National Library of Energy BETA

Sample records for transportation rate structure

  1. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Previous Data Years Year: 2013 2011 2010 2008 2002 Go Background and Methodology The data ... The initial report on coal transportation rates covered the years 2001 through 2008, ...

  2. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    SciTech Connect (OSTI)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.

    2013-02-15

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site ? specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOEs legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. ? Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of secondary mineral precipitates (cancrinite), conducting experiments under conditions with and without Al allowed us to experimentally separate the conditions that lead to quartz dissolution from the conditions that lead to quartz dissolution plus cancrinite precipitation. Consistent with our expectations, in the experiments without Al, there was a substantial reduction in volume of the solid matrix. With Al there was a net increase in the volume of the solid matrix. The rate and extent of reaction was found to increase with temperature. These results demonstrate a successful effort to identify conditions that lead to increases and conditions that lead to decreases in solid matrix volume due to reactions of caustic tank wastes with quartz sands. In addition, we have begun to work with slightly larger, intermediate-scale columns packed with Hanford natural sediments and quartz. Similar dissolution and precipitation were observed in these colums. The measurements are being interpreted with reactive transport modeling using STOMP; preliminary observations are reported here. 2) Multi-Scale Imaging and Analysis. Mineral dissolution and precipitation rates within a porous medium will be different in different pores due to natural heterogeneity and the heterogeneity that is created from the reactions themselves. We used a combination of X-ray computed microtomography, backscattered electron and energy dispersive X-ray spectroscopy combined with computational image analysis to quantify pore structure, mineral distribution, structure changes and fluid-air and fluid-grain interfaces. ? Results and Key Findings: Three of the columns from the reactive flow experiments at PNNL (S1, S3, S4) were imaged using 3D X-ray computed microtomography (XCMT) at BNL and analyzed using 3DMA-rock at SUNY Stony Brook. The imaging results support the mass balance findings reported by Dr. Ums group, regarding the substantial dissolution of quartz in column S1. An important observation is that of grain movement accompanying dissolution in the unconsolidated media. The resultant movement

  3. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  4. Does Water Content or Flow Rate Control Colloid Transport in...

    Office of Scientific and Technical Information (OSTI)

    Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Citation Details In-Document Search Title: Does Water Content or Flow Rate Control Colloid ...

  5. The Coal Transportation: Rates and Trends in the United States...

    Gasoline and Diesel Fuel Update (EIA)

    had previously disclosed transportation rates and mine prices changed policy. Those data were declared confidential and, by law, cannot be disclosed at individual company...

  6. Energy Policy Act Transportation Rate Study: Final Report on Coal Transportation

    Reports and Publications (EIA)

    2000-01-01

    This is the final in a series of reports prepared for the U.S. Congress by the Secretary of Energy on coal distribution and transportation rates as mandated by Title XIII, Section 1340, Establishment of Data Base and Study of Transportation Rates, of the Energy Policy Act of 1992 (P.L. 102-486).

  7. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Rate Jump to: navigation, search This is a property of type...

  8. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier1Rate Jump to: navigation, search This is a property of type...

  9. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  10. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  11. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Rate Jump to: navigation, search This is a property of type...

  12. Final Report- National Database of Utility Rates and Rate Structure

    Broader source: Energy.gov [DOE]

    One of the key informational barriers for consumers, installers, regulators and policymakers, is the proper comparison cost of utility-supplied electricity that will be replaced with a Photovoltaic (PV) system. Oftentimes, these comparisons are made with national or statewide averages which results in inaccurate comparisons and conclusions. Illinois State University seeks to meet the need for accurate information about electricity costs and rate structure by building a national database of utility rates and rate structures. The database will build upon the excellent framework that was developed by the OpenEI.org initiative and extend it in several important ways. First, the data will be populated and monitored by a team of trained regulatory economists. Second, the database will be more comprehensive because it will be populated with data from newer competitive retail suppliers for states that have restructured their electricity markets to allow such suppliers. Third, the University and its Institute for Regulatory Policy Studies will maintain the database and ensure that it contains the most recent rate information.

  13. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect (OSTI)

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  14. Transport Induced by Large Scale Convective Structures in a Dipole-Confined Plasma

    SciTech Connect (OSTI)

    Grierson, B. A.; Mauel, M. E.; Worstell, M. W.; Klassen, M.

    2010-11-12

    Convective structures characterized by ExB motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  15. Structure of a eukaryotic SWEET transporter in a homotrimeric...

    Office of Scientific and Technical Information (OSTI)

    transporter in a homotrimeric complex Citation Details In-Document Search Title: Structure of a eukaryotic SWEET transporter in a homotrimeric complex Authors: Tao, Yuyong ; ...

  16. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near ...

  17. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect (OSTI)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however, not affected by the flow rate because molecular diffusion limits reductant supply to the micropore domain interior. Domain-based macroscopic models were evaluated to scale redox reaction rates from the pore to macroscopic scales. A single domain model, which ignores subgrid transport heterogeneity deviated significantly from the pore-scale results. Further analysis revealed that the rate expression for hematite reduction was not scalable from the pore to porous media using the single domain model. A three-domain model, which effectively considers subgrid reactive diffusion in the micropore and macropore domains, significantly improved model description. Overall this study revealed the importance of subgrid transport heterogeneity in the manifestation of redox reaction rates in porous media and in scaling reactions from the pore to porous media. The research also supported that the domain-based scaling approach can be used to directly scale redox reactions in porous media with subgrid transport heterogeneity.

  18. Laminar flamelet structure at low and vanishing scalar dissipation rate

    SciTech Connect (OSTI)

    Bai, X.S.; Fuchs, L.; Mauss, F.

    2000-02-01

    The laminar flamelet structures of methane/air, propane/air, and hydrogen/air nonpremixed combustion at low and vanishing scalar dissipation rates are investigated, by numerical calculations of a system of conservation equations in a counterflow diffusion flame configuration, together with a transport equation defining the mixture fraction and scalar dissipation rate. The chemical reaction mechanisms consist of 82 elementary reactions up to C{sub 3} species. In the limit of vanishing scalar dissipation rate, two types of structures are shown to appear. In one structure fuel and oxygen are consumed in a thin layer located near the stoichiometric mixture fraction, Z{sub st}, where the temperature and the major products reach their peaks. This is similar to the so-called Burke-Schumann single layer flame sheet structure. One example is the hydrogen/air diffusion flame. The second structure consists of multilayers. Fuel and oxygen are consumed at different locations. Oxygen is consumed at Z{sub l} (near Z{sub st}), where the temperature and the major products reach their peaks. Fuel is consumed at Z{sub r} (>Z{sub st}). Between Z{sub l} and Z{sub r} some intermediate and radical species are found in high concentrations. Hydrocarbon/air nonpremixed flames are of this type. It is shown that for methane/air diffusion flames, some chemical reactions which are negligible at large scalar dissipation rate near flame quenching conditions, play essential roles for the existence of the multilayer structure. This result is used to successfully explain the high CO emissions in a turbulent methane/air diffusion flame.

  19. Damage rates for FFTF structural components and surveillance assemblies

    SciTech Connect (OSTI)

    Simons, R.L.

    1993-08-01

    The Fast Flux Test Facility (FFTF) surveillance program provides coupon surveillance materials that are irradiated to the expected lifetime damage dose that the represented component will experience. This methodology requires a knowledge of the damage dose rates to the surveillance assemblies and to the critical locations of the structural components. This analysis updates the predicted exposures from a total fluence to a displacement per atom (dpa) basis using Monte Carlo (computer code for) neutron photon (transport) code (MCNP). The MCNP calculation improves the relative consistency and lowers the predicted damage rates uncertainty in a number of out-of-core locations. The results were used an part of the evaluation to extend the lifetime of the invessel components to 30 years in support of multiple missions for FFTF.

  20. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries ...

  1. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Authors: ...

  2. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated

    Office of Scientific and Technical Information (OSTI)

    Porous Media? (Journal Article) | SciTech Connect Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Citation Details In-Document Search Title: Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid

  3. Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates

    Reports and Publications (EIA)

    1995-01-01

    This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

  4. Apparatus for the measurement of radionuclide transport rates in rock cores

    SciTech Connect (OSTI)

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as /sup 3/H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and /sup 85/Sr in brine through a sandstone core are included.

  5. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Organizational Structure, Roles, and Responsibilities: The FIRST Center management structure, outlined in our organizational chart, has been designed to ...

  6. Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Adjustment...

    Open Energy Info (EERE)

    search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier2Adjustment&oldid539746...

  7. Property:OpenEI/UtilityRate/DemandRateStructure/Tier5Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier5Max&oldid539754...

  8. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateEnergyRateStructureTier1Max&oldid539766...

  9. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Sell | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateEnergyRateStructureTier1Sell&oldid539770...

  10. Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment...

    Open Energy Info (EERE)

    search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier6Adjustment&oldid539759...

  11. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier4Max&oldid539751...

  12. Property:OpenEI/UtilityRate/EnergyRateStructure/Period | Open...

    Open Energy Info (EERE)

    This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEIUtilityRateEnergyRateStructurePeriod" Showing...

  13. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Sell | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Sell Jump to: navigation, search This is a property of type...

  14. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Adjustment...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Adjustment Jump to: navigation, search This is a property of type...

  15. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Sell | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Sell Jump to: navigation, search This is a property of type...

  16. Utility Rate Structures and the Impact of Energy Efficiency and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Structures and the Impact on Energy Efficiency and Renewable Projects Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida ...

  17. Structure of a eukaryotic SWEET transporter in a homotrimeric complex

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Structure of a eukaryotic SWEET transporter in a homotrimeric complex Citation Details In-Document Search Title: Structure of a eukaryotic SWEET transporter in a homotrimeric complex Authors: Tao, Yuyong ; Cheung, Lily S. ; Li, Shuo ; Eom, Joon-Seob ; Chen, Li-Qing ; Xu, Yan ; Perry, Kay ; Frommer, Wolf B. ; Feng, Liang [1] ; Cornell) [2] + Show Author Affiliations Stanford-MED ( Publication Date: 2015-11-23 OSTI Identifier: 1226370 Resource Type: Journal

  18. Crystal structures of a polypeptide processing and secretion transporter

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Crystal structures of a polypeptide processing and secretion transporter Citation Details In-Document Search Title: Crystal structures of a polypeptide processing and secretion transporter Authors: Lin, David Yin-wei ; Huang, Shuo ; Chen , Jue [1] ; HHMI) [2] + Show Author Affiliations (Rockefeller) ( Publication Date: 2015-08-28 OSTI Identifier: 1203742 Resource Type: Journal Article Resource Relation:

  19. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Structures for Three Membrane Transport Proteins Yield Functional Insights Print Wednesday, 27 January 2010 00:00 Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is

  20. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? ?r)/(?s ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  1. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  2. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  3. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  4. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  5. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  6. Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces

    Office of Scientific and Technical Information (OSTI)

    in Lithium-Ion Batteries (Conference) | SciTech Connect Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Authors: Lordi, V ; Ong, M T ; Verners, O ; van Duin, A ; Draeger, E W ; Pask, J E Publication Date: 2014-11-03 OSTI Identifier: 1178394 Report Number(s): LLNL-CONF-663739 DOE Contract Number:

  7. Transport rates and momentum isotropization of gluon matter in ultrarelativistic heavy-ion collisions

    SciTech Connect (OSTI)

    Xu Zhe; Greiner, Carsten

    2007-08-15

    To describe momentum isotropization of gluon matter produced in ultrarelativistic heavy-ion collisions, the transport rate of gluon drift and the transport collision rates of elastic (gg{r_reversible}gg) as well as inelastic (gg{r_reversible}ggg) perturbative quantum chromodynamics- (pQCD) scattering processes are introduced and calculated within the kinetic parton cascade Boltzmann approach of multiparton scatterings (BAMPS), which simulates the space-time evolution of partons. We define isotropization as the development of an anisotropic system as it reaches isotropy. The inverse of the introduced total transport rate gives the correct time scale of the momentum isotropization. The contributions of the various scattering processes to the momentum isotropization can be separated into the transport collision rates. In contrast to the transport cross section, the transport collision rate has an indirect but correctly implemented relationship with the collision-angle distribution. Based on the calculated transport collision rates from BAMPS for central Au+Au collisions at Relativistic Heavy Ion Collider energies, we show that pQCD gg{r_reversible}ggg bremsstrahlung processes isotropize the momentum five times more efficiently than elastic scatterings. The large efficiency of the bremsstrahlung stems mainly from its large momentum deflection. Due to kinematics, 2{yields}N (N>2) production processes allow more particles to become isotropic in momentum space and thus kinetically equilibrate more quickly than their back reactions or elastic scatterings. We also show that the relaxation time in the relaxation time approximation, which is often used, is strongly momentum dependent and thus cannot serve as a global quantity that describes kinetic equilibration.

  8. Coal-freight rate-making: negotiating domestic and export coal-transportation contracts

    SciTech Connect (OSTI)

    Lawson, J.W.; Harris, F.S. II; Shiriak, B.D.

    1982-01-01

    Three conference speakers describe various legal and economic principles in setting rates for rail transport of coal. Part I explains non-regulated rate-making and legislation prior to the Staggers Act. Part II gives a perspective on the current regulatory environment in areas of market dominance, revenue computation and adequacy, standards and criteria for setting rates, adjustments for inflation, and rate flexibility zones. Part III applies current legislative and regulatory principles in the areas of contract rates, antitrust laws, and comparisons with public utilities. Part IV covers the major legal principles of rail contracts, while Part V describes several contract negotiating strategies. There are nine appendices and a supplement on factors in determining the base rate. 32 references, 1 figure, 4 tables. (DCK)

  9. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  10. Solvation Structure and Transport Properties of Alkali Cations in Dimethyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sulfoxide Under Exogenous Static Electric Fields - Joint Center for Energy Storage Research June 14, 2015, Research Highlights Solvation Structure and Transport Properties of Alkali Cations in Dimethyl Sulfoxide Under Exogenous Static Electric Fields Top: Snapshots of molecular dynamics simulations of alkali ions in DMSO at 298 K and zero-applied electric field: (left) Li+ and (right) Cs+. Sulfur atoms are shown in yellow, oxygen atoms in red, and methyl groups in gray. Graph: Average

  11. Structure factors for tunneling ionization rates of diatomic molecules

    SciTech Connect (OSTI)

    Saito, Ryoichi; Tolstikhin, Oleg I.; Madsen, Lars Bojer; Morishita, Toru

    2015-05-15

    Within the leading-order, single-active-electron, and frozen-nuclei approximation of the weak-field asymptotic theory, the rate of tunneling ionization of a molecule in an external static uniform electric field is determined by the structure factor for the highest occupied molecular orbital. We present the results of systematic calculations of structure factors for 40 homonuclear and heteronuclear diatomic molecules by the Hartree–Fock method using a numerical grid-based approach implemented in the program X2DHF.

  12. Energy Policy Act transportation rate study: Availability of data and studies

    SciTech Connect (OSTI)

    Not Available

    1993-10-13

    Pursuant to Section 1340(c) of the Energy Policy Act of 1992 (EPACT), this report presents the Secretary of Energy`s review of data collected by the Federal Government on rates for rail and pipeline transportation of domestic coal, oil, and gas for the years 1988 through 1997, and proposals to develop an adequate data base for each of the fuels, based on the data availability review. This report also presents the Energy Information Administration`s findings regarding the extent to which any Federal agency is studying the impacts of the Clean Air Act Amendments of 1990 (CAAA90) and other Federal policies on the transportation rates and distribution patterns of domestic coal, oil, and gas.

  13. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

  14. Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cosby, James T.; Holt, Adam P.; Griffin, Phillip; Wang, Yangyang; Sangoro, Joshua R.

    2015-09-18

    The impact of supramolecular hydrogen bonded networks on dynamics and charge transport in 2-ethyl-4-methylimidazole (2E4MIm), a model proton-conducting system, is investigated by broadband dielectric spectroscopy, depolarized dynamic light scattering, viscometry, and calorimetry. It is observed that the slow, Debye-like relaxation reflecting the supramolecular structure in neat 2E4MIm is eliminated upon the addition of minute amounts of levulinic acid. This is attributed to the dissociation of imidazole molecules and the breaking down of hydrogen-bonded chains, which leads to a 10-fold enhancement of ionic conductivity.

  15. Revenue and harmonics: An evaluation of some proposed rate structures

    SciTech Connect (OSTI)

    McEachern, A.; Grady, W.M.; Moncrief, W.A.; Heydt, G.T.; McGranaghan, M.

    1995-01-01

    IEEE Recommended Practice 519 sets specific limits on harmonic voltages and currents at the ``point of common coupling``, which is usually interpreted as the revenue meter. Although most utilities will employ these limits simply to persuade and encourage their customers to reduce harmonics (and vice versa), it is also possible to construct economic incentives to encourage both the utility and the consumer to remain within the limits described in IEEE 519. 7his paper discusses seven approaches to this challenge, and discusses the advantages and disadvantages of each. It appears that the ``Harmonic-Adjusted Power Factor`` approach is practical, justifiable, compatible with existing rate structures, and relatively easy to implement.

  16. Carbon Dioxide Sorption Isotherms and Matrix Transport Rates for Non-Powdered Coal

    SciTech Connect (OSTI)

    Smith, D.H.; Jikich, S.; Seshadri, K.

    2007-05-01

    For enhanced coalbed methane/carbon dioxide sequestration field projects, carbon dioxide isotherms and the rate of diffusion of the carbon dioxide from the cleats into the matrix are important parameters for predicting how much carbon dioxide actually will be sequestered under various operating conditions. Manometric (or pressure swing) experiments on powdered coal provide a quick, simple, and relatively inexpensive method for measuring sorption isotherms. However, determination of the rate of transport from cleat into matrix from the rate of gas pressure drop is difficult, if not impossible. (The characteristic time constant for the transport depends on the cleat spacing as well as the rate of diffusion.) Manometric measurements often yield isotherms that are extremely problematic in the region of the carbon dioxide critical point; perhaps even worse, available data seem to indicate that the sorption isotherms measured for powders are much larger than the isotherms of coal cores. Measurements on centimeter-sized samples can take weeks or months to reach equilibrium; for such equilibration times gas leakage rates that would be of no significance in powdered-coal measurements can completely invalidate manometric measurements on coal cores. We have tested and used a simple, inexpensive method for measuring isotherms and carbon dioxide transport rates in coal cores. One or more cores are placed in a simple pressure vessel, and a constant pressure is maintained in the vessel by connecting it to a gas supply (which contains a very large amount of gas compared to amount that could leak over the course of the experiment). From time to time the gas supply is shut off, the sample is removed, and its weight is recorded at ambient pressure at frequent time intervals for a period of about one hour. The sample is then returned to the pressure vessel, the carbon dioxide pressure restored to its previous value, and the equilibration resumed until the next sample weighing. For a point on the isotherm, the process is repeated until the sample weight reaches a constant value (i.e., typically equilibration times of several weeks). The slope of a plot of sample weight vs. square root of elapsed desorption time gives a measurement for the rate of diffusion. In order to advance all three experimental methods, results from this ambient-pressure gravimetry method were compared with data obtained by conventional manometry and by computer tomography. The isotherm and diffusion rate measured for the core can be directly used in simulators for reservoir engineering studies of coalseam sequestration and enhanced coalbed methane production.

  17. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect (OSTI)

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  18. Surface Transportation Board BNSF/DOE/DOD Rate-Service Agreement...

    Office of Environmental Management (EM)

    Surface Transportation Board Website Citations Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota The Proposed BNSF Settlement Agreement: Background & WIEB ...

  19. Mass transport around comets and its impact on the seasonal differences in water production rates

    SciTech Connect (OSTI)

    Rubin, M.; Altwegg, K.; Thomas, N.; Fougere, N.; Combi, M. R.; Tenishev, V. M.; Le Roy, L.

    2014-06-20

    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  20. Structures for Three Membrane Transport Proteins Yield Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as channels or transporters-are the...

  1. Fluid Interface Reactions, Structures and Transport Center (FIRST...

    Office of Science (SC) Website

    Research Topics catalysis (heterogeneous), energy storage (including batteries and capacitors), charge transport, mesostructured materials, materials and chemistry by design, ...

  2. Crystal Structure of the EmrE Multidrug Transporter with a Substrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (2004). Structure of the Multidrug Resistance Efflux Transporter EmrE from Escherichia coli. PNAS 101, 9, 2852-2857. | PDF Version | | Lay Summary | | Highlights Archive | SSRL is...

  3. Electrode films of porous agarose: The effects of physical structure on electron transport processes. [Impregnated with Nafion; immobilized electroactive species

    SciTech Connect (OSTI)

    Moran, K.D.

    1988-02-01

    Potential use of chemically modified electrodes in electrocatalysis has stimulated interest in creation and characterization of electrode films for reagent immobilization. We have created two highly porous electrocatalyst support matrices, with high rates of electron transport. Both are based on immobilization of reagents in agarose gel. In one case, Nafion was impregnated into agarose gel films. Diffusion of methyl viologen in Nafionagarose matrices are higher than in Nafion. In Nafion, the diffusion coefficient decreases with increasing methyl viologen concentration, while in Nafionagarose, the opposite dependence is observed. The faster rate of electron transport in Nafionagarose films is related to the heterogeneous structure and the coupling of the diffusion pathways. In the second application of agarose gels as an electrode coating material, agarose hydroxyl groups were activated in 1,1'carbonyldiimidazole and subsequently reacted with amine derivatives of electroactive mediators. Electron transport between the electroactive sites in the gel is very rapid (on the order of 10/sup -7/ cm/sup 2/s. Interpreting the data in light of the Dahms-Ruff description of electron transport shows that the rate of electron transport through both ferrocene and viologen derivatized gels is limited by the rate of electron self-exchange of the species. 22 figs., 15 tabs

  4. Coupled ion Binding and Structural Transitions Along the Transport...

    Office of Scientific and Technical Information (OSTI)

    binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. ...

  5. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications View Larger Map Main Address 1 Cyclotron Rd‎ University of California Berkeley Berkeley, CA 94720 The Laboratory is in Berkeley on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Road, Berkeley CA 94720. To make the Lab easily accessible, the

  6. Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Doris, E.

    2010-06-01

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

  7. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    SciTech Connect (OSTI)

    Wang, Zhongshan; Xiang, Quanju; Zhu, Xiaofeng; Dong, Haohao; He, Chuan; Wang, Haiyan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  8. Structure, transport and thermal properties of UCoGa

    SciTech Connect (OSTI)

    Purwanto, A.; Robinson, R.A.; Prokes, K.

    1994-04-01

    By means of neutron powder diffraction, we find that UCoGa crystallizes in the hexagonal ZrNiAl structure and orders ferromagnetically at low temperatures with magnetic moments stacked along the c axis. The magnetic-ordering temperature is reflected in anomalies in the temperature dependencies of the electrical resistivity and the specific heat at Tc = 47 K. Furthermore, the strong anisotropy in the electrical resistivity for i {parallel} c and i {perpendicular} c indicates a significant contribution of the magnetic anisotropy to the electrical resistivity.

  9. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  10. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect (OSTI)

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  11. California PG&E E-19 Rate Structure -- demand charge structure...

    Open Energy Info (EERE)

    Utility Rate Allandaly's picture Submitted by Allandaly(24) Member 13 May, 2014 - 11:49 Hi again, I feel like the squeaky wheel here ... apologies for that ... but I am trying to...

  12. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  13. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect (OSTI)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  14. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-20

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore » halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.« less

  15. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    Broader source: Energy.gov [DOE]

    To achieve a sizable and self-sustaining market for grid-connected, customer-sited photovoltaic (PV) systems, solar will likely need to be competitive with retail electricity rates. In this report, we examine the impact of retail rate design on the economic value of commercial PV systems in California. Using 15-minute interval building load and PV production data from 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial customer retail rates currently offered in the state. We find that the specifics of the rate structure, combined with the characteristics of the customer’s underlying load and the size of the PV system, can have a substantial impact on the customer-economics of commercial PV systems.

  16. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; Pan, Baofei; He, Meinan; Ferrandon, Magali S.; Liao, Chen; Persson, Kristin A.; Burrell, Anthony K.

    2016-01-14

    Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI)2, acetonitrile Zn(CF3SO3)2, and propylene carbonate Zn(TFSI)2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates that the solvents play an importantmore » role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less

  17. Spin transport in normal metal/insulator/topological insulator coupled to ferromagnetic insulator structures

    SciTech Connect (OSTI)

    Kondo, Kenji

    2014-05-07

    In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thickness and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle ?, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.

  18. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-05-11

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-minute interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05/kWh to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when commercial PV systems represent a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  19. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-06-24

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-min interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05 to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when energy from commercial PV systems represents a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  20. Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures

    SciTech Connect (OSTI)

    Eftekharian, Amin; Jafari Salim, Amir; University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 ; Atikian, Haig; Akhlaghi, Mohsen K.; Hamed Majedi, A.

    2013-12-09

    In this Letter, we present a theoretical model with experimental verifications to describe the abnormal behaviors of the measured fluctuation rates occurring in nano-patterned superconducting structures below the critical temperature. In the majority of previous works, it is common to describe the fluctuation rate by defining a fixed ground state or initial state level for the singularities (vortex or vortex-antivortex pairs), and then employing the well-known rate equations to calculate the liberation rates. Although this approach gives an acceptable qualitative picture, without utilizing free parameters, all the models have been inadequate in describing the temperature dependence of the rate for a fixed width or the width dependence of the rate for a fixed temperature. Here, we will show that by defining a current-controlled ground state level for both the vortex and vortex-antivortex liberation mechanisms, the dynamics of these singularities are described for a wide range of temperatures and widths. According to this study, for a typical strip width, not only is the vortex-antivortex liberation higher than the predicted rate, but also quantum tunneling is significant in certain conditions and can not be neglected.

  1. Structural basis of GDP release and gating in G protein coupled Fe[superscript 2+] transport

    SciTech Connect (OSTI)

    Guilfoyle, Amy; Maher, Megan J.; Rapp, Mikaela; Clarke, Ronald; Harrop, Stephen; Jormakka, Mika

    2009-09-29

    G proteins are key molecular switches in the regulation of membrane protein function and signal transduction. The prokaryotic membrane protein FeoB is involved in G protein coupled Fe{sup 2+} transport, and is unique in that the G protein is directly tethered to the membrane domain. Here, we report the structure of the soluble domain of FeoB, including the G protein domain, and its assembly into an unexpected trimer. Comparisons between nucleotide free and liganded structures reveal the closed and open state of a central cytoplasmic pore, respectively. In addition, these data provide the first observation of a conformational switch in the nucleotide-binding G5 motif, defining the structural basis for GDP release. From these results, structural parallels are drawn to eukaryotic G protein coupled membrane processes.

  2. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  3. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  4. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill...

  5. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on research by the U.S. Department of Energy and was only incorporated into the GIS analysis below; it is not in any other elements of this report. See Methodology for greater...

  6. High rate, long cycle life battery electrode materials with an open framework structure

    DOE Patents [OSTI]

    Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro

    2015-02-10

    A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.

  7. The Impact of Retail Rate Structure on the Economics of Commercial Photovoltaic Systems in California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact of Retail Rate Structure on the Economics of Commercial Photovoltaic Systems in California Ryan Wiser, Andrew Mills, Galen Barbose & William Golove State Energy Advisory Board Meeting Berkeley, CA August 14, 2007 The Electricity Markets and Policy Group Conducts research and provides assistance to policy makers on issues related to: ¾ Energy Efficiency and Demand Response (Chuck Goldman) - Tracking industry trends - Program administration, planning, implementation, and evaluation -

  8. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  9. Solar San Diego: The Impact of Binomial Rate Structures on Real PV Systems; Preprint

    SciTech Connect (OSTI)

    VanGeet, O.; Brown, E.; Blair, T.; McAllister, A.

    2008-05-01

    There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savings that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rate structures is presented. The data revealed that actual demand and energy use benefits of binomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007.

  10. Synthesis, transport properties, and electronic structure of Cu{sub 2}CdSnTe{sub 4}

    SciTech Connect (OSTI)

    Dong, Yongkwan; Khabibullin, Artem R.; Wei, Kaya; Ge, Zhen-Hua; Woods, Lilia M. Nolas, George S.; Martin, Joshua; Salvador, James R.

    2014-06-23

    A new stannite phase was synthesized and its temperature dependent transport properties were investigated. Cu{sub 2}CdSnTe{sub 4} possesses strong p-type conduction, while the temperature dependence of the thermal conductivity exhibits typical dielectric behavior. Electronic structure calculations allowed for a description of the transport characteristics in terms the energy band structure, density of states, and Fermi surface. The potential for thermoelectric applications is also discussed.

  11. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; Sessolo, Michele; Stavrinidou, Eleni; Strakosas, Xenofon; Tassone, Christopher; Delongchamp, Dean M.; Malliaras, George G.

    2016-04-19

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  12. The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures

    SciTech Connect (OSTI)

    Puthen-Veettil, B. Patterson, R.; Knig, D.; Conibeer, G.; Green, M. A.

    2014-10-28

    Efficient iso-entropic energy filtering of electronic waves can be realized through nanostructures with three dimensional confinement, such as quantum dot resonant tunneling structures. Large-area deployment of such structures is useful for energy selective contacts but such configuration is susceptible to structural disorders. In this work, the transport properties of quantum-dot-based wide-area resonant tunneling structures, subject to realistic disorder mechanisms, are studied. Positional variations of the quantum dots are shown to reduce the resonant transmission peaks while size variations in the device are shown to reduce as well as broaden the peaks. Increased quantum dot size distribution also results in a peak shift to lower energy which is attributed to large dots dominating transmission. A decrease in barrier thickness reduces the relative peak height while the overall transmission increases dramatically due to lower series resistance. While any shift away from ideality can be intuitively expected to reduce the resonance peak, quantification allows better understanding of the tolerances required for fabricating structures based on resonant tunneling phenomena/.

  13. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect (OSTI)

    Das, Supriyo

    2010-05-16

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the compounds showing high T{sub c} superconductivity. Along with the vanadium oxide compounds described before, this thesis describes our investigations of magnetic, structural, thermal and transport properties of EuPd{sub 2}Sb{sub 2} single crystals which have a crystal structure closely related to the AFe{sub 2}As{sub 2} compounds and also a study of the reaction kinetics of the formation of LaFeAsO{sub 1-x}F{sub x}.

  14. Effects of structure formation on the expansion rate of the Universe: An estimate from numerical simulations

    SciTech Connect (OSTI)

    Zhao Xinghai; Mathews, Grant J.

    2011-01-15

    General relativistic corrections to the expansion rate of the Universe arise when the Einstein equations are averaged over a spatial volume in a locally inhomogeneous cosmology. It has been suggested that they may contribute to the observed cosmic acceleration. In this paper, we propose a new scheme that utilizes numerical simulations to make a realistic estimate of the magnitude of these corrections for general inhomogeneities in (3+1) spacetime. We then quantitatively calculate the volume averaged expansion rate using N-body large-scale structure simulations and compare it with the expansion rate in a standard FRW cosmology. We find that in the weak gravitational field limit, the converged corrections are slightly larger than the previous claimed 10{sup -5} level, but not large enough nor even of the correct sign to drive the current cosmic acceleration. Nevertheless, the question of whether the cumulative effect can significantly change the expansion history of the Universe needs to be further investigated with strong-field relativity.

  15. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect (OSTI)

    Tanaka, Masaaki; Ohya, Shinobu Nam Hai, Pham

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  16. Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect

    SciTech Connect (OSTI)

    Hao, Qiang; Chen, Wenzhe; Xiao, Gang

    2015-05-04

    We use a simple magnetron sputtering process to fabricate beta (β) tungsten thin films, which are capable of generating giant spin Hall effect. As-deposited thin films are always in the metastable β-W phase from 3.0 to 26.7 nm. The β-W phase remains intact below a critical thickness of 22.1 nm even after magnetic thermal annealing at 280 °C, which is required to induce perpendicular magnetic anisotropy (PMA) in a layered structure of β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO. Intensive annealing transforms the thicker films (>22.1 nm) into the stable α-W phase. We analyze the structure and grain size of both β- and α-W thin films. Electron transport in terms of resistivity and normal Hall effect is studied over a broad temperature range of 10 K to at least 300 K on all samples. Very low switching current densities are achieved in β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO with PMA. These basic properties reveal useful behaviors in β-W thin films, making them technologically promising for spintronic magnetic random access memories and spin-logic devices.

  17. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Min; Khatun, Sufia; Castner, Edward W.

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C6D14 with this ionic liquid. High- energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C6D14. NMR self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C6D14 is on average a factor of 21more » times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less

  18. Structures for attaching or sealing a space between components having different coefficients or rates of thermal expansion

    DOE Patents [OSTI]

    Corman, Gregory Scot; Dean, Anthony John; Tognarelli, Leonardo; Pecchioli, Mario

    2005-06-28

    A structure for attaching together or sealing a space between a first component and a second component that have different rates or amounts of dimensional change upon being exposed to temperatures other than ambient temperature. The structure comprises a first attachment structure associated with the first component that slidably engages a second attachment structure associated with the second component, thereby allowing for an independent floating movement of the second component relative to the first component. The structure can comprise split rings, laminar rings, or multiple split rings.

  19. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect (OSTI)

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  20. Structure of a Putative Metal-Chelate Type ABC Transporter: An...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nucleotide binding HI1470 subunits are in green and pink. The HI14701 transporter from Haemophilus influenzae belongs to the family of binding protein dependent bacterial ABC...

  1. Influence of substrate temperature and deposition rate on the structure of erbium films deposited on glass and a -C substrates

    SciTech Connect (OSTI)

    Savaloni, H.; Player, M.A.; Gu, E.; Marr, G.V. )

    1992-01-01

    The structure of erbium films of 600 nm thickness deposited onto carbon ({ital a}-C) and glass substrates at 0.55 and 2.5 nm/s deposition rates for varying substrate temperatures is investigated. The cross section and surface structures are examined by electron microscope. Energy-dispersive x-ray diffraction is utilized for the structure analysis of these films. Results are compared with the results presented in H. Savaloni, M. A. Player, E. Gu, and G. V. Marr (to be published), for erbium films on molybdenum substrates. It is found that to produce films with strong preferred orientation on glass substrates low deposition rate (0.55 nm/s) is favorable. This is opposite to erbium on molybdenum substrates. The grain size of erbium films produced at higher deposition rate is much larger than those at lower deposition rate. The structure of thin films has implications for performance of multilayer reflectors, and preferred orientation may have other applications to x-ray instrumentation.

  2. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.

  3. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize themore » particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  4. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    SciTech Connect (OSTI)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising 50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.

  5. Resonant electronic transport through a triple quantum-dot with Λ-type level structure under dual radiation fields

    SciTech Connect (OSTI)

    Guan, Chun; Xing, Yunhui; Zhang, Chao; Ma, Zhongshui

    2014-08-14

    Due to quantum interference, light can transmit through dense atomic media, a phenomenon known as electromagnetically induced transparency (EIT). We propose that EIT is not limited to light transmission and there is an electronic analog where resonant transparency in charge transport in an opaque structure can be induced by electromagnetic radiation. A triple-quantum-dots system with Λ-type level structure is generally opaque due to the level in the center dot being significantly higher and therefore hopping from the left dot to the center dot is almost forbidden. We demonstrate that an electromagnetically induced electron transparency (EIET) in charge of transport can indeed occur in the Λ-type system. The direct evidence of EIET is that an electron can travel from the left dot to the right dot, while the center dot apparently becomes invisible. We analyze EIET and the related shot noise in both the zero and strong Coulomb blockade regimes. It is found that the EIET (position, height, and symmetry) can be tuned by several controllable parameters of the radiation fields, such as the Rabi frequencies and detuning frequencies. The result offers a transparency/opaque tuning technique in charge transport using interfering radiation fields.

  6. Electronic structure, transport, and phonons of SrAgChF (Ch = S,Se,Te): Bulk superlattice thermoelectrics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gudelli, Vijay Kumar; Kanchana, V.; Vaitheeswaran, G.; Singh, David J.; Svane, Axel; Christensen, Niels Egede; Mahanti, Subhendra D.

    2015-07-15

    Here, we report calculations of the electronic structure, vibrational properties, and transport for the p-type semiconductors, SrAgChF (Ch = S, Se, and Te). We find soft phonons with low frequency optical branches intersecting the acoustic modes below 50 cm–1, indicative of a material with low thermal conductivity. The bands at and near the valence-band maxima are highly two-dimensional, which leads to high thermopowers even at high carrier concentrations, which is a combination that suggests good thermoelectric performance. These materials may be regarded as bulk realizations of superlattice thermoelectrics.

  7. The Coal Transportation Rate Database

    Gasoline and Diesel Fuel Update (EIA)

    In order to facilitate downloading and processing, the CTRDB is saved as two compatible Excel file modules--one containing all data for the years 1979 through 1992 and the other...

  8. Structure and function of subsurface microbial communities affecting radionuclide transport and bio-immobilization

    SciTech Connect (OSTI)

    Stucki, Joseph William

    2013-05-13

    The purpose of this study was to provide comparative information regarding the changes in clay structure that occur due to biotic or abiotic reduction, as probed by variable-temperature Mössbauer spectroscopy.

  9. Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system

    SciTech Connect (OSTI)

    Greskowiak, Janek; Prommer, Henning; Liu, Chongxuan; Post, Vincent; Ma, Rui; Zheng, Chunmiao; Zachara, John M.

    2010-09-16

    A laboratory-derived conceptual and numerical model for U(VI) transport at the Hanford 300A site, Washington, USA, was applied to a range of field-scale scenarios of different complexity to systematically evaluate model parameter sensitivities. The model, originally developed from column experiment data, included distributed-rate surface complexation kinetics of U(VI), aqueous speciation, and physical non-equilibrium transport processes. A rigorous parameter sensitivity analysis was carried out with respect to different state variables: concentrations, mass fluxes, total mass and spatial moments of dissolved U(VI) for laboratory systems, and various simulation scenarios that represented the field-scale characteristics at the Hanford 300A site. The field-scenarios accounted for transient groundwater flow and variable geochemical conditions driven by frequent water level changes of the nearby Columbia River. Simulations indicated that the transient conditions significantly affected U(VI) plume migration at the site. The parameter sensitivities were largely similar between the laboratory and field scale systems. Where differences existed, they were shown to result from differing degrees of U(VI) adsorption disequilibrium caused by hydraulic or hydrogeochemical conditions. Adorption disequilibrium was found to differ (i) between short duration peak flow events at the field scale and much longer flow events in the laboratory, (ii) for changing groundwater chemical compositions due to river water intrusion, and (iii) for different sampling locations at the field scale. Parameter sensitivities were also found to vary with respect to the different investigated state variables. An approach is demonstrated that elucidates the most important parameters of a laboratory-scale model that must constrained in both the laboratory and field for meaningful field application.

  10. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code

    SciTech Connect (OSTI)

    Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kühl, P.; Kopp, A.; Heber, B.; Kissmann, R.

    2014-06-10

    The transport of energetic particles such as cosmic rays is governed by the properties of the plasma being traversed. While these properties are rather poorly known for galactic and interstellar plasmas due to the lack of in situ measurements, the heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric transport of energetic particles are structures such as corotating interaction regions, which, due to strongly enhanced magnetic field strengths, turbulence, and associated shocks, can act as diffusion barriers on the one hand, but also as accelerators of low energy CRs on the other hand as well. In a two-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with a numerical magnetohydrodynamic (MHD) setup (this paper), which will serve as an input to a transport code employing a stochastic differential equation approach (second paper). In this first paper, we present results from 3D MHD simulations with our code CRONOS: for validation purposes we use analytic boundary conditions and compare with similar work by Pizzo. For a more realistic modeling of solar wind conditions, boundary conditions derived from synoptic magnetograms via the Wang-Sheeley-Arge (WSA) model are utilized, where the potential field modeling is performed with a finite-difference approach in contrast to the traditional spherical harmonics expansion often utilized in the WSA model. Our results are validated by comparing with multi-spacecraft data for ecliptical (STEREO-A/B) and out-of-ecliptic (Ulysses) regions.

  11. The structure, dynamics, and star formation rate of the Orion nebula cluster

    SciTech Connect (OSTI)

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-11-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ?1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ?5-8 free-fall times (t {sub ff}). This implies a star formation efficiency per t {sub ff} of ?{sub ff} ? 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  12. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    SciTech Connect (OSTI)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  13. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beamtransport1 Simplified drawing of the beam...

  14. Decoupling charge transport from the structural dynamics in room temperature ionic liquids

    SciTech Connect (OSTI)

    Griffin, Phillip; Agapov, Alexander L; Kisliuk, Alexander; Sun, Xiao-Guang; Dai, Sheng; Novikov, Vladimir; Sokolov, Alexei P

    2011-01-01

    Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward Tg. The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be Tc 225 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.

  15. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  16. The effect of in-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288 C water

    SciTech Connect (OSTI)

    Andresen, P.L.; Angeliu, T.

    1996-10-01

    Stress corrosion cracking (SCC), especially in existing boiling water reactor (BVM) components, is most effectively accomplished by reducing the corrosion potential. This was successfully demonstrated by adding hydrogen to BNM water, which reduced oxidant concentration and corrosion potential by recombining with the radiolytically formed oxygen and hydrogen peroxide. However, reduction in the corrosion potential for some vessel internals is difficult, and others require high hydrogen addition rates, which results in an increase in the main steam radiation level from volatile N{sup 16}. Noble metal electrocatalysis provides a unique opportunity to efficiently achieve a dramatic reduction in corrosion potential and SCC in BWRs, by catalytically reacting all oxidants that diffuse to a (catalytic) metal surface with hydrogen. There are many techniques for creating catalytic surfaces, including alloying with noble metals or applying noble metal alloy powders to existing BWR components by thermal spraying or weld cladding. A novel system-wide approach for producing catalytic surfaces on all wetted components has been developed which employs the reactor coolant water as the medium of transport. This approach is termed in-situ noble metal chemical addition (NMCA), and has been successfully used in extensive laboratory tests to coat a wide range of pre-oxidized structural materials. In turn, these specimens have maintained catalytic response in long term, cyclic exposures to extremes in dissolved gases, impurity levels, pH, flow rate, temperature, straining, etc. With stoichiometric excess H{sub 2}, the corrosion potential drops dramatically and crack initiation and growth are greatly reduced, even at high O{sub 2} or H{sub 2}O{sub 2} levels. Without excess H{sub 2} (i.e., in normal BWR water chemistry), noble metals do not increase the corrosion potential or SCC.

  17. Isolation, folding and structural investigations of the amino acid transporter OEP16

    SciTech Connect (OSTI)

    Ni, Da Qun; Zook, James; Klewer, Douglas A.; Nieman, Ronald A.; Soll, J.; Fromme, Petra

    2011-12-01

    Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni-NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of a-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.

  18. The effect of cooling rate during rapid solidification on the structure and texture of NiTi

    SciTech Connect (OSTI)

    Pedraza, A.J.; Godbole, M.J.; Kenik, E.A.; Pedraza, D.F.; Lowndes, D.H.

    1986-01-01

    A study has been conducted on the effects of increasing cooling rate during rapid solidification of NiTi upon the phases that are produced. The hammer and anvil rapid solidification technique and laser melting with a nanosecond excimer laser were used, which allow the cooling rate to be varied by three to four orders of magnitude. Although 1/3 (110) superlattice reflections are seen in the selected area diffraction (SAD) patterns of the splat quenched (SQ) specimens, x-ray diffraction analyses show the presence of only B2 phase and martensite. On the other hand, laser treatment (LT) of the specimens produces a layer that has a Ll/sub 0/ structure with a slight monoclinic distortion. This phase can be envisaged as a small distortion of a B2 unit cell with a volume per atom approx.3.3% lower than the equilibrium B2 phase. Also martensite is present in the layer. SQ alloys exhibited a marked (200) texture due to columnar growth opposite to the direction of heat extraction, while LT produces epitaxial regrowth of the melted layer. No substantial disordering is obtained in NiTi rapidly solidified alloys.

  19. Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis

    SciTech Connect (OSTI)

    Yi, S.; Kwon, J. M.; Diamond, P. H.; Hahm, T. S.

    2014-09-15

    This paper studies effects of q-profile structure on turbulence spreading. It reports results of numerical experiments using global gyrokinetic simulations. We examine propagation of turbulence, triggered by an identical linear instability in a source region, into an adjacent, linearly stable region with variable q-profile. The numerical experiments are designed so as to separate the physics of turbulence spreading from that of linear stability. The strength of turbulence spreading is measured by the penetration depth of turbulence. Dynamics of spreading are elucidated by fluctuation intensity balance analysis, using a model intensity evolution equation which retains nonlinear diffusion and damping, and linear growth. It is found that turbulence spreading is strongly affected by magnetic shear s, but is hardly altered by the safety factor q itself. There is an optimal range of modest magnetic shear which maximizes turbulence spreading. For high to modest shear values, the spreading is enhanced by the increase of the mode correlation length with decreasing magnetic shear. However, the efficiency of spreading drops for sufficiently low magnetic shear even though the mode correlation length is comparable to that for the case of optimal magnetic shear. The reduction of spreading is attributed to the increase in time required for the requisite nonlinear mode-mode interactions. The effect of increased interaction time dominates that of increased mode correlation length. Our findings of the reduction of spreading and the increase in interaction time at weak magnetic shear are consistent with the well-known benefit of weak or reversed magnetic shear for core confinement enhancement. Weak shear is shown to promote locality, as well as stability.

  20. Exact analytical solution of the linear structure growth rate in {Lambda}CDM cosmology and its cosmological applications

    SciTech Connect (OSTI)

    Zhang Pengjie [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai, China, 200030 (China)

    2011-03-15

    We derive the exact analytical solution of the linear structure growth rate in {Lambda}CDM cosmology with flat or curved geometry, under the Newtonian gauge. Unlike the well known solution under the Newtonian limit [D. J. Heath, Mon. Not. R. Astron. Soc. 179, 351 (1977)], our solution takes all general relativistic corrections into account and is hence valid at both the sub- and superhorizon scales. With this exact solution, we evaluate cosmological impacts induced by these relativistic corrections. (1) General relativistic corrections alter the density growth from z=100 to z=0 by 10% at k=0.01 h/Mpc and the impact becomes stronger toward larger scales. We caution the readers that the overdensity is not gauge invariant and the above statement is restrained to the Newtonian gauge. (2) Relativistic corrections introduce a k{sup -2} scale dependence in the density fluctuation. It mimics a primordial non-Gaussianity of the local type with f{sub NL}{sup local{approx}}1. This systematical error may become non-negligible for future all sky deep galaxy surveys. (3) Cosmological simulations with box size greater than 1 Gpc are also affected by these relativistic corrections. We provide a postprocessing recipe to correct for these effects. (4) These relativistic corrections affect the redshift distortion. However, at redshifts and scales relevant to redshift distortion measurements, such effect is negligible.

  1. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOE Patents [OSTI]

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  2. Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass

    SciTech Connect (OSTI)

    Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

    2012-08-15

    Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

  3. Structural features and enhanced high-temperature oxygen ion transport in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}

    SciTech Connect (OSTI)

    Markov, Alexey A.; Shalaeva, Elizaveta V.; Tyutyunnik, Alexander P.; Kuchin, Vasily V.; Patrakeev, Mikhail V.; Leonidov, Ilya A.; Kozhevnikov, Victor L.

    2013-01-15

    Structural features, oxygen non-stoichiometry and transport properties are studied in the oxide series SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}, where x=0.2, 0.3 and 0.4. X-ray diffraction and electron microscopy data evidence formation of the inhomogeneous materials at x=0.3 and 0.4, which include phase constituents with a cubic perovskite and a double perovskite structure types. The composition, the amount and the typical grain size of the phase inhomogeneities are shown to depend both on doping and oxygen content. The increased oxygen-ion conductivity is observed in oxygen depleted materials, which is explained by the increase in the amount of cubic perovskite-like phase and development of interfacial pathways favorable for enhanced oxygen ion transport. - Graphical abstract: The structural studies, oxygen content and conductivity measurements suggest that oxygen depletion from the double perovskite phase constituent of SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}} for x>0.2 is accompanied by formation of pathways for fast ion transport. Black-Small-Square Highlights: Black-Right-Pointing-Pointer The double perovskite type regions are shown to exist in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}. Black-Right-Pointing-Pointer The oxygen depletion is accompanied with phase separation. Black-Right-Pointing-Pointer The phase separation favors formation of pathways for enhanced oxygen ion transport.

  4. Effect of cold work on the growth rates of stress corrosion cracks in structural materials of nuclear systems

    SciTech Connect (OSTI)

    Magdowski, R.; Speidel, M.O.

    1996-10-01

    The growth rates of stress corrosion cracks in austenitic stainless steels and nickel base alloy 600 exposed to simulated boiling water reactor coolant were measured by fracture mechanics testing techniques. Cold work may increase the crack growth rates up to one hundred times. In both, the annealed condition and the cold worked condition, the stress corrosion crack growth rates are independent of stress intensity over a wide K-range and crack growth rates correlate well with yield strength and hardness. In the annealed condition the fracture path is intergranular, but higher degrees of cold work introduce higher proportions of transgranular stress corrosion cracking.

  5. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON

    Office of Scientific and Technical Information (OSTI)

    CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING (Technical Report) | SciTech Connect Technical Report: EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING Citation Details In-Document Search Title: EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship

  6. Removing Structural Disorder from Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells

    SciTech Connect (OSTI)

    Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J.

    2007-01-01

    We report on the influence of morphological disorder, arising from bundling of nanotubes (NTs) and microcracks in films of oriented TiO{sub 2} NT arrays, on charge transport and recombination in dye-sensitized solar cells (DSSCs). Capillary stress created during evaporation of liquids from the mesopores of dense TiO{sub 2} NT arrays was of sufficient magnitude to induce bundling and microcrack formation. The average lateral deflection of the NTs in the bundles increased with the surface tension of the liquids and with the film thicknesses. The supercritical CO{sub 2} drying technique was used to produce bundle-free and crack-free NT films. Charge transport and recombination properties of sensitized films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Transport became significantly faster with decreased clustering of the NTs, indicating that bundling creates additional pathways via intertube contacts. Removing such contacts alters the transport mechanism from a combination of one and three dimensions to the expected one dimension and shortens the electron-transport pathway. Reducing intertube contacts also resulted in a lower density of surface recombination centers by minimizing distortion-induced surface defects in bundled NTs. A causal connection between transport and recombination is observed. The dye coverage was greater in the more aligned NT arrays, suggesting that reducing intertube contacts increases the internal surface area of the films accessible to dye molecules. The solar conversion efficiency and photocurrent density were highest for DSSCs incorporating films with more aligned NT arrays owing to an enhanced light-harvesting efficiency. Removing structural disorder from other materials and devices consisting of nominally one-dimensional architectures (e.g., nanowire arrays) should produce similar effects.

  7. Publisher's Note: Level structure 18Ne and its importance in the 14O(α,p)17F reaction rate [Phys. Rev. C 86, 025801(2012)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Almaraz-Calderon, S.; Tan, W. P.; Aprahamian, A.; Bucher, B.; Roberts, A.; Wiescher, M.; Brune, C. R.; Massey, T. N.; Ozkan, N.; Guray, R. T.; et al

    2012-08-10

    The level structure of 18Ne above the α-decay threshold has been studied using the 16O(3He,n) reaction. A coincidence measurement of neutrons and charged particles decaying from populated states in 18Ne has been made. Decay branching ratios were measured for six resonances and used to calculate the 14O(α,p)17F reaction rate which is a measure of one of two breakout paths from the Hot CNO cycle. As a result, the new experimental information combined with previous experimental and theoretical information, provides a more accurate calculation of the reaction rate.

  8. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of Westinghouse WE 17×17 pressurized water reactor fuel assemblies with a discharge burnup range of 30-58 GWd/MTU (assembly average), loaded in a representative high-capacity (≥32 fuel rod assemblies) transportation package. Evaluations will be performed for representative normal conditions of rail transport involving a rail conveyance capable of meeting the Association of American Railroads (AAR) S-2043 specification. UNF modeling is anticipated to be defined to the pellet-cladding level and take in to account influences associated with spacer grids, intermediate fluid mixers, and control components. The influence of common degradation issues such as ductile-to-brittle-transition will also be accounted for. All model development and analysis will be performed with commercially available software packages exclusively. Inputs and analyses will be completely documented, all supporting information will be traceable, and bases will be defendable so as to be most useful to the U.S. Department of Energy community and mission. The expected completion date is the end of fiscal year (FY) 2013.

  9. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  10. Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate

    SciTech Connect (OSTI)

    Navirian, H. A.; Schick, D. Leitenberger, W.; Bargheer, M.; Gaal, P.; Shayduk, R.

    2014-01-13

    We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO{sub 3} electrode sandwiched between a ferroelectric Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film with negative thermal expansion and a SrTiO{sub 3} substrate. SrRuO{sub 3} is rapidly heated by fs-laser pulses with 208?kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120?ps to 5??s with a relative accuracy up to ?c/c?=?10{sup ?6}. The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}.

  11. Predicting Local Transport Coefficients at Solid-Gas Interfaces | Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome Local Transport Coefficients at Solid-Gas Interfaces Previous Next List Nils E. R. Zimmermann, Berend Smit, and Frerich J. Keil, J. Phys. Chem. C 2012, 116, 18878-18883 DOI: 10.1021/jp3059855 Abstract Image Abstract: The regular nanoporous structure make zeolite membranes attractive candidates for separating molecules on the basis of differences in transport rates (diffusion). Since improvements in synthesis have led

  12. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Cost Model FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of transporting a user-specified mass rate of CO2 by pipeline...

  13. Transportation | Open Energy Information

    Open Energy Info (EERE)

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  14. DOE ER63951-3 Final Report: An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect (OSTI)

    Susan Pfiffner

    2010-06-28

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  15. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  16. Pulsed laser-induced oxygen deficiency at TiO{sub 2} surface: Anomalous structure and electrical transport properties

    SciTech Connect (OSTI)

    Nakajima, Tomohiko; Tsuchiya, Tetsuo; Kumagai, Toshiya

    2009-09-15

    We have studied pulsed laser-induced oxygen deficiencies at rutile TiO{sub 2} surfaces. The crystal surface was successfully reduced by excimer laser irradiation, and an oxygen-deficient TiO{sub 2-{delta}} layer with 160 nm thickness was formed by means of ArF laser irradiation at 140 mJ/cm{sup 2} for 2000 pulses. The TiO{sub 2-{delta}} layer fundamentally maintained a rutile structure, though this structure was distorted by many stacking faults caused by the large oxygen deficiency. The electrical resistivity of the obtained TiO{sub 2-{delta}} layer exhibited unconventional metallic behavior with hysteresis. A metal-insulator transition occurred at 42 K, and the electrical resistivity exceeded 10{sup 4} OMEGA cm below 42 K. This metal-insulator transition could be caused by bipolaronic ordering derived from Ti-Ti pairings that formed along the stacking faults. The constant magnetization behavior observed below 42 K is consistent with the bipolaronic scenario that has been observed previously for Ti{sub 4}O{sub 7}. These peculiar electrical properties are strongly linked to the oxygen-deficient crystal structure, which contains many stacking faults formed by instantaneous heating during excimer laser irradiation. - Graphical abstract: A pulsed laser-irradiated TiO{sub 2-{delta}} substrate showed an unconventional metallic phase, with hysteresis over a wide range of temperatures and a metal-insulator transition at 42 K.

  17. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  18. Structure, magnetic, and transport properties of epitaxial ZnFe{sub 2}O{sub 4} films: An experimental and first-principles study

    SciTech Connect (OSTI)

    Jin, Chao; Li, Peng; Mi, Wenbo; Bai, Haili

    2014-06-07

    We investigated the structure, magnetic, and transport properties of ZnFe{sub 2}O{sub 4} (ZFO) by both experimental and first-principles study. The epitaxial ZFO films prepared with various oxygen partial pressures show clear semiconducting behavior and room-temperature ferrimagnetism. A large magnetoresistance of −21.2% was observed at 75 K. The room-temperature ferrimagnetism is induced by the cation disordering. The calculated results indicate that under cation disordering, the ZFO with various oxygen vacancies is a half-metal semiconductor with both possible positive and negative signs of the spin polarization, while ZFO with no oxygen vacancies is an insulator and can be acted as the spin filter layer in spintronic devises.

  19. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect (OSTI)

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  20. Structural, thermal, magnetic, and electronic transport properties of the LaNi₂(Ge1-xPx)₂ system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goetsch, R. J.; Anand, V. K.; Pandey, Abhishek; Johnston, D. C.

    2012-02-29

    Polycrystalline samples of LaNi₂(Ge1-xPx)₂ (x=0,0.25,0.50,0.75,1) were synthesized and their properties investigated by x-ray diffraction (XRD) measurements at room temperature and by heat capacity Cp, magnetic susceptibility χ, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of powder XRD patterns confirm that these compounds crystallize in the body-centered-tetragonal ThCr₂Si₂-type structure (space group I4/mmm) with composition-dependent lattice parameters that slightly deviate from Vegard's law. The ρ(T) measurements showed a positive temperature coefficient for all samples from 1.8 to 300 K, indicating that all compositions in this system are metallic. The low-T Cp measurements yield amore » rather large Sommerfeld electronic specific heat coefficient γ=12.4(2) mJ/mol K² for x=0, reflecting a large density of states at the Fermi energy that is comparable with the largest values found for the AFe₂As₂ class of materials with the same crystal structure. The γ decreases approximately linearly with x to 7.4(1) mJ/mol K² for x=1. The χ measurements show nearly temperature-independent paramagnetic behavior across the entire range of compositions except for LaNi₂Ge₂, where a broad peak is observed at ≈300 K from χ(T) measurements up to 1000 K that may arise from short-range antiferromagnetic correlations in a quasi-two-dimensional magnetic system. High-accuracy Padé approximants representing the Debye lattice heat capacity and Bloch-Grüneisen electron-phonon resistivity functions versus T are presented and are used to analyze our experimental Cp(T) and ρ(T) data, respectively, for 1.8K≤T≤300 K. The T dependences of ρ for all samples are well-described over this T range by the Bloch-Grüneisen model, although the observed ρ(300 K) values are larger than calculated from this model. A significant T dependence of the Debye temperature determined from the Cp(T) data was observed for each composition. No clear evidence for bulk superconductivity or any other long-range phase transition was found for any of the LaNi₂(Ge1-xPx)₂ compositions studied.« less

  1. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  2. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field

    SciTech Connect (OSTI)

    Ilyasov, V. V. E-mail: chuongnguyen11@gmail.com; Meshi, B. C.; Nguyen, V. C. E-mail: chuongnguyen11@gmail.com; Ershov, I. V.; Nguyen, D. C.

    2014-07-07

    The paper presents the results of ab initio study of the opportunities for tuning the band structure, magnetic and transport properties of zigzag graphene nanoribbon (8-ZGNR) on hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure by transverse electric field (E{sub ext}). This study was performed within the framework of the density functional theory (DFT) using Grimme's (DFT-D2) scheme. We established the critical values of E{sub ext} for the 8-ZGNR/h-BN(0001) heterostructure, thereby providing for semiconductor-halfmetal transition in one of electron spin configurations. This study also showed that the degeneration in energy of the localized edge states is removed when E{sub ext} is applied. In ZGNR/h-BN (0001) heterostructure, value of the splitting energy was higher than one in ZGNRs without substrate. We determined the effect of low E{sub ext} applied to the 8-ZGNR/h-BN (0001) semiconductor heterostructure on the preserved local magnetic moment (LMM) (0.3μ{sub B}) of edge carbon atoms. The transport properties of the 8-ZGNR/h-BN(0001) semiconductor heterostructure can be controlled using E{sub ext}. In particular, at a critical value of the positive potential, the electron mobility can increase to 7× 10{sup 5} cm{sup 2}/V s or remain at zero in the spin-up and spin-down electron subsystems, respectively. We established that magnetic moments (MMs), band gaps, and carrier mobility can be altered using E{sub ext}. These abilities enable the use of 8-ZGNR/h-BN(0001) semiconductor heterostructure in spintronics.

  3. HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE

    SciTech Connect (OSTI)

    Guillochon, James; Ramirez-Ruiz, Enrico

    2013-04-10

    The disruption of stars by supermassive black holes has been linked to more than a dozen flares in the cores of galaxies out to redshift z {approx} 0.4. Modeling these flares properly requires a prediction of the rate of mass return to the black hole after a disruption. Through hydrodynamical simulation, we show that aside from the full disruption of a solar mass star at the exact limit where the star is destroyed, the common assumptions used to estimate M-dot (t), the rate of mass return to the black hole, are largely invalid. While the analytical approximation to tidal disruption predicts that the least-centrally concentrated stars and the deepest encounters should have more quickly-peaked flares, we find that the most-centrally concentrated stars have the quickest-peaking flares, and the trend between the time of peak and the impact parameter for deeply penetrating encounters reverses beyond the critical distance at which the star is completely destroyed. We also show that the most-centrally concentrated stars produced a characteristic drop in M-dot (t) shortly after peak when a star is only partially disrupted, with the power law index n being as extreme as -4 in the months immediately following the peak of a flare. Additionally, we find that n asymptotes to {approx_equal} - 2.2 for both low- and high-mass stars for approximately half of all stellar disruptions. Both of these results are significantly steeper than the typically assumed n = -5/3. As these precipitous decay rates are only seen for events in which a stellar core survives the disruption, they can be used to determine if an observed tidal disruption flare produced a surviving remnant. We provide fitting formulae for four fundamental quantities of tidal disruption as functions of the star's distance to the black hole at pericenter and its stellar structure: the total mass lost, the time of peak, the accretion rate at peak, and the power-law index shortly after peak. These results should be taken into consideration when flares arising from tidal disruptions are modeled.

  4. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

  5. Neutron structural characterization, inversion degree and transport properties of NiMn{sub 2}O{sub 4} spinel prepared by the hydroxide route

    SciTech Connect (OSTI)

    Sagua, A.; Lescano, Gabriela M.; Alonso, J.A.; Martínez-Coronado, R.; Fernández-Díaz, M.T.; Morán, E.

    2012-06-15

    Graphical abstract: A pure specimen has been synthesized by the hydroxide route. This spinel, studied by NPD, shows an important inversion degree, λ = 0.80. A bond-valence study shows that the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected 3+ and 2+ values, respectively. The mixed valence Mn{sup 3+}/Mn{sup 4+} accounts for a hopping mechanism between adjacent octahedral sites, leading to a significant conductivity. Highlights: ► A low-temperature hydroxide route allowed preparing almost pure specimens of NiMn{sub 2}O{sub 4}. ► NPD essential to determine inversion degree; contrasting Ni and Mn for neutrons. ► Bond valence establishes valence state of octahedral and tetrahedral Ni and Mn ions. ► Thermal analysis, transport measurements complement characterization of this oxide. ► A structure–properties relationship is established. -- Abstract: The title compound has been synthesized by the hydroxide route. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3{sup ¯}m, Z = 8, with a = 8.3940(2) Å at 295 K. The crystallographic formula is (Ni{sub 0.202(1)}Mn{sub 0.798(1)}){sub 8a}(Ni{sub 0.790(1)}Mn{sub 1.210(1)}){sub 16d}O{sub 4} where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively. There is a significant inversion degree of the spinel structure, λ = 0.80. In fact, the variable parameter for the oxygen position, u = 0.2636(4), is far from that expected (u = 0.25) for normal spinels. From a bond-valence study, it seems that the valence distribution in NiMn{sub 2}O{sub 4} spinel is not as trivial as expected (Ni{sup 2+} and Mn{sup 3+}), but clearly the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected +3 and +2 values, respectively. The mixed valence observed at the octahedral sites provides the charge carriers that, by a hopping mechanism between Mn{sup 3+}/Mn{sup 4+} adjacent sites, leads to a significant conductivity, up to 0.85 S cm{sup −1} at 800 °C in air.

  6. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  7. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  8. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  9. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Modeling, Simulation and Experimental Integration RD&D Plan

    Broader source: Energy.gov [DOE]

    Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and transporting it to treatment or recycling facilities, or to a geologic repository.

  10. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  11. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  12. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  13. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect (OSTI)

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for applying advanced experimental diagnostic techniques with increasing fidelity for the purposes of computational validation and model development. Numerical simulation of the reacting jet in crossflow is challenging because of the complex vortical structures in the flowfield and compounded by an unsteady crossflow. The resulting benchmark quality data set will include comprehensive, accurate measurements of mean and fluctuating components of velocity, pressure, and flame front location at high pressure and with crossflow conditions more representative of modern gas turbine engines. A proven means for producing combustion dynamics is used for the performing combustion instability experimental study on a reacting jet in crossflow configuration. The method used to provide an unsteady flowfield into which the transverse jet is injected is a unique and novel approach that permits elevated temperature and pressure conditions. A model dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection studies. A fully optically accessible combustor test section affords full access surrounding the point of jet injection. High speed 10 kHz planar measurements OH PLIF and high frequency 180 kHz wall pressure measurements are performed on the injected reacting transverse jet and surrounding flowfield, respectively, under simulated unstable conditions. The overlay of the jet velocity flowfield and the flame front will be investigated using simultaneous 10 kHz OH PLIF and PIV in experiments to be performed in the near future.

  14. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport – Demonstration of Approach and Results of Used Fuel Performance Characterization

    Broader source: Energy.gov [DOE]

    This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and transport (NCT).

  15. TRANSfer - Towards climate-friendly transport technologies and...

    Open Energy Info (EERE)

    - Decision-Making Structure Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: transport-namas.org Transport Toolkit Region(s): Latin America &...

  16. Ozone transport commission developments

    SciTech Connect (OSTI)

    Joyce, K.M.

    1995-08-01

    On September 27, 1994, the states of the Ozone Transport Commission (OTC) signed an important memorandum of understanding (MOU) agreeing to develop a regional strategy for controlling stationary sources of nitrogen oxide emissions. Specifically, the states of the Ozone Transport Region, OTR, agreed to propose regulations for the control of NOx emissions from boilers and other indirect heat exchangers with a maximum gross heat input rate of at least 250 million BTU per hour. The Ozone Transport Region was divided into Inner, Outer and Northern Zones. States in the Outer Zone agreed to reduce NOx emissions by 55%. States in the Inner Zone agreed to reduce NOx emissions 65%. Facilities in both zones have the option to emit NOx at a rate no greater than 0.2 pounds per million Btu by May 1, 1999. This option provides fairness for the gas-fired plants which already have relatively low NOx emissions. Additionally, States in the Inner and Outer Zones agreed to reduce their NOx emissions by 75% or to emit NOx at a rate no greater than 0.15 pounds per million BTU by May 1, 2003. The Northern Zone States agree to reduce their rate of NOx emissions by 55% from base year levels by May 1, 2003, or to emit NOx at a rate no greater than 0.2 pounds per million BTU. As part of this MOU, States also agreed to develop a regionwide trading mechanism to provide a cost-effective mechanism for implementing the reductions.

  17. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy Robert Kolasinki Permalink Gallery Robert Kolasinski wins DOE Early Career Award Transportation Energy Robert Kolasinski wins DOE Early Career Award By Michael Padilla Robert Kolasinski (8366) has received a $2.5 million, five-year Early Career Research Program award from the Department of Energy's (DOE) Office of Science to support his work on how intense fusion plasmas interact with the interior surfaces of fusion reactors. Robert's research will develop the

  18. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. May 3, 2016 NREL Convenes Gathering of U.S.-China Electric Vehicle Battery Experts On April 25-26, NREL and Argonne National Laboratory (ANL) hosted the 11th United States (U.S.)-China Electric Vehicle and Battery Technology Information Exchange to share insights on battery technology advancements and identify opportunities to collaborate on electric vehicle battery research. The meeting represents the 11th

  19. Natural gas marketing and transportation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  20. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  1. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  2. The impact of monolayer coverage, barrier thickness and growth rate on the thermal stability of photoluminescence of coupled InAs/GaAs quantum dot hetero-structure with quaternary capping of InAlGaAs

    SciTech Connect (OSTI)

    Mandal, A.; Verma, U.; Halder, N.; Chakrabarti, S.

    2012-03-15

    Highlight: Black-Right-Pointing-Pointer Coupled InAs/GaAs MQDs with (In{sub 0.21}Al{sub 0.21}Ga{sub 0.58}As + GaAs) caps are considered. Black-Right-Pointing-Pointer Monolayer coverage, barrier thickness and growth rate of the dots are the factors. Black-Right-Pointing-Pointer PL peaks for the samples are within 1.1-1.3 {mu}m; significant for IBSCs and lasers. Black-Right-Pointing-Pointer NPTP (non-resonant multi-phonon assisted tunneling process) effect on FWHM of PL. -- Abstract: The self-assembled InAs/GaAs MQDs are widely investigated for their potential application in optoelectronic devices like lasers and photovoltaics. We have explored the effect of QD growth rate and structural parameters like capping layer thickness on the morphology and optical properties of the MQD heterostructures overgrown with a combination capping of InAlGaAs and GaAs. The growth rate of the seed layers in the MQD samples is also varied to investigate its effect in the vertical stacking of the islands. The change in the morphology and the optical properties of the samples due to variation in growth and structural parameters are explained by the presence of strain in the QD structures, which arises due to lattice mismatch.

  3. Use of the slow-strain-rate technique for the evaluation of structural materials for application in high-temperature gaseous environments

    SciTech Connect (OSTI)

    Johnson, C.E.; Ugiansky, G.M.

    1981-01-01

    Types 309, 310, 310S, 347 and 446 stainless steels, Incoloy 800, and Inconel 671 were tested at temperatures from 370 to 1040/sup 0/C at strain rates from 10/sup -4/ to 10/sup -7//s in H/sub 2/S plus water, gaseous mixtures of CO, CO/sub 2/, H/sub 2/, CH/sub 4/, H/sub 2/S, and H/sub 2/O, and in nominally inert environments of He and Ar. Type 310 steel showed a marked reduction in mechanical properties at low strain rates (< 10/sup -5//s) in H/sub 2/S/H/sub 2/O at 540/sup 0/C, and this was associated with the occurrence of a large degree of secondary intergranular cracking in addition to the main ductile fracture mode. The occurrence of the secondary cracking was taken as the primary indication of embrittlement in subsequent tests. It occurred to some degree in all alloys tested in the simulated coal-gasification environments at 600/sup 0/C. The mechanism(s) of the embrittlement phenomena remain uncertain; a number of possible causes including creep and several environmentally-induced fracture processes are outlined. It is shown that the overall results of the test program are in good agreement with in-plant experience.

  4. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    SciTech Connect (OSTI)

    Adkins, Harold; Geelhood, Ken; Koeppel, Brian; Coleman, Justin; Bignell, John; Flores, Gregg; Wang, Jy-An; Sanborn, Scott; Spears, Robert; Klymyshyn, Nick

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  5. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  6. Phase-space jets drive transport and anomalous resistivity (Journal...

    Office of Scientific and Technical Information (OSTI)

    transport and anomalous resistivity In the presence of wave dissipation, phase-space structures spontaneously emerge in nonlinear Vlasov dynamics. These structures include not only...

  7. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  8. The Fluid Interface Reactions Structures and Transport (FIRST) EFRC (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Wesolowski, David J.; FIRST Staff

    2011-05-01

    'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.

  9. The Fluid Interface Reactions Structures and Transport (FIRST) EFRC (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Wesolowski, David J. (Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center); FIRST Staff

    2011-11-02

    'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.

  10. Correlation between the electronic and atomic structure, transport properties, and oxygen vacancies on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Rubio-Zuazo, J. Onandia, L.; Castro, G. R.

    2014-01-13

    We present a study of the role of oxygen vacancies on the atomic and electronic structure and transport properties on a 20?nm thick La{sub 0.7}Ca{sub 0.3}MnO{sub 3} film grown by the pulsed laser deposition method on a SrTiO{sub 3} (001) substrate. The results show that oxygen vacancies induce an atomic structure modification characterized by the movement of the La/Ca cations to the perovskite regular position, by the reduction of the MnO{sub 6} basal plane rotation, and by a cooperative tilting of the octahedra along the out-of-plane direction. The out-of-plane lattice parameter increases due to the reduction of the Mn valence upon oxygen vacancies creation. As a consequence, a shift of the Metal-to-Insulator transition to lower temperatures is found to occur. We discuss the influence of the competitive phenomena of manganese valence and Mn-O-Mn bond distortion on the transport properties of manganite thin films.

  11. Interim UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-03-30

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a draft list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during very long term storage (VLTS). The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of SSCs and degradation mechanisms developed by the UFD Storage Task (Stockman et al. 2010)

  12. Effect of current compliance and voltage sweep rate on the resistive switching of HfO{sub 2}/ITO/Invar structure as measured by conductive atomic force microscopy

    SciTech Connect (OSTI)

    Wu, You-Lin Liao, Chun-Wei; Ling, Jing-Jenn

    2014-06-16

    The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  13. Fermilab | Visit Fermilab | Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Transportation to and from Chicago O'Hare Airport or Midway Airport is available by limousine, taxi or car rental. Transportation to and from the Geneva local...

  14. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  15. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  16. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  17. Survival rate of initial azimuthal anisotropy in a multiphase...

    Office of Scientific and Technical Information (OSTI)

    Title: Survival rate of initial azimuthal anisotropy in a multiphase transport model Authors: Zhang, Liang ; Liu, Feng ; Wang, Fuqiang Publication Date: 2015-11-16 OSTI Identifier: ...

  18. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment

    SheetsTransportation Fuel Supply content top

  19. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  20. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  1. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  2. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  3. PNCA-02 Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...

  4. Computational Structural Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    load-2 TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Structural Mechanics Overview of CSM Computational structural mechanics is a well-established methodology for the design and analysis of many components and structures found in the transportation field. Modern finite-element models (FEMs) play a major role in these evaluations, and sophisticated software, such as the commercially available LS-DYNA® code, is

  5. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  6. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics and Thermal Management Thermal Management This is the March 2016 issue of the Transportation and Hydrogen Newsletter. March 31, 2016 Photo of a man seated before a microphone and speaking. NREL's Chris Gearhart provides congressional testimony on sustainable transportation. U.S. Senate Hears of Role National Labs Play in Sustainable Transportation Innovation On January 12, 2016, NREL's Chris Gearhart, director of the Transportation and Hydrogen Systems Center, provided

  7. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated zone with three major horizons, the saturated zone can be further divided into other zones based on hydraulic and geologic conditions. Wetland soils are a special and important class in which near-saturation conditions exist most of the time. When a contaminant is added to or formed in a soil column, there are several mechanisms by which it can be dispersed, transported out of the soil column to other parts of the environment, destroyed, or transformed into some other species. Thus, to evaluate or manage any contaminant introduced to the soil column, one must determine whether and how that substance will (1) remain or accumulate within the soil column, (2) be transported by dispersion or advection within the soil column, (3) be physically, chemically, or biologically transformed within the soil (i.e., by hydrolysis, oxidation, etc.), or (4) be transported out of the soil column to another part of the environment through a cross-media transfer (i.e., volatilization, runoff, ground water infiltration, etc.). These competing processes impact the fate of physical, chemical, or biological contaminants found in soils. In order to capture these mechanisms in mass transfer models, we must develop mass-transfer coefficients (MTCs) specific to soil layers. That is the goal of this chapter. The reader is referred to other chapters in this Handbook that address related transport processes, namely Chapter 13 on bioturbation, Chapter 15 on transport in near-surface geological formations, and Chapter 17 on soil resuspention. This chapter addresses the following issues: the nature of soil pollution, composition of soil, transport processes and transport parameters in soil, transformation processes in soil, mass-balance models, and MTCs in soils. We show that to address vertical heterogeneity in soils in is necessary to define a characteristic scaling depth and use this to establish process-based expressions for soil MTCs. The scaling depth in soil and the corresponding MTCs depend strongly on (1) the composition of the soil and physical state of the soil, (2) the chemical and physical properties of the substance of interest, and (3) transformation rates in soil. Our particular focus is on approaches for constructing soil-transport algorithms and soil-transport parameters for incorporation within multimedia fate models. We show how MTC's can be developed to construct a simple two-compartment air-soil system. We then demonstrate how a multi-layer-box-model approach for soil-mass balance converges to the exact analytical solution for concentration and mass balance. Finally, we demonstrate and evaluate the performance of the algorithms in a model with applications to the specimen chemicals benzene, hexachlorobenzene, lindane gammahexachlorocyclohexane, benzo(a)pyrene, nickel, and copper.

  8. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report

  9. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  10. Agenda for Transitioning the Transportation Sector: Exploring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... onal Laboratori natural gas and erent transport mental Science a e Public Affairs, s Manager, Ho scussion gen in direct co tion applicatio structure rollo ass of stations & uilt ...

  11. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  12. Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  14. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    SciTech Connect (OSTI)

    Battaglia, D. J.; Boedo, J. A.; Burrell, K. H.; Chang, C. S.; Canik, J. M.; deGrassie, J. S.; Gerhardt, S. P.; Grierson, B. A.; Groebner, R. J.; Maingi, Rajesh; Smith, S. P.

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  15. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  16. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  17. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  18. Career Map: Transportation Worker

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Transportation Worker positions.

  19. The impact of disorder on charge transport in three dimensional...

    Office of Scientific and Technical Information (OSTI)

    Title: The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures Efficient iso-entropic energy filtering of electronic waves can be ...

  20. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Joel Rosenthal is a DuPont Young Professor in the Department of Chemistry and Biochemistry ... in 2011. Rosenthal also received a DuPont Young Professor Award in 2012 and was ...

  1. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and seven partner universities (Delaware, Drexel, Minnesota, Penn State, Vanderbilt and the Universities of California at Davis and Riverside, and the University of Minnesota). ...

  2. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surfaces. In Thrust 3, we are determining how the unique properities of interfacial fluids couple with reactive surface sites to control reaction pathways, selectivity, and...

  3. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and performance pdf Electrochemical Flow Capacitor pdf Micro-supercapacitors pdf ... storage pdf AIMD Simulations of Li-ion Battery Electrolytes and Incipient SEI formation ...

  4. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Advisory Board: Dr. John R. Miller is President of JME, Inc., a service company he founded 22 years having specialization in reversible energy storage technology,...

  5. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FIRST Center Director, ORNL Ph: (865) 574-6903 Email: wesolowskid@ornl.gov Peter T. Cummings Thrust 1 Leader, Vanderbilt University Ph: (615) 322 8129 Email:...

  6. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FIRST Center Video Home CS Division PS Directorate ORNL Disclaimer

  7. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.; Dai, S.; Geiger, F. Interaction of Magnesium Ions with Pristine Single Layer and Defected GrapheneWater Interfaces Studied by Second Harmonic Generation, J. Phys. Chem. ...

  8. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  9. NREL: Transportation Research - Transportation Deployment Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Deployment Support Photo of a car parked in front of a monument. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from Julie Sutor, NREL NREL's transportation deployment team works with vehicle fleets, fuel providers, and other transportation stakeholders to help deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce emissions and petroleum dependence. In

  10. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers March 2016 Issue Power Electronics and Thermal Management Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives.

  11. NREL: Transportation Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and deployment (RD&D) activities, including work on vehicles and fuels. Hydrogen and Fuel Cells News Find news stories that highlight NREL's hydrogen RD&D activities, including work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and

  12. Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media

    SciTech Connect (OSTI)

    J. W. Halley

    2009-05-20

    This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficult to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.

  13. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  14. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  15. Rating Agency Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  16. BP-18 Rate Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  17. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  18. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  19. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  20. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  1. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  2. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  3. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  4. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  5. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  6. Crystal structure, magnetism and transport properties of Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}Al{sub 4.1}B{sub 10}

    SciTech Connect (OSTI)

    Janka, Oliver; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Kauzlarich, Susan M.

    2013-09-15

    Single crystals of Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}Al{sub 4.1}B{sub 10} were obtained from a process in which a polycrystalline sample of CeRu{sub 2}Al{sub 2}B was annealed in an excess of a NiIn flux. The initial phase, CeRu{sub 2}Al{sub 2}B, does not recrystallize, instead, crystals of a new phase, Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}Al{sub 4.1}B{sub 10}, could be isolated once the flux was removed. The title compound crystallizes in the tetragonal space group P4/nmm (No. 129) with a=1139.02(8), c=801.68(6) pm (c/a=0.70) in the Nd{sub 3}Ni{sub 29}Si{sub 4}B{sub 10} structure type. Electrical resistivity measurements reveal metallic behavior with a minimum of 700 ? cm and a small residual resistivity ratio of RRR=1.4 indicating a large amount of disorder scattering. The cerium atoms are either in the 4+ or an intermediate valence state with a valence fluctuation temperature far above room temperature. - Graphical abstract: Single crystals of Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}A{sub l4.1}B{sub 10} were obtained using a process in which a polycrystalline sample of CeRu{sub 2}Al{sub 2}B was annealed in an excess of a NiIn flux. Electrical resistivity measurements reveal metallic behavior with a minimum of 700 ?? cm and a small residual resistivity ratio of RRR=1.4 indicating a large amount of disorder scattering. The cerium atoms are either in the 4+ or an intermediate valence state with a valence fluctuation temperature far above room temperature. Display Omitted - Highlights: Flux synthesis of high quality single crystals of Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}Al{sub 4.1}B{sub 10} is presented along with the crystal structure, magnetic and transport properties. The compound is isostructural to Nd{sub 3}Ni{sub 29}Si{sub 4}B{sub 10} but is first of this structure type showing mixed occupancies of d-elements. This is an intermetallic phase with Ce in either the 4+ or an intermediate valence state. The fact that this structure with mixed occupied transition metal sites exists suggests that more compounds of this type should be accessible and the physical properties tuned.

  7. Chemistry and Transport - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Transport Chemistry and Transport The overall goal of the flame chemistry working group is to obtain fundamental combustion and emission properties of low and high pressure flames, to validate kinetic and transport models, and to develop accurate and computationally efficient models capable of predicting turbulent combustion of future transportation fuels. Experimental data of laminar and turbulent flame speeds, flame structures, extinction/ignition limits, and soot/NOx emissions

  8. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  9. NREL: Innovation Impact - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Improved transportation technologies are essential for reducing U.S. petroleum dependence. Close The United States consumes roughly 19 million barrels of petroleum per day, but replacing petroleum-based liquid fuels is difficult because of their high energy density, which helps

  10. Natural Gas Transportation Resiliency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Resiliency Anders Johnson Director Pipeline System Design April 29, 2014 ... Pipeline Resiliency Considerations * Climate Weather * Cyber Issues * Physical Impacts * ...

  11. NREL: Transportation Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications NREL researchers document their findings in technical reports, conference papers, journal articles, and fact sheets. Visit the following online resources to find publications about sustainable transportation research, development, and deployment. Capabilities Overviews These recent publications highlight some of our capabilities, facilities, and projects: Image of fact sheet cover. Sustainable Transportation This overview fact sheet describes NREL's sustainable transportation

  12. 2016 Sustainable Transportation Summit

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), the first ever Sustainable Transportation Summit will bring together transportation and mobility leaders to discuss the technology, policy, and market innovations that hold the potential to shape the transportation system of the future.

  13. Subsurface Flow and Contaminant Transport

    Energy Science and Technology Software Center (OSTI)

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  14. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect (OSTI)

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  15. What Is the Right Rate? Loan Rates and Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Is the Right Rate? Loan Rates and Demand What Is the Right Rate? Loan Rates and Demand Better Buildings Neighborhood Program Financing Peer Exchange Call: "What is the Right Rate?" call slides and discussion summary, December 1, 2011. PDF icon Call Slides and Discussion Summary More Documents & Publications Structuring Rebate and Incentive Programs for Sustainable Demand Peer Exchange Call on Financing and Revenue: Bond Funding Financing Small Business Upgrades

  16. Sustainable Transportation Summit

    Broader source: Energy.gov [DOE]

    On July 11–12, the U.S. Department of Energy will host the first-ever Sustainable Transportation Summit. The summit brings together transportation and mobility leaders to discuss the technology, policy, and market innovations that hold the potential to shape the transportation system of the future. The Sustainable Transportation Summit seeks to engage a diverse stakeholder community whose interests span a broad technology portfolio, from fuel cells and vehicle electrification to the bioenergy supply chain. This year’s summit will highlight progress and achievements in transportation research and development and bring new transportation technologies to market. *Receive 10% off admission when you register for both Bioenergy 2016 and the Sustainable Transportation Summit together!

  17. Hydrogen Energy Storage: Grid and Transportation Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  18. Molecular Mechanism of Biological Proton Transport

    SciTech Connect (OSTI)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  19. Regional Transportation Simulation Tool for Emergency Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rtstep-diag TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Regional Transportation Simulation Tool for Emergency Evacuation Planning (Click to play movie) Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the

  20. Composite oxygen ion transport element

    DOE Patents [OSTI]

    Chen, Jack C.; Besecker, Charles J.; Chen, Hancun; Robinson, Earil T.

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  1. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Requirement Resources Transportation Infrastructure Requirement Resources ... Establish Alternative Fuel Infrastructure. Back to Transportation Policies and Programs.

  2. Revenue instability induced by conservation rates

    SciTech Connect (OSTI)

    Chesnutt, T.W.; McSpadden, C.; Christianson, J.

    1996-01-01

    The shift toward conservation rate structures, although they may provide better incentives to use scarce water wisely, changes who pays what and can increase the variability of future revenue streams to the water agency. Though the definition of the correct rate structure varies by community, the managerial strategies necessary to cope with the uncertainty brought about by conservation rate structures apply universally. Revenue instability directly increases water supplier`s borrowing costs and adds indirect costs in the form of more complicated planning to provide for a reliable future water supply. This article describes an empirical study using data from two water agencies that have adopted conservation rate structures. The article proposes ways quantitative tools may be used to (1) measure and cope with added uncertainty and (2) make explicit the magnitude of trade-offs between revenue stability, equity, and the provision of incentives for efficient use of water resources.

  3. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory.

  4. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Influencing the future of vehicles, fuels Argonne's transportation research efforts bring together scientists and engineers from many disciplines to find cost-effective solutions to critical issues like foreign-oil dependency and greenhouse gas emissions. As one of the U.S. Department of Energy's lead laboratories for research in hybrid powertrains, batteries, and fuel-efficient technologies, Argonne's transportation program is critical to advancing the development of

  5. Intelligent Transportation Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligent Transportation Systems This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background The development and deployment of Intelligent Transportation Systems (ITS) in the United States is an effort of national importance. Through the use of advanced computing, control, and communication technologies, ITS promises to greatly improve the efficiency and safety of the existing surface transportation system and reduce the

  6. integrated-transportation-models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Training Archive Integrated Transportation Models Workshop at ITM 2012 April 29, 2012 Hyatt Regency Tampa Hosted by: The Transportation Research and Analysis Computing Center at Argonne National Laboratory This email address is being protected from spambots. You need JavaScript enabled to view it. The aim of the workshop was to provide an opportunity for researchers and practitioners to discuss recent research results that can support a wider application of integrated transportation models,

  7. Future of Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation In the coming decades, transportation in the U.S. is expected to change radically in response to environmental constraints, fluctuating oil availability and economic factors. Future Decision-Makers The transportation systems that emerge in the 21 st century will be defined largely by the choices, skills and imaginations of today's youth. Future Workforce As scientists and engineers, they will develop new vehicle and fuel technologies. As citizens, they will make decisions

  8. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    N ti l T t ti National Transportation Stakeholders Forum Chicago, IL, May 26, 2010 Ahmad Al-Daouk Date and page number - 1 Director, National Security Department National Nuclear Security Administration Service Center - Albuquerque, NM National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with applicable regulations (e.g. federal, local, tribal) * Great majority of NNSA shipments

  9. Water Transport Exploratory Studies

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on water transport exploratory studies, was given by Rod Borup of Los Alamos National laboratory at a DOE fuel cell meeting in February 2007.

  10. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  11. Transportation Storage Interface

    Office of Environmental Management (EM)

    transportation * High priority technical information needs have * Overall low level of knowledge * Overall high regulatory impact 12 Extended Spent Fuel Storage and...

  12. UZ Colloid Transport Model

    SciTech Connect (OSTI)

    M. McGraw

    2000-04-13

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

  13. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  14. Transportation Energy Futures Snapshot

    Broader source: Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  15. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  16. The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.; Peterson, Joshua L.; Johnson, Seth R.

    2015-12-01

    Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple because it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.

  17. The Multi-Step CADIS method for shutdown dose rate calculations and uncertainty propagation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ibrahim, Ahmad M.; Peplow, Douglas E.; Grove, Robert E.; Peterson, Joshua L.; Johnson, Seth R.

    2015-12-01

    Shutdown dose rate (SDDR) analysis requires (a) a neutron transport calculation to estimate neutron flux fields, (b) an activation calculation to compute radionuclide inventories and associated photon sources, and (c) a photon transport calculation to estimate final SDDR. In some applications, accurate full-scale Monte Carlo (MC) SDDR simulations are needed for very large systems with massive amounts of shielding materials. However, these simulations are impractical because calculation of space- and energy-dependent neutron fluxes throughout the structural materials is needed to estimate distribution of radioisotopes causing the SDDR. Biasing the neutron MC calculation using an importance function is not simple becausemore » it is difficult to explicitly express the response function, which depends on subsequent computational steps. Furthermore, the typical SDDR calculations do not consider how uncertainties in MC neutron calculation impact SDDR uncertainty, even though MC neutron calculation uncertainties usually dominate SDDR uncertainty.« less

  18. Spin-orbit coupling, electron transport and pairing instabilities in

    Office of Scientific and Technical Information (OSTI)

    two-dimensional square structures (Journal Article) | SciTech Connect Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures Citation Details In-Document Search Title: Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures Authors: Kocharian, Armen N. [1] ; Fernando, Gayanath W. [2] ; Fang, Kun [2] ; Palandage, Kalum [3] ; Balatsky, Alexander V. [4] + Show Author Affiliations Department of

  19. International Energy Outlook 2016-Transportation sector energy consumption

    Gasoline and Diesel Fuel Update (EIA)

    - Energy Information Administration 8. Transportation sector energy consumption Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption increases at an annual average rate of 1.4%, from 104 quadrillion British thermal units (Btu) in 2012 to 155 quadrillion Btu in 2040. Transportation energy demand growth occurs almost entirely in regions outside of the Organization for Economic Cooperation and Development (non-OECD), with

  20. Development of a Rating System for a Comparative Accelerated Test Standard (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2013-06-01

    This presentation discusses methods of developing and structuring a useful rating system and communicating the results.

  1. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  2. Transport Version 3

    Energy Science and Technology Software Center (OSTI)

    2008-05-16

    The Transport version 3 (T3) system uses the Network News Transfer Protocol (NNTP) to move data from sources to a Data Reporisoty (DR). Interested recipients subscribe to newsgroups to retrieve data. Data in transport is protected by AES-256 and RSA cryptographic services provided by the external OpenSSL cryptographic libraries.

  3. Resonant thermonuclear reaction rate

    SciTech Connect (OSTI)

    Haubold, H.J.; Mathai, A.M.

    1986-08-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-italic-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-italic-function is discussed in physical terms.

  4. Development of dense-phase pneumatic transport of coal

    SciTech Connect (OSTI)

    Horisaka, S.; Ikemiya, H.; Kajiwara, T.

    1996-12-31

    Dense phase pneumatic transport system has been developed to reduce entrained particles as is seen in the belt conveyor system. High mass flow rate and dense phase (Loading ratio = 50--100kg-coal/kg-N{sub 2}) transport has been achieved by applying this plug flow system to pneumatic conveying of coal (Average particle diameter = 2.5 mm).

  5. Draft Tiered Rate Methodology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Regional Dialogue Discussion Purposes Only Pre-Decisional Draft Tiered Rates Methodology March 7, 2008 Pre-decisional, Deliberative, For Discussion Purposes Only March 7,...

  6. LCC Guidance Rates

    Broader source: Energy.gov [DOE]

    Notepad text file provides the LCC guidance rates in a numbered format for the various regions throughout the U.S.

  7. Diffusion and transport coefficients in synthetic opals

    SciTech Connect (OSTI)

    Sofo, J. O.; Mahan, G. D.; Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200

    2000-07-15

    Opals are structures composed of close-packed spheres in the size range of nano to micrometers. They are sintered to create small necks at the points of contact. We have solved the diffusion problem in such structures. The relation between the diffusion coefficient and the thermal and electrical conductivity is used to estimate the transport coefficients of opal structures as a function of the neck size and the mean free path of the carriers. The theory presented is also applicable to the diffusion problem in other periodic structures. (c) 2000 The American Physical Society.

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-08-07

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-10-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  11. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Technology Hydrogen and Fuel Cell Technology This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on accelerating the acceptance of hydrogen infrastructure. Photo by John De La Rosa, NREL 33660 New H2FIRST Reports Detail Hydrogen Station Designs, Contaminant Detection Two new reports have been published by NREL and Sandia National Laboratories

  12. FLUKA: A Multi-Particle Transport Code

    SciTech Connect (OSTI)

    Ferrari, A.; Sala, P.R.; Fasso, A.; Ranft, J.; /Siegen U.

    2005-12-14

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  13. Heat transport system, method and material

    DOE Patents [OSTI]

    Musinski, Donald L.

    1987-01-01

    A heat transport system, method and composite material in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure.

  14. Transport processes in space plasmas

    SciTech Connect (OSTI)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-08-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth`s magnetosphere and associated waves, the Earth`s magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth`s magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior.

  15. WIPP Transportation (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP TRANSPORTATION SYSTEM Waste Isolation Pilot Plant U.S. Department Of Energy The U.S. Department of Energy (DOE) has established an elaborate system for safely transporting transuranic, or TRU, radioactive waste to the Waste Isolation Pilot Plant (WIPP) for permanent disposal, or between generator sites. The waste is transported in four shipping casks approved for use by the U.S. Nuclear Regulatory Commission (NRC). Three shipping casks, the TRUPACT-II, HalfPACT and TRUPACT-III, are designed

  16. Graphene nanoribbon molecular sensor based on inelastic transport (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Graphene nanoribbon molecular sensor based on inelastic transport Citation Details In-Document Search Title: Graphene nanoribbon molecular sensor based on inelastic transport Results of phonon-assisted inelastic quantum transport calculations are presented for graphene nanoribbons. We consider a single molecule attached to a carbon atom and describe the electronic structure by a tight-binding model, taking into account a local phonon mode associated with the

  17. Transport mechanisms in nanopores and nanochannels: Can we mimic nature?

    SciTech Connect (OSTI)

    Tagliazucchi, Mario [Northwestern Univ., Evanston, IL (United States); Szleifer, Igal [Northwestern Univ., Evanston, IL (United States)

    2014-11-03

    The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental and theoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.

  18. Transport mechanisms in nanopores and nanochannels: Can we mimic nature?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tagliazucchi, Mario; Szleifer, Igal

    2014-11-03

    The last few years have witnessed major advancements in the synthesis, modification, characterization and modeling of nanometer-size solid-state channels and pores. Future applications in sensing, energy conversion and purification technologies will critically rely on qualitative improvements in the control over the selectivity, directionality and responsiveness of these nanochannels and nanopores. It is not surprising, therefore, that researchers in the field seek inspiration in biological ion channels and ion pumps, paradigmatic examples of transport selectivity. This work reviews our current fundamental understanding of the mechanisms of transport of ions and larger cargoes through nanopores and nanochannels by examining recent experimental andmoretheoretical work. It is argued that that structure and transport in biological channels and polyelectrolyte-modified synthetic nanopores are strongly coupled: the structure dictates transport and transport affects the structure. We compare synthetic and biological systems throughout this review to conclude that while they present interesting similarities, they also have striking differences.less

  19. Irradiation response of commercial, high-Tc superconducting tapes: Electromagnetic transport properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gapud, A. A.; Greenwood, N. T.; Alexander, J. A.; Khan, A.; Leonard, K. J.; Aytug, T.; List III, F. A.; Rupich, M. W.; Zhang, Y.

    2015-07-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results showmore » that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.« less

  20. Irradiation of commercial, high-Tc superconducting tape for potential fusion applications: electromagnetic transport properties

    SciTech Connect (OSTI)

    Aytug, Tolga [ORNL; Gapud, Albert A. [University of South Alabama, Mobile; List III, Frederick Alyious [ORNL; Leonard, Keith J [ORNL; Rupich, Marty [American Superconductor Corporation, Westborough, MA; Zhang, Yanwen [ORNL; Greenwood, N T [University of South Alabama, Mobile; Alexander, J A [University of South Alabama, Mobile; Khan, A [University of South Alabama, Mobile

    2015-01-01

    Effects of low dose irradiation on the electrical transport current properties of commercially available high-temperature superconducting, coated-conductor tapes were investigated, in view of potential applications in the irradiative environment of fusion reactors. Three different tapes, each with unique as-grown flux-pinning structures, were irradiated with Au and Ni ions at energies that provide a range of damage effects, with accumulated damage levels near that expected for conductors in a fusion reactor environment. Measurements using transport current determined the pre- and post-irradiation resistivity, critical current density, and pinning force density, yielding critical temperatures, irreversibility lines, and inferred vortex creep rates. Results show that at the irradiation damage levels tested, any detriment to as-grown pre-irradiation properties is modest; indeed in one case already-superior pinning forces are enhanced, leading to higher critical currents.

  1. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies ...

  2. The Geography of Transport Systems-Maritime Transportation |...

    Open Energy Info (EERE)

    report Website: people.hofstra.edugeotransengch3enconc3ench3c4en.html Cost: Free Language: English References: Maritime Transportation1 "Maritime transportation, similar to...

  3. Structural basis for substrate specificity in the Escherichia...

    Office of Scientific and Technical Information (OSTI)

    Structural basis for substrate specificity in the Escherichia coli maltose transport system Citation Details In-Document Search Title: Structural basis for substrate specificity in ...

  4. PBA Transportation Websites

    Broader source: Energy.gov [DOE]

    PBA Transportation Websites presented to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  5. Accident resistant transport container

    DOE Patents [OSTI]

    Andersen, John A.; Cole, James K.

    1980-01-01

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  6. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  7. Accident resistant transport container

    DOE Patents [OSTI]

    Anderson, J.A.; Cole, K.K.

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  8. Program Analyst (Transportation Safety)

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as a Program Analyst(Transportation Safety) supporting and advising management on safety and health matters for nuclear and non-nuclear activities.

  9. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, ... limit of s &29; 1, RR assumed the electron heat flux to be diffusive, obeying Fourier's ...

  10. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect (OSTI)

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  11. NREL: Transportation Research - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities A Vision for Sustainable Transportation Line graph illustrating three pathways (biofuel, hydrogen, and electric vehicle) to reduce energy use and greenhouse gas emissions. Electric Vehicle Technologies & Targets 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. NREL uses 100% of its considerable transportation research, development, and deployment (RD&D) capabilities to pursue sustainable solutions that deliver

  12. NREL: Transportation Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Illustration of aerodynamic light-, medium, and heavy-duty vehicles. NREL research helps optimize the energy efficiency of a wide range of vehicle technologies and applications. NREL's innovative transportation research, development, and deployment projects accelerate widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. The following NREL transportation projects are propelling

  13. Transportation Data Archiving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Data Archiving This email address is being protected from spambots. You need JavaScript enabled to view it. - TRACC Director Background Urban and regional transportation planning and operations applications, (e.g. traffic modeling) require a large volume of accurate traffic-related data for a wide range of conditions. Significant real-time data on traffic volumes, highway construction, accidents, weather, airline flights, commuter and rail schedules, etc., are recorded each day by

  14. Transportation Politics and Policy

    U.S. Energy Information Administration (EIA) Indexed Site

    Reducing Greenhouse Gas Emissions from U.S. Transportation Steven Plotkin, Argonne National Laboratory (co-author is David Greene of Oak Ridge) 2011 EIA Energy Conference May 26-27, 2011 Washington, DC Overview  Presentation based on recent report from the Pew Center on Global Climate Change  Task: Assess the potential to substantially reduce transportation's GHG emissions by 2035 & 2050.  Base Case: Annual Energy Outlook 2010 Reference Case, extended to 2050  Three scenarios

  15. Transportation Representation | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gas Emissions from U.S. Transportation Steven Plotkin, Argonne National Laboratory (co-author is David Greene of Oak Ridge) 2011 EIA Energy Conference May 26-27, 2011 Washington, DC Overview  Presentation based on recent report from the Pew Center on Global Climate Change  Task: Assess the potential to substantially reduce transportation's GHG emissions by 2035 & 2050.  Base Case: Annual Energy Outlook 2010 Reference Case, extended to 2050  Three scenarios with

  16. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  17. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  18. Tape transport mechanism

    DOE Patents [OSTI]

    Groh, Edward F.; McDowell, William; Modjeski, Norbert S.; Keefe, Donald J.; Groer, Peter

    1979-01-01

    A device is provided for transporting, in a stepwise manner, tape between a feed reel and takeup reel. An indexer moves across the normal path of the tape displacing it while the tape on the takeup reel side of the indexer is braked. After displacement, the takeup reel takes up the displaced tape while the tape on the feed reel side of the indexer is braked, providing stepwise tape transport in precise intervals determined by the amount of displacement caused by the indexer.

  19. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  20. Electrical transport properties of Ti-doped Fe2O3(0001) epitaxial films

    SciTech Connect (OSTI)

    Zhao, Bo; Kaspar, Tiffany C.; Droubay, Timothy C.; McCloy, John S.; Bowden, Mark E.; Shutthanandan, V.; Heald, Steve M.; Chambers, Scott A.

    2011-12-30

    The electrical transport properties for compositionally and structurally well-defined epitaxial ?-(TixFe1?x)2O3(0001) films have been investigated for x ? 0.09. All films were grown by oxygen plasma-assisted molecular beam epitaxy using two different growth rates: 0.050.06 /s and 0.220.24 /s. Despite no detectable difference in cation valence and structural properties, films grown at the lower rate were highly resistive whereas those grown at the higher rate were semiconducting (? = ?1 ???cm at 25?C). Hall effect measurements reveal carrier concentrations between 1019 and 1020 cm?3 at room temperature and mobilities in the range of 0.1 to 0.6 cm2/V??s for films grown at the higher rate. The conduction mechanism transitions from small-polaron hopping at higher temperatures to variable-range hopping at a transition temperature between 180 and 140 K. The absence of conductivity in the slow-grown films is attributed to donor electron compensation by cation vacancies, which may form to a greater extent at the lower rate because of higher oxygen fugacity at the growth front.

  1. Transportation and Program Management Services

    Office of Environmental Management (EM)

    Atlanta, Georgia Transportation and Program Management Services Secured Transportation Services, LLC Founded: December, 2003 ff Staff: 7 Experience: Over 145 years combined experience in Nuclear Transportation, Security, HP & Operations Services Transportation The largest Transportation Coordinators of Spent Nuclear Fuel in North America On-Site, Hands-On Assistance (Before & During both Loading & Transport) P d A i t (W iti d/ R i ) Procedure Assistance (Writing and/or Review)

  2. Residential Solar Valuation Rates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Valuation Rates Karl R. Rbago Rbago Energy LLC 1 The Ideal Residential Solar Tariff Fair to the utility and non-solar customers Fair compensation to the solar ...

  3. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

  4. Best Practices: Escalation Rates

    Office of Environmental Management (EM)

    Best Practices Escalation Rates Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX Best Practices: Escalation Rate Value of future energy savings * Provides purchasing power for implementing a robust, comprehensive and customized ECM set * Provides an option for paying back financing in the shortest possible

  5. Badger Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Jump to: navigation, search Name: Badger Transport Place: Clintonville, Wisconsin Zip: 54929 Product: Heavy haul and specialty trucking company active in the US Midwest....

  6. Transportation Resources | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources The following means of transportation are available for getting to Argonne. Airports Argonne is located within 25 miles of two major Chicago airports:...

  7. Washington: Integrated Transportation Programs & Coordinated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Transportation Programs & Coordinated Regional Planning Washington: Integrated Transportation Programs & Coordinated Regional Planning November 6, 2013 - 5:42pm Addthis ...

  8. CASL - Radiation Transport Methods Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Transport Methods Update The Radiation Transport Methods (RTM) focus area is responsible for the development of methods, algorithms, and implementations of radiation...

  9. Energy Intensity Indicators: Transportation Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining ...

  10. Spring 2016 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation Stakeholders Forum Meeting, Florida Spring 2016 National Transportation ...

  11. National Transportation Stakeholders Forum (NTSF) Charter | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services Waste Management Packaging and Transportation National Transportation Stakeholders Forum National Transportation Stakeholders Forum (NTSF) Charter National ...

  12. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. PDF icon Transportation Storage Interface More Documents & Publications...

  13. Spring 2015 National Transportation Stakeholders Forum Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders Forum Meeting, New Mexico Spring 2015 National Transportation Stakeholders ...

  14. Transportation Efficiency Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Transportation Efficiency Resources Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies ...

  15. California Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Jump to: navigation, search Name: California Department of Transportation Place: Sacramento, California References: California Department of Transportation1 This...

  16. Electrokinetic transport in microchannels with random roughness

    SciTech Connect (OSTI)

    Wang, Moran [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory

    2008-01-01

    We present a numerical framework to model the electrokinetic transport in microchannels with random roughness. The three-dimensional microstructure of the rough channel is generated by a random generation-growth method with three statistical parameters to control the number density, the total volume fraction, and the anisotropy characteristics of roughness elements. The governing equations for the electrokinetic transport are solved by a high-efficiency lattice Poisson?Boltzmann method in complex geometries. The effects from the geometric characteristics of roughness on the electrokinetic transport in microchannels are therefore modeled and analyzed. For a given total roughness volume fraction, a higher number density leads to a lower fluctuation because of the random factors. The electroosmotic flow rate increases with the roughness number density nearly logarithmically for a given volume fraction of roughness but decreases with the volume fraction for a given roughness number density. When both the volume fraction and the number density of roughness are given, the electroosmotic flow rate is enhanced by the increase of the characteristic length along the external electric field direction but is reduced by that in the direction across the channel. For a given microstructure of the rough microchannel, the electroosmotic flow rate decreases with the Debye length. It is found that the shape resistance of roughness is responsible for the flow rate reduction in the rough channel compared to the smooth channel even for very thin double layers, and hence plays an important role in microchannel electroosmotic flows.

  17. WP-07 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meetings & Workshops Rate Case Parties Web Site WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  18. 2007-2009 Power Rate Adjustments (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...

  19. Interfacial Structure and Reactivity | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a robust, molecular-scale understanding of its structure and reactivity? Research Context The transport of ions across the electrodeelectrolyte interface can lead to kinetic...

  20. Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode

    SciTech Connect (OSTI)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Hollmann, E. M.; Rognlien, T. D.; Lasnier, C. J.; Unterberg, E.

    2014-06-15

    Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.

  1. Multi-fluid transport code modeling of time-dependent recycling in ELMy H-mode

    SciTech Connect (OSTI)

    Pigarov, A. Yu.; Krasheninnikov, S. I.; Rognlien, T. D.; Hollmann, E. M.; Lasnier, C. J.; Unterberg, Ezekial A

    2014-01-01

    Simulations of a high-confinement-mode (H-mode) tokamak discharge with infrequent giant type-I ELMs are performed by the multi-fluid, multi-species, two-dimensional transport code UEDGE-MB, which incorporates the Macro-Blob approach for intermittent non-diffusive transport due to filamentary coherent structures observed during the Edge Localized Modes (ELMs) and simple time-dependent multi-parametric models for cross-field plasma transport coefficients and working gas inventory in material surfaces. Temporal evolutions of pedestal plasma profiles, divertor recycling, and wall inventory in a sequence of ELMs are studied and compared to the experimental time-dependent data. Short- and long-time-scale variations of the pedestal and divertor plasmas where the ELM is described as a sequence of macro-blobs are discussed. It is shown that the ELM recovery includes the phase of relatively dense and cold post-ELM divertor plasma evolving on a several ms scale, which is set by the transport properties of H-mode barrier. The global gas balance in the discharge is also analyzed. The calculated rates of working gas deposition during each ELM and wall outgassing between ELMs are compared to the ELM particle losses from the pedestal and neutral-beam-injection fueling rate, correspondingly. A sensitivity study of the pedestal and divertor plasmas to model assumptions for gas deposition and release on material surfaces is presented. The performed simulations show that the dynamics of pedestal particle inventory is dominated by the transient intense gas deposition into the wall during each ELM followed by continuous gas release between ELMs at roughly a constant rate.

  2. NREL: Transportation Research - Transportation and Hydrogen Newsletter:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage This is the November 2015 issue of the Transportation and Hydrogen Newsletter. November 6, 2015 Photo of a light blue car with a pump nozzle in front of a fuel dispenser. Hydrogen is pumped into a fuel cell electric vehicle at NREL's new station. Image by Dennis Schroeder/NREL 34598 New H2 Station Launched In fuel cell electric vehicles, energy is stored in hydrogen gas and then converted to electricity in a fuel cell. In October, NREL dedicated a 700-bar

  3. Hydrogen Energy Storage: Grid and Transportation Services Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structure 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable ...

  4. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    SciTech Connect (OSTI)

    Spädtke, Peter

    2014-02-15

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation.

  5. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

  6. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account for individual traveler response to the dynamic transportation environment. In contrast, TRANSIMS provides disaggregated information that more explicitly represents the complex nature of humans interacting with the transportation system. It first generates a synthetic population that represents individuals and their households in the metropolitan region in a statistically valid way. The demographic makeup and spatial distribution of this synthetic population is derived from census data so that it matches that of the region’s real population. From survey data, a model is built of household and individual activities that may occur at home, in the workplace, school or shopping centers, for example. Trip plans including departure times, travel modes, and specific routes are created for each individual to get to his or her daily activities. TRANSIMS then simulates the movement of millions of individuals, following their trip plans throughout the transportation network, including their use of vehicles such as cars or buses, on a second-by-second basis. The virtual travel in TRANSIMS mimics the traveling and driving behavior of real people in the metropolitan region. The interactions of individual vehicles produce realistic traffic dynamics from which analysts can judge to performance of the transportation sysime and estimate vehicle emissions. Los Alamos, in cooperation with the Department of Transportation, Federal HIghway Administration and the local Metropolitan Planning Offices, has done TRANSIMS micro-simulations of auto traffic patterns in these two urban areas and completed associated scenario-based studies.« less

  7. Adjustable shear stress erosion and transport flume

    DOE Patents [OSTI]

    Roberts, Jesse D.; Jepsen, Richard A.

    2002-01-01

    A method and apparatus for measuring the total erosion rate and downstream transport of suspended and bedload sediments using an adjustable shear stress erosion and transport (ASSET) flume with a variable-depth sediment core sample. Water is forced past a variable-depth sediment core sample in a closed channel, eroding sediments, and introducing suspended and bedload sediments into the flow stream. The core sample is continuously pushed into the flow stream, while keeping the surface level with the bottom of the channel. Eroded bedload sediments are transported downstream and then gravitationally separated from the flow stream into one or more quiescent traps. The captured bedload sediments (particles and aggregates) are weighed and compared to the total mass of sediment eroded, and also to the concentration of sediments suspended in the flow stream.

  8. Analysis of turbulent transport and mixing in transitional Rayleigh/Taylor unstable flow using direct numerical simulation data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schilling, Oleg; Mueschke, Nicholas J.

    2010-10-18

    Data from a 1152X760X1280 direct numerical simulation (DNS) of a transitional Rayleigh-Taylor mixing layer modeled after a small Atwood number water channel experiment is used to comprehensively investigate the structure of mean and turbulent transport and mixing. The simulation had physical parameters and initial conditions approximating those in the experiment. The budgets of the mean vertical momentum, heavy-fluid mass fraction, turbulent kinetic energy, turbulent kinetic energy dissipation rate, heavy-fluid mass fraction variance, and heavy-fluid mass fraction variance dissipation rate equations are constructed using Reynolds averaging applied to the DNS data. The relative importance of mean and turbulent production, turbulent dissipationmoreand destruction, and turbulent transport are investigated as a function of Reynolds number and across the mixing layer to provide insight into the flow dynamics not presently available from experiments. The analysis of the budgets supports the assumption for small Atwood number, Rayleigh/Taylor driven flows that the principal transport mechanisms are buoyancy production, turbulent production, turbulent dissipation, and turbulent diffusion (shear and mean field production are negligible). As the Reynolds number increases, the turbulent production in the turbulent kinetic energy dissipation rate equation becomes the dominant production term, while the buoyancy production plateaus. Distinctions between momentum and scalar transport are also noted, where the turbulent kinetic energy and its dissipation rate both grow in time and are peaked near the center plane of the mixing layer, while the heavy-fluid mass fraction variance and its dissipation rate initially grow and then begin to decrease as mixing progresses and reduces density fluctuations. All terms in the transport equations generally grow or decay, with no qualitative change in their profile, except for the pressure flux contribution to the total turbulent kinetic energy flux, which changes sign early in time (a countergradient effect). The production-to-dissipation ratios corresponding to the turbulent kinetic energy and heavy-fluid mass fraction variance are large and vary strongly at small evolution times, decrease with time, and nearly asymptote as the flow enters a self-similar regime. The late-time turbulent kinetic energy production-to-dissipation ratio is larger than observed in shear-driven turbulent flows. The order of magnitude estimates of the terms in the transport equations are shown to be consistent with the DNS at late-time, and also confirms both the dominant terms and their evolutionary behavior. These results are useful for identifying the dynamically important terms requiring closure, and assessing the accuracy of the predictions of Reynolds-averaged Navier-Stokes and large-eddy simulation models of turbulent transport and mixing in transitional Rayleigh-Taylor instability-generated flow.less

  9. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phase membranes have been evaluated for structural properties. An increasing crack growth resistance was observed for the membranes heat-treated at 1000 C in air and N{sub 2} with increasing crack length. The combined effect of thermal and elastic mismatch stresses on the crack path was studied and the fracture behavior of the dual phase composite at the test conditions was analyzed. Ceramic/metal (C/M) seals are needed to form a leak-tight interface between the OTM and a nickel-base super alloy. It was concluded that Ni-based brazing alloys provided the best option in terms of brazing temperature and final operating conditions after analyzing several possible brazing systems. A mechanical testing procedure has been developed. This model was tested with model ceramic/metal systems but it is expected to be useful for testing concentric perovskite/metal seals.

  10. Temperature influence on water transport in hardened cement pastes

    SciTech Connect (OSTI)

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  11. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  12. Transportation Energy Futures (TEF) Data and Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Futures (TEF) National Renewable Energy Laboratory Build 241 search keywords clear search show bibliography show instructions ^(sprawl|density|population density|census|ppsm|metro area|single-family|weighted density|population center|populations?|mix|american housing survey|schools?|population-serving|density gradient|metropolitan|msas?|psas?|urban|blocks?)$ ^(co2|emissions?|rates?|transient|smooth|driving|gallons per mile|g/mile|average speed|speeds?|moves|miles per

  13. Chapter 17 - Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 18,2005 MEMORANDUM FOR FROM: SUBJECT: Accounting Handbook - Chapter 1 7, Transportation Attached is the final version of Chapter 17, "Transportation," of the Department's Accounting Handbook. A draft version of this chapter was circulated for review and comment in a November 1,2004, memorandum "Request for Review of D r a f t DOE Accounting Handbook Chapter 17." There were no comments on this chapter. We appreciate your assistance in the update of the Accounting

  14. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Registration is OPEN! National Transportation Stakeholders Forum 2015 Annual Meeting May 12-14, 2015 Embassy Suites Albuquerque, New Mexico Online registration is now open for the 2015 Annual Meeting of the National Transportation Stakeholders' Forum (NTSF), to be held in Albuquerque, New Mexico. The meeting will begin at 8:00am on Tuesday, May 12th, and will conclude by 10:00am on Thursday, May 14th. To view a preliminary draft agenda, please visit the NTSF meeting website. DOE will be hosting

  15. Review of existing reactive transport software

    SciTech Connect (OSTI)

    Glassley, W., LLNL

    1998-02-03

    Simulations of thermal and hydrological evolution following the potential emplacement of a subterranean nuclear waste repository at Yucca Mountain, NV provide data that suggest the inevitability of dependent, simultaneous chemical evolution in this system. These chemical changes will modify significantly both the magnitude and structure of local porosity and permeability; hence, they will have a dynamic feedback effect on the evolving thermal and hydrological regime. Yet, despite this intimate interdependence of transport and chemical processes, a rigorous quantitative analysis of the post- emplacement environment that incorporates this critical feedback mechanism has not been completed to date. As an initial step in this direction, the present document outlines the fundamental chemical and transport processes that must be accounted for in such an analysis, and reviews the inventory of existing software that encodes these processed in explicitly coupled form. A companion report describes the prioritization of specific capabilities that are needed for modeling post-emplacement reactive transport at Yucca Mountain.

  16. Effect of canopy structure and open-top chamber techniques on micrometeorological parameters and the gradients and transport of water vapor, carbon dioxide and ozone in the canopies of plum trees (`prunus salicina`) in the San Joaquin valley. Final report

    SciTech Connect (OSTI)

    Grantz, D.A.; Vaughn, D.L.; Metheny, P.A.; Malkus, P.; Wosnik, K.

    1995-03-15

    Plum trees (Prunus salicina cv. Casselman) were exposed to ozone in open-top chambers (OTC) or chamberless plots, and trace gas concentrations and microenvironmental conditions were monitored within tree canopies inside the outside the OTC. Concentrations of ozone, carbon dioxide and water vapor, leaf and air temperature, light intensity, and wind speed were measured at nine positions in the tree canopies. The objectives were to: (1) map the distribution of microenvironmental parameters within the canopies inside and outside the OTC; (2) determine transport parameters for gas exchange, and (3) calculate ozone flux. Significant vertical and horizontal gradients were observed; gradients were diminished and often inverted inside relative to outside the OTC due to air distribution at the bottom of the OCT. Ozone flux was readily modeled from measures of stomatal conductance, nonstomatal conductance and ozone concentration at the leaf surface.

  17. NREL: Transportation Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Transportation Research Home Capabilities Projects

  18. EPAct Transportation Regulatory Activities

    SciTech Connect (OSTI)

    2011-11-21

    The U.S. Department of Energy's (DOE) Vehicle Technologies Program manages several transportation regulatory activities established by the Energy Policy Act of 1992 (EPAct), as amended by the Energy Conservation Reauthorization Act of 1998, EPAct 2005, and the Energy Independence and Security Act of 2007 (EISA).

  19. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  20. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  1. Sequoia Messaging Rate Benchmark

    Energy Science and Technology Software Center (OSTI)

    2008-01-22

    The purpose of this benchmark is to measure the maximal message rate of a single compute node. The first num_cores ranks are expected to reside on the 'core' compute node for which message rate is being tested. After that, the next num_nbors ranks are neighbors for the first core rank, the next set of num_nbors ranks are neighbors for the second core rank, and so on. For example, testing an 8-core node (num_cores = 8)more » with 4 neighbors (num_nbors = 4) requires 8 + 8 * 4 - 40 ranks. The first 8 of those 40 ranks are expected to be on the 'core' node being benchmarked, while the rest of the ranks are on separate nodes.« less

  2. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  3. PRECEDENTS FOR AUTHORIZATION OF CONTENTS USING DOSE RATE MEASUREMENTS

    SciTech Connect (OSTI)

    Abramczyk, G.; Bellamy, S.; Nathan, S.; Loftin, B.

    2012-06-05

    For the transportation of Radioactive Material (RAM) packages, the requirements for the maximum allowed dose rate at the package surface and in its vicinity are given in Title 10 of the Code of Federal Regulations, Section 71.47. The regulations are based on the acceptable dose rates to which the public, workers, and the environment may be exposed. As such, the regulations specify dose rates, rather than quantity of radioactive isotopes and require monitoring to confirm the requirements are met. 10CFR71.47 requires that each package of radioactive materials offered for transportation must be designed and prepared for shipment so that under conditions normally incident to transportation the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external Surface of the package, and the transport index does not exceed 10. Before shipment, the dose rate of the package is determined by measurement, ensuring that it conforms to the regulatory limits, regardless of any analyses. This is the requirement for all certified packagings. This paper discusses the requirements for establishing the dose rates when shipping RAM packages and the precedents for meeting these requirements by measurement.

  4. Structural and electrical transport properties of La{sub 0.8}Sm{sub 0.05}K{sub 0.15}MnO{sub 3} manganites

    SciTech Connect (OSTI)

    Shaikh, M. W.; Mansuri, I.; Varshney, Dinesh

    2014-04-24

    Polycrystalline sample of single-phase La{sub 0.8}Sm{sub 0.05}K{sub 0.15}MnO{sub 3} perovskite compound have been synthesized by solid-state reaction route. X-ray diffraction patterns accompanied by Rietveldrefined crystal structure parameters reveal the rhombohedral structure with space group R 3C. Electrical resistivity infers transition from metallic to insulator phase at 537 K. The application of magnetic field of 8 T, suppresses the resistivity. The metallic resistivity is retraced by considering electronphonon, electronelectron and electron-spin-fluctuation interactions while insulating behaviour is analysed with small polaron conduction model.

  5. DIAGNOSIS OF EQUILIBRIUM MAGNETIC PROFILES, CURRENT TRANSPORT,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIAGNOSIS OF EQUILIBRIUM MAGNETIC PROFILES, CURRENT TRANSPORT, AND INTERNAL STRUCTURES IN A REVERSED-FIELD PINCH USING ELECTRON TEMPERATURE FLUCTUATIONS by Eli Parke A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) at the UNIVERSITY OF WISCONSIN-MADISON 2014 Date of final oral examination: 08/01/14 The dissertation is approved by the following members of the Final Oral Committee: Daniel J. Den Hartog, Research Professor, Physics

  6. Heat transport system, method and material

    DOE Patents [OSTI]

    Musinski, D.L.

    1987-04-28

    A heat transport system, method and composite material are disclosed in which a plurality of hollow spherical shells or microspheres having an outside diameter of less than or equal to 500 microns are encapsulated or embedded within a bulk material. Each shell has captured therein a volatile working fluid, such that each shell operates as a microsized heat pipe for conducting heat through the composite structure. 1 fig.

  7. Writing Effective Initial Summary Ratings Initial Summary Rating (ISR)

    Energy Savers [EERE]

    Initial Summary Ratings Initial Summary Rating (ISR) At the end of the performance cycle, the rating official must prepare an ISR in ePerformance for each SES member who has completed at least 90 days on an established performance plan. Rating officials must take into account the SES member's accomplishments achieved during the performance cycle and the impact to the organization's performance. Rating officials must appraise executives realistically and fairly and avoid ratings inflation.

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  9. October 1996 - September 2001 Wholesale Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...

  10. A Dual Regime Reactive Transport Model for Simulation of High Level Waste Tank Closure Scenarios - 13375

    SciTech Connect (OSTI)

    Sarkar, Sohini; Kosson, David S.; Brown, Kevin; Garrabrants, Andrew C.; Meeussen, Hans; Van der Sloot, Hans

    2013-07-01

    A numerical simulation framework is presented in this paper for estimating evolution of pH and release of major species from grout within high-level waste tanks after closure. This model was developed as part of the Cementitious Barriers Partnership. The reactive transport model consists of two parts - (1) transport of species, and (2) chemical reactions. The closure grout can be assumed to have varying extents of cracking and composition for performance assessment purposes. The partially or completely degraded grouted tank is idealized as a dual regime system comprising of a mobile region having solid materials with cracks and macro-pores, and an immobile/stagnant region having solid matrix with micropores. The transport profiles of the species are calculated by incorporating advection of species through the mobile region, diffusion of species through the immobile/stagnant region, and exchange of species between the mobile and immobile regions. A geochemical speciation code in conjunction with the pH dependent test data for a grout material is used to obtain a mineral set that best describes the trends in the test data of the major species. The dual regime reactive transport model predictions are compared with the release data from an up-flow column percolation test. The coupled model is then used to assess effects of crack state of the structure, rate and composition of the infiltrating water on the pH evolution at the grout-waste interface. The coupled reactive transport model developed in this work can be used as part of the performance assessment process for evaluating potential risks from leaching of a cracked tank containing elements of human health and environmental concern. (authors)

  11. The cost of transportation`s oil dependence

    SciTech Connect (OSTI)

    Greene, D.L.

    1995-05-01

    Transportation is critical to the world`s oil dependence problem because of the large share of world oil it consumes and because of its intense dependence on oil. This paper will focus on the economic costs of transportation`s oil dependence.

  12. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. Viswanathan; P. Reimus

    2003-09-05

    Colloid retardation is influenced by the attachment and detachment of colloids from immobile surfaces. This analysis demonstrates the development of parameters necessary to estimate attachment and detachment of colloids and, hence, retardation in both fractured tuff and porous alluvium. Field and experimental data specific to fractured tuff are used for the analysis of colloid retardation in fractured tuff. Experimental data specific to colloid transport in alluvial material from Yucca Mountain as well as bacteriophage field studies in alluvial material, which are thought to be good analogs for colloid transport, are used to estimate attachment and detachment of colloids in the alluvial material. There are no alternative scientific approaches or technical methods for calculating these retardation factors.

  13. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Hedstrom, James C.

    1990-01-01

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  14. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  15. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Map of Argonne Site Showing CNM Location A shuttle bus operates between Argonne and the University of Chicago's Hyde Park campus. Northwestern University offers a car pool program to Argonne. From early spring until early fall, Argonne offers a bike-share program that facility users are welcome to join. Before using the bikes, you must take a online bike safety course and sign a liability waiver. On completion of the training and waiver, you will receive an Argonne-issued bike

  16. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    TRANSPORTATION STAKEHOLDERS FORUM Activities and Accomplishments May 16, 2013 Buffalo, New York NTSF RESOURCES  Wiki Site  Private domain / Registration required  Repository of information  Users are allowed editing capabilities  Webinars  Cover a variety of topics (NRC Rulemaking, Section 180(c), BRC Recommendations, Strategy for Management and Disposal of UNF and HLRW, etc.)  Recording are available on the wiki site  Input is needed for future content NTSF Working

  17. Heat transport system

    DOE Patents [OSTI]

    Pierce, Bill L.

    1978-01-01

    A heat transport system of small size which can be operated in any orientation consists of a coolant loop containing a vaporizable liquid as working fluid and includes in series a vaporizer, a condenser and two one-way valves and a pressurizer connected to the loop between the two valves. The pressurizer may be divided into two chambers by a flexible diaphragm, an inert gas in one chamber acting as a pneumatic spring for the system.

  18. PULSE RATE DIVIDER

    DOE Patents [OSTI]

    McDonald, H.C. Jr.

    1962-12-18

    A compact pulse-rate divider circuit affording low impedance output and high input pulse repetition rates is described. The circuit features a single secondary emission tube having a capacitor interposed between its dynode and its control grid. An output pulse is produced at the anode of the tube each time an incoming pulse at the control grid drives the tube above cutoff and the duration of each output pulse corresponds to the charging time of the capacitor. Pulses incoming during the time the grid bias established by the discharging capacitor is sufficiently negative that the pulses are unable to drive the tube above cutoff do not produce output pulses at the anode; these pulses are lost and a dividing action is thus produced by the circuit. The time constant of the discharge path may be vanied to vary in turn the division ratio of the circuit; the time constant of the charging circuit may be varied to vary the width of the output pulses. (AEC)

  19. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  20. NREL Studies Carrier Separation and Transport in Perovskite Solar Cells

    SciTech Connect (OSTI)

    2016-01-01

    NREL scientists studied charge separation and transport in perovskite solar cells by determining the junction structure across the solar device using the nanoelectrical characterization technique of Kelvin probe force microscopy. The distribution of electrical potential across both planar and porous devices demonstrates a p-n junction structure at the interface between titanium dioxide and perovskite. In addition, minority-carrier transport within the devices operates under diffusion/drift. Clarifying the fundamental junction structure provides significant guidance for future research and development. This NREL study points to the fact that improving carrier mobility is a critical factor for continued efficiency gains in perovskite solar cells.

  1. Basic Physics of Tokamak Transport Final Technical Report.

    SciTech Connect (OSTI)

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.

  2. ITER Generic Diagnostic Upper Port Plug Nuclear Heating and Personnel Dose Rate Assesment

    SciTech Connect (OSTI)

    Russell E. Feder and Mahmoud Z. Youssef

    2009-01-28

    Neutronics analysis to find nuclear heating rates and personnel dose rates were conducted in support of the integration of diagnostics in to the ITER Upper Port Plugs. Simplified shielding models of the Visible-Infrared diagnostic and of a large aperture diagnostic were incorporated in to the ITER global CAD model. Results for these systems are representative of typical designs with maximum shielding and a small aperture (Vis-IR) and minimal shielding with a large aperture. The neutronics discrete-ordinates code ATTILA and SEVERIAN (the ATTILA parallel processing version) was used. Material properties and the 500 MW D-T volume source were taken from the ITER Brand Model MCNP benchmark model. A biased quadrature set equivelant to Sn=32 and a scattering degree of Pn=3 were used along with a 46-neutron and 21-gamma FENDL energy subgrouping. Total nuclear heating (neutron plug gamma heating) in the upper port plugs ranged between 380 and 350 kW for the Vis-IR and Large Aperture cases. The Large Aperture model exhibited lower total heating but much higher peak volumetric heating on the upper port plug structure. Personnel dose rates are calculated in a three step process involving a neutron-only transport calculation, the generation of activation volume sources at pre-defined time steps and finally gamma transport analyses are run for selected time steps. ANSI-ANS 6.1.1 1977 Flux-to-Dose conversion factors were used. Dose rates were evaluated for 1 full year of 500 MW DT operation which is comprised of 3000 1800-second pulses. After one year the machine is shut down for maintenance and personnel are permitted to access the diagnostic interspace after 2-weeks if dose rates are below 100 ?Sv/hr. Dose rates in the Visible-IR diagnostic model after one day of shutdown were 130 ?Sv/hr but fell below the limit to 90 ?Sv/hr 2-weeks later. The Large Aperture style shielding model exhibited higher and more persistent dose rates. After 1-day the dose rate was 230 ?Sv/hr but was still at 120 ?Sv/hr 4-weeks later.

  3. Energy Escalation Rate Calculator Download

    Broader source: Energy.gov [DOE]

    Energy Escalation Rate Calculator (EERC) computes an average annual escalation rate for a specified time period, which can be used as an escalation rate for contract payments in energy savings performance contracts and utility energy services contracts.

  4. the-transportation-research-board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 22-26, 2012 The Transportation Research Board (TRB) 91st Annual Meeting will be held in Washington, D.C. at the Washington Marriott Wardman Park, Omni Shoreham, and Washington Hilton hotels. The information-packed program will attract more than 11,000 transportation professionals from around the world to Washington, D.C., January 22-26, 2012. The Transportation Research and Analysis Computing Center (TRACC) team will showcase current projects at the upcoming Transportation Research Board

  5. transportation | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    transportation Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security Pantex's Calvin Nelson was recently awarded the 2015 Analyst of the Year for Transportation Security by the Department of Energy's Nuclear Materials Information Program. The award, for which Nelson is the first-ever Pantex recipient, recognizes outstanding analytic support to the NMIP. All... Office of Secure Transportation Celebrates 40th Anniversary On Thursday morning, Dec. 17, NNSA's Office

  6. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  7. Direct Internal Reformation and Mass Transport in the Solid Oxide Fuel Cell Anode: A Pore-Scale Lattice Boltzmann Study with Detailed Reaction Kinetics

    SciTech Connect (OSTI)

    Grew, Kyle N.; Joshi, Abhijit S.; Chiu, W. K. S.

    2010-11-30

    The solid oxide fuel cell (SOFC) allows the conversion of chemical energy that is stored in a given fuel, including light hydrocarbons, to electrical power. Hydrocarbon fuels, such as methane, are logistically favourable and provide high energy densities. However, the use of these fuels often results in a decreased efficiency and life. An improved understanding of the reactive flow in the SOFC anode can help address these issues. In this study, the transport and heterogeneous internal reformation of a methane based fuel is addressed. The effect of the SOFC anode's complex structure on transport and reactions is shown to exhibit a complicated interplay between the local molar concentrations and the anode structure. Strong coupling between the phenomenological microstructures and local reformation reaction rates are recognised in this study, suggesting the extension to actual microstructures may provide new insights into the reformation processes.

  8. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY...

    Office of Scientific and Technical Information (OSTI)

    a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. ...

  9. Advanced Hydrogen Transport Membrane...

    Office of Scientific and Technical Information (OSTI)

    ... this system. The pathways presented were the most favorable pathway found, i.e. the pathway with the greatest change in ... 30, 60 Hz * HazLoc rating: Class I, Division II, Group B (in ...

  10. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.

  11. Financing Sustainable Urban Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Toolkit Region(s): Global Related Tools Production Costs of Alternative Transportation Fuels Transport Regulation from Theory to Practice: General...

  12. Ecolane Transport Conultancy | Open Energy Information

    Open Energy Info (EERE)

    Ecolane Transport Conultancy Jump to: navigation, search Name: Ecolane Transport Conultancy Place: Bristol, United Kingdom Zip: BS3 4UB Product: UK-based sustainable transport...

  13. VTPI-Transportation Statistics | Open Energy Information

    Open Energy Info (EERE)

    Area: Transportation Resource Type: Dataset Website: www.vtpi.orgtdmtdm80.htm Cost: Free VTPI-Transportation Statistics Screenshot References: VTPI-Transportation Statistics1...

  14. The World Bank - Transport | Open Energy Information

    Open Energy Info (EERE)

    provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes...

  15. Texas Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin,...

  16. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

    2003-09-30

    The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

  17. Microfluidic device for the assembly and transport of microparticles

    DOE Patents [OSTI]

    James, Conrad D.; Kumar, Anil; Khusid, Boris; Acrivos, Andreas

    2010-06-29

    A microfluidic device comprising independently addressable arrays of interdigitated electrodes can be used to assembly and transport large-scale microparticle structures. The device and method uses collective phenomena in a negatively polarized suspension exposed to a high-gradient strong ac electric field to assemble the particles into predetermined locations and then transport them collectively to a work area for final assembly by sequentially energizing the electrode arrays.

  18. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V. Bogy, David B.

    2014-02-10

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  19. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-07-30

    This Quarter has been divided between running experiments and the installation of the drill-pipe rotation system. In addition, valves and piping were relocated, and three viewports were installed. Detailed design work is proceeding on a system to elevate the drill-string section. Design of the first prototype version of a Foam Generator has been finalized, and fabrication is underway. This will be used to determine the relationship between surface roughness and ''slip'' of foams at solid boundaries. Additional cups and rotors are being machined with different surface roughness. Some experiments on cuttings transport with aerated fluids have been conducted at EPET. Theoretical modeling of cuttings transport with aerated fluids is proceeding. The development of theoretical models to predict frictional pressure losses of flowing foam is in progress. The new board design for instrumentation to measure cuttings concentration is now functioning with an acceptable noise level. The ultrasonic sensors are stable up to 190 F. Static tests with sand in an annulus indicate that the system is able to distinguish between different sand concentrations. Viscometer tests with foam, generated by the Dynamic Test Facility (DTF), are continuing.

  20. Quality Assurance Plan for Transportation Management Division Transportation Training Programs

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The U.S. Department of Transportation (DOT) implemented new rules requiring minimum levels of training for certain key individuals who handle, package, transport, or otherwise prepare hazardous materials for transportation. In response to these rules, the U.S. Department of Energy (DOE), Transportation Management Division (TMD), has developed a transportation safety training program. This program supplies designed instructional methodology and course materials to provide basic levels of DOT training to personnel for whom training has become mandatory. In addition, this program provides advanced hazardous waste and radioactive material packaging and transportation training to help personnel achieve proficiency and/or certification as hazardous waste and radioactive material shippers. This training program does not include site-specific or task-specific training beyond DOT requirements.

  1. Resolving the mystery of transport within internal transport barriers

    SciTech Connect (OSTI)

    Staebler, G. M.; Belli, E. A.; Candy, J.; Waltz, R. E.; Greenfield, C. M.; Lao, L. L.; Smith, S. P.; Kinsey, J. E.; Grierson, B. A.; Chrystal, C.

    2014-05-15

    The Trapped Gyro-Landau Fluid (TGLF) quasi-linear model [G. M. Staebler, et al., Phys. Plasmas 12, 102508 (2005)], which is calibrated to nonlinear gyrokinetic turbulence simulations, is now able to predict the electron density, electron and ion temperatures, and ion toroidal rotation simultaneously for internal transport barrier (ITB) discharges. This is a strong validation of gyrokinetic theory of ITBs, requiring multiple instabilities responsible for transport in different channels at different scales. The mystery of transport inside the ITB is that momentum and particle transport is far above the predicted neoclassical levels in apparent contradiction with the expectation from the theory of suppression of turbulence by EB velocity shear. The success of TGLF in predicting ITB transport is due to the inclusion of ion gyro-radius scale modes that become dominant at high EB velocity shear and to improvements to TGLF that allow momentum transport from gyrokinetic turbulence to be faithfully modeled.

  2. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Su, Chih -Chia; Bolla, Jani  Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared  A.; Chou, Tsung -Han; Rajashankar, Kanagalaghatta  R.; Shafer, William  M.; Yu, Edward  W.

    2015-04-01

    Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore » halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.« less

  3. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Adjustment...

    Open Energy Info (EERE)

    property of type Number. Subproperties This property has the following 34 subproperties: 9 Data:93eeba74-c3bd-499c-89ff-7b8f32af7e3d Data:93eeba74-c3bd-499c-89ff-7b8f32af7e3d...

  4. The Impacts of Commercial Electric Utility Rate Structure Elements...

    Broader source: Energy.gov (indexed) [DOE]

    of Photovoltaic Systems More Documents & Publications FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Future Power Systems 21 - The Smart ...

  5. Dynamics and structure of stretched flames

    SciTech Connect (OSTI)

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  6. NREL: Transportation Research - Archives for the Transportation and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Newsletter Archives for the Transportation and Hydrogen Newsletter To read past issues of the Transportation and Hydrogen Newsletter, select from the list below. March 2016 - Power Electronics & Thermal Management January 2016 - Sustainable Mobility November 2015 - Energy Storage August 2015 - Deployment May 2015 - Hydrogen & Fuel Cell Technology March 2015 - Fuels and Combustion January 2015 - The Future of Sustainable Transportation December 2014 - Marketplace Impact

  7. NREL: Transportation Research - Subscribe to the Transportation and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Newsletter Subscribe to the Transportation and Hydrogen Newsletter To subscribe to or unsubscribe from the Transportation and Hydrogen Newsletter, complete one of the forms below. Subscribe To subscribe to the newsletter, submit your email address. Email: Submit Unsubscribe To unsubscribe from the newsletter, submit your email address. Email: Submit Printable Version Transportation Research Home Capabilities Projects Success Stories Facilities Working with Us Publications Data &

  8. October 2005 - March 2006 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 30.56% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  9. April - September 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 40.77% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  10. October 2004 - March 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The PDF documents above provide tables of monthly Slice, PF, RL, and IP rates with the LB + FB + SN CRAC adjustments for each month of the rate period. The table below is simply...

  11. April - September 2005 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 36.93% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  12. October 2003 - March 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.66% non-Slice LB + FB + SN CRAC adjustment for each month of the rate period. The table below is simply a...

  13. October 2002 - March 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 43.91% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  14. October 2001 - March 2002 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 46% non-Slice LB CRAC adjustment for each month of the six-month rate period. The table below is simply a...

  15. April - September 2003 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 49.50% non-Slice LB + FB CRAC adjustment for each month of the six-month rate period. The table below is...

  16. April - September 2004 Power Rates (rates/previous)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    above provides a table of monthly Slice, PF, RL, and IP rates with a 47.00% non-Slice LB + FB + SN CRAC adjustment for each month of the six-month rate period. The table below...

  17. FPS-96R Rate Adjustment (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final Firm Power Products and Services (FPS-96R) Rate Adjustment In August 1999, BPA proposed to correct errors in the Firm Power Products and Services rate schedule (FPS-96), and...

  18. 2007-2009 Power Rates Quarterly Updates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PFR) Firstgov FY 2007 2009 Power Rates Quarterly Updates In BPAs 2007-2009 Wholesale Power Rate Case (WP-07), BPA agreed that it would post reports about BPAs power...

  19. WP-02 Power Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-02 Power Rate Case (Updated on May 7, 2004) In May of 2000, the BPA Administrator signed a Record of Decision (ROD) on the 2002 Final Power Rate Proposal for the October 2001...

  20. DOE TMD transportation training module 14 transportation of explosives

    SciTech Connect (OSTI)

    Griffith, R.L. Jr.

    1994-07-01

    The Department of Energy Transportation Management Division has developed training module 14, entitled {open_quotes}Transportation of Explosives{close_quotes} to compliment the basic {open_quotes}core ten{close_quotes} training modules of the Hazardous Materials Modular Training Program. The purpose of this training module is to increase awareness of the Department of Transportation (DOT) requirements concerning the packaging and transportation of explosives. Topics covered in module 14 include the classification of explosives, approval and registration of explosives, packaging requirements, hazard communication requirements, separation and segregation compatibility requirements, loading and unloading operations, as well as safety measures required in the event of a vehicle accident involving explosives.

  1. Spring 2014 National Transportation Stakeholder Forum Meeting...

    Energy Savers [EERE]

    Transportation Stakeholder Forum Meeting, Minnesota Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota NTSF 2014 Meeting Agenda PRESENTATIONS - MAY 13, ...

  2. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005 ...

  3. Westminster Energy Environment Transport Forum | Open Energy...

    Open Energy Info (EERE)

    Westminster Energy Environment Transport Forum Jump to: navigation, search Name: Westminster Energy, Environment & Transport Forum Place: United Kingdom Product: String...

  4. Africa's Transport Infrastructure Mainstreaming Maintenance and...

    Open Energy Info (EERE)

    Transport Infrastructure Mainstreaming Maintenance and Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Africa's Transport Infrastructure Mainstreaming...

  5. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop ...

  6. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  7. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advancing Transportation Through Vehicle Electrification - ... Office Merit Review 2014: Advancing Transportation through Vehicle Electrification - Ram ...

  8. Transportation, Aging and Disposal Canister System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 ...

  9. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  10. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  11. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  12. TRANSPORT LOCOMOTIVE AND WASTE PACKAGE TRANSPORTER ITS STANDARDS IDENTIFICATION STUDY

    SciTech Connect (OSTI)

    K.D. Draper

    2005-03-31

    To date, the project has established important to safety (ITS) performance requirements for structures, systems and components (SSCs) based on identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Basis for License Application'' (NSDB) (BSC 2005). Further, SSCs credited with performing safe functions are classified as ITS. In turn, performance confirmation for these SSCs is sought through the use of consensus code and standards. The purpose of this study is to identify applicable codes and standards for the waste package (WP) transporter and transport locomotive ITS SSCs. Further, this study will form the basis for selection and the extent of applicability of each code and standard. This study is based on the design development completed for License Application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and that final selection will not be determined until further design development has occurred. Therefore, for completeness, throughout this study alternative designs currently under consideration will be discussed. Further, the results of this study will be subject to evaluation as part of a follow-on gap analysis study. Based on the results of this study the gap analysis will evaluate each code and standard to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied a ''gap'' is highlighted. Thereafter, the study will identify supplemental requirements to augment the code or standard to meet performance requirements. Further, the gap analysis will identify non-standard areas of the design that will be subject to a Development Plan. Non-standard components and non-standard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, performance confirmation can not be readily sought through use of consensus standards.

  13. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  14. Transportation (technology 86)

    SciTech Connect (OSTI)

    Caplan, G.

    1986-01-01

    As railroads strive to cut operating and maintenance costs in an increasingly competitive transportation industry, AC propulsion and microprocessors figure prominently in their plans. New generations of locomotives and cars incorporating AC propulsion and microprocessors entered service last year, and the trend is destined to continue. Electronics is also making possible freight trains that rely on a telemetry unit at the rear to monitor airbrake pressure, instead of a manned caboose. AC is gaining acceptance because it permits simpler motors with fewer parts to wear and replace, and it saves energy by allowing the traction motors to work as generators during braking. Microprocessors are being used in locomotives not only to reduce energy waste through better regulation of traction motor currents and auxiliary devices such as cooling fans, but also to control engine speed, braking, and other functions.

  15. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  16. Heat transport system

    DOE Patents [OSTI]

    Harkness, Samuel D.

    1982-01-01

    A falling bed of ceramic particles receives neutron irradiation from a neutron-producing plasma and thereby transports energy as heat from the plasma to a heat exchange location where the ceramic particles are cooled by a gas flow. The cooled ceramic particles are elevated to a location from which they may again pass by gravity through the region where they are exposed to neutron radiation. Ceramic particles of alumina, magnesia, silica and combinations of these materials are contemplated as high-temperature materials that will accept energy from neutron irradiation. Separate containers of material incorporating lithium are exposed to the neutron flux for the breeding of tritium that may subsequently be used in neutron-producing reactions. The falling bed of ceramic particles includes velocity partitioning between compartments near to the neutron-producing plasma and compartments away from the plasma to moderate the maximum temperature in the bed.

  17. Nanoengineered membranes for controlled transport

    DOE Patents [OSTI]

    Doktycz, Mitchel J. [Oak Ridge, TN; Simpson, Michael L. [Knoxville, TN; McKnight, Timothy E. [Greenback, TN; Melechko, Anatoli V. [Oak Ridge, TN; Lowndes, Douglas H. [Knoxville, TN; Guillorn, Michael A. [Knoxville, TN; Merkulov, Vladimir I. [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  18. Novel concepts in weld science: Role of gradients and composite structure

    SciTech Connect (OSTI)

    Matlock, D.K.; Olson, D.L.

    1992-08-31

    The effects of compositional and microstructural gradients on weld metal properties were investigated. The effects of compositional gradients were analyzed using thermodynamic and composite models. Brittle and ductile cracking behavior were investigated using both binary alloy single crystals and large grain castings. In both cases, the crack propagated along regions where the compositional gradients were the steepest. High temperature deformation of large wavelength compositonally modulated structures vas investigated to understand creep behavior in veld metal. At moderate temperatures, the creep behavior of cored materials was found to follow predictions based on the rule of mixtures composite analysis. At higher temperatures with the advent of dynamic mass transport the creep process is influenced by diffusion-promoted vacancy flow and time-dependent compositional gradient. The investigation found the critical gradient which will promote Kirkendall voids and has reported a creep rate behavior that suggests strong structural dependence, localized stress and vacancy transport influence. Weld metal, based on metal matrix composite, was also demonstrated.

  19. Sustainable Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Sustainable Transportation Bioenergy Bioenergy Read more Hydrogen and Fuel Cells Hydrogen and Fuel Cells Read more Vehicles Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices,

  20. computational-hydraulics-for-transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Workshop Sept. 23-24, 2009 Argonne TRACC Dr. Steven Lottes This email address is being protected from spambots. You need JavaScript enabled to view it. Announcement pdficon small The Transportation Research and Analysis Computing Center at Argonne National Laboratory will hold a workshop on the use of computational hydraulics for transportation applications. The goals of the workshop are: Bring together people who are using or would benefit from the use of high performance cluster

  1. transportation-system-modeling-webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar Announcement Webinar for the Intelligent Transportation Society of the Midwest (ITS Midwest) May 16, 2011 1:00 PM(CST) Hubert Ley Director, TRACC Argonne National Laboratory Argonne, Illinois High Performance Computing in Transportation Research - High Fidelity Transportation Models and More The Role of High-Performance Computing Because ITS relies on a very diverse collection of technologies, including communication and control technologies, advanced computing, information management

  2. Transportation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Transportation Projects Transportation Projects Because highway vehicles account for a large share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially improve our energy security and air quality. However, few fuel-cell-powered vehicles are in use today; even fewer are available commercially. A number of fuel cell vehicle demonstrations are currently underway

  3. Minority Transportation Expenditure Allocation Model

    Energy Science and Technology Software Center (OSTI)

    1993-04-12

    MITRAM (Minority TRansportation expenditure Allocation Model) can project various transportation related attributes of minority (Black and Hispanic) and majority (white) populations. The model projects vehicle ownership, vehicle miles of travel, workers, new car and on-road fleet fuel economy, amount and share of household income spent on gasoline, and household expenditures on public transportation and taxis. MITRAM predicts reactions to sustained fuel price changes for up to 10 years after the change.

  4. Project Definition Rating Index Workbook

    Broader source: Energy.gov [DOE]

    The Project Definition Rating Index (PDRI) Workbook is a tool that was developed to support DOE G-413.3-12A, U. S. Department of Energy Project Definition Rating Index Guide for Traditional Nuclear...

  5. NREL: Transportation Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL helps industry partners develop the next generation of energy efficient, high performance ... Transportation Photographs Hydrogen and Fuel Cells R&D Biomass R&D Energy ...

  6. Transportation Emergency Preparedness Program (TEPP)

    Broader source: Energy.gov [DOE]

    In an effort to address responder concerns, the Department retooled its approach to emergency responder preparedness and implemented the more simplified and responder-friendly Transportation...

  7. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  8. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  9. Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste Shipment Indiana Department of Homeland...

  10. Commercial Building Asset Rating Program

    Broader source: Energy.gov [DOE]

    Slides from a Commercial Building Initiative webinar outlining the Commercial Building Asset Rating Program on August 23, 2011.

  11. Used Nuclear Fuel Loading and Structural Performance Under Normal...

    Office of Environmental Management (EM)

    Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan Used Nuclear Fuel Loading and ...

  12. Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices

    SciTech Connect (OSTI)

    Bigham, S; Yu, DZ; Chugh, D; Moghaddam, S

    2014-02-01

    The slow diffusion of an absorbate molecule into an absorbent often makes the absorption process a rate-limiting step in many applications. In cases involving an absorbate with a high heat of phase change, such as water absorption into a LiBr (lithium bromide) solution, the absorption rate is further slowed due to significant heating of the absorbent. Recently, it has been demonstrated that constraining a LiBr solution film by a hydrophobic porous structure enables manipulation of the solution flow thermohydraulic characteristics. Here, it is shown that mass transport mode in a constrained laminar solution flow can be changed from diffusive to advective. This change in mode is accomplished through stretching and folding the laminar streamlines within the solution film via the implementation of micro-scale features on the flow channel surface. The process induces vortices within the solution film, which continuously bring concentrated solution from the bottom and middle of the solution channel to its interface with the vapor phase, thus leading to a significant enhancement in the absorption rate. The detailed physics of the involved transport processes is elucidated using the LBM (Lattice Boltzmann Method). Published by Elsevier Ltd.

  13. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    SciTech Connect (OSTI)

    Whicker, Jeffrey J.; Kirchner, Thomas B.; Breshears, David D.; Field, Jason P.

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant succession and environmental disturbance. Aeolian, or wind-driven, sediment transport drives soil erosion, affects biogeochemical cycles, and can lead to the transport of contaminants. Rates of aeolian sediment transport depend in large part on the type, amount, and spatial pattern of vegetation. In particular, the amount of cover from trees and shrubs, which act as roughness elements, alters rates of aeolian sediment transport. The degree to which the understory is disturbed and the associated spacing of bare soil gaps further influence sediment transport rates. Changes in vegetation structure and patterns over periods of years to centuries may have profound impacts on rates of wind-driven transport. For recently disturbed areas, succession is likely to occur through a series of vegetation communities. Area G currently exhibits a mosaic of vegetation cover, with patches of grass and forbs over closed disposal units, and bare ground in heavily used portions of the site. These areas are surrounded by less disturbed regions of shrubland and pinon-juniper woodland; some ponderosa pine forest is also visible in the canyon along the road. The successional trajectory for the disturbed portions of Area G is expected to proceed from grasses and forbs (which would be established during site closure), to shrubs such as chamisa, to a climax community of pinon-juniper woodland. Although unlikely under current conditions, a ponderosa pine forest could develop over the site if the future climate is wetter. In many ecosystems, substantial and often periodic disturbances such as fire or severe drought can rapidly alter vegetation patterns. Such disturbances are likely to increase in the southwestern US where projections call for a warmer and drier climate. With respect to Area G, the 3 most likely disturbance types are surface fire, crown fire, and drought-induced tree mortality. Each type of disturbance has a different frequency or likelihood of occurrence, but all 3 tend to reset the vegetation succession cycle to earlier stages. The Area G performance assessment and composite an

  14. The impact of disorder on charge transport in three dimensional quantum dot

    Office of Scientific and Technical Information (OSTI)

    resonant tunneling structures (Journal Article) | SciTech Connect The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures Citation Details In-Document Search Title: The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures Efficient iso-entropic energy filtering of electronic waves can be realized through nanostructures with three dimensional confinement, such as quantum dot resonant tunneling

  15. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  16. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    SciTech Connect (OSTI)

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-05-15

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1?MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvn frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q{sub fi}) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes.

  17. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Supersedes DOE M 460.2-1.

  18. Santa Clara Valley Transportation Authority

    Broader source: Energy.gov [DOE]

    Santa Clara Valley Transportation Authority (VTA) is based in San Jose, California, and provides service in and around Santa Clara county. VTA provides bus and light rail service in Santa Clara County, as well as congestion mitigation, highway improvement projects, and countywide transportation planning. VTA's 423 buses serve an annual ridership of more than 39 million and cover approximately 326 square miles.

  19. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  20. Writing Effective Initial Summary Ratings Initial Summary Rating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Writing an Effective ISR (max 8000 characters including spaces) Before writing: * Read definitions of rating levels and critical element targets carefully * Review Strategic Plan ...

  1. SN-03 Rate Case Workshops (rates/meetings)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Related Link: SN-03 Power Rate Case May 1 & 13, 2003 - Debt and Liquidity Strategies workshops (on BPA Corporate web site) March 27, 2003 - SN CRAC Prescheduling...

  2. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  3. EFFECT OF TRANSPORTING SALTSTONE SAMPLES PRIOR TO SET

    SciTech Connect (OSTI)

    Reigel, M.

    2013-05-21

    The Saltstone Sampling and Analyses Plan provides a basis for the quantity (and configuration) of saltstone grout samples required for conducting a study directed towards correlation of the Performance Assessment (PA) related properties of field-emplaced samples and samples processed and cured in the laboratory. The testing described in the saltstone sampling and analyses plan will be addressed in phases. The initial testing (Phase I) includes collecting samples from the process room in the Saltstone Production Facility (SPF) and transporting them to Savannah River National Laboratory (SRNL) where they will cure under a temperature profile that mimics the temperature in the Saltstone Disposal Unit (SDU) and then be analyzed. SRNL has previously recommended that after the samples of fresh (uncured) saltstone are obtained from the SPF process room, they are allowed to set prior to transporting them to SRNL for curing. The concern was that if the samples are transported before they are set, the vibrations during transport may cause artificial delay of structure development which could result in preferential settling or segregation of the saltstone slurry. However, the results of this testing showed there was no clear distinction between the densities of the cylinder sections for any of the transportation scenarios tested (1 day, 1 hour, and 0 minutes set time prefer to transportation) . The bottom section of each cylinder was the densest for each transportation scenario, which indicates some settling in all the samples. Triplicate hydraulic conductivity measurements on samples from each set of time and transportation scenarios indicated that those samples transported immediately after pouring had the highest hydraulic conductivity. Conversely, samples that were allowed to sit for an hour before being transported had the lowest hydraulic conductivity. However, the hydraulic conductivities of all three samples fell within an acceptable range. Based on the cured property analysis of the three samples, there is no clear conclusion about transporting the samples before they are set; however, experience with saltstone grout indicates the samples should sit and develop some structure before being transported to SRNL for curing.

  4. Factors which affect the transportation of low rank coal

    SciTech Connect (OSTI)

    Leilich, R.

    1998-12-31

    The good news is that rail transportation costs have dropped by approximately 50 percent in real terms since the passage of the 1980 Stagger`s Rail Act. It has opened up and expanded the markets for each coal producer. The bad news is that rail transportation costs have dropped by approximately 50 percent and opened up and expanded the market for each coal producer`s competitors. At one time, many coal producers had the fortune of limited competition because high transportation costs kept others out of some of their markets. The flip side, of course, is that it also kept them out of other markets. The lowering of transportation rates has increased competition among coal producers. In the author`s opinion, the opportunity to serve new markets has not made up for competitively induced price reductions in the selling price of coal. He believes that many coal producers were better off when coal transportation costs were high for everyone. At least it limited the encroachment of coal competitors. Of course, using a half full, half empty glass analogy, one could argue that high transportation costs limited encroachment on competitors. Aside from the competitive aspects, not all producers benefit equally from a uniform reduction in transportation ton-mile costs. A reduction in transportation costs across the board on a per ton-mile basis favors producers of high Btu coal which ship long distance. Producers of low rank coal receive distinctly less benefit, upsetting competitive relationships. He illustrates this with an example of a low rank producer whose principal competitor is 300 miles to the west. He assumes four combinations of high and low cost coal and high and low cost transportation, plus two destinations 200 and 500 miles away from the low rank producer.

  5. NREL: Transportation Research - A Vision for Sustainable Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Vision for Sustainable Transportation NREL research, development, and deployment accelerates the process of bringing sustainable transportation technologies to market. Line graph illustrating three pathways to reduce transportation energy use and greenhouse gas (GHG) emissions, with "energy consumption of vehicles" along the y-axis (ranging from 0 to 2.0 kWh/km) and "carbon intensity of energy source" along the x-axis (ranging from 450 to 0 g CO2/kWh). A solid bottom line

  6. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System:...

  7. ARM - Measurement - Radiative heating rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsRadiative heating rate ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Radiative heating rate The heating rate due to the divergence of long and shortwave radiative flux. Categories Atmospheric State, Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  8. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    J E 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE Abstract not provided Lawrence Livermore National Laboratory (LLNL),...

  9. Magnetic Processing of Structural Components for Transportation Vehicles

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G. M.; Fleming, S.; del Prado Villasana, J.

    2011-09-30

    The specific goal of this project was to develop and evaluate the effect of magnetic processing as a viable and new technology to manufacture side‐rails for heavy trucks; and to demonstrate the applicability of this technology for an industrial truck/automotive process. The targeted performance enhancements for this project were to increase the hardness or strength of two families of alloys (comparable carbon contents but one alloy system incorporating hardenability improving additions of titanium and boron) by 15 to 20%. Thermomagnetic processing has been shown to make significant and unprecedented, simultaneous improvements in yield strength and ultimate tensile strength with no loss of ductility for the truck rail application investigated in this project. Improvements in the ultimate tensile strength and yield strength in the range 20 to 30% have been measured even for the lower hardenability alloy samples that only received a very low magnetic field tempering treatment at a tempering temperature that was 67% lower than the current non-magnetic field enhanced commercial process and for a brief tempering time of 20% of the time required in their current process at the higher temperature. These significant developments, that require further demonstration and investigation on current commercial and other alloy systems, promise the evolution of a much more energy efficient and lower-carbon footprint process to be used in the future to produce stronger, tougher, and lighter weight truck rails. The property increases in the truck rails themselves will enable lighter weight truck side-rails to be produced which will reduce the overall weight of heavy duty trucks which will reduce fuel consumption and be an enabler of the goals of the DOE EERE SuperTruck Program where fuel consumption reductions of 50% are targeted for the future generation of trucks.

  10. Trends in Contractor Conversion Rates

    Broader source: Energy.gov [DOE]

    Better Buildings Residential Network Workforce / Business Partners Peer Exchange Call Series: Trends in Contractor Conversion Rates, Call Slides and Discussion Summary, December 5, 2013.

  11. Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Repayment studies prepared by the agency determine revenue requirements and appropriate rate levels and these studies for each of Southeastern's four power marketing systems are ...

  12. DOE Guidance-Category Rating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For most jobs and grade levels under category rating, the certificates of eligibles should be issued in the following order: (1) Career Transition Assistance Program (CTAP) and ...

  13. Sustainable Building Rating Systems Summary

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Rauch, Emily M.

    2006-07-01

    The purpose of this document is to offer information that could be used to compare and contrast sustainable building rating systems.

  14. Origin of electronic transport of lithium phthalocyanine iodine crystal

    SciTech Connect (OSTI)

    Koike, Noritake; Oda, Masato; Shinozuka, Yuzo [Department of Materials Science and Chemistry, Wakayama University, 930 Sakaedani, Wakayama (Japan)

    2013-12-04

    The electronic structures of Lithium Phthalocyanine Iodine are investigated using density functional theory. Comparing the band structures of several model crystals, the metallic conductivity of highly doped LiPcI{sub x} can be explained by the band of doped iodine. These results reveal that there is a new mechanism for electronic transport of doped organic semiconductors that the dopant band plays the main role.

  15. Safeguards Transporter | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Home Safeguards Transporter General Davis kicks the tires on a Safeguards Transporter Brigadier General Stephen L. Davis, NNSA's Acting Deputy Administrator for Defense Programs, gets a lesson on how to drive a Safeguards Transporter during a recent visit to the Office of Secure Transportation (OST) headquarters in Albuquerque, New Mexico. OST is responsible for transporting...

  16. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications Transportation Equipment

  17. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  18. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a neutral and a basic mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  19. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2014-10-17

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a neutral and a basic mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  20. Illite Dissolution Rates and Equation (100 to 280 dec C)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2014-10-17

    The objective of this suite of experiments was to develop a useful kinetic dissolution expression for illite applicable over an expanded range of solution pH and temperature conditions representative of subsurface conditions in natural and/or engineered geothermal reservoirs. Using our new data, the resulting rate equation is dependent on both pH and temperature and utilizes two specific dissolution mechanisms (a “neutral” and a “basic” mechanism). The form of this rate equation should be easily incorporated into most existing reactive transport codes for to predict rock-water interactions in EGS shear zones.

  1. A Uranium Bioremediation Reactive Transport Benchmark

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin

    2015-06-01

    A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

  2. Pretreatment of coal during transport

    DOE Patents [OSTI]

    Johnson, Glenn E.; Neilson, Harry B.; Forney, Albert J.; Haynes, William P.

    1977-04-19

    Many available coals are "caking coals" which possess the undesirable characteristic of fusing into a solid mass when heated through their plastic temperature range (about 400.degree. C.) which temperature range is involved in many common treatment processes such as gasification, hydrogenation, carbonization and the like. Unless the caking properties are first destroyed, the coal cannot be satisfactorily used in such processes. A process is disclosed herein for decaking finely divided coal during its transport to the treating zone by propelling the coal entrained in an oyxgen-containing gas through a heated transport pipe whereby the separate transport and decaking steps of the prior art are combined into a single step.

  3. Quantum transport through aromatic molecules

    SciTech Connect (OSTI)

    Ojeda, J. H.; Rey-Gonzlez, R. R.; Laroze, D.

    2013-12-07

    In this paper, we study the electronic transport properties through aromatic molecules connected to two semi-infinite leads. The molecules are in different geometrical configurations including arrays. Using a nearest neighbor tight-binding approach, the transport properties are analyzed into a Green's function technique within a real-space renormalization scheme. We calculate the transmission probability and the Current-Voltage characteristics as a function of a molecule-leads coupling parameter. Our results show different transport regimes for these systems, exhibiting metal-semiconductor-insulator transitions and the possibility to employ them in molecular devices.

  4. Uranium Transport Modeling

    SciTech Connect (OSTI)

    Bostick, William D.

    2008-01-15

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO{sub 2}{sup 2+}) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range {approx} 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases. Four case studies are presented: Water and Soil Characterization, Subsurface Stabilization of Uranium and other Toxic Metals, Reductive Precipitation (in situ bioremediation) of Uranium, and Physical Transport of Particle-bound Uranium by Erosion.

  5. Structure and function of Neisseria gonorrhoeae MtrF illuminates a class of antimetabolite efflux pumps

    SciTech Connect (OSTI)

    Su, Chih -Chia; Bolla, Jani  Reddy; Kumar, Nitin; Radhakrishnan, Abhijith; Long, Feng; Delmar, Jared  A.; Chou, Tsung -Han; Rajashankar, Kanagalaghatta  R.; Shafer, William  M.; Yu, Edward  W.

    2015-04-01

    Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. N. gonorrhoeae MtrF is an integral membrane protein that belongs to the AbgT family of transporters for which no structural information is available. Here, we describe the crystal structure of MtrF, revealing a dimeric molecule with architecture distinct from all other families of transporters. MtrF is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins, posing a plausible pathway for substrate transport. A combination of the crystal structure and biochemical functional assays suggests that MtrF is an antibiotic efflux pump mediating bacterial resistance to sulfonamide antimetabolite drugs.

  6. A Least-Squares Transport Equation Compatible with Voids

    SciTech Connect (OSTI)

    Hansen, Jon [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Peterson, Jacob [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Morel, Jim [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Ragusa, Jean [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering; Wang, Yaqi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares Sn formulation represents an excellent alternative to existing second-order Sn transport formulations

  7. From Protein Structure to Function: Ring Cycle for Dilating and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Constricting the Nuclear Pore From Protein Structure to Function: Ring Cycle for Dilating and Constricting the Nuclear Pore Print Nuclear pore complexes (NPCs) act as the central gatekeepers for selective transport between the cytoplasm and the nucleus. They allow the exchange of selected proteins and ribonucleoproteins, while preventing the transport of material not meant to cross the nuclear envelope. The NPC transport channel is the largest and most complex transport conduit in the

  8. From Protein Structure to Function: Ring Cycle for Dilating and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Constricting the Nuclear Pore From Protein Structure to Function: Ring Cycle for Dilating and Constricting the Nuclear Pore Print Nuclear pore complexes (NPCs) act as the central gatekeepers for selective transport between the cytoplasm and the nucleus. They allow the exchange of selected proteins and ribonucleoproteins, while preventing the transport of material not meant to cross the nuclear envelope. The NPC transport channel is the largest and most complex transport conduit in the

  9. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2006-05-01

    In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

  10. Transportation Energy Pathways LDRD.

    SciTech Connect (OSTI)

    Barter, Garrett; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; Yoshimura, Ann S.; Peterson, Meghan; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressiveGHG emission reduction targets, even as the current electricity source mix shifts away from coal and towardsnatural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicleefficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towardsmeeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 AcknowledgmentThe authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. ChristopherYang for their suggestions over the course of this project. This work was funded by the Laboratory DirectedResearch and Development program at Sandia National Laboratories.4

  11. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  12. Foam Transport in Porous Media - A Review

    SciTech Connect (OSTI)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The transport of foam in porous media is complicated in that the number of lamellae present governs flow characteristics such as viscosity, relative permeability, fluid distribution, and interactions between fluids. Hence, foam is a non-Newtonian fluid. During transport, foam destruction and formation occur. The net result of the two processes determines the foam texture (i.e., bubble density). Some of the foam may be trapped during transport. According to the impacts of the aqueous and gas flow rates, foam flow generally has two regimes – weak and strong foam. There is also a minimum pressure gradient to initiate foam flow and a critical capillary for foam to be sustained. Similar to other fluids, the transport of foam is described by Darcy’s law with the exception that the foam viscosity is variable. Three major approaches to modeling foam transport in porous media are the empirical, semi-empirical, and mechanistic methods. Mechanistic approaches can be complete in principal but may be difficult to obtain reliable parameters, whereas empirical and semi-empirical approaches can be limited by the detail used to describe foam rheology and mobility. Mechanistic approaches include the bubble population-balance model, the network/percolation theory, the catastrophe theory, and the filtration theory. Among these methods, all were developed for modeling polyhedral foam with the exception that the method based on the filtration theory was for the ball foam (microfoam).

  13. DOT Awards University Transportation Centers $63 Million

    Broader source: Energy.gov [DOE]

    The U.S. Department of Transportation's (DOT) announced approximately $63 million in grants to 33 University Transportation Centers to advance research and education programs that address critical transportation challenges.

  14. FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION

    SciTech Connect (OSTI)

    D. K. Morton

    2012-08-01

    Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energy’s Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.

  15. Office of Secure Transportation Activities

    Broader source: Energy.gov [DOE]

    Our MissionTo provide safe and secure ground and air transportation of nuclear weapons, nuclear weapons components, and special nuclear materials and conduct other missions supporting the national...

  16. Transportation Sector Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  17. Modeling Fission Product Sorption in Graphite Structures

    SciTech Connect (OSTI)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).

  18. NREL: Transportation Research - Success Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Success Stories NREL understands real-world factors impacting industry and consumer adoption of sustainable transportation solutions, resulting in an impressive record of breaking down barriers to accelerate development and deployment of new transportation technologies. The success stories below provide a snapshot of how NREL research, development, and deployment activities translate into more energy-efficient vehicles and cleaner burning fuels, providing viable options to meet the needs of

  19. Forage Harvest and Transport Costs

    SciTech Connect (OSTI)

    Butler, J.; Downing, M.; Turhollow, A.

    1998-12-01

    An engineering-economic approach is used to calculate harvest, in-field transport, and over-the-road transport costs for hay as bales and modules, silage, and crop residues as bales and modules. Costs included are equipment depreciation interest; fuel, lube, and oil; repairs; insurance, housing, and taxes; and labor. Field preparation, pest control, fertilizer, land, and overhead are excluded from the costs calculated Equipment is constrained by power available, throughput or carrying capacity, and field speed.

  20. Deterministic methods in radiation transport

    SciTech Connect (OSTI)

    Rice, A.F.; Roussin, R.W.

    1992-06-01

    The Seminar on Deterministic Methods in Radiation Transport was held February 4--5, 1992, in Oak Ridge, Tennessee. Eleven presentations were made and the full papers are published in this report, along with three that were submitted but not given orally. These papers represent a good overview of the state of the art in the deterministic solution of radiation transport problems for a variety of applications of current interest to the Radiation Shielding Information Center user community.

  1. Air Transport Optimization Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACAir Transport Optimization Model content top Network Optimization Models (RNAS and ATOM) Posted by Admin on Mar 1, 2012 in | Comments 0 comments Many critical infrastructures can be represented by a network of interconnected nodes and links. Mathematically sound nonlinear optimization techniques can then be applied to these networks to understand their behavior under normal and disrupted situations. Network optimization models are particularly useful for evaluating transportation system

  2. Enhanced superbanana transport caused by chaotic scattering across an asymmetric separatrix

    SciTech Connect (OSTI)

    Dubin, Daniel H. E.; Kabantsev, A. A.; Driscoll, C. F.

    2012-05-15

    This paper discusses a novel 'chaotic' form of superbanana transport and compares the theory to experiments on non-neutral plasmas. Superbanana transport is caused by particles that cross local trapping separatrices (magnetic or electric ripples) in the presence of field 'errors' such as toroidal magnetic curvature. Traditionally, collisions (at rate {nu}) cause separatrix crossings, with resulting transport that scales as {nu}{sup 1/2}B{sup -1/2}. The 'chaotic' transport of interest here occurs when the separatrix is 'ruffled' in the direction of plasma drift; then, collisionless particle orbits give random trapping and detrapping. Prior theory assumed a 'stellarator symmetry' and suggested that these orbits give reduced transport scaling as {nu}{sup p} with p{approx}1. Here, we fully characterize chaotic transport and show that the transport is enhanced rather than reduced, scaling as {nu}{sup 0}B{sup -1}. Experiments on pure electron plasmas provide quantitative transport measurements, with precise control of the overall field error, and of the trapping separatrix with and without ruffles. The experiments show close agreement with theory over a decade in B, for both collisional neoclassical transport, and for the distinctive chaotic transport. At low magnetic fields, transport scaling as B{sup -p} with p>rsim2 becomes dominant, showing preliminary agreement with bounce-resonant theory.

  3. Coherent quantum transport in disordered systems: A unified polaron treatment of hopping and band-like transport

    SciTech Connect (OSTI)

    Lee, Chee Kong; Moix, Jeremy; Cao, Jianshu

    2015-04-28

    Quantum transport in disordered systems is studied using a polaron-based master equation. The polaron approach is capable of bridging the results from the coherent band-like transport regime governed by the Redfield equation to incoherent hopping transport in the classical regime. A non-monotonic dependence of the diffusion coefficient is observed both as a function of temperature and system-phonon coupling strength. In the band-like transport regime, the diffusion coefficient is shown to be linearly proportional to the system-phonon coupling strength and vanishes at zero coupling due to Anderson localization. In the opposite classical hopping regime, we correctly recover the dynamics described by the Fermis Golden Rule and establish that the scaling of the diffusion coefficient depends on the phonon bath relaxation time. In both the hopping and band-like transport regimes, it is demonstrated that at low temperature, the zero-point fluctuations of the bath lead to non-zero transport rates and hence a finite diffusion constant. Application to rubrene and other organic semiconductor materials shows a good agreement with experimental mobility data.

  4. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A.; Cox, Robert

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  5. Transportation scenarios for risk analysis.

    SciTech Connect (OSTI)

    Weiner, Ruth F.

    2010-09-01

    Transportation risk, like any risk, is defined by the risk triplet: what can happen (the scenario), how likely it is (the probability), and the resulting consequences. This paper evaluates the development of transportation scenarios, the associated probabilities, and the consequences. The most likely radioactive materials transportation scenario is routine, incident-free transportation, which has a probability indistinguishable from unity. Accident scenarios in radioactive materials transportation are of three different types: accidents in which there is no impact on the radioactive cargo, accidents in which some gamma shielding may be lost but there is no release of radioactive material, and accident in which radioactive material may potentially be released. Accident frequencies, obtainable from recorded data validated by the U.S. Department of Transportation, are considered equivalent to accident probabilities in this study. Probabilities of different types of accidents are conditional probabilities, conditional on an accident occurring, and are developed from event trees. Development of all of these probabilities and the associated highway and rail accident event trees are discussed in this paper.

  6. Structural basis for substrate specificity in the Escherichia coli maltose

    Office of Scientific and Technical Information (OSTI)

    transport system (Journal Article) | SciTech Connect Structural basis for substrate specificity in the Escherichia coli maltose transport system Citation Details In-Document Search Title: Structural basis for substrate specificity in the Escherichia coli maltose transport system Authors: Oldham, Michael L. ; Chen, Shanshuang ; Chen, Jue [1] ; HHMI) [2] + Show Author Affiliations (Purdue) [Purdue ( Publication Date: 2013-11-11 OSTI Identifier: 1105053 Resource Type: Journal Article Resource

  7. Transport effects of low (m,n) MHD modes on TFTR supershots

    SciTech Connect (OSTI)

    Chang, Z.; Callen, J.D.; Fredrickson, E.D.

    1993-10-01

    Supershots in TFTR often suffer a performance deterioration characterized by a gradual decrease of the D-D fusion neutron yield and plasma stored energy after several hundred milliseconds of auxiliary heating. The correlation between this performance deterioration and the development of low m (the poloidal mode number), n (the toroidal mode number) MHD modes is studied through shot-to-shot comparisons and statistical data analyses. A good correlation is observed between performance deterioration and the appearance of strong 3/2 and 4/3 macroscopic modes (magnetic islands) in small major radius plasmas (R = 2.45 m). The magnetic island structures are observed using Mirnov and ECE diagnostics. The measured T{sub e} T{sub i} and n{sub e}, profiles show that development of the islands corresponds to a nearly constant decrement of these quantities over the core region r < r{sub s}. where r{sub s} is the mode rational surface, on a transport time scale (t > {tau}{sub E}). The observed energy deterioration scaling, {delta}W/W {approximately}w/a, where w is the magnetic island width, agrees with both a local transport model and predictive numerical simulations. For larger major radius plasmas (R = 2.52, 2.60 m), a continuous increase of edge recycling rate during the neutral beam injection phase seems to have a larger effect on the performance deterioration than does the MHD.

  8. Packaging and Transportation News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaging and Transportation News January 14, 2016 Ron Hafner with Lawrence Livermore National Laboratory lectures for a course in San Ramon, Calif. on packaging and transporting ...

  9. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved 2 TABLE OF CONTENTS 1.0 ... Electric Transportation Applications All Rights Reserved 3 1.0 Objective The objective of ...

  10. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Objectives ... Electric Transportation Applications All Rights Reserved 1.0 Objective This procedure ...

  11. Electric Transportation Applications All Rights Reserved ETA...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Transportation Applications All Rights Reserved TABLE OF CONTENTS 1.0 Objectives ... Electric Transportation Applications All Rights Reserved 1.0 Objective The objective of ...

  12. Vehicle Technologies Office Merit Review 2015: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week Vehicle Technologies Office Merit Review 2015: Transportation Energy Data Book, Vehicle ...

  13. Montana Department of Transportation | Open Energy Information

    Open Energy Info (EERE)

    Transportation Name: Montana Department of Transportation Address: 2701 Prospect Avenue P.O. Box 201001 Place: Helena, Montana Zip: 59620 Website: www.mdt.mt.gov Coordinates:...

  14. Coal Gasification and Transportation Fuels Magazine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Gasification and Transportation Fuels Magazine Current Edition: Coal Gasification and Transportation Fuels Quarterly News, Vol. 2, Issue 2 (Jan 2016) Archived Editions: Coal ...

  15. DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING...

    Office of Environmental Management (EM)

    Video User' s Guide DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING ... related to emergency response to a transportation accident involving radioactive material. ...

  16. Victoria Transport Policy Institute | Open Energy Information

    Open Energy Info (EERE)

    Transport Policy Institute Jump to: navigation, search Name: Victoria Transport Policy Institute Address: 1250 Rudlin Street, Place: Victoria, British Columbia Website:...

  17. Renewable Transportation Fuels | Open Energy Information

    Open Energy Info (EERE)

    Transportation Fuels Jump to: navigation, search TODO: Add description List of Renewable Transportation Fuels Incentives Retrieved from "http:en.openei.orgw...

  18. Anion Exchange Membranes - Transport/Conductivity | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - TransportConductivity Anion Exchange Membranes - TransportConductivity Presentation at the AMFC Workshop, May 8-9, 2011, Arlington, VA PDF icon amfc110811aemstransport.pdf ...

  19. Transport NAMA Database | Open Energy Information

    Open Energy Info (EERE)

    Website: www.transport-namadatabase.orgindex.phpMainPage Transport Toolkit Region(s): Latin America & Caribbean, Africa & Middle East, Europe, Asia Related Tools Climate...

  20. APEC-Alternative Transport Fuels: Implementation Guidelines ...

    Open Energy Info (EERE)

    APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APEC-Alternative Transport Fuels: Implementation Guidelines...