Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nuclear Fuels Storage & Transportation Planning Project | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown...

2

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project (NFST) Program Status More Documents & Publications DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues Update on Blue Ribbon Commission...

3

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

4

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

5

Integrating Wildlife Crossing into Transportation Plans and Projects in North America  

E-Print Network (OSTI)

for wildlife in future transportation projects. Traditionaleffects of existing and future transportation projects. Ourand overpasses into future transportation project, everyday

Cramer, Patricia C.; Bissonette, John

2007-01-01T23:59:59.000Z

6

Integrating Wildlife Crossing into Transportation Plans and Projects in North America  

E-Print Network (OSTI)

Improvement Program (STIP) process? and 3. . . .duringbridges and the long range and STIP transportation plans can

Cramer, Patricia C.; Bissonette, John

2007-01-01T23:59:59.000Z

7

Transportation Institutional Plan  

SciTech Connect

This Institutional Plan is divided into three chapters. Chapter 1 provides background information, discusses the purposes of the Plan and the policy guidance for establishing the transportation system, and describes the projected system and the plans for its integrated development. Chapter 2 discusses the major participants who must interact to build the system. Chapter 3 suggests mechanisms for interaction that will foster wide participation in program planning and implementation and provides a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. Also included in this Plan are four appendices. Of particular importance is Appendix A, which includes detailed discussion of specific transportation issues. Appendices B, C, and D provide supporting material to assist the reader in understanding the roles of the involved institutions.

1986-08-01T23:59:59.000Z

8

PROJECT MANAGEMENT PLANS Project Management Plans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MANAGEMENT PLANS MANAGEMENT PLANS Project Management Plans  Overview  Project Management Plan Suggested Outline Subjects  Crosswalk between the Suggested PMP Outline Subjects and a Listing of Project Planning Elements  Elements of Deactivation Project Planning  Examples From Project Management Plans Overview The purpose here is to assist project managers and project planners in creating a project plan by providing examples and pointing to information that have been successfully used by others in the past. Section 4.2 of DOE Guide 430.1-3, DEACTIVATION IMPLEMENTATION GUIDE discusses the content and purpose of deactivation project management plans. It is presented as a suggested outline followed by other potential subjects. For the convenience of readers, that information is repeated below.

9

A Multi-Scale and Context Sensitive State-Wide Environmental Mitigation Planning Tool for Transportation Projects in California  

E-Print Network (OSTI)

2007 Proceedings Future Transportation Project Impacts A GISimpacts due to future transportation projects will beby all programmed future transportation projects based on

Thorne, James H.; Girvetz, Evan H; McMcoy, Mike C.

2007-01-01T23:59:59.000Z

10

Planning and Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Ten-Year Capital Program Projects Lovell-Yellowtail Transmission Line Rebuild project Studies WACM Wind production summary overview (Oct. 2006)...

11

As Built Verification Plan for Cask Transportation Facility Modifications (CTFM) Project A.5 and A.6  

Science Conference Proceedings (OSTI)

This document establishes an As-built Verification Plan (AVP) for implementing requirements in PHMC Engineering Requirements HNF-PRO-1819, Rev. 4, Sections 2.8.3.d and 2.10.8 and Spent Nuclear Fuels (SNF) Project Administrative Procedure EN-6-012-01. This AVP defines and implements approved processes to document the physical configuration of the project scope installed within the facility and identify discrepancies between the associated project engineering drawings and the field configuration, and the component index (CI) database as defined in AP EN 6-005-02. This AVP defines requirements for project activities verifying conformance of structures, systems, and components (SSCs) to project specified requirements.

LANE, K.I.

2000-04-20T23:59:59.000Z

12

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

13

Project Execution Plan RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Execution Plan (PEP) Review Module Project Execution Plan (PEP) Review Module March 2010 CD-0 O 0 OFFICE OF P C CD-1 F ENVIRO Standard R Project E Rev Critical Decis CD-2 M ONMENTAL Review Plan Execution view Module sion (CD) Ap CD March 2010 L MANAGE n (SRP) n Plan e pplicability D-3 EMENT CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-1189-2008,

14

Introduction to Transportation Planning  

E-Print Network (OSTI)

Introduction to Transportation Planning CMP 4710/6710 Fall 2012 3 Credit Hours Room: ARCH 229 on a Saturday night, transportation is not an objective in and of itself, but a means to carry out the functions of daily living (i.e., it's a "derived good"). As a consequence, the transportation systems we build

Tipple, Brett

15

PROJECT PLANNING TEMPLATE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plan i Issue Date: 4/24/2009 Plan i Issue Date: 4/24/2009 U.S. Department of Energy Office of Engineering and Construction Management Project Plan for the Project Assessment and Reporting System (PARS II) Version 2.0a (Public) April 20, 2009 Submitted by: Energy Enterprises Solutions 20440 Century Blvd. Suite 150 Germantown, MD 20874 Phone 301-916-0050 Fax 301-916-0066 www.eesllc.net PARS II Project Plan ii Issue Date: 4/24/2009 Title Page Document Name: Project Plan for the Project Assessment and Reporting System (PARS II), V2.0a Publication Date: April 24, 2009 Contract Number: DE-AT01-06IM00102 Project Number: 1ME07, CLIN 2 Prepared by: Judith Bernsen, PMC, LLC Kai Mong, Energy Enterprise Solutions, LLC

16

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baselines - Baselines - Performance Baseline Examples Example 34 6.0 PROJECT BASELINE This section presents a summary of the PFP Stabilization and Deactivation Project baseline, which was prepared by an inter- contractor team to support an accelerated planning case for the project. The project schedules and associated cost profiles presented in this section are compared to the currently approved project baseline, as contained in the Facility Stabilization Project Fiscal Year 1999 Multi-Year Work Plan (MYWP) for WBS 1.4 (FDH 1998). These cost and schedule details will provide the basis for a baseline change request that will be processed to revise the MYWP, consistent with the accelerated project plan presented below. 6.1 Project Baseline Overview This section of the IPMP presents the PFP baseline cost and schedule summary. The currently approved PFP Stabilization and

17

Transportation Business Plan  

SciTech Connect

The Transportation Business Plan is a step in the process of procuring the transportation system. It sets the context for business strategy decisions by providing pertinent background information, describing the legislation and policies governing transportation under the NWPA, and describing requirements of the transportation system. Included in the document are strategies for procuring shipping casks and transportation support services. In the spirit of the NWPA directive to utilize the private sector to the maximum extent possible, opportunities for business ventures are obvious throughout the system development cycle.

1986-01-01T23:59:59.000Z

18

FCT Technology Validation: Transportation Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Projects to someone by E-mail Share FCT Technology Validation: Transportation Projects on Facebook Tweet about FCT Technology Validation: Transportation Projects on...

19

Draft Transportation Institutional Plan  

SciTech Connect

The Department of Energy recognizes that the success of its program to develop and implement a national system for nuclear waste management and disposal depends on broad-based public understanding and acceptance. While each program element has its particular sensitivity, the transportation of the waste may potentially affect the greatest number of people, and accordingly is highly visible and potentially issue-laden. Therefore, the Office of Civilian Radioactive Waste Management has developed this Transportation Institutional Plan to lay the foundation for interaction among all interested parties for the purpose of identifying and resolving issues of concern. The Plan is divided into four chapters. Chapter 1 provides bachground information and discusses the purpose of the Plan and the policy guidance for establishing the transportation system. Chapter 2 introduces the major participants who must interact to build both the system itself and the consensus philosophy that is essential for effective operations. Chapter 3 suggests mechanisms for interaction that will ensure wide participation in program planning and implementation. And, finally, Chapter 4 suggests a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. The Plan's appendices provide supporting material to assist the reader in understanding the roles of the involved institutions. 4 figs., 1 tab.

1985-09-01T23:59:59.000Z

20

IX disposition project, project management plan  

SciTech Connect

This subproject management plan defines the roles, responsibilities, and actions required for the execution of the IX Disposition Project.

WILLIAMS, N.H.

1999-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Integrating Habitat Fragmentation Analysis into Transportation Planning Using the Effective Mesh Size Landscape Metric  

E-Print Network (OSTI)

due to planned future transportation projects (Thorne et al.impact of these future transportation projects on habitatthe effects of transportation infrastructure. In the future,

Girvetz, Evan H; Thorne, James H.; Berry, Alison M; Jaeger, Jochen A.G.

2007-01-01T23:59:59.000Z

22

Cost overruns in transport projects - Experiences from Sweden.  

E-Print Network (OSTI)

?? Cost overrun of transport projects is one of the most important problems in transport planning. Apart from causing budget overruns, it also results in (more)

Anchalee, Jenpanitsub

2011-01-01T23:59:59.000Z

23

Project Management Plan  

SciTech Connect

The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

Not Available

1988-01-01T23:59:59.000Z

24

IX Disposition Project - project management plan  

SciTech Connect

This report presents plans for resolving saving and disposal concerns for ion exchange modules, cartridge filters and columns. This plan also documents the project baselines for schedules, cost, and technical information.

Choi, I.G.

1994-12-08T23:59:59.000Z

25

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development of Detailed End Points - Development of Detailed End Points - End Point Document Examples Example 28 7.0 ENDPOINTS Chapter 7.0 describes the endpoint development principles and methodology, administration, closure, and turnover package for the 324 and 327 Buildings Stabilization/Deactivation Project. 7.1 Background The endpoint method for the 324 and 327 Buildings Stabilization/Deactivation Project will follow the EM-60 guidance, published in DOE/EM-0318, Rev. 0, U.S. Department of Energy, Office of Environmental Management Facility Deactivation, Methods and Practice Handbook, Emphasizing End Points (sic) Implementation . The methods of defining endpoints for facility stabilization and deactivation were proven extremely effective at the PUREX and B-Plant facilities for planning work and interacting with the

26

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

Energy.gov (U.S. Department of Energy (DOE))

This report, funded by DOE and prepared by EDINs Transportation Working Group (TWG), aims to build on the 2030 USVI Transportation Master Plan by describing how its recommended projects can be leveraged toward the 60% by 2025 goal.

27

PROJECT MANGEMENT PLAN EXAMPLES Project Management Plan Examples  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Plan Examples Management Plan Examples The following material has been extracted from several project management plans. The order in which it is presented is arbitrary. The elements table below should be used to navigate to the subject of interest. Elements of Deactivation Project Planning Deactivation Project Key Planning Elements Reference DOE O 430.1A Reference DOE G 430.1-3 DOE G 430.1- 3 Fig. 1 Link to Examples Policy & Operational Decisions, Assumptions and Strategies Includes organizational responsibilities and structure, disposition path, future use of facility, S&S Reqs and plan, hazard elimination or mitigation, NEPA, RCRA, CERCLA, HVAC/lighting service reqs, structural integrity reqs, etc. Sect. 6.e.7.a Sect. 4.1.1 Step 1 1. Example 1

28

PROJECT MANGEMENT PLAN EXAMPLES Prepare and Issue Project Plan Documents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Issue Project Plan Documents and Issue Project Plan Documents Example Example 70 5.2 Information and Reporting Management reporting provides timely and accurate data to apprise BWHC, FDH, and DOE management of current and projected project conditions. Information contained in these reports is obtained from the same database that supports day-to-day management by BWHC. 5.2.1 Project Status Report Reporting for the 324/327 Buildings Stabilization/Deactivation Project is incorporated in the monthly PSR, prepared by BWHC for FDH and RL. The PSR summarizes performance and compares it with the technical, schedule, and cost baselines contained in the MYWP. The report provides the data required by the DOE-HQ process. 5.2.2 Project Manager's Monthly Report

29

Alternative Fuels Data Center: State Transportation Plan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Transportation State Transportation Plan to someone by E-mail Share Alternative Fuels Data Center: State Transportation Plan on Facebook Tweet about Alternative Fuels Data Center: State Transportation Plan on Twitter Bookmark Alternative Fuels Data Center: State Transportation Plan on Google Bookmark Alternative Fuels Data Center: State Transportation Plan on Delicious Rank Alternative Fuels Data Center: State Transportation Plan on Digg Find More places to share Alternative Fuels Data Center: State Transportation Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Transportation Plan The California Department of Transportation (Caltrans) must update the California Transportation Plan (Plan) by December 31, 2015, and every five

30

Project W-320 ALARA Plan  

Science Conference Proceedings (OSTI)

This supporting document establishes the As Low As Reasonable Achievable (ALARA) Plan to be followed during Sluicing Project W-320 design and construction activities to minimize personnel exposure to radiation and hazardous materials.

Harty, W.M.

1995-06-06T23:59:59.000Z

31

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Integration - Safety Integration - Implementation of Controls Examples Example 24 5 Health & Safety This section describes the work controls associated with the 771/774 Closure Project. As prescribed in DOE Order 440.1, Worker Protection Management for DOE Federal and Contractor Employees, the project must comply with the OSHA construction standards for Hazardous Waste Operations and Emergency Response, 29 CFR 1910.120 and 1926. Under these standards, a Building 771/774 Closure Project-Specific HASP has been prepared to address the safety and health hazards of each phase of operations. In addition, the DOE Order for Construction Project Safety and Health Management, 5480.9A, applies to this project. This order requires the preparation of JHAs to identify each task, the hazards associated with each task, and the precautions necessary to mitigate the

32

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Communication and Stakeholder Involvement Communication and Stakeholder Involvement Plan Examples Example 49 10.0 COMMUNICATIONS AND PUBLIC INVOLVEMENT The transition of B Plant is a critical element in Hanford's mission of environmental management. The B Plant Transition Project Management Team have made a commitment to open communications throughout transition because effective communications and public involvement are critical success factors for the project. Communications must be living and dynamic, responding to accomplishments and emerging issues or activities. A communications plan will be developed to define specific actions for disseminating information regarding project objectives, strategies, problems/issues, and status, and for developing strategies for soliciting input/involvement throughout the deactivation

33

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

End Point Closeout Examples Example 77 7.5 Endpoint Closure The endpoint documents have grouped the building spaces and systems into a number of manageable areas. The areas are closely related to the engineering work plans that guide completion of many of the endpoints. Endpoint closure methods and practices are provided in the attachment of this PMP. On completion of an endpoint, a BWHC field representative will initial complete on the field copy of the endpoint document. A BHI field representative will verify acceptable completion of the applicable activity. Verification may be performed by reviewing documents, letters, photos, work packages, or work plans, or by visual inspection. When all the endpoints for a specific area of the building have been completed and verified, designated BWHC and BHI management will sign for completion and acceptance of that

34

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approach to Meeting Requirements Examples Approach to Meeting Requirements Examples Example 26 9.2 HEALTH AND SAFETY STRATEGY B Plant has integrated safety into its management, planning and work practices in order to protect the public, the environment and facility workers against nuclear and non-nuclear hazards associated with facility transition. Based upon the principles of DNFSB Recommendation 95-2, the Plant's approach to safety management includes:  Applicable. standards and requirements specifically identified and implemented  Safety integrated into baseline and detailed planning  Workers and trained safety professionals use a team approach in hazard identification, analysis and control  Graded approach used to tailor controls based upon hazard type and severity

35

River Protection Project (RPP) Project Management Plan  

SciTech Connect

The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

NAVARRO, J.E.

2001-03-07T23:59:59.000Z

36

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Quality Assurance Plan Examples Quality Assurance Plan Examples Example 64 8.3 QUALITY ASSURANCE This section describes policies and procedures that will be used to meet QA program objectives. This section also develops the strategies PFP will use to ensure the S&M of the PFP inventory, the material stabilization project, the deactivation project, and the dismantlement of the PFP Complex buildings and are completed in a high quality manner. 8.3.1 QA Program The QA program for the PFP Stabilization and Deactivation Project is implemented in accordance with the requirements of 10 CFR 830.120, Quality Assurance Requirements, (QA Rule) and HNF-PRO-260, Quality Assurance Program . The manner in which the requirements are implemented is specified in QA program plans and implementing procedures for the PFP Complex. The QA

37

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prioritization of Facility Hazards Examples Prioritization of Facility Hazards Examples Example 20 7.7 PRELIMINARY HAZARD ANALYSIS Table 7-1 Preliminary Hazard Analysis (PHA) Overview for 779 Cluster's Decommissioning and Dismantlement Major Work Task Hazard Cause Preventive Measures Perform building walkdowns to identify Integrated Work Control Package (IWCP) work steps. Tripping, falling, exposure to chemicals, hazardous substances and / or radioactive materials. Also exposure to noise hazards. No planning, lack of communicating between work groups, improper use of Radiological Work Permits (RWPs), not following room or building instructions.  Develop Activity Hazard Analysis (AHA).  Conduct effective pre-evolution briefings.

38

Spent Nuclear Fuel Project operational staffing plan  

SciTech Connect

Using the Spent Nuclear Fuel (SNF) Project`s current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M&O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M&O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins.

Debban, B.L.

1996-03-01T23:59:59.000Z

39

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Management Examples Integrated Safety Management Examples Example 10 8.2 PFP INTEGRATED SAFETY STRATEGY The following discussion identifies the process that will be used by the PFP Stabilization and Deactivation Project to ensure that the safety of the worker, public, and the environment are adequately addressed during the project. The primary activities involved in the process include the following:  Implementation of the Integrated Safety Management System (ISMS),  Identification, control, or mitigation of worker safety-related issues for stabilization and deactivation/dismantlement activities,  Facility/chemical vulnerability assessment and management,  Use of the DOE-approved authorization basis and the Unreviewed Safety Question (USQ) process to determine if the PFP

40

PROJECT PLANNING TEMPLATE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Draft 3 Draft November 19, 2009 Submitted by: Energy Enterprise Solutions 20440 Century Blvd. Suite 150 Germantown, MD 20874 Phone 301-916-0050 Fax 301-916-0066 www.eesllc.net ii Title Page Document Name: Contractor Project Performance (CPP) Upload Requirements for PARS II, V1.3 Publication Date: November 19, 2009 Contract Number: DE-AT01-06IM00102 Project Number: 1ME07, CLIN 2 Prepared by: Steven Ducharme, PMC, LLC Lenore Morrison, PMC, LLC Judith Bernsen, PMC, LLC Edited by: Norm Ayers, EES, LLC Reviewed by: Larry Flanigan, Energy Enterprise Solutions, LLC Kai Mong, Energy Enterprise Solutions, LLC Ruth Ann Smith, Energy Enterprise Solutions, LLC Approval: _________________________________ John Makepeace, DOE OECM MA-50

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PROJECT PLANNING TEMPLATE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 June 17, 2010 Submitted by: Energy Enterprise Solutions 20440 Century Blvd. Suite 150 Germantown, MD 20874 Phone 301-916-0050 Fax 301-916-0066 www.eesllc.net ii Title Page Document Name: Contractor Project Performance (CPP) Upload Requirements for PARS II, V1.5 Publication Date: June 17, 2010 Contract Number: DE-AT01-06IM00102 Project Number: 1ME07, CLIN 2 Prepared by: Steven Ducharme, PMC, LLC Lenore Morrison, PMC, LLC Judith Bernsen, PMC, LLC Edited by: Dennis Stoner, EES, LLC Reviewed by: Mark Landry, Dekker, LTD Ken Henderson, Energy Enterprise Solutions, LLC Ruth Ann Smith, Energy Enterprise Solutions, LLC Approval: John Makepeace, DOE OECM MA-50, May 25, 2010 iii Change Control Page

42

PROJECT MANGEMENT PLAN EXAMPLES Deactivation Plan Project Scope and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plan Project Scope and Plan Project Scope and Objectives Examples Example 6 2.3 MISSION OBJECTIVES Stabilization of plutonium-bearing materials and deactivation/dismantlement of the PFP Complex will result in the virtual elimination of the hazards and risks associated with the facility and will greatly reduce the costs of safe, secure S&M. Using the lessons learned from deactivation projects across the DOE Complex, further improvement on previously applied deactivation methods is anticipated. The major mission objectives for the PFP Stabilization and Deactivation Project are as follows:  Maintain inventory of plutonium-bearing material in safe and highly secure storage pending shipment offsite;  Maintain the PFP facilities, systems, and residual radioactive and chemical contamination in a safe,

43

PROJECT MANGEMENT PLAN EXAMPLES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous and Radioactive Material Hazardous and Radioactive Material Evaluations Examples Example 18 6.03.08 Removal of Chemicals Bulk chemicals that are usable in other facilities will be relocated. Transportation of chemicals to other facilities will be performed in accordance with applicable administrative requirements. Chemicals in good condition that have not been in radiological areas or that can be cleared by RCO will be listed on OSR 1-118. The form will be signed by the Lead Environmental Coordinator and the Chemical Coordinator and submitted to the Site Chemical Commodity Center (CCMC). Usable chemicals from radiological areas that are not needed at other SFSD facilities will be advertised to other divisions. Unusable chemicals will be reviewed by waste Subject

44

Project Execution Plan, Rev. 3  

Science Conference Proceedings (OSTI)

This plan addresses project activities encompassed by the U.S. Department of Energy's (DOE's), National Nuclear Security Administration Nevada Operations Office, Environmental Restoration Division and conforms to the requirements contained in the Life-Cycle Asset Management, DOE Order 430.1A; The Joint Program Office Policy on Project Management in Support of DOE Order 430.1; Program and Project Management for the Acquisition of Capital Assets, DOE Order 413.3; the Project Execution and Engineering Management Planning Guide, GPG-FM-010; and other applicable Good Practice Guides; and the FY 2001 Integrated Planning, Accountability, and Budgeting System Policy Guidance. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense; and traditional project management philosophies such as the development of life-cycle costs, schedules, and work scope; identification o f roles and responsibilities; and baseline management and controls.

IT Corporation, Las Vegas

2002-08-01T23:59:59.000Z

45

PROJECT PLANNING TEMPLATE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U U . . S S . . D D e e p p a a r r t t m m e e n n t t o o f f E E n n e e r r g g y y O O f f f f i i c c e e o o f f M M a a n n a a g g e e m m e e n n t t D D r r a a f f t t C C o o n n c c e e p p t t o o f f O O p p e e r r a a t t i i o o n n s s f f o o r r P P A A R R S S I I I I Draft Version 1.3 July 28, 2009 Submitted by: Energy Enterprises Solutions 20440 Century Blvd. Suite 150 Germantown, MD 20874 Phone 301-916-0050 Fax 301-916-0066 www.eesllc.net 2 Title Page Document Name: Draft Concept of Operations for PARS II Publication Date: July 28, 2009 Contract Number: DE-AT01-06IM00102 Project Number: 1ME07 CLIN 2 Prepared by: Norm Ayers, EES Reviewed by: Kai Mong, EES Reviewed by: Larry Flanigan EES Approval: _________________________________ John Makepeace, DOE OECM MA-50 3 Change Control Page The change control page contains information about revisions to the document and should be

46

Nonisothermal hydrologic transport experimental plan  

SciTech Connect

A field heater experimental plan is presented for investigating hydrologic transport processes in unsaturated fractured rock related to the disposal of high-level radioactive waste (HLW) in an underground repository. The experimental plan provides a methodology for obtaining data required for evaluating conceptual and computer models related to HLW isolation in an environment where significant heat energy is produced. Coupled-process models are currently limited by the lack of validation data appropriate for field scales that incorporate relevant transport processes. Presented in this document is a discussion of previous nonisothermal experiments. Processes expected to dominate heat-driven liquid, vapor, gas, and solute flow during the experiment are explained, and the conceptual model for nonisothermal flow and transport in unsaturated, fractured rock is described. Of particular concern is the ability to confirm the hypothesized conceptual model specifically, the establishment of higher water saturation zones within the host rock around the heat source, and the establishment of countercurrent flow conditions within the host rock near the heat source. Field experimental plans are presented using the Apache Leap Tuff Site to illustrate the implementation of the proposed methodology. Both small-scale preliminary experiments and a long-term experiment are described.

Rasmussen, T.C.; Evans, D.D.

1992-09-01T23:59:59.000Z

47

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Metrics Examples Metrics Examples Example 42 5.1.4 Performance Measurement and Reporting The subproject manager will communicate subproject technical issues and accomplishments, schedule performance, cost and schedule issues, and corrective action plans, as appropriate, in the Project Directors' weekly 'Path Forward' meeting. However, the primary performance measurement for reporting subproject performance is provided by the performance measurement system. Within the new common database containing core information on Project Hanford, called HANDI 2000, the performance measurement system compares the resource-loaded schedules (budgeted cost of work scheduled [BCWS]), the actual cost of work

48

Sample Project Execution Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sample Project Execution Plan Sample Project Execution Plan Sample Project Execution Plan The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects. The plan serves as the main communication vehicle to ensure that everyone is aware and knowledgeable of project objectives and how they will be accomplished. The plan is the primary agreement between Headquarters and the federal project director and a preliminary plan should be developed and approved at Critical Decision-1. Project objectives are derived from the mission needs statement, and an integrated project team assists in development of the PEP. The plan is a living document and should be updated to describe current and future processes and procedures, such as integrating safety

49

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Plan Examples Environmental Plan Examples Example 51 8.1 ENVIRONMENTAL STRATEGY A significant part of the strategy for maintaining compliance with environmental regulatory requirements during the PFP Stabilization and Deactivation Project is to apply the process described in the Tri-Party Agreement, Section 8.0, "Facility Decommissioning Process." The Section 8.0 process will allow the DOE to develop agreements with the State and Federal regulatory agencies facilitating timely stabilization of the PFP inventory of plutonium-bearing materials, deactivation of the PFP Complex, and perhaps elimination of all above ground hazards at the PFP Complex through dismantlement of the buildings and structures. The Section 8.0 process also provides the means for DOE to ensure the public and stakeholders get an opportunity

50

SNF Project Engineering Process Improvement Plan  

SciTech Connect

This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities.

DESAI, S.P.

2000-02-09T23:59:59.000Z

51

Transportation Planning & Decision Science Group Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Poster Presentations: Stacy Davis - "Transportation Data Programs: Transportation Energy Data Book, Vehicle Technologies Market Report, and the Vehicle Technologies Fact of...

52

Construction Project Safety and Health Plan RM  

Energy.gov (U.S. Department of Energy (DOE))

The Construction Project Safety and Health Plan (CPSHP) Review Module is a tool that assists DOE federal project review teams in evaluating the technical sufficiency of the project readiness in...

53

Project Execution Plan Review Module (RM)  

Energy.gov (U.S. Department of Energy (DOE))

The Project Execution Plan (PEP) Review Module (RM) is a tool that assists DOE federal project review teams in evaluating the adequacy of the PEP development and maintenance for projects of any...

54

A Thirty Year Public Transport Plan  

E-Print Network (OSTI)

change and peak oil; developments in public transport around the world; specifications for metro rail Transport Plan for Sydney G Glazebrook EXECUTIVE SUMMARY Following growing concerns about peak oil, climate

University of Technology, Sydney

55

2013 Annual Planning Summary for the Office of Secure Transportation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Secure Transportation 2013 Annual Planning Summary for the Office of Secure Transportation 2013 Annual Planning Summary for the Office of Secure Transportation The...

56

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Control Examples Configuration Control Examples Example 38 7.05 Configuration Management Plan Configuration Management activities for this project will be carried out using a graded approach, consistent with the guidance in Reference #20. The CM Actions listed in Appendix B of Reference #20 will be carried out as follows: Action 1 - Develop System Boundaries This action will not be performed because the intended End State of 322-M is that all systems will be deactivated and all utility services that were connected to the systems in the facility will be disconnected by isolation at the facility boundary. This isolation will be reflected in Action 2. Action 2 - Develop and Update Drawings Revisions will be made only to those essential drawings that show the modifications made to the facility as part of executing the

57

S. Sabina Wolfson Urban Transportation Planning  

E-Print Network (OSTI)

official support for (or recognition of) BRT. New York City's "vision" for the future of transportationS. Sabina Wolfson Urban Transportation Planning Term paper Bus Rapid Transit on the East Side of Manhattan The East Side of Manhattan needs more (and better) public transportation1. Eventually a Second

Wolfson, Sabina

58

Study of Long-Term Transport Action Plan for ASEAN | Open Energy  

Open Energy Info (EERE)

Long-Term Transport Action Plan for ASEAN Long-Term Transport Action Plan for ASEAN Jump to: navigation, search Name Study of Long-Term Transport Action Plan for ASEAN Agency/Company /Organization Association of Southeast Asian Nations (ASEAN), Institution for Transport Policy Studies (ITPS), Clean Air Asia, Transport Research Laboratory (TRL), Mizuho Information & Research Institute (MHIR) Partner Nippon Foundation, Ministry of Planning, Ministry of Transport Sector Climate, Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, GHG inventory, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs Website http://cleanairinitiative.org/

59

Project Plan Remote Target Fabrication Refurbishment Project  

Science Conference Proceedings (OSTI)

In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

Bell, Gary L [ORNL; Taylor, Robin D [ORNL

2009-08-01T23:59:59.000Z

60

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Baseline Development and Control Technical Baseline Development and Control Examples Example 40 5.0 PROJECT MANAGEMENT AND CONTROL The Project Management and Control section provides an overview of the project management and control systems that will be used to manage the 324/327 Buildings Stabilization/Deactivation Project, addressing the following key elements of project management and control:  Project Management Control System (PMCS) - Work breakdown structure - Baseline development/update - Scheduling - Performance measurement and reporting - Change control  Information and reporting - Project status report - Project manager's monthly report - FDH/RL project status review - DOE-HQ project management reviews - Special reviews

62

Transportation Planning & Decision Science Group Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Award on January 16, 2013, during the Chairman's Luncheon at the 92nd Annual Transportation Research Board (TRB) Meeting in Washington, DC. Dr. Greene was honored for his...

63

Transportation Center Seminar........ "Proactive Transmission Planning in  

E-Print Network (OSTI)

Transportation Center Seminar........ "Proactive Transmission Planning in Electricity Networks of the biggest problems of actual power-systems transmission planning is its reactive nature. We formulate-systems transmission planning, generation investment, and market operation decisions and propose a methodology to solve

Bustamante, Fabián E.

64

PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Organization Examples Organization Examples Example 8 4.0 PROJECT ORGANIZATION Chapter 4.0 describes the principle project organizations, including their responsibilities and relationships. Other organizations, that have an interest in the project, also are described. 4.1 Principal Project Organizations and Responsibilities The management organization for the 324/327 Buildings Stabilization/Deactivation Project represents a partnership between four principal project organizations responsible for the project. The four project organizations and their associated summary responsibilities are described in the following paragraphs. 4.1.1 U.S. Department of Energy, Headquarters (HQ) The DOE-HQ Office of Nuclear Material and Facility Stabilization (EM-60) is primarily responsible for policy and budget decisions

65

Using project procedure diagrams for milestone planning  

Science Conference Proceedings (OSTI)

This paper presents Project Procedure Diagrams (PPDs) as a technique for specifying and elaborating project milestone plans. The graphical syntax of PPDs is similar to UML activity diagrams. The operational semantics is based on token flow and resembles ...

Klaus Bergner; Jan Friedrich

2010-07-01T23:59:59.000Z

66

Fast flux test facility, transition project plan  

SciTech Connect

The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Guttenberg, S.

1994-11-15T23:59:59.000Z

67

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

CERTA PJ

2008-07-10T23:59:59.000Z

68

RIVER PROTECTION PROJECT SYSTEM PLAN  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

69

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

70

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcom

CERTA PJ

2008-07-10T23:59:59.000Z

71

2013 Annual Planning Summary for the Portsmouth and Paducah Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Annual Planning Summary for the Portsmouth and Paducah Project Office 2013 Annual Planning Summary for the Portsmouth and Paducah Project Office 2013 Annual Planning Summary...

72

2013 Annual Planning Summary for the Advanced Research Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 Annual Planning Summary for the Advanced Research Projects Agency - Energy 2013 Annual Planning Summary for the Advanced Research Projects Agency - Energy 2013 Annual Planning...

73

Transportation Planning & Decision Science Group Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Viewer Unveiled at ITS-America Meeting in Nashville At the Annual Intelligent Transportation Association of America (ITS-A) meeting held in Nashville on April 22 - 24, the...

74

Efficient Transportation Decision Public Web Site: Bridging the Gap Between Transportation Planning and the Public  

E-Print Network (OSTI)

for accomplishing transportation planning and projectprocess the Efficient Transportation Decision Making (Process - is to make transportation decisions more quickly

Roaza, Ruth

2007-01-01T23:59:59.000Z

75

PROJECT MANGEMENT PLAN EXAMPLES Project Execution Example  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Execution Example Project Execution Example Example 73 6.3 Project Approach The overall schedule strategy for the PFP project includes ongoing minimum safe activities, combined with stabilization of materials followed by materials disposition, and subsequent transition of the PFP complex to a decommissioned state. The PFP material stabilization baseline was developed using a functionally-based work WBS. The WBS defines all activities required to take each material stream from their current location/conditions through stabilization (as required), and disposition the stabilized material as solid waste for shipment to WIPP or as product material for shipment to SRS. Initially, workshops were held with subject matter experts, project managers, schedulers, and support personnel (experts in the

76

UMTRA Project: Environment, Safety, and Health Plan  

SciTech Connect

The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project`s ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors` evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations.

Not Available

1995-02-01T23:59:59.000Z

77

Uranium Mill Tailings Remedial Action Project surface project management plan  

SciTech Connect

This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

Not Available

1994-09-01T23:59:59.000Z

78

Environmental Monitoring Program Quality Assurance Project Plan  

SciTech Connect

The Quality Assurance Project Plan (QAPP) is intended to document the quality assurance of the Environmental Monitoring Program. The Quality Assurance Project Plan has two parts and is written to become a chapter in the Environmental Monitoring Plan. Part A describes the management responsibilities and activities performed to assure the quality of the Environmental Monitoring Program. Part B covers the documentation requirements for changes in the Monitoring Program, and provides details on control of the design and implementation of quality assurance activities.

Holland, R.C.

1993-06-01T23:59:59.000Z

79

West Valley Demonstration Project Transportation Emergency Management...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance...

80

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Risk Assessment Examples Risk Assessment Examples Example 54 10.0 PROJECT RISK This section outlines a methodology which will be used to qualitatively/subjectively assess the project risk. The approach is modeled after project risk assessment processes outlined in standard project management texts and training courses but tailored to the unique risks encountered in the DOE projects. In the context of this section, project risk means risk to one of the project baselines (technical, cost, or schedule) and should not be confused with health and safety risks. However, health and safety issues are considered to the extent that they impact the risk to the project baselines. 10.1 RISK ASSESSMENT TOOLS The two primary tools that will be used to conduct the risk assessment are listed below.

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Best Practices in Non-Motorized Transport Planning, Implementation and  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Jump to: navigation, search Tool Summary Name: Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Agency/Company /Organization: United Nations Development Programme, Global Environment Facility Focus Area: Transportation Topics: Implementation, Market analysis, Pathways analysis Resource Type: Lessons learned/best practices Website: www.cyclingbotswana.org/fileadmin/Project_Documents/NMT%20Best%20Pract Cost: Free Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Screenshot

82

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

83

Guam Transportation Petroleum-Use Reduction Plan  

SciTech Connect

The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

Johnson, C.

2013-04-01T23:59:59.000Z

84

Guam Transportation Petroleum-Use Reduction Plan  

SciTech Connect

The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

Johnson, C.

2013-04-01T23:59:59.000Z

85

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

H&S Plan Examples H&S Plan Examples Example 46 9.2 HEALTH AND SAFETY STRATEGY B Plant has integrated safety into its management, planning and work practices in order to protect the public, the environment and facility workers against nuclear and non-nuclear hazards associated with facility transition. Based upon the principles of DNFSB Recommendation 95-2, the Plant's approach to safety management includes:  Applicable. standards and requirements specifically identified and implemented  Safety integrated into baseline and detailed planning  Workers and trained safety professionals use a team approach in hazard identification, analysis and control  Graded approach used to tailor controls based upon hazard type and severity  Hazard control integrated into work processes

86

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Closure Plan Examples System Closure Plan Examples Example 61 7.5 Endpoint Closure The endpoint documents have grouped the building spaces and systems into a number of manageable areas. The areas are closely related to the engineering work plans that guide completion of many of the endpoints. Endpoint closure methods and practices are provided in the attachment of this PMP. On completion of an endpoint, a BWHC field representative will initial complete on the field copy of the endpoint document. A BHI field representative will verify acceptable completion of the applicable activity. Verification may be performed by reviewing documents, letters, photos, work packages, or work plans, or by visual inspection. When all the endpoints for a specific area of the building have been completed and verified, designated BWHC and BHI management will sign for completion and acceptance of that

87

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S&M Plan Examples S&M Plan Examples Example 44 5.0 SURVEILLANCE AND MAINTENANCE 5.01 Current S&M Requirements Currently, the heavy water facility is performing operational maintenance and surveillances as dictated by outside and inside facility operating rounds, facility operating procedures, facility maintenance procedures, facility alarm response procedures, and any additional surveillance and maintenance required by SFSD and SRS administrative programs and policies. As the facility progresses through deactivation, the operational S&M requirements will be retired. 5.02 Post Deactivation S&M Plan (Summary) An S&M plan, required by Ref. 1, will be developed and approved following deactivation of the 400-D excess facilities. Three types of S&M activities are envisioned. On a monthly basis, the outside of the excess facilities will be inspected for safety, security, and

88

River Protection Project (RPP) Project Management Plan  

SciTech Connect

The U.S. Department of Energy (DOE), in accordance with the Strom Thurmond National Defense Authorization Act for Fiscal Year 1999, established the Office of River Protection (ORP) to successfully execute and manage the River Protection Project (RPP), formerly known as the Tank Waste Remediation System (TWRS). The mission of the RPP is to store, retrieve, treat, and dispose of the highly radioactive Hanford tank waste in an environmentally sound, safe, and cost-effective manner. The team shown in Figure 1-1 is accomplishing the project. The ORP is providing the management and integration of the project; the Tank Farm Contractor (TFC) is responsible for providing tank waste storage, retrieval, and disposal; and the Privatization Contractor (PC) is responsible for providing tank waste treatment.

SEEMAN, S.E.

2000-04-01T23:59:59.000Z

89

2012 Quality Assurance Improvement Project Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE HQ/EFCOG Project Plan Rev. 0 DOE HQ/EFCOG Project Plan Rev. 0 2 Office of Environmental Management and Energy Facility Contractors Group 2012 Quality Assurance Improvement Project Plan Introduction: This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. The joint EM-EFCOG approach to enhancing QA signifies the inherent commitment to partnership and collaboration that is required between the contractor community and DOE to proactively improve performance of the EM mission and projects. This mandate is more

90

2010 Quality Assurance Improvement Project Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HQ/EFCOG Project Plan HQ/EFCOG Project Plan 2 Office of Environmental Management and Energy Facility Contractors Group 2010 Quality Assurance Improvement Project Plan Introduction: This Project Plan is jointly developed by the Department of Energy (DOE) Office of Environmental Management (EM) and the Energy Facility Contractors Group (EFCOG), to provide execution support to the EM Quality Assurance (QA) Corporate Board. The Board serves a vital and critical role in ensuring that the EM mission is completed safely, correctly, and efficiently. The joint EM-EFCOG approach to enhancing QA signifies the inherent commitment to partnership and collaboration that is required between the contractor community and DOE to proactively improve performance of the EM mission and projects. This mandate is more

91

Transportation Technologies: Implications for Planning  

E-Print Network (OSTI)

mixes, natural gas (methane, CNG/LNG), and electric power (gas: a fuel in compressed (CNG) or liquefied (LNG) form.The CNG form, more common in the transportation sector, is

Deakin, Elizabeth; Kim, Songju

2001-01-01T23:59:59.000Z

92

Local Option Taxes and the New Subregionalism in Transportation Planning  

E-Print Network (OSTI)

designed to link future transportation planning and landPurchase ROW for future transportation corridor Transita model for all future transportation taxes in the state.

Goldman, Todd Mitchel

2005-01-01T23:59:59.000Z

93

Conceptual Design Plan SM-43 Replacement Project  

SciTech Connect

The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

University of California, Los Alamos National Laboratory, SCC Project Office

2000-11-01T23:59:59.000Z

94

Construction Project Safety and Health Plan RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Construction Project Safety and Construction Project Safety and Health Plan Review Module March 2010 CD-0 Co 0 Le OFFICE O onstructi CD-1 This Review ssons learned f OF ENVIRO Standard ion Proje Rev Critical D CD-2 M w Module has b from the pilot h ONMENTA Review Pla ect Safety view Modul Decision (CD CD March 2010 been piloted at have been inco AL MANAG an (SRP) y and He le D) Applicabili D-3 the INL IWTU orporated in Re GEMENT alth Plan ity CD-4 U Project. eview Module. n Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM

95

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Management Plan Examples Property Management Plan Examples Example 68 6.03.11 Property Management Facility maintenance and E&I personnel tools located in 717-D will be redeployed in other facilities. Heavy water facility process and support system spare parts located in the 717-D tool crib will be redeployed or returned to Stores. Machines located in the 717-D machine shop are already registered with Property Management and will be left in place. The 501-D diesel generator, spare refrigeration system compressor, and Aeroflow breathing air systems will be registered with Property Management for potential reuse. Other remaining facility equipment will be abandoned in place. Personnel computers will be redeployed and responsibility for office furniture will be turned over to the Subcontract Services Department furniture warehouse for redistribution.

96

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Training and Qualification Plan Examples Training and Qualification Plan Examples Example 66 8.2.2 Personnel Training and Qualification The Personnel Training and Qualification program is being established as defined by laws, DOE Orders, and company directives to ensure that personnel are trained and qualified to perform assigned tasks. The training and qualification program develops personnel proficiency commensurate with the scope, complexity, and nature of an assigned activity. Management is responsible for developing staff position requirements based on education and experience necessary to perform tasks. Building managers and suppliers that provide personnel to support building operations are responsible for ensuring that personnel are sufficiently trained to perform assigned tasks in a manner that minimizes risk to personnel performing a task, co-workers, and

97

Exploring the Localization of Transportation Planning: Essays on research and policy implications from shifting goals in transportation planning  

E-Print Network (OSTI)

Structure? Paper read at Transportation Research Board,Thomas Straatemeier. 2008. Urban transportation planning inDiversity and Design. Transportation Research -Part D 2

King, David Andrew

2009-01-01T23:59:59.000Z

98

SNF project engineering process improvement plan  

SciTech Connect

This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819. All new procedures will be issued and implemented by September 30, 1999.

DESAI, S.P.

1999-07-13T23:59:59.000Z

99

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

100

Schedule planning for construction projects  

SciTech Connect

Operating contractors of government-owned facilities manage construction projects having a maximum value of $1,000,000. Successful execution is dependent upon pragmatic scheduling. Such scheduling requires that all activities (both engineering and non-engineering) be integrated into a compatible sequence of events with adequate time allowed for each event. To develop realistic schedules, project event standards and program measures of performance have been established.

Shunk, W.A.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiological Controls/ALARA Examples Radiological Controls/ALARA Examples Example 57 8.4 RADIOLOGICAL CONTROL This section describes policies and procedures that will be used to meet radiological control program objectives. It also describes the key actions PFP will take to ensure the PFP Stabilization and Deactivation Project activities are completed safely, and that radioactive materials at the PFP are managed in a controlled and safe manner. 8.4.1 Radiological Control Program The Radiological Control program for the PFP Stabilization and Deactivation Project will be implemented in accordance with the requirements of 10 CFR 835, Occupational Radiation Protection, and HSRCM-1, Hanford Site Radiological Control Manual . Implementing procedures are administrated as Hanford Procedures in accordance with the implementation strategy outlined in HNF-

102

Site and facility transportation services planning documents  

SciTech Connect

The Office of Civilian Radioactive Waste Management (OCRWM) will eventually ship Purchasers' (10 CFR 961.3) spent nuclear fuel from approximately 122 commercial nuclear facilities. The preparation and processing of Site and Facility Specific Transportation Services Planning Documents (SPDs) and Site Specific Servicing Plans (SSSPs) provides a focus for advanced planning and the actual shipping of waste, as well as the overall development of transportation requirements for the waste transportation system. SPDs will be prepared for each of the affected nuclear waste facilities over the next 2 years with initial emphasis on facilities likely to be served during the earliest years of the Federal Waste Management System (FWMS) operations. 3 figs., 1 tab.

Ratledge, J.E. (Oak Ridge National Lab., TN (USA)); Danese, L.; Schmid, S. (Science Applications International Corp., Oak Ridge, TN (USA))

1990-01-01T23:59:59.000Z

103

Hanford Tank Waste Treatment and Immobilization Plan Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations Office Hanford Tank Waste Treatment and Immobilization Plan Project PIA, Richland Operations...

104

ENTO 489 Field Entomology Field Project Plan  

E-Print Network (OSTI)

ENTO 489 ­ Field Entomology Field Project Plan GENERAL Title: A Taxonomic Survey of Late Summer will be using aerial sweep nets as our only technique to collect the butterflies because this is the best way: · Materials needed to implement the project in the field include: o 2 aerial sweep nets o 2-4 killing jars set

Behmer, Spencer T.

105

PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Work Management Examples Work Management Examples Example 36 8.2.5 Work Processes Work associated with nuclear safety functions will be planned, authorized, and performed following approved technical standards, instructions, procedures, and other control documentation commensurate with the complexity and risk posed by the task. The calibration program governs the process that ensures quality of the calibration and maintenance of process monitoring equipment. Equipment found to be out of calibration is tagged and not used until re-calibrated. HNF-PRO that implement DOE-Order 5480.19, and HNF-PRO-233, -298, and others determined applicable, will be evaluated and necessary facility specific procedures developed to complement them for implementation. 10.2 Personnel Safety

106

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes  

E-Print Network (OSTI)

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat

107

SAPHIRE 8 Software Project Plan  

SciTech Connect

This project is being conducted at the request of the DOE and the NRC. The INL has been requested by the NRC to improve and maintain the Systems Analysis Programs for Hands-on Integrated Reliability Evaluation (SAPHIRE) tool set concurrent with the changing needs of the user community as well as staying current with new technologies. Successful completion will be upon NRC approved release of all software and accompanying documentation in a timely fashion. This project will enhance the SAPHIRE tool set for the user community (NRC, Nuclear Power Plant operations, Probabilistic Risk Analysis (PRA) model developers) by providing improved Common Cause Failure (CCF), External Events, Level 2, and Significance Determination Process (SDP) analysis capabilities. The SAPHIRE development team at the Idaho National Laboratory is responsible for successful completion of this project. The project is under the supervision of Curtis L. Smith, PhD, Technical Lead for the SAPHIRE application. All current capabilities from SAPHIRE version 7 will be maintained in SAPHIRE 8. The following additional capabilities will be incorporated: Incorporation of SPAR models for the SDP interface. Improved quality assurance activities for PRA calculations of SAPHIRE Version 8. Continue the current activities for code maintenance, documentation, and user support for the code.

Curtis L.Smith; Ted S. Wood

2010-03-01T23:59:59.000Z

108

Interstate Clean Transportation Corridor Project Under Way  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

rucks that travel in the western rucks that travel in the western United States will soon be able to operate clean-burning alternative fuel vehicles (AFVs) along the Interstate Clean Transpor- tation Corridor (ICTC). The ICTC project is the first effort to develop clean transportation corridors to connect Los Angeles, San Bernar- dino, the San Joaquin Valley, Sacra- mento/San Francisco, Salt Lake City, Reno, and Las Vegas along routes 1-15, 1-80, and 1-5/CA-99. The ICTC team, headed by California- based Gladstein and Associates, plans to have commitments by early 1997 for 10 to 15 fueling sites located approximately 180 miles apart. These sites will serve 250 new heavy-duty AFVs and 500 local delivery vehicles. Their fuels will displace 4.7 million gallons of petroleum and mitigate more than

109

River Protection Project (RPP) Environmental Program Plan  

SciTech Connect

This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

POWELL, P.A.

2000-03-29T23:59:59.000Z

110

West Valley Demonstration Project Transportation Emergency Management Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West West Valley Demonstration Project Transportation Emergency Management Program Independent Oversight Review of the Office of Independent Oversight and Performance Assurance September 2000 OVERSIGHT Table of Contents EXECUTIVE SUMMARY ................................................................... 1 1.0 INTRODUCTION ........................................................................... 4 2.0 RESULTS ......................................................................................... 7 Hazards Survey and Hazards Assessment .................................... 7 Program Plans and Procedures ..................................................... 8 Emergency Responder Performance .......................................... 10 Feedback and Continuous Improvement....................................

111

Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project  

Science Conference Proceedings (OSTI)

This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex.

SINCLAIR, J.C.

1999-05-03T23:59:59.000Z

112

Transportation planning: A virtual reality  

SciTech Connect

An important factor in the development of any base technology is generating it in such a way that these technologies will continue to be useful through systems upgrades and implementation philosophy metamorphoses. Base technologies of traffic engineering including transportation modeling, traffic impact forecasting, traffic operation management, emergency situation routing and re-routing, and signal systems optimization should all be designed with the future in mind. Advanced Traffic Engineering topics, such as Intelligent Vehicle Highway Systems, are designed with advanced engineering concepts such as rules-based design and artificial intelligence. All aspects of development of base technologies must include Total Quality Engineering as the primary factor in order to succeed. This philosophy for development of base technologies for the County of Los Alamos is being developed leveraging the resources of the Center for Advanced Engineering Technology (CAET) at the Los Alamos National Laboratory. The mission of the CAET is to develop next-generation engineering technology that supports the Los Alamos National Laboratory`s mission and to transfer that technology to industry and academia. The CAET`s goal is to promote industrial, academic, and government interactions in diverse areas of engineering technology, such as, design, analysis, manufacturing, virtual enterprise, robotics, telepresence, rapid prototyping, and virtual environment technology. The Center is expanding, enhancing, and increasing core competencies at the Los Alamos National Laboratory. The CAET has three major thrust areas: development of base technologies, virtual environment technology applications, and educational outreach and training. Virtual environment technology immerses a user in a nonexistent or augmented environment for research or training purposes. Virtual environment technology illustrates the axiom, ``The best way to learn is by doing.``

Bradley, J. [Johnson Controls, International (United States); Hefele, J.; Dolin, R.M. [Los Alamos National Lab., NM (United States)

1994-07-01T23:59:59.000Z

113

Energy Strategic Planning & Sufficiency Project  

Science Conference Proceedings (OSTI)

This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

Retziaff, Greg

2005-03-30T23:59:59.000Z

114

Strategic Petroleum Reserve: Facilities development project plan  

SciTech Connect

While the Strategic Petroleum Reserve (SPR) project is subject to future Administration policy decisions, budget proposals and Congressional actions, this Project Plan sets forth a feasible technical, cost, and schedule plan associated with the development of 750 million barrels of SPR crude oil storage and for enhancement of the SPR's distribution system to achieve a distribution capability of 4.5 million barrels per day. Assuming future adoption by the Administration and Congress of the project schedule identified in this Project Plan, The Total Project Cost (TPC) in program year dollars is $2,500,000,000. The TPC excludes post-development operations, capital improvement projects, terminal standby services, and oil acquisition. Under the same assumption, the schedule objectives of this project are: completion of the 750-million-barrel reserve, excluding oil fill, by September 30, 1992 in accordance with the storage capacity development schedule presented in Attachment 1. Completion of distribution enhancements to provide a distribution capability of 4.5 million barrels per day by September 30, 1992 in accordance with the following schedule: 3.0 million barrels per day by July 31, 1987; 3.5 million barrels per day by September 30, 1989; and 4.5 million barrels per day by September 30, 1992.

1986-10-01T23:59:59.000Z

115

Federal Energy Management Program: Renewable Energy Project Planning and  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Renewable Energy Project Planning and Implementation to someone by E-mail Share Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Facebook Tweet about Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Twitter Bookmark Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Google Bookmark Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Delicious Rank Federal Energy Management Program: Renewable Energy Project Planning and Implementation on Digg Find More places to share Federal Energy Management Program: Renewable Energy Project Planning and Implementation on AddThis.com... Energy-Efficient Products

116

Best Practices in Non-Motorized Transport Planning, Implementation...  

Open Energy Info (EERE)

in Non-Motorized Transport Planning, Implementation and Maintenance Abstract This report presents a desktop study on the best practices in non motorised transport (NMT)...

117

step toward the project's planned early 2011 startup. The project  

NLE Websites -- All DOE Office Websites (Extended Search)

step toward the project's planned early 2011 startup. The project step toward the project's planned early 2011 startup. The project will capture CO 2 from the Archer Daniels Midland (ADM) Ethanol Production Facility and inject it into a deep saline reservoir more than one mile underground. Beginning in early 2011, up to 1 million metric tons of the captured CO 2 will be compressed into a dense, liquid-like state and injected over a three-year period. The Mt. Simon Sandstone, which is the rock formation targeted for the injection, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity as high as 110 billion metric tons. Analysis of the survey data is a key component in the comprehensive monitoring program that will be implemented to ensure the injected

118

National Ignition Facility project acquisition plan  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

119

Project L-070, ``300 Area process sewer piping system upgrade`` Project Management Plan  

Science Conference Proceedings (OSTI)

This document is the project management plan for Project L-070, 300 Area process sewer system upgrades.

Wellsfry, H.E.

1994-09-16T23:59:59.000Z

120

Business System Planning Project, Preliminary System Design  

SciTech Connect

CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time.

EVOSEVICH, S.

2000-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Uniqueness and Approximated Computation of Optimal Incomplete Transportation Plans  

E-Print Network (OSTI)

Uniqueness and Approximated Computation of Optimal Incomplete Transportation Plans P. C. ´Alvarez Transportation, where a part of the mass could be not necessarily transported. Since optimal transportation plans consistency result. As a remarkable and unexpected additional result, with important implications for future

Cuesta, Juan Antonio

122

CHAPTER 2 SOFTWARE PROJECT PLANNING 2.1 Introduction  

E-Print Network (OSTI)

are available for constructing process models and estimating software project costs. Project planning tools10 CHAPTER 2 SOFTWARE PROJECT PLANNING 2.1 Introduction This chapter describes the domain of software project planning in order to understand its characteristics and assess what considerations

O'Connor, Rory

123

Use of a GIS-Based Model of Habitat Cores and Landscape Corridors for VDOT Transportation Project Planning and Environmental Scoping  

E-Print Network (OSTI)

U se of a GIS-B ased M odel of H abitat C ores and L2545, joseph.weber@dcr.virginia.gov), GIS Projects Manager/Program is creating a GIS tool, the Virginia Natural

Donaldson, Bridget M. Donaldson; Weber, Joseph T.

2007-01-01T23:59:59.000Z

124

Annual Planning Summaries: Strategic Petroleum Reserve-Project...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Petroleum Reserve-Project Management Office (SPR-PMO) Annual Planning Summaries: Strategic Petroleum Reserve-Project Management Office (SPR-PMO) Document(s) Available For...

125

Guidelines for planning and organizing a performance improvement project  

Science Conference Proceedings (OSTI)

Management planning is the key to success in any type of project. This paper identifies and examines the areas of management responsibility in a performance evaluation project.

Dennis R. Chastain

1973-08-01T23:59:59.000Z

126

Project management plan for Project W-320, Tank 241-C-106 sluicing  

SciTech Connect

This Project Management Plan establishes the organization, plans, and systems for management of Project W-320 as defined in DOE Order 4700.1, Project Management System (DOE 1987).

Phillips, D.R.

1994-12-01T23:59:59.000Z

127

Environmental development plan for transportation programs: FY80 update  

DOE Green Energy (OSTI)

This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

1980-09-01T23:59:59.000Z

128

Transportable Combustion Turbine Demonstration Project  

Science Conference Proceedings (OSTI)

New York State Electric and Gas Corporation (NYSEG) installed a 7.15-MW Solar Taurus 70 (nominal 7 MW) gas combustion turbine (CT) at its State Street substation in Auburn, New York. As a demonstration project supported through EPRI's Tailored Collaboration (TC) program, it is intended to aid in better understanding the "complete picture" for siting this particular technology as a distributed resource (DR).

2001-12-14T23:59:59.000Z

129

Lloyd Crossing Sustainable Urban Design Plan and Catalyst Project - Portland, Oregon [2005 EDRA/Places Award -- Planning  

E-Print Network (OSTI)

Urban Design Plan and Catalyst ProjectPortland, Oregonsensitivity. The associated Catalyst Project attempts toUrban Design Plan and Catalyst ProjectJury Comments Brager:

Hayter, Jason Alexander

2005-01-01T23:59:59.000Z

130

Integrating transportation conservation with regional conservation planning  

E-Print Network (OSTI)

Multiple Species Conservation Program (MSCP). 1998.Final Multiple Species Conservation Program: MSCP Plan. Sanand Resource Conservation Planning Conservation Banking I

DiGregoria, John; Luciani, Emilie; Wynn, Susan

2005-01-01T23:59:59.000Z

131

Integrating transportation conservation with regional conservation planning  

E-Print Network (OSTI)

and Wildlife Biologist/Transportation Liaison, U.S. Fish andChapter Integrating Transportation and Resource Conservationon the integration of transportation conservation with the

DiGregoria, John; Luciani, Emilie; Wynn, Susan

2005-01-01T23:59:59.000Z

132

Lightweight materials for transportation: Program plan  

DOE Green Energy (OSTI)

This Program Plan has been prepared by the Office of Transportation Materials in response to a request by the House Committee on Appropriations. It recognizes that a significant commitment to long-term, stable materials research and development (R&D) is required to realize the benefits of lighter weight vehicles, including economic, environmental and energy related benefits. Extensive input was obtained from the major US automakers and from representative materials and component suppliers. Considerable interaction with the key members of the US Automotive Materials Partnership (USAMP) has ensured consistency of technical direction. The program will support R&D activity at industrial sites through competitively bid subcontracts with cost sharing anticipated at 30--50%, with the higher amounts in process scale-up and manufacturing technology development. The recommended LWM Program will enable industry to develop pecessary technology by utilizing their capabilities as well as accessing supporting technology at national laboratories, universities, ongoing program activity at NASA, DoD, DOT, NIST, etc., and thereby leverage industry resources through integrated team approaches. Many individual program efforts are currently in place that address small portions of the overall needs of the LWM Program, both within DOE and in other agencies. Cognizance of these and overall integration of research activities are planned as significant program management tasks. Because of the international nature of the automobile business, benchmarking of foreign technology and tracking of worldwide developments are also key program elements.

Not Available

1993-07-01T23:59:59.000Z

133

Radioisotope thermoelectric generator transportation system subsystem 143 software development plan  

DOE Green Energy (OSTI)

This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

King, D.A.

1994-11-10T23:59:59.000Z

134

Business System Planning Project System Requirements Specification  

SciTech Connect

The purpose of the Business Systems Planning Project System Requirements Specification (SRS) is to provide the outline and contents of the requirements for the CH2M HILL Hanford Group, Inc. (CHG) integrated business and technical information systems. The SRS will translate proposed objectives into the statement of the functions that are to be performed and data and information flows that they require. The requirements gathering methodology will use (1) facilitated group requirement sessions; (2) individual interviews; (3) surveys; and (4) document reviews. The requirements will be verified and validated through coordination of the technical requirement team and CHG Managers. The SRS document used the content and format specified in Lockheed Martin Services, Inc. Organization Standard Software Practices in conjunction with the Institute of Electrical and Electronics Engineers Standard 8340-1984 for Systems Requirements Documents.

NELSON, R.E.

2000-09-08T23:59:59.000Z

135

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl  

E-Print Network (OSTI)

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl 865-946-1475 865-946-1236 Center for Transportation Analysis News Oak Ridge National to members of the Kentucky Transportation Cabinet and the Kentucky Transportation Center. The purpose

136

Moab Mill Tailings Removal Project Plans to Resume Train Shipments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return Moab Mill Tailings Removal Project Plans to Resume Train Shipments in March; All of the Laid Off...

137

EC-Web Project Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plan More Documents & Publications CITSS Project Plan Audit Report: AP-FS-97-02 Request for Information - Operations and Maintenance (O & M) Support Services for the iManage...

138

Renewable Energy Project Planning and Implementation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Project Planning and Implementation Renewable Energy Project Planning and Implementation October 7, 2013 - 9:31am Addthis Federal renewable energy projects can be large or small and managed by a third-party or the agency. Typically, large-scale projects-larger than 10 megawatts (MWs)-are financed, planned, and implemented by the private sector. Distributed-scale projects (smaller than 10 MWs) are funded and managed by either the agency through agency appropriations or a renewable energy developer through a project funding mechanism. The complexity of large-scale projects means there are separate processes for smaller and larger projects. Learn about: Large-scale renewable energy projects (larger than 10 MWs) Distributed-scale renewable energy projects (smaller than 10 MWs)

139

Site study plan for Transportation, Deaf Smith County Site, Texas: Preliminary draft  

SciTech Connect

This site study plan describes transportation field studies to be conducted during the characterization of the Deaf Smith County, Texas, site for the US Department of Energy's Salt Repository Project. The studies are needed to identify and assess potential project impacts to transportation infrastructure and systems in the project vicinity and along potential transportation routes to the site across the State of Texas. The studies are also needed to locate and design project transportation facilities, and to evaluate and design impact mitigation. After identifying the transportation information requirements needed to comply with Federal, State, and local regulations and repository program requirements, the site study plan describes the study design and rationale, the field data collection procedures and equipment, the data analysis methods and application of results, the data management strategy, the schedule of field activities, the management of the study, and the study's quality assurance program. The field data collection activities are organized into programs for the characterization of site vicinity rail corridors and highway corridors, characterization of alternative statewide transportation routes, monitoring of site characterization effects on transportation, characterization of aircraft overflight patterns and hazardous material transportation patterns, and assessment of emergency response preparedness along alternative statewide transportation routes. 34 refs., 10 figs., 2 tabs.

1987-06-01T23:59:59.000Z

140

Defense Transportation - Center for Transportation Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Transportation The Center for Transportation Analysis provides analytical, planning, and operational support to defense transportation related projects. This includes the...

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Plans and Project in the Upper Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Projects Studies WindHydro Integration Feasibility Study Dakotas Wind Study Summary (144kb pdf) For more information, contact Dirk Shulund by email or by phone at...

142

Spent Nuclear Fuel project integrated safety management plan  

SciTech Connect

This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

Daschke, K.D.

1996-09-17T23:59:59.000Z

143

Example Measurement & Verification Plan for a Super ESPC Project  

Energy.gov (U.S. Department of Energy (DOE))

Report features a comprehensive measurement and verification (M&V) plan for a fictitious super energy savings performance contract (ESPC) project.

144

UCSD Support for Fusion Simulation Project Planning Activity  

Science Conference Proceedings (OSTI)

This document is a close-out report on work performed by UCSD researchers in support of the Fusion Simulation Project Planning Activity.

Holland, C.; Tynan, G. R.; Diamond, P. H.

2011-11-03T23:59:59.000Z

145

Systems Engineering Management Plan. Volume 5 of the MRS Project Management Plan  

SciTech Connect

The purpose of this Monitored Retrievable Storage (MRS) Project Systems Engineering Management Plan (SEMP) is to define and establish the MRS Project Systems Engineering process that implements the approved policy and requirements of the Office of Civilian Radioactive Waste Management (OCRWM) for the US Department of Energy (DOE). This plan is Volume 5 of the MRS Project Management Plan (PMP). This plan provides the framework for implementation of systems engineering on the MRS Project consistent with DOE Order 4700.1, the OCRWM Program Management System Manual (PMSM), and the OCRWM Systems Engineering Management Plan (SEMP).

1994-01-01T23:59:59.000Z

146

Federal Energy Management Program: Renewable Energy Project Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning and Implementation Federal renewable energy projects can be large or small and managed by a third-party or the agency. Typically, large-scale projects-larger than 10...

147

Project Management Plan (PMP) for Work Management Implementation  

SciTech Connect

The purpose of this document is to provide a project plan for Work Management Implementation by the River Protection Project (RPP). Work Management is an information initiative to implement industry best practices by replacing some Tank Farm legacy system

SHIPLER, C.E.

2000-01-13T23:59:59.000Z

148

Fast Flux Test Facility project plan. Revision 2  

Science Conference Proceedings (OSTI)

The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Hulvey, R.K.

1995-11-01T23:59:59.000Z

149

RTSTEP regional transportation simulation tool for emergency planning - final report.  

Science Conference Proceedings (OSTI)

Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the accommodation of emergency evacuation traffic throughout a very large area; the planning of resources to respond appropriately to the needs of the affected population; the placement of medical supplies and decontamination equipment; and the assessment and determination of primary escape routes, as well as routes for incoming emergency responders. Compared to events with advance notice, such as evacuations based on hurricanes approaching an affected area, the response to no-notice events relies exclusively on pre-planning and general regional emergency preparedness. Another unique issue is the lack of a full and immediate understanding of the underlying threats to the population, making it even more essential to gain extensive knowledge of the available resources, the chain of command, and established procedures. Given the size of the area affected, an advanced understanding of the regional transportation systems is essential to help with the planning for such events. The objectives of the work described here (carried out by Argonne National Laboratory) is the development of a multi-modal regional transportation model that allows for the analysis of different evacuation scenarios and emergency response strategies to build a wealth of knowledge that can be used to develop appropriate regional emergency response plans. The focus of this work is on the effects of no-notice evacuations on the regional transportation network, as well as the response of the transportation network to the sudden and unusual demand. The effects are dynamic in nature, with scenarios changing potentially from minute to minute. The response to a radiological or chemical hazard will be based on the time-delayed dispersion of such materials over a large area, with responders trying to mitigate the immediate danger to the population in a variety of ways that may change over time (e.g., in-place evacuation, staged evacuations, and declarations of growing evacuation zones over time). In addition, available resources will be marshaled in unusual ways, such as the repurposing of transit vehicles to support mass evacuations. Thus, any simulation strategy will need to be able to address highly dynamic effects and will need to be able to handle any mode of ground transportation. Depending on the urgency and timeline of the event, emergency responders may also direct evacuees to leave largely on foot, keeping roadways as clear as possible for emergency responders, logistics, mass transport, and law enforcement. This RTSTEP project developed a regional emergency evacuation modeling tool for the Chicago Metropolitan Area that emergency responders can use to pre-plan evacuation strategies and compare different response strategies on the basis of a rather realistic model of the underlying complex transportation system. This approach is a significant improvement over existing response strategies that are largely based on experience gained from small-scale events, anecdotal evidence, and extrapolation to the scale of the assumed emergency. The new tool will thus add to the toolbox available to emergency response planners to help them design appropriate generalized procedures and strategies that lead to an improved outcome when used during an actual event.

Ley, H.; Sokolov, V.; Hope, M.; Auld, J.; Zhang, K.; Park, Y.; Kang, X. (Energy Systems)

2012-01-20T23:59:59.000Z

150

Project Plan Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project  

Science Conference Proceedings (OSTI)

This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev.0. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation.

BARTLETT, W.D.

1999-09-14T23:59:59.000Z

151

Risk Management Plan Electron Beam Ion Source Project  

E-Print Network (OSTI)

. The estimated costs and contingencies to mitigate these risks are incorporated in the Project baseline costRisk Management Plan for the Electron Beam Ion Source Project (EBIS) Project # 06-SC-002 of Nuclear Physics (SC ­ 26) #12;1. Background and References 1.1 Background The EBIS Project will manage

Homes, Christopher C.

152

COMPREHENSIVE EVERGLADES RESTORATION PLAN CENTRAL AND SOUTHERN FLORIDA PROJECT  

E-Print Network (OSTI)

with project goals and objectives, is estimated to have a total project first cost of $168,023,000 (amount does not include sunk Project Implementation Report costs), and annual costs associated with vegetation managementCOMPREHENSIVE EVERGLADES RESTORATION PLAN CENTRAL AND SOUTHERN FLORIDA PROJECT BISCAYNE BAY COASTAL

US Army Corps of Engineers

153

Global Threat Reduction Initiative Africa and Middle East Project Plan 2012  

SciTech Connect

GTRI Africa and Middle East Project Plan submitted for school project to American Graduate University.

Jamison, Jeremy D.

2012-02-01T23:59:59.000Z

154

PROJECT MANGEMENT PLAN EXAMPLES Feedback Examples  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

already in effect for 9206 operations, such as plan-of-the-day, daily crew briefs, pre-job briefs, hazard identification, work planning, review of lessons learned, worker...

155

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl  

E-Print Network (OSTI)

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl 865-946-1475 865-946-1236 Center for Transportation Analysis News Oak Ridge National, during the Chairman's Luncheon at the 92nd Annual Transportation Research Board (TRB) Meeting

156

Transportation planning options for elderly mobility  

E-Print Network (OSTI)

The population of the United States is aging, yet the current transportation system is not designed to accommodate the elderly. Reduced mobility has a profound impact on elderly well-being, and the transportation needs of ...

Chase, Holly (Holly Elizabeth)

2011-01-01T23:59:59.000Z

157

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network (OSTI)

Project. DOE Order 413.3B will provide the basis for the overall management of the Project. 1.2 Key of project management and control systems outlined in this PEP and DOE Order 413.3B ("Program and Project ..............................................................................................................................1 1.2.1 DOE-approved project documents

Princeton Plasma Physics Laboratory

158

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network (OSTI)

Project. DOE Order 413.3B will provide the basis for the overall management of the Project. 1.2 Key of project management and control systems outlined in this PEP and DOE Order 413.3B ("Program and Project 10/12/2012 Update to WBS Level 2 Threshold (top of page 20), Change DOE Federal Project Director

Princeton Plasma Physics Laboratory

159

On the road to conservation: state conservation strategies and applications for transportation planning  

E-Print Network (OSTI)

Transportation and Resource Conservation PlanningNatural Resources Conservation Service. 2000. NaturalEndangered Species Habitat Conservation Planning. http://

White, Patricia A.

2005-01-01T23:59:59.000Z

160

Human and modeling approaches for humanitarian transportation planning  

E-Print Network (OSTI)

Recent disasters have highlighted the need for more effective supply chain management during emergency response. Planning and prioritizing the use of trucks and helicopters to transport humanitarian aid to affected communities ...

Gralla, Erica Lynn

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NSTX Upgrade Project Execution Plan NSTX Upgrade Project  

E-Print Network (OSTI)

Project. DOE Order 413.3B will provide the basis for the overall management of the Project. 1.2 Key the principles of project management and control systems outlined in this PEP and DOE Order 413.3B ("Program ..............................................................................................................................1 1.2.1 DOE-approved project documents

Princeton Plasma Physics Laboratory

162

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

Science Conference Proceedings (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

163

Project Management Plan Examples 1 - 80 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Management Plan Examples 1 - 80 Project Management Plan Examples 1 - 80 Project Management Plan Examples 1 - 80 The following material has been extracted from several project management plans. The order in which it is presented is arbitrary. The descriptions below should be used to navigate to the subject of interest. Policy & Operational Decisions, Assumptions and Strategies - Examples 1 & 2 - Includes organizational responsibilities and structure, disposition path, future use of facility, S&S Reqs and plan, hazard elimination or mitigation, NEPA, RCRA, CERCLA, HVAC/lighting service reqs, structural integrity reqs, etc. Facility End State Decisions - Examples 3, 4 & 5 - Includes expected conditions at completion of the deactivation, DOE mission use, extended S&M, decommissioned and/or dismantled, etc.

164

SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Planning...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SYSTEMS ENGINEERING PROGRAM: Requirements Management Checklist SOFTWARE QUALITY & SYSTEMS ENGINEERING PROGRAM: Project Tracking Checklist Energy.gov Careers & Internships Policy &...

165

Administration for Native Americans Project Planning and Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration for Native Americans Project Planning and Administration for Native Americans Project Planning and Development Training Administration for Native Americans Project Planning and Development Training November 4, 2013 8:00AM PST to November 6, 2013 5:00PM PST Las Vegas, Nevada Have you ever wondered what the secret is to preparing for an Administration for Native Americans (ANA) grant application? The ANA Western Region Training and Technical Assistance Center is hosting a project planning and development training to provide information about the critical, time-consuming work that comes before writing an ANA grant application. Learn how to use the development process to prepare projects for a variety of public or private funders, including the ANA. The goal of the training is to provide you with tools to better define problems faced by your

166

Reviewing Measurement and Verification Plans for Federal ESPC Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reviewing Measurement & Verification Plans Reviewing Measurement & Verification Plans for Federal ESPC Projects February 2007 Federal Energy Management Program (FEMP) Office of Energy Efficiency and Renewable Energy U.S. Department of Energy This document was developed for the U.S. Department of Energy's Federal Energy Management Program by Nexant, Inc., and Lawrence Berkeley National Laboratory. This document is posted on FEMP's web site at www.eere.energy.gov/femp/financing/ . [Headers and footers only revised 12/08] Reviewing M&V Plans Contents REVIEWING MEASUREMENT AND VERIFICATION PLANS FOR FEDERAL ESPC PROJECTS ............................................................................................................ 1 STEP 1 - PREPARE CUSTOM REPORT AND CHECKLIST FROM TEMPLATE .......................... 1

167

Geothermal Plan Justification, Geothermal Project 1976  

SciTech Connect

The report provides information for a five year plan for the Fish and Wildlife Service to deal with developments in the geothermal energy sector in the U.S. [DJE-2005

1976-06-01T23:59:59.000Z

168

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl  

E-Print Network (OSTI)

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl 865-946-1475 865-946-1236 Center for Transportation Analysis News Oak Ridge National of Hydrogen Fuel Cell Vehicle Technology and Prospects for the Future" P.T. Jones ­ "Dynamic Wireless Power

169

FY 1974 program plan for geothermal project  

SciTech Connect

The Program Plan specifies the basic plan for the utilization of FY-74 funds allocated by the AEC Division of Applied Technology and contributions from other participants for the development of geothermal energy in southern Idaho. Funding priorities are dictated by the Construction Data Package submission deadline and the October 1, 1974, site selection. Tasks not funded during FY-74 will be pursued during FY-75. (auth)

1974-02-05T23:59:59.000Z

170

Spent nuclear fuel project integrated schedule plan  

SciTech Connect

The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

Squires, K.G.

1995-03-06T23:59:59.000Z

171

Sustainable Transportation Planning: Tools for Creating Vibrant, Healthy and Resilient Communities, by Jeffrey Tumlin  

E-Print Network (OSTI)

Bay Area Case Study. Transportation Research Record, 2187,25, 2012 Sustainable Transportation Planning: Tools forsubject of sustainable transportation typically fall into

Piatkowski, Dan

2012-01-01T23:59:59.000Z

172

Uranium Mill Tailings Remedial Action (UMTRA) Surface Project: Project plan. Revision 1  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) [Public Law (PL) 95-604, 42 United States Code (USC) 7901], hereinafter referred to as the ``Act,`` authorizes the US Department of Energy (DOE) to stabilize and control surface tailings and ground water contamination. To fulfill this mission, the DOE has established two projects under the Uranium Mill Tailings Remedial Action (UMTRA) Project Office. The Ground Water Project was established in April 1991 as a major project and a separate project plan will be prepared for that portion of the mission. This project plan covers the UMTRA Surface Project, a major system acquisition (MSA).

Not Available

1993-08-11T23:59:59.000Z

173

UK RE Planning Database Project: October, 2010 | OpenEI  

Open Energy Info (EERE)

RE Planning Database Project: October, 2010 RE Planning Database Project: October, 2010 Dataset Summary Description The Planning Database Project provides the UK Department of Energy and Climate Change (DECC) with regular data to track progress towards achieving EU targets for electricity generation from renewable energy (RE) sources. Extracts from the database are available each month. Information collected in the database includes: name, location and installed capacity of RE projects over 0.1MW; environmental designations; planning status; and construction status. Included here is the October 2010 Progress Datasheet, and an extract from December, 15, 2010 (i.e. a single snapshot in time). More up to date data can be retrieved from: https://restats.decc.gov.uk/app/reporting/decc/monthlyextract.

174

Web Tool for Planning Green Projects | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Web Tool for Planning Green Projects Energy Data Apps Maps Challenges Resources Blogs Let's Talk Energy Beta You are here Data.gov Communities Energy Blogs Web Tool for...

175

2011 ANNUAL PLANNING SUMMARY FOR ADVANCED RESEARCH AND PROJECTS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for each NEPA review identified. APS-2011-WAPA.xls More Documents & Publications 2010 Annual Planning Summary for Advanced Research Projects Agency-Energy (ARPA-E) 2011 Annual...

176

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power...

177

Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan  

SciTech Connect

This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

Carlson, Thomas J.; Johnson, Gary E.

2010-01-29T23:59:59.000Z

178

Local Transportation Sales Taxes: California's Experiment in Transportation Finance  

E-Print Network (OSTI)

Section 131051, County Transportation Expenditure Plans. Fresno County Transportation Authority, Annual Report (1994-D.A. Niemeier, Comparing Transportation Project Development

Crabbe, Amber E.; Hiatt, Rachel; Poliwka, Susan D.; Wachs, Martin

2005-01-01T23:59:59.000Z

179

EA-1255: Project Partnership Transportation of Foreign-Owned Enriched  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Project Partnership Transportation of Foreign-Owned 5: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia SUMMARY This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 30, 1998 EA-1255: Finding of No Significant Impact Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia April 30, 1998 EA- 1255: Finding of No Significant Impact Project Partnership Transportation of Foreign-Owned Enriched Uranium from

180

Spent Nuclear Fuel project systems engineering management plan  

SciTech Connect

The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

Womack, J.C.

1995-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Project Management Plan for the INEL technology logic diagrams  

SciTech Connect

This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, ``Technology Logic Diagrams For The INEL.`` The work on this project will be conducted by personnel in EG&G Idaho, Inc.`s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project.

Rudin, M.J.

1992-10-01T23:59:59.000Z

182

Project Management Plan for the INEL technology logic diagrams  

SciTech Connect

This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, Technology Logic Diagrams For The INEL.'' The work on this project will be conducted by personnel in EG G Idaho, Inc.'s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project.

Rudin, M.J.

1992-10-01T23:59:59.000Z

183

Spent Nuclear Fuel (SNF) Project Execution Plan  

SciTech Connect

The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

LEROY, P.G.

2000-11-03T23:59:59.000Z

184

Final Report for the Soboba Strategic Tribal Energy Planning Project  

SciTech Connect

In 2011 the Tribe was awarded funds from the Department of Energy to formulate the Soboba Strategic Tribal Energy Plan. This will be a guiding document used throughout the planning of projects focused on energy reduction on the Reservation. The Soboba Strategic Tribal Energy Plan's goal is to create a Five Year Energy Plan for the Soboba Band of Luiseno Indians in San Jacinto, California. This plan will guide the decision making process towards consistent progress leading to the Tribal goal of a 25% reduction in energy consumption in the next five years. It will additionally outline energy usage/patterns and will edentify areas the Tribe can decrease energy use and increase efficiency. The report documents activities undertaken under the grant, as well as incldues the Tribe's strategif energy plan.

Miller, Kim [EPA Specialist] [EPA Specialist

2013-09-17T23:59:59.000Z

185

Planned Publications Resulting from CARINA Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Resulted from CARINA Project Resulted from CARINA Project Earth System Science Data (ESSD) Journal submitted CARINA publications (Special Issue). Falck, E. and Olsen, A.: Nordic Seas dissolved oxygen data in CARINA, Earth Syst. Sci. Data, 2, 123-131, doi:10.5194/essd-2-123-2010, 2010 Hoppema, M., Velo, A., van Heuven, S., Tanhua, T., Key, R. M., Lin, X., Bakker, D. C. E., Perez, F. F., Ríos, A. F., Lo Monaco, C., Sabine, C. L., Álvarez, M., and Bellerby, R. G. J.: Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean, Earth Syst. Sci. Data, 1, 63-75, doi:10.5194/essd-1-63-2009, 2009. Jeansson, E., Olsson, K. A., Tanhua, T., and Bullister, J. L.: Nordic Seas and Arctic Ocean CFC data in CARINA, Earth Syst. Sci. Data, 2, 79-97, doi:10.5194/essd-2-79-2010, 2010.

186

Advanced Hybrid Particulate Collector Project Management Plan  

SciTech Connect

As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

Miller, S.J.

1995-11-01T23:59:59.000Z

187

Single-shell tank interim stabilization project plan  

SciTech Connect

Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE`s Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. The plan is based on realistic assumptions and addresses three separate funding scenarios.

Ross, W.E.

1998-03-27T23:59:59.000Z

188

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Storage Fuels Storage and Transportation Planning Project (NFST) Program Status Jeff Williams Project Director National Transportation Stakeholders Forum Buffalo, New York May 2013 2  "With the appropriate authorizations from Congress, the Administration currently plans to implement a program over the next 10 years that:  Sites, designs and licenses, constructs and begins operations of a pilot interim storage facility by 2021 with an initial focus on accepting used nuclear fuel from shut-down reactor sites;  Advances toward the siting and licensing of a larger interim storage facility to be available by 2025 that will have sufficient capacity to provide flexibility in the waste management system and allows for acceptance of enough used

189

Transportation Planning & Decision Science Group Transportation Systems Research Group  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 2360 Cherahala Boulevard Knoxville, TN 37932 2012 Fact of the Week Each week the U.S. DOE's Vehicle Technologies Office (VTO) posts a Fact of the Week on their website. These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation- related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. Stacy Davis, Susan Diegel, and Sheila Moore published an ORNL report which is a compilation of the Facts that were posted during calendar year 2012. The Facts were written and prepared by

190

Test plan for hydrogen getters project  

DOE Green Energy (OSTI)

Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP.

Mroz, G. [Los Alamos National Lab., NM (United States); Weinrach, J. [Benchmark Environmental Corp., Albuquerque, NM (United States)

1998-04-01T23:59:59.000Z

191

Draft test plan for hydrogen getters project  

DOE Green Energy (OSTI)

Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (poison) the effectiveness of the hydrogen getter. The results of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP.

Mroz, G. [Los Alamos National Lab., NM (United States); Weinrach, J. [Benchmark Environmental Corp., Albuquerque, NM (United States)

1998-04-01T23:59:59.000Z

192

Air Quality, Transportation, Health, and Urban Planning: Making the Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Quality, Transportation, Health, and Urban Planning: Making the Links Air Quality, Transportation, Health, and Urban Planning: Making the Links Speaker(s): Julian Marshall Date: May 18, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Thomas McKone It is well documented that exposure to ambient air pollution at concentrations typically found in U.S. cities causes significant health effects. Reducing exposure to air pollution is a large, long-term goal for the environmental health community. In this talk, I will address three questions: 1) How should we prioritize emission reduction efforts? 2) Can urban planning help reduce exposure to air pollution? 3) Are there correlations between exposure to air pollution and demographic attributes such as ethnicity and income? I use three case studies to address these

193

New Mexico Students Plan Solar Energy Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Students Plan Solar Energy Project Students Plan Solar Energy Project New Mexico Students Plan Solar Energy Project July 14, 2010 - 5:07pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE What are the key facts? New Mexico received $4.5 million through State Energy Program Recovery Act Grant Los Lunas High School received $300,000 to build solar energy system Renewable energy to save school $20,000 a year Engineering students at Los Lunas High School in New Mexico put their knowledge to work by scoping out the optimal site for a new solar energy system that's expected to save the school district more than $20,000 a year. In September 2009, the school district learned of a grant opportunity through the State Energy Program with funds from the American Recovery and Reinvestment Act to install a photovoltaic system. By October, students,

194

Best-in-Class Project Management Initiative Corporate Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Best-in-Class Project Management Initiative Best-in-Class Project Management Initiative Corporate Implementation Plan Final Prepared for: U.S. Department of Energy Prepared by: U.S. Army Corps of Engineers, Huntington District and Project Time & Cost, Inc. 2727 Paces Ferry Road, Suite 1-1200 Atlanta, Georgia 30339 March 14, 2008 TOC - 1 Table of Contents Executive Summary ............................................................................................................. i 1.0 Introduction................................................................................................................ 1 1.1 Vision for Best-in-Class Project Management Initiative ........................................ 1 1.2 Strategy for Achieving BICPM ..............................................................................

195

Near-facility environmental monitoring quality assurance project plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

McKinney, S.M.

1997-11-24T23:59:59.000Z

196

Transportation energy contingency plans for rural areas and small communities  

SciTech Connect

This study was undertaken to determine the most effective transportation fuel conservation measures which could be implemented by such areas during energy emergencies. The study involved a review of the transportation fuels contingency planning literature, state transportation energy contingency plans (with special emphasis on that for Missouri) and transportation studies recently conducted in rural Missouri, together with a survey by mail of local government officials, telephone interviews with rural residents and participation in two community-wide attitude surveys in the Meramec Region of Missouri. On the basis of the review of the literature and the results of the surveys, recommendations have been made on both the strategies that could be implemented to reduce gasoline consumption in rural areas and the institutional arrangements required for coping with a transportation fuels shortage. For small communities and rural areas of Missouri, it was specifically recommended that the multi-county regional planning commission should become the lead agency in implementing and coordinating fuel conservation measures in the event of a serious petroleum shortfall. Each regional planning commission would serve as a single focal point in communicating with the State Energy Office in behalf of its numerous county and city members. Furthermore, the existing statewide network of emergency preparedness officers should be utilized to inventory local fuel distribution services, monitor local service station operating practices and to serve motorists who might be stranded without fuel. Finally, the University of Missouri Cooperative Extension Service should offer educational programs covering topics as fuel conserving driving techniques, vehicle maintenance, trip planning, and ridesharing.

Dare, C.E.

1981-12-01T23:59:59.000Z

197

Energy Strategic Planning & Self-Sufficiency Project  

Science Conference Proceedings (OSTI)

This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

Greg Retzlaff

2005-03-30T23:59:59.000Z

198

Evolution of project planning tools in a matrix organization  

Science Conference Proceedings (OSTI)

Until recently, the Corporate Construction Program at Sandia was experiencing difficulties in managing projects: poor planning and cost estimating caused schedule and budget problems. The first step taken was a Microsoft {reg_sign} Project schedule that provides a standard template for scheduling individual construction projects. It is broken down according to the life cycle of the project and prevents the project team from leaving out an important item. A WBS (work breakdown structure) dictionary was also developed that describes how capital and operating funds are used to develop, design, construct, equip, and manage projects. We also developed a matrix chart that maps the planning guide against the major types of construction projects at Sandia. The guide, dictionary, and matrix chart offer enough flexibility that the project manager can make choices about how to structure work, yet ensure that all work rolls up to the cost categories and key DOE WBS elements. As requirements change, the tools can be updated; they also serve as training tools for new project team members.

Furaus, J.P.; Figueroa-McInteer, C.; McKeever, P.S.; Wisler, D.B. [Sandia National Labs., Albuquerque, NM (United States); Zavadil, J.T. [Infomatrix (United States)

1996-10-01T23:59:59.000Z

199

NIF Projects Controls and Information Systems Software Quality Assurance Plan  

SciTech Connect

Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

Fishler, B

2011-03-18T23:59:59.000Z

200

PROJECT MANGEMENT PLAN EXAMPLES Project Closeout - Final Report Example  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Example Final Report Example Example 79 4.6.2.2.4.2 Closeout Reports Completion documentation will be compiled for each of the identified worksets. A final Closeout Report will be prepared for the 771/774 Closure Project when work is completed and the analytical data has been received. The report will consist of a brief description of the work that was completed, including any modifications or variations from the original decision document. The report will also include analytical results, including the results of any confirmatory sampling taken to verify completion of the action to the specific performance standards. A discussion of the quantity and characteristics of the actual wastes produced and how the wastes were stored or disposed will also be provided.

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Systems engineering management and implementation plan for Project W-465, immobilized low-activity waste plan  

SciTech Connect

The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-465 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

Latray, D.A.

1998-05-15T23:59:59.000Z

202

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia Smart Grid Implementation Plan (WV SGIP) Project West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid modernization project is to assess the current status of the electric power grid in West Virginia in order to define the potential to implement smart grid technologies. Thus, an initial task of this project was to define the current state or "As-Is" grid in West Virginia. Financial and time constraints prohibited the development and execution of formal surveys to solicit input from the various stakeholders. However attempts were made to obtain their input through informal questionnaires and meeting with focus groups. list of stakeholders which

203

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

SciTech Connect

This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

Johnson, C.

2011-09-01T23:59:59.000Z

204

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

is also available and will be finalized once all reports are released. The Buildings Industry Transportation Electricity Scenarios (BITES) tool is an interactive framework...

205

Fort Hood Solar Total Energy Project. Volume IV. Project Management Plan. Final report  

DOE Green Energy (OSTI)

The Project Management Plan presented is designed to implement the definitive design phase of this project by establishing the organization, tasks, schedules, and controls to assure the accomplishment of project objectives within time and budgetary constraints. Specifically, the plan presents a functional organization composed of a team of personnel with proven experience and capability; clear and concise methods for evaluation and control of project activities and costs; and a set of procedures that provides a means for sound and timely decisions and actions relative to project tasks and milestones. Since a significant portion of the overall design effort is to be performed by a subcontractor, Westinghouse Electric Corporation, this management plan, in conjunction with subcontract provisions, establishes a sound base for evaluation, control and coordination of all activities associated with their respective tasks. (WHK)

None,

1979-01-01T23:59:59.000Z

206

Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect

This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Carl Wharton; Kent Norris

2009-12-01T23:59:59.000Z

207

Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

Science Conference Proceedings (OSTI)

This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Carl Wharton; Kent Norris

2010-03-01T23:59:59.000Z

208

Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

SciTech Connect

This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

Carl Wharton

2009-10-01T23:59:59.000Z

209

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

210

Project Management Plan Examples 1 - 80 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Examples 1 - 80 Examples 1 - 80 Project Management Plan Examples 1 - 80 The following material has been extracted from several project management plans. The order in which it is presented is arbitrary. The descriptions below should be used to navigate to the subject of interest. Policy & Operational Decisions, Assumptions and Strategies - Examples 1 & 2 - Includes organizational responsibilities and structure, disposition path, future use of facility, S&S Reqs and plan, hazard elimination or mitigation, NEPA, RCRA, CERCLA, HVAC/lighting service reqs, structural integrity reqs, etc. Facility End State Decisions - Examples 3, 4 & 5 - Includes expected conditions at completion of the deactivation, DOE mission use, extended S&M, decommissioned and/or dismantled, etc.

211

Yakima Habitat Improvement Project Master Plan, Technical Report 2003.  

DOE Green Energy (OSTI)

The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a result of the planning effort leading to this Master Plan, a Technical Working Group (TWG) was established that represents most, if not all, fish and wildlife agencies/interests in the subbasin. This TWG met regularly throughout the planning process to provide input and review and was instrumental in the development of this plan. Preparation of this plan included the development of a quantitative prioritization process to rank 40,000 parcels within the Urban Growth Area based on the value of fish and wildlife habitat each parcel provided. Biological and physical criteria were developed and applied to all parcels through a GIS-based prioritization model. In the second-phase of the prioritization process, the TWG provided local expert knowledge and review of the properties. In selecting the most critical areas within the Urban Growth Area for protection, this project assessed the value of fish and wildlife habitat on the Yakima River. Well-developed habitat acquisition efforts (e.g., Yakima River Basin Water Enhancement Project by the Bureau of Reclamation and Yakama Nation acquisition projects) are already underway on the Yakima River mainstem. These efforts, however, face several limitations in protection of floodplain function that could be addressed through the support of the Yakima Habitat Improvement Project. This Master Plan integrates tributary habitat acquisition efforts with those ongoing on the Yakima River to best benefit fish and wildlife in the Urban Growth Area. The parcel ranking process identified 25 properties with the highest fish and wildlife value for habitat acquisition in the Yakima Urban Area. These parcels contain important fish and wildlife corridors on Ahtanum and Wide Hollow Creeks and the Naches River. The fifteen highest-ranking parcels of the 25 parcels identified were considered very high priority for protection of fish and wildlife habitat. These 15 parcels were subsequently grouped into four priority acquisition areas. This Master Plan outlines a four-year schedule for acquisition, protection, and restoration of the 25 highest ranked prop

Golder Associates, Inc.

2003-04-22T23:59:59.000Z

212

Transportation Emergency Preparedness Program Plan, U.S. Department of Energy Region 6  

Science Conference Proceedings (OSTI)

The United States Department of Energy (DOE) Region 6 Transportation Emergency Preparedness Program Plan (TEPP Plan) operates within the framework of the DOE emergency management system for developing, coordinating, and directing emergency planning, preparedness, and readiness assurance activities for radiological transportation incidents. The DOE Region 6 TEPP Plan is a narrative description of the DOE Transportation Emergency Preparedness Program activities, training and technical assistance provided to states and tribes along DOE's transportation corridors in DOE Region 6.

Marsha Keister

2010-04-01T23:59:59.000Z

213

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Petroleum Reduction Plan Caley Johnson Technical Report NREL/TP-7A40-52565 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 U.S. Virgin Islands Transportation Petroleum Reduction Plan Caley Johnson Prepared under Task No. IDVI.0070 Technical Report NREL/TP-7A40-52565 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

214

U.S. Virgin Islands Transportation Petroleum Reduction Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Petroleum Reduction Plan Caley Johnson Technical Report NREL/TP-7A40-52565 September 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 U.S. Virgin Islands Transportation Petroleum Reduction Plan Caley Johnson Prepared under Task No. IDVI.0070 Technical Report NREL/TP-7A40-52565 September 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

215

Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

Vollmer, A.T.

1993-10-01T23:59:59.000Z

216

Development of the Decontamination Approach for the West Valley Demonstration Project Decontamination Project Plan  

SciTech Connect

This paper details the development of a decontamination approach for the West Valley Demonstration Project (WVDP), Decontamination Project Plan (Plan). The WVDP is operated by West Valley Nuclear Services Company (WVNSCO), a subsidiary of Westinghouse Government and Environmental Services, and its parent companies Washington Group International and British Nuclear Fuels Limited (BNFL). The WVDP is a waste management effort being conducted by the United States Department of Energy (DOE) at the site of the only commercial nuclear fuel reprocessing facility to have operated in the United States. This facility is part of the Western New York Nuclear Service Center (WNYNSC), which is owned by the New York State Energy Research and Development Authority (NYSERDA). As authorized by Congress in 1980 through the West Valley Demonstration Project Act (WVDP Act, Public Law 96-368), the DOE's primary mission at the WVDP is to solidify high-level liquid nuclear waste safely; transport the high-level waste (HLW) to a federal repository; and decontaminate and decommission the facilities and hardware used to solidify the HLW and conduct the WVDP. This includes a provision for the disposal of low-level waste (LLW) and transuranic waste (TRU) produced during processing of the HLW. Continuation of the effort to reduce the hazard and risk associated with historic operations to the extent needed to ensure the health and safety of the public and the environment will see a change in focus from stabilization of liquid HLW to stabilization of former plutonium and uranium extraction (PUREX) reprocessing plant facilities. This will be achieved through the activities of in-cell component removal and packaging, and preparation for long-term disposal of the long- lived radionuclides. These radionuclides are associated with the former PUREX facility operations, including, and upstream from, facilities utilized in the primary separation and first plutonium/uranium split cycles. The closure strategy for the WVDP is subject to ongoing evaluation and decision-making involving DOE and NYSERDA. Implementation will be subject to a future Record of Decision (ROD) and an Environmental Impact Statement (EIS).

Milner, T. N.; Watters, W. T.

2002-02-25T23:59:59.000Z

217

World Energy Projection System Plus Model Documentation: Transportation Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Victoria Zaretskaya

2011-09-29T23:59:59.000Z

218

Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan  

SciTech Connect

This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

Shank, D.R.

1994-12-29T23:59:59.000Z

219

Intermediate evaluation of USAID/Cairo energy policy planning project  

Science Conference Proceedings (OSTI)

Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

Wilbanks, T.J.; Wright, S.B. [Oak Ridge National Lab., TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); Kamel, A.M. [Ain Shams Univ., Cairo (Egypt); Santiago, H.T. [USDOE, Washington, DC (United States)

1992-09-01T23:59:59.000Z

220

Intermediate evaluation of USAID/Cairo energy policy planning project  

Science Conference Proceedings (OSTI)

Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

Wilbanks, T.J.; Wright, S.B. (Oak Ridge National Lab., TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); Kamel, A.M. (Ain Shams Univ., Cairo (Egypt)); Santiago, H.T. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

NONE

1995-04-01T23:59:59.000Z

222

Uranium Mill Tailings Remedial Action Project environmental protection implementation plan  

Science Conference Proceedings (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

Not Available

1994-10-01T23:59:59.000Z

223

Example Measurement & Verification Plan for a Super ESPC Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6.1 6.1 Example M&V Plan Example Measurement & Verification Plan for a Super ESPC Project February 2007 Federal Energy Management Program (FEMP) Office of Energy Efficiency and Renewable Energy U.S. Department of Energy This document was developed for the U.S. Department of Energy's Federal Energy Management Program by Nexant, Inc., and Lawrence Berkeley National Laboratory. This document is posted on FEMP's web site at www.eere.energy.gov/femp/financing/superespcs_mvresources.cfm. Comments should be sent to lwebster@nexant.com. 6.1 Example M&V Plan Contents 1. EXECUTIVE SUMMARY / M&V OVERVIEW AND PROPOSED SAVINGS CALCULATIONS ................................................................................................... 2 1.1

224

Report on the planning workshop on cost-effective ceramic machining. Ceramic Technology Project  

DOE Green Energy (OSTI)

A workshop on ``Cost Effective Ceramic Machining`` (CECM) was held at Oak Ridge Associated Universities Pollard Auditorium, Oak Ridge, Tennessee, May 1991. The purpose of this workshop was to present a preliminary project plan for industry critique and to identify specific components and cost-reduction targets for a new project on Cost Effective Ceramic Machining. The CECM project is an extension of the work on the Ceramic Technology for Advanced Heat Engines (CTAHE) Program sponsored by the Department of Energy, Office of Transportation Materials. The workshop consisted of fifteen invited papers, discussions, a survey of the attendee`s opinions, and a tour of the High Temperature Materials Laboratory at ORNL. The total number of registrants was sixty-seven, including thirty-three from industry or private sector organizations, seven from universities, three from industry groups, fourteen from DOE laboratories (including ORNL, Y-12, and Lawrence Livermore Laboratory), three from trade associations, and three from other government organizations. Forty- one survey forms, which critiqued the proposed project plan, were completed by attendees, and the results are presented in this report. Valves, cam roller followers, water pump seals, and diesel engine head plates were rated highest fro application of ceramic machining concepts to reduce cost. Coarse grinding, abrasives and wheel technology, and fine grinding were most highly rated as regards their impact on cost reduction. Specific cost-reduction targets for given parts varied greatly in the survey results and were not felt to be useful for the purposes for the CECM plan development. A range of individual comments were obtained and are listed in an appendix. As a result of the workshop and subsequent discussions, a modified project plan, different in certain aspects from the original CECM plan, has been developed.

Blau, P.J.

1991-11-01T23:59:59.000Z

225

The effects of the Colorado River project on longshore sediment transport at Matagorda Peninsula, Texas  

E-Print Network (OSTI)

In 1968, federal authorization was given for the mouth of the Colorado River project in response to a need for a dependable, navigable channel connecting the Gulf Intracoastal Waterway to the Gulf of Mexico near the town of Matagorda, Texas. The project included the construction of jetties along Matagorda Peninsula at the channel entrance in 1985, and the diversion of Colorado River discharge from the Gulf into Matagorda Bay in 1992. An evaluation of project impacts on the natural sediment budget is performed within this study to determine the effectiveness of the project at preserving an open, navigable channel while preventing accelerated shoreline erosion. Evaluation is done through inspection of project impacts to longshore sediment transport, and includes both physical and numerical analysis of pre-and post-project conditions at the Colorado River mouth. Assessment of site data reveals that under the dredging schedule used during the first eight years following jetty completion, the project resulted in significant trapping and sorting of sediment transported alongshore. The original design project maintenance dredging plan is presented as a more effective maintenance schedule and is numerically tested based on pre-project objectives.

Heilman, Daniel Jon

1995-01-01T23:59:59.000Z

226

Greenhouse gas action plan for the transportation sector in Iowa  

SciTech Connect

The purpose of this research has been to identify ways in which the state of Iowa can do its part in reducing greenhouse gas emissions in its transportation sector. A variety of strategies and policy actions for reducing greenhouse gas emissions in Iowa are explored in this report. Some of these actions would be relatively easy to implement, while others would require significant changes in how people live and travel. The authors` work on this research effort has been conducted in tandem with a larger study to develop a greenhouse gas action plan for Iowa.

Ney, R.A.; Schnoor, J.L.; Foster, N.S.J.; Forkenbrock, D.J.

1997-12-31T23:59:59.000Z

227

EM Capital and Major Operating Project Standard Review Plan Edition Two  

Energy.gov (U.S. Department of Energy (DOE))

This memorandum introduces the Second Edition of the Capital and Major Operations Projects Standard Review Plan (SRP).

228

DOE G 413.3-15, Department of Energy Guide for Project Execution Plans  

Directives, Delegations, and Requirements

This directive provides guidance for the federal project director to produce a useful and flexible plan. No cancellation.

2008-09-12T23:59:59.000Z

229

Project Management Plan (PMP), W-364, 209E septic system upgrade, 200 East Area  

SciTech Connect

The document is the Project Management Plan (PMP) of the design and installation of the 209E Septic System Upgrade.

Lott, D.T.

1994-09-20T23:59:59.000Z

230

Vadose zone transport field study: Detailed test plan for simulated leak tests  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

AL Ward; GW Gee

2000-06-23T23:59:59.000Z

231

Nuclear criticality project plan for the Hanford Site tank farms  

SciTech Connect

The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste characterization with respect to fissile material. The review indicated that the conclusion in the FSARS, that a criticality is not credible, cannot be supported for a full range of potential tank constituents. Therefore, a USQ was declared. Development of a credible scenario leading to a criticality proved to be extremely difficult, given the paucity of data on the quantity and distribution of fissile material in the tanks. The objective of this project plan is to develop a strategy and technical approach to provide a CTBSD for the FSAR and for resolution of the nuclear criticality safety issue pertaining to tank farm waste storage and transfer operations. The strategy and technical approach identified in this project plan include definition of administrative and technical tasks. Technical analyses will include mechanistic studies, historical data review, and additional limited neutronics analysis. Completion of these studies will be documented in a CTBSD to support the existing criticality technical basis. The CTBSD will be incorporated in the criticality portion of the FSAR.

Bratzel, D.R., Westinghouse Hanford

1996-08-06T23:59:59.000Z

232

An interactive fuzzy multi-objective approach for operational transport planning in an automobile supply chain  

Science Conference Proceedings (OSTI)

A novel supply chain operational transport planning model is developed in this paper. The goals of the model are to minimize the number of used trucks and the total inventory levels. Because of somewhat imprecise nature of vehicle capacities and decision ... Keywords: fuzzy multi-objective linear programming, supply chain planning, transport planning, uncertainty

David Peidro; Manuel Daz-Madroero; Josefa Mula

2010-02-01T23:59:59.000Z

233

National Program Plan Fuel Cells in Transportation. Executive Summary  

DOE Green Energy (OSTI)

Fuel cells are being developed for application in the transportation sector because they will convert hydrogen to electric power at high efficiencies with virtually no detrimental environmental impact. To realize these energy, environmental, and economic benefits, developers of FCVs need to (1) reduce the size and weight of current designs, (2) develop fuel cell propulsion systems with rapid start-up and greater load-following capability, (3) reduce system cost and/or improve performance, and (4) utilize alternative fuels to a large extent. This Plan addresses the FCV-related requirements of the Energy Act, describing a development program for light- and heavy-duty propulsion systems, a basic R&D program on fuel cell technology that is separate from, but feeds into, the system development activities, and supporting analyses. Implementation of the Program Plan by means of industry/government alliances will accelerate the commercialization of FCVs. In the long term, the successful deployment of large numbers of FCVs promises to eliminate the transportation sector as a major contributor to the nation`s environmental problems.

Not Available

1993-02-01T23:59:59.000Z

234

PUREX/UO{sub 3} deactivation project management plan  

Science Conference Proceedings (OSTI)

From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.

Washenfelder, D.J.

1993-12-01T23:59:59.000Z

235

Large hadron collider (LHC) project quality assurance plan  

Science Conference Proceedings (OSTI)

The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

2002-09-30T23:59:59.000Z

236

Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan  

SciTech Connect

The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

NONE

1981-05-01T23:59:59.000Z

237

Near Facility Environmental Monitoring Quality Assurance Project Plan  

SciTech Connect

This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

MCKINNEY, S.M.

2000-05-01T23:59:59.000Z

238

Local Option Taxes and the New Subregionalism in Transportation Planning  

E-Print Network (OSTI)

share of transportation and other social costs. Developersshare of transportation and other social costs. Developers

Goldman, Todd Mitchel

2005-01-01T23:59:59.000Z

239

Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan  

SciTech Connect

The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented.

Randklev, E.H.

1993-06-01T23:59:59.000Z

240

Dept. of Energy/Dept. of Transportation Gas Turbine Transit Bus Demonstration Program: program plan  

SciTech Connect

This document is the program plan for a cooperative project of the Urban Mass Transportation Administration (UMTA) of the Department of Transportation and the Division of Transportation Energy Conservation (TEC) of the Department of Energy to test and evaluate the use of gas-turbine engines in transit buses. UMTA is responsible for furnishing buses from UMTA grantees, technical direction for bus/engine integration, and coordination of operational use of buses in selected cities. TEC is responsible for providing gas turbines, data acquisition/reduction services, and management for the complete project. The project will be carried out in three phases. In Phase I, prototype turbine engines will be used. One turbine-powered bus and diesel-powered bus will be tested at a test facility to obtain baseline data. Five turbine-powered buses will be evaluated in revenue service in one city. In Phase II, preproduction turbine engines will be used. One turbine-powered bus and diesel-powered bus will be baseline tested and ten turbine-powered buses will be evaluated in two cities. In Phase III, production gas turbine engines will be used. Only the turbine-powered bus will run baseline tests in this phase. Ten turbine-powered buses will be evaluated in two cities.

1978-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Fermilab ISDN Pilot Project: Experiences and future plans  

SciTech Connect

Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking.

Martin, D.E.; Lego, A.J.; Clifford, A.E.

1995-12-31T23:59:59.000Z

242

Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)  

SciTech Connect

This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

VAN BEEK, J.E.

2000-04-19T23:59:59.000Z

243

Annual Planning Summaries: Advanced Research and Projects Agency (ARPA-E) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Projects Agency Research and Projects Agency (ARPA-E) Annual Planning Summaries: Advanced Research and Projects Agency (ARPA-E) Document(s) Available For Download February 2, 2012 2012 Annual Planning Summary for Advanced Research Projects Agency-Energy The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Advanced Research Projects Agency-Energy. January 26, 2011 2011 Annual Planning Summary for Advanced Research and Projects Agency (ARPA-E) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Advanced Research and Projects Agency (ARPA-E). February 1, 2010 2010 Annual Planning Summary for Advanced Research Projects Agency-Energy (ARPA-E) Annual Planning Summaries briefly describe the status of ongoing NEPA

244

Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan  

Science Conference Proceedings (OSTI)

This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

Not Available

1994-06-14T23:59:59.000Z

245

River Protection Project (RPP) Dangerous Waste Training Plan  

Science Conference Proceedings (OSTI)

This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

POHTO, R.E.

2000-03-09T23:59:59.000Z

246

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

MJ Hartman; PE Dresel; JW Lindberg; DR Newcomer; EC Thornton

2000-10-18T23:59:59.000Z

247

Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently.

Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

1999-10-06T23:59:59.000Z

248

Basing Transport Planning on Principles of Social Justice  

E-Print Network (OSTI)

M. Frost, et al. (2000). Transport and Social Exclusion inG. Willumsen. (1994). Modelling Transport. Chichester: JohnG. Willumsen. (2001). Modelling Transport. Chichester: John

Martens, Karel

2006-01-01T23:59:59.000Z

249

Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information  

SciTech Connect

The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigations for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to improve and expedite the traffic investigation part of the EIS process are presented.

Franzese, Oscar [ORNL

2010-08-01T23:59:59.000Z

250

2012 Annual Workforce Analysis and Staffing Plan Report - West Valley Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ATTACHMENT ATTACHMENT 1 Annual Workforce Analysis and Staffing Plan Report As ofDecember 31, 2012 Reporting Office: West Valley Demonstration Project Section 1: Current Mission(s) of the Organization and Potential Changes The mission of the WVDP as defined by the West Valley Demonstration Project Act (Public Law 96-368) is to accomplish five activities: 1) solidify high-level radioactive waste (HLW), 2) develop containers suitable for permanent disposal of the HLW, 3) transport the HLW to a Federal repository for permanent disposal, 4) dispose of low-level and transuranic waste produced by the solidification of the HLW, and 5) decontaminate and decommission the HLW tanks and facilities, materials and hardware used to solidify the HLW. DOE expects to accomplish these WVDP activities through proactive leadership, management, and implementation of safe and environmentally sound operations.

251

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

252

West Virginia Smart Grid Implementation Plan (WV SGIP) Project  

NLE Websites -- All DOE Office Websites (Extended Search)

WV DoE-NRCCE-APERC DRAFT February 16, 2009 WV DoE-NRCCE-APERC DRAFT February 16, 2009 1 West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Customer Complaints to WV PSC about Electric Power Service Ali Feliachi, Muhammad Choudhry, John Saymansky and Ed Sneckenberger February 16, 2009 Introduction APERC has appreciated that one of the most important sources for data on the consumer perspective of the current electric power grid in West Virginia would be the WV Public Service Commission (WV PSC). Thus, an email request was sent on December 19, 2008 to Byron Harris at the WV PSC to request any advice or approaches to determine customer and regulatory perspectives of the current electric power grid in WV. Customer Complaint Data Bryon Harris was able to provide a spreadsheet of customer complaints in West Virginia for

253

PROJECT MANGEMENT PLAN EXAMPLES Policy & Operational Decisions, Assumptions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy & Operational Decisions, Assumptions Policy & Operational Decisions, Assumptions and Strategies Examples 1 & 2 Example 1 1.0 Summary The 322-M Metallurgical Laboratory is currently categorized as a Radiological Facility. It is inactive with no future DOE mission. In May of 1998 it was ranked Number 45 in the Inactive Facilities Risk Ranking database which the Facilities Decommissioning Division maintains. A short-term surveillance and maintenance program is in-place while the facility awaits final deactivation. Completion of the end points described in this deactivation project plan will place the 322-M facility into an End State that can be described as "cold and dark". The facility will be made passively safe requiring minimal surveillance and no scheduled maintenance.

254

U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan  

SciTech Connect

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

Not Available

1994-09-01T23:59:59.000Z

255

Semantics-based, strategic planning and composition of intermodal freight transport services in sea port hinterlands  

Science Conference Proceedings (OSTI)

The modular logistic transport of goods on streets, railroads, inland water and sea is a complex and versatile process. It requires exact knowledge of geographic information, available logistical service providers and communication channels. This application ... Keywords: intermodal freight transport, logistic chains, logistic service descriptions, multi-modal route planning, ontologies, routing chains, strategic planning and optimization

Thomas Ruth; Guntram Flach; Martin Weitzel

2011-09-01T23:59:59.000Z

256

Smooth path and speed planning for an automated public transport vehicle  

Science Conference Proceedings (OSTI)

This paper presents a path and speed planner for automated public transport vehicles in unstructured environments. Since efficiency and comfort are two of the key issues in promoting this kind of transportation system, they are dealt with explicitly ... Keywords: Automated vehicles, Path planning, Speed planning

Jorge Villagra; Vicente Milans; Joshu Prez; Jorge Godoy

2012-02-01T23:59:59.000Z

257

Usable Science? The U.K. Climate Projections 2009 and Decision Support for Adaptation Planning  

Science Conference Proceedings (OSTI)

With future changes in climate being inevitable, adaptation planning has become a policy priority. A central element in adaptation planning is scientific expertise and knowledge of what the future climate may hold. The U.K. Climate Projections ...

Samuel Tang; Suraje Dessai

2012-10-01T23:59:59.000Z

258

2010 Annual Planning Summary for Advanced Research Projects Agency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Planning Summary for National Nuclear Security Administration Service Center (NNSA-SC) 2010 Annual Planning Summary for Idaho Operations Office (ID) Energy.gov Careers &...

259

Transportation Secure Data Center: Real-World Data for Transportation Planning and Land Use Analysis (Fact Sheet)  

Science Conference Proceedings (OSTI)

The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Transit planning, Travel demand modeling, Homeland Security evacuation planning, Alternative fuel station planning, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

Not Available

2013-01-01T23:59:59.000Z

260

Quality Assurance Program Plan (QAPP) Waste Management Project  

SciTech Connect

This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

VOLKMAN, D.D.

1999-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Project management plan for the gunite and associated tanks treatability studies project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This plan for the Gunite and Associated Tanks (GAAT) Treatability Studies Project satisfies the requirements of the program management plan for the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program as established in the Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program. This plan is a subtier of several other ER documents designed to satisfy the US Department of Energy (DOE) Order 4700.1 requirement for major systems acquisitions. This project management plan identifies the major activities of the GAAT Treatability Studies Project; establishes performance criteria; discusses the roles and responsibilities of the organizations that will perform the work; and summarizes the work breakdown structure, schedule, milestones, and cost estimate for the project.

1995-12-01T23:59:59.000Z

262

Large hadron collider (LHC) project quality assurance plan  

E-Print Network (OSTI)

PUB-5478-Rev.B Large Hadron Collider (LHC) Project Qualityobjectives of the Large Hadron Collider (LHC) Project in aparticipation in the Large Hadron Collider Project. The LHC/

Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

2002-01-01T23:59:59.000Z

263

EM Quality Assurance Centralized Training Platform Project Plan for 2009-2010  

Energy.gov (U.S. Department of Energy (DOE))

Project plan for the development of a centralized quality assurance training platform to develop a consistent approach and methodology to training personnel.

264

Page 1 of 2 2012 Texas Department of Transportation Planning Conference  

E-Print Network (OSTI)

Page 1 of 2 2012 Texas Department of Transportation Planning Conference: Application & Contract Texas Transportation Institute Texas A&M University System 3135 TAMU College Station, TX 77843-3135 July Application to exhibit, dated this day of , 20 by and between the Texas Transportation Institute, hereinafter

265

Center for Transportation Studies Nohad A. Toulan School of Urban Studies and Planning  

E-Print Network (OSTI)

Center for Transportation Studies Nohad A. Toulan School of Urban Studies and Planning College-disciplinary research on multi-modal surface transportation issues; educating a diverse array of current practitioners and future leaders in the transportation field; and encouraging implementation of relevant research results

Bertini, Robert L.

266

Using Travel Time Reliability Measures to Improve Regional Transportation Planning and URS Corporation  

E-Print Network (OSTI)

, connectivity, and safety to evaluate the transportation system's health and determine where future investmentsUsing Travel Time Reliability Measures to Improve Regional Transportation Planning and Operations of the Transportation Research Board January 13­17, 2008 Revised November 3, 2007 TRB 2008 Annual Meeting CD-ROM Paper

Bertini, Robert L.

267

NREL: Financing Geothermal Power Projects - Planning and Timing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Technology Deployment Energy Systems Integration Financing Geothermal Power Projects Geothermal Technologies Financing Geothermal Power Projects Search...

268

Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100  

SciTech Connect

The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

Borgeson, M.E.

1994-11-09T23:59:59.000Z

269

Driven to congestion : how the planning, engineering and politics of transportation established, preserves and perpetuates the automobile city  

E-Print Network (OSTI)

The last eight decades of urban transportation planning and engineering in the United States have been dominated by the hegemony of the automobile. Auto-oriented planning of the transportation and land use system has had ...

Krishnamurthy, Vignesh (Vignesh Kumar)

2012-01-01T23:59:59.000Z

270

On the road to conservation: state conservation strategies and applications for transportation planning  

E-Print Network (OSTI)

Improvement Program (STIP): A short-term program for theimprovement program (STIP). At a glance, we can seeImprovement Projects (STIP). State transportation

White, Patricia A.

2005-01-01T23:59:59.000Z

271

Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status  

Energy.gov (U.S. Department of Energy (DOE))

Presentation made by Jeff Williams for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY.

272

Configuration Management Plan for Tank Farm Restoration and Safe Operations Project W-314  

Science Conference Proceedings (OSTI)

The Configuration Management Plan for Project W-314 describes the systems, processes and procedures for implementation of applicable configuration management practices described in HNF-0842, Volume 111, Section 3.1, ''Configuration Management Implementation''. This plan is tailored specifically for use by Project W-314.

MCGREW, D.L.

2000-04-19T23:59:59.000Z

273

Risk Management Plan for Tank Farm Restoration and Safe Operations Project W-314  

SciTech Connect

The Risk Management Plan for Project W-314 describes the systems, processes and procedures for implementation of applicable risk management practices described in HNF-0842, Volume IV, Section 2.6, ''Risk Management''. This plan is tailored specifically for use by Project W-314.

MCGREW, D.L.

2000-04-19T23:59:59.000Z

274

Test Plan for Hydrogen Getters Project - Phase II  

DOE Green Energy (OSTI)

Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

Mroz, G.

1999-02-05T23:59:59.000Z

275

UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

NONE

1995-06-01T23:59:59.000Z

276

Transportation planning for mega events : a model of urban change  

E-Print Network (OSTI)

My study is about opportunities for revolutionary developments in urban transport. Often, we think of transport and urban development as an evolutionary process, yet there exist a few opportunities for cities to revolutionize ...

Kassens, Eva

2009-01-01T23:59:59.000Z

277

Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites  

SciTech Connect

This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

Richman, Eric E.

2012-10-31T23:59:59.000Z

278

The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-03T23:59:59.000Z

279

University of Nebraska Lincoln Capital Project Planning Decision Flowchart  

E-Print Network (OSTI)

originator provides general sizing, implications, cost estimate, etc. for project. If necessary, proposal Project proposal with costs estimates provided to Chancellor and Senior Administrative Team. Determined and inflationary increases to keep project costs as current and accurate as possible. APC Project Review using

Farritor, Shane

280

The Groundwater Performance Assessment Project Quality Assurance Plan  

Science Conference Proceedings (OSTI)

This document provides the quality assurance guidelines that will be followed by the groundwater project.

Walker, Thomas G.

2005-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

UMTRA project water sampling and analysis plan, Grand Junction, Colorado  

Science Conference Proceedings (OSTI)

Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

Not Available

1994-07-01T23:59:59.000Z

282

UMTRA Project water sampling and analysis plan, Falls City, Texas  

SciTech Connect

Surface remedial action will be completed at the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site in the spring of 1994. Results of water sampling activity from 1989 to 1993 indicate that ground water contamination occurs primarily in the Deweesville/Conquista aquifer (the uppermost aquifer) and that the contamination migrates along four distinct contaminant plumes. Contaminated ground water from some wells in these regions has significantly elevated levels of aluminum, arsenic, cadmium, manganese, molybdenum, selenium, sulfate, and uranium. Contamination in the Dilworth aquifer was identified in monitor well 977 and in monitor well 833 at the southern edge of former tailings pile 4. There is no evidence that surface water quality in Tordilla and Scared Dog Creeks is impacted by tailings seepage. The following water sampling activities are planned for calendar year 1994: (1) Ground water sampling from 15 monitor wells to monitor the migration of the four major contaminant plumes within the Deweesville/Conquista aquifer. (2) Ground water sampling from five monitor wells to monitor contaminated and background ground water quality conditions in the Dilworth aquifer. Because of disposal cell construction activities, all plume monitor wells screened in the Dilworth aquifer were abandoned. No surface water locations are proposed for sampling. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the Deweesville/Conquista aquifer downgradient of the disposal cell. The list of analytes has been modified with time to reflect constituents currently related to uranium processing activities and natural uranium mineralization. Water sampling is normally conducted biannually in late summer and midwinter.

1994-02-01T23:59:59.000Z

283

GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport (Español)  

Open Energy Info (EERE)

GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport (Español) GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport (Español) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport (Español) Agency/Company /Organization: GIZ Complexity/Ease of Use: Not Available Website: www.sutp.org/component/phocadownload/category/25-2a?download=33:2a-lup Related Tools Alternative Fuels and Advanced Vehicles Data Center Demonstrating Electric Vehicles in Canada Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia ... further results Find Another Tool FIND TRANSPORTATION TOOLS Which cities have succeeded in establishing land use patterns which support the more environmentally-friendly and efficient modes of transit, walking and cycling? What are the benefits of better land use planning for

284

Framework for designing regional planning architecture for APTS-enabled regional multimodal public transportation system  

E-Print Network (OSTI)

Unsustainable transportation systems have been the cause of many problems facing urban areas around the world. Lack of regard for sustainable development considerations by those responsible for planning and implementing ...

Zakaria, Zulina

2004-01-01T23:59:59.000Z

285

Configuration Management Plan for Long Length Contaminated Equipment Receiver and Transport Trailers  

SciTech Connect

Long Length Contaminated Equipment Removal System Receiver Trailers and Transport Trailers require identification and control for the design, requirements and operations baseline documents. This plan serves as those controls for the subject trailers.

DALE, R.N.

2000-12-18T23:59:59.000Z

286

Integrating regional strategic transportation planning and supply chain management : along the path to sustainability  

E-Print Network (OSTI)

A systems perspective for regional strategic transportation planning (RSTP) for freight movements involves an understanding of Supply Chain Management (SCM). This thesis argues that private sector freight shippers and ...

Sgouridis, Sgouris P

2005-01-01T23:59:59.000Z

287

PROJECT MANGEMENT PLAN EXAMPLES Prepare Detailed Work Packages...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Work Packages Examples Example 71 8.2.5 Work Processes Work associated with nuclear safety functions will be planned, authorized, and performed following approved technical...

288

Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement  

DOE Green Energy (OSTI)

In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

Reed, R.M.; Saulsbury, J.W.

1993-06-01T23:59:59.000Z

289

Standard Measurement & Verification Plan for Lighting Equipment Retrofit or Replacement Projects  

Science Conference Proceedings (OSTI)

This document provides a framework for a standard Measurement and Verification (M&V) plan for lighting projects. It was developed to support cost-effective retrofits (partial and complete replacements) of lighting systems and is intended to provide a foundation for an M&V plan for a lighting retrofit utilizing a "best practice" approach, and to provide guidance to site owners, contractors, and other involved organizations on what is essential for a robust M&V plan for lighting projects. This document provides examples of appropriate elements of an M&V plan, including the calculation of expected energy savings. The standard M&V plan, as provided, also allows for consistent comparison with other similar lighting projects. Although intended for lighting retrofit applications, M&V plans developed per this framework document may also be used for other non-lighting technology retrofits and new installations.

Richman, Eric E.

2009-11-04T23:59:59.000Z

290

EU warns of breakaway plans on nuclear project 24 September 2004  

E-Print Network (OSTI)

. He argued the project could be launched with Russia paying 10 percent of the costs and ChinaEU warns of breakaway plans on nuclear project 24 September 2004 The European Union is pushing increasingly hard for an accord on the site for a landmark nuclear energy project, while treading carefully

291

Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.  

DOE Green Energy (OSTI)

This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

Childs, Allen

2002-03-01T23:59:59.000Z

292

Regional Partner Announces Plans for Carbon Storage Project Using CO2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partner Announces Plans for Carbon Storage Project Using Regional Partner Announces Plans for Carbon Storage Project Using CO2 Captured from Coal-Fired Power Plant Regional Partner Announces Plans for Carbon Storage Project Using CO2 Captured from Coal-Fired Power Plant July 20, 2009 - 1:00pm Addthis Washington, DC - Southern Company and the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven members of the U.S. Department of Energy (DOE) Regional Carbon Sequestration Partnerships program, have announced plans to store carbon dioxide (CO2) captured from an existing coal-fired power plant. The project represents a major step toward demonstrating the viability of integrating carbon capture and storage to mitigate climate change. This storage project, located in the Citronelle Oil Field north of Mobile,

293

INL Site Executable Plan for Energy and Transportation Fuels Management  

Science Conference Proceedings (OSTI)

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

294

Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)  

Science Conference Proceedings (OSTI)

Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

VAN BEEK, J.E.

1999-09-02T23:59:59.000Z

295

LEDSGP/Transportation Toolkit/Key Actions/Prioritize and Plan | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Key Actions/Prioritize and Plan < LEDSGP‎ | Transportation Toolkit‎ | Key Actions(Redirected from Transportation Toolkit/Key Actions/Prioritize and Plan) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a

296

Project management plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory. Environmental Restoration Program  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place nineteen former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economically as possible. Implementation and completion of the deactivation project win further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S&M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project.

NONE

1995-04-01T23:59:59.000Z

297

Development of Facilities Master Plan and Laboratory Renovation Project  

SciTech Connect

Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the School??s overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

Andrea D. Fox

2011-10-03T23:59:59.000Z

298

Memo Issuance of EM Capital and Major Operating Project Standard Review Plan Edition Two  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MAR 2 4 201011 MAR 2 4 201011 MEMORANDUM FOR DISTRIBUTION FROM: DR. STEVEN L. KRAHN DEPUTY ASSISTANT SAFETY AND SECU EIVVIROIVMENTAL MANAGEMENT SUBJECT: Issuance of Environmental Management Capital and Major Operating Project Standard Review Plan Edition Two The Office of Environmental Management (EM) is responsible for managing the design, construction, operation, and eventual disposition of mission critical projects/facilities. Effective management of these projects requires multiple disciplines to be integrated and engaged at various project lifecycle phases. These disciplines include project management, engineering, design, safety, environment, safeguards and security, and quality assurance. The lessons-learned to date from ongoing Headquarters (HQ) and Field project reviews [e.g., Construction Project

299

Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.  

DOE Green Energy (OSTI)

This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Rainwater project is much more than a wildlife project--it is a watershed project with potential to benefit resources at the watershed scale. Goals and objectives presented in the following sections include both mitigation and non-mitigation related goals and objectives.

Childs, Allen B.

2002-03-01T23:59:59.000Z

300

The Commonwealth Electric Open Planning Project : final report  

E-Print Network (OSTI)

This report describes the development, application and results of an Open Planning Process performed by the M.I.T. Energy Laboratory's Analysis Group for Regional Electricity Alternatives (AGREA) for, and with the support ...

Andrews, Clinton J.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Twelve Trends for Consideration in California's Transportation Plan  

E-Print Network (OSTI)

of the projected housing demand within the county by 2020),housing to population ratios, would mean about 5 million additional households by 2020.

2001-01-01T23:59:59.000Z

302

Modeling and Optimization for Transportation Systems Planning and Operations  

E-Print Network (OSTI)

In this paper, we focus on a number of applications of network optimization techniques to transportation systems analysis. In particular, network analysis problems, network design problems, and network management problems ...

Gartner, Nathan H.

303

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

304

Safety Planning Guidance for Hydrogen and Fuel Cell Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

305

Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.  

DOE Green Energy (OSTI)

This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

Bissell, Gael

1985-01-01T23:59:59.000Z

306

Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.  

DOE Green Energy (OSTI)

This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

Mundinger, John

1985-01-01T23:59:59.000Z

307

Moab Mill Tailings Removal Project Plans to Resume Train Shipments in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans to Resume Train Shipments Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return Moab Mill Tailings Removal Project Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return February 25, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, donald.metzler@gjem.doe.gov 970-257-2115 Jeff Biagini, jeff.biagini@gjemrac.doe.gov 970-257-2117 Wendee Ryan, wryan@gjemtac.doe.gov 970-257-2145 Grand Junction, CO - All 27 employees of the Remedial Action Contractor (RAC) to the U.S. Department of Energy will return to work on the Uranium Mill Tailings Remedial Action Project on March 4, following a 3-month planned furlough. Project shipping and disposal operations have been shut down, as planned, since late November 2012, but are scheduled to resume

308

Corrective action investigation plan for Project Shoal Area CAU No. 416  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) is part of an ongoing US Department of Energy (DOE)-funded project for the investigation of Corrective Action Unit (CAU) No. 416, Project Shoal Area (PSA). Project Shoal was conducted to determine whether seismic waves produced by underground nuclear testing could be differentiated from naturally occurring earthquakes. The PSA site is located approximately 30 miles southeast of Fallon, Nevada, in the northern portion of Sand Springs Mountains in Churchill County. This CAIP will be implemented in accordance with the Federal Facility Agreement and Consent Order, the Industrial Sites Quality Assurance Project Plan, and all applicable Nevada Division of Environmental Protection policies and regulations.

NONE

1996-08-01T23:59:59.000Z

309

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

310

Fiscal Year 2003 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the Groundwater Monitoring Project. It documents well and constituent lists for the monitoring required by the Atomic Energy Act of 1954 and its implementing orders.

Hartman, Mary J.; Dresel, P. EVAN; Lindberg, Jon W.; McDonald, John P.; Newcomer, Darrell R.; Thornton, Edward C.

2002-11-01T23:59:59.000Z

311

ADDENDUM: CHANGES TO REVISED COGENERATION PROJECT COMPENSATORY MITIGATION PLAN  

E-Print Network (OSTI)

changes requested at that meeting are discussed here under five topics and presented in the order that they are presented in the Plan. 1. East Restoration Area The wetland planned for restoration in the East Restoration Area will now be expanded to total 0.5 acre in size. As discussed in Section 4.6, the Plan had only intended to restore the 0.2 acre of existing wetland area within the East Restoration Area. Figure 3 Restoration Areas Plan Topography and Plant Community Distribution has been revised to demonstrate the change. As previously, post-mitigation topography of the East Restoration Area will direct most surface and subsurface runoff to the wetland area. A portion of this water will travel directly from the upland area to be re-created within the Restoration Area. The remaining moisture will enter the wetland as surface water diverted to the seasonally inundated wetland area from a ditch that will be installed along the south edge of the East Restoration Area. As explained in the Plan, the surface water delivery will be designed to minimize intra-seasonal water level fluctuation and prevent flooding.

unknown authors

2003-01-01T23:59:59.000Z

312

System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)  

Science Conference Proceedings (OSTI)

This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

VAN BEEK, J.E.

2000-05-05T23:59:59.000Z

313

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders (''surveillance monitoring''); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J; Dresel, P Evan; Lindberg, Jon W; Newcomer, Darrell R; Thornton, Edward C

2001-10-31T23:59:59.000Z

314

FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project  

SciTech Connect

This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

2001-10-31T23:59:59.000Z

315

Lift-and-project relaxations of AC microgrid distribution system planning  

Science Conference Proceedings (OSTI)

We apply relaxation procedures to polynomial optimization problems that originate in transmission system planning, and obtain new convex formulations for the AC case. The approach is novel because the optimization is efficient but also addresses the ... Keywords: AC power flow, lift-and-project relaxation, linear programming, transmission system planning

Joshua A. Taylor; Franz S. Hover

2011-06-01T23:59:59.000Z

316

Lee Hot Springs power project. First topical report management plan  

Science Conference Proceedings (OSTI)

The Lee Hot Springs Project ({open_quotes}the Project{close_quotes}) will use binary cycle turbine-generators supplied by geothermal hot water to make electricity. Two clusters of three (3) 1,000 kilowatt ({open_quotes}kw{close_quotes}) projects, each cluster comprising a {open_quotes}plant,{close_quotes} will use the pumped output of one geothermal well. The plants will tie into Sierra Pacific Power Company`s ({open_quotes}Sierra`s{open_quotes}) transmission system. The Project objectives are designed to demonstrate that geothermal energy is a non-polluting, non-CO{sub 2} emitting form of generation, which if used in larger increments, will significantly reduce the emissions of greenhouse gasses. The Project will also demonstrate the use of modular, {open_quotes}non-grid{close_quotes} or {open_quotes}village{close_quotes} units which can be used throughout the world where geothermal energy is present in remote locations and power is not. The Project was conceived as a 20,000 kw Qualifying Facility, divided into two phases, a 5,000 kw phase one followed by a 15,000 kw phase two. The first phase of the Project now consists of two (2) 3,000 kw plants to generate 6,000 kws.

NONE

1996-03-18T23:59:59.000Z

317

Development of the Office of Civilian Radioactive Waste Management National Transportation Plan  

Science Conference Proceedings (OSTI)

The Director of the Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) designated development of the National Transportation Plan (NTP) as one of his four strategic objectives for the program. The Office of Logistics Management (OLM) within OCRWM was tasked to develop the plan, which will accommodate state, local, and tribal concerns and input to the greatest extent practicable. The plan will describe each element of the national transportation system that OCRWM is developing for shipping spent nuclear fuel and high-level radioactive waste to the proposed geologic repository at Yucca Mountain, Nevada. The plan will bring together OCRWM's approach for acquiring capital assets (casks, rail cars, and a rail line in Nevada) and its operational planning efforts in a single, comprehensive document. It will also provide a timetable for major transportation decisions and milestones needed to support a 2017 start date for shipments to the Yucca Mountain repository. The NTP will be revised to incorporate new developments and decisions as they are finalized. This paper will describe the elements of the NTP, its importance in providing a comprehensive overview of the national transportation system, and the role of stakeholders in providing input on the NTP and the national transportation system. (authors)

Macaluso, C. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Offner, J.; Patric, J. [Booz Allen Hamilton, Washington, DC (United States)

2008-07-01T23:59:59.000Z

318

Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

Irene Farnham

2011-05-01T23:59:59.000Z

319

Health and Safety Plan for NSTX Upgrade Project Tasks  

E-Print Network (OSTI)

and the DOE Hoisting and Rigging Manual. Herein is our site specific Health and Safety Plan for the work-vessel passive plates hardware. Rev 1 2 11/9111 #12;3.0 RESPONSmILITIES, AUTHORITIES, COMMUNICATIONS The Work

Princeton Plasma Physics Laboratory

320

Planning roadside infrastructure for information dissemination in intelligent transportation systems  

Science Conference Proceedings (OSTI)

We consider an intelligent transportation system where a given number of infrastructured nodes (called Dissemination Points, DPs) have to be deployed for disseminating information to vehicles in an urban area. We formulate our problem as a Maximum Coverage ... Keywords: Maximum coverage, Network deployment, Vehicular networks

O. Trullols; M. Fiore; C. Casetti; C. F. Chiasserini; J. M. Barcelo Ordinas

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

322

Integrated Environment and Safety and Health Management System (ISMS) Implementation Project Plan  

SciTech Connect

The Integrated Environment, Safety and Health Management System (ISMS) Implementation Project Plan serves as the project document to guide the Fluor Hanford, Inc (FHI) and Major Subcontractor (MSC) participants through the steps necessary to complete the integration of environment, safety, and health into management and work practices at all levels.

MITCHELL, R.L.

2000-01-10T23:59:59.000Z

323

QUEST2: Project plan for preliminary analysis/system architecture phase (PA/SA)  

SciTech Connect

This Project Management Plan combines the project management deliverables from the P+ methodology that are applicable to this part of the QUEST2 work. This consolidation reflects discussions with WHC QA regarding an appropriate method for ensuring that P+ deliverables fulfill the intent of WHC-CM-3-10 and QR-19.

Braaten, F.D.

1995-03-08T23:59:59.000Z

324

340 waste handling complex: Deactivation project management plan  

SciTech Connect

This document provides an overview of the strategy for deactivating the 340 Waste Handling Complex within Hanford`s 300 Area. The plan covers the period from the pending September 30, 1998 cessation of voluntary radioactive liquid waste (RLW) transfers to the 340 Complex, until such time that those portions of the 340 Complex that remain active beyond September 30, 1998, specifically, the Retention Process Sewer (RPS), can also be shut down and deactivated. Specific activities are detailed and divided into two phases. Phase 1 ends in 2001 after the core RLW systems have been deactivated. Phase 2 covers the subsequent interim surveillance of deactivated and stand-by components during the period of continued RPS operation, through the final transfer of the entire 340 Complex to the Environmental Restoration Contractor. One of several possible scenarios was postulated and developed as a budget and schedule planning case.

Stordeur, R.T.

1998-06-25T23:59:59.000Z

325

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr  

E-Print Network (OSTI)

> Bridges > Bridge approaches > Bridge railings > Transportation corridors > Streambeds > Pipe Street > Manuals > Handbooks > Literature reviews > Specifications > Performance based specifications > Standards

326

Wildlife and Wildlife Habitat Mitigation Plan for the Thompson Falls Hydroelectric Project, Final Report.  

DOE Green Energy (OSTI)

This document presents a preliminary mitigation and enhancement plan for the Thompson Falls hydroelectric project. It discusses options available to provide wildlife protection, mitigation and enhancement in accordance with the Pacific Northwest Electric Power Planning and Conservation Act of 1980 (P.L. 96-501). The options focus on mitigation for wildlife and wildlife habitat losses attributable to the construction of the hydroelectric project. These losses were previously estimated from the best available information concerning the degree of negative and positive impacts to target wildlife species (Wood and Olsen 1984). Criteria by which the mitigation alternatives were evaluated were the same as those used to assess the impacts identified in the Phase I document (Wood and Olsen 1984). They were also evaluated according to feasibility and cost effectiveness. This document specifically focuses on mitigation for target species which were identified during Phase I (Wood and Olsen 1984). It was assumed mitigation and enhancement for the many other target wildlife species impacted by the hydroelectric developments will occur as secondary benefits. The recommended mitigation plan includes two recommended mitigation projects: (1) development of wildlife protection and enhancement plans for MPC lands and (2) strategies to protect several large islands upstream of the Thompson Falls reservoir. If implemented, these projects would provide satisfactory mitigation for wildlife losses associated with the Thompson Falls hydroelectric project. The intent of the mitigation plan is to recommend wildlife management objectives and guidelines. The specific techniques, plans, methods and agreements would be developed is part of the implementation phase.

Bissell, Gael; Wood, Marilyn

1985-08-01T23:59:59.000Z

327

UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6  

Science Conference Proceedings (OSTI)

This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

NONE

1995-09-01T23:59:59.000Z

328

Engineering Task Plan (ETN-98-0007) Preparation of the Long Length Contaminated Equipment Transport System (LLCETS) for Deployment  

Science Conference Proceedings (OSTI)

This task plan addresses the scope, schedule, and deliverables associated with preparation of the Long Length Contaminated Equipment Transport System for deployment in the Tank Farms.

BOGER, R.M.

2000-04-07T23:59:59.000Z

329

Generalized linear model-based expert system for estimating the cost of transportation projects  

Science Conference Proceedings (OSTI)

Timely effective cost management requires reliable cost estimates at every stage of project development. While underestimation of transportation costs seems to be a global trend, improving early cost prediction accuracy in estimates is difficult. This ... Keywords: Cost management, Expert system, Generalized linear model, Relational database, Transportation projects

Jui-Sheng Chou

2009-04-01T23:59:59.000Z

330

Systems engineering management and implementation plan for Project W-464, immobilized high-level waste storage  

SciTech Connect

The Systems Engineering Management and Implementation Plan (SEMIP) for TWRS Project W-46 describes the project implementation of the Tank Waste Remediation System Systems Engineering Management Plan. (TWRS SEMP), Rev. 1. The SEMIP outlines systems engineering (SE) products and processes to be used by the project for technical baseline development. A formal graded approach is used to determine the products necessary for requirements, design, and operational baseline completion. SE management processes are defined, and roles and responsibilities for management processes and major technical baseline elements are documented.

Wecks, M.D.

1998-04-15T23:59:59.000Z

331

Office of Secure Transportation Twenty-Five Year Site Plan (TYSP)  

National Nuclear Security Administration (NNSA)

Secure Transportation Secure Transportation Twenty-Five Year Site Plan (TYSP) FY2013 FINAL Submitted June 29, 2012 National Nuclear Security Administration Office of Secure Transportation OST TYSP FY2013 Office of Secure Transportation Twenty-Five Year Site Plan NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe on privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,

332

Transportation Secure Data Center: Real-World Data for Planning, Modeling and Analysis (Fact Sheet)  

SciTech Connect

The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database gives, metropolitan planning organizations, universities, national laboratories, air quality management districts, disaster planning agencies and auto manufacturers free-of-charge web-based access to valuable transportation data. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

Not Available

2013-01-01T23:59:59.000Z

333

The Soils and Groundwater EM-20 S&T Roadmap Quality Assurance Project Plan  

Science Conference Proceedings (OSTI)

The Soils and Groundwater EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

Fix, N. J.

2008-02-11T23:59:59.000Z

334

Project Plan: Central and Eastern United States Seismic Source Characterization for Nuclear Facilities  

Science Conference Proceedings (OSTI)

This project plan outlines the Central and Eastern United States Seismic Source Characterization for Nuclear Facilities (CEUS SSC) Project, which will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI report NP-4726, July 1986. The objective of the CEUS SSC project is to develop an up-to-date assessment of probabilistic seismic hazard analysis (PSHA) SSC for CEUS. Input to a PSHA consists of both seismic source and ground motion characterization. These two components ...

2008-06-16T23:59:59.000Z

335

Removal Action Plan for the Accelerated Retrieval Project for a Described Area within Pit 4  

SciTech Connect

This Removal Action Plan documents the plan for implementation of the Comprehensive Environmental Response, Compenstion, and Liability Act non-time-critical removal action to be performed by the Accelerated Retrieval Project. The focus of the action is the limited excavation and retrieval of selected waste streams from a designated portion of the Radioactive Waste Management Complex Subsurface Disposal Area that are contaminated with volatile organic compounds, isotopes of uranium, or transuranic radionuclides. The selected retrieval area is approximately 0.2 ha (1/2 acre) and is located in the eastern portion of Pit 4. The proposed project is referred to as the Accelerated Retrieval Project. This Removal Action Plan details the major work elements, operations approach, and schedule, and summarizes the environmental, safety and health, and waste management considerations associated with the project.

A. M. Tyson

2006-08-01T23:59:59.000Z

336

Purpose driven competency planning for enterprise modeling projects  

Science Conference Proceedings (OSTI)

Much of the success of projects using Enterprise Modeling (EM) depends more on the quality of the process of modeling rather than on the method used. One important influence on the quality of the modeling process is the competency level of the experts ... Keywords: competence profile, enterprise modeling, modeling practitioner

Janis Stirna; Anne Persson

2012-06-01T23:59:59.000Z

337

Alaska Native Community Energy Planning and Projects (Fact Sheet)  

SciTech Connect

This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

2013-06-01T23:59:59.000Z

338

Spent nuclear fuels project: FY 1995 multi-year program plan, WBS {number_sign}1.4  

SciTech Connect

The mission of the Spent Nuclear Fuel (SNF) program is to safely, reliably, and efficiently manage, condition, transport, and store Department of Energy (DOE)-owned SNF, so that it meets acceptance criteria for disposal in a permanent repository. The Hanford Site Spent Nuclear Fuel strategic plan for accomplishing the project mission is: Establish near-term safe storage in the 105-K Basins; Complete national Environmental Policy Act (NEPA) process to obtain a decision on how and where spent nuclear fuel will be managed on the site; Define and establish alternative interim storage on site or transport off site to support implementation of the NEPA decision; and Define and establish a waste package qualified for final disposition. This report contains descriptions of the following: Work Breakdown Structure; WBS Dictionary; Responsibility Assignment Matrix; Program Logic Diagrams; Program Master Baseline Schedule; Program Performance Baseline Schedule; Milestone List; Milestone Description Sheets; Cost Baseline Summary by Year; Basis of Estimate; Waste Type Data; Planned Staffing; and Fiscal Year Work Plan.

Denning, J.L.

1994-09-01T23:59:59.000Z

339

Mobile model and transportation planning: A brief overview  

Science Conference Proceedings (OSTI)

MOBILE is a computer model developed by the U.S. Environmental Protection Agency (EPA) for estimating emissions of air pollutants by motor vehicles. Using information on the types and ages of vehicles and on local driving conditions, MOBILE estimates emissions of various pollutants during each mile that different types of vehicles are driven. These emissions rates are combined with transportation planners` estimated of the number of miles vehicles are driven within the region to estimate area-wide total emissions of each pollutant by highway vehicles, usually during a day or year.

NONE

1996-04-01T23:59:59.000Z

340

US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan  

Science Conference Proceedings (OSTI)

The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

Not Available

1993-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Greater-Than-Class C Low-Level Radioactive Waste Transportation Strategy report and institutional plan  

SciTech Connect

This document contains two parts. Part I, Greater-Than-Class-C Low-Level Radioactive Waste Transportation Strategy, addresses the requirements, responsibilities, and strategy to transport and receive these wastes. The strategy covers (a) transportation packaging, which includes shipping casks and waste containers; (b) transportation operations relating to the five facilities involved in transportation, i.e., waste originator, interim storage, dedicated storage, treatment, and disposal; (c) system safety and risk analysis; (d) routes; (e) emergency preparedness and response; and (o safeguards and security. A summary of strategic actions is provided at the conclusion of Part 1. Part II, Institutional Plan for Greater-Than-Class C Low-Level Radioactive Waste Packaging and Transportation, addresses the assumptions, requirements, and institutional plan elements and actions. As documented in the Strategy and Institutional Plan, the most challenging issues facing the GTCC LLW Program shipping campaign are institutional issues closely related to the strategy. How the Program addresses those issues and demonstrates to the states, local governments, and private citizens that the shipments can and will be made safely will strongly affect the success or failure of the campaign.

Schmitt, R.C.; Tyacke, M.J.

1995-01-01T23:59:59.000Z

342

Business Continuity Project Project Summary: Develop Business Continuity Plans for all critical functional areas of  

E-Print Network (OSTI)

-on-going #12;Specific Activities: · Designate BC director (several)-done · Involve top level management-done o-done o Perform Business Analysis-done, Marsh 1999 · Hire consultant to help develop plan-done o for plans o Distribute data collection packages to "critical" functions-done, o Train functions on how

343

Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.  

DOE Green Energy (OSTI)

The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

Yde, Chis

1990-06-01T23:59:59.000Z

344

Project Execution Plan Project 98L-EWW-460 Plutonium Stabilization and Handling DOE 98-D-453  

Science Conference Proceedings (OSTI)

This Project Execution Plan (PEP) describes the management methods and responsibilities of the project participants. Project W-460 is sufficiently large to warrant a stand alone PEP. This project specific PEP describes the relationships and responsibilities of the project team and identifies the technical, schedule, and cost baselines that have been established for the project. The Department of Energy (DOE), Hanford Works (Hanford), at Richland, Wa. currently does not have a system capable of stabilizing or packaging large quantities of plutonium-bearing solids to meet DOE technical standard DOE-STD-3013-99. This project will allow Hanford to meet this standard by installing stabilization and packaging equipment (SPE). The SPE is capable of stabilizing and packaging the current inventory of greater than 30 percent plutonium-bearing materials currently stored in the Plutonium Finishing Plant's (PFP) vaults into 3013 storage containers. The scope of this project is to procure and install the SPE via a Hanford contract and coordination with the Savannah River Site. In addition, the project will modify PFP vaults and upgrade the PFP Laboratory measurement systems. The Facility infrastructure will be modified to support the new SPE system and the new standardized storage container configuration.

MCGRATH, G.M.

2000-06-21T23:59:59.000Z

345

A comprehensive GIS-based poultry litter management system for nutrient management planning and litter transportation  

Science Conference Proceedings (OSTI)

Confined poultry (broiler) production in Alabama results in about 1.8 million tons of litter annually. Because poultry production mainly occurs in the Appalachian Plateau region of north Alabama, this region suffers from excessive land application of ... Keywords: Broiler litter, Comprehensive nutrient management plan, Decision support system, Geographic information system, Poultry litter, Transportation analysis

M. S. Kang; P. Srivastava; T. Tyson; J. P. Fulton; W. F. Owsley; K. H. Yoo

2008-12-01T23:59:59.000Z

346

Distribution System planning for Smart Grids, ForskEL (Smart Grid Project)  

Open Energy Info (EERE)

planning for Smart Grids, ForskEL (Smart Grid Project) planning for Smart Grids, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Distribution System planning for Smart Grids, ForskEL Country Denmark Coordinates 56.26392°, 9.501785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":56.26392,"lon":9.501785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

GJO-2000-177-TAR GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0017-12-000 Document Number U0066302 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0066302 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Old Rifle, Colorado

348

UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1  

SciTech Connect

Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

NONE

1995-09-01T23:59:59.000Z

349

E:\Active Projects\Comprehensive Land Use Plan\fclup.prn.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

FERMILAB FERMILAB COMPREHENSIVE LAND USE PLAN f FERMILAB TABLE OF CONTENTS Comprehensive Land Use Report Contents * PAGE i * Revision 0 * April 15, 1998 Contents f Table of Contents I. Regional Conditions............................................................................. .1 1. History ............................................................................................. 1 2. Regional Overview........................................................................ 7 3. Specific Local Conditions ........................................................... 10 4. Public Transportation.................................................................. 17 5. Geology/Seismic Risk/Topography/Hydrology ................. 25 6. Meteorology..................................................................................

350

Transportation Energy Model of the World Energy Projection System ...  

U.S. Energy Information Administration (EIA)

The WEPS Transportation Energy Model is a structural accounting model for road, rail, air, domestic shipping, international shipping, and pipeline energy use.

351

New pipeline project could lower natural gas transportation costs ...  

U.S. Energy Information Administration (EIA)

... natural gas transportation costs to New York City could be reduced with the expansion of the existing Texas Eastern Transmission pipeline from Linden, New ...

352

Quality Assurance Program Plan (QAPP) Waste Management Project  

Science Conference Proceedings (OSTI)

The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

HORHOTA, M.J.

2000-12-21T23:59:59.000Z

353

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S&M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S&M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the IFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of IFDP facilities was initiated in FY 1994 and will be completed in FY 1999. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $36M. The costs are summarized. Upon completion of deactivation, annual S&M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-05-01T23:59:59.000Z

354

Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

Science Conference Proceedings (OSTI)

The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, and the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.

NONE

1995-08-01T23:59:59.000Z

355

Chernobyl shelter implementation plan -- project development and planning: Setting the stage for progress  

SciTech Connect

On April 26, 1986, the Chernobyl nuclear power plant (NPP) experienced a devastating accident. This accident left much of the plant and its safety systems destroyed with widespread radioactive waste contamination from the damaged nuclear fuel. In the 6 months following the accident, heroic measures were taken to stabilize the situation and erect a temporary confinement shelter over the damaged unit 4. Since that time the shelter and the contained radioactive materials and debris have begun to deteriorate. Lack of funding and staff has allowed only minor improvements to occur on-site, resulting in an existing shelter that is unstable and deteriorating. International aid has been provided to develop a comprehensive plan for the safe and environmentally sound conversion of the damaged Chernobyl reactor. These efforts are being performed in conjunction with US experts, European experts, and local Chernobyl NPP personnel. This plan is discussed here.

Johnson, W. [Parsons Infrastructure and Technology Group, Richland, WA (United States); Kreid, D. [Pacific Northwest National Lab., Richland, WA (United States); DeFranco, W. [Science Applications International Corp., Oak Ridge, TN (United States)

1998-09-01T23:59:59.000Z

356

Nez Perce Tribal Hatchery Project : Combined-Planning & Design and Operations & Maintenance Reports, 2000 Annual Report.  

DOE Green Energy (OSTI)

Nez Perce Tribal Hatchery (NPTH) Year-2000 Combined Maintenance and Operations (O&M) and Planning and Design (P&D) contract is hereby completed based on this annual report patterned after the Statement of Work (SOW) for the project as contracted with Bonneville Power Administration. Primary project activities focused on completion of the Northwest Power Planning Council Step-3 process that: (1) Accepted final design, (2) Authorized a capital construction amount of $16,050,000, and (3) Authorized contractor selection, and (4) Provided construction site dedication, and (5) Implemented construction activities over an anticipated 2-year period of July 2000 through October 2002.

Larson, Roy Edward; Walker, Grant W.

2002-12-31T23:59:59.000Z

357

Identification of buried structures (aerial surveillance and analysis of buried waste) long-range project plan  

SciTech Connect

This long-range plan presents the plan (i.e., budget, schedule, justification, and plans for technology deployment) for implementation of the Identification of Buried Structures project. Two subcontractors will test and demonstrate their technologies at the Idaho National Engineering Laboratory during October and November 1991, and will analyze their data and submit final reports to EG&G Idaho, Inc., by the end of December 1991. By February 21, 1992, EG&G Idaho will present a final report to the Department of Energy, assessing the subcontractor`s results and recommending further action.

Williams, K.L.

1991-11-01T23:59:59.000Z

358

UMTRA project water sampling and analysis plan, Naturita, Colorado  

SciTech Connect

Surface remedial action is scheduled to begin at the Naturita UMTRA Project processing site in the spring of 1994. No water sampling was performed during 1993 at either the Naturita processing site (NAT-01) or the Dry Flats disposal site (NAT-12). Results of previous water sampling at the Naturita processing site indicate that ground water in the alluvium is contaminated as a result of uranium processing activities. Baseline ground water conditions have been established in the uppermost aquifer at the Dry Flats disposal site. Water sampling activities scheduled for April 1994 include preconstruction sampling of selected monitor wells at the processing site, surface water sampling of the San Miguel River, sampling of several springs/seeps in the vicinity of the disposal site, and sampling of two monitor wells in Coke Oven Valley. The monitor well locations provide sampling points to characterize ground water quality and flow conditions in the vicinity of the sites. The list of analytes has been updated to reflect constituents related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted annually at minimum during the period of construction activities.

Not Available

1994-04-01T23:59:59.000Z

359

The Two-Column Aerosol Project (TCAP) Science Plan  

Science Conference Proceedings (OSTI)

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

360

Integrated land use, transportation, and environmental simulation: UrbanSim project highlights  

Science Conference Proceedings (OSTI)

The process of planning and constructing a new light rail system or freeway, setting an urban growth boundary, changing tax policy, or modifying zoning and land use plans is often politically charged. Our goal in the UrbanSim project is to provide tools ...

Alan Borning; Paul Waddell

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan  

SciTech Connect

The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

Fix, N. J.

2008-02-20T23:59:59.000Z

362

Engineering work plan for design requirements document, Project W-058/028  

SciTech Connect

This work plan outlines the tasks necessary for developing the Design Requirements Document (DRD) for project W-058/028, Replacement of Cross-Site Transfer System. The DRD is a specification which bounds, at a high level, the requirements of a discrete system element of the Tank Waste Remediation System (TWRS) Program. This document defines the scope and schedule for the development and production of the Design Requirements, Document for Project W-058.

Mendoza, D.P.

1994-01-05T23:59:59.000Z

363

Emergency response planning for railroad transportation related spills of oil or other hazardous materials  

E-Print Network (OSTI)

In December 1984 an unintentional release of poison gas from a chemical plant in Bhopal, India killed over 2,500 people. Thousands of others were injured. Although this material was not in transportation at the time, this accident raised public awareness. Americans began to ask, "What if something similar happened here?" Chemicals with hazardous properties have become part of daily life. Industry, government, and the public have become aware of the need to respond to problems involving hazardous materials. Safe transportation of hazardous materials is very important. Union Pacific Railroad transports more hazardous material shipments than any other carrier. Early on they realized the benefits to having a dedicated team of personnel to respond to incidents involving hazardous materials. In order to remain the safest carrier of these commodities, an emergency response plan utilizing in house response personnel was needed. This document describes how that plan was created and includes a copy of the plan for the Union Pacific Railroad's Settegast Yard in Houston, Texas. Other carriers may use this as a template to establish their own in house response teams or emergency response plans.

Reeder, Geoffrey Benton

1995-01-01T23:59:59.000Z

364

Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada  

SciTech Connect

This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

Not Available

1994-06-01T23:59:59.000Z

365

EA-1255: Project Partnership Transportation of Foreign-Owned...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia...

366

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Section 180(c) of the Nuclear of Section 180(c) of the Nuclear Waste Policy Act, as amended National Transportation Stakeholder's Forum Buffalo, NY May 15, 2013 Section 180(c) Mandate "The Secretary shall provide technical assistance and funds to States for training for public safety officials of appropriate units of local government and Indian tribes through whose jurisdiction the Secretary plans to transport spent nuclear fuel or high-level radioactive waste [to an NWPA-authorized facility]. * The training shall cover procedures for safe routine transportation of these materials and procedures for dealing with emergency response situations. * Covers all modes of transport 2 Section 180(c) - Background  DOE nearly implemented Section 180(c) in the mid-

367

Evacuation/Transportation Checklist for Child Care Facilities Keeping Kids Safe: Emergency Planning for Child-Care Facilities  

E-Print Network (OSTI)

Evacuation/Transportation Checklist for Child Care Facilities Keeping Kids Safe: Emergency Planning for Child-Care Facilities Evacuation/Transportation Checklist for Child-Care Facilities Name of child-care facility Address Name of person/persons responsible for transportation of children Phone number

368

Tank waste remediation system year 2000 dedicated file server project HNF-3418 project plan  

Science Conference Proceedings (OSTI)

The Server Project is to ensure that all TWRS supporting hardware (fileservers and workstations) will not cause a system failure because of the BIOS or Operating Systems cannot process Year 2000 dates.

SPENCER, S.G.

1999-04-26T23:59:59.000Z

369

Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

IT Corporation, Las Vegas

2002-04-24T23:59:59.000Z

370

Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1  

Science Conference Proceedings (OSTI)

This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

2001-12-10T23:59:59.000Z

371

Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan  

Science Conference Proceedings (OSTI)

This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

2001-10-31T23:59:59.000Z

372

Life Cycle Management Plan for Main Generator and Exciter at South Texas Project: Generic Version  

Science Conference Proceedings (OSTI)

As the electric power industry becomes more competitive, life cycle management (LCM) of systems, structures, and components (SSCs) becomes more important to keep nuclear power plants economically viable throughout their remaining licensed operating terms, whether 40 or 60 years. This report provides an optimized LCM plan for the main generators and exciters at the South Texas Project Power Plant.

2003-09-30T23:59:59.000Z

373

Project licensing plan for UMTRA (Uranium Mill Tailings Remedial Action) sites  

SciTech Connect

The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Licensing Plan is to establish how a disposal site will be licensed, and to provide responsibilities of participatory agencies as legislated by the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604). This Plan has been developed to ensure that the objectives of licensing are met by identifying the necessary institutional controls, participatory agency responsibilities, and key milestones in the licensing process. The Plan contains the legislative basis for and a description of the licensing process ( Process'') for UMTRA sites. This is followed by a discussion of agency responsibilities, and milestones in the Process. The Plan concludes with a generic timeline of this Process. As discussed in Section 2.1, a custodial maintenance and surveillance plan will constitute the basis for a site license. The details of maintenance and surveillance are discussed in the Project Maintenance and Surveillance Plan (AL-350124.0000). 5 refs., 4 figs.

Not Available

1984-07-01T23:59:59.000Z

374

Uncertainty and Sensitivity Analyses Plan. Draft for Peer Review: Hanford Environmental Dose Reconstruction Project  

Science Conference Proceedings (OSTI)

Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

Simpson, J.C.; Ramsdell, J.V. Jr.

1993-04-01T23:59:59.000Z

375

Mitigation Action Plan Phase I Lovell Yellowtail and Basin-Lovell Transmission Line Rebuild Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation Action Plan Phase I Lovell Yellowtail and Basin-Lovell Transmission Line Rebuild Project Big Horn and Carbon Counties, Montana and Big Horn County, Wyoming MITIGATION ACTION IDENTIFIER RESPONSIBLE PARTY FOR IMPLEMENTING MITIGATION ACTION LOCATION IF AVAILABLE/ STRUCTURE NUMBERS PARTY RESPONSIBLE FOR MONITORING AND ENSURING COMPLIANCE 1 Construction Contractor Western Maintenance Standard Construction Project Practices will be implemented through Phases I of Project construction and operation (Table 2.1-3 in the Final EA.) Western Construction (during Construction Phase) Western Maintenance (During maintenance of facility) NPS - WESTERN INTERAGENCY AGREEMENT FOR BIGHORN CANYON NRA 2 NPS, Western The Interagency Agreement between United

376

An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems  

SciTech Connect

Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

Pattrick Calderoni

2010-09-01T23:59:59.000Z

377

Nez Perce Tribal Hatchery Project; Operations and Maintenance and Planning and Design, 2002 Annual Report.  

DOE Green Energy (OSTI)

This report fulfills the contract obligations based on the Statement of Work (SOW) for the project as contracted with Bonneville Power Administration (BPA). Nez Perce Tribal Hatchery (NPTH) Year-2002 annual report combines information from two contracts with a combined value of $3,036,014. Bonneville Power Administration identifies them as follows; (1) Part I--Operations and Maintenance--Project No. 1983-350-00, Contract No. 4504, and $2,682,635 which includes--Equipment costs of $1,807,105. (2) Part II--Planning and Design--Project No. 1983-35-04, Contract No. 4035, $352,379 for Clearwater Coho Restoration Master Plan development Based on NPPC authorization for construction and operation of NPTH, the annual contracts were negotiated for the amounts shown above under (1) and (2). Construction contracts were handled by BPA until all facilities are completed and accepted.

Larson, Roy Edward; Walker, Grant W.; Penney, Aaron K. (Nez Perce Tribe, Lapwai, ID)

2005-12-01T23:59:59.000Z

378

Multi-Function Waste Tank Facility Quality Assurance Program Plan, Project W-236A. Revision 2  

SciTech Connect

This document describes the Quality Assurance (QA) program for the Multi-Function Waste Tank Facility (MWTF) Project. The purpose of this QA program is to control project activities in such a manner as to achieve the mission of the MWTF Project in a safe and reliable manner. The QA program for the MWTF Project is founded on DOE Order 5700.6C, Quality Assurance, and implemented through the use of ASME NQA-1, Quality Assurance Program Requirements for Nuclear Facilities (ASME 1989 with addenda la-1989, lb-1991 and lc-1992). This document describes the program and planned actions which the Westinghouse Hanford Company (WHC) will implement to demonstrate and ensure that the project meets the requirements of DOE Order 5700.6C through the interpretive guidance of ASME NQA-1.

Hall, L.R.

1995-05-30T23:59:59.000Z

379

Project Hanford management contract quality assurance program implementation plan for nuclear facilities  

SciTech Connect

During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

Bibb, E.K.

1997-10-15T23:59:59.000Z

380

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project W-519 TWRS privatization phase 1 infrastructure year 2000 compliance assessment project plan  

Science Conference Proceedings (OSTI)

This assessment describes the potential Year 2000 (Y2K) problems and describes the methods for achieving Y2K Compliance for Project W-519, Tank Waste Remediation System Privatization Phase I Infrastructure Support. The purpose of this assessment is to give an overview of the project. This assessment will describe the methods, protocols, and practices to assure that equipment and systems do not have Y2K problems. This document will not be updated and any dates contained in this document are estimates and may change. The scope of project W-519 is to provide utilities and infrastructure to support construction and operation of the private contractor's facility to treat, immobilize, and dispose of tank waste. The private contractor's facility will be located on east side of 200E-area and north of Route 4s (near the defunct grout vaults). The utilities include potable and process water, construction and operational electrical power systems, and liquid effluent disposal transfer lines to the existing effluent treatment facility (ETF) and the liquid effluent retention facility (LERF).

BUSSELL, J.H.

1999-08-25T23:59:59.000Z

382

Investigation of Project Management Planning Practices for Renovation of Historical Buildings in Urban Contexts Located in Texas  

E-Print Network (OSTI)

This study investigated the relationship between Project Management Planning (PMP) practices and project success for preservation projects of historical significance located in an urban context. The planning for these projects was also emphasized because these historic buildings are recognized by the National Register of Historic Places. Yet, when analyzing the performance metrics of these historically significant renovation projects that included budget and time after the project has been completed denote problems in the management and delivery of these projects. The project team members' perceptions of PMP practices and how these practices affect project success were the focus of this research. To ascertain the importance of these questions, the study incorporated three major bodies of knowledge. The first body of literature focused on project management practices associated with project success. The second concentrated on historic preservation with a focus on historic significance and project planning. The third body centered on facility management as it relates to project management issues in the delivery of a construction project. Combining these bodies of knowledge into one literature review contributed to the development of a conceptual model to illustrate how the research variables and hypotheses were established. To test the research questions and its hypothesis, three statistical tools were used: analysis of variance (ANOVA), descriptive data analysis, and ordinary least square regression. The conclusions from these tests indicated that differences in perceptions of success criteria existed between the project team members. The findings also indicated a significant disconnect between the perceptions of project success and actual performance of project delivery. Furthermore, the findings indicated that only a few project management practices tested were perceived to have significant correlation with project success. The project team members felt that the success criteria of performance and the success factors associated with performance -- site analysis, site layout and staging, and a quality assurance plan -- were more important to the success of the renovation project than many of the management practices in this study.

Escamilla, Edelmiro

2011-05-01T23:59:59.000Z

383

Idaho National Laboratory Ten-Year Site Plan Project Description Document  

SciTech Connect

This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

Not Listed

2012-03-01T23:59:59.000Z

384

Idaho National Laboratory Ten-Year Site Plan Project Description Document  

SciTech Connect

This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

Not Listed

2012-03-01T23:59:59.000Z

385

Expanding transportation planning capacity in cities of the global South : public-private collaboration and conflict in Chile and Mexico  

E-Print Network (OSTI)

What makes it possible for the governments of cities limited by scarce fiscal resources and weak institutions to enhance their transportation planning and regulatory capacities so as to provide the public with cleaner, ...

Flores Dewey, Onsimo A. (Onsimo Alberto)

2013-01-01T23:59:59.000Z

386

Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1  

SciTech Connect

Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

Not Available

1994-12-01T23:59:59.000Z

387

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

388

Fiscal Year 2005 Integrated Monitoring Plan for the Hanford Groundwater Performance Assessment Project  

Science Conference Proceedings (OSTI)

Groundwater is monitored in hundreds of wells at the Hanford Site to fulfill a variety of requirements. Separate monitoring plans are prepared for various purposes, but sampling is coordinated and data are shared among users. DOE manages these activities through the Hanford Groundwater Performance Assessment Project, which is the responsibility of Pacific Northwest National Laboratory. The groundwater project integrates monitoring for various objectives into a single sampling schedule to avoid redundancy of effort and to improve efficiency of sample collection.This report documents the purposes and objectives of groundwater monitoring at the DOE Hanford Site in southeastern Washington State.

Rieger, JoAnne T.; Hartman, Mary J.

2005-06-16T23:59:59.000Z

389

Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky  

SciTech Connect

The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

NONE

1995-09-01T23:59:59.000Z

390

Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Westinghouse Savannah River Company LLC Westinghouse Savannah River Company LLC Savannah River Site Aiken, SC 29808 LWO-SPT-2007-00247 Rev. 1 Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00247 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

391

US-VISIT Identity Matching Algorithm Evaluation Program: ADIS Algorithm Evaluation Project Plan Update  

SciTech Connect

This document is an update to the 'ADIS Algorithm Evaluation Project Plan' specified in the Statement of Work for the US-VISIT Identity Matching Algorithm Evaluation Program, as deliverable II.D.1. The original plan was delivered in August 2010. This document modifies the plan to reflect modified deliverables reflecting delays in obtaining a database refresh. This document describes the revised schedule of the program deliverables. The detailed description of the processes used, the statistical analysis processes and the results of the statistical analysis will be described fully in the program deliverables. The US-VISIT Identity Matching Algorithm Evaluation Program is work performed by Lawrence Livermore National Laboratory (LLNL) under IAA HSHQVT-07-X-00002 P00004 from the Department of Homeland Security (DHS).

Grant, C W; Lenderman, J S; Gansemer, J D

2011-02-24T23:59:59.000Z

392

Status of data, major results, and plans for geophysical activities, Yucca Mountain Project  

Science Conference Proceedings (OSTI)

This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA); Nelson, P.H. [Geological Survey, Denver, CO (USA)] [eds.

1990-07-01T23:59:59.000Z

393

Northwest Montana Wildlife Habitat Enhancement: Hungry Horse Elk Mitigation Project: Monitoring and Evaluation Plan.  

DOE Green Energy (OSTI)

Portions of two important elk (Cervus elaphus) winter ranges totalling 8749 acres were lost due to the construction of the Hungry Horse Dam hydroelectric facility. This habitat loss decreased the carrying capacity of the both the elk and the mule deer (Odocoileus hemionus). In 1985, using funds from the Bonneville Power Administration (BPA) as authorized by the Northwest Power Act, the Montana Department of Fish, Wildlife and Parks (FWP) completed a wildlife mitigation plan for Hungry Horse Reservoir. This plan identified habitat enhancement of currently-occupied winter range as the most cost-efficient, easily implemented mitigation alternative available to address these large-scale losses of winter range. The Columbia Basin Fish and Wildlife Program, as amended in 1987, authorized BPA to fund winter range enhancement to meet an adjusted goal of 133 additional elk. A 28-month advance design phase of the BPA-funded project was initiated in September 1987. Primary goals of this phase of the project included detailed literature review, identification of enhancement areas, baseline (elk population and habitat) data collection, and preparation of 3-year and 10-year implementation plans. This document will serve as a site-specific habitat and population monitoring plan which outlines our recommendations for evaluating the results of enhancement efforts against mitigation goals. 25 refs., 13 figs., 7 tabs.

Casey, Daniel; Malta, Patrick

1990-12-01T23:59:59.000Z

394

Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.  

SciTech Connect

This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public access. During the past two years, non-Indian public concern over big game hunting issues has at times overwhelmed other issues related to the wildlife area. In 2001, the CTUIR Fish and Wildlife Committee closed the wildlife area to tribal branch antlered bull elk harvest in response to harvest data that indicated harvest rates were greater than expected. In addition, illegal harvest of mature bull elk in southeastern Washington during the 2001 season exceeded the legal tribal and nontribal harvest combined which has created a potential significant regression in the bull;cow ratio in the Blue Mountain Elk herd. CTUIR Fish and Wildlife Committee and staff and Washington Department of Fish and Wildlife Regional Director and staff have been coordinating regularly to develop strategies to address harvest rates and ensure protection of viable big game herds in southeastern Washington. The CTUIR Fish and Wildlife Committee and WDFW has jointly agreed to continue close coordination on this and other issues and continue working together to ensure the long-term vigor of the elk herd on the Rainwater Wildlife Area. The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources.

Childs, Allen B.

2002-02-01T23:59:59.000Z

395

Program management plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The primary mission of the Molten Salt Reactor Experiment (MSRE) Remediation Project is to effectively implement the risk-reduction strategies and technical plans to stabilize and prevent further migration of uranium within the MSRE facility, remove the uranium and fuel salts from the system, and dispose of the fuel and flush salts by storage in appropriate depositories to bring the facility to a surveillance and maintenance condition before decontamination and decommissioning. This Project Management Plan (PMP) for the MSRE Remediation Project details project purpose; technical objectives, milestones, and cost objectives; work plan; work breakdown structure (WBS); schedule; management organization and responsibilities; project management performance measurement planning, and control; conduct of operations; configuration management; environmental, safety, and health compliance; quality assurance; operational readiness reviews; and training.

NONE

1996-09-01T23:59:59.000Z

396

Action Plan UNIVERSITY OF MISSOURI  

E-Print Network (OSTI)

, financially and philosophically, to a carbon-neutral future. Since the signing, he and the university have sustainability. Additional Strategies and Projects Transportation Currently, transportation accounts for less, transportation will play a larger role in its greenhouse gas profile. The Climate Action Plan recommends

Taylor, Jerry

397

The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

Fix, N. J.

2009-04-29T23:59:59.000Z

398

FTCP FY09 Operational Plan GOAL 2 White Paper - Qualification Consistency and Transportability  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program FY 2009 Operational Plan Program FY 2009 Operational Plan Goal 2: Preserve and Enhance Technical Capability Objective 1 Point Paper NNSA/SSO/AMFO/8 Jul 09/adt Objective 1: Identify resource and organizational structure needs to improve qualification consistency and transportability. Actions: 1. Determine appropriate resource levels 2. Determine effective organizational structure Methodology A TQP Resource Management Questionnaire was developed to address the actions above. The scope of the questionnaire broadened to include questions concerning TQP-related definitions, mentorship, and centralization of TQP tasks directly under the FTCP. The questionnaire was sent to all FTCP Agents and associate members who were given approximately 45 days to respond. Summary of questionnaire results:

399

Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor  

SciTech Connect

In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs.

Boing, L.E.

1989-12-01T23:59:59.000Z

400

Southwest intertie project: Final environmental impact statement and proposed plan amendment. Final report  

SciTech Connect

The Southwest Intertie Project (SWIP) is a proposed 500kV electrical transmission line system between the Midpoint Substation near Shoshone, Idaho and a proposed substation in Dry Lake Valley, northeast of Las Vegas, Nevada (referred to as the Midpoint to Dry Lake segment), and between a proposed substation in the Ely, Nevada area and a proposed substation near Delta, Utah (referred to as the Ely to Delta segment). This SWIP Final Environmental Impact Statement/Proposed Plan Amendment (FEIS/PPA) assesses the environmental consequences of the federal approval for the project. Impacts of the proposed action would result from the access roads, tower sites, and staging areas required to construct the transmission lines and related facilities. Impacts are expected to soils, vegetation, wildlife, cultural resources, scenic resources, and land uses. Electric and magnetic field effects have also been studied for this project.

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Impact evaluation of an Energy $avings Plan project at Sather Manufacturing  

SciTech Connect

This impact evaluation of an energy conservation project that was recently installed at Sather Manufacturing (Sather) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy Savings Plan (E$P) Program. The Program makes acquisition payments to firms that install ECMs in their industrial processes. The objective of this impact evaluation was to assess how much electrical energy is being saved at Sather as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the project was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (Bather`s Proposal and Completion Report). The project consists of replacing an o d coreless induction furnace with a new, more efficient, induction furnace. Energy savings from this project are expected to be 1,122,000 kWh/yr, or 0.13 average megawatts. On a per-ton basis, this project will save 447 kWh/ton, which is a reduction of approximately 41% of electricity consumed per ton of steel produced. The project cost $293,469 to install, and Sather received payment of $123,780 from Bonneville for the acquisition of energy savings. Based on a simple payback analysis calculated by Pacific Northwest Laboratory and conversations with Sather management personnel, it was determined that this project would not have been implemented without the acquisition payment from Bonneville. The levelized cost of these energy savings to Bonneville will be 10.8 mills/kWh over the project`s expected 15-year life, and the levelized cost to the region will be 24.9 mills/kWh.

Sullivan, G.P.; Spanner, G.E.

1992-12-01T23:59:59.000Z

402

Single Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval  

Science Conference Proceedings (OSTI)

In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover.

DEFIGH PRICE, C.

2000-09-20T23:59:59.000Z

403

Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests  

Science Conference Proceedings (OSTI)

This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

Ward, Anderson L.; Gee, Glendon W.

2000-06-23T23:59:59.000Z

404

Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections  

SciTech Connect

The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

Ayres, R.U.; Ayres, L.W.

1980-03-01T23:59:59.000Z

405

Statement of work for the immobilized high-level waste transportation system, Project W-464  

SciTech Connect

The objective of this Statement of Work (SOW) is to present the scope, the deliverables, the organization, the technical and schedule expectations for the development of a Package Design Criteria (PDC), cost and schedule estimate for the acquisition of a transportation system for the Immobilized High-Level Waste (IHLW). This transportation system which includes the truck, the trailer, and a shielded cask will be used for on-site transportation of the IHLW canisters from the private vendor vitrification facility to the Hanford Site interim storage facility, i.e., vaults 2 and 3 of the Canister Storage Building (CSB). This Statement of Work asks Waste Management Federal Services, Inc., Northwest Operations, to provide Project W-464 with a Design Criteria Document, plus a life-cycle schedule and cost estimate for the acquisition of a transportation system (shielded cask, truck, trailer) for IHLW on-site transportation.

Mouette, P.

1998-06-24T23:59:59.000Z

406

Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program  

Science Conference Proceedings (OSTI)

This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

NONE

1995-08-01T23:59:59.000Z

407

Phase 1 Final status survey plan for the West Valley demonstration project.  

SciTech Connect

This plan provides the technical basis and associated protocols to support Phase 1 final status survey (FSS) data collection and interpretation as part of the West Valley Demonstration Project Phase 1 Decommissioning Plan process. This plan is consistent with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). The Phase 1 Decommissioning Plan provides the relevant derived concentration guideline levels (DCGLs) for the Phase 1 radionuclides of interest. This plan includes protocols that will be applied to the deep excavations planned for Waste Management Area (WMA) 1 and WMA 2, for surface soils outside the WMA 1 and WMA 2 excavations that do not have contamination impacts at depths greater than one meter, and for areas that are used for Phase 1 contaminated soil lay-down purposes. All excavated and lay-down areas will be classified as MARSSIM Class 1 areas. Surface soils that have not been excavated, are not expected to exceed DCGLs, and do not have contamination impacts at depths greater than one meter will be divided into either Class 1 or Class 2 areas depending on the expected potential for surface soil contamination in those areas. The plan uses gamma scans combined with biased soil samples to address DCGLemc concerns. The plan uses systematic soil sampling combined with area factors to address DCGLw and DCGLemc concerns. The Sign test will be used to statistically evaluate DCGLw compliance. If the results from the characterization sampling and analysis plan (CSAP) data collection indicate that background may be a significant issue for Sign test implementation, the Wilcoxon rank sum (WRS) test will be used instead to demonstrate DCGLw compliance. A reference area will be selected on the basis of CSAP data results if the WRS test becomes a necessity. The WMA 1 excavation footprint includes approximately 476 foundation pilings that will be trimmed and left in place. Piling-specific systematic and biased sampling will be conducted to address concerns that these pilings may have served as preferential flow pathways into the underlying Lavery till. Phase 1 FSS data collection results will be summarized, presented, and interpreted in one or more FSS reports.

Johnson, R. L. (Environmental Science Division)

2011-05-31T23:59:59.000Z

408

Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing  

DOE Green Energy (OSTI)

This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

2007-08-17T23:59:59.000Z

409

Impact evaluation of an Energy $avings Plan project at Sather Manufacturing  

SciTech Connect

This impact evaluation of an energy conservation project that was recently installed at Sather Manufacturing (Sather) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy Savings Plan (E$P) Program. The Program makes acquisition payments to firms that install ECMs in their industrial processes. The objective of this impact evaluation was to assess how much electrical energy is being saved at Sather as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the project was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (Bather's Proposal and Completion Report). The project consists of replacing an o d coreless induction furnace with a new, more efficient, induction furnace. Energy savings from this project are expected to be 1,122,000 kWh/yr, or 0.13 average megawatts. On a per-ton basis, this project will save 447 kWh/ton, which is a reduction of approximately 41% of electricity consumed per ton of steel produced. The project cost $293,469 to install, and Sather received payment of $123,780 from Bonneville for the acquisition of energy savings. Based on a simple payback analysis calculated by Pacific Northwest Laboratory and conversations with Sather management personnel, it was determined that this project would not have been implemented without the acquisition payment from Bonneville. The levelized cost of these energy savings to Bonneville will be 10.8 mills/kWh over the project's expected 15-year life, and the levelized cost to the region will be 24.9 mills/kWh.

Sullivan, G.P.; Spanner, G.E.

1992-12-01T23:59:59.000Z

410

River Protection Project Integrated safety management system phase II verification review plan - 7/29/99  

Science Conference Proceedings (OSTI)

The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

SHOOP, D.S.

1999-09-10T23:59:59.000Z

411

Multi-Mode Transportable Battery Energy System for Salt River Project: Volume 1: Design and Installation  

Science Conference Proceedings (OSTI)

Energy storage technologies are likely to find new roles in a restructured electric utility environment. This project designed and deployed a commercial prototype of an innovative multi-mode transportable battery system capable of a broad functional role in the new business environment.

1999-06-29T23:59:59.000Z

412

Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project  

Science Conference Proceedings (OSTI)

The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, and its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.

Dodds, K.; Daley, T.; Freifeld, B.; Urosevic, M.; Kepic, A.; Sharma, S.

2009-05-01T23:59:59.000Z

413

NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind to Hydrogen Project: Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation NREL Hydrogen Technologies and Systems Center Todd Ramsden, Kevin Harrison, Darlene Steward November 16, 2009 NREL/PR-560-47432 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Wind2H2 RD&D Project * The National Renewable Energy Laboratory in partnership with Xcel Energy and DOE has designed, operates, and continues to perform testing on the wind-to-hydrogen (Wind2H2) project at the National Wind Technology Center in Boulder * The Wind2H2 project integrates wind turbines, PV arrays and electrolyzers to produce from renewable energy

414

EM Quality Assurance Centralized Training Platform Project Plan for 2009-2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OFFICE OF ENVIRONMENTAL MANAGEMENT OFFICE OF ENVIRONMENTAL MANAGEMENT QUALITY ASSURANCE IMPROVEMENT INITIATIVE EM CENTRALIZED TRAINING PLATFORM PROJECT PLAN Prepared by: Date: Approved by: Date: Revision 0 Page 3 of 30 05/11/09 1.0 INTRODUCTION The Department of Energy (DOE) expertise in quality assurance (QA) has degraded significantly over the last 10 years due to workforce attrition and the lack of emphasis on QA principles. Since the 2007 establishment and subsequent implementation of the Office of Environmental Management (EM) Quality Assurance Improvement Initiative, the need for trained QA specialists and personnel familiar with the role of QA in integrated safety management and project management is becoming critical. As EM Field Offices struggle to identify sufficient resources to properly implement the EM Quality

415

Site observational work plan for the UMTRA Project site at Falls City, Texas  

Science Conference Proceedings (OSTI)

Produced by the US Department of Energy (DOE), this site observational work plan (SOWP) will be used to determine site-specific activities to comply with the US Environmental Protection Agency (EPA) ground water standards at this Uranium Mill Tailings Remedial Action (UMTRA) Project site. The purpose of the SOWP is to recommend a site-specific ground water compliance strategy at the Falls City UMTRA Project site. The Falls City SOWP presents a comprehensive summary of site hydrogeological data, delineates a conceptual model of the aquifer system, and discusses the origins of milling-related ground water contamination. It also defines the magnitude of ground water contamination, potential environmental and health risks associated with ground water contamination and data gaps, and targets a proposed compliance strategy.

NONE

1995-06-01T23:59:59.000Z

416

Corrective Action Investigation Plan for Corrective Action Unit 447: Project Shoal Area, Nevada Subsurface Site  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) describes the US Department of Energy's (DOE's) continued environmental investigation of the subsurface Project Shoal Area (PSA) Corrective Action Unit (CAU) 447. The PSA is located in the Sand Springs Mountains in Churchill County, Nevada, about 48 kilometers (km) (30 miles [mi]) southeast of Fallon, Nevada. Project Shoal was part of the Vela Uniform Program which was conducted to improve the US' ability to detect, identify, and locate underground nuclear detonations. The test consisted of detonating a 12-kiloton nuclear device deep underground in granitic rock to determine whether seismic waves produced by an underground nuclear test could be differentiated from seismic waves produced by a naturally occurring earthquake. The test was a joint effort conducted by the US Atomic Energy Commission (AEC) and the US Department of Defense (DoD) in October 1963 (AEC, 1964).

DOE /NV

1998-11-01T23:59:59.000Z

417

Site Observational Work Plan for the UMTRA project site at Ambrosia Lake, New Mexico  

SciTech Connect

Ground water compliance for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Ambrosia Lake, New Mexico, site, is governed by the Uranium Mills Tailings Radiation Control Act (42 USC {section}7901 et seq.) and the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR Part 192; 60 FR 2854). The EPA standards describe specific conditions for which the U.S. Department of Energy (DOE) may apply for supplemental standards for contaminated ground water rather than meeting background levels or numerical standards. To achieve compliance with Subpart A of the EPA standards the residual radioactive materials are currently being consolidated on the site by the DOE in a disposal cell, isolating them from direct human or ecological contact and further dispersion into the environment. Completion of the disposal cell is scheduled for early 1995. An environmental assessment and a Finding of No Significant Impact (FONSI) were completed in 1987. Concurrence with the UMTRA Surface Project Ambrosia Lake remedial action plan (RAP) was granted by the U.S. Nuclear Regulatory Commission (NRC) and state of New Mexico in 1990. The DOE deferred compliance with Subpart B of the EPA standards in the Surface Project RAP. This site observational work plan (SOWP) is the first document to address ground water compliance under Subpart B at the Ambrosia Lake site. The Ambrosia Lake UMTRA Project site is within the Grants Mineral Belt and was one of numerous uranium mills supplied by many local mines. Ground water contamination at the site occurred as a result of uranium mill operations. Contamination of ground water resulted from discharge of waste water, infiltration of water through the tailings pile, hydraulic placement of mill tailings in nearby mines, and water pumped from mine shafts.

NONE

1995-02-01T23:59:59.000Z

418

Transportation Security Update  

Science Conference Proceedings (OSTI)

The U.S. Department of Transportation (DOT) final rules issued in 2003 required persons who offer for transportation or transport certain hazardous materials to develop and implement security plans. The Electric Power Research Institute (EPRI) formed a Transportation Security Implementation Working Group, which included representation from the Nuclear Energy Institute (NEI), to identify key projects, which were documented in the original report in 2005. This report updates information in the original rep...

2011-07-27T23:59:59.000Z

419

Mitigation Action Implementation Plan To Implement Mitigation Requirements for Cheyenne-Miracle Mile and Ault-Cheyenne Transmission Line Rebuild Project, Carbon, Albany and Laramie Counties, Wyoming, and Weld County, Colorado  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mitigation Action Plan Mitigation Action Plan To Implement Mitigation Requirements for Cheyenne-Miracle Mile and Ault-Cheyenne Transmission Line Rebuild Project, Carbon, Albany, and Laramie Counties, Wyoming, and Weld County, Colorado September 2006 CH-MM and AU-CH Mitigation Action Plan Sept. 2006 1 Action Plan for Standard Project Practices and Mitigation Mitigation Action Identifier Resources for Which the Mitigation Will Be Implemented Responsible Party for Implementing Mitigation Action Party Responsible for Monitoring and Ensuring Compliance Land use, transportation Construction Contractor Western Maintenance The contractor will limit the movement of crews and equipment to the ROW, including access routes. The contractor will limit movement on the ROW to minimize damage to

420

File:Experiencing PBL The Wind Power Project lesson plan.pdf | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search File Edit History Facebook icon Twitter icon » File:Experiencing PBL The Wind Power Project lesson plan.pdf Jump to: navigation, search File File history File usage Metadata File:Experiencing PBL The Wind Power Project lesson plan.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 55 KB, MIME type: application/pdf, 3 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 09:27, 3 January 2014 Thumbnail for version as of 09:27, 3 January 2014 1,275 × 1,650, 3 pages (55 KB) Foteri (Talk | contribs) Category:Wind for Schools Portal CurriculaCategory:Wind for Schools Middle School Curricula

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation  

Science Conference Proceedings (OSTI)

The Woodlands is a HUD Title VII New Town located near Houston, including 22,000 acres; the plan for the new town consists of 6 residential villages, a town center (Metro), and a Trade Center for larger-scale industrial use. Included within the program for each village are schools and commercial activities, as well as employment activities. The Woodlands is planned to be developed over a 26-year period (commenced in 1972) with an ultimate population of 150,000. Following a summary chapter, Chapter II presents background material on The Woodlands and results of the study are summarized. Chapter III describes the project team and its organizational structure. Chapter IV outlines and documents the methodology that was employed in developing, analyzing, and evaluating the case study. The next chapter describes and analyzes the conventional plan, documents the process by which energy-conserving methods were selected, and evaluates the application of these methods to the Metro Center Study area. Chapter VI discusses constraints to implementation and is followed by a final chapter that presents the general conclusions from the case study and suggests directions for further investigation.

Not Available

1980-03-01T23:59:59.000Z

422

Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Multi-Year R&D Program Plan NATIONAL METHANE HYDRATE MULTI-YEAR R&D PROGRAM PLAN U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center...

423

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market  

DOE Green Energy (OSTI)

The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

2013-03-01T23:59:59.000Z

424

STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE GREAT SMOKY MOUNTAINS NATIONAL PARK  

NLE Websites -- All DOE Office Websites (Extended Search)

256 256 STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE GREAT SMOKY MOUNTAINS NATIONAL PARK L. F. Truett (TRUETTLF@ORNL.GOV) S. M. Chin (CHINS@ORNL.GOV) E. C. P. Chang (ECC2005@ORNL.GOV) November 2002 Prepared for the FEDERAL TRANSIT ADMINISTRATION U.S. DEPARTMENT OF TRANSPORTATION Washington, D.C. 20590 Prepared by the Center for Transportation Analysis OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Coordination of Transit Concepts in GSMNP page iii, 11/12/02 STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE

425

Statewide Transportation Planning in California: Past Experience and Lessons for the Future  

E-Print Network (OSTI)

brief glimpse of future transportation policy in the state.the choice of four future transportation policy directions.anticipate future travel and transportation needs and cast

Brown, Jeffrey

2000-01-01T23:59:59.000Z

426

Project Execution Plan, Waste Management Division, Nevada Operations Office, U.S. Department of Energy, April 2000  

SciTech Connect

This plan addresses project activities encompassed by the U.S. Department of Energy/Nevada Operations Office Waste Management Division and conforms to the requirements contained in the ''Life Cycle Asset Management,'' U.S. Department of Energy Order O430.1A; the Joint Program Office Policy on Project Management in Support of DOE Order O430.1, and the Project Execution and Engineering Management Planning Guide. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the state of Nevada; and traditional project management philosophies such as the development of life cycle costs, schedules, and work scope; identification of roles and responsibilities; and baseline management and controls.

DOE/NV

2000-04-01T23:59:59.000Z

427

Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998  

SciTech Connect

The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

NONE

1998-04-01T23:59:59.000Z

428

Phase 1 Characterization sampling and analysis plan West Valley demonstration project.  

SciTech Connect

The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

Johnson, R. L. (Environmental Science Division)

2011-06-30T23:59:59.000Z

429

Reg Harman, Philippe Menerault, Alain L'Hostis in Spatial Planning Systems of Britain and France" Public transport in cities and regions -facing an uncertain future?  

E-Print Network (OSTI)

" Public transport in cities and regions - facing an uncertain future? x.1 Introduction This chapter addresses transport policies in the two countries. Transport is a crucial factor in spatial planning. At its simplest, the quality and speed of transport affects the area within which people can live their lives

Paris-Sud XI, Université de

430

Hueneme field: unique reservoir and careful planning make small California offshore project profitable  

SciTech Connect

The Hueneme field produces oil from the Miocene Hueneme sand and Oligocene Sespe sands along an east-west-trending anticline located on OCS Lease P-0202, 3.5 mi west of Port Hueneme in the eastern Santa Barbara Channel, California. The areal extent of the field (less than 140 ac) and the recoverable reserves (about 6 million bbl of oil) are both very small by California standards for an offshore project. A unique clastic reservoir of superior quality, along with careful predevelopment planning and engineering, have made this project an economic success and should encourage similar small offshore projects in the future. Extensive predevelopment planning included reservoir modeling to determine number and location of producers and injectors, type of completions, and platform requirements before the setting of 15-slot Platform Gina. Six producers and five sea water injectors were drilled between late 1981 and 1982. The second development well was drilled and completed as an injector to maintain reservoir pressure. Average initial production for the six producers was 794 BOPD and peak production for the field reached 4700 BOPD in March 1983. All wells are currently completed in Oligocene Sespe sands and in the Miocene Hueneme sand. The Sespe consists of a series of lenticular nonmarine sands and shales and contributes only about 10% of the total reserves. The Hueneme sand unconformably overlies the Sespe and reaches a maximum thickness of just over 100 ft at the top of the structure and thins in all directions off the structure. This unique reservoir consists of a massive unconsolidated arkosic sand with porosities averaging 34% and permeabilities averaging 5 darcys.

Cavit, C.D.

1988-03-01T23:59:59.000Z

431

Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project  

Science Conference Proceedings (OSTI)

The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installed around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove silt fencing and any other temporary erosion control.

Project and Design Engineering

2011-03-01T23:59:59.000Z

432

Supplement to the site observational work plan for the UMTRA Project Site at Ambrosia Lake, New Mexico  

SciTech Connect

The purpose of this document is to provide additional and more detailed information to supplement review of the site observational work plan (SOWP) for the Ambrosia Lake, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This document includes a discussion of (1) the average linear velocity of the ground water in the alluvium; (2) the ground water quality of the alluvium, weathered Mancos Shale, and the Tres Hermanos-C Member of the Mancos Shale; and (3) the fate and transport of contaminants from the uppermost aquifer to the Westwater Canyon Member of the Morrison Formation. The data from a 1989 aquifer test were analyzed using the curve-matching software AQTESOLV and then compared with the original results. A hydrograph of the ground water elevations in monitoring wells screened in the alluvium is presented to show how the ground water elevations change with time. Stiff and Piper diagrams were created to describe the changes in ground water geochemistry in the alluvium/weathered Mancos Shale unit, the Tres Hermanos-C Sandstone unit, the Tres Hermanos-B Sandstone unit, and the Dakota Sandstone. Background information on other related topics such as site history, cell construction, soil characteristics, and well construction are presented in the SOWP. Figure 1 is a geologic cross section depicting the conceptual model of the hydrostratigraphy and ground water chemistry of the Ambrosia Lake site. Table 1 presents hydrogeologic information of each hydrostratigraphic unit.

NONE

1996-02-01T23:59:59.000Z

433

Nearly 200 Attend National Transportation Stakeholders Forum | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

200 Attend National Transportation Stakeholders Forum 200 Attend National Transportation Stakeholders Forum Nearly 200 Attend National Transportation Stakeholders Forum May 21, 2013 - 12:00pm Addthis EM Senior Advisor Dave Huizenga provides the keynote address at the recent National Transportation Stakeholders Forum meeting. EM Senior Advisor Dave Huizenga provides the keynote address at the recent National Transportation Stakeholders Forum meeting. NE's Jeff Williams discusses the status of the Nuclear Fuels Storage and Transportation Planning Project. NE's Jeff Williams discusses the status of the Nuclear Fuels Storage and Transportation Planning Project. Richard Arnold, with the Pahrump Paiute Tribe, provides an overview of Tribal Caucus action items and initiatives for enhanced national transportation coordination.

434

Transportation energy contingency plans for rural areas and small communities. Final report Oct 80-Dec 81. [Missouri  

Science Conference Proceedings (OSTI)

Following the petroleum supply disruptions of the 1970's the Federal Government took actions to ensure continuation of transportation services during a critical situation. This led to development of state transportation energy contingency plans; however the Missouri Transportation Fuels Emergency Plan, like those of many states, does not contain specific recommendations for small communities and rural areas. This investigation was undertaken to determine the most effective transportation fuel conservation measures which could be implemented by such areas during energy emergencies. Recommendations are presented concerning strategies to reduce gasoline use in rural areas and the institutional arrangements required for coping with a fuel shortage. It is suggested that the multi-county regional planning commission should become the lead agency in implementing and coordinating fuel conservation measures in rural areas. The existing network of emergency preparedness officers should be utilized to inventory local fuel distribution services, monitor local service station operating practices and to serve motorists who might be stranded. The University of Missouri Cooperative Extension Service should offer educational programs covering fuel conserving driving techniques, vehicle maintenance, trip planning, and ridesharing.

Dare, C.E.

1981-12-01T23:59:59.000Z

435

DOE/SC-ARM-11-017 The Two-Column Aerosol Project (TCAP) Science Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 The Two-Column Aerosol Project (TCAP) Science Plan CM Berkowitz Principal Investigator LK Berg RA Zaveri DJ Cziczo A Zelenyuk CJ Flynn RA Ferrare EI Kassianov CA Hostetler JD Fast B Cairns PJ Rasch PB Russell JE Shilling B Ervens July 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service

436

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE`s ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

437

Materials Development Program, Ceramic Technology Project addendum to program plan: Cost effective ceramics for heat engines  

DOE Green Energy (OSTI)

This is a new thrust in the Ceramic Technology project. This effort represents an expansion of the program and an extension through FY 1997. Moderate temperature applications in conventional automobile and truck engines will be included along with high-temp. gas turbine and low heat rejection diesel engines. The reliability goals are expected to be met on schedule by end of FY 1993. Ceramic turbine rotors have been run (in DOE's ATTAP program) for 1000 h at 1370C and full speed. However, the cost of ceramic components is a deterrrent to near-term commercialization. A systematic approach to reducing this cost includes the following elements: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, and testing and data base development. A draft funding plan is outlined. 6 figs, 1 tab.

Not Available

1992-08-01T23:59:59.000Z

438

A Handbook for Planning and Conducting Charrettes for High-Performance Projects, 2nd edition  

NLE Websites -- All DOE Office Websites (Extended Search)

Operated by the Alliance for Sustainable Energy, LLC A Handbook for Planning and Conducting Charrettes for High-Performance Projects ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring

439

Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting  

Science Conference Proceedings (OSTI)

This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

Burris, S.A.; Thomas, S.P.

1994-02-01T23:59:59.000Z

440

Planning and initiation of detailed engineering design for the Great Plains coal gasification project. Final report  

Science Conference Proceedings (OSTI)

During the course of detailed engineering it was expected that preliminary engineering documents would need to be modified. In a number of instances, however, especially for flow diagrams and specifications, the revised preliminary engineering documents became the final approved for construction (AFC) documents. P and ID's and plot plans were updated as a result of the detailed piping design. Equipment data sheets which initially contained basic process data were made mechanically complete and then further updated to reflect the equipment actually purchased. The initial issue of the preliminary engineering documents represent a necessary baseline for monitoring project design changes. Foundation work, equipment specifications and status of engineering in the various process operations are discussed.

Not Available

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation planning project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Software Verification and Validation Plan Activities, 2011, Project Number: N6423, SAPHIRE Version 8  

SciTech Connect

The SV&V Plan experienced changes over the past year to bring it into the operational software life cycle of SAPHIRE 8 and to maintain its sections on design features. Peer review of the SVVP with the former IV&V members identified the need for the operational use of metrics as a tool for quality maintenance and improvement. New tests were added to the SVVP to verify the operation of the new design features incorporated into SAPHIRE 8. Other additions to the SVVP were the addition of software metrics and the PDR and CDR processes. Audit support was provided for the NRC Technical Manager and Project Manager for the NRC OIG Audit performed throughout 2011. The SVVP is considered to be an up to date reference and useful roadmap of verification and validation activities going forward.

Kurt G. Vedros; Curtis L. Smith

2011-11-01T23:59:59.000Z

442

The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia  

Science Conference Proceedings (OSTI)

This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

Neeraj Gupta

2009-01-07T23:59:59.000Z

443

The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation  

SciTech Connect

Appendix II of The Woodlands Metro Center Energy Study near Houston consists of the following: Metro Center Program, Conventional Plan Building Prototypes and Detail Parcel Analysis, Energy Plan Building Prototypes, and Energy Plan Detail Parcel Analysis.

1980-03-01T23:59:59.000Z

444

Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program  

SciTech Connect

EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical,