Cancels DOE 2100.3A, DOE 2200.4, DOE 2200.5B, DOE 2200.6A, DOE 2200.7, DOE 2200.8B, DOE 2200.9B, DOE 2200.10A. Canceled by DOE O 534.1A.

  19. accountability

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 | NUMBER643|AboutM0572

  20. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Cancels: DOE M 474.1-1B DOE M 474.1-2A

  1. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Chg 1, dated 8-14-06. Canceled by DOE O 474.2.

  2. Department 2 Taxation, Accounting and Finance

    E-Print Network [OSTI]

    Hellebrand, Sybille

    Department 2 Taxation, Accounting and Finance #12;Department 2: Taxation, Accounting and Finance 2, Investition #12;Department 2: Taxation, Accounting and Finance 3 bersicht Lehrsthle des Department 2 Prof #12;Department 2: Taxation, Accounting and Finance 4 Finanzwirtschaft und Bankbetriebslehre

  3. Siemens AG 2009 Energy Sector

    E-Print Network [OSTI]

    Ulm, Universitt

    der Energieversorgung Intelligente Netze Smart Grid Karl-Josef Kuhn Siemens AG, Corporate Technology pressure on infrastructures Cities are responsible for around 75% of the world's energy consumption Cities directly or indirectly account for 60% of the world's water use An overloaded power grid caused a 3-day

  4. Public Sector New Construction and Retrofit Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

  5. Public Sector Energy Efficiency Aggregation Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

  6. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

  7. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

  8. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

  9. Climate VISION: Private Sector Initiatives: Electric Power

    Office of Scientific and Technical Information (OSTI)

    Letters of IntentAgreements The electric power sector participates in the Climate VISION program through the Electric Power Industry Climate Initiative (EPICI) and its Power...

  10. Climate VISION: Private Sector Initiatives: Business Roundtable...

    Office of Scientific and Technical Information (OSTI)

    Results Every Sector, One RESOLVE: A Progress Report on Business Roundtable's Climate RESOLVE Program, September 2004 (PDF 1.8 MB) Download Acrobat Reader...

  11. Climate VISION: Private Sector Initiatives: Cement

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the emissions expressed in million...

  12. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon...

  13. Unaccounted-for gas project. Accounting Task Force. Volume 1. Energy delivery and control. Final report

    SciTech Connect (OSTI)

    Luttrell, D.J.; Nelson, F.A.; Peterson, J.D.; Cowgill, R.M.; Waller, R.L.

    1990-06-01T23:59:59.000Z

    The study was conducted to determine unaccounted-for (UAF) gas volumes resulting from operating Pacific Gas and Electric (PG E) Co.'s transmission and distribution systems during 1987. The Accounting Task Force analyzed purchases and transport received, sales and transport delivered, interdepartmental sales, and gas department use to determine the effect on UAF. Findings show that accounting adjustments and cycle billing have a major impact on the 1987 operating UAF.

  14. MASS: An automated accountability system

    SciTech Connect (OSTI)

    Erkkila, B.H.; Kelso, F.

    1994-08-01T23:59:59.000Z

    All Department of Energy contractors who manage accountable quantities of nuclear materials are required to implement an accountability system that tracks, and records the activities associated with those materials. At Los Alamos, the automated accountability system allows data entry on computer terminals and data base updating as soon as the entry is made. It is also able to generate all required reports in a timely Fashion. Over the last several years, the hardware and software have been upgraded to provide the users with all the capability needed to manage a large variety of operations with a wide variety of nuclear materials. Enhancements to the system are implemented as the needs of the users are identified. The system has grown with the expanded needs of the user; and has survived several years of changing operations and activity. The user community served by this system includes processing, materials control and accountability, and nuclear material management personnel. In addition to serving the local users, the accountability system supports the national data base (NMMSS). This paper contains a discussion of several details of the system design and operation. After several years of successful operation, this system provides an operating example of how computer systems can be used to manage a very dynamic data management problem.

  15. Guam Transportation Petroleum-Use Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2013-04-01T23:59:59.000Z

    The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

  16. 202-328-5000 www.rff.orgSector Effects of the Shale Gas Revolution in the United States

    E-Print Network [OSTI]

    This paper reviews the impact of the shale gas revolution on the sectors of electricity generation, transportation, and manufacturing in the United States. Natural gas is being substituted for other fuels, particularly coal, in electricity generation, resulting in lower greenhouse gas emissions from this sector. The use of natural gas in the transportation sector is currently negligible but is projected to increase with investments in refueling infrastructure and natural gas vehicle technologies. Petrochemical and other manufacturing industries have responded to lower natural gas prices by investing in domestically located manufacturing projects. This paper also speculates on the impact of a possible shale gas boom in China. Key Words: shale gas, electricity, transportation, and manufacturing JEL Classification Numbers: L71, L9, Q4 2013 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion.

  17. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30T23:59:59.000Z

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  18. Managing Technical Risk: Understanding Private Sector

    E-Print Network [OSTI]

    action. Our study seeks to inform the decisions of both government managers and private entrepreneursApril 2000 Managing Technical Risk: Understanding Private Sector Decision Making on Early Stage 00-787 Managing Technical Risk Understanding Private Sector Decision Making on Early Stage Technology

  19. Stuck with the bill, but why? : an analysis of the Portuguese public finance system with respect to surface transportation policy and investments

    E-Print Network [OSTI]

    Nelson, Joshua S

    2008-01-01T23:59:59.000Z

    Despite decentralization progress in other sectors, the Portuguese central government maintains significant administrative and fiscal power over national and sub-national surface transportation operations and infrastructure. ...

  20. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

  1. Human Capital Management Accountability Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-01T23:59:59.000Z

    The Order establishes requirements, roles and responsibilities for the Human Capital Management Accountability Program (HCMAP) for human resources programs and personnel and ensures that human capital activities are regulatory and procedurally compliant with Federal statutes and Departmental policies. Does not cancel other directives.

  2. Banner Advancement Account Request Form

    E-Print Network [OSTI]

    Karsai, Istvan

    Banner Advancement Account Request Form ETSU Office of Information Technology 424 Roy Nicks Hall, Box 70728 Johnson City, Tennessee 37614 (423) 439-4648 oithelp@etsu.edu This section for use ______________________________________________________________________________________ [last] [first] [middle] ETSU Domain Name _____________________@etsu.edu School / College

  3. Aqueous Processing Material Accountability Instrumentation

    SciTech Connect (OSTI)

    Robert Bean

    2007-09-01T23:59:59.000Z

    Increased use of nuclear power will require new facilities. The U.S. has not built a new spent nuclear fuel reprocessing facility for decades. Reprocessing facilities must maintain accountability of their nuclear fuel. This survey report on the techniques used in current aqueous reprocessing facilities, and provides references to source materials to assist facility design efforts.

  4. Accounts Receivable Western Michigan University

    E-Print Network [OSTI]

    de Doncker, Elise

    Accounts Receivable Western Michigan University 1903 W. Michigan Avenue Kalamazoo, MI 49008 have read the Western Michigan University Third Party Billing Policy and agree to the terms. I am authorizing Western Michigan University to bill for the specified tuition and related fees for the term

  5. Accounts Receivable Western Michigan University

    E-Print Network [OSTI]

    de Doncker, Elise

    Accounts Receivable Western Michigan University 1903 W. Michigan Avenue Kalamazoo, MI 49008-5210 269 387-4251 Fax 269 387-4227 THIRD PARTY BILLING POLICY Western Michigan University (WMU# (269) 387-4227 Western Michigan University 1903 W. Michigan Avenue E-mail: wmu

  6. Case Western Reserve University Chart of Accounts

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Case Western Reserve University Chart of Accounts July 7, 2004 1 ACCOUNTS 10000 - 199999 Asset of the following: ANN LON CIP OPR CSR OSA END PLT FHB RES INC SPC INS TRN All other SpeedTypes will populate the Account field for you. #12;Case Western Reserve University Chart of Accounts July 7, 2004 2 Asset Accounts

  7. Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector

    SciTech Connect (OSTI)

    Cox, R.; Drennen, T.E.; Gilliom, L.; Harris, D.L.; Kunsman, D.M.; Skroch, M.J.

    1998-04-01T23:59:59.000Z

    The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications.

  8. Arguments for an Alternative Account of Analyticity

    E-Print Network [OSTI]

    Sexton, Clark Alan

    2009-11-09T23:59:59.000Z

    This dissertation presents an alternative account of analyticity, as well as arguments for that account. Although an analysis and interpretation of previous accounts of analyticity are presented, the focus is on the analysis ...

  9. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1.

  10. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    The Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability (MC&A) program within the U.S. Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), and for DOE owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). Admin Chg 3, dated 5-15-15 cancels Admin Chg 2.

  11. Computerized accounting methods. Final report

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This report summarizes the results of the research performed under the Task Order on computerized accounting methods in a period from 03 August to 31 December 1994. Computerized nuclear material accounting methods are analyzed and evaluated. Selected methods are implemented in a hardware-software complex developed as a prototype of the local network-based CONMIT system. This complex has been put into trial operation for test and evaluation of the selected methods at two selected ``Kurchatov Institute`` Russian Research Center (``KI`` RRC) nuclear facilities. Trial operation is carried out since the beginning of Initial Physical Inventory Taking in these facilities that was performed in November 1994. Operation of CONMIT prototype system was demonstrated in the middle of December 1994. Results of evaluation of CONMIT prototype system features and functioning under real operating conditions are considered. Conclusions are formulated on the ways of further development of computerized nuclear material accounting methods. The most important conclusion is a need to strengthen computer and information security features supported by the operating environment. Security provisions as well as other LANL Client/Server System approaches being developed by Los Alamos National Laboratory are recommended for selection of software and hardware components to be integrated into production version of CONMIT system for KI RRC.

  12. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    SciTech Connect (OSTI)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01T23:59:59.000Z

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

  13. On the Road to Transportation Efficiency (Video)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation and the U.S. Department of Energy.

  14. Connections 2035 The Waco Metropolitan Transportation Plan

    E-Print Network [OSTI]

    Waco Metropolitan Planning Organization

    2010-02-03T23:59:59.000Z

    Administration, Federal Transit Administration, and the Texas Department of Transportation. Preface The Waco Metropolitan Planning Organization has prepared this plan in compliance with the Safe, Accountable, Flexible and Efficient Transportation Equity Act...: A Legacy for Users (SAFETEA-LU). The preparation of this plan has been funded in part through grants by the Federal Highway Administration, the Federal Transit Administration and the Texas Department of Transportation. The contents...

  15. Computational Transportation

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ), in-vehicle computers, and computers in the transportation infrastructure are integrated ride- sharing, real-time multi-modal routing and navigation, to autonomous/assisted driving

  16. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  17. Electricity sector restructuring and competition : lessons learned

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01T23:59:59.000Z

    We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

  18. Top partner probes of extended Higgs sectors

    E-Print Network [OSTI]

    Kearney, John

    Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

  19. Private Sector Rates (FY 2015) Instrument Technique

    E-Print Network [OSTI]

    Bashir, Rashid

    Source Laser $150 $175 Nanophoton Raman 11 Raman Spectroscopy $150 $175 Newport Solar Simulator Solar Rates for the Material Research Laboratory Facilities Rates for Private Sector companies and researchers

  20. Activities to Secure Control Systems in the Energy Sector | Department...

    Office of Environmental Management (EM)

    Activities to Secure Control Systems in the Energy Sector Activities to Secure Control Systems in the Energy Sector Presentation-given at the Federal Utility Partnership Working...

  1. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

  2. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and market assessment Energy Efficiency Services Sector: Workforce Size2008. The Size of the U.S. Energy Efficiency Market. Reportmarket spending Energy Efficiency Services Sector: Workforce Size

  3. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  4. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    11 Calibration of the Energy Consumption Data forSectoral energy consumption data are available in publishedof the sectoral energy consumption data in the statistics

  5. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

  6. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  7. Designing Effective State Programs for the Industrial Sector...

    Energy Savers [EERE]

    Sector - New SEE Action Publication March 24, 2014 - 12:56pm Addthis Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector provides...

  8. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

  9. The Economics of Public Sector Information

    E-Print Network [OSTI]

    Pollock, Rufus

    result in incentives for over-investment in quality and capacity improvements because, by over-investing, the PSIH stimulates demand and obtains a larger subsidy. In terms of responsiveness an organization operating a more commercial pricing policy (e... area (building especially), or keeping up to date with the decisions of their elected representatives. While much data is supplied from outside the public sector, compared to many other areas of the economy, the public sector plays an unusually...

  10. My Account | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUSAdvancedMuseum Day at0019 For moreMy Account

  11. NERSC Account Policies and Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum|NEESReadingAccounts »

  12. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01T23:59:59.000Z

    that reduces long-haul truck transport growth between 2010ef?ciency. Most long-haul trucks use tandem drive axles, duepower demand in a long-haul truck, typically accounting for

  13. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24T23:59:59.000Z

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  14. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19T23:59:59.000Z

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  15. TRITIUM ACCOUNTANCY IN FUSION SYSTEMS

    SciTech Connect (OSTI)

    Klein, J. E.; Farmer, D. A.; Moore, M. L.; Tovo, L. L.; Poore, A. S.; Clark, E. A.; Harvel, C. D.

    2014-03-06T23:59:59.000Z

    The US Department of Energy (DOE) has clearly defined requirements for nuclear material control and accountability (MC&A) of tritium whereas the International Atomic Energy Agency (IAEA) does not since tritium is not a fissile material. MC&A requirements are expected for tritium fusion machines and will be dictated by the host country or regulatory body where the machine is operated. Material Balance Areas (MBAs) are defined to aid in the tracking and reporting of nuclear material movements and inventories. Material subaccounts (MSAs) are established along with key measurement points (KMPs) to further subdivide a MBA to localize and minimize uncertainties in the inventory difference (ID) calculations for tritium accountancy. Fusion systems try to minimize tritium inventory which may require continuous movement of material through the MSAs. The ability of making meaningful measurements of these material transfers is described in terms of establishing the MSA structure to perform and reconcile ID calculations. For fusion machines, changes to the traditional ID equation will be discussed which includes breading, burn-up, and retention of tritium in the fusion device. The concept of net tritium quantities consumed or lost in fusion devices is described in terms of inventory taking strategies and how it is used to track the accumulation of tritium in components or fusion machines.

  16. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01T23:59:59.000Z

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  17. Transportation Market Distortions

    E-Print Network [OSTI]

    Litman, Todd

    2006-01-01T23:59:59.000Z

    of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

  18. Transport Model with Quasipions

    E-Print Network [OSTI]

    Xiong, L.; Ko, Che Ming; Koch, V.

    1993-01-01T23:59:59.000Z

    , the transport model that takes into account both nucleon-nucleon collisions and the nuclear mean-field po- tential (normally called the Ulasov-Uehling-Uhlenbeck or Boltzmann-Uehling-Uhlenbeck model [3]) have been ex- tended to include the pion degree... equation, the pion collision term is obtained from the imaginary part of its self-energy. In nuclear medium, the pion self-energy is modified by the strong p-wave pion- nucleon interaction. This not only afFects the production and absorption of the pion...

  19. Comparative analysis of energy data bases for the industrial and commercial sectors

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.; Bohn, A.A.

    1986-12-01T23:59:59.000Z

    Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

  20. The climate impacts of high-speed rail and air transportation : a global comparative analysis

    E-Print Network [OSTI]

    Clewlow, Regina Ruby Lee

    2012-01-01T23:59:59.000Z

    Growing concerns about the energy use and climate impacts of the transportation sector have prompted policymakers to consider a variety of options to meet the future mobility needs of the world's population, while ...

  1. Integrating regional strategic transportation planning and supply chain management : along the path to sustainability

    E-Print Network [OSTI]

    Sgouridis, Sgouris P

    2005-01-01T23:59:59.000Z

    A systems perspective for regional strategic transportation planning (RSTP) for freight movements involves an understanding of Supply Chain Management (SCM). This thesis argues that private sector freight shippers and ...

  2. An assessment of the video analytics technology gap for transportation facilities

    E-Print Network [OSTI]

    Thornton, Jason R.

    We conduct an assessment of existing video analytic technology as applied to critical infrastructure protection, particularly in the transportation sector. Based on discussions with security personnel at multiple facilities, ...

  3. Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries

    E-Print Network [OSTI]

    Kim, Hyunho, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

  4. Live Webinar on Better Buildings Challenge: Public-Sector Update

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Better Buildings Challenge: Public-Sector Update."

  5. Distributed Generation Potential of the U.S. Commercial Sector

    E-Print Network [OSTI]

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    residential and commercial sector installations, for a total of 9 GW. Clearly, commercial DG with CHP

  6. electrifyingthefuture transportation

    E-Print Network [OSTI]

    Birmingham, University of

    electrifyingthefuture transportation The UK Government's carbon reduction strategy vehicles and the new Birmingham Science City Energy Systems Integration Laboratory (ESIL) will further enhance this work. The laboratory - unique within the UK and world leading - brings together cutting edge

  7. Coal Transportation Issues (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

  8. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16T23:59:59.000Z

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  9. Preparing for Project Implementation Assigning Accountability...

    Broader source: Energy.gov (indexed) [DOE]

    Assigning Accountability for Each Project (April 14, 2010) More Documents & Publications Preparing for Project Implementation after an Energy Assessment...

  10. Rev. 7-2010 New Agreement Change Account Cancel Agreement

    E-Print Network [OSTI]

    Account Savings Account Financial Institution: Name _____________________________________ Branch for checking accounts OR savings deposit slip for savings accounts Form will not be processed without

  11. Your UNIX Account Basic Unix Tools

    E-Print Network [OSTI]

    Qiu, Weigang

    Your UNIX Account 2 Basic Unix Tools 3 Unix Power Tools Weigang Qiu Introduction & UNIX Tutorial #12 & UNIX Tutorial #12;Your UNIX Account Basic Unix Tools Unix Power Tools UNIX Directory Structure FileYour UNIX Account Basic Unix Tools Unix Power Tools Introduction & UNIX Tutorial Weigang Qiu

  12. Climate VISION: Private Sector Initiatives: Semiconductors: Resources...

    Office of Scientific and Technical Information (OSTI)

    over 100 companies that account for more than 83% of U.S.-based semiconductor production. The SIA provides a forum for domestic semiconductor companies to work collectively...

  13. Climate VISION: Private Sector Initiatives: Mining: Resources...

    Office of Scientific and Technical Information (OSTI)

    process on the most significant and timely issues that impact our ability to locate, permit, mine, process, transport, and utilize the nation's vast coal and mineral resources...

  14. Conceptualising Inventory Prepositioning in the Humanitarian Sector

    E-Print Network [OSTI]

    Boyer, Edmond

    Conceptualising Inventory Prepositioning in the Humanitarian Sector Delia Richardson, Sander de chain to reduce delivery time of relief inventory improves responsiveness. This is the essence of inventory pre-positioning (IPP). IPP is yet to be clearly defined; and the main factors affecting IPP

  15. WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE

    E-Print Network [OSTI]

    WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

  16. NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector

    E-Print Network [OSTI]

    NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

  17. Prospects for the power sector in nine developing countries

    SciTech Connect (OSTI)

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01T23:59:59.000Z

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  18. Climate Policy and the Long-Term Evolution of the U.S. Buildings Sector

    SciTech Connect (OSTI)

    Kyle, G. Page; Clarke, Leon E.; Rong, Fang; Smith, Steven J.

    2010-04-01T23:59:59.000Z

    Buildings are the dominant driver of daily and seasonal electric load cycles, and account for 40 percent of U.S. final energy use. They account for roughly 10 percent of direct U.S. CO2 emissions and roughly 40 percent including indirect emissions from electricity generation. This paper explores the possible evolution of this sector over the coming century, its potential role in climate action and response to climate policies, and the potential benefits of advances in building technologies for addressing climate change. The paper presents a set of scenarios based on a detailed, service-based model of the U.S. buildings sector that is embedded within a long-term, global, integrated assessment model, MiniCAM. Eight scenarios are created in total, combining two sets of assumptions regarding U.S. building service demand growth, two sets of assumptions regarding the improvements in building energy technologies, and two assumptions regarding long-term U.S. climate action a no-climate-action assumption and an assumption of market-based policies to reduce U.S. CO2 emissions consistent with a 450 ppmv global target. Through these eight scenarios, the paper comments on the implications of continued growth in building service demands, the ability of efficiency measures to reduce emissions, and the strong link between decarbonization of electricity generation and building sector emissions.

  19. ATHENA Student Account Refund Profile ATHENA Student Account Refund Profile Setup

    E-Print Network [OSTI]

    Hall, Daniel

    ATHENA Student Account Refund Profile ATHENA Student Account Refund Profile Setup What is a Refund Profile? UGA allows for online viewing and refunding of a student's account for payments and Financial Aid up a Refund Profile? Refunds that you receive can be direct deposited into the bank account of your

  20. Energy use and CO2 emissions of Chinas industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10T23:59:59.000Z

    The industrial sector has accounted for more than 50% of Chinas final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of Chinas per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  1. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    40 pp. IEA, 2004c: Biofuels for Transport: An Internationalthe ACT Map scenario, transport biofuels production reachesestimates that biofuels share of transport fuel could

  2. Laser experiments explore the hidden sector

    E-Print Network [OSTI]

    M. Ahlers; H. Gies; J. Jaeckel; J. Redondo; A. Ringwald

    2007-11-30T23:59:59.000Z

    Recently, the laser experiments BMV and GammeV, searching for light shining through walls, have published data and calculated new limits on the allowed masses and couplings for axion-like particles. In this note we point out that these experiments can serve to constrain a much wider variety of hidden-sector particles such as, e.g., minicharged particles and hidden-sector photons. The new experiments improve the existing bounds from the older BFRT experiment by a factor of two. Moreover, we use the new PVLAS constraints on a possible rotation and ellipticity of light after it has passed through a strong magnetic field to constrain pure minicharged particle models. For masses <~0.05 eV, the charge is now restricted to be less than (3-4)x10^(-7) times the electron electric charge. This is the best laboratory bound and comparable to bounds inferred from the energy spectrum of the cosmic microwave background.

  3. The Lepton Sector of a Fourth Generation

    E-Print Network [OSTI]

    Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

    2010-05-10T23:59:59.000Z

    In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  4. Constraining Dark Sectors with Monojets and Dijets

    E-Print Network [OSTI]

    Chala, Mikael; McCullough, Matthew; Nardini, Germano; Schmidt-Hoberg, Kai

    2015-01-01T23:59:59.000Z

    We consider dark sector particles (DSPs) that obtain sizeable interactions with Standard Model fermions from a new mediator. While these particles can avoid observation in direct detection experiments, they are strongly constrained by LHC measurements. We demonstrate that there is an important complementarity between searches for DSP production and searches for the mediator itself, in particular bounds on (broad) dijet resonances. This observation is crucial not only in the case where the DSP is all of the dark matter but whenever - precisely due to its sizeable interactions with the visible sector - the DSP annihilates away so efficiently that it only forms a dark matter subcomponent. To highlight the different roles of DSP direct detection and LHC monojet and dijet searches, as well as perturbativity constraints, we first analyse the exemplary case of an axial-vector mediator and then generalise our results. We find important implications for the interpretation of LHC dark matter searches in terms of simpli...

  5. The Changing US Electric Sector Business Model

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01T23:59:59.000Z

    The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16... Electricity Business Model Observations on the Future and Conclusions Presentation overview 2 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Copyright 2013 Deloitte Development LLC. All rights...

  6. Viable textures for the fermion sector

    E-Print Network [OSTI]

    A. E. Crcamo Hernndez; I. de Medeiros Varzielas

    2015-03-23T23:59:59.000Z

    We consider a modification of the Fukuyama-Nishiura texture and compare it to the precision quark flavour data, finding that it fits the data very well but at the cost of accidental cancelations between parameters. We then propose different viable textures for quarks, where only the Cabibbo mixing arises from the down sector, and extend to the charged leptons while constructing a complementary neutrino structure that leads to viable lepton masses and mixing.

  7. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory Sector: Energy, Land Focus Area: Agriculture, Forestry Topics: Low emission development planning, Pathways analysis Resource...

  8. DOE Encourages Utility Sector Nominations to the Federal Communication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Federal Communications Commission's Communications, Security, Reliability, and Interoperability Council DOE Encourages Utility Sector Nominations to the Federal Communications...

  9. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

  10. WHEN DOES FINANCIAL SECTOR (IN)STABILITY INDUCE FINANCIAL REFORMS?

    E-Print Network [OSTI]

    Boyer, Edmond

    WHEN DOES FINANCIAL SECTOR (IN)STABILITY INDUCE FINANCIAL REFORMS? Susie LEE Ingmar SCHUMACHER (in)stability induce financial reforms? Susie Lee1 Ingmar Schumacher2 October 26, 2011 Abstract The article studies whether financial sector (in)stability had an effect on reforms in the fi- nancial sector

  11. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 1: Part 1, Electricity supply sector; Part 2, Residential and commercial buildings sector; Part 3, Industrial sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    DOE encourages you to report your achievements in reducing greenhouse gas emissions and sequestering carbon under this program. Global climate change is increasingly being recognized as a threat that individuals and organizations can take action against. If you are among those taking action, reporting your projects may lead to recognition for you, motivation for others, and synergistic learning for the global community. This report discusses the reporting process for the voluntary detailed guidance in the sectoral supporting documents for electricity supply, residential and commercial buildings, industry, transportation, forestry, and agriculture. You may have reportable projects in several sectors; you may report them separately or capture and report the total effects on an entity-wide report.

  12. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    Management (DSM) in the Electricity Sector: Urgent Need forrcan, 2007, Electricity and natural gas sectors in Korea: aand commercial sub-sectors, electricity use is distributed

  13. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    rates from the electricity sector to assumed values inrates from the electricity sector to assumed values intend to underestimate electricity sector emissions, and it

  14. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Efficiency Scenario (non-residential sector only) AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

  15. Country Review of Energy-Efficiency Financial Incentives in the Residential Sector

    E-Print Network [OSTI]

    Can, Stephane de la Rue du

    2011-01-01T23:59:59.000Z

    Financial Incentives in the Residential Sector Stephane deFinancial Incentives in the Residential Sector Stephane desavings achieved in the residential sector. In contrast,

  16. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Sustainable Transportation This is the January 2015 issue of the Transportation and Hydrogen Newsletter. Illustration of an electric vehicle Illustration of an...

  17. Biomass Supply and Carbon Accounting for

    E-Print Network [OSTI]

    Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

  18. l ProteinDF : account / password

    E-Print Network [OSTI]

    Fukai, Tomoki

    #12;FOCUS 3 #12;FOCUS l SSL-VPN : account / password l sshssh.j-focus.jp : account / password 4 SSL-VPN ssh batch ssh.j-focus.jp E #12;SSL-VPN l : http://www.j-focus.jp/sslvpn/ Cisco AnyConnect Secure

  19. Case Western Reserve University Chart of Accounts

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Case Western Reserve University Chart of Accounts July 7, 2004 1 SPEEDTYPE / PROJECT PREFIXES Funds PLT Plant CIP Construction in Progress #12;Case Western Reserve University Chart of Accounts July Annual Fund Gift RES Research TRN Training SPC Special Programs/Projects OSA Other Sponsored Activities

  20. OKLAHOMA STATE Report of Independent Accountants' Application

    E-Print Network [OSTI]

    Veiga, Pedro Manuel Barbosa

    OKLAHOMA STATE UNIVERSITY Report of Independent Accountants' Application of Agreed-Upon Procedures to Assist the University in Complying with NCAA Bylaws 6.2.3.1 Year Ended June 30, 2007 #12;OKLAHOMA STATE.2.3.1 .......................................................................................................................................... 1 Intercollegiate Athletics Program Accounts of Oklahoma State University and the Oklahoma State

  1. TRINITY HALL ACCOUNTS FOR THE YEAR ENDED

    E-Print Network [OSTI]

    Talbot, James P.

    TRINITY HALL CAMBRIDGE ACCOUNTS FOR THE YEAR ENDED 30 June 2011 #12;TRINITY HALL Index Balance Sheet 19 Cash Flow Statement 20 - 32 Notes to the Accounts #12;TRINITY HALL Governing Body;Status Trinity Hall, or The Master, Fellows and Scholars of the College or Hall of the Holy Trinity

  2. Application of environmental accounting to pollution prevention

    SciTech Connect (OSTI)

    Del Mar, R.A.

    1997-08-19T23:59:59.000Z

    Environmental accounting represents a major paradigm shift in the way most companies account for costs and benefits. However, it is a change that must be made if pollution prevention is to become institutionalized into the corporate and government mainstream. Pollution prevention investments must be justified on an economic basis; without environmental accounting tools, pollution prevention investments cannot show their true profitability. This is because traditional accounting methods only track billable costs, thus ignoring some of the major benefits of pollution prevention investments, which are indirect savings resulting from a lessening of a company`s regulatory compliance burden and present and future liabilities. This paper discusses how to apply environmental accounting principles to pollution prevention assessments to improve the outcome of profitability analyses.

  3. Emerging trends in informal sector recycling in developing and transition countries

    SciTech Connect (OSTI)

    Ezeah, Chukwunonye, E-mail: C.Ezeah2@wlv.ac.uk; Fazakerley, Jak A.; Roberts, Clive L.

    2013-11-15T23:59:59.000Z

    Highlights: Reviewed emerging trends in Informal Sector Recycling (ISR) in developing countries. In some countries we found that ISR is the key factor in the recycling of waste materials. Overall impact of ISR upon the urban economy and environment is positive. In some instances ISR subsidises large areas of the formal sector. Ignoring the informal sector could result in unsustainable interventions. - Abstract: Optimistic estimates suggest that only 3070% of waste generated in cities of developing countries is collected for disposal. As a result, uncollected waste is often disposed of into open dumps, along the streets or into water bodies. Quite often, this practice induces environmental degradation and public health risks. Notwithstanding, such practices also make waste materials readily available for itinerant waste pickers. These scavengers as they are called, therefore perceive waste as a resource, for income generation. Literature suggests that Informal Sector Recycling (ISR) activity can bring other benefits such as, economic growth, litter control and resources conservation. This paper critically reviews trends in ISR activities in selected developing and transition countries. ISR often survives in very hostile social and physical environments largely because of negative Government and public attitude. Rather than being stigmatised, the sector should be recognised as an important element for achievement of sustainable waste management in developing countries. One solution to this problem could be the integration of ISR into the formal waste management system. To achieve ISR integration, this paper highlights six crucial aspects from literature: social acceptance, political will, mobilisation of cooperatives, partnerships with private enterprises, management and technical skills, as well as legal protection measures. It is important to note that not every country will have the wherewithal to achieve social inclusion and so the level of integration must be flexible. In addition, the structure of the ISR should not be based on a universal model but should instead take into account local contexts and conditions.

  4. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    Fuel Oil Natural Gas Electricity Total Transportation FuelHeavy Oil Natural Gas Electricity Heat Total Transportation

  5. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearchNewsTransportation News

  6. account positioning errors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: analysis and providing assistance to division Financial Analysts. ?Support Finance group in General Accounting functions including accounts payable, accounts...

  7. Decoupled Sectors and Wolf-Rayet Galaxies

    E-Print Network [OSTI]

    Willy Fischler; Jimmy Lorshbough; Dustin Lorshbough

    2015-02-27T23:59:59.000Z

    The universe may contain several decoupled matter sectors which primarily couple through gravity to the Standard Model degrees of freedom. We focus here on the description of astrophysical environments that allow for comparable densities and spatial distributions of visible matter and decoupled dark matter. We discuss four Wolf-Rayet galaxies (NGC 1614, NGC 3367, NGC 4216 and NGC 5430) which should contain comparable amounts of decoupled dark and visible matter in the star forming regions. This could lead to the observation of Gamma Ray Burst events with physics modified by jets of dark matter radiation.

  8. Property:ProgramSector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector: Wind energy Product: Wind projectProperty

  9. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolve Jump to:DeploymentSector Jump to: navigation,

  10. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to:ID8/Organization RAPID/Contact/ID8/PositionmaterialSector Jump to:

  11. Accounts Policy | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA Account Information AccountsAccounts Policy

  12. Transportation Research Record: J. of the TRB, No. 2242, p. 55-63. Doi 10.3141/2242-07 FRAMEWORK FOR ASSESSING INDICATORS

    E-Print Network [OSTI]

    Boyer, Edmond

    Transportation Research Record: J. of the TRB, No. 2242, p. 55-63. Doi 10.3141/2242-07 FRAMEWORK FOR ASSESSING INDICATORS OF ENVIRONMENTAL IMPACTS IN THE TRANSPORT SECTOR Robert Joumard 1 , Henrik Gudmundsson 2 and Lennart Folkeson 3 1 IFSTTAR (French Institute of Science and Technology for Transport

  13. Climate mitigations impact on global and regional electric power sector water use in the 21st Century

    SciTech Connect (OSTI)

    Dooley, James J.; Kyle, G. Page; Davies, Evan

    2013-08-05T23:59:59.000Z

    Over the course of this coming century, global electricity use is expected to grow at least five fold and if stringent greenhouse gas emissions controls are in place the growth could be more than seven fold from current levels. Given that the electric power sector represents the second largest anthropogenic use of water and given growing concerns about the nature and extent of future water scarcity driven by population growth and a changing climate, significant concern has been expressed about the electricity sectors use of water going forward. In this paper, the authors demonstrate that an often overlooked but absolutely critical issue that needs to be taken into account in discussions about the sustainability of the electric sectors water use going forward is the tremendous turn over in electricity capital stock that will occur over the course of this century; i.e., in the scenarios examined here more than 80% of global electricity production in the year 2050 is from facilities that have not yet been built. The authors show that because of the large scale changes in the global electricity system, the water withdrawal intensity of electricity production is likely to drop precipitously with the result being relatively constant water withdrawals over the course of the century even in the face of the large growth in electricity usage. The ability to cost effectively reduce the water intensity of power plants with carbon dioxide capture and storage systems in particular is key to constraining overall global water use.

  14. Coordination of General Accounting Office Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-06-08T23:59:59.000Z

    The order provides policies, procedures, and responsibilities for the coordination of General Accounting Office activities and actions required when GAO reports contain recommendations pertaining to the DOE. Cancels DOE O 2340.1B.

  15. Publicity-driven accountability in China

    E-Print Network [OSTI]

    Distelhorst, Gregory Michael

    2013-01-01T23:59:59.000Z

    What, if anything, renders unelected bureaucrats accountable to the public? This thesis draws upon field research on contemporary China's news media, officials, and activists to theorize the role of publicity in non-electoral ...

  16. An Offline Foundation for Online Accountable Pseudonyms

    E-Print Network [OSTI]

    Ford, Bryan

    An Offline Foundation for Online Accountable Pseudonyms Bryan Ford Jacob Strauss Massachusetts or distributed for profit or commercial advantage and that copies bear this notice and the full citation

  17. Forest Research Annual Report and Accounts

    E-Print Network [OSTI]

    energy costs Market usage and prices Figure 1 Flow chart of a series of models, linked to create of the length of time the carbon is `locked up', and energy costs for transportation and production of various

  18. Lepton sector of a fourth generation

    SciTech Connect (OSTI)

    Burdman, G. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil); Da Rold, L. [Centro Atomico Bariloche, Bariloche (Argentina); Matheus, R. D. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo (Brazil)

    2010-09-01T23:59:59.000Z

    In extensions of the standard model with a heavy fourth generation, one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by choosing the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth-generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  19. accounting oversight board: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting valuation issues Mathematics Websites Summary: investments Renewable energy Boards of directors Executive remuneration Boardroom diversity Accounting by market...

  20. Greenhouse gases accounting and reporting for waste management - A South African perspective

    SciTech Connect (OSTI)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.z [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa); Trois, Cristina [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Surveying and Construction, Howard College Campus, Durban (South Africa)

    2010-11-15T23:59:59.000Z

    This paper investigates how greenhouse gases are accounted and reported in the waste sector in South Africa. Developing countries (including South Africa) do not have binding emission reduction targets, but many of them publish different greenhouse gas emissions data which have been accounted and reported in different ways. Results show that for South Africa, inventories at national and municipal level are the most important tools in the process of accounting and reporting greenhouse gases from waste. For the development of these inventories international initiatives were important catalysts at national and municipal levels, and assisted in developing local expertise, resulting in increased output quality. However, discrepancies in the methodology used to account greenhouse gases from waste between inventories still remain a concern. This is a challenging issue for developing countries, especially African ones, since higher accuracy methods are more data intensive. Analysis of the South African inventories shows that results from the recent inventories can not be compared with older ones due to the use of different accounting methodologies. More recently the use of Clean Development Mechanism (CDM) procedures in Africa, geared towards direct measurements of greenhouse gases from landfill sites, has increased and resulted in an improvement of the quality of greenhouse gas inventories at municipal level.

  1. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  2. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    SciTech Connect (OSTI)

    Stephen C. Yborra

    2007-04-30T23:59:59.000Z

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high per-vehicle fuel use, central fueling and sensitivity to fuel costs, fleets will continue to be the primary target for NGV deployment and station development efforts. The transit sector is projected to continue to account for the greatest vehicular natural gas use and for new volume growth. New tax incentives and improved life-cycle economics also create opportunities to deploy additional vehicles and install related vehicular natural gas fueling infrastructure in the refuse, airport and short-haul sectors. Focusing on fleets generates the highest vehicular natural gas throughout but it doesn't necessarily facilitate public fueling infrastructure because, generally, fleet operators prefer not to allow public access due to liability concerns and revenue and tax administrative burdens. While there are ways to overcome this reluctance, including ''outside the fence'' retail dispensers and/or co-location of public and ''anchor'' fleet dispensing capability at a mutually convenient existing or new retail location, each has challenges that complicate an already complex business transaction. Partnering with independent retail fuel station companies, especially operators of large ''truck stops'' on the major interstates, to include natural gas at their facilities may build public fueling infrastructure and demand enough to entice the major oil companies to once again engage. Garnering national mass media coverage of success in California and Utah where vehicular natural gas fueling infrastructure is more established will help pave the way for similar consumer market growth and inclusion of public accessibility at stations in other regions. There isn't one ''right'' business model for growing the nation's NGV inventory and fueling infrastructure. Different types of station development and ownership-operation strategies will continue to be warranted for different customers in different markets. Factors affecting NGV deployment and station development include: regional air quality compliance status and the state and/or local political climate regarding mandates and/or in

  3. Informal electronic waste recycling: A sector review with special focus on China

    SciTech Connect (OSTI)

    Chi Xinwen, E-mail: x.chi@pgrad.unimelb.edu.au [Department of Resource Management and Geography, Melbourne School of Land and Environment, University of Melbourne, 221 Bouverie Street, Carlton, VIC 3010 (Australia); Streicher-Porte, Martin [Empa, Swiss Federal Laboratories for Materials Testing and Research, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Wang, Mark Y.L. [Department of Resource Management and Geography, Melbourne School of Land and Environment, University of Melbourne, 221 Bouverie Street, Carlton, VIC 3010 (Australia); Reuter, Markus A. [Outotec Pty Ltd., Melbourne, 12 Kitchen Road, Dandenong, VIC 3175 (Australia)

    2011-04-15T23:59:59.000Z

    Informal recycling is a new and expanding low cost recycling practice in managing Waste Electrical and Electronic Equipment (WEEE or e-waste). It occurs in many developing countries, including China, where current gaps in environmental management, high demand for second-hand electronic appliances and the norm of selling e-waste to individual collectors encourage the growth of a strong informal recycling sector. This paper gathers information on informal e-waste management, takes a look at its particular manifestations in China and identifies some of the main difficulties of the current Chinese approach. Informal e-waste recycling is not only associated with serious environmental and health impacts, but also the supply deficiency of formal recyclers and the safety problems of remanufactured electronic products. Experiences already show that simply prohibiting or competing with the informal collectors and informal recyclers is not an effective solution. New formal e-waste recycling systems should take existing informal sectors into account, and more policies need to be made to improve recycling rates, working conditions and the efficiency of involved informal players. A key issue for China's e-waste management is how to set up incentives for informal recyclers so as to reduce improper recycling activities and to divert more e-waste flow into the formal recycling sector.

  4. Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)

    SciTech Connect (OSTI)

    Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

    1993-05-01T23:59:59.000Z

    The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

  5. Transportation Security | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Security SHARE Global Threat Reduction Initiative Transportation Security Cooperation Secure Transport Operations (STOP) Box Security of radioactive material while...

  6. A high integrity transportable supercompactor

    SciTech Connect (OSTI)

    Sims, J.; Schmidt, G.

    1993-12-31T23:59:59.000Z

    Current transportable equipment produced to utilize high force compaction to reduce the overall volume of drums containing solid radioactive material prior to disposal, were originally designed to standards which will eventually become obsolete. At the time these machines were produced, they were state-of-the-art, but are now indicating their weaknesses in operational and safety aspects. This paper formulates a concept for a Transportable Supercompactor for handling alpha and beta/gamma bearing wastes, low operator dose uptake, contamination and radiation control systems, liquids collection, the maintenance demands of a contained press, etc., taking into account the latest technical and safety considerations. The possibility of using the concept as a skid mounted fixed Supercompactor is also reviewed in this paper.

  7. Cost Accounting System for fusion studies

    SciTech Connect (OSTI)

    Hamilton, W.R.; Keeton, D.C.; Thomson, S.L.

    1985-12-01T23:59:59.000Z

    A Cost Accounting System that is applicable to all magnetic fusion reactor design studies has been developed. This system provides: (1) definitions of the elements of cost and methods for the combination of these elements to form a cost estimate; (2) a Code of Accounts that uses a functional arrangement for identification of the plant components; and (3) definitions and methods to analyze actual cost data so that the data can be directly reported into this Cost Accounting System. The purpose of the Cost Accounting System is to provide the structure for the development of a fusion cost data base and for the development of validated cost estimating procedures. This system has been developed through use at the Fusion Engineering Design Center (FEDC) and has been applied to different confinement concepts (tokamaks and tandem mirrors) and to different types of projects (experimental devices and commercial power plants). The use of this Cost Accounting System by all magnetic fusion projects will promote the development of a common cost data base, allow the direct comparison of cost estimates, and ultimately establish the cost credibility of the program.

  8. Solar Photovoltaic Financing: Residential Sector Deployment

    SciTech Connect (OSTI)

    Coughlin, J.; Cory, K.

    2009-03-01T23:59:59.000Z

    This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

  9. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  10. Electroweak Baryogenesis with a Supersymmetric Sector

    E-Print Network [OSTI]

    Ran Huo

    2013-05-08T23:59:59.000Z

    We study a model with an exotic new sector strongly coupled to the Higgs boson, in which supersymmetry is introduced to protect the quartic coupling from a large running and avoid potential vacuum stability problem. The fermionic components present vector like mass terms, through which the Higgs diphoton decay branching ratio can be tuned. The bosonic components trigger a strongly first order electroweak phase transition. We find a large parameter region of effective Yukawa coupling $y\\gtrsim2$ and mass parameters $m_f\\sim m_s$ of a few hundred GeV, that can simultaneously accommodate the diphoton excess and electroweak baryogenesis, without vacuum stability and electroweak precision measurement problems.

  11. Notice of Public Comment on Electricity Sector Cybersecurity...

    Broader source: Energy.gov (indexed) [DOE]

    The guideline describes a risk management process that is targeted to the specific needs of electricity sector organizations and adds to the body of resources that help refine...

  12. Climate Change: Risks and Opportunities for the Finance Sector...

    Open Energy Info (EERE)

    Climate Change: Risks and Opportunities for the Finance Sector Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for...

  13. DOE has published the revised 2010 Energy Sector Specific Plan

    Broader source: Energy.gov [DOE]

    The Department of Energy announces the publication of the Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan 2010.

  14. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    Statistics. Energy Efficiency Services Sector: WorkforceCouncil for an Energy Efficient Economy. Energy InformationCouncil for an Energy-Efficient Economy. Eto, J. , R. Prahl

  15. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Labor Statistics. Energy Efficiency Services Sector:Renewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. San

  16. Regional Power Sector Integration: Lessons from Global Case Studies...

    Open Energy Info (EERE)

    Integration: Lessons from Global Case Studies and a Literature Review Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Regional Power Sector Integration: Lessons from...

  17. Mexico Sectoral Study on Climate and Refrigeration Technology...

    Open Energy Info (EERE)

    Identifying Reduction Potential and Implementing NAMAs Jump to: navigation, search Name Mexico-Sectoral Study on Climate and Refrigeration Technology in Developing Countries and...

  18. Private Sector Outreach and Partnerships | Department of Energy

    Office of Environmental Management (EM)

    that have been created over years of collaborations with companies from all parts the sector, including electricity, oil, and natural gas. Specific mission areas, such as risk...

  19. Climate VISION: Private Sector Initiatives: Minerals: GHG Work...

    Office of Scientific and Technical Information (OSTI)

    major areas of activity - Emissions Measurement and Reporting, Opportunities for GHG Inventory Protocols Reduction of GHGs, Cross-Sector Projects, and Research & Development and...

  20. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    of incandescent bulbs with more efficient compact fluorescent lighting and light-emitting diode (LED) lamps. Among electric end-use services in the residential sector,...

  1. Making Africa's Power Sector Sustainable: An Analysis of Power...

    Open Energy Info (EERE)

    Africa sustainable. Furthermore, it proposes options that could enhance the sustainability of the power sector. The study adds value to the limited but growing literature on...

  2. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Labor Statistics. Energy Efficiency Services Sector:Department of Energy, Energy Efficiency and Renewable EnergyDepartment of Energy, Energy Efficiency and Renewable Energy

  3. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    1987b). 2.1. Unit Energy Consumptions Data on end-use unitresidential sector energy consumption data, and typicallyNational Interim Energy Consumption Survey Data, prepared

  4. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    2009 These tables provide estimates of residential sector energy consumption and energy intensities for 1978 -1984, 1987, 1990, 1993, 1997, 2001 and 2005 based on the...

  5. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Sector Energy Demand On This Page End-use efficiency... Growth in electricity use... Core technologies... Improved interconnection... End-use efficiency improvements...

  6. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Industrial sector energy demand On This Page Heat and power energy... Industrial fuel mix changes... Iron and steel... Delivered energy use... Chemical industry use of fuels......

  7. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Industrial sector energy demand Manufacturing heat and power energy consumption increases modestly figure data Despite a 49-percent increase in industrial shipments, industrial...

  8. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Industrial sector energy demand Growth in industrial energy consumption is slower than growth in shipments figure data Despite a 76-percent increase in industrial shipments,...

  9. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlling Methane Emissions in the Natural Gas Sector: A Review of Federal & State Regulatory Frameworks Governing Production, Processing, Transmission, and Distribution...

  10. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    Statistics. Energy Efficiency Services Sector: WorkforceRenewable Energy and Energy Efficiency: Economic Drivers forStatewide Long Term Energy Efficiency Strategic Plan. San

  11. Session 6 - Environmentally Concerned Public Sector Panel Discussion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "The Light-Duty Diesel In America?" Session 6 - Environmentally Concerned Public Sector Panel Discussion "The Light-Duty Diesel In America?" 2003 DEER Conference...

  12. australian public sector: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index 1 Change management strategy and values. Six case studies from the Australian Public Sector CiteSeer Summary: Change is a ubiquitous theme in management literature, but...

  13. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Broader source: Energy.gov (indexed) [DOE]

    Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006)...

  14. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    7. Key assumptions for the commercial sector in the AEO2012 integrated demand technology cases Assumptions Integrated 2011 Deand Technology Integraged High Demand Technologya...

  15. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    6. Key assumptions for the residential sector in the AEO2012 integrated demand technology cases Assumptions Integrated 2011 Deand Technology Integraged High Demand Technologya...

  16. Modeling diffusion of electrical appliances in the residential sector

    E-Print Network [OSTI]

    McNeil, Michael A.

    2010-01-01T23:59:59.000Z

    Efficiency Standards in the Residential Electricity Sector.France. USDOE (2001). Residential Energy Consumption Survey,long-term response of residential cooling energy demand to

  17. Climate VISION: Private Sector Initiatives: Mining: GHG Information

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon...

  18. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    patterns of energy consumption, trends in saturation andand how the energy consumption trend could be changed in athe sectoral energy consumption trends in China in detail,

  19. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    to better interpret energy consumption trends over time. Thetrends and policy options for reducing energy consumption orConsumption iii iv Sectoral Trends in Global Energy Use and

  20. DOE Encourages Utility Sector Nominations to Commerce Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commerce Department's Spectrum Advisory Committee DOE Encourages Utility Sector Nominations to Commerce Department's Spectrum Advisory Committee December 14, 2010 - 5:40pm Addthis...

  1. BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES

    E-Print Network [OSTI]

    LBL-33887 UC-000 BUILDINGS SECTOR DEMAND-SIDE EFFICIENCY TECHNOLOGY SUMMARIES Jonathan G. Koomey ............................................................................................... 2 Demand-Side Efficiency Technologies I. Energy Management Systems (EMSs

  2. Transportation energy data book: edition 16

    SciTech Connect (OSTI)

    Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

    1996-07-01T23:59:59.000Z

    The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

  3. "Educating transportation professionals."

    E-Print Network [OSTI]

    Acton, Scott

    "Educating transportation professionals." Michael Demetsky Henry L. Kinnier Professor mjd of Virginia Charlottesville, VA 434.924.7464 Transportation Engineering & Management Research Our group works closely with the Virginia Center for Transportation Innovation and Research (VCTIR), located

  4. Sustainable Energy Future in China's Building Sector

    E-Print Network [OSTI]

    Li, J.

    2007-01-01T23:59:59.000Z

    policies; this will generate significantly benefits given the fast- growing urbanization process and the number of buildings that will be constructed in the next 20 years in Chinese cities. ENERGY USE HISTORY AND OUTLOOK IN CHINA China...://www.energy.gov/ EIA. International Energy Outlook.2006. DOE, Washington. 2006. ERI. 2003. Chinas Sustainable Energy Future. European Commission Directorate General for Energy and Transport. 2001. Information and Communication. Fisher-Vanden et al...

  5. Pendulum Shifts, Context, Error, and Personal Accountability

    SciTech Connect (OSTI)

    Harold Blackman; Oren Hester

    2011-09-01T23:59:59.000Z

    This paper describes a series of tools that were developed to achieve a balance in under-standing LOWs and the human component of events (including accountability) as the INL continues its shift to a learning culture where people report, are accountable and interested in making a positive difference - and want to report because information is handled correctly and the result benefits both the reporting individual and the organization. We present our model for understanding these interrelationships; the initiatives that were undertaken to improve overall performance.

  6. Account Information | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA Account Information Accounts and Access FAQ

  7. Accounts Payable | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA Account Information Accounts

  8. Not planning a sustainable transport system

    SciTech Connect (OSTI)

    Finnveden, Gran, E-mail: goran.finnveden@abe.kth.se; kerman, Jonas

    2014-04-01T23:59:59.000Z

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 20102021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: Two cases are studied to analyse if current planning supports a sustainable transport system. Results show that the plans are in conflict with several of the environmental quality objectives. Long-term climate goals are not included in the planning processes. Current practices do not contribute to a sustainable planning processes. Methodology and process for environmental assessments must be further developed and discussed.

  9. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31T23:59:59.000Z

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  10. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01T23:59:59.000Z

    2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

  11. Chapter 12 Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-1 November 2012 Words in bold and acronyms are defined in Chapter 32, Glossary and Acronyms. Chapter 12 Transportation This chapter describes existing transportation resources in...

  12. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to...

  13. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  14. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-08-11T23:59:59.000Z

    DOE O 474.1 prescribes Department of Energy (DOE) requirements for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission (NRC). Cancels DOE 5633.3B

  15. Forest Research Annual Report and Accounts

    E-Print Network [OSTI]

    , comprising a total value of £1.4 billion (2 billion), the bulk of which is produced by European forest tree stock in an inactive condition for extended periods, and to ensure plant quality where supply. #12;Forest Research Annual Report and Accounts 2004­2005 41 Assessing seedling quality Despite

  16. Energy Accounting and Control on HPC clusters

    E-Print Network [OSTI]

    Lefvre, Laurent

    Energy Accounting and Control on HPC clusters Yiannis Georgiou R&D Software Engineer #12;Objectives Issues that we wanted to deal with: Measure power and energy consumption on HPC clusters Attribute power and energy data to HPC components Calculate the energy consumption of jobs in the system Extract power

  17. Linda K. Krull Associate Professor of Accounting

    E-Print Network [OSTI]

    -1059. Brown, Jennifer and Linda Krull. 2008. Stock Options, R&D, and the R&D Tax Credit. The Accounting Review@uoregon.edu GENERAL INFORMATION Education Ph.D., University of Arizona, Tucson Arizona, 2001 Major area of study More Taxes? Campbell, John, Dan Dhaliwal, Linda Krull, and Casey Schwab. 2014. U.S. Multinational

  18. An accounting system for Florida Christian College

    E-Print Network [OSTI]

    Brough, Royce Donald

    1949-01-01T23:59:59.000Z

    posting from AG Voucher Regia tery &is account represents general fun' liabilii9. 8s of the college for eixich notes hove been given, Eo es may be given in se G'518&est of open Bccovnts BnQ f ox' short ge m loans i0 mcci general '. v~S requirement...

  19. Account of environmental management University of Gothenburg

    E-Print Network [OSTI]

    Johannesson, Henrik

    or reduce its aggregate environmental impact. The university should have a certified environmental13/02/2012 Account of environmental management work 2011 University of Gothenburg In accordance with the Ordinance (2009:907) on environmental management in government authorities Section 1 The Environmental

  20. Accounting Department University of Nevada, Las Vegas

    E-Print Network [OSTI]

    Ahmad, Sajjad

    and Earnings Management," Commercial Lending Review, Vol. 20, No. 2 (March-April 2005), pp. 9-16 (coauthors L. Guan and J. Teruya) "The Value Added of XBRL: an Investor's Perspective,"Proceedings American (Coauthor C. Ho) "The Value Added of XBRL: an Investor's Perspective,"Proceedings American Accounting

  1. Chart of Accounts Dictionary -Coding Guide EXPENDITURES

    E-Print Network [OSTI]

    Northern British Columbia, University of

    of Entries Code Vehicle Repair, Maintenance, Operation The following accounts are used to record expenses related to UNBC mobile equipment. Includes all licensed and unlicensed motorized vehicles (cars, trucks, vans, ATV's, boats, forklifts), non-motorized vehicles (trailers, campers, etc) and vehicle equipment

  2. Banner Financial Aid Account Request Form

    E-Print Network [OSTI]

    Karsai, Istvan

    Banner Financial Aid Account Request Form ETSU Office of Information Technology 424 Roy Nicks Hall, Box 70728 Johnson City, Tennessee 37614 (423) 439-4648 oithelp@etsu.edu This section for use ______________________________________________________________________________________ [last] [first] [middle] ETSU Domain Name ____________________@etsu.edu School / College

  3. ID SYSTEM DEBIT ACCOUNT Payroll Deduction Form

    E-Print Network [OSTI]

    Karsai, Istvan

    ID SYSTEM DEBIT ACCOUNT Payroll Deduction Form This is my authorization for the ETSU Payroll Department to make a monthly deduction from my paycheck to be deposited to my ETSU ID System Debit Card 37614-0611 PHONE: 423/439-8316 http://www.etsu.edu/students/univcent/id.htm e-mail IDBUCS@etsu.edu #12;

  4. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-02-12T23:59:59.000Z

    The order prescribes DOE minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission {NRC). Cancels DOE O 5633.3. Canceled by DOE O 5633.3B.

  5. Verifiable Resource Accounting for Cloud Computing Services

    E-Print Network [OSTI]

    Maniatis, Petros

    Verifiable Resource Accounting for Cloud Computing Services Vyas Sekar Intel Labs Petros Maniatis Intel Labs ABSTRACT Cloud computing offers users the potential to reduce operating and capital expenses cause providers to incorrectly attribute resource consumption to customers or im- plicitly bear

  6. BIODIVERSITY Accounting for tree line shift, glacier

    E-Print Network [OSTI]

    Zimmermann, Niklaus E.

    BIODIVERSITY RESEARCH Accounting for tree line shift, glacier retreat and primary succession land cover (tree line shift, glacier retreat and primary succession) into species distribution model. Methods We fit linear mixed effects (LME) models to historical changes in forest and glacier cover

  7. INFORMATION TECHNOLOGY RELATED EXPENSES Item Account

    E-Print Network [OSTI]

    23514 24102 24202 Mouse 20201 23523 - - 24102 24202 Power Supply 20204 23523 23504 23514 24102 24202 Supplies Expenditures for data processing supplies only. For purchase of data processing services, see of data processing equipment including computers and printers. For purchase of parts, use account 23523

  8. Colombia Country Assessment for Youth Development Accounts

    E-Print Network [OSTI]

    Subramanian, Venkat

    Colombia Country Assessment for Youth Development Accounts By Rainier Masa Summary Colombia stands) in four ways: (1) a well-regulated and innovative banking infrastructure that already delivers youth poverty line (1999): 64 (total), 55 (urban), 79 (rural) (UN Statistics Division, n.d.) Median age: 27

  9. Investigational Drug/Device Accountability Policy Introduction

    E-Print Network [OSTI]

    Subramanian, Venkat

    2/11/08 Investigational Drug/Device Accountability Policy Introduction: Good clinical research investigational drug or device used in a research trial at Washington University. This is true whether the study-initiated trial using department funds. Our institutional responsibility requires that any investigational drug

  10. The Generalized Switched Accounting or Conduction

    E-Print Network [OSTI]

    The Generalized Switched Accounting or Conduction Isaac Zafrany1 1 Technical Support Avant modeling and simulation of PWM converters was extended to include conduction losses. The method covers losses due to the inductor's resistance and due to the voltage drops across the switch and the diode

  11. Fundamentals of materials accounting for nuclear safeguards

    SciTech Connect (OSTI)

    Pillay, K.K.S. (comp.)

    1989-04-01T23:59:59.000Z

    Materials accounting is essential to providing the necessary assurance for verifying the effectiveness of a safeguards system. The use of measurements, analyses, records, and reports to maintain knowledge of the quantities of nuclear material present in a defined area of a facility and the use of physical inventories and materials balances to verify the presence of special nuclear materials are collectively known as materials accounting for nuclear safeguards. This manual, prepared as part of the resource materials for the Safeguards Technology Training Program of the US Department of Energy, addresses fundamental aspects of materials accounting, enriching and complementing them with the first-hand experiences of authors from varied disciplines. The topics range from highly technical subjects to site-specific system designs and policy discussions. This collection of papers is prepared by more than 25 professionals from the nuclear safeguards field. Representing research institutions, industries, and regulatory agencies, the authors create a unique resource for the annual course titled ''Materials Accounting for Nuclear Safeguards,'' which is offered at the Los Alamos National Laboratory.

  12. Contaminated identities: Mercury and marginalization in Ghana's artisanal mining sector

    E-Print Network [OSTI]

    Singha, Kamini

    mining; Political ecology; Ecohealth; Environmental justice; Ghana 1. Introduction Artisanal and smallContaminated identities: Mercury and marginalization in Ghana's artisanal mining sector Petra and multifaceted policy problem that underlies the current conflictual aspects in the small-scale mining sector

  13. ISSN 1745-9648 Electricity Sector Reform in Greece

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Electricity Sector Reform in Greece by Ekaterini Iliadou Lawyer - Legal Department of the electricity market reform in Greece which started in 2001 and is still developing slowly. This is related to the persisting dominance of the incumbent company and the specificities of the electricity sector of Greece

  14. Foreign direct investment in the electricity sector: the Indian perspective

    SciTech Connect (OSTI)

    Sharma, A.K.; Vohra, Ekta

    2008-08-15T23:59:59.000Z

    So far, India is losing out in the competition against other emerging economies to attract more foreign direct investment to its electricity sector. This is in large part because the Indian approach towards power sector reforms is more haphazard than the more orderly and sensitive growth model of Singapore and Latin American economies. (author)

  15. Analytic study on backreacting holographic superconductors with dark matter sector

    E-Print Network [OSTI]

    Lukasz Nakonieczny; Marek Rogatko

    2014-11-04T23:59:59.000Z

    The variational method for Sturm-Liouville eigenvalue problem was employed to study analytically properties of the holographic superconductor with dark matter sector, in which a coupling between Maxwell field and another U(1)-gauge field was considered. The backreaction of the dark matter sector on gravitational background in question was also examined.

  16. Liberalization in the Water Sector: Three leading models.

    E-Print Network [OSTI]

    Boyer, Edmond

    and the pervasive changes in other infrastructure sectors, one must note the remarkably slow pace of reform in the water sector. Moreover, the most systematic reforms until now have been implemented in developed . By reform, we mean substantial changes in decision rights, changes that modify the governance and in many

  17. SECTORAL EFFECTS OF TAX REFORMS IN AN OPEN ECONOMY

    E-Print Network [OSTI]

    Boyer, Edmond

    SECTORAL EFFECTS OF TAX REFORMS IN AN OPEN ECONOMY Olivier CARDI Romain RESTOUT December, 2010 REFORMS IN AN OPEN ECONOMY Olivier CARDI Universite Pantheon-Assas ERMES Ecole Polytechnique Romain with traded and non traded goods to in- vestigate the sectoral effects of three tax reforms: i) two revenue

  18. Sectoral targets for developing countries: Combining "Common but differentiated responsibilities"

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    , as also is the impact on the electricity price. Keywords Sectoral approach, sectoral target, developing-type absolute commitments, whilst developing countries adopt an emission trading system limited to electricity are auctioned by the government, which distributes its revenues lump-sum to households. In a second scenario

  19. Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

    2005-01-01T23:59:59.000Z

    Economic Analysis of Hydrogen Energy Station Concepts,E 2 Four Potential Types of Hydrogen Energy Stations VehicleOperational Toronto Hydrogen Energy Station Stationary PEMFC

  20. Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

    2005-01-01T23:59:59.000Z

    temperature PEMFC, which can load-follow the building andelectrolyzers are able to load follow more than reformers,

  1. Control Account Manager (CAM) Responsibilities Control Account Manager (CAM) responsibilities are listed in the PPPL Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    and define assumptions, risk, and uncertainty in the project Assign an Earned Value Technique to resourceControl Account Manager (CAM) Responsibilities Control Account Manager (CAM) responsibilities are listed in the PPPL Project Management System Description (PMSD) and PMSD Appendix E Supporting

  2. Scenario development in China's electricity sector

    SciTech Connect (OSTI)

    Steenhof, P.A.; Fulton, W. [Carleton University, Ottawa, ON (Canada). Dept. of Geography & Environmental Studies

    2007-07-15T23:59:59.000Z

    The continuing growth of China's electricity sector will affect global environmental and economic sustainability due to its impacts on greenhouse gas emissions and global resource depletion. In 2005, the generation of electricity in China resulted in the emissions of 2290 million metric tonnes of carbon dioxide (approximately 53% of the nation's total) and required 779 million metric tonnes of coal (approximately 50% of China's total coal consumption). These figures are expected to increase with China's economic growth. In order to gauge the range in which fuel consumption and CO{sub 2} emissions could grow a scenario-based conceptual model has been developed by the authors (published in this journal). The application and analysis of this shows that under a business as usual (BAU) scenario, electricity generation could contribute upwards of 56% of China's energy related greenhouse gas emissions by 2020. Meanwhile, consumption of coal will also increase, growing to nearly 60% of total national demand by 2020. However, variations in a number of key drivers could produce significant deviation from the BAU scenario. With accelerated economic output, even with greater technological advances and greater potential to bring natural gas on stream, carbon dioxide emissions would rise 10% above the BAU. Alternatively, in a scenario where China's economy grows at a tempered pace, less investment would be available for advanced technologies, developing natural gas infrastructure, or nuclear energy. In this scenario, reduced economic growth and electricity demand would thereby be countered by reduced efficiency and a higher contribution of coal.

  3. Antineutrino Oscillations in the Atmospheric Sector

    SciTech Connect (OSTI)

    Himmel, Alexander I.; /Caltech

    2011-05-01T23:59:59.000Z

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for {nu}{sub {mu}} {yields} {bar {nu}}{sub {mu}} transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |{Delta}{bar m}{sub atm}{sup 2}| = (3.36{sub -0.40}{sup +0.46}(stat) {+-} 0.06(syst)) x 10{sup -3} eV{sup 2} and sin{sup 2}(2{bar {theta}}{sub 23}) = 0.860{sub -0.12}{sup +0.11}(stat) {+-} 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  4. Transportation energy data book: Edition 12

    SciTech Connect (OSTI)

    Davis, S.C.; Morris, M.D.

    1992-03-01T23:59:59.000Z

    The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  5. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01T23:59:59.000Z

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  6. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01T23:59:59.000Z

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  7. Transportation energy data book: Edition 15

    SciTech Connect (OSTI)

    Davis, S.C.

    1995-05-01T23:59:59.000Z

    The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  8. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat

  9. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation ope

  10. Graduate Certificate in Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Graduate Certificate in Transportation Nohad A. Toulan School of Urban Studies and Planning of Engineering and Computer Science integrated transportation systems. The Graduate Certificate in Transportation their capabilities. Students in the program can choose among a wide range of relevant courses in transportation

  11. TRANSPORTATION Annual Report

    E-Print Network [OSTI]

    Minnesota, University of

    2003 CENTER FOR TRANSPORTATION STUDIES Annual Report #12;Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Avenue S.E. Minneapolis, MN publication is a report of transportation research, education, and outreach activities for the period July

  12. Minnesota's Transportation Economic Development (TED)

    E-Print Network [OSTI]

    Minnesota, University of

    Minnesota's Transportation Economic Development (TED) Pilot Program Center for Transportation Studies Transportation Research Conference May 24-25, 2011 #12;Transportation Role in Economic Development · Carefully targeted transportation infrastructure improvements will: ­ Stimulate new economic development

  13. Introduction Transport in disordered graphene

    E-Print Network [OSTI]

    Fominov, Yakov

    Introduction Transport in disordered graphene Summary Ballistic transport in disordered graphene P, Gornyi, Mirlin Ballistic transport in disordered graphene #12;Introduction Transport in disordered graphene Summary Outline 1 Introduction Model Experimental motivation Transport in clean graphene 2

  14. The Rise and Decline of U.S. Private Sector Investments in Energy R&D since the Arab Oil Embargo of 1973

    SciTech Connect (OSTI)

    Dooley, James J.

    2010-11-01T23:59:59.000Z

    This paper presents two distinct datasets that describe investments in energy research and development (R&D) by the US private sector since the mid1970s, which is when the US government began to systematically collect these data. The first dataset is based upon a broad survey of more than 20,000 firms industrial R&D activities. This broad survey of US industry is coordinated by the US National Science Foundation. The second dataset discussed here is a much narrower accounting of the energy R&D activities of the approximately two dozen largest US oil and gas companies conducted by the US Department of Energys Energy Information Agency. Even given the large disparity in the breadth and scope of these two surveys of the private sectors support for energy R&D, both datasets tell the same story in terms of the broad outlines of the private sectors investments in energy R&D since the mid 1970s. The broad outlines of the US private sectors support for energy R&D since the mid 1970s is: (1) In the immediate aftermath of the Arab Oil Embargo of 1973, there is a large surge in US private sector investments in energy R&D that peaked in the period between 1980 and 1982 at approximately $3.7 billion to $6.7 billion per year (in inflation adjusted 2010 US dollars) depending upon which survey is used (2) Private sector investments in energy R&D declined from this peak until bottoming out at approximately $1.8 billion to $1 billion per year in 1999; (3) US private sector support for energy R&D has recovered somewhat over the past decade and stands at $2.2 billion to $3.4 billion. Both data sets indicate that the US private sectors support for energy R&D has been and remains dominated by fossil energy R&D and in particular R&D related to the needs of the oil and gas industry.

  15. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    of domestic gas distribution pipelines. These domesticand gas extraction, transport and distribution pipelines, to

  16. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    To prescribe Department of Energy (DOE) requirements, including those for the National Nuclear Security Administration (NNSA), for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). DOE N 251.60, dated 11-19-04, extends this directive until 11-19-05. Cancels DOE O 474.1.

  17. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-09-07T23:59:59.000Z

    To prescribe the Department of Energy (DOE) minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE O 5633.2A and DOE O 5633.3A. Canceled by DOE O 474.1

  18. Financial Management: Cash vs. Accrual Accounting

    E-Print Network [OSTI]

    Klinefelter, Danny A.; McCorkle, Dean; Klose, Steven

    2008-10-17T23:59:59.000Z

    ) as of the beginning and end of the period. Danny Klinefelter, Dean McCorkle and Steven Klose* 2 The process yields an ?accrual adjusted? in- come statement. It differs from accrual income in that inventories may be valued at their current market value rather than... on grain sales. Table 1. Adjusting cash basis records to approximate accrual basis records. Cash basis Adjustments to cash basis Equals accrual basis Cash receipts ? Beginning inventories + Ending inventories ? Beginning accounts receivable + Ending...

  19. Human Capital Accountability Program--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-11-15T23:59:59.000Z

    Withdrawn 3-26-14. The purpose of maintaining and updating this directive is to (1) Ensure compliance with applicable laws, regulations, and other directives. (2) Reduce the risk of DOE losing any of its personnel authorities. (3) Incorporate functional accountability to ensure that Human Resource Directors' position descriptions and classifications are appropriate, selections result in quality leadership with skills needed, and performance plans and evaluations are consistent with Department and Administration human resources priorities and audit findings.

  20. Accounting standards for the Dominican Republic

    E-Print Network [OSTI]

    Reyes-Lugo, Ramon

    1972-01-01T23:59:59.000Z

    language is Spanish. The majority of the popula- tion is Roman Catholic; however, there is religious freedom. The monetary unit is the Dominican Republic peso oro (RDS), the official rate of exchange of which is equivalent to one U. S. dollar. i... States. The standards and principles of accounting have been translated into Spanish from U. S. textbooks (R. Kester, Finney and Miller, etc. ). In a survey 21 conducted by the author, even the most recently published APB- Opinions were found in use...

  1. CORE BUSINESS COURSES ACCT 210 ACCOUNTING CR

    E-Print Network [OSTI]

    Shihadeh, Alan

    P.O.Box: CORE BUSINESS COURSES ACCT 210 ACCOUNTING CR ACCT 215 ACCT 217 to ACCT 250 3 BUSS 200 ACCT 217 to ACCT 250 3 BUSS 211 ACCT 217 to ACCT 250 3 BUSS 230 ACCT 217 to ACCT 250 3 BUSS 239 Any business elective 3 BUSS 240 Total Crs 15 BUSS 245 BIDS CR BUSS 248 INFO 205 3 BUSS 249 DCSN 205 3 DCSN 200

  2. Pre-Award Accounting System Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARD ACCOUNTING SYSTEM SURVEY Applicant: Funding

  3. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    SciTech Connect (OSTI)

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01T23:59:59.000Z

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation-specific policies, they recommend (in addition to the land use policies mentioned above), that they combine an upstream trading system with a carbon efficiency standard similar to the current CAFE standard. Under this approach a fuel price signal would be complemented by incentives for manufacturers to produce more carbon efficient vehicles. To prevent vehicle manufacturers from being forced to pay more than other sectors for reducing GHG emissions, they recommend that the vehicle makers be allowed to pay a cash penalty equal to the market price of allowances in lieu of meeting carbon efficiency requirements.

  4. Material accountancy for metallic fuel pin casting

    SciTech Connect (OSTI)

    Bucher, R.G.; Orechwa, Y.; Beitel, J.C.

    1995-08-01T23:59:59.000Z

    The operation of the Fuel Conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. The pin casting operation, although only one of several operations in FCF, was the first to be on-line. As such, it has served to demonstrate the material accountancy system in many of its facets. This paper details, for the operation of the pin casting process with depleted uranium, the interaction between the mass tracking system (MTG) and some of the ancillary computer codes which generate pertinent information for operations and material accountancy. It is necessary to distinguish between two types of material balance calculations -- closeout for operations and material accountancy for safeguards. The two have much in common, for example, the mass tracking system database and the calculation of an inventory difference, but, in general, are not congruent with regard to balance period and balance spatial domain. Moreover, the objective, assessment, and reporting requirements of the calculated inventory difference are very different in the two cases.

  5. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    crops Full HEV (regenerative braking, battery-electricidle-off and limited regenerative braking Closing/covering

  6. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  7. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    ethanol (with the remaining 15% gasoline). Up to now, few of these E85-ethanols somewhat lower energy content per volume. Increasingly so-called flex-fuel E85E85 vehicles would otherwise face. The reference case forecasts for the US include increases in ethanol

  8. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    2000. Assumptions to the Annual Energy Outlook 2000. U.S.EIA), 2005. Annual Energy Outlook 2005: With Projections toU.S. EIA), 2007. Annual Energy Outlook 2007. U.S. Department

  9. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    shift future projected coal generation increases to naturalthe reference of pulverized coal generation is applied, thusthrough 2040. All new coal generation was to be with one of

  10. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    existing power plants (30-40 years), the transition to lower-GHG technologiesnatural gas technologies. Existing fossil fuel plants are

  11. The Carnol process for CO{sub 2} mitigation from power plants and the transportation sector

    SciTech Connect (OSTI)

    Steinberg, M.

    1995-12-01T23:59:59.000Z

    A carbon dioxide (CO{sub 2}) mitigation process is developed which converts waste CO{sub 2}, primarily from coal-fired power plant stack gases, to methanol for use as a liquid fuel and a coproduct carbon for use as a materials commodity. The Carnol process chemistry consists of methane decomposition to produce hydrogen which is catalytically reacted with the recovered waste CO{sub 2} to produce methanol. The carbon is either stored or sold. A process design is modeled, and mass and energy balances are presented as a function of reactor pressure and temperature conditions. The Carnol process is a viable alternative to sequestering CO{sub 2} in the ocean for purposes of reducing CO{sub 2} emissions from coal burning power plants. Over 90% of the CO{sub 2} from the coal burning plant is used in the process which results in a net CO{sub 2} emission reduction of over 90% compared to that obtained for conventional methanol production by steam reforming of methane. Methanol, as an alternative liquid fuel for automotive engines and for fuel cells, achieves additional CO{sub 2} emission reduction benefits. The economics of the process is greatly enhanced when carbon can be sold as a materials commodity. The process design and economics could possibly be achieved by developing a molten metal (tin) methane decomposition reactor and a liquid phase, slurry catalyst, methanol synthesis reactor directly using the solvent saturated with CO{sub 2} scrubbed from the power plant stack gases. The application of CO{sub 2} mitigation technologies, such as the Carnol process, depends to some extent, on how serious the country and the world takes the global greenhouse gas warming problem.

  12. The Carnol process for CO{sub 2} mitigation from power plants and the transportation sector

    SciTech Connect (OSTI)

    Steinberg, M.

    1995-08-01T23:59:59.000Z

    A CO{sub 2} mitigation process is developed which converts waste CO{sub 2}, primarily recovered from coal-fired power plant stack gases with natural gas, to produce methanol as a liquid fuel and coproduct carbon as a materials commodity. The Carnol process chemistry consists of methane decomposition to produce hydrogen which is catalytically reacted with the recovered waste CO{sub 2} to produce methanol. The carbon is either stored or sold as a materials commodity. A process design is modelled and mass and energy balances are presented as a function of reactor pressure and temperature conditions. The Carnol process is a viable alternative to sequestering CO{sub 2} in the ocean for purposes of reducing CO{sub 2} emissions from coal burning power plants. Over 90% of the CO{sub 2} from the coal burning plant is used in the process which results in a net CO{sub 2} emission reduction of over 90% compared to that obtained for conventional methanol production by steam reforming of methane. Methanol as an alternative liquid fuel for automotive engines and for fuel cells achieves additional CO{sub 2} emission reduction benefits. The economics of the process is greatly enhanced when carbon can be sold as a materials commodity. Improvement in process design and economics should be achieved by developing a molten metal (tin) methane decomposition reactor and a liquid phase, slurry catalyst, methanol synthesis reactor directly using the solvent saturated with CO{sub 2} scrubbed from the power plant stack gases. The benefits of the process warrant its further development.

  13. Radiative forcing due to changes in ozone and methane caused by the transport sector

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    one Climate Chemistry Model (CCM) have been used to simulatedescription of the CTMs and CCM used in this study. A moreresolution and 31 vertical CCM nudged to meteorological data

  14. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    and developing emissions trading mechanisms to connect andand development of emissions trading or cap-and-tradesector market-based emissions trading system in the Western

  15. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    large conventional hydroelectric power, municipal solidconventional large hydroelectric power in the percentage).large conventional hydroelectric power is not included (this

  16. A review of life-cycle analysis studies on liquid biofuel systems for the transport sector

    E-Print Network [OSTI]

    " liquid biofuels (biodiesel and sugar/starch bioethanol) and potential "future" liquid biofuels (Fischer-Tropsch fu- els, dimethyl ether, and cellulosic bioethanol) are included. Striking features of the LCAs, SVO) from rapeseed Bioethanol (E100, E85, E10, ethyl tetrabutyl ether or ETBE) from grains or seeds

  17. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    natural gas-powered combined cycle power plants. The most recent federal energy legislation, the Energy Independence and Security

  18. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    110 Table 26. Landfill gas GHG reductionlandfills to utilize the landfill gas generally includes acollection system. Landfill gas from throughout landfills

  19. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Information Administration (U.S. EIA), 2000. Assumptions to2000. U.S. Department of Energy. DOE/EIA-0554(2000). U.S.Administration (U.S. EIA), 2005. Annual Energy Outlook 2005:

  20. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    forecasts small expansions in nuclear and renewable sources, with the vast majority of new generation coming from coal and natural gas.and natural gas will be key feedstocks for decades to come; the U.S. EIA forecast (

  1. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    2003; Meier et al. , 2005; IEA/NEA, 2005; Williams, 2001et al. , 2005; Weissner 2007; IEA/NEA, 2005 Meier et al. ,2005; IEA/NEA, 2005; Beurskens et al. , 2005; Awerbuch et

  2. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    GHG rate and average cost-per-kWh of generation of thatas the incremental cost-per-kWh of the low-GHG technology (

  3. Environmental implications of trade liberalization on North American transport services: the case of the trucking sector

    E-Print Network [OSTI]

    Fernandez, Linda

    2010-01-01T23:59:59.000Z

    2005). NAFTA/Mexican Truck Emissions Overview, Sacramento,helped the ICF calculate truck emissions factors to indicateJ. (2005). Mexican truck idling emissions at the El Paso-

  4. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    truck GHG emissions25. Commercial truck GHG emissions with emission-reductionCost effectiveness curve for truck GHG emission reduction

  5. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    for Carbon Capture and Storage Technologies. Resources fortechnologies such as integrated gasification combined cycle (IGCC) coal plants, carbon capturecarbon capture and sequestration. These low-GHG electricity technologies,

  6. Global Climate Change, Developing Countries and Transport Sector Options in South Africa

    E-Print Network [OSTI]

    2000-01-01T23:59:59.000Z

    South Africa (MSA) Action Agenda (May 1999) 36 Main policy thrusts .36 Key strategic issues..37 Key initiatives38 White Paper on Energy Policy (

  7. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Technology Support Unit (ETSU), 1994. "An Appraisal of UKNRC, 1992; IPCC, 1999; ETSU, 1994; CAEP, 1995; DCAD, 1997;Baseline NRC, 1992 IPCC, 1999 ETSU, 1994 (low) ETSU, 1994 (

  8. Environmental implications of trade liberalization on North American transport services: the case of the trucking sector

    E-Print Network [OSTI]

    Fernandez, Linda

    2010-01-01T23:59:59.000Z

    Mexico Border Port of Laredo Concentration year pollution,air pollution. In Table 2, for NO x on the USMexico border,

  9. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    2003. Cooling, Heating, and Power for Industry: A MarketMarket Assessment for Condensing Boilers in Commercial Heatingefficiency heating technology options. In the market for a

  10. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    improved efficiency heating technology options. In theare several technology options that provide heating andOne technology that can effectively provide heating and

  11. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    area are Minnesotas 20% ethanol fuel standard for gasolinearea are Minnesotas 20% ethanol fuel standard for gasolinewith increased cellulosic ethanol Fuel carbon content (g

  12. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    heaters avoid the water heater tank altogether by quicklywater heater, with it use of a vapor compression refrigeration cycle, is more efficient than conventional tank

  13. Environmental implications of trade liberalization on North American transport services: the case of the trucking sector

    E-Print Network [OSTI]

    Fernandez, Linda

    2010-01-01T23:59:59.000Z

    requires the use of ultra low-sulfur diesel, now required inthe shift toward ultra low-sulfur fuel. The nationwide plan

  14. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    and Mineral Production The extraction, production, and processing of metals and minerals result in both process-

  15. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Shipley, and E. Brown, 2003. CHP Five Years Later: Federaland Paper Industries by Applying CHP Technologies. Lawrence112 Table 27. Potential GHG mitigation from CHP

  16. Towards a low carbon transport sector: electricity or hydrogen?y y g

    E-Print Network [OSTI]

    emission - electric 40 45 [Mton CO2 (W-t-W)] Other innovations 30 35 Other innovations (e.g. biofu-30% biofuels and some energy saving innovations 12 #12;Hydrogen Well-to-Wheel CO2 emission - hydrogen 40 45 or RES! 13 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 #12;Electricity Well-to-Wheel CO2

  17. Environmental implications of trade liberalization on North American transport services: the case of the trucking sector

    E-Print Network [OSTI]

    Fernandez, Linda

    2010-01-01T23:59:59.000Z

    drayage ?eet is older. Line-haul trucks in the US and Mexicoacross the border. Line-haul trucks then pick up theand older than line-haul trucks and tend to produce higher

  18. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    heavy- duty long-haul Class 8 trucks getting approximately 6which the trucks are sold from long-haul freight companiesof these trucks commonly involves initial use in long-haul

  19. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    >50,000 sf buildings) Residential micro-CHP using Stirlingand micro- turbines. Residential micro-CHP systems are less

  20. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    included. As technologies to produce biodiesel from varyinginitial technology and lifetime operating costs Biodiesel (biodiesel usage through 2020 reveals a relatively small biofuel content in future diesel trucks, there are policy and technology

  1. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Inc. (EEA). 2001. Technology and Cost of Future Fuel Economyproduction leads to lower technology costs. In the case ofpollution control technology costs. As a result, the cost-

  2. Session 5: Renewable Energy in the Transportation and Power SectorsŽ

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptember 24, 2014 MEMORANDUM7,5:

  3. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Toolsearch keywordsclear searchCOMMERCIAL

  4. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    The use of a heat pump water heater, with it use of a vaporResidential heat pump water heaters Walk-in refrigerators

  5. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    $/tonne CO2 eq) Greenhouse gas emission reduction in 2030 ($/tonne CO2 eq) Greenhouse gas emission reduction in 2030 ($/tonne CO2 eq) Greenhouse gas emission reduction in 2030 (

  6. The Practice of Cost Benefit Analysis in the Transport Sector a Mexican

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:Uncertainty of1801 -Plains,The

  7. GIZ Sourcebook Module 5d: The CDM in the Transport Sector | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604°Wisconsin:FyreStorm IncLSE COMPOpenInformation

  8. Transportation Sector Energy Use by Mode from EIA AEO 2011 Early Release -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company)LibraryDatasets - OpenEI Datasets

  9. Transportation Sector Energy Use by Type from EIA AEO 2011 Early Release -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company)LibraryDatasets - OpenEI

  10. Material Control & Accountability for Department Of Energy (DOE...

    Energy Savers [EERE]

    Material Control & Accountability for Department Of Energy (DOE) Tritium Facilities Material Control & Accountability for Department Of Energy (DOE) Tritium Facilities Presentation...

  11. Office of HC Policy, Accountability, and Technology (HC-10) ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy, Accountability, and Technology (HC-10) Office of HC Policy, Accountability, and Technology (HC-10) Mission and Function Statement This organization supports the program...

  12. Data Collection Requirements for the Federal Funding Accounting...

    Office of Environmental Management (EM)

    Data Collection Requirements for the Federal Funding Accounting and Transparency Act (FFATA) of 2006 Data Collection Requirements for the Federal Funding Accounting and...

  13. agent accountability sheet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply accounting principles to aid in making business decisions Communicate budgetary and accounting Outdoor Adventures LLC Missoula County Public Schools ASP Healthcare...

  14. accountability personnel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply accounting principles to aid in making business decisions Communicate budgetary and accounting Outdoor Adventures LLC Missoula County Public Schools ASP Healthcare...

  15. account form errors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reimbursement account Huang, Jianyu 2 SYSTEMS DEPARTMENT INTERNET ACCOUNT REQUEST FORM Energy Storage, Conversion and Utilization Websites Summary: SYSTEMS DEPARTMENT INTERNET...

  16. Methodology for Carbon Accounting of Grouped Mosaic and Landscape...

    Open Energy Info (EERE)

    Methodology for Carbon Accounting of Grouped Mosaic and Landscape-scale REDD Projects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Carbon Accounting...

  17. Estimating carbon dioxide emission factors for the California electric power sector

    SciTech Connect (OSTI)

    Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

    2002-08-01T23:59:59.000Z

    The California Climate Action Registry (''Registry'') was initially established in 2000 under Senate Bill 1771, and clarifying legislation (Senate Bill 527) was passed in September 2001. The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) has been asked to provide technical assistance to the California Energy Commission (CEC) in establishing methods for calculating average and marginal electricity emissions factors, both historic and current, as well as statewide and for sub-regions. This study is exploratory in nature. It illustrates the use of three possible approaches and is not a rigorous estimation of actual emissions factors. While the Registry will ultimately cover emissions of all greenhouse gases (GHGs), presently it is focusing on carbon dioxide (CO2). Thus, this study only considers CO2, which is by far the largest GHG emitted in the power sector. Associating CO2 emissions with electricity consumption encounters three major complications. First, electricity can be generated from a number of different primary energy sources, many of which are large sources of CO2 emissions (e.g., coal combustion) while others result in virtually no CO{sub 2} emissions (e.g., hydro). Second, the mix of generation resources used to meet loads may vary at different times of day or in different seasons. Third, electrical energy is transported over long distances by complex transmission and distribution systems, so the generation sources related to electricity usage can be difficult to trace and may occur far from the jurisdiction in which that energy is consumed. In other words, the emissions resulting from electricity consumption vary considerably depending on when and where it is used since this affects the generation sources providing the power. There is no practical way to identify where or how all the electricity used by a certain customer was generated, but by reviewing public sources of data the total emission burden of a customer's electricity supplier can b e found and an average emissions factor (AEF) calculated. These are useful for assigning a net emission burden to a facility. In addition, marginal emissions factors (MEFs) for estimating the effect of changing levels of usage can be calculated. MEFs are needed because emission rates at the margin are likely to diverge from the average. The overall objective of this task is to develop methods for estimating AEFs and MEFs that can provide an estimate of the combined net CO2 emissions from all generating facilities that provide electricity to California electricity customers. The method covers the historic period from 1990 to the present, with 1990 and 1999 used as test years. The factors derived take into account the location and time of consumption, direct contracts for power which may have certain atypical characteristics (e.g., ''green'' electricity from renewable resources), resource mixes of electricity providers, import and export of electricity from utility owned and other sources, and electricity from cogeneration. It is assumed that the factors developed in this way will diverge considerably from simple statewide AEF estimates based on standardized inventory estimates that use conventions inconsistent with the goals of this work. A notable example concerns the treatment of imports, which despite providing a significant share of California's electricity supply picture, are excluded from inventory estimates of emissions, which are based on geographical boundaries of the state.

  18. Possible Pathways for Increasing Natural Gas Use for Transportation (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.

    2014-10-01T23:59:59.000Z

    A collaborative partnership of DOE National Laboratories is working with DOE to identify critical RD&D needs to significantly increase the speed and breadth of NG uptake into the transportation sector. Drivers for increased utilization of natural gas for transportation are discussed. Key needs in research, development, and deployment are proposed, as well as possible pathways to address those needs. This presentation is intended to serve as a catalyst to solicit input from stakeholders regarding what technical areas they deem the most important.

  19. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2011-09-01T23:59:59.000Z

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

  20. Sharing the burden of climate change stabilization: An energy sector perspective

    E-Print Network [OSTI]

    Wagner, Fabian; Sathaye, Jayant

    2006-01-01T23:59:59.000Z

    energy demand in the electricity sector and demand in all2070 when in the electricity sector coal is largely replaceddemand both in the electricity sector and the non-electric

  1. Multi-project baselines for potential clean development mechanism projects in the electricity sector in South Africa

    E-Print Network [OSTI]

    Winkler, H.; Spalding-Fecher, R.; Sathaye, J.; Price, L.

    2002-01-01T23:59:59.000Z

    projects in the electricity sector in South Africa. JournalMechanism projects in the electricity sector in South AfricaCDM projects in the electricity sector References UNFCCC,

  2. Evaluation of Efficiency Activities in the Industrial Sector Undertaken in Response to Greenhouse Gas Emission Reduction Targets

    E-Print Network [OSTI]

    Price, Lynn

    2010-01-01T23:59:59.000Z

    Fuels used in the refinery sector were also collected fromof the emissions from the refinery sector are included incommitment of 44% and the refinery and food sectors

  3. SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results

    E-Print Network [OSTI]

    Wei, Max

    2014-01-01T23:59:59.000Z

    II Volume I: Non-Electricity Sectors and Overall ScenarioElectricity Sector Conditions Assumed for Electricity Sector and Building

  4. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  5. Macomb College Transportation and Energy Technology 126.09

    SciTech Connect (OSTI)

    None

    2010-12-31T23:59:59.000Z

    The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

  6. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-10-15T23:59:59.000Z

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  7. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE...

  8. Sealed Radioactive Source Accountability and Control Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15T23:59:59.000Z

    For use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. This Guide provides an acceptable methodology for establishing and operating a sealed radioactive source accountability and control program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart M of 10 CFR 835. Canceled by DOE G 441.1-1B.

  9. Accountability report. Fiscal Year 1996, Volume 2

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This report consolidates several performance-related reports into a single financial management report. Information in this report includes information previously reported in the following documents: (1) US Nuclear Regulatory Commission`s (NRC`s) annual financial statement, (2) NRC Chairman`s annual report to the President and the Congress, and (3) NRC Chairman`s semiannual report to Congress on management decisions and final actions on Office of Inspector General audit recommendations. This report also contains performance measures. The report is organized into the following subtopics: information about the US NRC, program performance, management accountability, and the audited financial statement for Fiscal Year 1996. 19 figs., 4 tabs.

  10. Accounts & Access | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome FinancialScience Home | Account

  11. Accounts Payable .:. Lawrence Berkeley National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACMEAccountable PropertyAccounts

  12. Roadmap to Secure Control Systems in the Energy Sector 2006 ...

    Energy Savers [EERE]

    2006 - Presentation to the 2008 ieRoadmap Workshop Roadmap to Secure Control Systems in the Energy Sector 2006 - Presentation to the 2008 ieRoadmap Workshop Presentation by Hank...

  13. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    105.3 -- 106.3 -- -- -- not reported. aIEA data are for 2010. bLosses in CTL and biofuel production. c Energy consumption in the sectors includes electricity demand purchases...

  14. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    103.3 -- 112.7 -- -- -- -- not reported. aIEA data are for 2009. bLosses in CTL and biofuel production. c Energy consumption in the sectors includes electricity demand purchases...

  15. Controlling Methane Emissions in the Natural Gas Sector: A Review...

    Broader source: Energy.gov (indexed) [DOE]

    from this sector have typically occurred as a co-benefit of policies that target air pollution (such as smog) and improve safety. In general, policy strategies that reduce...

  16. Climate VISION: Private Sector Initiatives: Electric Power: Work...

    Office of Scientific and Technical Information (OSTI)

    Work Plans The power sector, through EPICI, submitted its work plan in the form of a Memorandum of Understanding (MOU) with DOE. The MOU, most recently updated in September 2006,...

  17. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    to evaluate the impact on energy investments. figure data In the No GHG Concern case, coal use for both electricity generation in the electric power sector and as part of...

  18. Staff at sector 30, inelastic x-ray scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 30 Staff Advanced Photon Source A U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences national synchrotron x-ray research facility Search Button...

  19. Short-term CO? abatement in the European power sector

    E-Print Network [OSTI]

    Delarue, Erik D.

    2008-01-01T23:59:59.000Z

    This paper focuses on the possibilities for short term abatement in response to a CO2 price through fuel switching in the European power sector. The model E-Simulate is used to simulate the electricity generation in Europe ...

  20. City of San Jose- Private Sector Green Building Policy

    Broader source: Energy.gov [DOE]

    In October 2008, the City of San Jose enacted the Private Sector Green Building Policy (Policy No. 6-32). The policy was adopted in Ordinance No. 28622 in June, 2009. All new buildings must meet...