National Library of Energy BETA

Sample records for transportation rate structure

  1. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    SciTech Connect (OSTI)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong; Rockhold, mark; Peters, Catherine A.; Celia, Michael A.

    2013-02-15

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site ? specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii) estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOEs legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. ? Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of

  2. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  3. Final Report - National Database of Utility Rates and Rate Structure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Database of Utility Rates and Rate Structure Final Report - National Database of Utility Rates and Rate Structure Awardee: Illinois State University Location: Normal, IL ...

  4. Does Water Content or Flow Rate Control Colloid Transport in...

    Office of Scientific and Technical Information (OSTI)

    Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Citation Details In-Document Search Title: Does Water Content or Flow Rate Control Colloid ...

  5. The Coal Transportation: Rates and Trends in the United States...

    Gasoline and Diesel Fuel Update (EIA)

    had previously disclosed transportation rates and mine prices changed policy. Those data were declared confidential and, by law, cannot be disclosed at individual company...

  6. Energy Policy Act Transportation Rate Study: Final Report on Coal Transportation

    Reports and Publications (EIA)

    2000-01-01

    This is the final in a series of reports prepared for the U.S. Congress by the Secretary of Energy on coal distribution and transportation rates as mandated by Title XIII, Section 1340, Establishment of Data Base and Study of Transportation Rates, of the Energy Policy Act of 1992 (P.L. 102-486).

  7. Surface Transportation Board BNSF/DOE/DOD Rate-Service Agreement...

    Office of Environmental Management (EM)

    BNSFDOEDOD Rate-Service Agreement Surface Transportation Board BNSFDOEDOD Rate-Service Agreement Surface Transportation Board BNSFDOEDOD Rate-Service Agreement (88.9 KB) More ...

  8. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Rate Jump to: navigation, search This is a property of type...

  9. Property:OpenEI/UtilityRate/DemandRateStructure/Tier1Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier1Rate Jump to: navigation, search This is a property of type...

  10. Property:OpenEI/UtilityRate/DemandRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateDemandRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  11. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Rate Jump to: navigation, search This is a property of type...

  12. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Rate | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Rate Jump to: navigation, search This is a property of type...

  13. Structures for Three Membrane Transport Proteins Yield Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Structures for Three Membrane Transport Proteins Yield Functional Insights Print Wednesday, 27 January ...

  14. Final Report- National Database of Utility Rates and Rate Structure

    Broader source: Energy.gov [DOE]

    One of the key informational barriers for consumers, installers, regulators and policymakers, is the proper comparison cost of utility-supplied electricity that will be replaced with a Photovoltaic (PV) system. Oftentimes, these comparisons are made with national or statewide averages which results in inaccurate comparisons and conclusions. Illinois State University seeks to meet the need for accurate information about electricity costs and rate structure by building a national database of utility rates and rate structures. The database will build upon the excellent framework that was developed by the OpenEI.org initiative and extend it in several important ways. First, the data will be populated and monitored by a team of trained regulatory economists. Second, the database will be more comprehensive because it will be populated with data from newer competitive retail suppliers for states that have restructured their electricity markets to allow such suppliers. Third, the University and its Institute for Regulatory Policy Studies will maintain the database and ensure that it contains the most recent rate information.

  15. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect (OSTI)

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  16. Transport Induced by Large Scale Convective Structures in a Dipole-Confined Plasma

    SciTech Connect (OSTI)

    Grierson, B. A.; Mauel, M. E.; Worstell, M. W.; Klassen, M.

    2010-11-12

    Convective structures characterized by ExB motion are observed in a dipole-confined plasma. Particle transport rates are calculated from density dynamics obtained from multipoint measurements and the reconstructed electrostatic potential. The calculated transport rates determined from the large-scale dynamics and local probe measurements agree in magnitude, show intermittency, and indicate that the particle transport is dominated by large-scale convective structures.

  17. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near ...

  18. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect (OSTI)

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however

  19. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication List For The Fluid Interface Reactions, Structures and Transport (FIRST) Energy Frontier Research Center * = Solely Supported by the FIRST Center ** = Not Solely Supported by the FIRST Center *Achtyl, J.L.; Unocic, R.R.; Xu, L.; Yu, C.; Raju, M.; Zhang, W.; Sacci, R.L.; Vlassiouk, I.V.; Fulvio P.F.; Ganesh, P.; Wesolowski, D.J.; Dai, S.; van Duin, A.C.T.; Neurock, M.; Geiger, F.M. Aqueous Proton Transfer across Single Layer Graphene. Nat. Comm. 2015, 6, 6539, [10.1038/ncomms7539]. *

  20. Molecular Structure and Ion Transport near Electrode-Electrolyte...

    Office of Scientific and Technical Information (OSTI)

    Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion ...

  1. Laminar flamelet structure at low and vanishing scalar dissipation rate

    SciTech Connect (OSTI)

    Bai, X.S.; Fuchs, L.; Mauss, F.

    2000-02-01

    The laminar flamelet structures of methane/air, propane/air, and hydrogen/air nonpremixed combustion at low and vanishing scalar dissipation rates are investigated, by numerical calculations of a system of conservation equations in a counterflow diffusion flame configuration, together with a transport equation defining the mixture fraction and scalar dissipation rate. The chemical reaction mechanisms consist of 82 elementary reactions up to C{sub 3} species. In the limit of vanishing scalar dissipation rate, two types of structures are shown to appear. In one structure fuel and oxygen are consumed in a thin layer located near the stoichiometric mixture fraction, Z{sub st}, where the temperature and the major products reach their peaks. This is similar to the so-called Burke-Schumann single layer flame sheet structure. One example is the hydrogen/air diffusion flame. The second structure consists of multilayers. Fuel and oxygen are consumed at different locations. Oxygen is consumed at Z{sub l} (near Z{sub st}), where the temperature and the major products reach their peaks. Fuel is consumed at Z{sub r} (>Z{sub st}). Between Z{sub l} and Z{sub r} some intermediate and radical species are found in high concentrations. Hydrocarbon/air nonpremixed flames are of this type. It is shown that for methane/air diffusion flames, some chemical reactions which are negligible at large scalar dissipation rate near flame quenching conditions, play essential roles for the existence of the multilayer structure. This result is used to successfully explain the high CO emissions in a turbulent methane/air diffusion flame.

  2. Damage rates for FFTF structural components and surveillance assemblies

    SciTech Connect (OSTI)

    Simons, R.L.

    1993-08-01

    The Fast Flux Test Facility (FFTF) surveillance program provides coupon surveillance materials that are irradiated to the expected lifetime damage dose that the represented component will experience. This methodology requires a knowledge of the damage dose rates to the surveillance assemblies and to the critical locations of the structural components. This analysis updates the predicted exposures from a total fluence to a displacement per atom (dpa) basis using Monte Carlo (computer code for) neutron photon (transport) code (MCNP). The MCNP calculation improves the relative consistency and lowers the predicted damage rates uncertainty in a number of out-of-core locations. The results were used an part of the evaluation to extend the lifetime of the invessel components to 30 years in support of multiple missions for FFTF.

  3. Composition Dependence of the Pore Structure and Water Transport...

    Office of Scientific and Technical Information (OSTI)

    Water Transport of Composite Catalyst Layers for Polymer Electrolyte Fuel Cells Citation Details In-Document Search Title: Composition Dependence of the Pore Structure and Water ...

  4. Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates

    Reports and Publications (EIA)

    1995-01-01

    This report, summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns.

  5. Apparatus for the measurement of radionuclide transport rates in rock cores

    SciTech Connect (OSTI)

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as /sup 3/H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and /sup 85/Sr in brine through a sandstone core are included.

  6. Property:OpenEI/UtilityRate/EnergyRateStructure/Period | Open...

    Open Energy Info (EERE)

    This is a property of type Number. The allowed values for this property are: 1 2 3 4 5 6 7 8 9 Pages using the property "OpenEIUtilityRateEnergyRateStructurePeriod" Showing...

  7. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier4Sell | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier4Sell Jump to: navigation, search This is a property of type...

  8. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier3Adjustment...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier3Adjustment Jump to: navigation, search This is a property of type...

  9. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier5Sell | Open...

    Open Energy Info (EERE)

    Property Edit with form History Facebook icon Twitter icon Property:OpenEIUtilityRateEnergyRateStructureTier5Sell Jump to: navigation, search This is a property of type...

  10. Property:OpenEI/UtilityRate/DemandRateStructure/Tier2Adjustment...

    Open Energy Info (EERE)

    search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier2Adjustment&oldid539746...

  11. Property:OpenEI/UtilityRate/DemandRateStructure/Tier5Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier5Max&oldid539754...

  12. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateEnergyRateStructureTier1Max&oldid539766...

  13. Property:OpenEI/UtilityRate/EnergyRateStructure/Tier1Sell | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateEnergyRateStructureTier1Sell&oldid539770...

  14. Property:OpenEI/UtilityRate/DemandRateStructure/Tier6Adjustment...

    Open Energy Info (EERE)

    search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier6Adjustment&oldid539759...

  15. Property:OpenEI/UtilityRate/DemandRateStructure/Tier4Max | Open...

    Open Energy Info (EERE)

    navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandRateStructureTier4Max&oldid539751...

  16. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Perspectives Nonlinear optical approaches for elucidating interfacial fluid and sorbed species structures and dynamics pdf Structural and Dynamic Properties of Room Temperature Ionic Liquids Confined within Hierarchical Porous Materials pdf Structure and Dynamics of Electrical Double Layer Using Integrated Scanning Probe Microscopy and Molecular Simulations pdf Effects of Nano-Confinement on the Fluid Interfacial Structure, Dynamics and Thermodynamic behavior pdf Molecular Insights into

  17. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Structures for Three Membrane Transport Proteins Yield Functional Insights Print Wednesday, 27 January 2010 00:00 Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is

  18. Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media?

    SciTech Connect (OSTI)

    Thorsten Knappenberger; Markus Flury; Earl D. Mattson; James B. Harsh

    2014-03-01

    Mobile colloids can play an important role in contaminant transport in soils: many contaminants exist in colloidal form, and colloids can facilitate transport of otherwise immobile contaminants. In unsaturated soils, colloid transport is, among other factors, affected by water content and flow rate. Our objective was to determine whether water content or flow rate is more important for colloid transport. We passed negatively charged polystyrene colloids (220 nm diameter) through unsaturated sand-filled columns under steady-state flow at different water contents (effective water saturations Se ranging from 0.1 to 1.0, with Se = (? ?r)/(?s ?r)) and flow rates (pore water velocities v of 5 and 10 cm/min). Water content was the dominant factor in our experiments. Colloid transport decreased with decreasing water content, and below a critical water content (Se < 0.1), colloid transport was inhibited, and colloids were strained in water films. Pendular ring and water film thickness calculations indicated that colloids can move only when pendular rings are interconnected. The flow rate affected retention of colloids in the secondary energy minimum, with less colloids being trapped when the flow rate increased. These results confirm the importance of both water content and flow rate for colloid transport in unsaturated porous media and highlight the dominant role of water content.

  19. Energy policy act transportation study: Interim report on natural gas flows and rates

    SciTech Connect (OSTI)

    1995-11-17

    This report, Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates, is the second in a series mandated by Title XIII, Section 1340, ``Establishment of Data Base and Study of Transportation Rates,`` of the Energy Policy Act of 1992 (P.L. 102--486). The first report Energy Policy Act Transportation Study: Availability of Data and Studies, was submitted to Congress in October 1993; it summarized data and studies that could be used to address the impact of legislative and regulatory actions on natural gas transportation rates and flow patterns. The current report presents an interim analysis of natural gas transportation rates and distribution patterns for the period from 1988 through 1994. A third and final report addressing the transportation rates and flows through 1997 is due to Congress in October 2000. This analysis relies on currently available data; no new data collection effort was undertaken. The need for the collection of additional data on transportation rates will be further addressed after this report, in consultation with the Congress, industry representatives, and in other public forums.

  20. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Management Organizational Structure, Roles, and Responsibilities: The FIRST Center management structure, outlined in our organizational chart, has been designed to accomplish the scientific goals of the Center, while providing synergy between the thrusts, educational outreach, oversight, operational support, and integration with DOE's core science and technology programs. The Director (David J.Wesolowski) is responsible for the overall scientific direction and management of the Center,

  1. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  2. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  3. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  4. Structures for Three Membrane Transport Proteins Yield Functional Insights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structures for Three Membrane Transport Proteins Yield Functional Insights Print Cells depend on contact with their outside environment in order to thrive. Two examples illustrate why: In one, information needed to guide cellular processes is constantly transmitted across cell membranes by specialized proteins, and in the other, maintaining the right gradient of ions across the membrane is a process critical to the life and death of a cell. Membrane transport proteins-functioning either as

  5. Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces

    Office of Scientific and Technical Information (OSTI)

    in Lithium-Ion Batteries (Conference) | SciTech Connect Conference: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Citation Details In-Document Search Title: Molecular Structure and Ion Transport near Electrode-Electrolyte Interfaces in Lithium-Ion Batteries Authors: Lordi, V ; Ong, M T ; Verners, O ; van Duin, A ; Draeger, E W ; Pask, J E Publication Date: 2014-11-03 OSTI Identifier: 1178394 Report Number(s): LLNL-CONF-663739 DOE

  6. Transport rates and momentum isotropization of gluon matter in ultrarelativistic heavy-ion collisions

    SciTech Connect (OSTI)

    Xu Zhe; Greiner, Carsten

    2007-08-15

    To describe momentum isotropization of gluon matter produced in ultrarelativistic heavy-ion collisions, the transport rate of gluon drift and the transport collision rates of elastic (gg{r_reversible}gg) as well as inelastic (gg{r_reversible}ggg) perturbative quantum chromodynamics- (pQCD) scattering processes are introduced and calculated within the kinetic parton cascade Boltzmann approach of multiparton scatterings (BAMPS), which simulates the space-time evolution of partons. We define isotropization as the development of an anisotropic system as it reaches isotropy. The inverse of the introduced total transport rate gives the correct time scale of the momentum isotropization. The contributions of the various scattering processes to the momentum isotropization can be separated into the transport collision rates. In contrast to the transport cross section, the transport collision rate has an indirect but correctly implemented relationship with the collision-angle distribution. Based on the calculated transport collision rates from BAMPS for central Au+Au collisions at Relativistic Heavy Ion Collider energies, we show that pQCD gg{r_reversible}ggg bremsstrahlung processes isotropize the momentum five times more efficiently than elastic scatterings. The large efficiency of the bremsstrahlung stems mainly from its large momentum deflection. Due to kinematics, 2{yields}N (N>2) production processes allow more particles to become isotropic in momentum space and thus kinetically equilibrate more quickly than their back reactions or elastic scatterings. We also show that the relaxation time in the relaxation time approximation, which is often used, is strongly momentum dependent and thus cannot serve as a global quantity that describes kinetic equilibration.

  7. Coal-freight rate-making: negotiating domestic and export coal-transportation contracts

    SciTech Connect (OSTI)

    Lawson, J.W.; Harris, F.S. II; Shiriak, B.D.

    1982-01-01

    Three conference speakers describe various legal and economic principles in setting rates for rail transport of coal. Part I explains non-regulated rate-making and legislation prior to the Staggers Act. Part II gives a perspective on the current regulatory environment in areas of market dominance, revenue computation and adequacy, standards and criteria for setting rates, adjustments for inflation, and rate flexibility zones. Part III applies current legislative and regulatory principles in the areas of contract rates, antitrust laws, and comparisons with public utilities. Part IV covers the major legal principles of rail contracts, while Part V describes several contract negotiating strategies. There are nine appendices and a supplement on factors in determining the base rate. 32 references, 1 figure, 4 tables. (DCK)

  8. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  9. Solvation Structure and Transport Properties of Alkali Cations in Dimethyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sulfoxide Under Exogenous Static Electric Fields - Joint Center for Energy Storage Research June 14, 2015, Research Highlights Solvation Structure and Transport Properties of Alkali Cations in Dimethyl Sulfoxide Under Exogenous Static Electric Fields Top: Snapshots of molecular dynamics simulations of alkali ions in DMSO at 298 K and zero-applied electric field: (left) Li+ and (right) Cs+. Sulfur atoms are shown in yellow, oxygen atoms in red, and methyl groups in gray. Graph: Average

  10. Structure factors for tunneling ionization rates of diatomic molecules

    SciTech Connect (OSTI)

    Saito, Ryoichi; Tolstikhin, Oleg I.; Madsen, Lars Bojer; Morishita, Toru

    2015-05-15

    Within the leading-order, single-active-electron, and frozen-nuclei approximation of the weak-field asymptotic theory, the rate of tunneling ionization of a molecule in an external static uniform electric field is determined by the structure factor for the highest occupied molecular orbital. We present the results of systematic calculations of structure factors for 40 homonuclear and heteronuclear diatomic molecules by the Hartree–Fock method using a numerical grid-based approach implemented in the program X2DHF.

  11. Energy Policy Act transportation rate study: Availability of data and studies

    SciTech Connect (OSTI)

    Not Available

    1993-10-13

    Pursuant to Section 1340(c) of the Energy Policy Act of 1992 (EPACT), this report presents the Secretary of Energy`s review of data collected by the Federal Government on rates for rail and pipeline transportation of domestic coal, oil, and gas for the years 1988 through 1997, and proposals to develop an adequate data base for each of the fuels, based on the data availability review. This report also presents the Energy Information Administration`s findings regarding the extent to which any Federal agency is studying the impacts of the Clean Air Act Amendments of 1990 (CAAA90) and other Federal policies on the transportation rates and distribution patterns of domestic coal, oil, and gas.

  12. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New

  13. Rate Structures for Customers With Onsite Generation: Practice and Innovation

    SciTech Connect (OSTI)

    Johnston, L.; Takahashi, K.; Weston, F.; Murray, C.

    2005-12-01

    Recognizing that innovation and good public policy do not always proclaim themselves, Synapse Energy Economics and the Regulatory Assistance Project, under a contract with the California Energy Commission (CEC) and the National Renewable Energy Laboratory (NREL), undertook a survey of state policies on rates for partial-requirements customers with onsite distributed generation. The survey investigated a dozen or so states. These varied in geography and the structures of their electric industries. By reviewing regulatory proceedings, tariffs, publications, and interviews, the researchers identified a number of approaches to standby and associated rates--many promising but some that are perhaps not--that deserve policymakers' attention if they are to promote the deployment of cost-effective DG in their states.

  14. Proton Transport in Imidazoles: Unraveling the Role of Supramolecular Structure

    SciTech Connect (OSTI)

    Cosby, James T.; Holt, Adam P.; Griffin, Phillip; Wang, Yangyang; Sangoro, Joshua R.

    2015-09-18

    The impact of supramolecular hydrogen bonded networks on dynamics and charge transport in 2-ethyl-4-methylimidazole (2E4MIm), a model proton-conducting system, is investigated by broadband dielectric spectroscopy, depolarized dynamic light scattering, viscometry, and calorimetry. It is observed that the slow, Debye-like relaxation reflecting the supramolecular structure in neat 2E4MIm is eliminated upon the addition of minute amounts of levulinic acid. This is attributed to the dissociation of imidazole molecules and the breaking down of hydrogen-bonded chains, which leads to a 10-fold enhancement of ionic conductivity.

  15. Revenue and harmonics: An evaluation of some proposed rate structures

    SciTech Connect (OSTI)

    McEachern, A.; Grady, W.M.; Moncrief, W.A.; Heydt, G.T.; McGranaghan, M.

    1995-01-01

    IEEE Recommended Practice 519 sets specific limits on harmonic voltages and currents at the ``point of common coupling``, which is usually interpreted as the revenue meter. Although most utilities will employ these limits simply to persuade and encourage their customers to reduce harmonics (and vice versa), it is also possible to construct economic incentives to encourage both the utility and the consumer to remain within the limits described in IEEE 519. 7his paper discusses seven approaches to this challenge, and discusses the advantages and disadvantages of each. It appears that the ``Harmonic-Adjusted Power Factor`` approach is practical, justifiable, compatible with existing rate structures, and relatively easy to implement.

  16. Carbon Dioxide Sorption Isotherms and Matrix Transport Rates for Non-Powdered Coal

    SciTech Connect (OSTI)

    Smith, D.H.; Jikich, S.; Seshadri, K.

    2007-05-01

    For enhanced coalbed methane/carbon dioxide sequestration field projects, carbon dioxide isotherms and the rate of diffusion of the carbon dioxide from the cleats into the matrix are important parameters for predicting how much carbon dioxide actually will be sequestered under various operating conditions. Manometric (or pressure swing) experiments on powdered coal provide a quick, simple, and relatively inexpensive method for measuring sorption isotherms. However, determination of the rate of transport from cleat into matrix from the rate of gas pressure drop is difficult, if not impossible. (The characteristic time constant for the transport depends on the cleat spacing as well as the rate of diffusion.) Manometric measurements often yield isotherms that are extremely problematic in the region of the carbon dioxide critical point; perhaps even worse, available data seem to indicate that the sorption isotherms measured for powders are much larger than the isotherms of coal cores. Measurements on centimeter-sized samples can take weeks or months to reach equilibrium; for such equilibration times gas leakage rates that would be of no significance in powdered-coal measurements can completely invalidate manometric measurements on coal cores. We have tested and used a simple, inexpensive method for measuring isotherms and carbon dioxide transport rates in coal cores. One or more cores are placed in a simple pressure vessel, and a constant pressure is maintained in the vessel by connecting it to a gas supply (which contains a very large amount of gas compared to amount that could leak over the course of the experiment). From time to time the gas supply is shut off, the sample is removed, and its weight is recorded at ambient pressure at frequent time intervals for a period of about one hour. The sample is then returned to the pressure vessel, the carbon dioxide pressure restored to its previous value, and the equilibration resumed until the next sample weighing. For a

  17. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect (OSTI)

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  18. Mass transport around comets and its impact on the seasonal differences in water production rates

    SciTech Connect (OSTI)

    Rubin, M.; Altwegg, K.; Thomas, N.; Fougere, N.; Combi, M. R.; Tenishev, V. M.; Le Roy, L.

    2014-06-20

    Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.

  19. Electrode films of porous agarose: The effects of physical structure on electron transport processes. [Impregnated with Nafion; immobilized electroactive species

    SciTech Connect (OSTI)

    Moran, K.D.

    1988-02-01

    Potential use of chemically modified electrodes in electrocatalysis has stimulated interest in creation and characterization of electrode films for reagent immobilization. We have created two highly porous electrocatalyst support matrices, with high rates of electron transport. Both are based on immobilization of reagents in agarose gel. In one case, Nafion was impregnated into agarose gel films. Diffusion of methyl viologen in Nafionagarose matrices are higher than in Nafion. In Nafion, the diffusion coefficient decreases with increasing methyl viologen concentration, while in Nafionagarose, the opposite dependence is observed. The faster rate of electron transport in Nafionagarose films is related to the heterogeneous structure and the coupling of the diffusion pathways. In the second application of agarose gels as an electrode coating material, agarose hydroxyl groups were activated in 1,1'carbonyldiimidazole and subsequently reacted with amine derivatives of electroactive mediators. Electron transport between the electroactive sites in the gel is very rapid (on the order of 10/sup -7/ cm/sup 2/s. Interpreting the data in light of the Dahms-Ruff description of electron transport shows that the rate of electron transport through both ferrocene and viologen derivatized gels is limited by the rate of electron self-exchange of the species. 22 figs., 15 tabs

  20. Coupled ion Binding and Structural Transitions Along the Transport...

    Office of Scientific and Technical Information (OSTI)

    binding primes the transport domain to accept its substrate and triggers extracellular gate opening, which prevents inward domain translocation until substrate binding takes place. ...

  1. The Impacts of Commercial Electric Utility Rate Structure Elements on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economics of Photovoltaic Systems | Department of Energy The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the

  2. Fluid Interface Reactions, Structures and Transport Center (FIRST) | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Fluid Interface Reactions, Structures and Transport Center (FIRST) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Fluid Interface Reactions, Structures and Transport Center (FIRST) Print Text Size: A A A FeedbackShare Page FIRST Header Director David Wesolowski Lead Institution Oak Ridge National Laboratory Year Established 2009 Mission To

  3. Utility Rate Structures and the Impact of Energy Efficiency and Renewable Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Structures and the Impact on Energy Efficiency and Renewable Projects Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR November 5-6, 2014 Cape Canaveral. Florida Agenda * Rate calculations * Review a mock energy efficiency and renewable energy project with three different utilities with differing tariffs * Summary Federal Utility Partnership Working Group November 5-6, 2014 Cape Canaveral, FL Energy Efficiency Calculations * Rates: most common are energy only rates, or a demand

  4. Structural and functional studies of conserved nucleotide-binding protein LptB in lipopolysaccharide transport

    SciTech Connect (OSTI)

    Wang, Zhongshan; Xiang, Quanju; Zhu, Xiaofeng; Dong, Haohao; He, Chuan; Wang, Haiyan; Zhang, Yizheng; Wang, Wenjian; Dong, Changjiang

    2014-09-26

    Highlights: • Determination of the structure of the wild-type LptB in complex with ATP and Mg{sup 2+}. • Demonstrated that ATP binding residues are essential for LptB’s ATPase activity and LPS transport. • Dimerization is required for the LptB’s function and LPS transport. • Revealed relationship between activity of the LptB and the vitality of E. coli cells. - Abstract: Lipopolysaccharide (LPS) is the main component of the outer membrane of Gram-negative bacteria, which plays an essential role in protecting the bacteria from harsh conditions and antibiotics. LPS molecules are transported from the inner membrane to the outer membrane by seven LPS transport proteins. LptB is vital in hydrolyzing ATP to provide energy for LPS transport, however this mechanism is not very clear. Here we report wild-type LptB crystal structure in complex with ATP and Mg{sup 2+}, which reveals that its structure is conserved with other nucleotide-binding proteins (NBD). Structural, functional and electron microscopic studies demonstrated that the ATP binding residues, including K42 and T43, are crucial for LptB’s ATPase activity, LPS transport and the vitality of Escherichia coli cells with the exceptions of H195A and Q85A; the H195A mutation does not lower its ATPase activity but impairs LPS transport, and Q85A does not alter ATPase activity but causes cell death. Our data also suggest that two protomers of LptB have to work together for ATP hydrolysis and LPS transport. These results have significant impacts in understanding the LPS transport mechanism and developing new antibiotics.

  5. Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Doris, E.

    2010-06-01

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

  6. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  7. Structure, transport and thermal properties of UCoGa

    SciTech Connect (OSTI)

    Purwanto, A.; Robinson, R.A.; Prokes, K.

    1994-04-01

    By means of neutron powder diffraction, we find that UCoGa crystallizes in the hexagonal ZrNiAl structure and orders ferromagnetically at low temperatures with magnetic moments stacked along the c axis. The magnetic-ordering temperature is reflected in anomalies in the temperature dependencies of the electrical resistivity and the specific heat at Tc = 47 K. Furthermore, the strong anisotropy in the electrical resistivity for i {parallel} c and i {perpendicular} c indicates a significant contribution of the magnetic anisotropy to the electrical resistivity.

  8. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    SciTech Connect (OSTI)

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-20

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm to halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.

  9. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect (OSTI)

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  10. California PG&E E-19 Rate Structure -- demand charge structure...

    Open Energy Info (EERE)

    Utility Rate Allandaly's picture Submitted by Allandaly(24) Member 13 May, 2014 - 11:49 Hi again, I feel like the squeaky wheel here ... apologies for that ... but I am trying to...

  11. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  12. The Structure and Transport of Water and Hydrated Ions Within Hydrophobic, Nanoscale Channels

    SciTech Connect (OSTI)

    Holt, J K; Herberg, J L; Wu, Y; Schwegler, E; Mehta, A

    2009-06-15

    The purpose of this project includes an experimental and modeling investigation into water and hydrated ion structure and transport at nanomaterials interfaces. This is a topic relevant to understanding the function of many biological systems such as aquaporins that efficiently shuttle water and ion channels that permit selective transport of specific ions across cell membranes. Carbon nanotubes (CNT) are model nanoscale, hydrophobic channels that can be functionalized, making them artificial analogs for these biological channels. This project investigates the microscopic properties of water such as water density distributions and dynamics within CNTs using Nuclear Magnetic Resonance (NMR) and the structure of hydrated ions at CNT interfaces via X-ray Absorption Spectroscopy (XAS). Another component of this work is molecular simulation, which can predict experimental measurables such as the proton relaxation times, chemical shifts, and can compute the electronic structure of CNTs. Some of the fundamental questions this work is addressing are: (1) what is the length scale below which nanoscale effects such as molecular ordering become important, (2) is there a relationship between molecular ordering and transport?, and (3) how do ions interact with CNT interfaces? These are questions of interest to the scientific community, but they also impact the future generation of sensors, filters, and other devices that operate on the nanometer length scale. To enable some of the proposed applications of CNTs as ion filtration media and electrolytic supercapacitors, a detailed knowledge of water and ion structure at CNT interfaces is critical.

  13. The Impact of Retail Rate Structures on the Economics ofCommercial Photovoltaic Systems in California

    SciTech Connect (OSTI)

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-07-03

    To achieve a sizable and self-sustaining market for grid-connected, customer-sited photovoltaic (PV) systems, solar will likely need to be competitive with retail electricity rates. In this report, we examine the impact of retail rate design on the economic value of commercial PV systems in California. Using 15-minute interval building load and PV production data from 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial customer retail rates currently offered in the state. We find that the specifics of the rate structure, combined with the characteristics of the customer's underlying load and the size of the PV system, can have a substantial impact on the customer-economics of commercial PV systems. Key conclusions for policymakers that emerge from our analysis are as follows: {sm_bullet} Rate design is fundamental to the economics of commercial PV. The rate-reduction value of PV for our sample of commercial customers, considering all available retail tariffs, ranges from $0.05/kWh to $0.24/kWh, reflecting differences in rate structures, the revenue requirements of the various utilities, the size of the PV system relative to building load, and customer load shapes. For the average customer in our sample, differences in rate structure, alone, alter the value of PV by 25% to 75%, depending on the size of the PV system relative to building load. {sm_bullet} TOU-based energy-focused rates can provide substantial value to many PV customers. Retail rates that wrap all or most utility cost recovery needs into time-of-use (TOU)-based volumetric energy rates, and which exclude or limit demand-based charges, provide the most value to PV systems across a wide variety of circumstances. Expanding the availability of such rates will increase the value of many commercial PV systems. {sm_bullet} Offering commercial customers a variety of rate options would be of value to PV. Despite the advantages of energy-focused rates for PV

  14. Crystal structure of the Alcanivorax borkumensis YdaH transporter reveals an unusual topology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bolla, Jani Reddy; Su, Chih-Chia; Delmar, Jared A.; Radhakrishnan, Abhijith; Kumar, Nitin; Chou, Tsung-Han; Long, Feng; Rajashankar, Kanagalaghatta R.; Yu, Edward W.

    2015-04-20

    The potential of the folic acid biosynthesis pathway as a target for the development of antibiotics has been clinically validated. However, many pathogens have developed resistance to these antibiotics, prompting a re-evaluation of potential drug targets within the pathway. The ydaH gene of Alcanivorax borkumensis encodes an integral membrane protein of the AbgT family of transporters for which no structural information was available. Here we report the crystal structure of A. borkumensis YdaH, revealing a dimeric molecule with an architecture distinct from other families of transporters. YdaH is a bowl-shaped dimer with a solvent-filled basin extending from the cytoplasm tomore » halfway across the membrane bilayer. Each subunit of the transporter contains nine transmembrane helices and two hairpins that suggest a plausible pathway for substrate transport. Further analyses also suggest that YdaH could act as an antibiotic efflux pump and mediate bacterial resistance to sulfonamide antimetabolite drugs.« less

  15. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    Broader source: Energy.gov [DOE]

    To achieve a sizable and self-sustaining market for grid-connected, customer-sited photovoltaic (PV) systems, solar will likely need to be competitive with retail electricity rates. In this report, we examine the impact of retail rate design on the economic value of commercial PV systems in California. Using 15-minute interval building load and PV production data from 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial customer retail rates currently offered in the state. We find that the specifics of the rate structure, combined with the characteristics of the customer’s underlying load and the size of the PV system, can have a substantial impact on the customer-economics of commercial PV systems.

  16. Spin transport in normal metal/insulator/topological insulator coupled to ferromagnetic insulator structures

    SciTech Connect (OSTI)

    Kondo, Kenji

    2014-05-07

    In this study, we investigate the spin transport in normal metal (NM)/insulator (I)/topological insulator (TI) coupled to ferromagnetic insulator (FI) structures. In particular, we focus on the barrier thickness dependence of the spin transport inside the bulk gap of the TI with FI. The TI with FI is described by two-dimensional (2D) Dirac Hamiltonian. The energy profile of the insulator is assumed to be a square with barrier height V and thickness d along the transport-direction. This structure behaves as a tunnel device for 2D Dirac electrons. The calculation is performed for the spin conductance with changing the barrier thickness and the components of magnetization of FI layer. It is found that the spin conductance decreases with increasing the barrier thickness. Also, the spin conductance is strongly dependent on the polar angle ?, which is defined as the angle between the axis normal to the FI and the magnetization of FI layer. These results indicate that the structures are promising candidates for novel tunneling magnetoresistance devices.

  17. Origin of electrochemical, structural and transport properties in non-aqueous zinc electrolytes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Sang -Don; Rajput, Nav Nidhi; Qu, Xiaohui; Pan, Baofei; He, Meinan; Ferrandon, Magali S.; Liao, Chen; Persson, Kristin A.; Burrell, Anthony K.

    2016-01-14

    Through coupled experimental analysis and computational techniques, we uncover the origin of anodic stability for a range of nonaqueous zinc electrolytes. By examination of electrochemical, structural, and transport properties of nonaqueous zinc electrolytes with varying concentrations, it is demonstrated that the acetonitrile Zn(TFSI)2, acetonitrile Zn(CF3SO3)2, and propylene carbonate Zn(TFSI)2 electrolytes can not only support highly reversible Zn deposition behavior on a Zn metal anode (≥99% of Coulombic efficiency), but also provide high anodic stability (up to ~3.8 V). The predicted anodic stability from DFT calculations is well in accordance with experimental results, and elucidates that the solvents play an importantmore » role in anodic stability of most electrolytes. Molecular dynamics (MD) simulations were used to understand the solvation structure (e.g., ion solvation and ionic association) and its effect on dynamics and transport properties (e.g., diffusion coefficient and ionic conductivity) of the electrolytes. Lastly, the combination of these techniques provides unprecedented insight into the origin of the electrochemical, structural, and transport properties in nonaqueous zinc electrolytes« less

  18. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  19. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Recurring Reserves Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud Data For: 2001 Next Release Date: October 2003 U. S. Coal-Producing Districts...

  20. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA uses the confidential version of the STB Waybill data, which includes actual revenue for shipments that originate and terminate at specific locations. The STB Waybill...

  1. Rail Coal Transportation Rates

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    on research by the U.S. Department of Energy and was only incorporated into the GIS analysis below; it is not in any other elements of this report. See Methodology for greater...

  2. Rail Coal Transportation Rates

    Gasoline and Diesel Fuel Update (EIA)

    7a. Space Heating by Census Region and Climate Zone, Million U.S. Households, 1993 Space Heating Characteristics RSE Column Factor: Total Census Region Climate Zone RSE Row Factors Northeast Midwest South West Fewer than 2,000 CDD and -- More than 2,000 CDD and Few- er than 4,000 HDD More than 7,000 HDD 5,500 to 7,000 HDD 4,000 to 5,499 HDD Few- er than 4,000 HDD 0.5 0.9 1.1 0.8 0.8 1.6 1.3 1.2 1.2 1.1 Total ................................................. 96.6 19.5 23.3 33.5 20.4 8.7 26.5

  3. Quantum ground state effect on fluctuation rates in nano-patterned superconducting structures

    SciTech Connect (OSTI)

    Eftekharian, Amin; Jafari Salim, Amir; University of Waterloo, 200 University Ave West, Waterloo, Ontario N2L 3G1 ; Atikian, Haig; Akhlaghi, Mohsen K.; Hamed Majedi, A.

    2013-12-09

    In this Letter, we present a theoretical model with experimental verifications to describe the abnormal behaviors of the measured fluctuation rates occurring in nano-patterned superconducting structures below the critical temperature. In the majority of previous works, it is common to describe the fluctuation rate by defining a fixed ground state or initial state level for the singularities (vortex or vortex-antivortex pairs), and then employing the well-known rate equations to calculate the liberation rates. Although this approach gives an acceptable qualitative picture, without utilizing free parameters, all the models have been inadequate in describing the temperature dependence of the rate for a fixed width or the width dependence of the rate for a fixed temperature. Here, we will show that by defining a current-controlled ground state level for both the vortex and vortex-antivortex liberation mechanisms, the dynamics of these singularities are described for a wide range of temperatures and widths. According to this study, for a typical strip width, not only is the vortex-antivortex liberation higher than the predicted rate, but also quantum tunneling is significant in certain conditions and can not be neglected.

  4. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-05-11

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-minute interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05/kWh to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when commercial PV systems represent a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  5. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-06-24

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-min interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05 to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when energy from commercial PV systems represents a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  6. Structural basis of GDP release and gating in G protein coupled Fe[superscript 2+] transport

    SciTech Connect (OSTI)

    Guilfoyle, Amy; Maher, Megan J.; Rapp, Mikaela; Clarke, Ronald; Harrop, Stephen; Jormakka, Mika

    2009-09-29

    G proteins are key molecular switches in the regulation of membrane protein function and signal transduction. The prokaryotic membrane protein FeoB is involved in G protein coupled Fe{sup 2+} transport, and is unique in that the G protein is directly tethered to the membrane domain. Here, we report the structure of the soluble domain of FeoB, including the G protein domain, and its assembly into an unexpected trimer. Comparisons between nucleotide free and liganded structures reveal the closed and open state of a central cytoplasmic pore, respectively. In addition, these data provide the first observation of a conformational switch in the nucleotide-binding G5 motif, defining the structural basis for GDP release. From these results, structural parallels are drawn to eukaryotic G protein coupled membrane processes.

  7. High rate, long cycle life battery electrode materials with an open framework structure

    DOE Patents [OSTI]

    Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro

    2015-02-10

    A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.

  8. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  9. Synthesis, transport properties, and electronic structure of Cu{sub 2}CdSnTe{sub 4}

    SciTech Connect (OSTI)

    Dong, Yongkwan; Khabibullin, Artem R.; Wei, Kaya; Ge, Zhen-Hua; Woods, Lilia M. Nolas, George S.; Martin, Joshua; Salvador, James R.

    2014-06-23

    A new stannite phase was synthesized and its temperature dependent transport properties were investigated. Cu{sub 2}CdSnTe{sub 4} possesses strong p-type conduction, while the temperature dependence of the thermal conductivity exhibits typical dielectric behavior. Electronic structure calculations allowed for a description of the transport characteristics in terms the energy band structure, density of states, and Fermi surface. The potential for thermoelectric applications is also discussed.

  10. Solar San Diego: The Impact of Binomial Rate Structures on Real PV Systems; Preprint

    SciTech Connect (OSTI)

    VanGeet, O.; Brown, E.; Blair, T.; McAllister, A.

    2008-05-01

    There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savings that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rate structures is presented. The data revealed that actual demand and energy use benefits of binomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007.

  11. Structural control of mixed ionic and electronic transport in conducting polymers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; Sessolo, Michele; Stavrinidou, Eleni; Strakosas, Xenofon; Tassone, Christopher; Delongchamp, Dean M.; Malliaras, George G.

    2016-04-19

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. Wemore » quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. As a result, these findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.« less

  12. The impact of disorder on charge transport in three dimensional quantum dot resonant tunneling structures

    SciTech Connect (OSTI)

    Puthen-Veettil, B. Patterson, R.; Knig, D.; Conibeer, G.; Green, M. A.

    2014-10-28

    Efficient iso-entropic energy filtering of electronic waves can be realized through nanostructures with three dimensional confinement, such as quantum dot resonant tunneling structures. Large-area deployment of such structures is useful for energy selective contacts but such configuration is susceptible to structural disorders. In this work, the transport properties of quantum-dot-based wide-area resonant tunneling structures, subject to realistic disorder mechanisms, are studied. Positional variations of the quantum dots are shown to reduce the resonant transmission peaks while size variations in the device are shown to reduce as well as broaden the peaks. Increased quantum dot size distribution also results in a peak shift to lower energy which is attributed to large dots dominating transmission. A decrease in barrier thickness reduces the relative peak height while the overall transmission increases dramatically due to lower series resistance. While any shift away from ideality can be intuitively expected to reduce the resonance peak, quantification allows better understanding of the tolerances required for fabricating structures based on resonant tunneling phenomena/.

  13. Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia; McIntosh, Steven

    2015-09-21

    Ruddlesden-Popper structured oxides, general form An+1BnO3n+1, consist of n-layers of the perovskite structure stacked in between rock-salt layers, and have potential application in solid oxide electrochemical cells and ion transport membrane reactors. Three materials with constant Co/Fe ratio, LaSrCo0.5Fe0.5O4-δ (n = 1), La0.3Sr2.7CoFeO7-δ (n = 2), and LaSr3Co1.5Fe1.5O10-δ (n = 3) were synthesized and studied via in situ neutron powder diffraction between 765 K and 1070 K at a pO2 of 10-1 atm. Then, the structures were fit to a tetragonal I4/mmm space group, and were found to have increased total oxygen vacancy concentration in the order La0.3Sr2.7CoFeO7-δ > LaSr3Co1.5Fe1.5O10-δmore » > LaSrCo0.5Fe0.5O4-δ, following the trend predicted for charge compensation upon increasing Sr2+/La3+ ratio. The oxygen vacancies within the material were almost exclusively located within the perovskite layers for all of the crystal structures with only minimal vacancy formation in the rock-salt layer. Finally, analysis of the concentration of these vacancies at each distinct crystallographic site and the anisotropic atomic displacement parameters for the oxygen sites reveals potential preferred oxygen transport pathways through the perovskite layers.« less

  14. Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique

    SciTech Connect (OSTI)

    Toprasertpong, Kasidit; Fujii, Hiromasa; Sugiyama, Masakazu; Nakano, Yoshiaki; Kasamatsu, Naofumi; Kada, Tomoyuki; Asahi, Shigeo; Kita, Takashi; Wang, Yunpeng; Watanabe, Kentaroh

    2015-07-27

    In this study, we propose a carrier time-of-flight technique to evaluate the carrier transport time across a quantum structure in an active region of solar cells. By observing the time-resolved photoluminescence signal with a quantum-well probe inserted under the quantum structure at forward bias, the carrier transport time can be efficiently determined at room temperature. The averaged drift velocity shows linear dependence on the internal field, allowing us to estimate the quantum structure as a quasi-bulk material with low effective mobility containing the information of carrier dynamics. We show that this direct and real-time observation is more sensitive to carrier transport than other conventional techniques, providing better insights into microscopic carrier transport dynamics to overcome a device design difficulty.

  15. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides

    SciTech Connect (OSTI)

    Das, Supriyo

    2010-05-16

    Oxide compounds containing the transition metal vanadium (V) have attracted a lot of attention in the field of condensed matter physics owing to their exhibition of interesting properties including metal-insulator transitons, structural transitions, ferromagnetic and antiferromagnetic orderings, and heavy fermion behavior. Binary vanadium oxides V{sub n}O{sub 2n-1} where 2 {le} n {le} 9 have triclinic structures and exhibit metal-insulator and antiferromagnetic transitions. The only exception is V{sub 7}O{sub 13} which remains metallic down to 4 K. The ternary vanadium oxide LiV{sub 2}O{sub 4} has the normal spinel structure, is metallic, does not undergo magnetic ordering and exhibits heavy fermion behavior below 10 K. CaV{sub 2}O{sub 4} has an orthorhombic structure with the vanadium spins forming zigzag chains and has been suggested to be a model system to study the gapless chiral phase. These provide great motivation for further investigation of some known vanadium compounds as well as to explore new vanadium compounds in search of new physics. This thesis consists, in part, of experimental studies involving sample preparation and magnetic, transport, thermal, and x-ray measurements on some strongly correlated eletron systems containing the transition metal vanadium. The compounds studied are LiV{sub 2}O{sub 4}, YV{sub 4}O{sub 8}, and YbV{sub 4}O{sub 8}. The recent discovery of superconductivity in RFeAsO{sub 1-x}F{sub x} (R = La, Ce, Pr, Gd, Tb, Dy, Sm, and Nd), and AFe{sub 2}As{sub 2} (A = Ba, Sr, Ca, and Eu) doped with K, Na, or Cs at the A site with relatively high T{sub c} has sparked tremendous activities in the condensed matter physics community and a renewed interest in the area of superconductivity as occurred following the discovery of the layered cuprate high T{sub c} superconductors in 1986. To discover more superconductors with hopefully higher T{sub c}'s, it is extremely important to investigate compounds having crystal structures related to the

  16. Effects of structure formation on the expansion rate of the Universe: An estimate from numerical simulations

    SciTech Connect (OSTI)

    Zhao Xinghai; Mathews, Grant J.

    2011-01-15

    General relativistic corrections to the expansion rate of the Universe arise when the Einstein equations are averaged over a spatial volume in a locally inhomogeneous cosmology. It has been suggested that they may contribute to the observed cosmic acceleration. In this paper, we propose a new scheme that utilizes numerical simulations to make a realistic estimate of the magnitude of these corrections for general inhomogeneities in (3+1) spacetime. We then quantitatively calculate the volume averaged expansion rate using N-body large-scale structure simulations and compare it with the expansion rate in a standard FRW cosmology. We find that in the weak gravitational field limit, the converged corrections are slightly larger than the previous claimed 10{sup -5} level, but not large enough nor even of the correct sign to drive the current cosmic acceleration. Nevertheless, the question of whether the cumulative effect can significantly change the expansion history of the Universe needs to be further investigated with strong-field relativity.

  17. Recent progress in III-V based ferromagnetic semiconductors: Band structure, Fermi level, and tunneling transport

    SciTech Connect (OSTI)

    Tanaka, Masaaki; Ohya, Shinobu Nam Hai, Pham

    2014-03-15

    Spin-based electronics or spintronics is an emerging field, in which we try to utilize spin degrees of freedom as well as charge transport in materials and devices. While metal-based spin-devices, such as magnetic-field sensors and magnetoresistive random access memory using giant magnetoresistance and tunneling magnetoresistance, are already put to practical use, semiconductor-based spintronics has greater potential for expansion because of good compatibility with existing semiconductor technology. Many semiconductor-based spintronics devices with useful functionalities have been proposed and explored so far. To realize those devices and functionalities, we definitely need appropriate materials which have both the properties of semiconductors and ferromagnets. Ferromagnetic semiconductors (FMSs), which are alloy semiconductors containing magnetic atoms such as Mn and Fe, are one of the most promising classes of materials for this purpose and thus have been intensively studied for the past two decades. Here, we review the recent progress in the studies of the most prototypical III-V based FMS, p-type (GaMn)As and its heterostructures with focus on tunneling transport, Fermi level, and bandstructure. Furthermore, we cover the properties of a new n-type FMS, (In,Fe)As, which shows electron-induced ferromagnetism. These FMS materials having zinc-blende crystal structure show excellent compatibility with well-developed III-V heterostructures and devices.

  18. Beta (β) tungsten thin films: Structure, electron transport, and giant spin Hall effect

    SciTech Connect (OSTI)

    Hao, Qiang; Chen, Wenzhe; Xiao, Gang

    2015-05-04

    We use a simple magnetron sputtering process to fabricate beta (β) tungsten thin films, which are capable of generating giant spin Hall effect. As-deposited thin films are always in the metastable β-W phase from 3.0 to 26.7 nm. The β-W phase remains intact below a critical thickness of 22.1 nm even after magnetic thermal annealing at 280 °C, which is required to induce perpendicular magnetic anisotropy (PMA) in a layered structure of β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO. Intensive annealing transforms the thicker films (>22.1 nm) into the stable α-W phase. We analyze the structure and grain size of both β- and α-W thin films. Electron transport in terms of resistivity and normal Hall effect is studied over a broad temperature range of 10 K to at least 300 K on all samples. Very low switching current densities are achieved in β-W/Co{sub 40}Fe{sub 40}B{sub 20}/MgO with PMA. These basic properties reveal useful behaviors in β-W thin films, making them technologically promising for spintronic magnetic random access memories and spin-logic devices.

  19. Communication: Unusual structure and transport in ionic liquid-hexane mixtures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liang, Min; Khatun, Sufia; Castner, Edward W.

    2015-03-28

    Ionic liquids having a sufficiently amphiphilic cation can dissolve large volume fractions of alkanes, leading to mixtures with intriguing properties on molecular length scales. The trihexyl(tetradecyl)phosphonium cation paired with the bis(trifluoromethylsulfonyl)amide anion provides an ionic liquid that can dissolve large mole fractions of hexane. We present experimental results on mixtures of n-C6D14 with this ionic liquid. High- energy X-ray scattering studies reveal a persistence of the characteristic features of ionic liquid structure even for 80% dilution with n-C6D14. NMR self-diffusion results reveal decidedly non-hydrodynamic behavior where the self-diffusion of the neutral, non-polar n-C6D14 is on average a factor of 21more » times faster than for the cation. Exploitation of the unique structural and transport properties of these mixtures may lead to new opportunities for designer solvents for enhanced chemical reactivity and interface science.« less

  20. Structure of a Putative Metal-Chelate Type ABC Transporter: An

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inward-facing Conformation Putative Metal-Chelate Type ABC Transporter: An Inward-facing Conformation ATP-binding Cassette (ABC) transporters represent a large family of integral membrane proteins, which are found in all organisms from mammals to bacteria. These proteins transport substrates across a biological membrane powered by the energy of adenosine triphosphate (ATP) hydrolysis. ABC transporters primarily consist of two transmembrane domains (TMDs) and two nucleotide binding domains

  1. Structures for attaching or sealing a space between components having different coefficients or rates of thermal expansion

    DOE Patents [OSTI]

    Corman, Gregory Scot; Dean, Anthony John; Tognarelli, Leonardo; Pecchioli, Mario

    2005-06-28

    A structure for attaching together or sealing a space between a first component and a second component that have different rates or amounts of dimensional change upon being exposed to temperatures other than ambient temperature. The structure comprises a first attachment structure associated with the first component that slidably engages a second attachment structure associated with the second component, thereby allowing for an independent floating movement of the second component relative to the first component. The structure can comprise split rings, laminar rings, or multiple split rings.

  2. Reactive sputter deposition of pyrite structure transition metal disulfide thin films: Microstructure, transport, and magnetism

    SciTech Connect (OSTI)

    Baruth, A.; Manno, M.; Narasimhan, D.; Shankar, A.; Zhang, X.; Johnson, M.; Aydil, E. S.; Leighton, C. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2012-09-01

    Transition metal disulfides crystallizing in the pyrite structure (e.g., TMS{sub 2}, with TM = Fe, Co, Ni, and Cu) are a class of materials that display a remarkably diverse array of functional properties. These properties include highly spin-polarized ferromagnetism (in Co{sub 1-x}Fe{sub x}S{sub 2}), superconductivity (in CuS{sub 2}), an antiferromagnetic Mott insulating ground state (in NiS{sub 2}), and semiconduction with close to optimal parameters for solar absorber applications (in FeS{sub 2}). Exploitation of these properties in heterostructured devices requires the development of reliable and reproducible methods for the deposition of high quality pyrite structure thin films. In this manuscript, we report on the suitability of reactive sputter deposition from metallic targets in an Ar/H{sub 2}S environment as a method to achieve exactly this. Optimization of deposition temperature, Ar/H{sub 2}S pressure ratio, and total working gas pressure, assisted by plasma optical emission spectroscopy, reveals significant windows over which deposition of single-phase, polycrystalline, low roughness pyrite films can be achieved. This is illustrated for the test cases of the ferromagnetic metal CoS{sub 2} and the diamagnetic semiconductor FeS{sub 2}, for which detailed magnetic and transport characterization are provided. The results indicate significant improvements over alternative deposition techniques such as ex situ sulfidation of metal films, opening up exciting possibilities for all-sulfide heterostructured devices. In particular, in the FeS{sub 2} case it is suggested that fine-tuning of the sputtering conditions provides a potential means to manipulate doping levels and conduction mechanisms, critical issues in solar cell applications. Parenthetically, we note that conditions for synthesis of phase-pure monosulfides and thiospinels are also identified.

  3. Structure of ABC Transporter MsbA in Complex with ATP Vi and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lipopolysaccharide: Implications for Lipid Flipping ABC Transporter MsbA in Comlex with ATP Vi and Lipopolysaccharide: Implications for Lipid Flipping Christopher L. Reyes and Geoffrey Chang* Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd. CB105, La Jolla, CA 92137 ATP-binding cassette (ABC) transporters are integral membrane proteins critical for the transport of a wide variety of substrate molecules across the cell membrane. MsbA, along with human

  4. Optimal pulsed pumping for aquifer remediation when contaminant transport is affected by rate-limited sorption: A calculus of variation approach. Master's thesis

    SciTech Connect (OSTI)

    Hartman, R.T.

    1994-09-01

    The remediation of groundwater contamination continues to persist as a social and economic problem due to increased governmental regulations and public health concerns. Additionally, the geochemistry of the aquifer and the contaminant transport within the aquifer complicates the remediation process to restore contaminated aquifers to conditions compatible with health-based standards. Currently, the preferred method for aquifer cleanup (pump-and-treat) has several limitations including, the persistence of sorbed chemicals on soil matrix and the long term operation and maintenance expense. The impetus of this research was to demonstrate that a calculus of variations approach could be applied to a pulsed pumping aquifer remediation problem where contaminant transport was affected by rate-limited sorption and generalized to answer several management objectives. The calculus of variation approach produced criteria for when the extraction pump is turned on and off. Additionally, the analytic solutions presented in this research may be useful in verifying numerical codes developed to solve optimal pulsed pumping aquifer remediation problems under conditions of rate-limited sorption.

  5. Influence of substrate temperature and deposition rate on the structure of erbium films deposited on glass and a -C substrates

    SciTech Connect (OSTI)

    Savaloni, H.; Player, M.A.; Gu, E.; Marr, G.V. )

    1992-01-01

    The structure of erbium films of 600 nm thickness deposited onto carbon ({ital a}-C) and glass substrates at 0.55 and 2.5 nm/s deposition rates for varying substrate temperatures is investigated. The cross section and surface structures are examined by electron microscope. Energy-dispersive x-ray diffraction is utilized for the structure analysis of these films. Results are compared with the results presented in H. Savaloni, M. A. Player, E. Gu, and G. V. Marr (to be published), for erbium films on molybdenum substrates. It is found that to produce films with strong preferred orientation on glass substrates low deposition rate (0.55 nm/s) is favorable. This is opposite to erbium on molybdenum substrates. The grain size of erbium films produced at higher deposition rate is much larger than those at lower deposition rate. The structure of thin films has implications for performance of multilayer reflectors, and preferred orientation may have other applications to x-ray instrumentation.

  6. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize themore » particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.« less

  7. Three-dimensional hollow-structured binary oxide particles as an advanced anode material for high-rate and long cycle life lithium-ion batteries

    SciTech Connect (OSTI)

    Wang, Deli; Wang, Jie; He, Huan; Han, Lili; Lin, Ruoqian; Xin, Huolin L.; Wu, Zexing; Liu, Hongfang

    2015-12-30

    Transition metal oxides are among the most promising anode candidates for next-generation lithium-ion batteries for their high theoretical capacity. However, the large volume expansion and low lithium ion diffusivity leading to a poor charging/discharging performance. In this study, we developed a surfactant and template-free strategy for the synthesis of a composite of CoxFe3–xO4 hollow spheres supported by carbon nanotubes via an impregnation–reduction–oxidation process. The synergy of the composite, as well as the hollow structures in the electrode materials, not only facilitate Li ion and electron transport, but also accommodate large volume expansion. Using state-of-the-art electron tomography, we directly visualize the particles in 3-D, where the voids in the hollow structures serve to buffer the volume expansion of the material. These improvements result in a high reversible capacity as well as an outstanding rate performance for lithium-ion battery applications. As a result, this study sheds light on large-scale production of hollow structured metal oxides for commercial applications in energy storage and conversion.

  8. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    SciTech Connect (OSTI)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new

  9. Resonant electronic transport through a triple quantum-dot with Λ-type level structure under dual radiation fields

    SciTech Connect (OSTI)

    Guan, Chun; Xing, Yunhui; Zhang, Chao; Ma, Zhongshui

    2014-08-14

    Due to quantum interference, light can transmit through dense atomic media, a phenomenon known as electromagnetically induced transparency (EIT). We propose that EIT is not limited to light transmission and there is an electronic analog where resonant transparency in charge transport in an opaque structure can be induced by electromagnetic radiation. A triple-quantum-dots system with Λ-type level structure is generally opaque due to the level in the center dot being significantly higher and therefore hopping from the left dot to the center dot is almost forbidden. We demonstrate that an electromagnetically induced electron transparency (EIET) in charge of transport can indeed occur in the Λ-type system. The direct evidence of EIET is that an electron can travel from the left dot to the right dot, while the center dot apparently becomes invisible. We analyze EIET and the related shot noise in both the zero and strong Coulomb blockade regimes. It is found that the EIET (position, height, and symmetry) can be tuned by several controllable parameters of the radiation fields, such as the Rabi frequencies and detuning frequencies. The result offers a transparency/opaque tuning technique in charge transport using interfering radiation fields.

  10. Water Transport Exploratory Studies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop understanding of water transport in PEM Fuel Cells (non-design-specific) * Evaluate structural and surface properties of materials affecting water transport and performance ...

  11. Electronic structure, transport, and phonons of SrAgChF (Ch = S,Se,Te): Bulk superlattice thermoelectrics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gudelli, Vijay Kumar; Kanchana, V.; Vaitheeswaran, G.; Singh, David J.; Svane, Axel; Christensen, Niels Egede; Mahanti, Subhendra D.

    2015-07-15

    Here, we report calculations of the electronic structure, vibrational properties, and transport for the p-type semiconductors, SrAgChF (Ch = S, Se, and Te). We find soft phonons with low frequency optical branches intersecting the acoustic modes below 50 cm–1, indicative of a material with low thermal conductivity. The bands at and near the valence-band maxima are highly two-dimensional, which leads to high thermopowers even at high carrier concentrations, which is a combination that suggests good thermoelectric performance. These materials may be regarded as bulk realizations of superlattice thermoelectrics.

  12. The Coal Transportation Rate Database

    Gasoline and Diesel Fuel Update (EIA)

    In order to facilitate downloading and processing, the CTRDB is saved as two compatible Excel file modules--one containing all data for the years 1979 through 1992 and the other...

  13. Crystal Structure of the EmrE Multidrug Transporter with a Substrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the EmrE Multidrug Transporter with a Substrate O. Pornillos, Y-J. Chen, A. P. Chen and G. Chang Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 View of the EmrE homodimer. The N and C termini of the two subunits are colored. The bound substrate (TPP) is shown in green. The glutamine 14 which is implicated in the proton-depended drug translocation is shown in yellow. A major obstacle to effective treatment of bacterial infections is the emergence of

  14. Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system

    SciTech Connect (OSTI)

    Greskowiak, Janek; Prommer, Henning; Liu, Chongxuan; Post, Vincent; Ma, Rui; Zheng, Chunmiao; Zachara, John M.

    2010-09-16

    A laboratory-derived conceptual and numerical model for U(VI) transport at the Hanford 300A site, Washington, USA, was applied to a range of field-scale scenarios of different complexity to systematically evaluate model parameter sensitivities. The model, originally developed from column experiment data, included distributed-rate surface complexation kinetics of U(VI), aqueous speciation, and physical non-equilibrium transport processes. A rigorous parameter sensitivity analysis was carried out with respect to different state variables: concentrations, mass fluxes, total mass and spatial moments of dissolved U(VI) for laboratory systems, and various simulation scenarios that represented the field-scale characteristics at the Hanford 300A site. The field-scenarios accounted for transient groundwater flow and variable geochemical conditions driven by frequent water level changes of the nearby Columbia River. Simulations indicated that the transient conditions significantly affected U(VI) plume migration at the site. The parameter sensitivities were largely similar between the laboratory and field scale systems. Where differences existed, they were shown to result from differing degrees of U(VI) adsorption disequilibrium caused by hydraulic or hydrogeochemical conditions. Adorption disequilibrium was found to differ (i) between short duration peak flow events at the field scale and much longer flow events in the laboratory, (ii) for changing groundwater chemical compositions due to river water intrusion, and (iii) for different sampling locations at the field scale. Parameter sensitivities were also found to vary with respect to the different investigated state variables. An approach is demonstrated that elucidates the most important parameters of a laboratory-scale model that must constrained in both the laboratory and field for meaningful field application.

  15. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie; Rader, Jeffrey A.; Saunders, Timothy W.

    2011-08-30

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  16. Structure and function of subsurface microbial communities affecting radionuclide transport and bio-immobilization

    SciTech Connect (OSTI)

    Stucki, Joseph William

    2013-05-13

    The purpose of this study was to provide comparative information regarding the changes in clay structure that occur due to biotic or abiotic reduction, as probed by variable-temperature Mössbauer spectroscopy.

  17. Cosmic ray transport in heliospheric magnetic structures. I. Modeling background solar wind using the CRONOS magnetohydrodynamic code

    SciTech Connect (OSTI)

    Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kühl, P.; Kopp, A.; Heber, B.; Kissmann, R.

    2014-06-10

    The transport of energetic particles such as cosmic rays is governed by the properties of the plasma being traversed. While these properties are rather poorly known for galactic and interstellar plasmas due to the lack of in situ measurements, the heliospheric plasma environment has been probed by spacecraft for decades and provides a unique opportunity for testing transport theories. Of particular interest for the three-dimensional (3D) heliospheric transport of energetic particles are structures such as corotating interaction regions, which, due to strongly enhanced magnetic field strengths, turbulence, and associated shocks, can act as diffusion barriers on the one hand, but also as accelerators of low energy CRs on the other hand as well. In a two-fold series of papers, we investigate these effects by modeling inner-heliospheric solar wind conditions with a numerical magnetohydrodynamic (MHD) setup (this paper), which will serve as an input to a transport code employing a stochastic differential equation approach (second paper). In this first paper, we present results from 3D MHD simulations with our code CRONOS: for validation purposes we use analytic boundary conditions and compare with similar work by Pizzo. For a more realistic modeling of solar wind conditions, boundary conditions derived from synoptic magnetograms via the Wang-Sheeley-Arge (WSA) model are utilized, where the potential field modeling is performed with a finite-difference approach in contrast to the traditional spherical harmonics expansion often utilized in the WSA model. Our results are validated by comparing with multi-spacecraft data for ecliptical (STEREO-A/B) and out-of-ecliptic (Ulysses) regions.

  18. Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach

    SciTech Connect (OSTI)

    Fletcher, Thomas; Pugmire, Ronald

    2015-01-01

    Three pristine Utah Green River oil shale samples were obtained and used for analysis by the combined research groups at the University of Utah and Brigham Young University. Oil shale samples were first demineralized and the separated kerogen and extracted bitumen samples were then studied by a host of techniques including high resolution liquid-state carbon-13 NMR, solid-state magic angle sample spinning 13C NMR, GC/MS, FTIR, and pyrolysis. Bitumen was extracted from the shale using methanol/dichloromethane and analyzed using high resolution 13C NMR liquid state spectroscopy, showing carbon aromaticities of 7 to 11%. The three parent shales and the demineralized kerogens were each analyzed with solid-state 13C NMR spectroscopy. Carbon aromaticity of the kerogen was 23-24%, with 10-12 aromatic carbons per cluster. Crushed samples of Green River oil shale and its kerogen extract were pyrolyzed at heating rates from 1 to 10 K/min at pressures of 1 and 40 bar and temperatures up to 1000°C. The transient pyrolysis data were fit with a first-order model and a Distributed Activation Energy Model (DAEM). The demineralized kerogen was pyrolyzed at 10 K/min in nitrogen at atmospheric pressure at temperatures up to 525°C, and the pyrolysis products (light gas, tar, and char) were analyzed using 13C NMR, GC/MS, and FTIR. Details of the kerogen pyrolysis have been modeled by a modified version of the chemical percolation devolatilization (CPD) model that has been widely used to model coal combustion/pyrolysis. This refined CPD model has been successful in predicting the char, tar, and gas yields of the three shale samples during pyrolysis. This set of experiments and associated modeling represents the most sophisticated and complete analysis available for a given set of oil shale samples.

  19. The structure, dynamics, and star formation rate of the Orion nebula cluster

    SciTech Connect (OSTI)

    Da Rio, Nicola; Tan, Jonathan C.; Jaehnig, Karl

    2014-11-01

    The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues to the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing the latest censuses of its stellar content and membership estimates over a large wavelength range. We determine the center of mass of the ONC and study the radial dependence of angular substructure. The core appears rounder and smoother than the outskirts, which is consistent with a higher degree of dynamical processing. At larger distances, the departure from circular symmetry is mostly driven by the elongation of the system, with very little additional substructure, indicating a somewhat evolved spatial morphology or an expanding halo. We determine the mass density profile of the cluster, which is well fitted by a power law that is slightly steeper than a singular isothermal sphere. Together with the interstellar medium density, which is estimated from average stellar extinction, the mass content of the ONC is insufficient by a factor ?1.8 to reproduce the observed velocity dispersion from virialized motions, in agreement with previous assessments that the ONC is moderately supervirial. This may indicate recent gas dispersal. Based on the latest estimates for the age spread in the system and our density profiles, we find that at the half-mass radius, 90% of the stellar population formed within ?5-8 free-fall times (t {sub ff}). This implies a star formation efficiency per t {sub ff} of ?{sub ff} ? 0.04-0.07 (i.e., relatively slow and inefficient star formation rates during star cluster formation).

  20. Decoupling charge transport from the structural dynamics in room temperature ionic liquids

    SciTech Connect (OSTI)

    Griffin, Phillip; Agapov, Alexander L; Kisliuk, Alexander; Sun, Xiao-Guang; Dai, Sheng; Novikov, Vladimir; Sokolov, Alexei P

    2011-01-01

    Light scattering and dielectric spectroscopy measurements were performed on the room temperature ionic liquid (RTIL) [C4mim][NTf2] in a broad temperature and frequency range. Ionic conductivity was used to estimate self-diffusion of ions, while light scattering was used to study structural relaxation. We demonstrate that the ionic diffusion decouples from the structural relaxation process as the temperature of the sample decreases toward Tg. The strength of the decoupling appears to be significantly lower than that expected for a supercooled liquid of similar fragility. The structural relaxation process in the RTIL follows well the high-temperature mode coupling theory (MCT) scenario. Using the MCT analysis we estimated the dynamic crossover temperature in [C4mim][NTf2] to be Tc 225 5 K. However, our analysis reveals no sign of the dynamic crossover in the ionic diffusion process.

  1. Transportation Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling TRANSPORTATION SYSTEMS MODELING Overview of TSM Transportation systems modeling research at TRACC uses the TRANSIMS (Transportation Analysis SIMulation System) traffic micro simulation code developed by the U.S. Department of Transportation (USDOT). The TRANSIMS code represents the latest generation of traffic simulation codes developed jointly under multiyear programs by USDOT, the

  2. Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields

    SciTech Connect (OSTI)

    Kerisit, Sebastien; Vijayakumar, M. E-mail: karl.mueller@pnnl.gov; Han, Kee Sung; Mueller, Karl T. E-mail: karl.mueller@pnnl.gov

    2015-06-14

    A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm{sup −1} have minimal effects on the solvation structure of the smaller alkali cations (Li{sup +} and Na{sup +}) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K{sup +}, Rb{sup +}, and Cs{sup +}) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

  3. The effect of in-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288 C water

    SciTech Connect (OSTI)

    Andresen, P.L.; Angeliu, T.

    1996-10-01

    Stress corrosion cracking (SCC), especially in existing boiling water reactor (BVM) components, is most effectively accomplished by reducing the corrosion potential. This was successfully demonstrated by adding hydrogen to BNM water, which reduced oxidant concentration and corrosion potential by recombining with the radiolytically formed oxygen and hydrogen peroxide. However, reduction in the corrosion potential for some vessel internals is difficult, and others require high hydrogen addition rates, which results in an increase in the main steam radiation level from volatile N{sup 16}. Noble metal electrocatalysis provides a unique opportunity to efficiently achieve a dramatic reduction in corrosion potential and SCC in BWRs, by catalytically reacting all oxidants that diffuse to a (catalytic) metal surface with hydrogen. There are many techniques for creating catalytic surfaces, including alloying with noble metals or applying noble metal alloy powders to existing BWR components by thermal spraying or weld cladding. A novel system-wide approach for producing catalytic surfaces on all wetted components has been developed which employs the reactor coolant water as the medium of transport. This approach is termed in-situ noble metal chemical addition (NMCA), and has been successfully used in extensive laboratory tests to coat a wide range of pre-oxidized structural materials. In turn, these specimens have maintained catalytic response in long term, cyclic exposures to extremes in dissolved gases, impurity levels, pH, flow rate, temperature, straining, etc. With stoichiometric excess H{sub 2}, the corrosion potential drops dramatically and crack initiation and growth are greatly reduced, even at high O{sub 2} or H{sub 2}O{sub 2} levels. Without excess H{sub 2} (i.e., in normal BWR water chemistry), noble metals do not increase the corrosion potential or SCC.

  4. Isolation, folding and structural investigations of the amino acid transporter OEP16

    SciTech Connect (OSTI)

    Ni, Da Qun; Zook, James; Klewer, Douglas A.; Nieman, Ronald A.; Soll, J.; Fromme, Petra

    2011-12-01

    Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni-NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of a-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.

  5. Structural, magnetic, and transport properties of sputtered hexagonal MnNiGa thin films

    SciTech Connect (OSTI)

    Li, Yueqing; Liu, E. K.; Wu, G. H.; Wang, Wenhong; Liu, Zhongyuan

    2014-12-14

    We report on a systematical study of the structure, magnetism, and magnetotransport behavior of the hexagonal MnNiGa films deposited on thermally oxidized Si (001) substrates by magnetron sputtering. X-ray diffractions reveal that all the films deposited at different temperatures crystallized in hexagonal Ni{sub 2}In-type structure (space group P6{sub 3}/mmc). Scanning electron microscopy observations show that the surface morphology of the films varies with deposition temperature, and energy dispersive spectroscopy analysis shows compositions of the films remain nearly unchanged, independent of the deposition temperature. Magnetic measurements indicate that all films are ferromagnetic and exhibit a magnetic anisotropy behavior. The magnetoresistance (MR) exhibits a negative temperature- and field-dependent behavior. The possible origin of the negative MR is discussed. Furthermore, we found that the Hall effect is dominated by an anomalous Hall effect (AHE) only due to skew scattering independent of the deposition temperature of films. Moreover, the anomalous Hall resistivity presents a non-monotonously temperature-dependent behavior.

  6. The effect of cooling rate during rapid solidification on the structure and texture of NiTi

    SciTech Connect (OSTI)

    Pedraza, A.J.; Godbole, M.J.; Kenik, E.A.; Pedraza, D.F.; Lowndes, D.H.

    1986-01-01

    A study has been conducted on the effects of increasing cooling rate during rapid solidification of NiTi upon the phases that are produced. The hammer and anvil rapid solidification technique and laser melting with a nanosecond excimer laser were used, which allow the cooling rate to be varied by three to four orders of magnitude. Although 1/3 (110) superlattice reflections are seen in the selected area diffraction (SAD) patterns of the splat quenched (SQ) specimens, x-ray diffraction analyses show the presence of only B2 phase and martensite. On the other hand, laser treatment (LT) of the specimens produces a layer that has a Ll/sub 0/ structure with a slight monoclinic distortion. This phase can be envisaged as a small distortion of a B2 unit cell with a volume per atom approx.3.3% lower than the equilibrium B2 phase. Also martensite is present in the layer. SQ alloys exhibited a marked (200) texture due to columnar growth opposite to the direction of heat extraction, while LT produces epitaxial regrowth of the melted layer. No substantial disordering is obtained in NiTi rapidly solidified alloys.

  7. Structural, magnetic, and transport properties of Fe-doped CoTiSb epitaxial thin films

    SciTech Connect (OSTI)

    Sun, N. Y.; Zhang, Y. Q.; Che, W. R.; Shan, R.; Qin, J.

    2015-11-07

    Epitaxial intrinsic and Fe-doped CoTiSb thin films with C1{sub b} structure were grown on MgO(100) substrates by magnetron sputtering. The semiconducting-like behavior in both intrinsic and Fe-doped thin films was demonstrated by temperature dependence of longitudinal resistivity. The Fe-doped CoTiSb films with a wide range of doping concentrations can maintain semiconducting-like and magnetic properties simultaneously, while the semiconducting behavior is weakening with the increasing Fe concentration. For 21 at. % Fe-doped film, low lattice magnetic moment (around 0.65 μ{sub B}) and high resistivity (larger than 800 μΩ cm) are beneficial to its application as a magnetic electrode in spintronic devices. Anomalous Hall effect of 21 at. % Fe-doped film was also investigated and its behaviors can be treated well by recent-reported anomalous Hall scaling including the contribution of spin-phonon skew scattering.

  8. Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis

    SciTech Connect (OSTI)

    Yi, S.; Kwon, J. M.; Diamond, P. H.; Hahm, T. S.

    2014-09-15

    This paper studies effects of q-profile structure on turbulence spreading. It reports results of numerical experiments using global gyrokinetic simulations. We examine propagation of turbulence, triggered by an identical linear instability in a source region, into an adjacent, linearly stable region with variable q-profile. The numerical experiments are designed so as to separate the physics of turbulence spreading from that of linear stability. The strength of turbulence spreading is measured by the penetration depth of turbulence. Dynamics of spreading are elucidated by fluctuation intensity balance analysis, using a model intensity evolution equation which retains nonlinear diffusion and damping, and linear growth. It is found that turbulence spreading is strongly affected by magnetic shear s, but is hardly altered by the safety factor q itself. There is an optimal range of modest magnetic shear which maximizes turbulence spreading. For high to modest shear values, the spreading is enhanced by the increase of the mode correlation length with decreasing magnetic shear. However, the efficiency of spreading drops for sufficiently low magnetic shear even though the mode correlation length is comparable to that for the case of optimal magnetic shear. The reduction of spreading is attributed to the increase in time required for the requisite nonlinear mode-mode interactions. The effect of increased interaction time dominates that of increased mode correlation length. Our findings of the reduction of spreading and the increase in interaction time at weak magnetic shear are consistent with the well-known benefit of weak or reversed magnetic shear for core confinement enhancement. Weak shear is shown to promote locality, as well as stability.

  9. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOE Patents [OSTI]

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  10. Exact analytical solution of the linear structure growth rate in {Lambda}CDM cosmology and its cosmological applications

    SciTech Connect (OSTI)

    Zhang Pengjie [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Science, 80 Nandan Road, Shanghai, China, 200030 (China)

    2011-03-15

    We derive the exact analytical solution of the linear structure growth rate in {Lambda}CDM cosmology with flat or curved geometry, under the Newtonian gauge. Unlike the well known solution under the Newtonian limit [D. J. Heath, Mon. Not. R. Astron. Soc. 179, 351 (1977)], our solution takes all general relativistic corrections into account and is hence valid at both the sub- and superhorizon scales. With this exact solution, we evaluate cosmological impacts induced by these relativistic corrections. (1) General relativistic corrections alter the density growth from z=100 to z=0 by 10% at k=0.01 h/Mpc and the impact becomes stronger toward larger scales. We caution the readers that the overdensity is not gauge invariant and the above statement is restrained to the Newtonian gauge. (2) Relativistic corrections introduce a k{sup -2} scale dependence in the density fluctuation. It mimics a primordial non-Gaussianity of the local type with f{sub NL}{sup local{approx}}1. This systematical error may become non-negligible for future all sky deep galaxy surveys. (3) Cosmological simulations with box size greater than 1 Gpc are also affected by these relativistic corrections. We provide a postprocessing recipe to correct for these effects. (4) These relativistic corrections affect the redshift distortion. However, at redshifts and scales relevant to redshift distortion measurements, such effect is negligible.

  11. Predicted Structure, Thermo-Mechanical Properties and Li Ion Transport in LiAlF4 Glass

    SciTech Connect (OSTI)

    Stechert, T. R.; Rushton, M. J. D.; Grimes, R. W.; Dillon, A. C.

    2012-08-15

    Materials with the LiAlF{sub 4} composition are of interest as protective electrode coatings in Li ion battery applications due to their high cationic conductivity. Here classical molecular dynamics calculations are used to produce amorphous model structures by simulating a quench from the molten state. These are analysed in terms of their individual pair correlation functions and atomic coordination environments. This indicates that amorphous LiAlF{sub 4} is formed of a network of corner sharing AlF{sub 6} octahedra. Li ions are distributed within this network, primarily associated with non-bridging fluorine atoms. The nature of the octahedral network is further analysed through intra- and interpolyhedral bond angle distributions and the relative populations of bridging and non-bridging fluorine ions are calculated. Network topology is considered through the use of ring statistics, which indicates that, although topologically well connected, LiAlF{sub 4} contains an appreciable number of corner-linked branch-like AlF{sub 6} chains. Thermal expansion values are determined above and below the predicted glass transition temperature of 1340 K. Finally, movement of Li ions within the network is examined with predictions of the mean squared displacements, diffusion coefficients and Li ion activation energy. Different regimes for lithium ion movement are identified, with both diffusive and sessile Li ions observed. For migrating ions, a typical trajectory is illustrated and discussed in terms of a hopping mechanism for Li transport.

  12. Structural features and enhanced high-temperature oxygen ion transport in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}

    SciTech Connect (OSTI)

    Markov, Alexey A.; Shalaeva, Elizaveta V.; Tyutyunnik, Alexander P.; Kuchin, Vasily V.; Patrakeev, Mikhail V.; Leonidov, Ilya A.; Kozhevnikov, Victor L.

    2013-01-15

    Structural features, oxygen non-stoichiometry and transport properties are studied in the oxide series SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}, where x=0.2, 0.3 and 0.4. X-ray diffraction and electron microscopy data evidence formation of the inhomogeneous materials at x=0.3 and 0.4, which include phase constituents with a cubic perovskite and a double perovskite structure types. The composition, the amount and the typical grain size of the phase inhomogeneities are shown to depend both on doping and oxygen content. The increased oxygen-ion conductivity is observed in oxygen depleted materials, which is explained by the increase in the amount of cubic perovskite-like phase and development of interfacial pathways favorable for enhanced oxygen ion transport. - Graphical abstract: The structural studies, oxygen content and conductivity measurements suggest that oxygen depletion from the double perovskite phase constituent of SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}} for x>0.2 is accompanied by formation of pathways for fast ion transport. Black-Small-Square Highlights: Black-Right-Pointing-Pointer The double perovskite type regions are shown to exist in SrFe{sub 1-x}Ta{sub x}O{sub 3-{delta}}. Black-Right-Pointing-Pointer The oxygen depletion is accompanied with phase separation. Black-Right-Pointing-Pointer The phase separation favors formation of pathways for enhanced oxygen ion transport.

  13. Effect of cold work on the growth rates of stress corrosion cracks in structural materials of nuclear systems

    SciTech Connect (OSTI)

    Magdowski, R.; Speidel, M.O.

    1996-10-01

    The growth rates of stress corrosion cracks in austenitic stainless steels and nickel base alloy 600 exposed to simulated boiling water reactor coolant were measured by fracture mechanics testing techniques. Cold work may increase the crack growth rates up to one hundred times. In both, the annealed condition and the cold worked condition, the stress corrosion crack growth rates are independent of stress intensity over a wide K-range and crack growth rates correlate well with yield strength and hardness. In the annealed condition the fracture path is intergranular, but higher degrees of cold work introduce higher proportions of transgranular stress corrosion cracking.

  14. Pulsed Laser-Assisted Focused Electron-Beam-Induced Etching of Titanium with XeF 2 : Enhanced Reaction Rate and Precursor Transport

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Noh, J. H.; Fowlkes, J. D.; Timilsina, R.; Stanford, M. G.; Lewis, B. B.; Rack, P. D.

    2015-01-28

    We introduce a laser-assisted focused electron-beam-induced etching (LA-FEBIE) process which is a versatile, direct write nanofabrication method that allows nanoscale patterning and editing; we do this in order to enhance the etch rate of electron-beam-induced etching. The results demonstrate that the titanium electron stimulated etch rate via the XeF2 precursor can be enhanced up to a factor of 6 times with an intermittent pulsed laser assist. Moreover, the evolution of the etching process is correlated to in situ stage current measurements and scanning electron micrographs as a function of time. Finally, the increased etch rate is attributed to photothermally enhancedmore » Ti–F reaction and TiF4 desorption and in some regimes enhanced XeF2 surface diffusion to the reaction zone.« less

  15. Removing Structural Disorder from Oriented TiO2 Nanotube Arrays: Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells

    SciTech Connect (OSTI)

    Zhu, K.; Vinzant, T. B.; Neale, N. R.; Frank, A. J.

    2007-01-01

    We report on the influence of morphological disorder, arising from bundling of nanotubes (NTs) and microcracks in films of oriented TiO{sub 2} NT arrays, on charge transport and recombination in dye-sensitized solar cells (DSSCs). Capillary stress created during evaporation of liquids from the mesopores of dense TiO{sub 2} NT arrays was of sufficient magnitude to induce bundling and microcrack formation. The average lateral deflection of the NTs in the bundles increased with the surface tension of the liquids and with the film thicknesses. The supercritical CO{sub 2} drying technique was used to produce bundle-free and crack-free NT films. Charge transport and recombination properties of sensitized films were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. Transport became significantly faster with decreased clustering of the NTs, indicating that bundling creates additional pathways via intertube contacts. Removing such contacts alters the transport mechanism from a combination of one and three dimensions to the expected one dimension and shortens the electron-transport pathway. Reducing intertube contacts also resulted in a lower density of surface recombination centers by minimizing distortion-induced surface defects in bundled NTs. A causal connection between transport and recombination is observed. The dye coverage was greater in the more aligned NT arrays, suggesting that reducing intertube contacts increases the internal surface area of the films accessible to dye molecules. The solar conversion efficiency and photocurrent density were highest for DSSCs incorporating films with more aligned NT arrays owing to an enhanced light-harvesting efficiency. Removing structural disorder from other materials and devices consisting of nominally one-dimensional architectures (e.g., nanowire arrays) should produce similar effects.

  16. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of

  17. Publisher's Note: Level structure 18Ne and its importance in the 14O(α,p)17F reaction rate [Phys. Rev. C 86, 025801(2012)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Almaraz-Calderon, S.; Tan, W. P.; Aprahamian, A.; Bucher, B.; Roberts, A.; Wiescher, M.; Brune, C. R.; Massey, T. N.; Ozkan, N.; Guray, R. T.; et al

    2012-08-10

    The level structure of 18Ne above the α-decay threshold has been studied using the 16O(3He,n) reaction. A coincidence measurement of neutrons and charged particles decaying from populated states in 18Ne has been made. Decay branching ratios were measured for six resonances and used to calculate the 14O(α,p)17F reaction rate which is a measure of one of two breakout paths from the Hot CNO cycle. As a result, the new experimental information combined with previous experimental and theoretical information, provides a more accurate calculation of the reaction rate.

  18. The Impact of Retail Rate Structures on the Economics ofCustomer-Sited PV: A Study of Commercial Installations inCalifornia

    SciTech Connect (OSTI)

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-06-01

    We analyze the impact of retail rate design on the economics of grid-connected commercial photovoltaic (PV) systems in California. The analysis is based on 15-minute interval building load and PV production data for 24 commercial PV installations in California, spanning a diverse set of building load shapes and geographic locations. We derive the annual bill savings per kWh generated for each PV system, under each of 21 distinct retail rates currently offered by the five largest utilities in California. We identify and explain variation in the value of bill savings attributable to differences in the structure of demand and energy charges across rates, as well as variation attributable to other factors, such as the size of the PV system relative to building load, the specific shape of the PV production profile, and the customer load profile. We also identify the optimal rate for each customer, among those rates offered as alternatives to one another, and show how the decision is driven in large measure by the size of the PV system relative to building load. The findings reported here may be of value to regulators and utilities responsible for designing retail rates, as well as to customers and PV retailers who have a need to estimate the prospective bill savings of PV systems.

  19. Electronic structure, transport, and phonons of SrAgChF (Ch = S,Se,Te): Bulk superlattice thermoelectrics

    SciTech Connect (OSTI)

    Gudelli, Vijay Kumar; Kanchana, V.; Vaitheeswaran, G.; Singh, David J.; Svane, Axel; Christensen, Niels Egede; Mahanti, Subhendra D.

    2015-07-15

    Here, we report calculations of the electronic structure, vibrational properties, and transport for the p-type semiconductors, SrAgChF (Ch = S, Se, and Te). We find soft phonons with low frequency optical branches intersecting the acoustic modes below 50 cm–1, indicative of a material with low thermal conductivity. The bands at and near the valence-band maxima are highly two-dimensional, which leads to high thermopowers even at high carrier concentrations, which is a combination that suggests good thermoelectric performance. These materials may be regarded as bulk realizations of superlattice thermoelectrics.

  20. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  1. Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate

    SciTech Connect (OSTI)

    Navirian, H. A.; Schick, D. Leitenberger, W.; Bargheer, M.; Gaal, P.; Shayduk, R.

    2014-01-13

    We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO{sub 3} electrode sandwiched between a ferroelectric Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} film with negative thermal expansion and a SrTiO{sub 3} substrate. SrRuO{sub 3} is rapidly heated by fs-laser pulses with 208?kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120?ps to 5??s with a relative accuracy up to ?c/c?=?10{sup ?6}. The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}.

  2. co2-transport | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transport Cost Model FENETL CO2 Transport Cost Model About the model: This model was developed to estimate the cost of transporting a user-specified mass rate of CO2 by pipeline...

  3. Transportation | Open Energy Information

    Open Energy Info (EERE)

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  4. DOE ER63951-3 Final Report: An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect (OSTI)

    Susan Pfiffner

    2010-06-28

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  5. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  6. Characterization of carrier transport properties in strained crystalline Si wall-like structures in the quasi-quantum regime

    SciTech Connect (OSTI)

    Mayberry, C. S.; Huang, Danhong Kouhestani, C.; Balakrishnan, G.; Islam, N.; Brueck, S. R. J.; Sharma, A. K.

    2015-10-07

    We report the transport characteristics of both electrons and holes through narrow constricted crystalline Si “wall-like” long-channels that were surrounded by a thermally grown SiO{sub 2} layer. The strained buffering depth inside the Si region (due to Si/SiO{sub 2} interfacial lattice mismatch) is where scattering is seen to enhance some modes of the carrier-lattice interaction, while suppressing others, thereby changing the relative value of the effective masses of both electrons and holes, as compared to bulk Si. In the narrowest wall devices, a considerable increase in conductivity was observed as a result of higher carrier mobilities due to lateral constriction and strain. The strain effects, which include the reversal splitting of light- and heavy-hole bands as well as the decrease of conduction-band effective mass by reduced Si bandgap energy, are formulated in our microscopic model for explaining the experimentally observed enhancements in both conduction- and valence-band mobilities with reduced Si wall thickness. Also, the enhancements of the valence-band and conduction-band mobilities are found to be associated with different aspects of theoretical model.

  7. Pulsed laser-induced oxygen deficiency at TiO{sub 2} surface: Anomalous structure and electrical transport properties

    SciTech Connect (OSTI)

    Nakajima, Tomohiko; Tsuchiya, Tetsuo; Kumagai, Toshiya

    2009-09-15

    We have studied pulsed laser-induced oxygen deficiencies at rutile TiO{sub 2} surfaces. The crystal surface was successfully reduced by excimer laser irradiation, and an oxygen-deficient TiO{sub 2-{delta}} layer with 160 nm thickness was formed by means of ArF laser irradiation at 140 mJ/cm{sup 2} for 2000 pulses. The TiO{sub 2-{delta}} layer fundamentally maintained a rutile structure, though this structure was distorted by many stacking faults caused by the large oxygen deficiency. The electrical resistivity of the obtained TiO{sub 2-{delta}} layer exhibited unconventional metallic behavior with hysteresis. A metal-insulator transition occurred at 42 K, and the electrical resistivity exceeded 10{sup 4} OMEGA cm below 42 K. This metal-insulator transition could be caused by bipolaronic ordering derived from Ti-Ti pairings that formed along the stacking faults. The constant magnetization behavior observed below 42 K is consistent with the bipolaronic scenario that has been observed previously for Ti{sub 4}O{sub 7}. These peculiar electrical properties are strongly linked to the oxygen-deficient crystal structure, which contains many stacking faults formed by instantaneous heating during excimer laser irradiation. - Graphical abstract: A pulsed laser-irradiated TiO{sub 2-{delta}} substrate showed an unconventional metallic phase, with hysteresis over a wide range of temperatures and a metal-insulator transition at 42 K.

  8. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  9. Structure, magnetic, and transport properties of epitaxial ZnFe{sub 2}O{sub 4} films: An experimental and first-principles study

    SciTech Connect (OSTI)

    Jin, Chao; Li, Peng; Mi, Wenbo; Bai, Haili

    2014-06-07

    We investigated the structure, magnetic, and transport properties of ZnFe{sub 2}O{sub 4} (ZFO) by both experimental and first-principles study. The epitaxial ZFO films prepared with various oxygen partial pressures show clear semiconducting behavior and room-temperature ferrimagnetism. A large magnetoresistance of −21.2% was observed at 75 K. The room-temperature ferrimagnetism is induced by the cation disordering. The calculated results indicate that under cation disordering, the ZFO with various oxygen vacancies is a half-metal semiconductor with both possible positive and negative signs of the spin polarization, while ZFO with no oxygen vacancies is an insulator and can be acted as the spin filter layer in spintronic devises.

  10. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  11. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect (OSTI)

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  12. Structural, thermal, magnetic, and electronic transport properties of the LaNi₂(Ge1-xPx)₂ system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goetsch, R. J.; Anand, V. K.; Pandey, Abhishek; Johnston, D. C.

    2012-02-29

    Polycrystalline samples of LaNi₂(Ge1-xPx)₂ (x=0,0.25,0.50,0.75,1) were synthesized and their properties investigated by x-ray diffraction (XRD) measurements at room temperature and by heat capacity Cp, magnetic susceptibility χ, and electrical resistivity ρ measurements versus temperature T from 1.8 to 350 K. Rietveld refinements of powder XRD patterns confirm that these compounds crystallize in the body-centered-tetragonal ThCr₂Si₂-type structure (space group I4/mmm) with composition-dependent lattice parameters that slightly deviate from Vegard's law. The ρ(T) measurements showed a positive temperature coefficient for all samples from 1.8 to 300 K, indicating that all compositions in this system are metallic. The low-T Cp measurements yield amore » rather large Sommerfeld electronic specific heat coefficient γ=12.4(2) mJ/mol K² for x=0, reflecting a large density of states at the Fermi energy that is comparable with the largest values found for the AFe₂As₂ class of materials with the same crystal structure. The γ decreases approximately linearly with x to 7.4(1) mJ/mol K² for x=1. The χ measurements show nearly temperature-independent paramagnetic behavior across the entire range of compositions except for LaNi₂Ge₂, where a broad peak is observed at ≈300 K from χ(T) measurements up to 1000 K that may arise from short-range antiferromagnetic correlations in a quasi-two-dimensional magnetic system. High-accuracy Padé approximants representing the Debye lattice heat capacity and Bloch-Grüneisen electron-phonon resistivity functions versus T are presented and are used to analyze our experimental Cp(T) and ρ(T) data, respectively, for 1.8K≤T≤300 K. The T dependences of ρ for all samples are well-described over this T range by the Bloch-Grüneisen model, although the observed ρ(300 K) values are larger than calculated from this model. A significant T dependence of the Debye temperature determined from the Cp(T) data was observed

  13. The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; Pomerantseva, E.

    2016-04-29

    Single nanowires of two manganese oxide polymorphs (α-MnO2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between this electrochemical performance, themore » electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li+ diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li+.« less

  14. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  15. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field

    SciTech Connect (OSTI)

    Ilyasov, V. V. E-mail: chuongnguyen11@gmail.com; Meshi, B. C.; Nguyen, V. C. E-mail: chuongnguyen11@gmail.com; Ershov, I. V.; Nguyen, D. C.

    2014-07-07

    The paper presents the results of ab initio study of the opportunities for tuning the band structure, magnetic and transport properties of zigzag graphene nanoribbon (8-ZGNR) on hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure by transverse electric field (E{sub ext}). This study was performed within the framework of the density functional theory (DFT) using Grimme's (DFT-D2) scheme. We established the critical values of E{sub ext} for the 8-ZGNR/h-BN(0001) heterostructure, thereby providing for semiconductor-halfmetal transition in one of electron spin configurations. This study also showed that the degeneration in energy of the localized edge states is removed when E{sub ext} is applied. In ZGNR/h-BN (0001) heterostructure, value of the splitting energy was higher than one in ZGNRs without substrate. We determined the effect of low E{sub ext} applied to the 8-ZGNR/h-BN (0001) semiconductor heterostructure on the preserved local magnetic moment (LMM) (0.3μ{sub B}) of edge carbon atoms. The transport properties of the 8-ZGNR/h-BN(0001) semiconductor heterostructure can be controlled using E{sub ext}. In particular, at a critical value of the positive potential, the electron mobility can increase to 7× 10{sup 5} cm{sup 2}/V s or remain at zero in the spin-up and spin-down electron subsystems, respectively. We established that magnetic moments (MMs), band gaps, and carrier mobility can be altered using E{sub ext}. These abilities enable the use of 8-ZGNR/h-BN(0001) semiconductor heterostructure in spintronics.

  16. HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE

    SciTech Connect (OSTI)

    Guillochon, James; Ramirez-Ruiz, Enrico

    2013-04-10

    The disruption of stars by supermassive black holes has been linked to more than a dozen flares in the cores of galaxies out to redshift z {approx} 0.4. Modeling these flares properly requires a prediction of the rate of mass return to the black hole after a disruption. Through hydrodynamical simulation, we show that aside from the full disruption of a solar mass star at the exact limit where the star is destroyed, the common assumptions used to estimate M-dot (t), the rate of mass return to the black hole, are largely invalid. While the analytical approximation to tidal disruption predicts that the least-centrally concentrated stars and the deepest encounters should have more quickly-peaked flares, we find that the most-centrally concentrated stars have the quickest-peaking flares, and the trend between the time of peak and the impact parameter for deeply penetrating encounters reverses beyond the critical distance at which the star is completely destroyed. We also show that the most-centrally concentrated stars produced a characteristic drop in M-dot (t) shortly after peak when a star is only partially disrupted, with the power law index n being as extreme as -4 in the months immediately following the peak of a flare. Additionally, we find that n asymptotes to {approx_equal} - 2.2 for both low- and high-mass stars for approximately half of all stellar disruptions. Both of these results are significantly steeper than the typically assumed n = -5/3. As these precipitous decay rates are only seen for events in which a stellar core survives the disruption, they can be used to determine if an observed tidal disruption flare produced a surviving remnant. We provide fitting formulae for four fundamental quantities of tidal disruption as functions of the star's distance to the black hole at pericenter and its stellar structure: the total mass lost, the time of peak, the accretion rate at peak, and the power-law index shortly after peak. These results should be taken into

  17. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation ...

  18. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report

  19. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  20. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  1. Neutron structural characterization, inversion degree and transport properties of NiMn{sub 2}O{sub 4} spinel prepared by the hydroxide route

    SciTech Connect (OSTI)

    Sagua, A.; Lescano, Gabriela M.; Alonso, J.A.; Martínez-Coronado, R.; Fernández-Díaz, M.T.; Morán, E.

    2012-06-15

    Graphical abstract: A pure specimen has been synthesized by the hydroxide route. This spinel, studied by NPD, shows an important inversion degree, λ = 0.80. A bond-valence study shows that the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected 3+ and 2+ values, respectively. The mixed valence Mn{sup 3+}/Mn{sup 4+} accounts for a hopping mechanism between adjacent octahedral sites, leading to a significant conductivity. Highlights: ► A low-temperature hydroxide route allowed preparing almost pure specimens of NiMn{sub 2}O{sub 4}. ► NPD essential to determine inversion degree; contrasting Ni and Mn for neutrons. ► Bond valence establishes valence state of octahedral and tetrahedral Ni and Mn ions. ► Thermal analysis, transport measurements complement characterization of this oxide. ► A structure–properties relationship is established. -- Abstract: The title compound has been synthesized by the hydroxide route. The crystal structure has been investigated at room temperature from high-resolution neutron powder diffraction (NPD) data. It crystallizes in a cubic spinel structure, space group Fd3{sup ¯}m, Z = 8, with a = 8.3940(2) Å at 295 K. The crystallographic formula is (Ni{sub 0.202(1)}Mn{sub 0.798(1)}){sub 8a}(Ni{sub 0.790(1)}Mn{sub 1.210(1)}){sub 16d}O{sub 4} where 8a and 16d stand for the tetrahedral and octahedral sites of the spinel structure, respectively. There is a significant inversion degree of the spinel structure, λ = 0.80. In fact, the variable parameter for the oxygen position, u = 0.2636(4), is far from that expected (u = 0.25) for normal spinels. From a bond-valence study, it seems that the valence distribution in NiMn{sub 2}O{sub 4} spinel is not as trivial as expected (Ni{sup 2+} and Mn{sup 3+}), but clearly the tetrahedral Mn ions are divalent whereas the octahedral Mn and Ni are slightly oxidized from the expected +3 and +2 values, respectively. The mixed valence observed at

  2. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  3. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Modeling, Simulation and Experimental Integration RD&D Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and transporting it to treatment or recycling facilities, or to a geologic repository.

  4. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  5. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  6. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  7. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect (OSTI)

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for

  8. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy CRF_climatechange Permalink Gallery Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change CRF, Global Climate & Energy, News, News & Events, Transportation Energy Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change By Micheal Padilla Researchers at Sandia's Combustion Research Facility are developing the understanding necessary to build cleaner combustion technologies that will in turn

  9. TRANSfer - Towards climate-friendly transport technologies and...

    Open Energy Info (EERE)

    - Decision-Making Structure Topics: Best Practices Resource Type: Reports, Journal Articles, & Tools Website: transport-namas.org Transport Toolkit Region(s): Latin America &...

  10. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport – Demonstration of Approach and Results of Used Fuel Performance Characterization

    Broader source: Energy.gov [DOE]

    This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and transport (NCT).

  11. Ozone transport commission developments

    SciTech Connect (OSTI)

    Joyce, K.M.

    1995-08-01

    On September 27, 1994, the states of the Ozone Transport Commission (OTC) signed an important memorandum of understanding (MOU) agreeing to develop a regional strategy for controlling stationary sources of nitrogen oxide emissions. Specifically, the states of the Ozone Transport Region, OTR, agreed to propose regulations for the control of NOx emissions from boilers and other indirect heat exchangers with a maximum gross heat input rate of at least 250 million BTU per hour. The Ozone Transport Region was divided into Inner, Outer and Northern Zones. States in the Outer Zone agreed to reduce NOx emissions by 55%. States in the Inner Zone agreed to reduce NOx emissions 65%. Facilities in both zones have the option to emit NOx at a rate no greater than 0.2 pounds per million Btu by May 1, 1999. This option provides fairness for the gas-fired plants which already have relatively low NOx emissions. Additionally, States in the Inner and Outer Zones agreed to reduce their NOx emissions by 75% or to emit NOx at a rate no greater than 0.15 pounds per million BTU by May 1, 2003. The Northern Zone States agree to reduce their rate of NOx emissions by 55% from base year levels by May 1, 2003, or to emit NOx at a rate no greater than 0.2 pounds per million BTU. As part of this MOU, States also agreed to develop a regionwide trading mechanism to provide a cost-effective mechanism for implementing the reductions.

  12. TRANSPORTATION OPTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORTATION OPTIONS The Pittsburgh Airport Marriott provides complimentary shuttle service. The hotel asks all guests arriving at the Pittsburgh International Airport to collect luggage in the baggage claim area of the airport and then call for the shuttle at 412-788- 8800. Let the Hotel Operator know that you have collected your luggage and have a reservation at the Marriott and need transportation from the airport. The Hotel Operator will instruct the guest which door to exit, which curb to

  13. Transportation | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation NREL's transportation infrastructure and programs are designed to significantly reduce petroleum use campus-wide. This infographic shows NREL's FY2015 fleet performance and fleet vehicle history compared to baseline FY 2005 and FY 2014. Petroleum fuel use decreased 28% from 2014 and increased 17% from baseline 2005. Alternative fuel use increased 53% from 2014 and increased 127% from baseline 2005. In baseline 2005, the fleet used 6,521 gasoline gallon equivalent (GGE) of E-85, in

  14. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. August 25, 2016 NREL and NASA Receive Regional FLC Award for Notable Technology NASA Johnson Space Center (JSC) and the National Renewable Energy Laboratory (NREL) were selected as 2016 recipients of a Federal Laboratory Consortium (FLC) Mid-Continent Regional Award, for their notable technology development of the patented Battery Internal Short-Circuit (ISC) Device. August 25, 2016 NREL Helps the National

  15. Local structural distortion and electrical transport properties of Bi(Ni1/2Ti1/2)O3 perovskite under high pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng

    2015-12-16

    Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. We find, consistent withmore » PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.« less

  16. Natural gas marketing and transportation

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners.

  17. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy admin 2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  18. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  19. The impact of monolayer coverage, barrier thickness and growth rate on the thermal stability of photoluminescence of coupled InAs/GaAs quantum dot hetero-structure with quaternary capping of InAlGaAs

    SciTech Connect (OSTI)

    Mandal, A.; Verma, U.; Halder, N.; Chakrabarti, S.

    2012-03-15

    Highlight: Black-Right-Pointing-Pointer Coupled InAs/GaAs MQDs with (In{sub 0.21}Al{sub 0.21}Ga{sub 0.58}As + GaAs) caps are considered. Black-Right-Pointing-Pointer Monolayer coverage, barrier thickness and growth rate of the dots are the factors. Black-Right-Pointing-Pointer PL peaks for the samples are within 1.1-1.3 {mu}m; significant for IBSCs and lasers. Black-Right-Pointing-Pointer NPTP (non-resonant multi-phonon assisted tunneling process) effect on FWHM of PL. -- Abstract: The self-assembled InAs/GaAs MQDs are widely investigated for their potential application in optoelectronic devices like lasers and photovoltaics. We have explored the effect of QD growth rate and structural parameters like capping layer thickness on the morphology and optical properties of the MQD heterostructures overgrown with a combination capping of InAlGaAs and GaAs. The growth rate of the seed layers in the MQD samples is also varied to investigate its effect in the vertical stacking of the islands. The change in the morphology and the optical properties of the samples due to variation in growth and structural parameters are explained by the presence of strain in the QD structures, which arises due to lattice mismatch.

  20. Use of the slow-strain-rate technique for the evaluation of structural materials for application in high-temperature gaseous environments

    SciTech Connect (OSTI)

    Johnson, C.E.; Ugiansky, G.M.

    1981-01-01

    Types 309, 310, 310S, 347 and 446 stainless steels, Incoloy 800, and Inconel 671 were tested at temperatures from 370 to 1040/sup 0/C at strain rates from 10/sup -4/ to 10/sup -7//s in H/sub 2/S plus water, gaseous mixtures of CO, CO/sub 2/, H/sub 2/, CH/sub 4/, H/sub 2/S, and H/sub 2/O, and in nominally inert environments of He and Ar. Type 310 steel showed a marked reduction in mechanical properties at low strain rates (< 10/sup -5//s) in H/sub 2/S/H/sub 2/O at 540/sup 0/C, and this was associated with the occurrence of a large degree of secondary intergranular cracking in addition to the main ductile fracture mode. The occurrence of the secondary cracking was taken as the primary indication of embrittlement in subsequent tests. It occurred to some degree in all alloys tested in the simulated coal-gasification environments at 600/sup 0/C. The mechanism(s) of the embrittlement phenomena remain uncertain; a number of possible causes including creep and several environmentally-induced fracture processes are outlined. It is shown that the overall results of the test program are in good agreement with in-plant experience.

  1. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  2. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    SciTech Connect (OSTI)

    Adkins, Harold; Geelhood, Ken; Koeppel, Brian; Coleman, Justin; Bignell, John; Flores, Gregg; Wang, Jy-An; Sanborn, Scott; Spears, Robert; Klymyshyn, Nick

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  3. Phase-space jets drive transport and anomalous resistivity (Journal...

    Office of Scientific and Technical Information (OSTI)

    transport and anomalous resistivity In the presence of wave dissipation, phase-space structures spontaneously emerge in nonlinear Vlasov dynamics. These structures include not only...

  4. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation

  5. The Fluid Interface Reactions Structures and Transport (FIRST) EFRC (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Wesolowski, David J.; FIRST Staff

    2011-05-01

    'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.

  6. The Fluid Interface Reactions Structures and Transport (FIRST) EFRC (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Wesolowski, David J. (Director, FIRST - Fluid Interface Reactions, Structures, and Transport Center); FIRST Staff

    2011-11-02

    'The Fluid Interface Reactions Structures and Transport (FIRST) EFRC' was submitted by FIRST to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. FIRST, an EFRC directed by David J. Wesolowski at the Oak Ridge National Laboratory is a partnership of scientists from nine institutions: Oak Ridge National Laboratory (lead), Argonne National Laboratory, Drexel University, Georgia State University, Northwestern University, Pennsylvania State University, Suffolk University, Vanderbilt University, and University of Virginia. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of Fluid Interface Reactions, Structures and Transport Center is 'to develop quantitative and predictive models of the unique nanoscale environment at fluid-solid interfaces that will enable transformational advances in electrical energy storage and heterogeneous catalysis for solar fuels.' Research topics are: catalysis (biomass, CO{sub 2}, water), electrocatalysis, photocatalysis, photoelectrocatalysis, solar fuels, solar electrodes, electrical energy storage, batteries, capacitors, battery electrodes, electrolytes, extreme environment, CO{sub 2} (convert), greenhouse gas, microelectromechanical systems (MEMS), interfacial characterization, matter by design, novel materials synthesis, and charge transport.

  7. Correlation between the electronic and atomic structure, transport properties, and oxygen vacancies on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} thin films

    SciTech Connect (OSTI)

    Rubio-Zuazo, J. Onandia, L.; Castro, G. R.

    2014-01-13

    We present a study of the role of oxygen vacancies on the atomic and electronic structure and transport properties on a 20?nm thick La{sub 0.7}Ca{sub 0.3}MnO{sub 3} film grown by the pulsed laser deposition method on a SrTiO{sub 3} (001) substrate. The results show that oxygen vacancies induce an atomic structure modification characterized by the movement of the La/Ca cations to the perovskite regular position, by the reduction of the MnO{sub 6} basal plane rotation, and by a cooperative tilting of the octahedra along the out-of-plane direction. The out-of-plane lattice parameter increases due to the reduction of the Mn valence upon oxygen vacancies creation. As a consequence, a shift of the Metal-to-Insulator transition to lower temperatures is found to occur. We discuss the influence of the competitive phenomena of manganese valence and Mn-O-Mn bond distortion on the transport properties of manganite thin films.

  8. Interim UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-03-30

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a draft list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during very long term storage (VLTS). The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of SSCs and degradation mechanisms developed by the UFD Storage Task (Stockman et al. 2010)

  9. Effect of current compliance and voltage sweep rate on the resistive switching of HfO{sub 2}/ITO/Invar structure as measured by conductive atomic force microscopy

    SciTech Connect (OSTI)

    Wu, You-Lin Liao, Chun-Wei; Ling, Jing-Jenn

    2014-06-16

    The electrical characterization of HfO{sub 2}/ITO/Invar resistive switching memory structure was studied using conductive atomic force microscopy (AFM) with a semiconductor parameter analyzer, Agilent 4156C. The metal alloy Invar was used as the metal substrate to ensure good ohmic contact with the substrate holder of the AFM. A conductive Pt/Ir AFM tip was placed in direct contact with the HfO{sub 2} surface, such that it acted as the top electrode. Nanoscale current-voltage (I-V) characteristics of the HfO{sub 2}/ITO/Invar structure were measured by applying a ramp voltage through the conductive AFM tip at various current compliances and ramp voltage sweep rates. It was found that the resistance of the low resistance state (RLRS) decreased with increasing current compliance value, but resistance of high resistance state (RHRS) barely changed. However, both the RHRS and RLRS decreased as the voltage sweep rate increased. The reasons for this dependency on current compliance and voltage sweep rate are discussed.

  10. Transportation Infrastructure

    Office of Environmental Management (EM)

    09 Archive Transportation Fact of the Week - 2009 Archive #603 Where Does Lithium Come From? December 28, 2009 #602 Freight Statistics by Mode, 2007 Commodity Flow Survey December 21, 2009 #601 World Motor Vehicle Production December 14, 2009 #600 China Produced More Vehicles than the U.S. in 2008 December 7, 2009 #599 Historical Trend for Light Vehicle Sales November 30, 2009 #598 Hybrid Vehicle Sales by Model November 23, 2009 #597 Median Age of Cars and Trucks Rising in 2008 November 16, 2009

  11. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  12. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  13. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  14. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  15. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  16. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  17. PNCA-02 Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...

  18. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2000-10-01

    This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

  19. Recent Developments on the Production of Transportation Fuels...

    Office of Scientific and Technical Information (OSTI)

    The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to ...

  20. Computational Structural Mechanics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    load-2 TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Structural Mechanics Overview of CSM Computational structural mechanics is a well-established methodology for the design and analysis of many components and structures found in the transportation field. Modern finite-element models (FEMs) play a major role in these evaluations, and sophisticated software, such as the commercially available LS-DYNA® code, is

  1. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data ...

  2. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment

    SheetsTransportation Fuel Supply content top

  3. Mass Transport within Soils

    SciTech Connect (OSTI)

    McKone, Thomas E.

    2009-03-01

    on (1) the composition of the soil and physical state of the soil, (2) the chemical and physical properties of the substance of interest, and (3) transformation rates in soil. Our particular focus is on approaches for constructing soil-transport algorithms and soil-transport parameters for incorporation within multimedia fate models. We show how MTC's can be developed to construct a simple two-compartment air-soil system. We then demonstrate how a multi-layer-box-model approach for soil-mass balance converges to the exact analytical solution for concentration and mass balance. Finally, we demonstrate and evaluate the performance of the algorithms in a model with applications to the specimen chemicals benzene, hexachlorobenzene, lindane gammahexachlorocyclohexane, benzo(a)pyrene, nickel, and copper.

  4. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the

  5. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    National Transportation Stakeholders Forum OSRP * NNSA Contractors transporting in commerce, are required law to comply with applicable regulations required law to comply with ...

  6. Agenda for Transitioning the Transportation Sector: Exploring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... onal Laboratori natural gas and erent transport mental Science a e Public Affairs, s Manager, Ho scussion gen in direct co tion applicatio structure rollo ass of stations & uilt ...

  7. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  8. Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  9. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients

  11. Repository Waste Package Transporter Shielding Weight Optimization

    SciTech Connect (OSTI)

    C.E. Sanders; Shiaw-Der Su

    2005-02-02

    The Yucca Mountain repository requires the use of a waste package (WP) transporter to transport a WP from a process facility on the surface to the subsurface for underground emplacement. The transporter is a part of the waste emplacement transport systems, which includes a primary locomotive at the front end and a secondary locomotive at the rear end. The overall system with a WP on board weights over 350 metric tons (MT). With the shielding mass constituting approximately one-third of the total system weight, shielding optimization for minimal weight will benefit the overall transport system with reduced axle requirements and improved maneuverability. With a high contact dose rate on the WP external surface and minimal personnel shielding afforded by the WP, the transporter provides radiation shielding to workers during waste emplacement and retrieval operations. This paper presents the design approach and optimization method used in achieving a shielding configuration with minimal weight.

  12. Full-f Neoclassical Simulations toward a Predictive Model for H-mode Pedestal Ion Energy, Particle and Momentum Transport

    SciTech Connect (OSTI)

    Battaglia, D. J.; Boedo, J. A.; Burrell, K. H.; Chang, C. S.; Canik, J. M.; deGrassie, J. S.; Gerhardt, S. P.; Grierson, B. A.; Groebner, R. J.; Maingi, Rajesh; Smith, S. P.

    2014-09-01

    Energy and particle transport rates are decoupled in the H-mode edge since the ion thermal transport rate is primarily set by the neoclassical transport of the deuterium ions in the tail of the thermal energy distribution, while the net particle transport rate is set by anomalous transport of the colder bulk ions. Ion orbit loss drives the energy distributions away from Maxwellian, and describes the anisotropy, poloidal asymmetry and local minimum near the separatrix observed in the Ti profile. Non-Maxwellian distributions also drive large intrinsic edge flows, and the interaction of turbulence at the top of the pedestal with the intrinsic edge flow can generate an intrinsic core torque. The primary driver of the radial electric field (Er) in the pedestal and scrapeoff layer (SOL) are kinetic neoclassical effects, such as ion orbit loss of tail ions and parallel electron loss to the divertor. This paper describes the first multi-species kinetic neoclassical transport calculations for ELM-free H-mode pedestal and scrape-off layer on DIII-D using XGC0, a 5D full-f particle-in-cell drift-kinetic solver with self-consistent neutral recycling and sheath potentials. Quantitative agreement between the flux-driven simulation and the experimental electron density, impurity density and orthogonal measurements of impurity temperature and flow profiles is achieved by adding random-walk particle diffusion to the guiding-center drift motion. This interpretative technique quantifies the role of neoclassical, anomalous and neutral transport to the overall pedestal structure, and consequently illustrates the importance of including kinetic effects self-consistently in transport calculations around transport barriers.

  13. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  14. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  15. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  16. Transportation Organization and Functions

    Broader source: Energy.gov [DOE]

    Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

  17. NREL: Transportation Research - Transportation and Hydrogen Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation and Hydrogen Newsletter The Transportation and Hydrogen Newsletter is a monthly electronic newsletter that provides information on NREL's research, development, and deployment of transportation and hydrogen technologies. Photo of a stack of newspapers July 2016 Issue Hydrogen Fuel Cells Read the latest issue of the newsletter. Subscribe: To receive new issues by email, subscribe to the newsletter. Archives: For past issues, read the newsletter archives. Printable Version

  18. NREL: Transportation Research - Sustainable Transportation Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Basics Compare Vehicle Technologies 3-D illustration of electric car diagramming energy storage, power electronics, and climate control components. The following links to the U.S. Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid, hydrogen fuel cell, biofuel, natural gas, and propane vehicle technologies. Learn more about vehicles, fuels, and transportation

  19. NREL: Transportation Research - Transportation Deployment Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Deployment Support Photo of a car parked in front of a monument. A plug-in electric vehicle charges near the Thomas Jefferson Memorial in Washington, D.C. Photo from Julie Sutor, NREL NREL's transportation deployment team works with vehicle fleets, fuel providers, and other transportation stakeholders to help deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, and fleet-level efficiencies that reduce emissions and petroleum dependence. In

  20. NREL: Transportation Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News NREL provides a number of transportation and hydrogen news sources. Transportation News Find news stories that highlight NREL's transportation research, development, and deployment (RD&D) activities, including work on vehicles and fuels. Hydrogen and Fuel Cells News Find news stories that highlight NREL's hydrogen RD&D activities, including work on fuel cell electric vehicle technologies. Transportation and Hydrogen Newsletter Stay up to date on NREL's RD&D of transportation and

  1. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and seven partner universities (Delaware, Drexel, Minnesota, Penn State, Vanderbilt and the Universities of California at Davis and Riverside, and the University of Minnesota). ...

  2. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Team FIRST Org chart FIRST Center Director, David J. Wesolowski received his undergraduate degree in Geology from the University of Pittsburgh in 1976 and Ph.D. in Geochemistry and Mineralogy from Penn State University in 1984. He joined Oak Ridge National Laboratory as a Eugene P. Wigner Fellow in 1983, and has spent his entire career at Oak Ridge. He is currently a Distinguished R&D Staff member and the Geochemistry and Interfacial Sciences Group Leader in the Chemical Sciences

  3. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steering Committee David J. Wesolowski FIRST Center Director, ORNL Ph: (865) 574-6903 Email: wesolowskid@ornl.gov Peter T. Cummings Thrust 1 Leader, Vanderbilt University Ph: (615) 322 8129 Email: peter.cummings@vanderbilt.edu Sheng Dai FIRST Center Deputy Director Thrust 2 Leader, ORNL Ph: (865) 576-7307 Email: dais@ornl.gov Steven H. Overbury Thrust 3 Leader, ORNL Ph: (865) 574-5040 Email: overburysh@ornl.gov Phillip F. Britt Chemical Sciences Division Director, ORNL Ph: (865) 574-4986 Email:

  4. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    External Advisory Board: Dr. John R. Miller is President of JME, Inc., a service company he founded 22 years having specialization in reversible energy storage technology, particularly electrochemical capacitors. He recently accepted the part time position of Research Professor at the Great Lakes Energy Institute, Case Western Reserve University. Dr. Royce Murray is the Kenan Professor of Chemistry at the University of North Carolina and member of the National Academy of Sciences. Dr. Alexandra

  5. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview (Summary Slides) Scientific Objectives: The unique properties of the FSI emerge from a complex interplay of short- and long-range forces and reactions among the molecular fluid components, solutes and substrates. Potential gradients (chemical, electrical, etc.) can be highly non-linear at the angstrom to nanometer scale. The finite size, shape, directional bonding, charge distribution and polarizability of solvent and solute fluid components are convoluted with their ability to

  6. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FIRST Center Video Home CS Division PS Directorate ORNL Disclaimer

  7. Final Report for DE-FG02-93ER14376,Ionic Transport in Electrochemical Media

    SciTech Connect (OSTI)

    J. W. Halley

    2009-05-20

    This project was a molecular dynamics study of the relevant issues associated with the structure and transport of lithium in polymer electrolytes such as polyethylene oxide(PEO). In close collaboration with quantum chemist Larry Curtiss and neutron scatterers David Lee Price and Marie-Louise Saboungi at Argonne, we used molecular dynamics to study the local structure and dynamics and ion transport in the polymer. The studies elucidated the mechanism of Li transport in PEO, revealing that the rate limiting step is extremely sensitive to the magnitude of the torsion forces in the backbone of the polymer. Because the torsion forces are difficult to manipulate chemically, this makes it easier to understand why improving the conductivity of PEO based electrolytes has proven to be very difficult. We studied the transport properties of cations in ionic liquids as possible additives to polymer membranes for batteries and fuel cells and found preliminary indications that the transport is enhanced near phase separation in acid-ionic liquid mixtures.

  8. Sustainable self-propping shear zones in EGS: Chlorite, Illite, and Biotite Rates and Report

    SciTech Connect (OSTI)

    Susan Carroll

    2015-11-06

    Spreadsheet containing chlorite, illite, and biotite rate data and rate equations that can be used in reactive transport simulations. Submission includes a report on the development of the rate laws.

  9. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W.

    2014-10-15

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  10. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  11. Rating Agency Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  12. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  13. BP-18 Rate Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  14. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  15. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  16. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  17. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  18. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  19. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  20. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  1. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  2. Chemistry and Transport - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry and Transport Chemistry and Transport The overall goal of the flame chemistry working group is to obtain fundamental combustion and emission properties of low and high pressure flames, to validate kinetic and transport models, and to develop accurate and computationally efficient models capable of predicting turbulent combustion of future transportation fuels. Experimental data of laminar and turbulent flame speeds, flame structures, extinction/ignition limits, and soot/NOx emissions

  3. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE ...

  4. MECS 2006- Transportation Equipment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006)

  5. NREL: Innovation Impact - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Improved transportation technologies are essential for reducing U.S. petroleum dependence. Close The United States consumes roughly 19 million barrels of petroleum per day, but replacing petroleum-based liquid fuels is difficult because of their high energy density, which helps

  6. Transportation Storage Interface

    Office of Environmental Management (EM)

    of Future Extended Storage and Transportation Transportation-Storage Interface James Rubenstone Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission National Transportation Stakeholders Forum May 2012 ♦ Knoxville, Tennessee Overview * Changing policy environment * Regulatory framework-current and future * Extended storage and transportation-technical information needs * Next Steps 2 Current Policy Environment * U.S. national policy for disposition of spent

  7. Crystal structure, magnetism and transport properties of Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}Al{sub 4.1}B{sub 10}

    SciTech Connect (OSTI)

    Janka, Oliver; Baumbach, Ryan E.; Thompson, Joe D.; Bauer, Eric D.; Kauzlarich, Susan M.

    2013-09-15

    Single crystals of Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}Al{sub 4.1}B{sub 10} were obtained from a process in which a polycrystalline sample of CeRu{sub 2}Al{sub 2}B was annealed in an excess of a NiIn flux. The initial phase, CeRu{sub 2}Al{sub 2}B, does not recrystallize, instead, crystals of a new phase, Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}Al{sub 4.1}B{sub 10}, could be isolated once the flux was removed. The title compound crystallizes in the tetragonal space group P4/nmm (No. 129) with a=1139.02(8), c=801.68(6) pm (c/a=0.70) in the Nd{sub 3}Ni{sub 29}Si{sub 4}B{sub 10} structure type. Electrical resistivity measurements reveal metallic behavior with a minimum of 700 ? cm and a small residual resistivity ratio of RRR=1.4 indicating a large amount of disorder scattering. The cerium atoms are either in the 4+ or an intermediate valence state with a valence fluctuation temperature far above room temperature. - Graphical abstract: Single crystals of Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}A{sub l4.1}B{sub 10} were obtained using a process in which a polycrystalline sample of CeRu{sub 2}Al{sub 2}B was annealed in an excess of a NiIn flux. Electrical resistivity measurements reveal metallic behavior with a minimum of 700 ?? cm and a small residual resistivity ratio of RRR=1.4 indicating a large amount of disorder scattering. The cerium atoms are either in the 4+ or an intermediate valence state with a valence fluctuation temperature far above room temperature. Display Omitted - Highlights: Flux synthesis of high quality single crystals of Ce{sub 3}Ni{sub 25.75}Ru{sub 3.16}Al{sub 4.1}B{sub 10} is presented along with the crystal structure, magnetic and transport properties. The compound is isostructural to Nd{sub 3}Ni{sub 29}Si{sub 4}B{sub 10} but is first of this structure type showing mixed occupancies of d-elements. This is an intermetallic phase with Ce in either the 4+ or an intermediate valence state. The fact that this structure with mixed occupied transition

  8. Subsurface Flow and Contaminant Transport

    Energy Science and Technology Software Center (OSTI)

    2000-09-19

    FACT is a transient three-dimensional, finite element code for simulating isothermal groundwater flow, moisture movement, and solute transport in variably and/or fully saturated subsurface porous media. Both single and dual-domain transport formulations are available. Transport mechanisms considered include advection, hydrodynamic dispersion, linear adsorption, mobile/immobile mass transfer and first-order degradation. A wide range of acquifier conditions and remediation systems commonly encountered in the field can be simulated. Notable boundary condition (BC) options include, a combined rechargemore » and drain BC for simulating recirculation wells, and a head dependent well BC that computes flow based on specified drawdown. The code is designed to handle highly heterogenous, multi-layer, acquifer systems in a numerically efficient manner. Subsurface structure is represented with vertically distorted rectangular brick elements in a Cartesian system. The groundwater flow equation is approximated using the Bubnov-Galerkin finite element method in conjunction with an efficient symmetric Preconditioned Conjugate Gradient (PCG) ICCG matrix solver. The solute transport equation is approximated using an upstream weighted residual finite element method designed to alleviate numerical oscillation. An efficient asymmetric PCG (ORTHOMIN) matrix solver is employed for transport. For both the flow and transport equations, element matrices are computed from either influence coefficient formulas for speed, or two point Gauss-Legendre quadrature for accuracy. Non-linear flow problems can be solved using either Newton-Ralphson linearization or Picard iteration, with under-relaxation formulas to further enhance convergence. Dynamic memory allocation is implemented using Fortran 90 constructs. FACT coding is clean and modular.« less

  9. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect (OSTI)

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  10. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is the May 2015 issue of the Transportation and Hydrogen Newsletter. May 28, 2015 Photo of a car refueling at a hydrogen dispensing station. DOE's H2FIRST project focuses on ...