National Library of Energy BETA

Sample records for transportation planning project

  1. Nuclear Fuels Storage and Transportation Planning Project (NFST...

    Office of Environmental Management (EM)

    Nuclear Fuel Storage and Transportation Planning Project Overview DOE Office of Nuclear Energy Task Force for Strategic Developments to Blue Ribbon Commission Recommendations...

  2. Transportation & Parking Services Projected Long Range Operating Plan/Budget Parking Operations

    E-Print Network [OSTI]

    ,580) $588 $2,016 $3,284 $4,825 $4,019 Parking Lot Maint/Construction ($423,051) ($442,481) ($864,785) ($224Transportation & Parking Services Projected Long Range Operating Plan/Budget Parking Operations/UCOP Assessment ($256) ($128) ($80) ($80) Parking Structure Feasibility Study Debt Service - Parking Structures $0

  3. Introduction to Transportation Planning

    E-Print Network [OSTI]

    Tipple, Brett

    Introduction to Transportation Planning CMP 4710/6710 Fall 2012 3 Credit Hours Room: ARCH 229 of City & Metropolitan Planning; Associate Dean, College of Architecture + Planning; former associate, social equity, fiscal health, and public health. Unfortunately, most transportation planning processes

  4. Transportation Plan 

    E-Print Network [OSTI]

    Boreo, Andrea; Li, Wei; Wunnenbuger, Douglas; Giusti, Cecilia; Cooper, John T.; Masterson, Jaimie

    2015-01-01

    Mobility throughout a community ensures freedom of movement and enhances quality of life. Traffic congestion, pollution, urban sprawl, social exclusion, safety and health can decrease mobility and should be a part of a sustainable transportation...

  5. Sample Project Execution Plan

    Broader source: Energy.gov [DOE]

    The project execution plan (PEP) is the governing document that establishes the means to execute, monitor, and control projects.  The plan serves as the main communication vehicle to ensure that...

  6. Planning the Project Meeting 

    E-Print Network [OSTI]

    Howard, Jeff W.

    2005-05-10

    Project group meetings must be planned well in advance. Members should be involved in completing some type of work before the next meeting. This helps the leader plan the next project meeting and makes efficient use of time.

  7. 2030 Metropolitan Transportation Plan for the Albuquerque Metropolitan Planning Area 

    E-Print Network [OSTI]

    Mid-Region Metropolitan Planning Organization

    2007-04-26

    Transportation Planner Diane Scena, Trails Planner Mark A. Sprick, AICP, Transportation Planning Manager Barbara Thomas, Secretary-Transportation/Water Kendra Watkins, Transportation Planner Eric Webster, Transportation Planner ?4?Q?F?D?J?B?M???5?I?B?O?L... Manager Bruce Rizzieri, Regional Transit Manager Tony Sylvester, AICP, Special Projects Planner Loretta Tollefson, AICP, Special Projects Manager-Mid-Region Rural Transportation Planning Organization ?4?Q?F?D?J?B?M???5?I?B?O?L?T???U?P???U?I?F???.?3...

  8. Material Stabilization Project Management Plan

    SciTech Connect (OSTI)

    SPEER, D.R.

    1999-09-01

    This plan presents the overall objectives, description, justification and planning for the plutonium Finishing Plant (PFP) Materials Stabilization project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines to manager the execution of this project. It describes the organizational approach and roles/responsibilities to be implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action. Materials stabilization is designated the responsibility to open and stabilize containers of plutonium metal, oxides, alloys, compounds, and sources. Each of these items is at least 30 weight percent plutonium/uranium. The output of this project will be containers of materials in a safe and stable form suitable for storage pending final packaging and/or transportation offsite. The corrosion products along with oxides and compounds will be stabilized via muffle furnaces to reduce the materials to high fired oxides.

  9. Transport Services (TAPS) BOF plan

    E-Print Network [OSTI]

    Welzl, Michael

    Transport Services (TAPS) BOF plan T. Moncaster, M. Welzl, D. Ros: dra5-moncaster-tsvwg-transport-services-00 h Reducing Internet Transport Latency Michael Welzl, with help from (alphabe/cal): Anna

  10. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  11. PROJECT MANGEMENT PLAN EXAMPLES Project Organization Examples

    Energy Savers [EERE]

    is responsible for supporting the FDH and RL project offices with adequate day-to-day planning and review technical management, coordination, control, and reporting of project...

  12. Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

  13. Metropolitan Transportation Plan 2009-2035 

    E-Print Network [OSTI]

    South Central Planning and Development Commission

    2009-05-14

    taxes?collected?in?their?jurisdictions?to?fund?road?and?street?improvements.??These?projects?are? primarily?maintenance?projects?(i.e.,?resurfacing)?aimed?at?making?better?use?of?existing? facilities.? ? Community?Development?Block?Grants? The... TRANSPORTATION PLAN] 4 Tables Table Page 3.1 Road Improvement Cost Estimates 15 3.2 Historical Federal and State Funding 20 3.3 Stage I (2009-2014) ? Improvement Program 23 3.4 Stage II (2015-2020) ? Improvement Program...

  14. Regional Service Plan For Coordinated Transportation In the Permian Basin 

    E-Print Network [OSTI]

    Permian Basin Regional Planning Commission

    2010-10-27

    Regional Service Plan Permian Basin ? Region 9 Table of Contents I. Acknowledgements 4 II. Executive Summary 5 III. Background 6 A. Regional Description 6 i. Geography and Demographics 6 ii. Transportation... Planning Partners 12 iii. Current Transportation Services/Providers 13 B. History of Regional Coordination of Public Transportation 14 i. Past/Continuing Planning Activities 14 ii. Past/Current Implemented Projects/Services 15 IV...

  15. San Angelo Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    San Angelo Metropolitan Planning Organization

    2009-11-16

    2-5 Projected Population for Tom Green County and the San Angelo MTP Planning Area ....................................................................................................................................................... 25 Table 2-6... Table 6-3 Estimated Costs for all LCI-related Improvements ...................................................... 84 Table 10-1 Financial Plan Roadway by Category ...................................................................... 118 Table 10-2...

  16. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    accelerates the project schedule and significantly reduces the project total life cycle cost. Current Baseline (FY99 MYWP) Revised Project Baseline Project Scope: ...

  17. South Texas Planning Region Public Transportation Coordination Plan 

    E-Print Network [OSTI]

    South Texas Development Council Economic Development Program

    2006-12-15

    stream_source_info SOUTH TEXAS PLANNING REGION PUBLIC TRANSPORTATION COORDINATION PLAN.pdf.txt stream_content_type text/plain stream_size 58851 Content-Encoding ISO-8859-1 stream_name SOUTH TEXAS PLANNING REGION PUBLIC TRANSPORTATION... COORDINATION PLAN.pdf.txt Content-Type text/plain; charset=ISO-8859-1 KFH GROUP, INC. SOUTH TEXAS PLANNING REGION PUBLIC TRANSPORTATION COORDINATION PLAN Developed for the: SOUTH TEXAS DEVELOPMENT COUNCIL ECONOMIC...

  18. TTP 220 Transportation Planning and Policy Spring 2014

    E-Print Network [OSTI]

    Handy, Susan L.

    and the multitude of problems that come with it ­ economic inefficiencies, poor air quality, other environmental-range transportation plans, transportation improvement programs, air quality conformity, project development, travel on a variety of demand-side strategies for addressing regional transportation problems, including pricing

  19. Project Management Plan Chinese Food

    E-Print Network [OSTI]

    Igusa, Kiyoshi

    impact of this project? · Data management: How do we collect, preserve and sort all of the files? Which special equipment, facilities needed or wanted? According to http://project-management-knowledge.com/ weProject Management Plan Chinese Food According to NSF, the basic elements of a project management

  20. Metropolitan Transportation Plan Fiscal Year 2010 - 2035 

    E-Print Network [OSTI]

    Corpus Christi Metropolitan Planning Organization

    2009-12-03

    .................................................................................................................... 23 Urban Action Plan ........................................................................................................................... 24 Table 1 - Functional Systems in Urbanized Areas... ........................................................................... 28 Critical Incident Planning ................................................................................................................ 29 CHAPTER 5 PUBLIC TRANSPORTATION...

  1. STUDENTS IN TRANSPORTATION ENGINEERING AND PLANNING

    E-Print Network [OSTI]

    Bertini, Robert L.

    STUDENTS IN TRANSPORTATION ENGINEERING AND PLANNING ACTIVITIES SUMMARY FOR FISCAL YEAR 2006 Students in Transportation Engineering and Planning Activities Summary 5. Report Date February 2009 6 Organization Name and Address Students in Transportation Engineering and Planning 10. Work Unit No. (TRAIS) 11

  2. STUDENTS IN TRANSPORTATION ENGINEERING AND PLANNING

    E-Print Network [OSTI]

    Bertini, Robert L.

    STUDENTS IN TRANSPORTATION ENGINEERING AND PLANNING ACTIVITIES SUMMARY FOR FISCAL YEAR 2010 Students in Transportation Engineering and Planning Activities Summary 5. Report Date June 2011 6 Organization Name and Address Students in Transportation Engineering and Planning 10. Work Unit No. (TRAIS) 11

  3. DIGITAL ARCHITECTURE PROJECT PLAN

    SciTech Connect (OSTI)

    Thomas, Ken

    2014-09-01

    The objective of this project is to develop an industry consensus document on how to scope and implement the underlying information technology infrastructure that is needed to support a vast array of real-time digital technologies to improve NPP work efficiency, to reduce human error, to increase production reliability and to enhance nuclear safety. A consensus approach is needed because: • There is currently a wide disparity in nuclear utility perspectives and positions on what is prudent and regulatory-compliant for introducing certain digital technologies into the plant environment. For example, there is a variety of implementation policies throughout the industry concerning electromagnetic compatibility (EMC), cyber security, wireless communication coverage, mobile devices for workers, mobile technology in the control room, and so forth. • There is a need to effectively share among the nuclear operating companies the early experience with these technologies and other forms of lessons-learned. There is also the opportunity to take advantage of international experience with these technologies. • There is a need to provide the industry with a sense of what other companies are implementing, so that each respective company can factor this into their own development plans and position themselves to take advantage of new work methods as they are validated by the initial implementing companies. In the nuclear power industry, once a better work practice has been proven, there is a general expectation that the rest of the industry will adopt it. However, the long-lead time of information technology infrastructure could prove to be a delaying factor. A secondary objective of this effort is to provide a general understanding of the incremental investment that would be required to support the targeted digital technologies, in terms of an incremental investment over current infrastructure. This will be required for business cases to support the adoption of these new technologies.

  4. PROJECT MANGEMENT PLAN EXAMPLES

    Energy Savers [EERE]

    required to support S&M and D&D Certified vendor information Chemical and hazardous substance inventory Deactivation work plans Descriptionphotos of spaces...

  5. Project Surveillance and Maintenance Plan. [UMTRA Project

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the (guidance) to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs.

  6. NREL: Transportation Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTSWorking With UsSimulatorTruckNewsProjects

  7. STUDENTS IN TRANSPORTATION ENGINEERING AND PLANNING

    E-Print Network [OSTI]

    Bertini, Robert L.

    STUDENTS IN TRANSPORTATION ENGINEERING AND PLANNING ACTIVITIES SUMMARY FOR FISCAL YEAR 2009. Title and Subtitle Students in Transportation Engineering and Planning Activities Summary 5. Report Date Engineering and Planning 10. Work Unit No. (TRAIS) 11. Contract or Grant No. 12. Sponsoring Agency Name

  8. STUDENTS IN TRANSPORTATION ENGINEERING AND PLANNING

    E-Print Network [OSTI]

    Bertini, Robert L.

    STUDENTS IN TRANSPORTATION ENGINEERING AND PLANNING ACTIVITIES SUMMARY FOR FISCAL YEAR 2007. Title and Subtitle Students in Transportation Engineering and Planning Activities Summary 5. Report Date and Planning 10. Work Unit No. (TRAIS) 11. Contract or Grant No. 12. Sponsoring Agency Name and Address Oregon

  9. Toledo Regional Economic PlanToledo Regional Economic Plan Transportation and LogisticsTransportation and Logistics

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Toledo Regional Economic PlanToledo Regional Economic Plan Transportation and LogisticsTransportation and Logistics Industry SectorIndustry Sector Submitted by:Submitted by: Transportation and Logistics Working GroupTransportation and Logistics Working Group September 2009September 2009 #12;22 Transportation

  10. Hot Springs Metropolitan Planning Organization 2030 Long Range Transportation Plan 

    E-Print Network [OSTI]

    Hot Springs Metropolitan Planning Organization

    2005-11-03

    of Mountain Pine Hot Springs Village The Greater Hot Springs Chamber of Commerce The Arkansas State Highway and Transportation Department In Cooperation With United States Department of Transportation Federal Highway Administration Federal Transit... Administration 2030 Long Range Transportation Plan for the Hot Springs Area Metropolitan Planning Organization This LRTP has been funded with federal Metropolitan Planning (PL) funds through the Federal Highway Administration, Section 5303 funds...

  11. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  12. Las Cruces MPO 2040 Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    Las Cruces Metropolitan Planning Organization

    2010-06-09

    /or regionally significant transportation projects determined by the Policy Committee. The list of projects is created in cooperation with residents, local governments, and the New Mexico Department of Transportation (NMDOT). The TIP must be in compliance... short and long-term strategies for maintaining and enhancing the area's transportation system and ? Develop implementation strategies and performance measures that will help achieve the desired results. TRANSPORT 2040 7 ?Y Existing...

  13. Texas Transportation Institute Information Resources Strategic Plan

    E-Print Network [OSTI]

    Texas Transportation Institute Information Resources Strategic Plan 2012­2016 June 2012 #12;2 | P a g e 2 0 1 2 ­ 2 0 1 6 6 / 7 / 2 0 1 2 Information Resources Strategic Plan -- 2012­2016 Texas's Information Resources Strategic Plan. It will guide information technology (IT) priorities and decisions

  14. Not planning a sustainable transport system

    SciTech Connect (OSTI)

    Finnveden, Göran Ĺkerman, Jonas

    2014-04-01

    The overall objective of the Swedish transport policy is to ensure the economically efficient and sustainable provision of transport services for people and business throughout the country. More specifically, the transport sector shall, among other things, contribute to the achievement of environmental quality objectives in which the development of the transport system plays an important role in the achievement of the objectives. The aim of this study is to analyse if current transport planning supports this policy. This is done by analysing two recent cases: the National Infrastructure Plan 2010–2021, and the planning of Bypass Stockholm, a major road investment. Our results show that the plans are in conflict with several of the environmental quality objectives. Another interesting aspect of the planning processes is that the long-term climate goals are not included in the planning processes, neither as a clear goal nor as factor that will influence future transport systems. In this way, the long-term sustainability aspects are not present in the planning. We conclude that the two cases do not contribute to a sustainable transport system. Thus, several changes must be made in the processes, including putting up clear targets for emissions. Also, the methodology for the environmental assessments needs to be further developed and discussed. - Highlights: • Two cases are studied to analyse if current planning supports a sustainable transport system. • Results show that the plans are in conflict with several of the environmental quality objectives. • Long-term climate goals are not included in the planning processes. • Current practices do not contribute to a sustainable planning processes. • Methodology and process for environmental assessments must be further developed and discussed.

  15. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Manager (757) 269-7511, rode@jlab.org Program Development & Planning The Program Development function of Project Management Office serves three main purposes: 1. Monitor...

  16. TransBorder 2035 Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    El Paso Metropolitan Planning Organization

    2007-11-16

    Investigacion y Planeacion (IMIP), Tigua Tribal Government, New Mexico Environmental Department, Texas Commission on Environmental Quality, City of El Paso, and surrounding towns. The MPO staff is tasked with establishing an impartial setting for effective... Metropolitan Planning Organization www.elpasompo.org 3.3 Environmental Justice Environmental Justice (EJ) is a concept that has a major impact in the transportation planning process. The goal of EJ, as it relates to transportation...

  17. Guam Transportation Petroleum-Use Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2013-04-01

    The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

  18. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  19. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    SciTech Connect (OSTI)

    Frazier, T.P.

    1994-10-20

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans.

  20. S. Sabina Wolfson Urban Transportation Planning

    E-Print Network [OSTI]

    Wolfson, Sabina

    of Manhattan The East Side of Manhattan needs more (and better) public transportation1. Eventually a Second Draft Environmental Impact Statement (SAS SDEIS), Chapter 1: Project Purpose and Need. 2 Most

  1. Project Plan Remote Target Fabrication Refurbishment Project

    SciTech Connect (OSTI)

    Bell, Gary L; Taylor, Robin D

    2009-08-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of {sup 252}Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The {sup 252}Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of {sup 252}Cf; the average irradiation period is {approx}10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of {sup 252}Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work was received in July 2009 under the Remote Target Fabrication Refurbishment Task of the Enhanced Utilization of Isotope Facilities project (Project Identification Code 2005230) funded by the American Recovery and Reinvestment Act of 2009. The goal of this project is to recover the capability to produce 4-5 curium targets for the irradiation period starting with HFIR cycle 427, currently scheduled to begin 2/17/10. Assuming success, the equipment would then be used to fabricate 6-7 additional targets to hold for the next irradiation campaign specified by the program. Specific objectives are the return to functionality of the Cubicle 3 Pellet Fabrication Line; Cubicle 2 Target Assembly equipment; and Cubicle 1 Target Inspection and Final Assembly system.

  2. Regional Public Coordination Transportation Plan Texoma Region #22 

    E-Print Network [OSTI]

    Texoma Council of Governments

    2006-12-01

    .......................................................................................................... 6 Regional Geography and Demographics..................................................................................... 6 Regional Agencies Responsible for Transportation Planning.................................................. 6 Descriptions... of the Region?s Public Transportation Providers................................................. 7 Coordinated Transportation Plan..................................................................................................... 8 Coordination Actions...

  3. Climate Action Plans and Long-Range Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

  4. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...

    Energy Savers [EERE]

    qualitativelysubjectively assess the project risk. The approach is modeled after project risk assessment processes outlined in standard project management texts and training...

  5. PROJECT MANGEMENT PLAN EXAMPLES Prepare Project Support Plans...

    Broader source: Energy.gov (indexed) [DOE]

    addressing the following key elements of project management and control: Project Management Control System (PMCS) - Work breakdown structure - Baseline developmentupdate...

  6. Mobility 2035 Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    Killeen-Temple Urban Transportation Study

    2009-05-20

    braking while decelerating or traveling downhill will be captured with some conversion losses. 9 CHAPTER IV DATA GATHERING To investigate the effect of electrifying existing interstate/freeway transportation, as a start, the existing traffic... on the grid by conveying on the new guideway freight and passenger vehicles currently driven on the freeways and interstate highways. The calculation required total vehicle miles traveled (VMT) and the hourly volume pattern by each vehicle class and road...

  7. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear physics research. Our focus is to provide project management and integrated planning support across the Lab that is aligned with Lab goals, objectives and guidance....

  8. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    ..............................................................................................................................1 1.2.1 DOE-approved project documents:..............................................................................................1 1.2.2 DOE certified institutional systems or plans.......................................................................................................4 DOE Level I Milestones

  9. Laredo 2010-2035 Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    Laredo Urban Transportation Study

    2009-12-11

    ?Rivera,?PE? Linda?Vela The?preparation?and?publication?of?this?report?was?financed?in?part?through?grants?from?the? Federal?Highway?Administration,?the?Federal?Transit?Administration,?and?the?Texas? Department?of?Transportation.?All?opinions,?findings,?and...?conclusions?presented?in?this?report? reflect?the?view?of?the?Plan?authors?and?do?not?necessarily?reflect?the?official?views?or?policy? of?the?Federal?Highway?Administration,?the?Federal?Transit?Administration,?or?the?Texas? Department?of?Transportation.? ? ? ? ? ? ? ? ? ? ? THIS...

  10. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    10/12/2012 Update to WBS Level 2 Threshold (top of page 20), Change DOE Federal Project Director ..............................................................................................................................1 1.2.1 DOE-approved project documents:..............................................................................................1 1.2.2 DOE certified institutional systems or plans

  11. 2030 Northwest Arkansas Regional Transportation Plan 

    E-Print Network [OSTI]

    Northwest Arkansas Regional Planning Commission

    2006-04-20

    on the Committees below were selected by the chief officials of each participating government or agency to represent them in the transportation planning process. Policy Committee members include Mayors, County Judges, and Chief Executive Officers. Technical Advisory... areas. PARTICIPANTS POLICY COMMITTEE AGENCY TAC Alan Meadors AHTD Planning & Research Steve Mitchell AHTD Transit Danny Chidester Joe Shipman AHTD District 4 AHTD District 9 Steve Lawrence Travis Harp Benton County Michelle Crain Troy Galloway...

  12. Southeast Texas Region Regional Public Transportation Coordination Plan 

    E-Print Network [OSTI]

    Southeast Texas Regional Planning Commission

    2006-01-01

    REGION REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN PREPARED FOR THE TEXAS DEPARTMENT OF TRANSPORTATION NOVEMBER 2006 REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN NOVEMBER 2006 PAGE 1 Table of Contents... ....................................................................4 History of Regional Coordination of Public Transportation ..............................10 REGIONAL SERVICE COORDINATION PLANNING........................................................10 Lead Agency...

  13. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  14. Transportation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially improve...

  15. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

  16. RIVER PROTECTION PROJECT SYSTEM PLAN

    SciTech Connect (OSTI)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

  17. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  18. UMTRA Project: Environment, Safety, and Health Plan

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project`s ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors` evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations.

  19. Texas State Planning Region 3 Report of Regional Transportation Coordination 

    E-Print Network [OSTI]

    Nortex Regional Planning Commission

    2006-12-01

    stream_source_info Nortex Regional Transportation Coordination Plan.pdf.txt stream_content_type text/plain stream_size 50110 Content-Encoding ISO-8859-1 stream_name Nortex Regional Transportation Coordination Plan.pdf.txt Content... Transportation Coordination December 1, 2006 Submitted to The Texas Department of Transportation Mission To provide reliable, quality, coordinated, public transportation. Texas State Planning Region 3 Page 1 Table of Contents Table...

  20. PROJECT MANGEMENT PLAN EXAMPLES Deactivation Plan Project Scope...

    Energy Savers [EERE]

    Stabilization and Deactivation Project scope. Environmental remediation of cribs, ponds, and ditches will be conducted as follow-on work consistent with the goal of the...

  1. Project Management Plan Examples 1- 80

    Broader source: Energy.gov [DOE]

    The following material has been extracted from several project management plans. The order in which it is presented is arbitrary. The descriptions below should be used to navigate to the subject of...

  2. CIV498 Design Project 2016 Project Area: Transportation

    E-Print Network [OSTI]

    Toronto, University of

    /Planning Energy efficiency X Social/Political/Economic Issues X Environmental Assessment Structural design X with a specific emphasis on accommodating all modes of transportation including cars, trucks, transit and non-motorized modes. The provision of the hydro corridor also presents additional opportunities to accommodate transit

  3. Houston-Galveston Region Public Transportation Coordination Plan 

    E-Print Network [OSTI]

    Houston-Galveston Area Council

    2005-11-17

    stream_source_info Gulf Coast Region Public Transportation Coordination Plan.pdf.txt stream_content_type text/plain stream_size 58694 Content-Encoding ISO-8859-1 stream_name Gulf Coast Region Public Transportation Coordination Plan....pdf.txt Content-Type text/plain; charset=ISO-8859-1 Houston-Galveston Region Public Transportation Coordination Plan Submitted to the Texas Transportation Commission by the Houston-Galveston Area Council and Local Partners...

  4. Project Management Plan Project Title: Natural Resources Management

    E-Print Network [OSTI]

    US Army Corps of Engineers

    DEFINITION. The NRM Gateway is a knowledge management resource, designed to serve the needs of the NRMP; · Preserve institutional knowledge; · Develop practical and agency-approved webpages that provide usefulProject Management Plan Project Title: Natural Resources Management (NRM) Gateway Website

  5. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes

    E-Print Network [OSTI]

    and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operations pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian

  6. National Security Technology Incubation Project Continuation Plan

    SciTech Connect (OSTI)

    2008-09-30

    This document contains a project continuation plan for the National Security Technology Incubator (NSTI). The plan was developed as part of the National Security Preparedness Project (NSPP) funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This continuation plan describes the current status of NSTI (staffing and clients), long-term goals, strategies, and long-term financial solvency goals.The Arrowhead Center of New Mexico State University (NMSU) is the operator and manager of the NSTI. To realize the NSTI, Arrowhead Center must meet several performance objectives related to planning, development, execution, evaluation, and sustainability. This continuation plan is critical to the success of NSTI in its mission of incubating businesses with security technology products and services.

  7. Jonesboro Metropolitan Planning Organization 2030 Long Range Transportation Plan 

    E-Print Network [OSTI]

    Jonesboro Metropolitan Planning Organization

    2005-01-01

    ,500 1995 - 2003 -813 Oakdale Street ? Bittle Street 0291 15,000 1995 - 2003 -625 Oakmeadow Blvd. ? Franklin St. 0325 13,000 1995 - 2003 -125 Rains Street ? Perkin Street 0326 11,000 1995 - 2003 -125 Madison Street ? Haven Street 0244 10,000 1995 - 2003.... Land Use 3-2 D. Traffic Analysis and Forecast 3-2 Chapter 4: Goals and Priorities 4-1 A. Why a Transportation Plan 4-1 B. Goals and Priorities 4-1 Chapter 5: Streets and Highways 5-1 Introduction 5-1 Goals and Objectives 5...

  8. Gas generation matrix depletion quality assurance project plan

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The Los Alamos National Laboratory (LANL) is to provide the necessary expertise, experience, equipment and instrumentation, and management structure to: Conduct the matrix depletion experiments using simulated waste for quantifying matrix depletion effects; and Conduct experiments on 60 cylinders containing simulated TRU waste to determine the effects of matrix depletion on gas generation for transportation. All work for the Gas Generation Matrix Depletion (GGMD) experiment is performed according to the quality objectives established in the test plan and under this Quality Assurance Project Plan (QAPjP).

  9. Environmental development plan for transportation programs: FY80 update

    SciTech Connect (OSTI)

    Saricks, C.L.; Singh, M.K.; Bernard, M.J. III; Bevilacqua, O.M.

    1980-09-01

    This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmental concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.

  10. A planning problem combining calculus of variations and optimal transport

    E-Print Network [OSTI]

    Lachapelle, Aimé

    problem as cost. The decoupled case is more involved since it is nonlinear in the transport plan. Keywords/assignment problems have their modern roots in planning prob- lems (optimally transporting coal from mines to steel and will compare them. The coupled problem thus amounts to solve a standard optimal transport where the cost

  11. SAPHIRE 8 Software Project Plan

    SciTech Connect (OSTI)

    Curtis L.Smith; Ted S. Wood

    2010-03-01

    This project is being conducted at the request of the DOE and the NRC. The INL has been requested by the NRC to improve and maintain the Systems Analysis Programs for Hands-on Integrated Reliability Evaluation (SAPHIRE) tool set concurrent with the changing needs of the user community as well as staying current with new technologies. Successful completion will be upon NRC approved release of all software and accompanying documentation in a timely fashion. This project will enhance the SAPHIRE tool set for the user community (NRC, Nuclear Power Plant operations, Probabilistic Risk Analysis (PRA) model developers) by providing improved Common Cause Failure (CCF), External Events, Level 2, and Significance Determination Process (SDP) analysis capabilities. The SAPHIRE development team at the Idaho National Laboratory is responsible for successful completion of this project. The project is under the supervision of Curtis L. Smith, PhD, Technical Lead for the SAPHIRE application. All current capabilities from SAPHIRE version 7 will be maintained in SAPHIRE 8. The following additional capabilities will be incorporated: • Incorporation of SPAR models for the SDP interface. • Improved quality assurance activities for PRA calculations of SAPHIRE Version 8. • Continue the current activities for code maintenance, documentation, and user support for the code.

  12. 2011 Annual Planning Summary for Advanced Research and Projects...

    Energy Savers [EERE]

    Advanced Research and Projects Agency (ARPA-E) 2011 Annual Planning Summary for Advanced Research and Projects Agency (ARPA-E) The ongoing and projected Environmental Assessments...

  13. 2012 Annual Planning Summary for Advanced Research Projects Agency...

    Energy Savers [EERE]

    Advanced Research Projects Agency-Energy 2012 Annual Planning Summary for Advanced Research Projects Agency-Energy The ongoing and projected Environmental Assessments and...

  14. Use of a GIS-Based Model of Habitat Cores and Landscape Corridors for VDOT Transportation Project Planning and Environmental Scoping

    E-Print Network [OSTI]

    Donaldson, Bridget M. Donaldson; Weber, Joseph T.

    2007-01-01

    U se of a GIS-B ased M odel of H abitat C ores and L2545, joseph.weber@dcr.virginia.gov), GIS Projects Manager/Program is creating a GIS tool, the Virginia Natural

  15. FY95 software project management plan: TMACS, CASS computer systems

    SciTech Connect (OSTI)

    Spurling, D.G.

    1994-11-11

    The FY95 Work Plan for TMACS and CASS Software Projects describes the activities planned for the current fiscal year. This plan replaces WHC-SD-WM-SDP-008. The TMACS project schedule is included in the TWRS Integrated Schedule.

  16. AVLIS Production Plant Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables.

  17. Cesium legacy safety project management work plan

    SciTech Connect (OSTI)

    Durham, J.S.

    1998-04-21

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell).

  18. Best Practices in Non-Motorized Transport Planning, Implementation...

    Open Energy Info (EERE)

    Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices in Non-Motorized...

  19. UNBC Project Risk Assessment Plan -Page 1 of 9 Project Risk

    E-Print Network [OSTI]

    Northern British Columbia, University of

    UNBC Project Risk Assessment Plan - Page 1 of 9 Project Risk Assessment Plan Risk & Safety Office, and Crew member (1). #12;UNBC Project Risk Assessment Plan - Page 2 of 9 3. LOCATIONS IDENTIFIED to identify with this project #12;UNBC Project Risk Assessment Plan - Page

  20. Energy Strategic Planning & Sufficiency Project

    SciTech Connect (OSTI)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  1. Spent Nuclear Fuel Project dose management plan

    SciTech Connect (OSTI)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts.

  2. FIRE Project Action Plan in Response to

    E-Print Network [OSTI]

    1 FIRE Project Action Plan in Response to Next Step Options Program Advisory Committee Report (PAC1) FIRE Mission: Finding F1-1: PAC-1 felt that the FIRE mission statement, "Attain, explore, understand states the scientific direction and objectives of the FIRE program, but that the mission statement does

  3. National Ignition Facility project acquisition plan

    SciTech Connect (OSTI)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  4. Site study plan for Transportation, Deaf Smith County Site, Texas: Preliminary draft

    SciTech Connect (OSTI)

    Not Available

    1987-06-01

    This site study plan describes transportation field studies to be conducted during the characterization of the Deaf Smith County, Texas, site for the US Department of Energy's Salt Repository Project. The studies are needed to identify and assess potential project impacts to transportation infrastructure and systems in the project vicinity and along potential transportation routes to the site across the State of Texas. The studies are also needed to locate and design project transportation facilities, and to evaluate and design impact mitigation. After identifying the transportation information requirements needed to comply with Federal, State, and local regulations and repository program requirements, the site study plan describes the study design and rationale, the field data collection procedures and equipment, the data analysis methods and application of results, the data management strategy, the schedule of field activities, the management of the study, and the study's quality assurance program. The field data collection activities are organized into programs for the characterization of site vicinity rail corridors and highway corridors, characterization of alternative statewide transportation routes, monitoring of site characterization effects on transportation, characterization of aircraft overflight patterns and hazardous material transportation patterns, and assessment of emergency response preparedness along alternative statewide transportation routes. 34 refs., 10 figs., 2 tabs.

  5. Minor and Planned Projects Project Timeline and Project Activity

    E-Print Network [OSTI]

    Glasser, Adrian

    Environmental Requirements (Asbestos/Mold) Contract with Design Professional Manage Design Deliverables Requirements (Asbestos/Mold) Develop a Schematic Design (may include UIT) Develop a Work Plan Submit Services for new, changed or interrupted services Purchase/contract approved materials Perform

  6. 2011 ANNUAL PLANNING SUMMARY FOR ADVANCED RESEARCH AND PROJECTS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Bonneville Power Administration 2013 Annual Planning Summary for the Western Area Power Administration 2014 Annual Planning Summary for the West Valley Demonstration Project...

  7. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  8. Alexandria/Pineville Metropolitan Transportation Plan MTP 2029 

    E-Print Network [OSTI]

    Rapides Area Planning Commission

    2005-01-01

    stream_source_info Alexandria_Pineville Metropolitan Transportation Plan MTP 2029.pdf.txt stream_content_type text/plain stream_size 90 Content-Encoding ISO-8859-1 stream_name Alexandria_Pineville Metropolitan Transportation Plan MTP...

  9. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submitted our agency planTexas Transportation Institute Energy Management and Conservation Plan 4th Quarterly Report. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures and implements

  10. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submitted our agency planTexas Transportation Institute Energy Management and Conservation Plan 3rd Quarterly Report. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures and implements

  11. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submitted our agency planTexas Transportation Institute Energy Management and Conservation Plan 1st Quarterly Report. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures and implements

  12. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submitted our agency planTexas Transportation Institute Energy Management and Conservation Plan 2nd Quarterly Report. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures and implements

  13. UPP 562_SP07 Urban Transportation Planning III: Laboratory

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    in Washington D.C. 1/312 Traffic impact study (part 1) Overview, basic economic analysis (Economic base Handbook. Institute of Transportation Engineers, 1999 ·John Dickey, Metropolitan Transportation Planning. Taylor & Francis, 1983 ·Khisty and Lall. Transportation Engineering: An Introduction. Prentice Hall 1999

  14. 2010 Quality Assurance Improvement Project Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel Travel ThePresidentialofSubsurfaceto Remote6 Projects ToHQ/EFCOG Project Plan 2

  15. Department of Energy Guide for Project Execution Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-12

    This directive provides guidance for the federal project director to produce a useful and flexible plan. No cancellation.

  16. RTSTEP regional transportation simulation tool for emergency planning - final report.

    SciTech Connect (OSTI)

    Ley, H.; Sokolov, V.; Hope, M.; Auld, J.; Zhang, K.; Park, Y.; Kang, X.

    2012-01-20

    Large-scale evacuations from major cities during no-notice events - such as chemical or radiological attacks, hazardous material spills, or earthquakes - have an obvious impact on large regions rather than on just the directly affected area. The scope of impact includes the accommodation of emergency evacuation traffic throughout a very large area; the planning of resources to respond appropriately to the needs of the affected population; the placement of medical supplies and decontamination equipment; and the assessment and determination of primary escape routes, as well as routes for incoming emergency responders. Compared to events with advance notice, such as evacuations based on hurricanes approaching an affected area, the response to no-notice events relies exclusively on pre-planning and general regional emergency preparedness. Another unique issue is the lack of a full and immediate understanding of the underlying threats to the population, making it even more essential to gain extensive knowledge of the available resources, the chain of command, and established procedures. Given the size of the area affected, an advanced understanding of the regional transportation systems is essential to help with the planning for such events. The objectives of the work described here (carried out by Argonne National Laboratory) is the development of a multi-modal regional transportation model that allows for the analysis of different evacuation scenarios and emergency response strategies to build a wealth of knowledge that can be used to develop appropriate regional emergency response plans. The focus of this work is on the effects of no-notice evacuations on the regional transportation network, as well as the response of the transportation network to the sudden and unusual demand. The effects are dynamic in nature, with scenarios changing potentially from minute to minute. The response to a radiological or chemical hazard will be based on the time-delayed dispersion of such materials over a large area, with responders trying to mitigate the immediate danger to the population in a variety of ways that may change over time (e.g., in-place evacuation, staged evacuations, and declarations of growing evacuation zones over time). In addition, available resources will be marshaled in unusual ways, such as the repurposing of transit vehicles to support mass evacuations. Thus, any simulation strategy will need to be able to address highly dynamic effects and will need to be able to handle any mode of ground transportation. Depending on the urgency and timeline of the event, emergency responders may also direct evacuees to leave largely on foot, keeping roadways as clear as possible for emergency responders, logistics, mass transport, and law enforcement. This RTSTEP project developed a regional emergency evacuation modeling tool for the Chicago Metropolitan Area that emergency responders can use to pre-plan evacuation strategies and compare different response strategies on the basis of a rather realistic model of the underlying complex transportation system. This approach is a significant improvement over existing response strategies that are largely based on experience gained from small-scale events, anecdotal evidence, and extrapolation to the scale of the assumed emergency. The new tool will thus add to the toolbox available to emergency response planners to help them design appropriate generalized procedures and strategies that lead to an improved outcome when used during an actual event.

  17. Analysis of offsite emergency planning zones project

    SciTech Connect (OSTI)

    Petrocchi, A.J.; Armstrong, C.E. . Rocky Flats Plant); McKinney, J.M.; Verholek, M.G.; Fraser, P.J.; Dalfonso, P.H. )

    1991-07-18

    The Rocky Flats Plant maintains and uses significant nonradioactive chemically hazardous material (HAZMAT) inventories. Some of these materials are used in sufficient quantities to represent a credible risk to the offsite public in the event of an emergency at the facility. In Phase 2 of this project, the EG G Rocky Flats, Inc. and TENERA, L.P. Task Team (Task Team) produced an initial screening-level modeling analysis study and an Emergency Planning Zone (EPZ) encompassing the Vulnerable Zones (VZs) for hazardous materials stored at the facility. The screening-level analysis will be supplemented with more refined evaluations during subsequent phases of the project. The existence of these chemicals in the Rocky Flats Plant Occupational Health Information System (OHIS) chemical inventory database was verified. All liquid and gaseous chemicals were considered as potential hazardous material source terms for further screening analysis. Hazards associated with solid substances were not considered in this phase of the project. 2 figs., 13 tabs.

  18. Ark-Tex Area Regional Public Transportation Coordination Plan 

    E-Print Network [OSTI]

    Ark-Tex Council of Governments

    2006-11-30

    stream_source_info Ark-Tex Area Regional Public Transportation Coordination Plan.pdf.txt stream_content_type text/plain stream_size 55677 Content-Encoding ISO-8859-1 stream_name Ark-Tex Area Regional Public Transportation... Coordination Plan.pdf.txt Content-Type text/plain; charset=ISO-8859-1 KFH GROUP, INC. ARK-TEX AREA REGIONAL PUBLIC TRANSPORTATION COORDINATION PLAN Developed for: ARK-TEX COUNCIL OF GOVERNMENTS By: KFH Group...

  19. TRANSPORTATION NODES, REAL ESTATE AND URBAN DEVELOPMENT The Metamorphosis Project

    E-Print Network [OSTI]

    Tufto, Jarle

    1 TRANSPORTATION NODES, REAL ESTATE AND URBAN DEVELOPMENT The Metamorphosis Project Norwegian POTENTIALS FOR PROJECT- AND URBAN DEVELOPMENT AT TRANSPORTATION NODES · TO QUICKLY DEVELOP AN ARCHITECTURAL? · DEVELOP AN URBAN AND ARCHITECTURAL CONCEPT AND PROGRAM · DESIGN AND PRESENT THE PROJECT #12;6 PHOENICIAN

  20. Human and modeling approaches for humanitarian transportation planning

    E-Print Network [OSTI]

    Gralla, Erica Lynn

    2012-01-01

    Recent disasters have highlighted the need for more effective supply chain management during emergency response. Planning and prioritizing the use of trucks and helicopters to transport humanitarian aid to affected communities ...

  1. Transportation in Community Strategic Energy Plans

    Broader source: Energy.gov [DOE]

    This presentation features Caley Johnson, a fuel and vehicle market analyst with the National Renewable Energy Laboratory. Johnson provides an overview of how and why to incorporate transportation...

  2. Texas Transportation Institute Energy Management and Conservation Plan

    E-Print Network [OSTI]

    , motor fuels and natural gas. The Texas Transportation Institute (TTI) has been committed to reducingTexas Transportation Institute Energy Management and Conservation Plan Quarterly Report ­ June 30, gas, lighting and plumbing fixtures and implements. TTI Employee Awareness Program As a tenant agency

  3. Texarkana Urban Transportation Study 2035 Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    Texarkana Metropolitan Planning Organization

    2009-10-01

    And Local Resource Agencies 1-7 Inclusion of Indian Tribes in the Transportation Process 1-8 2 SOCIO-ECONOMIC DATA 5 ROADS & BRIDGES Population Data 2-1 Road Performance 5-1 Housing Data 2... to increased motor fuels taxes or alternative revenue sources 4. Decaying infrastructure 5. Increasing demand for new infrastructure and access to alternative modes Starting with the Intermodal Surface Transportation Act of 1991 (ISTEA), the regulatory...

  4. Berkeley Planning Journal Sustainable Transport in the United States

    E-Print Network [OSTI]

    Bertini, Robert L.

    . Introduction New Urbanism is often proposed as a more sustainable form of urban growth at both the neighborhood) examined the sustainability of New Urban- #12;60 Berkeley Planning Journal, Volume 19, 2006 ismBerkeley Planning Journal Volume 19 2006 Sustainable Transport in the United States: From Rhetoric

  5. Single-shell tank interim stabilization project plan

    SciTech Connect (OSTI)

    Ross, W.E.

    1998-05-11

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  6. 2033 Long Range Transportation Plan and FY 2010-2013 Transportation Improvement Program 

    E-Print Network [OSTI]

    The West-Memphis Metropolitan Planning Organization

    2009-01-01

    D i t c h N o 1 3 D i t c h N o 2 0 Dit ch # 2 D i t c h N o 1 5 D i t c h N o 1 3 D i t c h N o 9 ? 1 inch = 10,000 feet 2033 WMATS LONG RANGE TRANSPORTATION PLAN Legend LRP WMATS Boundary LRP Pro Principal Arterial LRP Pro Minor...: Marion 2.23% after 2009 West Memphis 0.23% after 2009 Employment 40% in 2006 41% thereafter WMATS ESTIMATED POPULATION AND EMPLOYMENT PROJECTIONS Year Marion Crittenden County Employment A R 7 7 H w y A R 1 4 7 H w y I 5 5 S e r v i c e R d...

  7. Metropolitan Transportation Plan 2005-2030 

    E-Print Network [OSTI]

    Midland-Odessa Transportation Organization

    2004-12-08

    This study evaluated the effect of typical production practices during transport of cattle on the resulting incidence of pathogenic bacteria in cattle and their resulting carcasses. Various factors, including type of animal, body condition score...

  8. ECO-LOGICAL: AN ECOSYSTEM APPROACH TO DEVELOPING TRANSPORTATION INFRASTRUCTURE PROJECTS IN A CHANGING ENVIRONMENT

    E-Print Network [OSTI]

    Bacher-Gresock, Bethaney; Schwarzer, Julianne Siegel

    2009-01-01

    Office of Project Development and Environmental Review, 1200planning and project development. By creating and usingin the planning and project development processes enhances

  9. Plans and Project in the Upper Great Plains Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planning Projects Studies WindHydro Integration Feasibility Study Dakotas Wind Study Summary (144kb pdf) For more information, contact Dirk Shulund by email or by phone at...

  10. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  11. An empirical study of planning and scheduling interactions in the road passenger transportation domain

    E-Print Network [OSTI]

    Qu, Rong

    An empirical study of planning and scheduling interactions in the road passenger transportation between planning and scheduling in a specific scenario, road pas- senger transportation. The problem (what planning analyzes). The relative change consists of slightingly decreasing the energy level

  12. Global Threat Reduction Initiative Africa and Middle East Project Plan 2012

    SciTech Connect (OSTI)

    Jamison, Jeremy D.

    2012-02-01

    GTRI Africa and Middle East Project Plan submitted for school project to American Graduate University.

  13. Fast Flux Test Facility project plan. Revision 2

    SciTech Connect (OSTI)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  14. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  15. Health and Safety Plan for NSTX Upgrade Project Tasks

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Draft 0 6/17/11 1 Health and Safety Plan for NSTX Upgrade Project Tasks in the NSTX Test Cell: _____________________________________________________________ Jerry Levine, Environment, Safety, Health and Security Head Reviewed by describes the structure and implementation of the Health and Safety Plan for the NSTX Upgrade Project work

  16. Baton Rouge Metropolitan Transportation Plan Update 

    E-Print Network [OSTI]

    Capital Region Planning Commission

    2007-01-01

    ....................................................................................48 FIGURE 20 ? SAMPLE MODEL SETUP INTERFACE .......................................................50 FIGURE 21 ? MODE CHOICE MODEL ESTIMATED NESTING STRUCTURE ........................................................58 FIGURE 22 ? FEEDBACK... Baton Rouge, LA xiii December 2007 S. No Project Number Parish Name (Location) Improvement Total Cost (000) Funding Source 1 742-17-MAP8 EBR Transfer CMAQ Funds to STPHAZ City's Share of M.A.P. 1,750 CM 2 077-02-0019 ASC LA 73 (LA 74 - LA...

  17. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  18. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    SciTech Connect (OSTI)

    Burritt, James G.; Berkey, Edgar

    2012-07-01

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  19. World Energy Projection System Plus Model Documentation: Transportation Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  20. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  1. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2011-09-01

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

  2. Detailed Execution Planning for Large Oil and Gas Construction Projects

    E-Print Network [OSTI]

    Calgary, University of

    Detailed Execution Planning for Large Oil and Gas Construction Projects Presented by James Lozon, University of Calgary There is currently 55.8 billion dollars worth of large oil and gas construction projects scheduled or underway in the province of Alberta. Recently, large capital oil and gas projects

  3. Risk Management Plan Electron Beam Ion Source Project

    E-Print Network [OSTI]

    Risk Management Plan for the Electron Beam Ion Source Project (EBIS) Project # 06-SC-002. There are three specific areas of risk that can be controlled and managed by the EBIS Project team and these are and operations. The BNL ISM clearly indicates that risk management is everybody's business and will be factored

  4. Technology Transfer Expansion Planned UTCA is conducting a major project

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Technology Transfer Expansion Planned UTCA is conducting a major project to evaluate and extend its technology transfer activities (UTCA project 03217). Steven Jones and David Eckhoff of UAB are working to expand the current technology transfer program to showcase the successes of the UTCA projects. Samples

  5. Uranium Mill Tailings Remedial Action (UMTRA) Surface Project: Project plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-11

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) [Public Law (PL) 95-604, 42 United States Code (USC) 7901], hereinafter referred to as the ``Act,`` authorizes the US Department of Energy (DOE) to stabilize and control surface tailings and ground water contamination. To fulfill this mission, the DOE has established two projects under the Uranium Mill Tailings Remedial Action (UMTRA) Project Office. The Ground Water Project was established in April 1991 as a major project and a separate project plan will be prepared for that portion of the mission. This project plan covers the UMTRA Surface Project, a major system acquisition (MSA).

  6. FY 2015 OFFICE OF BUDGET & FINANCE STRATEGIC PLAN Strategic Plan Items & Projects

    E-Print Network [OSTI]

    O'Toole, Alice J.

    .2.4. Implement Activity Guide Functionality in SIS 3.3. Improve Processes and Systems 3.3.1. Deliver the ProjectsFY 2015 OFFICE OF BUDGET & FINANCE STRATEGIC PLAN Strategic Plan Items & Projects 1.0. OPERATIONAL Policies and SAPs 1.1.2. Expand Utilization and Effectiveness of askYODA 1.1.3. Implement Continuous

  7. West Valley Demonstration Project Transportation Emergency Management...

    Office of Environmental Management (EM)

    though the road is approximately 200 meters from the release point, and the projected dose is 1 rem at 500 meters. Discretionary footnotes for all EALs and a procedural step in...

  8. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  9. BPA to share costs with PUDs in regional planning project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA, Teresa Waugh, 503-230-7536 or 503-230-5131 Innovative agreement: BPA to share costs with PUDs in regional planning project Portland, Ore. - Three public utility districts...

  10. The Long-Range Transportation Plan for Central Arkansas 

    E-Print Network [OSTI]

    Metroplan Metropolitan Planning Organization

    2010-03-24

    ......................................... 16-8 Map 17-1 - Preferred Growth Concept ........................................................................................................................ 17-2 Map 17-2 - Freeway Capacity Improvements... ...............................................................................................................................15/21 METRO 2030.2 Long-Range Transportation Plan Update vi Table of Contents n Adopted March 24, 2010 METRO 2030.2 List of Maps 9-1 ITS Applications on the Freeway Network within Central Arkansas ..................................9/2 9...

  11. Abilene Metropolitan Area Metropolitan Transportation Plan 2010-2035 

    E-Print Network [OSTI]

    Abilene Metropolitan Planning Organization

    2010-01-12

    Lindley, former Abilene City Engineer MPO Staff (Non-Voting) Robert Allen, Abilene MPO Transportation Planning Director Dyess AFB SH 351 SH 351 FM 10 82 Jones County JonesCounty Jones County Jones County Jones County Te xt Jones County Jones... Area Urbanized Area Boundary county lines City Limits Freeways and Expressways Major Streets and Highways Railroad 0241Miles Tye Potosi Caps Dyess AFB Abilene Regional Airport Abilene ??? 20 ??? 20 ??? 20 Hamby State Prisons Lake Fort Phantom Hill...

  12. Spent nuclear fuel project integrated schedule plan

    SciTech Connect (OSTI)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  13. Operational Environmental Monitoring Program Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Perkins, C.J.

    1994-08-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and operational environmental monitoring performed by Westinghouse Hanford Company as it implements the Operational Environmental Monitoring program. This plan applies to all sampling and monitoring activities performed by Westinghouse Hanford Company in implementing the Operational Environmental Monitoring program at the Hanford Site.

  14. Health and Safety Plan for NSTX Upgrade Project Tasks

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Health and Safety Plan for NSTX Upgrade Project Tasks in the NSTX Test Cell PRINCETON PLASMA....~_____...L....,L....q..l:::::.......:.J Larry Dudek, NSTX Center Stack Manager Reviewed by: I( Jer evine, Environment, Safety, Health and S This document describes the structure and implementation of the Health and Safety Plan for the NSTX Upgrade

  15. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  16. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    _____________________________ Manager, SC-PSO _____________________________ J. Makiel NSTX Upgrade Project Federal Project Director, SC-PSO Description of Changes A 1/11/10 PPEP Initial Issue by PPPL & PSO, but not approved by OFES B 4/5/10 PPEP Cost

  17. NSTX Upgrade Project Execution Plan NSTX Upgrade Project

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    NSTX Upgrade Project Federal Project Director, SC-PSO Administrative Change Approved by Office, ou=DOE-PSO, email=aindelicato@pppl.gov, c=US Date: 2012.10.15 09:41:43 -04'00' #12;NSTX Upgrade Description of Changes A 1/11/10 PPEP Initial Issue by PPPL & PSO, but not approved by OFES B 4/5/10 PPEP Cost

  18. ERD UMTRA Project quality assurance program plan, Revision 7

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors.

  19. Siberian Chemical Combine laboratory project work plan, fiscal year 1999

    SciTech Connect (OSTI)

    Morgado, R.E.; Acobyan, R.; Shropsire, R.

    1998-12-31

    The Siberian Chemical Combine (SKhK), Laboratory Project Work Plan (Plan) is intended to assist the US Laboratory Project Team, and Department of Energy (DOE) staff with the management of the FY99 joint material protection control and accounting program (MPC and A) for enhancing nuclear material safeguards within the Siberian Chemical Combine. The DOE/Russian/Newly Independent States, Nuclear Material Task Force, uses a project work plan document for higher-level program management. The SKhK Plan is a component of the Russian Defense related Sites` input to that document. In addition, it contains task descriptions and a Gantt Chart covering the FY99 time-period. This FY99 window is part of a comprehensive, Project Status Gantt Chart for tasking and goal setting that extends to the year 2003. Secondary and tertiary levels of detail are incorporated therein and are for the use of laboratory project management. The SKhK Plan is a working document, and additions and modifications will be incorporated as the MPC and A project for SKhK evolves.

  20. DMP Planning for Big Science Projects

    E-Print Network [OSTI]

    Juan Bicarregui; Norman Gray; Rob Henderson; Roger Jones; Simon Lambert; Brian Matthews

    2012-08-18

    This report exists to provide high-level guidance for the strategic and engineering development of Data Management and Preservation plans for 'Big Science' data. Although the report's nominal audience is therefore rather narrow, we intend the document to be of use to other planners and data architects who wish to implement good practice in this area. For the purposes of this report, we presume that the reader is broadly persuaded (by external fiat if nothing else) of the need to preserve research data appropriately, and that they have both sophisticated technical support and the budget to support developments. The goal of the document is not to provide mechanically applicable recipes, but to allow the user to develop and lead a high-level plan which is appropriate to their organisation. Throughout, the report is informed where appropriate by the OAIS reference model.

  1. Vadose zone transport field study: Detailed test plan for simulated leak tests

    SciTech Connect (OSTI)

    AL Ward; GW Gee

    2000-06-23

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

  2. Spent Nuclear Fuel (SNF) Project Execution Plan

    SciTech Connect (OSTI)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  3. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2007-01-10

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  4. Final Report for the Soboba Strategic Tribal Energy Planning Project

    SciTech Connect (OSTI)

    Miller, Kim

    2013-09-17

    In 2011 the Tribe was awarded funds from the Department of Energy to formulate the Soboba Strategic Tribal Energy Plan. This will be a guiding document used throughout the planning of projects focused on energy reduction on the Reservation. The Soboba Strategic Tribal Energy Plan's goal is to create a Five Year Energy Plan for the Soboba Band of Luiseno Indians in San Jacinto, California. This plan will guide the decision making process towards consistent progress leading to the Tribal goal of a 25% reduction in energy consumption in the next five years. It will additionally outline energy usage/patterns and will edentify areas the Tribe can decrease energy use and increase efficiency. The report documents activities undertaken under the grant, as well as incldues the Tribe's strategif energy plan.

  5. Developing an Evaluation Measurement and Verification Plan for Your Energy Efficiency Project/Program

    Broader source: Energy.gov [DOE]

    Developing an Evaluation Measurement and Verification Plan for Your Energy Efficiency Project/Program

  6. Tulsa Metropolitan Area Destination 2030 Long Range Transportation Plan 

    E-Print Network [OSTI]

    Indian Nations Council of Governments

    2005-01-01

    , Osage, Rogers, Tulsa, and Wagoner counties. INCOG?s purpose is to promote economy and ef?ciency in government by providing a forum for regional cooperation and by supporting members with planning, development, management, research, and coordination... www.incog.org MAILING ADDRESS 201 W. 5th Street Suite 600 Tulsa, OK 74103-4236 The 1,200 square-mile Tulsa Transportation Management Area (TMA) is comprised of Tulsa County and portions of Creek, Osage, Rogers, and Wagoner counties. The area...

  7. Advanced Hybrid Particulate Collector Project Management Plan

    SciTech Connect (OSTI)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  8. Near-facility environmental monitoring quality assurance project plan

    SciTech Connect (OSTI)

    McKinney, S.M.

    1997-11-24

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site.

  9. 2012 Quality Assurance Improvement Project Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel Travel ThePresidentialofSubsurfaceto Remote6 Projects(September 2012) |2|LoadDOE

  10. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Carl Wharton; Kent Norris

    2009-12-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  11. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Carl Wharton; Kent Norris

    2010-03-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  12. Independent Verification and Validation Of SAPHIRE 8 Software Project Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Carl Wharton

    2009-10-01

    This report provides an evaluation of the Project Plan. The Project Plan is intended to provide the high-level direction that documents the required software activities to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  13. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect (OSTI)

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  14. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    SciTech Connect (OSTI)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  15. Energy Strategic Planning & Self-Sufficiency Project

    SciTech Connect (OSTI)

    Greg Retzlaff

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  16. Soil Management Plan For The Potable Water System Upgrades Project

    SciTech Connect (OSTI)

    Field, S. M.

    2007-04-01

    This plan describes and applies to the handling and management of soils excavated in support of the Y-12 Potable Water Systems Upgrades (PWSU) Project. The plan is specific to the PWSU Project and is intended as a working document that provides guidance consistent with the 'Soil Management Plan for the Oak Ridge Y-12 National Security Complex' (Y/SUB/92-28B99923C-Y05) and the 'Record of Decision for Phase II Interim Remedial Actions for Contaminated Soils and Scrapyard in Upper East Fork Popular Creek, Oak Ridge, Tennessee' (DOE/OR/01-2229&D2). The purpose of this plan is to prevent and/or limit the spread of contamination when moving soil within the Y-12 complex. The major feature of the soil management plan is the decision tree. The intent of the decision tree is to provide step-by-step guidance for the handling and management of soil from excavation of soil through final disposition. The decision tree provides a framework of decisions and actions to facilitate Y-12 or subcontractor decisions on the reuse of excavated soil on site and whether excavated soil can be reused on site or managed as waste. Soil characterization results from soil sampling in support of the project are also presented.

  17. Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning and

    E-Print Network [OSTI]

    Ringler, Eva

    Tadpole transport logistics in a Neotropical poison frog: indications for strategic planning:67 http://www.frontiersinzoology.com/content/10/1/67 #12;RESEARCH Open Access Tadpole transport logistics

  18. Appraisers Project Plan: Wireless Controls and Retrofit LED Lighting Demonstration

    Broader source: Energy.gov [DOE]

    Appraisers Project Plan: Wireless Controls and Retrofit LED Lighting Demonstration Measurement and Verification Report This report details the measurement and verification tools and methods used to evaluate the effectiveness of wireless lighting controls and LED lighting at the Appraisers Building, a federal office building in San Francisco, CA.

  19. The Personal Project Planner: Planning to Organize Personal Information

    E-Print Network [OSTI]

    Anderson, Richard

    the right information at the right time, in the right place, in the right form, to perform their currentThe Personal Project Planner: Planning to Organize Personal Information William Jones i , Predrag Klasnja i , Andrea Civan ii , Michael L. Adcock i i The Information School ii Biomedical and Health

  20. Closure for Production Planning under Power Uncertainty Project

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Closure for Production Planning under Power Uncertainty Project Lehigh University Pietro Belotti C the power is recovered Production occurs at reduced rate The New Uncertainty Set Requires more binary¸ agri Latifoglu Fay Li Larry Snyder Air Products and Chemicals, Inc. Jim Hutton Peter Connard September

  1. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    Nuclear Fuel Grand BC and High-Level Radioactive Waste - Jeff Williams, Director, Nuclear Fuel Storage and Transportation Planning Project, DOEOffice of Nuclear Energy National...

  2. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    SciTech Connect (OSTI)

    Golder Associates, Inc.

    2003-04-22

    The Yakima Urban Growth Area (UGA) is a developing and growing urban area in south-central Washington. Despite increased development, the Yakima River and its tributaries within the UGA continue to support threatened populations of summer steelhead and bull trout as well as a variety of non-listed salmonid species. In order to provide for the maintenance and recovery of these species, while successfully planning for the continued growth and development within the UGA, the City of Yakima has undertaken the Yakima Habitat Improvement Project. The overall goal of the project is to maintain, preserve, and restore functioning fish and wildlife habitat within and immediately surrounding the Yakima UGA over the long term. Acquisition and protection of the fish and wildlife habitat associated with key properties in the UGA will prevent future subdivision along riparian corridors, reduce further degradation or removal of riparian habitat, and maintain or enhance the long term condition of aquatic habitat. By placing these properties in long-term protection, the threat of development from continued growth in the urban area will be removed. To most effectively implement the multi-year habitat acquisition and protection effort, the City has developed this Master Plan. The Master Plan provides the structure and guidance for future habitat acquisition and restoration activities to be performed within the Yakima Urban Area. The development of this Master Plan also supports several Reasonable and Prudent Alternatives (RPAs) of the NOAA Fisheries 2000 Biological Opinion (BiOp), as well as the Water Investment Action Agenda for the Yakima Basin, local planning efforts, and the Columbia Basin Fish and Wildlife Authority's 2000 Fish and Wildlife Program. This Master Plan also provides the framework for coordination of the Yakima Habitat Improvement Project with other fish and wildlife habitat acquisition and protection activities currently being implemented in the area. As a result of the planning effort leading to this Master Plan, a Technical Working Group (TWG) was established that represents most, if not all, fish and wildlife agencies/interests in the subbasin. This TWG met regularly throughout the planning process to provide input and review and was instrumental in the development of this plan. Preparation of this plan included the development of a quantitative prioritization process to rank 40,000 parcels within the Urban Growth Area based on the value of fish and wildlife habitat each parcel provided. Biological and physical criteria were developed and applied to all parcels through a GIS-based prioritization model. In the second-phase of the prioritization process, the TWG provided local expert knowledge and review of the properties. In selecting the most critical areas within the Urban Growth Area for protection, this project assessed the value of fish and wildlife habitat on the Yakima River. Well-developed habitat acquisition efforts (e.g., Yakima River Basin Water Enhancement Project by the Bureau of Reclamation and Yakama Nation acquisition projects) are already underway on the Yakima River mainstem. These efforts, however, face several limitations in protection of floodplain function that could be addressed through the support of the Yakima Habitat Improvement Project. This Master Plan integrates tributary habitat acquisition efforts with those ongoing on the Yakima River to best benefit fish and wildlife in the Urban Growth Area. The parcel ranking process identified 25 properties with the highest fish and wildlife value for habitat acquisition in the Yakima Urban Area. These parcels contain important fish and wildlife corridors on Ahtanum and Wide Hollow Creeks and the Naches River. The fifteen highest-ranking parcels of the 25 parcels identified were considered very high priority for protection of fish and wildlife habitat. These 15 parcels were subsequently grouped into four priority acquisition areas. This Master Plan outlines a four-year schedule for acquisition, protection, and restoration of the 25 highest ranked prop

  3. GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport...

    Open Energy Info (EERE)

    GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport (Espaol) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ Sourcebook Module 2a: Land Use Planning...

  4. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  5. Intermediate evaluation of USAID/Cairo energy policy planning project

    SciTech Connect (OSTI)

    Wilbanks, T.J.; Wright, S.B.; Barron, W.F.; Kamel, A.M.; Santiago, H.T.

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  6. Intermediate evaluation of USAID/Cairo energy policy planning project

    SciTech Connect (OSTI)

    Wilbanks, T.J.; Wright, S.B. ); Barron, W.F. ); Kamel, A.M. ); Santiago, H.T. )

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  7. Transportation Secure Data Center: Real-World Data for Transportation Planning and Land Use Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Transit planning, Travel demand modeling, Homeland Security evacuation planning, Alternative fuel station planning, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

  8. Social impact assessment - new dimensions in project planning

    SciTech Connect (OSTI)

    Jones, M.G.; Hartog, J.J.; Sykes, R.M.

    1996-11-01

    The Objective of the presentation is to provide understanding of how to improve attention to the social dimensions of EP projects. Social Impacts are the consequences to human populations, communities or individuals resulting from a project or activity. Such impacts may change the way in which people live, relate to one another, organize and cope as members of society. There is an increasing demand and expectation that Exploration and Production activities will both understand their impacts and define benefits for the local communities. Social Impact Assessment can be considered a branch of Environmental Impact Assessment. It has become a tool in its own fight due to the focus that was paid to the natural and physical issues within the EIA process. However there are still strong alignments and the wise project planner will integrate social and environmental issues within their project planning process. This can be done through a combination of studies but can result in a single report. The benefits of SIA will be demonstrated to include: (1) obtaining approvals (2) forward planning and design (3) increased project success-benefits to local community (4) economic benefits (5) decision making by management The types of impacts including demographic, socioeconomic, health, social infrastructure, resources, psychological and community, cultural and social equity will be reviewed. Methods and techniques to identify and assess impacts will be addressed. One of the main challenges in SIA is to reach the right audience. Methods to scope studies and implement consultation will be addressed.

  9. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  10. Exploring the Localization of Transportation Planning: Essays on research and policy implications from shifting goals in transportation planning

    E-Print Network [OSTI]

    King, David Andrew

    2009-01-01

    Conroy. 2000. Are We Planning for Sustainable Development?Journal of the American Planning Association 66 (1):21-33.1994. The Influence of State Planning Mandates on Local Plan

  11. Arroyo Colorado Watershed Protection Plan Implementation Project Final Report 

    E-Print Network [OSTI]

    Berthold, T. Allen; Flores, Jaime

    2011-01-01

    /industrial wastewater discharges and irrigation return flows, recreation, and environmental uses and presents a detailed strategy to restore and protect these uses. Furthermore, the plan describes the institutional framework for current management programs... treatment levels, and enhanced biological treatment projects such as reuse via irrigation, polishing ponds and constructed wetland cells. Status ? Multiple wastewater effluent limits have been reduced and this is further reported in the milestones...

  12. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect (OSTI)

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  13. Near Facility Environmental Monitoring Quality Assurance Project Plan

    SciTech Connect (OSTI)

    MCKINNEY, S.M.

    2000-05-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards.

  14. Basing Transport Planning on Principles of Social Justice

    E-Print Network [OSTI]

    Martens, Karel

    2006-01-01

    Urban Transportation. S. Hanson. New York/London: The Guil-of Urban Transportation. S. Hanson. New York/London: The

  15. Management and operating contractor plan for transition to the project Hanford Management Contractor

    SciTech Connect (OSTI)

    Waite, J.L., Westinghouse Hanford

    1996-06-27

    This is Revision 1 to the M{ampersand}O Contractor Plan for Transition to the Project Hanford Management Contractor.

  16. Dallas area-wide intelligent transportation system plan. Draft research report, August 1992-August 1996

    SciTech Connect (OSTI)

    Carvell, J.D.; Seymour, E.J.; Walters, C.H.; Starr, T.R.; Balke, K.

    1996-07-01

    This report documents the development of a comprehensive plan for implementation of Intelligent Transportation Systems (ITS) in the Dallas Urban Area. The contract defined objectives: Develop a Broadly Based Steering Committee; Assess Existing Transportation Management Systems and Potential ITS Technology; Identify Institutional Issues and Legal Barriers; Develop an Implementable, Area-Wide Multi-Jurisdictional ITS Plan; and Develop Cost, Benefits, and an Implementation Plan.

  17. Up-Stream Dissolved Oxygen TMDL Project Quality Assurance ProjectPlan

    SciTech Connect (OSTI)

    Stringfellow, William T.

    2005-05-13

    A quality assurance project plan (QAPP) for the execution of an ecosystem level monitoring and research program examining algal ecology in highly impaired rivers. Procedures for executing both field and laboratory surface water quality and flow analysis are described. The procedures described here are compatible with the California Surface Water Ambient Monitoring program (SWAMP).

  18. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect (OSTI)

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  19. Emergency evacuation/transportation plan update: Traffic model development and evaluation of early closure procedures. Final report

    SciTech Connect (OSTI)

    1993-10-28

    Prolonged delays in traffic experienced by Laboratory personnel during a recent early dismissal in inclement weather, coupled with reconstruction efforts along NM 502 east of the White Rock Wye for the next 1 to 2 years, has prompted Los Alamos National Laboratory (LANL) to re-evaluate and improve the present transportation plan and its integration with contingency plans maintained in other organizations. Facilities planners and emergency operations staff need to evaluate the transportation system`s capability to inefficiently and safely evacuate LANL under different low-level emergency conditions. A variety of potential procedures governing the release of employees from the different technical areas (TAs) requires evaluation, perhaps with regard to multiple emergency-condition scenarios, with one or more optimal procedures ultimately presented for adoption by Lab Management. The work undertaken in this project will hopefully lay a foundation for an on-going, progressive transportation system analysis capability. It utilizes microscale simulation techniques to affirm, reassess and validate the Laboratory`s Early Dismissal/Closure/Delayed Opening Plan. The Laboratory is required by Federal guidelines, and compelled by prudent practice and conscientious regard for the welfare of employees and nearby residents, to maintain plans and operating procedures for evacuation if the need arises. The tools developed during this process can be used outside of contingency planning. It is anticipated that the traffic models developed will allow site planners to evaluate changes to the traffic network which could better serve the normal traffic levels. Changes in roadway configuration, control strategies (signalization and signing), response strategies to traffic accidents, and patterns of demand can be modelled using the analysis tools developed during this project. Such scenarios typically are important considerations in master planning and facilities programming.

  20. Transportation planning for mega events : a model of urban change

    E-Print Network [OSTI]

    Kassens, Eva

    2009-01-01

    My study is about opportunities for revolutionary developments in urban transport. Often, we think of transport and urban development as an evolutionary process, yet there exist a few opportunities for cities to revolutionize ...

  1. Socio-economic benefits in Plan Vivo projects: Trees for Global Benefits, Uganda 1 Socio-economic benefits in Plan Vivo projects

    E-Print Network [OSTI]

    Socio-economic benefits in Plan Vivo projects: Trees for Global Benefits, Uganda 1 Socio-economic benefits in Plan Vivo projects: Trees for Global Benefits, Uganda Sarah Carter 2009 #12;Socio-economic Kairu, Bbale Marcellinus, Willie McGhee, Alexa Morrison and Pauline Nantongo. #12;Socio-economic

  2. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

  3. River Protection Project (RPP) Dangerous Waste Training Plan

    SciTech Connect (OSTI)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

  4. Site characterization plan for the W-058 Project

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-09-01

    The objective of this preoperational study plan is to characterize the proposed pipeline route for the Cross-Site Transfer System (W-058). The purpose of this study is to meet the requirements set forth in US Department of Energy (DOE) Order 5400.1, Chapter 4, (DOE 1990). The W-058 pipeline is intended to replace the existing Cross-Site Transfer System (H-2-43056). The proposed route for the W-058 project will be reviewed to provide information on documented waste sites and potentially to identify any undocumented hazards that may currently exist along the proposed route. Historical records will be researched for pertinent information. Health Physics personnel will perform a ``walk-down`` radiological survey of the proposed path. A sampling plan will be generated and will consist of actual drilling of boreholes to allow field screening for radionuclides and/or chemical contamination and the collection of samples at selected sites for laboratory analyses. The information generated from this combined effort will establish existing/potential contamination levels, aid in developing personnel safety requirements, assist in determining the need for any changes in the proposed route prior to installation/construction of the new pipeline, and satisfy the requirements of a preoperational baseline for the project.

  5. 11.380J / 1.252J / ESD.225J Urban Transportation Planning, Fall 2002

    E-Print Network [OSTI]

    Salvucci, Frederick

    This class is an introduction to planning transportation in metropolitan areas. The approach, while rooted on the analytical tools which estimate outcomes and alternatives, is holistic. This means starting from ...

  6. Integrating regional strategic transportation planning and supply chain management : along the path to sustainability

    E-Print Network [OSTI]

    Sgouridis, Sgouris P

    2005-01-01

    A systems perspective for regional strategic transportation planning (RSTP) for freight movements involves an understanding of Supply Chain Management (SCM). This thesis argues that private sector freight shippers and ...

  7. The Evaluation of Transportation and Land Use Plans Using Linked Economic and GIS Models

    E-Print Network [OSTI]

    Johnston, Robert A.

    1995-01-01

    urban economyand and economic evaluations. for devlsing andAttempts to base the economic evaluation travel no state isEvaluation of Transportation and Land Use Plans Using Linked Economic

  8. Framework for designing regional planning architecture for APTS-enabled regional multimodal public transportation system

    E-Print Network [OSTI]

    Zakaria, Zulina

    2004-01-01

    Unsustainable transportation systems have been the cause of many problems facing urban areas around the world. Lack of regard for sustainable development considerations by those responsible for planning and implementing ...

  9. Nuclear Fuels Storage & Transportation Planning Project Documents |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 News enDepartment of Energy101 isillustration

  10. Nuclear Fuel Storage and Transportation Planning Project Overview |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable forSite |n t e OfficeResearch andFacts:

  11. Nuclear Fuels Storage & Transportation Planning Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department ofWind CareerEnergy Nuclear Fuels Storage

  12. Human MutationSPECIAL ARTICLE Planning the Human Variome Project: The Spain Report

    E-Print Network [OSTI]

    : The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome ProjectHuman MutationSPECIAL ARTICLE Planning the Human Variome Project: The Spain ReportĂ Jim Kaput,1yz-Sook Yoo,93 on behalf of contributors to the Human Variome Project Planning Meeting 1 Division

  13. Texas Transportation Institute, Agency 727 Energy Management and Conservation Plan (RP-49)

    E-Print Network [OSTI]

    consumption of electricity, motor fuels and natural gas. The Texas Transportation Institute (TTI) submittedTexas Transportation Institute, Agency 727 Energy Management and Conservation Plan (RP-49) Year implementations. This includes, but is not limited to, various electrical, gas, lighting and plumbing fixtures

  14. INL Site Executable Plan for Energy and Transportation Fuels Management

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2008-11-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  15. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  16. Preparation plan, preliminary safety documentation, tank farm restoration and safe operations, Project W-314

    SciTech Connect (OSTI)

    Kidder, R.J.

    1994-10-20

    This preparation plan is developed to establish planning for the preliminary safety documentation for Project W-314, {open_quotes}Tank Farm Restoration and Safe Operations.{close_quotes}

  17. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    SciTech Connect (OSTI)

    Justin Coleman

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  18. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  19. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  20. EVALUATION PLAN PROJECT TRACS: EMPIRICALLY INVESTIGATING TRANSFORMATION THROUGH RELATEDNESS, AUTONOMY, AND COMPETENCE SUPPORT

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    EVALUATION PLAN ­PROJECT TRACS: EMPIRICALLY INVESTIGATING TRANSFORMATION THROUGH RELATEDNESS OF CONTENTS PROJECT OVERVIEW 1 LOGIC MODEL 3 EVALUATION ACTIVITIES 4 BREAKDOWN OF TASKS: PROJECT TRACS TEAM, INTERNAL EVALUATOR, AND EXTERNAL EVALUATOR 15 TIMELINE OF EVALUATION ACTIVITIES 16 #12;1 I. PROJECT

  1. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-11-09

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

  2. File under: C Web name: Capital Planning and Capital Projects, Policy on [October 30, 2013] Official name: Policy on Capital Planning & Capital Projects [October 31, 2013] Location

    E-Print Network [OSTI]

    Toronto, University of

    new structures with the existing structures to achieve coherent design with intelligent green.htm · CAMPUS MASTER PLANS http://www.updc.utoronto.ca/re/Campus_Master_Plans.htm · DESIGN STANDARDS http://www.fs.utoronto.ca/standards_and_policies/design://www.updc.utoronto.ca/re/reviews-approvals/project-planning- committees.htm · DESIGN REVIEW COMMITTEE http://www.updc.utoronto.ca/re/reviewsapprovals/Design

  3. Local Government Role TTP220 Transportation Policy and Planning

    E-Print Network [OSTI]

    Handy, Susan L.

    uses Safety policies and programs to protect community from risks associated with seismic, geologic utilities. Housing assessment of current and projected housing needs for all economic segments of community, managed production of resources, outdoor recreation, public health and safety, identification

  4. North Central Texas Regional Public Transportation Coordination Plan 

    E-Print Network [OSTI]

    North Central Texas Council of Governments

    2006-12-21

    Small-scale decentralized facilities and technologies are rapidly becoming a dominant technological fix to deliver water to underserved populations in developing nations. This project examines the case of a university ...

  5. Office of Secure Transportation Ten-Year Site Plan

    National Nuclear Security Administration (NNSA)

    armory vault expansion design project and a roof repair at the Logistics Support Site building. 1.1.5 OST has effectively utilized the provided budget this year to accomplish many...

  6. Mobility 2030: The Metropolitan Transportation Plan for the Dallas-Fort Worth Area 2009 Amendment 

    E-Print Network [OSTI]

    North Central Texas Council of Governments

    2009-04-09

    are consistent with state and regional air quality improvement goals. Infrastructure Mainten. Management & Operations (ITS, TSM,TDM, Bike/Ped) Rail & Bus HOV/Managed Lanes Freeway/Tollway & Arterial Mobility Plan = Intermodal Planning Efforts System..., Paratransit Capital $1.5 Regional Arterial System $3.4 Other Arterials $2.9 Freeway, Tollway, HOV, Managed System $32.8 *Costs are adjusted for ?total project cost? and ?year of expenditure? consistent with SAFETEA-LU planning requirements. ?Actual...

  7. TTP220 Transportation Policy and Planning Assignment 2: MPO Evaluation

    E-Print Network [OSTI]

    Handy, Susan L.

    possibilities include climate change, environmental justice, goods movement. Technology issues might not work location, congestion levels, political orientation, or "progressiveness" on planning kinds of issues. Your and activities to address other concerns, particularly those related to non-driving modes and environmental

  8. Motion Planning of Large Scale Vehicles for Remote Material Transportation

    E-Print Network [OSTI]

    -frame based on new technologies and alternative energies such as solar, geothermal and nuclear, fission between the Tokamak Building and the Hot Cell Building, the two main buildings of the ITER facility described in this chapter are the definition of motion planning strategies that cope with the building maps

  9. Not Going to Take This Anymore: Multi-objective Overtime Planning for Software Engineering Projects

    E-Print Network [OSTI]

    Harman, Mark

    Not Going to Take This Anymore: Multi-objective Overtime Planning for Software Engineering Projects University College London, CREST centre, London, WC1E 6BT, UK Abstract--Software Engineering and development engineers can better plan overtime. We evaluate our approach on 6 real world software projects, drawn from 3

  10. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for implementing the QA program requirements; and Appendix C of the QA Manual provides comparison tables that identify where the requirements of other standards are addressed in the QA Manual.

  11. 327 Building liquid waste handling options modification project plan

    SciTech Connect (OSTI)

    Ham, J.E.

    1998-03-28

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation.

  12. Socio-economic benefits in Plan Vivo projects: Trees for Global Benefits, Uganda 50 Appendix 6.6

    E-Print Network [OSTI]

    Socio-economic benefits in Plan Vivo projects: Trees for Global Benefits, Uganda 50 Appendix 6.6 Socio-economic benefits in Plan Vivo projects: A complete manual for a project assessment 1. Survey for the Socio-economic study of a carbon offset Plan Vivo project. The methodology has been developed initially

  13. A critical analysis of sketch-planning tools for evaluating the emissions benefits of transportation control measures 

    E-Print Network [OSTI]

    Crawford, Jason Aaron

    1993-01-01

    -planning tools are now available. The two premier sketch-planning tools used for evaluating transportation control measures are the Systems Applications International (SAI) method and the San Diego Association of Governments (SANDAG) method. Both methods were...

  14. Transportation Secure Data Center: Real-World Data for Planning, Modeling and Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database gives, metropolitan planning organizations, universities, national laboratories, air quality management districts, disaster planning agencies and auto manufacturers free-of-charge web-based access to valuable transportation data. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

  15. The 2005 - 2030 Harlingen-San Benito Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    Harlingen-San Benito Metropolitan Planning Organization

    2004-12-29

    . Construct Additional Rail and Complete Rail Realignments E. Construct Intercity Loops 5.14 Future Freeway Traffic Management and Operations Team??pg. 76 5.15 Future Mobility and Arterial Congestion Team???????pg. 77 5.16 Goals to Meet Transportation... of Mobility Level of Accessibility System Relationships Interstate or Freeway Connects urban and rural service, connects urban sub regions, connects urban areas. There is no direct land access. Used for long trips at high speeds...

  16. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    SciTech Connect (OSTI)

    Connor, M.D.

    1994-09-29

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover.

  17. The CHPRC Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-03

    The scope of the CH2M Hill Plateau Remediation Company, LLC (CHPRC) Groundwater and Technical Integration Support (Master Project) is for Pacific Northwest National Laboratory staff to provide technical and integration support to CHPRC. This work includes conducting investigations at the 300-FF-5 Operable Unit and other groundwater operable units, and providing strategic integration, technical integration and assessments, remediation decision support, and science and technology. The projects under this Master Project will be defined and included within the Master Project throughout the fiscal year, and will be incorporated into the Master Project Plan. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the CHPRC Groundwater and Technical Integration Support (Master Project) and all releases associated with the CHPRC Soil and Groundwater Remediation Project. The plan is designed to be used exclusively by project staff.

  18. Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites

    SciTech Connect (OSTI)

    Richman, Eric E.

    2012-10-31

    This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

  19. Regional Transportation Coordination Plan for the Capital Area 

    E-Print Network [OSTI]

    Capital Area Regional Transit Coordination Committee

    2006-01-01

    in the State, as defined by the 24 council of government boundaries, should develop a regional coordination plan based on local needs and priorities. The Capital Area planning region includes the following 10 Central Texas counties: ? Llano ? Burnet ? Blanco... Change 2020 to 2030 Bastrop County 57,733 69,932 21% 76,195 9% 99,453 31% 127,344 28% Blanco County 8,418 9,110 8% 10,044 10% 11,916 19% 13,624 14% Burnet County 34,147 41,676 22% 42,694 2% 52,917 24% 63,529 20% Caldwell County 32,194 36,523 13% 40...

  20. Transportation Systems Planning and Analysis v0 Fall 2013/2014

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    ://www.bts.gov/publications/national_transportation_statistics/2013/pdf/entire.pdf Energy Flow Diagram: Total Energy_wRejected 2011 ClassicView Energy Outlook: http://www.eia.doe.gov/oiaf/aeo/pdf/0383(2010).pdf http://www.eia.doe.gov/oiaf/aeo/index.html World Oil Demand & Reserves: http. Planning and Analysis Tools of Transportation Demand and Investment Week 2 Mon Sep 23 Modeling

  1. Transportation Systems Planning and Analysis v0 Fall 2014/2015

    E-Print Network [OSTI]

    Singh, Jaswinder Pal

    ://www.bts.gov/publications/national_transportation_statistics/2013/pdf/entire.pdf Energy Flow Diagram: Total Energy_wRejected 2011 ClassicView Energy Outlook: http://www.eia.doe.gov/oiaf/aeo/pdf/0383(2010).pdf http://www.eia.doe.gov/oiaf/aeo/index.html World Oil Demand & Reserves: http (PodcarPaper) Part 2. Planning and Analysis Tools of Transportation Demand and Investment Week 2 Mon Sep

  2. The 2035 Houston-Galveston Regional Transportation Plan 

    E-Print Network [OSTI]

    Houston-Galveston Area Council

    2007-10-26

    Speeds 7 Regional Freeway/Tollway Map 8 Lane Miles by Category 9 METRO Solutions Transit Plan 10 13-County Regional Transit Providers 11 Regional High Occupancy Vehicle (HOV) Lanes 12 Smart Streets 2035 13 Evacuation Routes 14 Livable Centers 15...-Motorized Freeway Arterial METRO Solutions Bikeway Increase in lane miles 31 52 Increase in Bus Service 50 Increase in lane miles 57 Roadway Even with the implementation of the 2035 RTP, congestion levels will increase over today?s levels...

  3. Permitting plan for the immobilized low-activity waste project

    SciTech Connect (OSTI)

    Deffenbaugh, M.L.

    1997-09-04

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ``the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.`` It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site`s low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste.

  4. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  5. Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl

    E-Print Network [OSTI]

    of Hydrogen Fuel Cell Vehicle Technology and Prospects for the Future" P.T. Jones ­ "Dynamic Wireless Power-Board Storage Pressure for Hydrogen Fuel Cell Vehicles" Poster Presentations: Stacy Davis ­ "Transportation

  6. Conceptual Design Phase of Project on Design and Development of Airships for Transportation of Goods

    E-Print Network [OSTI]

    Ramu, Palaniappan

    Conceptual Design Phase of Project on Design and Development of Airships for Transportation Team 2 Literature Review 3 Requirements Capture 4 Discussions with Airship Manufacturers 5 Identification of Vendors and Resource Agencies 6 Regulations related to airship design, manufacture

  7. The Groundwater Performance Assessment Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Walker, Thomas G.

    2005-01-26

    This document provides the quality assurance guidelines that will be followed by the groundwater project.

  8. Friday February 20, 2004 Three compromise plans eyed for fusion project site

    E-Print Network [OSTI]

    Friday February 20, 2004 Three compromise plans eyed for fusion project site A team of experts on an international nuclear fusion project has drawn up three compromise proposals in a bid to resolve the row over said. The six parties involved in the Thermonuclear Experimental Reactor (ITER) project have been

  9. Project Management Plan for the Hawaii Geothermal Project Environmental Impact Statement

    SciTech Connect (OSTI)

    Reed, R.M.; Saulsbury, J.W.

    1993-06-01

    In 1990, Congress appropriated $5 million (Pu 101-514) for the State of Hawaii to use in Phase 3 of the Hawaii Geothermal Project (HGP). As defined by the State in its 1990 proposal to Congress, the HGP would consist of four phases: (1) exploration and testing of the geothermal resource associated with the Kilauea Volcano on the Island of Hawaii (the Big Island), (2) demonstration of deep-water power transmission cable technology in the Alenuihaha Channel between the Big Island and Maui, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands (DBED 1990). Because it considered Phase 3 to be research and not project development or construction, Congress indicated that allocation of this funding would not be considered a major federal action under NEPA and would not require an EIS. However, because the project is highly visible, somewhat controversial, and involves a particularly sensitive environment in Hawaii, Congress directed in 1991 (House Resolution 1281) that ''...the Secretary of Energy shall use such sums as are necessary from amounts previously provided to the State of Hawaii for geothermal resource verification and characterization to conduct the necessary environmental assessments and/or environmental impact statement (EIS) for the geothermal initiative to proceed''. In addition, the U.S. District Court of Hawaii (Civil No. 90-00407, June 25, 1991) ruled that the federal government must prepare an EIS for Phases 3 and 4 before any further disbursement of funds was made to the State for the HGP. This Project Management Plan (PMP) briefly summarizes the background information on the HGP and describes the project management structure, work breakdown structure, baseline budget and schedule, and reporting procedures that have been established for the project. The PMP does not address in detail the work that has been completed during the scoping process and preparation of the IP. The PMP has been developed to address the tasks required in preparing the Draft Environmental Impact Statement (DEIS), the public comment period, and the Final Environmental Impact Statement (FEIS).

  10. Coordinated Regional Public Transportation Plan: Heart of Texas Region 

    E-Print Network [OSTI]

    Heart of Texas Council of Governments

    2006-12-01

    % Freestone 16.4% 11.4% Hill 17.1 11.1 Limestone 16.4% 11.3% McLennan 13.0% 9.7% HOTCOG Region 14.5% 10.2% State of Texas 9.9% 8.7% Section 2.2.4 ? Automobile Availability Despite the generally lower incomes, automobile availability within the Heart...% Falls 1.65 12.2% Freestone 1.82 6.2% Hill 1.78 5.9% Limestone 1.76 7.8% McLennan 1.68 8.3% HOTCOG Region 1.71 7.9% State of Texas 1.70 7.4% Section 2.3 ? Current Services This section describes the public transportation services currently provided...

  11. Standard Measurement & Verification Plan for Lighting Equipment Retrofit or Replacement Projects

    SciTech Connect (OSTI)

    Richman, Eric E.

    2009-11-04

    This document provides a framework for a standard Measurement and Verification (M&V) plan for lighting projects. It was developed to support cost-effective retrofits (partial and complete replacements) of lighting systems and is intended to provide a foundation for an M&V plan for a lighting retrofit utilizing a "best practice" approach, and to provide guidance to site owners, contractors, and other involved organizations on what is essential for a robust M&V plan for lighting projects. This document provides examples of appropriate elements of an M&V plan, including the calculation of expected energy savings. The standard M&V plan, as provided, also allows for consistent comparison with other similar lighting projects. Although intended for lighting retrofit applications, M&V plans developed per this framework document may also be used for other non-lighting technology retrofits and new installations.

  12. Planning of Pipeline Oil Transportation with Interface Restrictions is a Difficult Problem

    E-Print Network [OSTI]

    Endler, Markus

    Planning of Pipeline Oil Transportation with Interface Restrictions is a Difficult Problem Ruy Luiz/03 December, 2003 Abstract: An important constrain when developing a schedule for the operation of an oil pipeline is the interface between adjacent products. Due to the resulting quality loss, some products

  13. Sandia Energy - Sandia Transportation-Energy Research Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Response: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and (Electro)chemical Processes" project under the Computer Aided Engineering (CAE) for Electric Drive...

  14. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect (OSTI)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  15. LLNL line-item construction projects Master Site Plan

    SciTech Connect (OSTI)

    1996-04-15

    This interim submittal is an updated 1996 overview of the Master Plan based on the 1995 LLNL Site Development Plan, illustrating the future land use considerations, and the locations of proposed facilities as documented through the line item development process and keyed to the summary table. The following components in addition to the line-item proposals remain key elements in the implementation strategy of the Master Plan: personnel migration, revitalization, space reduction, classified core contraction, utility systems, and environmental restoration.

  16. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    SciTech Connect (OSTI)

    VAN BEEK, J.E.

    1999-09-02

    Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering.

  17. Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity

    E-Print Network [OSTI]

    carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

  18. Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Bissell, Gael

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

  19. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  20. Effluent monitoring Quality Assurance Project Plan for radioactive airborne emissions data. Revision 2

    SciTech Connect (OSTI)

    Frazier, T.P.

    1995-12-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling Hanford Site radioactive airborne emissions data. These data will be reported to the U.S. Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Effluent Monitoring performs compliance assessments on radioactive airborne sampling and monitoring systems. This Quality Assurance Project Plan is prepared in compliance with interim guidelines and specifications. Topics include: project description; project organization and management; quality assurance objectives; sampling procedures; sample custody; calibration procedures; analytical procedures; monitoring and reporting criteria; data reduction, verification, and reporting; internal quality control; performance and system audits; corrective actions; and quality assurance reports.

  1. Investigation into the use of market segmentation analysis in transportation energy planning

    SciTech Connect (OSTI)

    Trombly, J.W.

    1985-01-01

    This research explores the application of market-segmentation analysis in transportation energy planning. The study builds on the concepts of market segmentation developed in the marketing literature to suggest a strategy of segmentation analysis for use in transportation planning. Results of the two statewide telephone surveys conducted in 1979 and 1980 for the New York State Department of Transportation are used as the data base for identifying target segments. Subjects in these surveys were asked to indicate which of 18 energy conservation actions had been implemented over the prior year to conserve gasoline. These responses serve as the basis for segmentation. Two alternative methods are pursued in identifying target market segments for purposes of transportation energy planning. The first approach consists of the application of conventional multivariate analysis procedures. The second method exploits the principles of latent trait or modern test theory. Results of the conventional analysis suggest that the data collected can be divided into eight segments. Results of the application of latent trait theory identify three market segments. Results of this study may be used to design future responses to energy shortages in addition to suggesting strategies to be pursued in measuring consumer response.

  2. Midwestern High-Level Radioactive Waste Transportation Project. Highway infrastructure report

    SciTech Connect (OSTI)

    Sattler, L.R.

    1992-02-01

    In addition to arranging for storage and disposal of radioactive waste, the US Department of Energy (DOE) must develop a safe and efficient transportation system in order to deliver the material that has accumulated at various sites throughout the country. The ability to transport radioactive waste safely has been demonstrated during the past 20 years: DOE has made over 2,000 shipments of spent fuel and other wastes without any fatalities or environmental damage related to the radioactive nature of the cargo. To guarantee the efficiency of the transportation system, DOE must determine the optimal combination of rail transport (which allows greater payloads but requires special facilities) and truck transport Utilizing trucks, in turn, calls for decisions as to when to use legal weight trucks or, if feasible, overweight trucks for fewer but larger shipments. As part of the transportation system, the Facility Interface Capability Assessment (FICA) study contributes to DOE`s development of transportation plans for specific facilities. This study evaluates the ability of different facilities to receive, load and ship the special casks in which radioactive materials will be housed during transport In addition, the DOE`s Near-Site Transportation Infrastructure (NSTI) study (forthcoming) will evaluate the rail, road and barge access to 76 reactor sites from which DOE is obligated to begin accepting spent fuel in 1998. The NSTI study will also assess the existing capabilities of each transportation mode and route, including the potential for upgrade.

  3. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  4. 2013 Annual Planning Summary for the Advanced Research Projects...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Research Projects Agency - Energy . ARPA-ENEPA-APS-2013.pdf More Documents & Publications From Cleanup to Stewardship QER - Comment of Energy Innovation 6 QER - Comment...

  5. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    SciTech Connect (OSTI)

    U.S. Department of Energy Fuel Cell Technologies Program

    2010-04-01

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  6. The Commonwealth Electric Open Planning Project : final report

    E-Print Network [OSTI]

    Andrews, Clinton J.

    1991-01-01

    This report describes the development, application and results of an Open Planning Process performed by the M.I.T. Energy Laboratory's Analysis Group for Regional Electricity Alternatives (AGREA) for, and with the support ...

  7. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  8. FY 2002 Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    SciTech Connect (OSTI)

    Hartman, Mary J.; Dresel, P Evan; Lindberg, Jonathan W.; Newcomer, Darrell R.; Thornton, Edward C.

    2001-10-31

    This document is an integrated monitoring plan for the groundwater project and contains: well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders ("surveillance monitoring"); other, established monitoring plans by reference; and a master well/ constituent/frequency matrix for the entire Hanford Site.

  9. Project Plan for the evaluation of REDC waste for TRU-waste radionuclides

    SciTech Connect (OSTI)

    Nguyen, L.; Yong, L.; Chapman, J.

    1996-09-01

    This project plan describes the plan to determine whether the solid radioactive wastes generated by the Radiochemical Engineering Development Center (REDC) meet the Department of Energy`s definition of transuranic wastes. Existing waste characterization methods will be evaluated, as well as historical data, and recommendations will be made as necessary.

  10. WIPP Project Plan Descriptions Waste Characterization (LANL, SRS, Oak Ridge) Baseline Inspections

    E-Print Network [OSTI]

    WIPP Project Plan Descriptions · Waste Characterization (LANL, SRS, Oak Ridge) Baseline Inspections Change Request As part of EPA's WIPP Certification Decision in 1998, EPA required that the disposal of Energy (DOE) submitted a planned change request reducing to the amount of MgO emplaced in the WIPP

  11. Investigation of Project Management Planning Practices for Renovation of Historical Buildings in Urban Contexts Located in Texas 

    E-Print Network [OSTI]

    Escamilla, Edelmiro

    2012-07-16

    and project planning. The third body centered on facility management as it relates to project management issues in the delivery of a construction project. Combining these bodies of knowledge into one literature review contributed to the development of a...

  12. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect (OSTI)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

  13. Department of Energy Guide for Project Execution Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-06

    The proposed revision to this Department of Energy Guide focuses on updating terminology and references, and alignment with Secretarial policy memoranda on project management issued since the last update to DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets.

  14. Transportation Energy Futures Series: Projected Biomass Utilization for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts > ProductsSubtitleTransportationFUELSFuels

  15. Moab Mill Tailings Removal Project Plans to Resume Train Shipments...

    Broader source: Energy.gov (indexed) [DOE]

    result in a cost savings to the project over the long term. Made of -inch durable plastic, the liners will prevent the tailings material, which tends to be sticky, from...

  16. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  17. Removal Action Plan for the Accelerated Retrieval Project for a Described Area within Pit 4

    SciTech Connect (OSTI)

    A. M. Tyson

    2006-08-01

    This Removal Action Plan documents the plan for implementation of the Comprehensive Environmental Response, Compenstion, and Liability Act non-time-critical removal action to be performed by the Accelerated Retrieval Project. The focus of the action is the limited excavation and retrieval of selected waste streams from a designated portion of the Radioactive Waste Management Complex Subsurface Disposal Area that are contaminated with volatile organic compounds, isotopes of uranium, or transuranic radionuclides. The selected retrieval area is approximately 0.2 ha (1/2 acre) and is located in the eastern portion of Pit 4. The proposed project is referred to as the Accelerated Retrieval Project. This Removal Action Plan details the major work elements, operations approach, and schedule, and summarizes the environmental, safety and health, and waste management considerations associated with the project.

  18. PROJECT PROFILE: High-resolution Investigations of Transport Limiting Defects and Interfaces in Thin-Film Photovoltaic Devices

    Broader source: Energy.gov [DOE]

    This project will develop the capability of high-resolution transport imaging in photovoltaic (PV) devices, which is useful for improving polycrystalline thin-film PV materials.

  19. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-21

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  20. Expanding transportation planning capacity in cities of the global South : public-private collaboration and conflict in Chile and Mexico

    E-Print Network [OSTI]

    Flores Dewey, Onésimo A. (Onésimo Alberto)

    2013-01-01

    What makes it possible for the governments of cities limited by scarce fiscal resources and weak institutions to enhance their transportation planning and regulatory capacities so as to provide the public with cleaner, ...

  1. Alaska Native Community Energy Planning and Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  2. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  3. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard RutlandSTEAB's Priorities throughANDSafety

  4. Project Execution Plan Review Module (RM) | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget | DepartmentLogistical ChallengesProject

  5. UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    1995-09-01

    Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

  6. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    SciTech Connect (OSTI)

    Ward, Anderson L.; Gee, Glendon W.

    2000-06-23

    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

  7. Program and Project Management Policy for the Planning, Programming, Budgeting, and Acquisition of Capital Assets

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-10

    To establish Department of Energy (DOE) program and project management policy for the planning, programming, budgeting, and acquisition of capital assets consistent with the following Office of Management and Budget (OMB) circulars: OMB Circular A-11, Part 3, Planning, Budgeting, and Acquisition of Capital Assets, and the supplement to Part 3, Capital Programming Guide; OMB Circular A-123; OMB Circular A-127; and OMB Circular A-130. Does not cancel other directives. Canceled by DOE N 251.99

  8. Embedding Agile Practices within a Plan-Driven Hierarchical Project Life Cycle

    SciTech Connect (OSTI)

    Millard, W. David; Johnson, Daniel M.; Henderson, John M.; Lombardo, Nicholas J.; Bass, Robert B.; Smith, Jason E.

    2014-07-28

    Organizations use structured, plan-driven approaches to provide continuity, direction, and control to large, multi-year programs. Projects within these programs vary greatly in size, complexity, level of maturity, technical risk, and clarity of the development objectives. Organizations that perform exploratory research, evolutionary development, and other R&D activities can obtain the benefits of Agile practices without losing the benefits of their program’s overarching plan-driven structure. This paper describes application of Agile development methods on a large plan-driven sensor integration program. While the client employed plan-driven, requirements flow-down methodologies, tight project schedules and complex interfaces called for frequent end-to-end demonstrations to provide feedback during system development. The development process maintained the many benefits of plan-driven project execution with the rapid prototyping, integration, demonstration, and client feedback possible through Agile development methods. This paper also describes some of the tools and implementing mechanisms used to transition between and take advantage of each methodology, and presents lessons learned from the project management, system engineering, and developer’s perspectives.

  9. Safety Planning Guidance for Hydrogen and Fuel Cell Projects | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard RutlandSTEAB's Priorities throughANDSafetyof Energy

  10. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-02-20

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  11. Design review plan for Multi-Function Waste Tank Facility (Project W-236A)

    SciTech Connect (OSTI)

    Renfro, G.G.

    1994-12-20

    This plan describes how the Multi-Function Waste Tank Facility (MWTF) Project conducts reviews of design media; describes actions required by Project participants; and provides the methodology to ensure that the design is complete, meets the technical baseline of the Project, is operable and maintainable, and is constructable. Project W-236A is an integrated project wherein the relationship between the operating contractor and architect-engineer is somewhat different than that of a conventional project. Working together, Westinghouse Hanford Company (WHC) and ICF Karser Hanford (ICF KH) have developed a relationship whereby ICF KH performs extensive design reviews and design verification. WHC actively participates in over-the-shoulder reviews during design development, performs a final review of the completed design, and conducts a formal design review of the Safety Class I, ASME boiler and Pressure Vessel Code items in accordance with WHC-CM-6-1, Standard Engineering Practices.

  12. Quality Assurance Program Plan (QAPP) Waste Management Project

    SciTech Connect (OSTI)

    HORHOTA, M.J.

    2000-12-21

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  13. Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

  14. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  15. The Space Optical Clocks Project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems

    E-Print Network [OSTI]

    S. Schiller; A. Görlitz; A. Nevsky; S. Alighanbari; S. Vasilyev; C. Abou-Jaoudeh; G. Mura; T. Franzen; U. Sterr; S. Falke; Ch. Lisdat; E. Rasel; A. Kulosa; S. Bize; J. Lodewyck; G. M. Tino; N. Poli; M. Schioppo; K. Bongs; Y. Singh; P. Gill; G. Barwood; Y. Ovchinnikov; J. Stuhler; W. Kaenders; C. Braxmaier; R. Holzwarth; A. Donati; S. Lecomte; D. Calonico; F. Levi

    2012-06-17

    The use of ultra-precise optical clocks in space ("master clocks") will allow for a range of new applications in the fields of fundamental physics (tests of Einstein's theory of General Relativity, time and frequency metrology by means of the comparison of distant terrestrial clocks), geophysics (mapping of the gravitational potential of Earth), and astronomy (providing local oscillators for radio ranging and interferometry in space). Within the ELIPS-3 program of ESA, the "Space Optical Clocks" (SOC) project aims to install and to operate an optical lattice clock on the ISS towards the end of this decade, as a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Undertaking a necessary step towards optical clocks in space, the EU-FP7-SPACE-2010-1 project no. 263500 (SOC2) (2011-2015) aims at two "engineering confidence", accurate transportable lattice optical clock demonstrators having relative frequency instability below 1\\times10^-15 at 1 s integration time and relative inaccuracy below 5\\times10^-17. This goal performance is about 2 and 1 orders better in instability and inaccuracy, respectively, than today's best transportable clocks. The devices will be based on trapped neutral ytterbium and strontium atoms. One device will be a breadboard. The two systems will be validated in laboratory environments and their performance will be established by comparison with laboratory optical clocks and primary frequency standards. In this paper we present the project and the results achieved during the first year.

  16. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    SciTech Connect (OSTI)

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  17. Grand challenge problems in environmental modeling and remediation: Groundwater contaminant transport. Final project report 1998

    SciTech Connect (OSTI)

    1998-04-01

    The over-reaching goal of the Groundwater Grand Challenge component of the Partnership in Computational Science (PICS) was to develop and establish the massively parallel approach for the description of groundwater flow and transport and to address the problem of uncertainties in the data and its interpretation. This necessitated the development of innovative algorithms and the implementation of massively parallel computational tools to provide a suite of simulators for groundwater flow and transport in heterogeneous media. This report summarizes the activities and deliverables of the Groundwater Grand Challenge project funded through the High Performance Computing grand challenge program of the Department of Energy from 1995 through 1997.

  18. Project Information Form Project Title Eco-Friendly Intelligent Transportation System Technology for Freight

    E-Print Network [OSTI]

    California at Davis, University of

    has been applied to light-duty vehicles. This project will develop and apply new ECO-ITS technologies) to evaluate different scenarios that utilize different forms of ECO-ITS technology. These truck-based ECO management systems to better monitor truck traffic speed, density, and flow and then communicate information

  19. UMTRA project water sampling and analysis plan, Naturita, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    Surface remedial action is scheduled to begin at the Naturita UMTRA Project processing site in the spring of 1994. No water sampling was performed during 1993 at either the Naturita processing site (NAT-01) or the Dry Flats disposal site (NAT-12). Results of previous water sampling at the Naturita processing site indicate that ground water in the alluvium is contaminated as a result of uranium processing activities. Baseline ground water conditions have been established in the uppermost aquifer at the Dry Flats disposal site. Water sampling activities scheduled for April 1994 include preconstruction sampling of selected monitor wells at the processing site, surface water sampling of the San Miguel River, sampling of several springs/seeps in the vicinity of the disposal site, and sampling of two monitor wells in Coke Oven Valley. The monitor well locations provide sampling points to characterize ground water quality and flow conditions in the vicinity of the sites. The list of analytes has been updated to reflect constituents related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted annually at minimum during the period of construction activities.

  20. The Two-Column Aerosol Project (TCAP) Science Plan

    SciTech Connect (OSTI)

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  1. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-10-03

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  2. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-03-28

    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  3. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    SciTech Connect (OSTI)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  4. 094815 Project Course: Business Plan for the commercialization of technology based idea

    E-Print Network [OSTI]

    094815 Project Course: Business Plan for the commercialization of technology based idea 3 credit blogs (400 words) which describe ideas for opportunities, and asses their potential. The second section is choosing a technology based idea and finding a high-potential commercial opportunity. Students will work

  5. Breckinridge Project, initial effort. Report VII, Volume 4. Safety and health plan

    SciTech Connect (OSTI)

    none,

    1982-01-01

    The Safety and Health Plan recognizes the potential hazards associated with the Project and has been developed specifically to respond to these risks in a positive manner. Prevention, the primary objective of the Plan, starts with building safety controls into the process design and continues through engineering, construction, start-up, and operation of the Project facilities and equipment. Compliance with applicable federal, state, and local health and safety laws, regulations, and codes throughout all Project phases is required and assured. The Plan requires that each major Project phase be thoroughly reviewed and analyzed to determine that those provisions required to assure the safety and health of all employees and the public, and to prevent property and equipment losses, have been provided. The Plan requires followup on those items or situations where corrective action needs were identified to assure that the action was taken and is effective. Emphasis is placed on loss prevention. Exhibit 1 provides a breakdown of Ashland Synthetic Fuels, Inc.'s (ASFI's) Loss Prevention Program. The Plan recognizes that the varied nature of the work is such as to require the services of skilled, trained, and responsible personnel who are aware of the hazards and know that the work can be done safely, if done correctly. Good operating practice is likewise safe operating practice. Training is provided to familiarize personnel with good operational practice, the general sequence of activities, reporting requirements, and above all, the concept that each step in the operating procedures must be successfully concluded before the following step can be safely initiated. The Plan provides for periodic review and evaluation of all safety and loss prevention activities at the plant and departmental levels.

  6. 1 TRANSPORTATION PROJECT OUTCOMES UNDER UNCERTAINTY: 2 AN EXAMINATION OF BENEFIT-COST RATIOS AND OTHER IMPACTS

    E-Print Network [OSTI]

    Kockelman, Kara M.

    network conditions, and relies on user specification of project costs to estimate long-term50 performance of this problem, noting that estimates for some project62 types have not only been inaccurate, but biased overall1 1 TRANSPORTATION PROJECT OUTCOMES UNDER UNCERTAINTY: 2 AN EXAMINATION OF BENEFIT-COST RATIOS

  7. Nez Perce Tribal Hatchery Project; Operations and Maintenance and Planning and Design, 2002 Annual Report.

    SciTech Connect (OSTI)

    Larson, Roy Edward; Walker, Grant W.; Penney, Aaron K.

    2005-12-01

    This report fulfills the contract obligations based on the Statement of Work (SOW) for the project as contracted with Bonneville Power Administration (BPA). Nez Perce Tribal Hatchery (NPTH) Year-2002 annual report combines information from two contracts with a combined value of $3,036,014. Bonneville Power Administration identifies them as follows; (1) Part I--Operations and Maintenance--Project No. 1983-350-00, Contract No. 4504, and $2,682,635 which includes--Equipment costs of $1,807,105. (2) Part II--Planning and Design--Project No. 1983-35-04, Contract No. 4035, $352,379 for Clearwater Coho Restoration Master Plan development Based on NPPC authorization for construction and operation of NPTH, the annual contracts were negotiated for the amounts shown above under (1) and (2). Construction contracts were handled by BPA until all facilities are completed and accepted.

  8. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-02

    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2 Project. The plan is designed to be used exclusively by project staff.

  9. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids

    SciTech Connect (OSTI)

    Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist

    2007-04-30

    This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable.

  10. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    SciTech Connect (OSTI)

    Bibb, E.K.

    1997-10-15

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  11. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect (OSTI)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  12. Project Execution Plan for the River Protection Project Waste Treatment & Immobilization Plant

    SciTech Connect (OSTI)

    MELLINGER, G.B.

    2003-05-03

    The Waste Treatment and Immobilization Plant (WTP), Project W-530, is the cornerstone in the mission of the Hanford Site's cleanup of more than 50 million gallons of highly toxic, high-level radioactive waste contained in aging underground storage tanks.

  13. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  14. Idaho National Laboratory Ten-Year Site Plan Project Description Document

    SciTech Connect (OSTI)

    Not Listed

    2012-03-01

    This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

  15. Predictions of tracer transport in interwell tracer tests at the C-Hole complex. Yucca Mountain site characterization project report milestone 4077

    SciTech Connect (OSTI)

    Reimus, P.W.

    1996-09-01

    This report presents predictions of tracer transport in interwell tracer tests that are to be conducted at the C-Hole complex at the Nevada Test Site on behalf of the Yucca Mountain Site Characterization Project. The predictions are used to make specific recommendations about the manner in which the tracer test should be conducted to best satisfy the needs of the Project. The objective of he tracer tests is to study flow and species transport under saturated conditions in the fractured tuffs near Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository. The potential repository will be located in the unsaturated zone within Yucca Mountain. The saturated zone beneath and around the mountain represents the final barrier to transport to the accessible environment that radionuclides will encounter if they breach the engineered barriers within the repository and the barriers to flow and transport provided by the unsaturated zone. Background information on the C-Holes is provided in Section 1.1, and the planned tracer testing program is discussed in Section 1.2.

  16. Project identification and evaluation techniques for transportation infrastructure : assessing their role in metropolitan areas of developing countries

    E-Print Network [OSTI]

    Kumar, Vimal, S.M. Massachusetts Institute of Technology

    2009-01-01

    Project identification and evaluation of transportation infrastructure play a vital role in shaping and sustaining the forms of cities all over the world. These cities differ substantially in character and urban form and ...

  17. Global Threat Reduction Initiative Fuel Thermo-Physical Characterization Project: Sample Management Plan

    SciTech Connect (OSTI)

    Casella, Amanda J.; Pereira, Mario M.; Steen, Franciska H.

    2013-01-01

    This sample management plan provides guidelines for sectioning, preparation, acceptance criteria, analytical path, and end-of-life disposal for the fuel element segments utilized in the Global Threat Reduction Initiative (GTRI), Fuel Thermo-Physical Characterization Project. The Fuel Thermo-Physical Characterization Project is tasked with analysis of irradiated Low Enriched Uranium (LEU) Molybdenum (U-Mo) fuel element samples to support the GTRI conversion program. Sample analysis may include optical microscopy (OM), scanning electron microscopy (SEM) fuel-surface interface analysis, gas pycnometry (density) measurements, laser flash analysis (LFA), differential scanning calorimetry (DSC), thermogravimetry and differential thermal analysis with mass spectroscopy (TG /DTA-MS), Inductively Coupled Plasma Spectrophotometry (ICP), alpha spectroscopy, and Thermal Ionization Mass Spectroscopy (TIMS). The project will utilize existing Radiochemical Processing Laboratory (RPL) operating, technical, and administrative procedures for sample receipt, processing, and analyses. Test instructions (TIs), which are documents used to provide specific details regarding the implementation of an existing RPL approved technical or operational procedure, will also be used to communicate to staff project specific parameters requested by the Principal Investigator (PI). TIs will be developed, reviewed, and issued in accordance with the latest revision of the RPL-PLN-700, RPL Operations Plan. Additionally, the PI must approve all project test instructions and red-line changes to test instructions.

  18. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  19. An Overview of Project Planning for Hot-Isostatic Pressure Treatment of High-Level Waste Calcine for the Idaho Cleanup Project - 12289

    SciTech Connect (OSTI)

    Nenni, Joseph A.; Thompson, Theron J.

    2012-07-01

    The Calcine Disposition Project is responsible for retrieval, treatment by hot-isostatic pressure, packaging, and disposal of highly radioactive calcine stored at the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site in southeast Idaho. In the 2009 Amended Record of Decision: Idaho High-Level Waste and Facilities Disposition Final Environmental Impact Statement the Department of Energy documented the selection of hot-isostatic pressure as the technology to treat the calcine. The Record of Decision specifies that the treatment results in a volume-reduced, monolithic waste form suitable for transport outside of Idaho by a target date of December 31, 2035. That target date is specified in the 1995 Idaho Settlement Agreement to treat and prepare the calcine for transport out of Idaho in exchange for allowing storage of Navy spent nuclear fuel at the INL Site. The project is completing the design of the calcine-treatment process and facility to comply with Record of Decision, Settlement Agreement, Idaho Department of Environmental Quality, and Department of Energy requirements. A systems engineering approach is being used to define the project mission and requirements, manage risks, and establish the safety basis for decision making in compliance with DOE O 413.3B, 'Program and Project Management for the Acquisition of Capital Assets'. The approach draws heavily on 'design-for-quality' tools to systematically add quality, predict design reliability, and manage variation in the earliest possible stages of design when it is most efficient. Use of these tools provides a standardized basis for interfacing systems to interact across system boundaries and promotes system integration on a facility-wide basis. A mass and energy model was developed to assist in the design of process equipment, determine material-flow parameters, and estimate process emissions. Data generated from failure modes and effects analysis and reliability, availability, maintainability, and inspectability analysis were incorporated into a time and motion model to validate and verify the capability to complete treatment of the calcine within the required schedule. The Calcine Disposition Project systems engineering approach, including use of industry-proven design-for-quality tools and quantitative assessment techniques, has strengthened the project's design capability to meet its intended mission in a safe, cost-effective, and timely manner. Use of these tools has been particularly helpful to the project in early design planning to manage variation; improve requirements and high-consequence risk management; and more effectively apply alternative, interface, failure mode, RAMI, and time and motion analyses at the earliest possible stages of design when their application is most efficient and cost effective. The project is using these tools to design and develop HIP treatment of highly radioactive calcine to produce a volume-reduced, monolithic waste form with immobilization of hazardous and radioactive constituents. (authors)

  20. Working Group 7.0 Environmental Transport and Health Effects, Chernobyl Studies Project. Progress report, October 1994 -- March 1995

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M.

    1995-06-01

    This document presents the details from the working group 7.0 Chernobyl Studies Project. This working group looked at the environmental transport and health effects from the fallout due to the meltdown of Chernobylsk-4 reactor. Topics include: hydrological transport; chromosome painting dosimetry; EPR, TL and OSL dosimetry; stochastic effects; thyroid studies; and leukemia studies.

  1. Data Management Plan Guide A data management plan describes data generated or used for a given project and states how that data will be managed, stored, accessed, and shared. The details of a data

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Data Management Plan Guide A data management plan describes data generated or used for a given project and states how that data will be managed, stored, accessed, and shared. The details of a data management plan will vary depending on the circumstances of the project, but each data management plan should

  2. US-VISIT Identity Matching Algorithm Evaluation Program: ADIS Algorithm Evaluation Project Plan Update

    SciTech Connect (OSTI)

    Grant, C W; Lenderman, J S; Gansemer, J D

    2011-02-24

    This document is an update to the 'ADIS Algorithm Evaluation Project Plan' specified in the Statement of Work for the US-VISIT Identity Matching Algorithm Evaluation Program, as deliverable II.D.1. The original plan was delivered in August 2010. This document modifies the plan to reflect modified deliverables reflecting delays in obtaining a database refresh. This document describes the revised schedule of the program deliverables. The detailed description of the processes used, the statistical analysis processes and the results of the statistical analysis will be described fully in the program deliverables. The US-VISIT Identity Matching Algorithm Evaluation Program is work performed by Lawrence Livermore National Laboratory (LLNL) under IAA HSHQVT-07-X-00002 P00004 from the Department of Homeland Security (DHS).

  3. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    SciTech Connect (OSTI)

    Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA); Nelson, P.H. [Geological Survey, Denver, CO (USA)] [eds.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  4. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  5. Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Pereira, Mario M.; Slonecker, Bruce D.

    2012-06-01

    The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNL’s support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

  6. The 300 Area Integrated Field Research Challenge Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2009-04-29

    Pacific Northwest National Laboratory and a group of expert collaborators are using the U.S. Department of Energy Hanford Site 300 Area uranium plume within the footprint of the 300-FF-5 groundwater operable unit as a site for an Integrated Field-Scale Subsurface Research Challenge (IFRC). The IFRC is entitled Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFRC Focused on the Hanford Site 300 Area Uranium Plume Project. The theme is investigation of multi-scale mass transfer processes. A series of forefront science questions on mass transfer are posed for research that relate to the effect of spatial heterogeneities; the importance of scale; coupled interactions between biogeochemical, hydrologic, and mass transfer processes; and measurements/approaches needed to characterize and model a mass transfer-dominated system. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the 300 Area IFRC Project. This plan is designed to be used exclusively by project staff.

  7. Strategic Plan Items & Projects Direct Report 1.1.1 Review and update university policies and SAPs Orkun Toros 08/31/14

    E-Print Network [OSTI]

    O'Toole, Alice J.

    and update university policies and SAPs Orkun Toros 08/31/14 1.1.2 Implement dynamic web based FAQ System.3 Improve Processes and Systems #12;Strategic Plan Items & Projects Direct Report Planned Completion ActualStrategic Plan Items & Projects Direct Report Planned Completion Actual Completion 1.1.1 Review

  8. For the MTS (Marine Transportation System Research & Technology) Conference The CCOM Chart-of-the-Future Project

    E-Print Network [OSTI]

    Ware, Colin

    For the MTS (Marine Transportation System Research & Technology) Conference The CCOM Chart-of-the-Future Project: Maximizing Mariner Effectiveness through Fusion of Marine & Visualization Technologies Matthew D-of-the-Future Project is to develop a marine decision support system that takes full advantage of existing and emerging

  9. Phase 1 Final status survey plan for the West Valley demonstration project.

    SciTech Connect (OSTI)

    Johnson, R. L. (Environmental Science Division)

    2011-05-31

    This plan provides the technical basis and associated protocols to support Phase 1 final status survey (FSS) data collection and interpretation as part of the West Valley Demonstration Project Phase 1 Decommissioning Plan process. This plan is consistent with the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). The Phase 1 Decommissioning Plan provides the relevant derived concentration guideline levels (DCGLs) for the Phase 1 radionuclides of interest. This plan includes protocols that will be applied to the deep excavations planned for Waste Management Area (WMA) 1 and WMA 2, for surface soils outside the WMA 1 and WMA 2 excavations that do not have contamination impacts at depths greater than one meter, and for areas that are used for Phase 1 contaminated soil lay-down purposes. All excavated and lay-down areas will be classified as MARSSIM Class 1 areas. Surface soils that have not been excavated, are not expected to exceed DCGLs, and do not have contamination impacts at depths greater than one meter will be divided into either Class 1 or Class 2 areas depending on the expected potential for surface soil contamination in those areas. The plan uses gamma scans combined with biased soil samples to address DCGLemc concerns. The plan uses systematic soil sampling combined with area factors to address DCGLw and DCGLemc concerns. The Sign test will be used to statistically evaluate DCGLw compliance. If the results from the characterization sampling and analysis plan (CSAP) data collection indicate that background may be a significant issue for Sign test implementation, the Wilcoxon rank sum (WRS) test will be used instead to demonstrate DCGLw compliance. A reference area will be selected on the basis of CSAP data results if the WRS test becomes a necessity. The WMA 1 excavation footprint includes approximately 476 foundation pilings that will be trimmed and left in place. Piling-specific systematic and biased sampling will be conducted to address concerns that these pilings may have served as preferential flow pathways into the underlying Lavery till. Phase 1 FSS data collection results will be summarized, presented, and interpreted in one or more FSS reports.

  10. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    SciTech Connect (OSTI)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  11. ALARA plan for the Old Hydrofracture Facility tanks contents removal project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-04-01

    The purpose of the Old Hydrofracture Facility (OHF) Tanks Contents Removal Project is to remove the liquid low-level waste from the five underground storage tanks located at OHF and transfer the resulting slurry to the Melton Valley Storage Tanks facility for treatment and disposal. Among the technical objectives for the OHF Project, there is a specific provision to maintain personnel exposures as low as reasonably achievable (ALARA) during each activity of the project and to protect human health and the environment. The estimated doses and anticipated conditions for accomplishing this project are such that an ALARA Plan is necessary to facilitate formal radiological review of the campaign. This ALARA Plan describes the operational steps necessary for accomplishing the job together with the associated radiological impacts and planned controls. Individual and collective dose estimates are also provided for the various tasks. Any significant changes to this plan (i.e., planned exposures that are greater than 10% of original dose estimates) will require formal revision and concurrence from all parties listed on the approval page. Deviations from this plan (i.e., work outside the scope covered by this plan) also require the preparation of a task-specific ALARA Review that will be amended to this plan with concurrence from all parties listed on the approval page.

  12. DOE responses to Ecology review comments for ``Sampling and analysis plans for the 100-D Ponds voluntary remediation project``

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    The Sampling and Analysis Plan describes the sampling and analytical activities which will be performed to support closure of the 100-D Ponds at the Hanford Reservation. This report contains responses by the US Department of Energy to Ecology review for ``Sampling and Analysis Plan for the 100-D Ponds Voluntary Remediation Project.``

  13. Stranded Fuel, Orphan Sites, Dead Plants: Transportation Planning Considerations After the BRC Report - 13393

    SciTech Connect (OSTI)

    Thrower, Alex W.

    2013-07-01

    The author explores transportation, packaging and storage questions related to a primary recommendation of the Blue Ribbon Commission on America's Nuclear Future; i.e., that fuel from shutdown plants be removed to consolidated storage as soon as possible to enable final decommissioning and beneficial re-use of those sites. The paper discusses the recommendations of the BRC, the implications and challenges that implementing those recommendations present, and provides recommended solutions for beginning the multi-year planning, coordination, material acquisition, and communications processes that will be needed to move fuel from shutdown plants when a destination site becomes available. Removal of used nuclear fuel from shutdown reactor sites (which are serving no other purpose other than storing SNF and GTCC, at considerable expense) was a central recommendation of the BRC, for a number of reasons. This recommendation was one of the most widely acclaimed that the Commission put forward. However, there are significant challenges (such as availability of fuel canister overpacks, lack of infrastructure, handling constraints and others) that will need to be addressed, apart from the critically important identification of a suitable and workable storage destination site. Resolving these logistical challenges will need to begin even before a destination site is identified, given the long lead-times required for planning and procurement. Based on information available today, it is possible to make informed predictions about what will be needed to modify existing contractual arrangements with utilities, address equipment and infrastructure needs, and begin working with states, tribes and local governments to start initial preparation needs. If DOE, working with industry and other experienced parties, can begin planning and acquisition activities in the near term, overall schedule risk can be reduced and potential cost avoidance achieved. The most immediate benefit will accrue to the operators of the shutdown plants, but beginning to accept fuel as required under the NWPA will reduce the liability to the federal government, and also offer some assurance to other utilities and the public that DOE (or another entity if one is established) is capable of meeting its obligations under the NWPA. The indirect benefits, therefore, will be quite broad. (authors)

  14. Sampling and analysis plan for the 100-D Ponds voluntary remediation project

    SciTech Connect (OSTI)

    NONE

    1996-08-01

    This Sampling and Analysis Plan (SAP) describes the sampling and analytical activities which will be performed to support closure of the 100-D Ponds Resource Conservation and Recovery Act (RCRA) treatment, storage, and/or disposal (TSD) unit. This SAP includes the Field Sampling Plan (FSP) presented in Section 2.0, and the Quality Assurance Project Plan (QAPjP) described in Section 3.0. The FSP defines the sampling and analytical methodologies to be performed, and the QAPjP provides or includes information on the requirements for precision, accuracy, representativeness, comparability, and completeness of the analytical data. This sampling and analysis plan was developed using the Environmental Protection Agency`s Seven-Step Data Quality Objectives (DQO) Guidance (EPA, 1994). The purpose of the DQO meetings was (1) to identify the contaminants of concern and their cleanup levels under the Washington State Model Toxics Control Act (MTCA, WAC-173-340) Method B, and (2) to determine the number and locations of samples necessary to verify that the 100-D Ponds meet the cleanup criteria. The data collected will be used to support RCRA closure of this TSD unit.

  15. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

  16. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  17. Technology maturation project on optimization of sheet metal forming of aluminum for use in transportation systems: Final project report

    SciTech Connect (OSTI)

    Johnson, K.I.; Smith, M.T.; Lavender, C.A.; Khalell, M.A.

    1994-10-01

    Using aluminum instead of steel in transportation systems could dramatically reduce the weight of vehicles--an effective way of decreasing energy consumption and emissions. The current cost of SMF aluminum alloys (about $4 per pound) and the relatively long forming times of current materials are serious drawbacks to the widespread use of SMF in industry. The interdependence of materials testing and model development is critical to optimizing SMF since the current process is conducted in a heated, pressurized die where direct measurement of critical SMF parameters is extremely difficult. Numerical models provide a means of tracking the forming process, allowing the applied gas pressure to be adjusted to maintain the optimum SMF behavior throughout the forming process. Thus, models can help produce the optimum SMF component in the least amount of time. The Pacific Northwest Laboratory is integrating SMF model development with research in improved aluminum alloys for SMF. The objectives of this research are: develop and characterize competitively priced aluminum alloys for SMF applications in industry; improve numerical models to accurately predict the optimum forming cycle for reduced forming time and improved quality; verify alloy performance and model accuracy with forming tests conducted in PNL`s Superplastic Forming User Facility. The activities performed in this technology maturation project represent a critical first step in achieving these objectives through cooperative research among industry, PNL, and universities.

  18. A Project Report on NP: an Assumption.based NL Plan Inference System that uses Feature Structures

    E-Print Network [OSTI]

    A Project Report on NP: an Assumption.based NL Plan Inference System that uses Feature Structures-cho,Soraku-gun, Kyoto 619-02, Japan myers@atr-la.atr.co.jp Abstract This paper presents a project report on NP

  19. Maintenance and operations contractor plan for transition to the project Hanford management contract (PHMC)

    SciTech Connect (OSTI)

    Waite, J.L.

    1996-04-12

    This plan has been developed by Westinghouse Hanford Company (WHC), and its subcontractors ICF Kaiser Hanford (ICF KH) and BCS Richland, Inc. (BCSR), at the direction of the US Department of Energy (DOE), Richland Operations Office (RL). WHC and its subcontractors are hereafter referred to as the Maintenance and Operations (M and O) Contractor. The plan identifies actions involving the M and O Contractor that are critical to (1) prepare for a smooth transition to the Project Hanford Management Contractor (PHMC), and (2) support and assist the PHMC and RL in achieving transition as planned, with no or minimal impact to ongoing baseline activities. The plan is structured around two primary phases. The first is the pre-award phase, which started in mid-February 1996 and is currently scheduled to be completed on June 1, 1996, at which time the contract is currently planned to be awarded. The second is the follow-on four-month post-award phase from June 1, 1996, until October 1, 1996. Considering the magnitude and complexity of the scope of work being transitioned, completion in four months will require significant effort by all parties. To better ensure success, the M and O Contractor has developed a pre-award phase that is intended to maximize readiness for transition. Priority is given to preparation for facility assessments and processing of personnel, as these areas are determined to be on the critical path for transition. In addition, the M and O Contractor will put emphasis during the pre-award phase to close out open items prior to contract award, to include grievances, employee concerns, audit findings, compliance issues, etc.

  20. The Metropolitan Accessibility Project The purpose of a transportation system is to meet people's needs and get them where they

    E-Print Network [OSTI]

    Papalambros, Panos

    's needs and get them where they want to go. Rapid mobility may seem like the best way to do this most efficiently, but planning transportation systems based on mobility alone can have the effect of spreading development out over wide areas, making destinations harder to reach and making the system less sustainable

  1. Project Execution Plan, Waste Management Division, Nevada Operations Office, U.S. Department of Energy, April 2000

    SciTech Connect (OSTI)

    DOE /NV

    2000-04-01

    This plan addresses project activities encompassed by the U.S. Department of Energy/Nevada Operations Office Waste Management Division and conforms to the requirements contained in the ''Life Cycle Asset Management,'' U.S. Department of Energy Order O430.1A; the Joint Program Office Policy on Project Management in Support of DOE Order O430.1, and the Project Execution and Engineering Management Planning Guide. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the state of Nevada; and traditional project management philosophies such as the development of life cycle costs, schedules, and work scope; identification of roles and responsibilities; and baseline management and controls.

  2. Climate Change and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    1 Climate Change and Transportation Addressing Climate Change in the Absence of Federal Guidelines;6 WSDOT Efforts · Climate Change Team · Project Level GHG Approach · Planning Level GHG Approach · Alternative Fuels Corridor · Recent legislation and research #12;7 WSDOT Efforts: Climate Change Team

  3. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the National Emission Standards for Hazardous Air Pollutants'' (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation's referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  4. Quality assurance project plan for the radionuclide airborne emissions for the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Kristofzski, J.G.; Alison, D.

    1992-04-01

    The information provided in this document meets the quality assurance (QA) requirements for the ``National Emission Standards for Hazardous Air Pollutants`` (NESHAP) (EPA 1989a) radionuclide airborne emissions control program in accordance with the regulation`s referenced stack monitoring method (i.e. Method 114) for the Plutonium Finishing Plant (PFP). At the Hanford Site, the operations personnel have primary responsibility for implementing the continuous radionuclide emission measurements in conformance with NESHAP. Continuous measurement is used to describe continuous sampling of the effluent stream withdrawn and subjected to radiochemical analysis, and monitoring of radionuclide particulate emissions for administrative control. This Quality Assurance Project Plan (QAPjP) fully describes these PFP- implemented activities and the associated QA program as required by the NESHAP. The information is provided in the format specified in QAMS/005, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (EPA 1983a). This QAPjP describes the QA program for only those activities that are the responsibility of the PFP: operation, calibration, and maintenance of the sampling systems. The QA requirements for laboratory services, data compilation, and data reporting are beyond the scope of this QAPjP.

  5. Introduction: Transportation Planning as an Integral Part of Urban Development: The Emerging Paradigm

    E-Print Network [OSTI]

    Deakin, Elizabeth A.

    2008-01-01

    effectively with metropolitan flood risk could increase asare already located on high-risk flood- transport modes are

  6. Transportation Secure Data Center: Real-world Data for Planning, Modeling, and Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Transportation Secure Data Center (TSDC) at www.nrel.gov/tsdc provides free, web-based access to detailed transportation data from a variety of travel surveys conducted across the nation. While preserving the privacy of survey participants, this online repository makes vital transportation data broadly available to users from the comfort of their own desks via a secure online connection.

  7. The Woodlands Metro Center energy study. Case studies of project planning and design for energy conservation

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    The Woodlands is a HUD Title VII New Town located near Houston, including 22,000 acres; the plan for the new town consists of 6 residential villages, a town center (Metro), and a Trade Center for larger-scale industrial use. Included within the program for each village are schools and commercial activities, as well as employment activities. The Woodlands is planned to be developed over a 26-year period (commenced in 1972) with an ultimate population of 150,000. Following a summary chapter, Chapter II presents background material on The Woodlands and results of the study are summarized. Chapter III describes the project team and its organizational structure. Chapter IV outlines and documents the methodology that was employed in developing, analyzing, and evaluating the case study. The next chapter describes and analyzes the conventional plan, documents the process by which energy-conserving methods were selected, and evaluates the application of these methods to the Metro Center Study area. Chapter VI discusses constraints to implementation and is followed by a final chapter that presents the general conclusions from the case study and suggests directions for further investigation.

  8. Stormwater Pollution Prevention Plan (SWPPP) for Coal Storage Area Stabilization Project

    SciTech Connect (OSTI)

    Project and Design Engineering

    2011-03-01

    The scope of this project is to stabilize the abandoned coal storage area and redirect the storm water runoff from sanitary sewer system to the storm drain system. Currently, the existing storm water runoff is directed to a perimeter concrete drainage swale and collected in a containment basin. The collected water is then pumped to a treatment facility and after treatment, is discharged to the Y-12 sanitary sewer system. The existing drainage swale and collection basin along with silt fencing will be used during aggregate placement and grading to provide erosion and sediment control. Inlet protection will also be installed around existing structures during the storm water diversion construction. This project scope will include the installation of a non-woven geotextile fabric and compacted mineral aggregate base (paving optional) to stabilize the site. The geotextile specifications are provided on the vendor cut sheets in Appendix B. The installation of a storm water collection/retention area will also be installed on the southern side of the site in accordance with EPA Technical Guidance on Implementing the Stormwater Runoff Requirements for federal Projects under Section 438 of the Energy Independence and Security Act. The total area to be disturbed is approximately 2.5 acres. The order of activities for this Stormwater Pollution Prevention Plan (SWPPP) will be: (1) post notice of coverage (NOC) in a prominent display near entrance of the site; (2) install rain gauge on site or contact Y-12 Plant Shift Superintendent daily for Met tower rain gauge readings; (3) install stabilized construction exit on site; (4) install silt fencing along perimeter as indicated on the attached site plan; (5) regrade site; (6) install geotextile fabric and compacted mineral aggregate base; (7) install catch basin inlet protection where required; (8) excavate and lower existing catch basin tops, re-grade and asphalt to drain; and (9) when all disturbed areas are re-stabilized, remove silt fencing and any other temporary erosion control.

  9. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  10. Phase 1 Characterization sampling and analysis plan West Valley demonstration project.

    SciTech Connect (OSTI)

    Johnson, R. L. (Environmental Science Division)

    2011-06-30

    The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

  11. 1.203J / 6.281J / 15.073J / 16.76J / ESD.216J Logistical and Transportation Planning Methods, Fall 2004

    E-Print Network [OSTI]

    Larson, Richard C.

    The class will cover quantitative techniques of Operations Research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, pick-up and delivery systems) and in the planning and design ...

  12. The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia

    SciTech Connect (OSTI)

    Neeraj Gupta

    2009-01-07

    This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

  13. California Energy Commission Public Interest EnergyResearch/Energy System Integration -- Transmission-Planning Research&Development Scoping Project

    SciTech Connect (OSTI)

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-07-01

    The objective of this Public Interest Energy Research (PIER)scoping project is to identify options for public-interest research and development (R&D) to improve transmission-planning tools, techniques, and methods. The information presented was gathered through a review of current California utility, California Independent System Operator (ISO), and related western states electricity transmission-planning activities and emerging needs. This report presents the project teams findings organized under six topic areas and identifies 17 distinct R&D activities to improve transmission-planning in California and the West. The findings in this report are intended for use, along with other materials, by PIER staff, to facilitate discussions with stakeholders that will ultimately lead to development of a portfolio of transmission-planning R&D activities for the PIER program.

  14. The Origins of Metropolitan Transportation Planning in Travel Demand Forecasting, 1944-1962

    E-Print Network [OSTI]

    Deutsch, Cheryl

    2013-01-01

    predictions for the Detroit area. In Highway Research Board4: Desire line charts from Detroit, 1942………………………………………………….transportation research in the Detroit Metropolitan Area

  15. Quality Assurance Project Plan for radioactive airborne emissions data compilation and reporting

    SciTech Connect (OSTI)

    Burris, S.A.; Thomas, S.P.

    1994-02-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for compiling data from radioactie aiborne emissions. These data will be reported to the US Environmental Protection Agency, the US Department of Energy, and the Washington State Department of Health. Hanford Site radioactive airborne emissions are reported to the US Environmental Protection Agency in compliance with Title 40, Protection of the Environment, Code of Federal Regulations, Part 61, ``National Emissions Standards for Hazardous Air Pollutants , ``Subpart H, ``National Emissions Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities`` (EPA 1989a). Reporting to US Department of Energy is performed in compliance with requirements of US Department of Energy Order 5400.1, General Environmental Protection Program (DOE 1988a).

  16. Permitting plan for project W-320 tank 241-C-106 waste retrievalsluicing system (WRSS)

    SciTech Connect (OSTI)

    Symons, G.A.

    1997-02-21

    This document describes the permitting plan for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). A comprehensive review of environmental regulations have indicated that several environmental reviews [e.g. National Environmental Policy Act (NEPA), State Environmental Policy Act (SEPA)], permits, and approvals are required prior to construction or operation of the facility. The environmental reviews, permits and approvals, as well the regulatory authority, potentially applicable to the Tank 241-C-106 WRSS include the following: for NEPA - U.S. Department of Energy-Headquarters: Action Description Memorandum, Environmental Assessment, Categorical Exclusion, and Environmental Impact Statement; and for SEPA - State of Washington Department of Ecology (Ecology) Determination of Nonsignificance, Mitigated Determination of Nonsignificance, Determination of Significance, and SEPA Environmental Checklist.

  17. Leakage Risk Assessment of CO{sub 2} Transportation by Pipeline at the Illinois Basin Decatur Project, Decatur, Illinois

    SciTech Connect (OSTI)

    Mazzoldi, A.; Oldenburg, C. M.

    2013-12-17

    The Illinois Basin Decatur Project (IBDP) is designed to confirm the ability of the Mt. Simon Sandstone, a major regional saline-water-bearing formation in the Illinois Basin, to store 1 million tons of carbon dioxide (CO{sub 2}) injected over a period of three years. The CO{sub 2} will be provided by Archer Daniels Midland (ADM) from its Decatur, Illinois, ethanol plant. In order to transport CO{sub 2} from the capture facility to the injection well (also located within the ADM plant boundaries), a high-pressure pipeline of length 3,200 ft (975 m) has been constructed, running above the ground surface within the ADM plant footprint. We have qualitatively evaluated risks associated with possible pipeline failure scenarios that lead to discharge of CO{sub 2} within the real-world environment of the ADM plant in which there are often workers and visitors in the vicinity of the pipeline. There are several aspects of CO{sub 2} that make its transportation and potential leakage somewhat different from other substances, most notable is its non-flammability and propensity to change to solid (dry ice) upon strong decompression. In this study, we present numerical simulations using Computational Fluid Dynamics (CFD) methods of the release and dispersion of CO{sub 2} from individual hypothetical pipeline failures (i.e., leaks). Failure frequency of the various components of a pipeline transportation system over time are taken from prior work on general pipeline safety and leakage modeling and suggest a 4.65% chance of some kind of pipeline failure over the three-years of operation. Following the Precautionary Principle (see below), we accounted for full-bore leakage scenarios, where the temporal evolution of the mass release rate from the high-pressure pipeline leak locations was simulated using a state-of-the-art Pipe model which considers the thermodynamic effects of decompression in the entire pipeline. Failures have been simulated at four representative locations along the pipeline route within the ADM plant. Leakage scenarios at sites along the route of the pipeline, where plant operations (e.g., vehicular and train transportation) seem to present a higher likelihood of accidental failure, for example due to vehicles or equipment crashing into the pipeline and completely severing it, were modeled by allowing them to have a double source consistent with the pipeline releasing high-pressure CO{sub 2} from both ends of the broken pipe after a full-bore offset rupture. Simulation results show that the built environment of the plant plays a significant role in the dispersion of the gas as leaking CO{sub 2} can impinge upon buildings and other infrastructure. In all scenarios simulated, the region of very high-concentration of CO{sub 2} is limited to a small area around the pipeline failure, suggesting the likelihood of widespread harmful CO{sub 2} exposure to plant personnel from pipeline leakage is low. An additional risk is posed by the blast wave that emanates from a high-pressure pipeline when it is breached quickly. We estimate the blast wave risk as low because it occurs only for a short time in the immediate vicinity of the rupture, and requires an instantaneous large-scale rupture to occur. We recommend consideration of signage and guard rails and posts to mitigate the likelihood of vehicles crashing into the pipeline. A standardized emergency response plan applicable to capture plants within industrial sites could be developed based on the IBDP that would be useful for other capture plants. Finally, we recommend carrying out coupled wellbore-reservoir blowout scenario modeling to understand the potential for hazardous conditions arising from an unexpected blowout at the wellhead.

  18. Comparative risk analysis for the Rocky Flats Plant Integrated Project Planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risk from postulated options or endstates. Comparative Risk Analysis is an analytical tool for the Rocky Flats Plant Integrated Project Planning which can assist a decision-maker in evaluating relative risks among proposed remedial options or future endstates. It addresses the cumulative risks imposed by the Rocky Flats Plant and provides risk information, both human health and ecological, to aid in reducing unnecessary resource and monetary expenditures. Currently, there is no approved methodology that aggregates various risk estimates. Along with academic and field expert review, the Comparative Risk Analysis methodology is being reviewed and refined. A Rocky Flats Plant Risk Assessment Focus Group was established. Stakeholder involvement in the development provides an opportunity to influence the information delivered to a decision-maker. This paper discusses development of the methodology.

  19. Analytical Chemistry Laboratory Quality Assurance Project Plan for the Transuranic Waste Characterization Program

    SciTech Connect (OSTI)

    Sailer, S.J.

    1996-08-01

    This Quality Assurance Project Plan (QAPJP) specifies the quality of data necessary and the characterization techniques employed at the Idaho National Engineering Laboratory (INEL) to meet the objectives of the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) requirements. This QAPJP is written to conform with the requirements and guidelines specified in the QAPP and the associated documents referenced in the QAPP. This QAPJP is one of a set of five interrelated QAPjPs that describe the INEL Transuranic Waste Characterization Program (TWCP). Each of the five facilities participating in the TWCP has a QAPJP that describes the activities applicable to that particular facility. This QAPJP describes the roles and responsibilities of the Idaho Chemical Processing Plant (ICPP) Analytical Chemistry Laboratory (ACL) in the TWCP. Data quality objectives and quality assurance objectives are explained. Sample analysis procedures and associated quality assurance measures are also addressed; these include: sample chain of custody; data validation; usability and reporting; documentation and records; audits and 0385 assessments; laboratory QC samples; and instrument testing, inspection, maintenance and calibration. Finally, administrative quality control measures, such as document control, control of nonconformances, variances and QA status reporting are described.

  20. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  1. The project for the historic center of Genoa : toward the integration of urban planning and design

    E-Print Network [OSTI]

    Mehren, Barbara Theodora

    1984-01-01

    A current concern in planning and architecture is the apparent inability of either profession to provide quality urban environments. Frequently the problem is attributed to the gap that exists between the plan and planning ...

  2. Project Plan, Status, and Lessons Learned for the LANL 3,706 m{sup 3} TRU Waste Campaign - 13085

    SciTech Connect (OSTI)

    Johns-Hughes, K.W.; Clemmons, J.S.; Cox, D.R.; Hargis, K.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Bishop, M.L. [Los Alamos Site Office, National Nuclear Security Administration, U. S. Department of Energy, 3747 W. Jemez Road, Los Alamos, New Mexico 87545 (United States)] [Los Alamos Site Office, National Nuclear Security Administration, U. S. Department of Energy, 3747 W. Jemez Road, Los Alamos, New Mexico 87545 (United States)

    2013-07-01

    The Los Alamos National Laboratory (LANL) is currently engaged in a campaign to disposition 3,706 m{sup 3} of transuranic (TRU) waste stored above grade at its Technical Area 54 (TA-54) Area G waste management facility before June 30, 2014. This campaign includes complete removal of all non-cemented above-grade TRU waste that was in storage on October 1, 2011, and is defined as 3,706 m{sup 3} of material. TRU waste containers were placed into storage up to 40 years ago, and most of the older containers must be remediated to address compliance issues before the waste can be characterized, certified as meeting the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), and shipped for disposition. More than half of the remaining TRU waste volume stored above grade is contained within oversize boxes that contain waste items that must be repackaged or size reduced. Facilities and major types of equipment needed to remediate and characterize the TRU waste inventory include two additional oversize box processing lines that are being brought into service as Nuclear Hazard Category III facilities in fiscal year (FY) 2013. Multiple work shifts are scheduled for most remediation lines in FY 2013. An integrated risk-based project management schedule for all disposition activities has been developed that is based on a 'Solution Package' approach. Inventories of containers that have issues in common were compiled into about 15 waste categories and about 75 'Solution Packages' that identify all of the activities needed to disposition the inventory of TRU waste in storage. Scheduled activities include all precursor activities to begin remediation, remediation processing, characterization and certification to the WIPP WAC, and shipping of containers to WIPP. Other industrial processing practices that have been adopted to improve efficiency include staging of containers for remediation, characterization, and shipping; establishment of a transportation center; and load management practices for transportation payloads. Progress and accomplishments during FY 2012 are reviewed, and plans for FY 2013 are presented in some detail. Lessons learned on adoption of industrial processing practices are also discussed. (authors)

  3. Transportation Secure Data Center: Real-World Data for Planning, Modeling, and Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    This fact sheet describes the Transportation Secure Data Center (TSDC) - an NREL-operated resource that provides secure access to detailed GPS travel data for valuable research purposes in a way that protects original participant privacy.

  4. PROJECT TITLE: Developing a Recycling Plan in a New York City Elementary School TEAM MEMBERS: Miriam N. Ward & Blake Wells

    E-Print Network [OSTI]

    Wolberg, George

    PROJECT TITLE: Developing a Recycling Plan in a New York City Elementary School TEAM MEMBERS in Partial Fulfillment of the Master of Science in Sustainability Degree The City College of New York Grove School 3 I. Abstract New York City provides many of the educational tools to integrate responsible waste

  5. Data Management Plan (p. 1 of 2) The proposed project will include human subjects data consisting of background demographic

    E-Print Network [OSTI]

    Tipple, Brett

    Data Management Plan (p. 1 of 2) The proposed project will include human subjects data consisting of background demographic information and a variety of data related to gait and balance, and it will be conducted at the University of Utah. The University of Utah will be the primary caretaker of the data

  6. Guidance for Planning Exercises

    Office of Environmental Management (EM)

    blank table of contents Transportation Emergency Preparedness Program (TEPP) planning tools planning tools Guidance f Guidance f Guidance f Guidance f Guidance for Planning,...

  7. Waste Characterization Plan for the Hanford Site single-shell tanks. Appendix D, Quality Assurance Project Plan for characterization of single-shell tanks: Revision 3

    SciTech Connect (OSTI)

    Hill, J.G.; Winters, W.I.; Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States); Buck, J.W.; Chamberlain, P.J.; Hunter, V.L. [Pacific Northwest Lab., Richland, WA (United States)

    1991-09-01

    This section of the single-shell tank (SST) Waste Characterization Plan describes the quality control (QC) and quality assurance (QA) procedures and information used to support data that is collected in the characterization of SST wastes. The section addresses many of the same topics discussed in laboratory QA project plans (QAPjP) (WHC 1989, PNL 1989) and is responsive to the requirements of QA program plans (QAPP) (WHC 1990) associated with the characterization of the waste in the SSTs. The level of QC for the project depends on how the data is used. Data quality objectives (DQOs) are being developed to support decisions made using this data. It must be recognized that the decisions and information related to this part of the SST program deal with the materials contained within the tank only and not what may be in the environment/area surrounding the tanks. The information derived from this activity will be used to determine what risks may be incurred by the environment but are not used to define what actual constituents are contained within the soil surrounding the tanks. The phases defined within the DQOs on this Waste Characterization Plan follow the general guidance of the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) yet are pertinent to analysis of the contents of the tanks and not the environment.

  8. Quality assurance project plan for the preliminary site investigation for McMurdo Station, Ross Island, Antarctica

    SciTech Connect (OSTI)

    Prasad, S.S.

    1991-05-01

    The quality assurance project plan (QAPjP) is designed to ensure that sampling and analysis activities are scoped and performed to obtain quality data during the preliminary site investigation for McMurdo Station, Ross Island, Antarctica. The QAPjP is prepared in accordance with the guidelines set forth and adopted by the US Environmental Protection Agency (EPA) (1980a, 1986a, 1989a), Argonne National Laboratory (ANL) (1988), and Pentecost and Doctor (1990). This document presents the final QAPjP for the preliminary site investigation. A drat version of this report was presented to the National Science Foundation (NSF) in January 1991. A description of the project and data quality objectives is provided in Section 3.1 of the work plan. Specific health and safety precautions and procedures are presented in the health and safety plan. 17 refs., 2 figs., 11 tabs.

  9. Transportation Baseline Report

    SciTech Connect (OSTI)

    Fawcett, Ricky Lee; Kramer, George Leroy Jr.

    1999-12-01

    The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOE’s projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

  10. Transportation Outlook 2035: Creating a Blueprint for the Sherman-Denison Region's Future 

    E-Print Network [OSTI]

    Sherman-Denison Metropolitan Planning Organization

    2009-11-18

    are included under Chapter 11 - Financial Plan and Funding Projections. 3. Within the Transit element, funding projections indicate estimated annual funds in the amount of $1,000,000. 2 CHAPTER 1.0 INTRODUCTION From its earliest... and conclusions of the MTP and the TIP. The UPWP is updated annually. 6 1.4.2 Metropolitan Transportation Plan The MTP is a long-range transportation planning document that provides a twenty-year framework for addressing the region?s...

  11. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    SciTech Connect (OSTI)

    Dunford, Gary [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States)] [AEM Consulting, LLC, 1201 Jadwin Avenue, Richland, WA 99352 (United States); Williams, David [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States)] [WIT, Inc., 11173 Oak Fern Court, San Diego, CA 92131 (United States); Smith, Rick [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)] [Knowledge Systems Design, Inc., 13595 Quaker Hill Cross Rd, Nevada City, CA 95959 (United States)

    2013-07-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near-term programmatic decisions affect life cycle costs and commitments. (authors)

  12. Wildlife and Wildlife Habitat Mitigation Plan for the Noxon Rapids and Cabinet Gorge Hydroelectric Projects, Final Report.

    SciTech Connect (OSTI)

    Bissell, Gael

    1985-04-01

    Mitigation projects for wildlife species impacted by the Noxon Rapids and Cabinet Gorge hydroelectric projects are recommended. First priority projects encompass the development of long-term wildlife management plans for WWP lands adjacent to the two reservoirs. General objectives for all WWP lands include alternatives designed to protect or enhance existing wildlife habitat. It is also suggested that WWP evaluate the current status of beaver and river otter populations occupying the reservoirs and implement indicated management. Second priority projects include the protection/enhancement of wildlife habitat on state owned or privately owned lands. Long-term wildlife management agreements would be developed with Montana School Trust lands and may involve reimbursement of revenues lost to the state. Third priority projects include the enhancement of big game winter ranges located on Kootenai National Forest lands. 1 ref., 1 fig., 7 tabs.

  13. Spent nuclear fuel project multi-year work plan WBS {number_sign}1.4.1

    SciTech Connect (OSTI)

    Wells, J.L.

    1997-03-01

    The Spent Nuclear Fuel (SNF) Project Multi-Year Work Plan (MYWP) is a controlled living document that contains the current SNF Project Technical, Schedule and Cost Baselines. These baselines reflect the current Project execution strategies and are controlled via the change control process. Other changes to the MYWP document will be controlled using the document control process. These changes will be processed as they are approved to keep the MYWP a living document. The MYWP will be maintained continuously as the project baseline through the life of the project and not revised annually. The MYWP is the one document which summarizes and links these three baselines in one place. Supporting documentation for each baseline referred to herein may be impacted by changes to the MYWP, and must also be revised through change control to maintain consistency.

  14. Project Management Plan/Progress Report UT/GTKS Training Program Development for Commercial Building Operators

    SciTech Connect (OSTI)

    None, None

    2013-03-31

    Universidad del Turabo (UT), in a collaborative effort with Global Turn Key Services, Inc. (GTKS), proposed to develop a training program and a commercialization plan for the development of Commercial Building Operators (CBOs). The CBOs will operate energy efficient buildings to help maintain existing buildings up to their optimal energy performance level, and ensure that net-zero-energy buildings continuously operate at design specifications, thus helping achieve progress towards meeting BTP Strategic Goals of creating technologies and design approaches that enable net-zero-energy buildings at low incremental costs by 2025. The proposed objectives were then: (1) Develop a Commercial Building Operator (CBO) training program and accreditation that will in turn provide a certification to participants recognized by Accreditation Boards such as the North American Board of Certified Energy Practitioners (NABCEP) and Leadership in Energy & Environmental Designs (LEED). (2) Develop and implement a commercialization and sustainability plan that details marketing, deployment, financial characterization, job placement, and other goals required for long-term sustainability of the project after the funding period. (3) After program development and deployment, provide potential candidates with the knowledge and skill sets to obtain employment in the commercial building green energy (net-zero-energy building) job market. The developed CBO training program will focus on providing skills for participants, such as displaced and unemployed workers, to enter the commercial building green energy (net-zeroenergy building) job market. This course was designed to allow a participant with minimal to no experience in commercial building green technology to obtain the required skill sets to enter the job market in as little as 12 weeks of intensive multi-faceted learning. After completion of the course, the CBO staff concluded the participant will meet minimum established accreditation standards established by UT and will complete the contact hours required of training to apply to the Certification on Energy Management (CEM) offered by the Association of Energy Engineers (AEE). The CBO training program consists of a combination of theory (classroom), online & computer simulation, laboratory & hands on (onsite) training lessons. The training is addressed four basic learning elements: (1) Learn the Technology; (2) Practice Skills with hands-on the Energy Simulation Builder program; (3) Final Project and Presentation; and, (4) Accreditation and Certifications.

  15. U.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted=

    E-Print Network [OSTI]

    States plan to build a $5 billion fusion reactor, called the International Thermonuclear ExperimentalU.S. to Participate in Fusion Project Thursday, January 30, 2003 http://www.nytimes.com/aponline/national/AP-Fusion-Energy-Plan.html?pagewanted= print&position=top Page: 1 January 30, 2003 U.S. to Participate in Fusion Project By THE ASSOCIATED

  16. Salt Repository Project site study plan for meteorology/air quality: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    The Site Study Plan for Meteorology/Air Quality describes a field program consisting of continuous measurements of wind speed and direction, temperature, humidity, dew point, and pressure neede for later modeling and dose calculations. These measurements will include upper level winds, vertical temperature structure, and vertical wind speed. All measurements will be made at a site located within the 9-m/sup 2/ site area but remote from the ESF. The SSP describes the need for each study; its design and design rationale; analysis, management, and use of data; schedule of field activities, organization of field personnel and sample management and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from, the Salt Repository Project Requirements Document. Although titled Meteorology/Air Quality, this SSP addresses only meteorology, as there are no air quality data needs in the SCP. A correction to the title will be made in a later revision. 27 refs., 6 figs., 3 tabs.

  17. Final Report for Project "Framework Application for Core-Edge Transport Simulations (FACETS)"

    SciTech Connect (OSTI)

    Estep, Donald [Colorado State University] [Colorado State University

    2014-01-17

    This is the final report for the Colorado State University Component of the FACETS Project. FACETS was focused on the development of a multiphysics, parallel framework application that could provide the capability to enable whole-device fusion reactor modeling and, in the process, the development of the modeling infrastructure and computational understanding needed for ITER. It was intended that FACETS be highly flexible, through the use of modern computational methods, including component technology and object oriented design, to facilitate switching from one model to another for a given aspect of the physics, and making it possible to use simplified models for rapid turnaround or high-fidelity models that will take advantage of the largest supercomputer hardware. FACETS was designed in a heterogeneous parallel context, where different parts of the application can take advantage through parallelism based on task farming, domain decomposition, and/or pipelining as needed and applicable. As with all fusion simulations, an integral part of the FACETS project was treatment of the coupling of different physical processes at different scales interacting closely. A primary example for the FACETS project is the coupling of existing core and edge simulations, with the transport and wall interactions described by reduced models. However, core and edge simulations themselves involve significant coupling of different processes with large scale differences. Numerical treatment of coupling is impacted by a number of factors including, scale differences, form of information transferred between processes, implementation of solvers for different codes, and high performance computing concerns. Operator decomposition involving the computation of the individual processes individually using appropriate simulation codes and then linking/synchronizing the component simulations at regular points in space and time, is the defacto approach to high performance simulation of multiphysics, multiscale systems. Various forms of operator decomposition are used in nearly all fusion simulations. However, operator decomposition generally has a complex effect on accuracy and stability of numerical simulations. Yet, these effects can be difficult to detect. The Colorado State University component of the FACETS team led by P. I. D. Estep was focused on analyzing the effects of operator decomposition on fusion simulations. The approach was based on a posteriori error analysis employing adjoint problems, computable residuals, and variational analysis to produce accurate computational error estimates for quantities of interest. Computable residuals are used to quantify the effects of various discretization choices. The generalized Greens function satisfying the adjoint problem quantities the effects of stability. Technical issues to be addressed included: (1) defining appropriate adjoint operators for operator decomposition discretizations; (2) determining the appropriate residuals for the multifaceted aspects involved with multiphysics discretizations; (3) producing the estimates within the computational framework of existing fusion codes; (4) carrying out the analysis for discretizations used in fusion simulations; and (5) devising efficient approaches to mitigating the effects of discretization. This report provides a summary of the accomplished research and a detailed description of personnel, activities, outcomes and achievements.

  18. Emergency response planning for railroad transportation related spills of oil or other hazardous materials 

    E-Print Network [OSTI]

    Reeder, Geoffrey Benton

    1995-01-01

    In December 1984 an unintentional release of poison gas from a chemical plant in Bhopal, India killed over 2,500 people. Thousands of others were injured. Although this material was not in transportation at the time, this accident raised public...

  19. Planning of feeding station installment for elec-tric urban public mass-transportation system

    E-Print Network [OSTI]

    Bierlaire, Michel

    of visual pollution in urban cities. In this paper, we will introduce a revolutionary "catenary pollutants, and less noise pollution. However, in the traditional implementation of electric bus-transportation system April 2013 1 Introduction In the last few decades, there has been growing concern about pollution

  20. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12Capacity-Forum Sign InTransportation

  1. Plan

    National Nuclear Security Administration (NNSA)

    Information P.O. Box 62 Oak Ridge, TN 37831-0062 (423) 576-8401 DOENV-11432-244 Nevada Test Site Routine Radiological Environmental Monitoring Plan December 1998 Work Performed...

  2. Handbook for Planning and Conducting Charrettes for High-Performance Projects: Second Edition

    SciTech Connect (OSTI)

    Lindsay, G.; Todd, J. A.; Hayter, S. J.; Ellis, P. G.

    2009-09-01

    This handbook furnishes guidance for planning and conducting a high-performance building charrette, sometimes called a "greening charrette."

  3. The MAGIC Project: Contributions to ICRC 2005, Pune, India, Part 2: Future Plans and Developments

    E-Print Network [OSTI]

    J. Albert i Fort

    2005-08-15

    Contributions by the MAGIC collaboration to ICRC 2005, Pune, India, Part 2: Future Plans and Developments (9 contributions)

  4. Chernobyl Studies Project - working group 7.0 environmental transport and health effects. Progress report, October 1993--January 1994

    SciTech Connect (OSTI)

    Hendrickson, S.M.

    1994-03-01

    The DOE-funded Chernobyl Studies Project was begun as part of a cooperative agreement between the US and the former USSR, (quote) To develop jointly methods to project rapidly the health effects of any future reactor accident (quote). Most of the initial tasks for this project are completed or near completion. The focus has now turned primarily to the issue of health effects from the Chernobyl accident. Currently, we are extensively engaged in case-control and cohort studies of thyroid diseases among Belarussian children and in the Ukraine. A major part of the effort is providing methods and applications of dose reconstruction and providing support and equipment for the medical teams. This document contains reports on progress in the following task areas: Management; External Dose; Hydrological Transport; Chromosome Painting Dosimetry; Stochastic Effects; Thyroid Studies; and Leukemia Studies.

  5. FY 2013 Major Capital Outlay Project Request and Five-Year Comprehensive Master Plan

    E-Print Network [OSTI]

    PROJECT REQUEST NEXT GENERATION ENERGY COMPLEX Total Project Cost $29,500,000 Is the Project a Renovation Generation Energy Complex. This project has an estimated cost of $29.5 million with $22.125 million funded by the State and the $7.375 million balance coming from the University. The Next Generation Energy Complex

  6. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

  7. U.S. Plans to Rejoin Project to Develop Fusion Reactor Friday, January 31, 2003 http://www.nytimes.com/2003/01/31/politics/

    E-Print Network [OSTI]

    U.S. Plans to Rejoin Project to Develop Fusion Reactor Friday, January 31, 2003 http to Rejoin Project to Develop Fusion Reactor By KENNETH CHANG he United States will seek to join a $5 billion international project to build an experimental fusion reactor, Energy Secretary Spencer Abraham announced

  8. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, Susan Kay; Orchard, B. J.

    2002-01-01

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  9. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order

    SciTech Connect (OSTI)

    Evans, S.K.

    2002-01-31

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

  10. Project risk and appeals in U.S. Forest Service planning

    SciTech Connect (OSTI)

    Stern, Marc J.; Predmore, S. Andrew; Morse, Wayde C.; Seesholtz, David N.

    2013-09-15

    The National Environmental Policy Act (NEPA) requires U.S. Forest Service planning processes to be conducted by interdisciplinary teams of resource specialists to analyze and disclose the likely environmental impacts of proposed natural resource management actions on Forest Service lands. Multiple challenges associated with these processes have been a source of frustration for the agency. One of these challenges involves administrative appeals through which public entities can challenge a Forest Service decision following a NEPA process. These appeals instigate an internal review process and can result in an affirmation of the Forest Service decision, a reversal of that decision, or additional work that re-initiates all or part of the NEPA process. We examine the best predictors of appeals and their outcomes on a representative sample of 489 Forest Service NEPA processes that were decided between 2007 and 2009. While certain factors associated with pre-existing social contexts (such as a history of controversy) or pre-determined elements of a proposed action (such as the extraction of forest products) predispose certain processes to a higher risk of appeals, other practices and process-related strategies within the control of the agency also appear to bear meaningful influence on the occurrence of appeals and their outcomes. Appeals and their outcomes were most strongly related to programmatic, structural (turnover of personnel in particular), and relationship risks (both internal and external) within the processes, suggesting the need for greater focus within the agency on cultivating positive internal and external relationships to manage the risk of appeals. -- Highlights: ? We examined appeals and their outcomes on 489 U.S. Forest Service NEPA processes. ? Project type, context, team turnover, and personal relationships predicted appeals. ? External relationship management and staff turnover best predicted appeal outcomes. ? Positive internal and external relationships appear to reduce appeal risks.

  11. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  12. Agency and incentive contract in private investment of transport project : an exploration of fundamental relationships

    E-Print Network [OSTI]

    Chiang, Risharng

    2002-01-01

    This thesis codifies and relates critical incentive-design and financial-contracting issue to the unique principal-agent circumstances generated from private investment of transport infrastructure and provides a framework ...

  13. EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom.

  14. GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport (Español)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban TransportFortistarFuelCellsEtcSilicon Co LtdGEOGHD Inc| Open Energy

  15. LEDSGP/Transportation Toolkit/Key Actions/Prioritize and Plan | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformation Actions(Redirected from TransportationInformation

  16. NREL Wind to Hydrogen Project: Renewable Hydrogen Production for Energy Storage & Transportation (Presentation)

    SciTech Connect (OSTI)

    Ramsden, T.; Harrison, K.; Steward, D.

    2009-11-16

    Presentation about NREL's Wind to Hydrogen Project and producing renewable hydrogen for both energy storage and transporation, including the challenges, sustainable pathways, and analysis results.

  17. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect (OSTI)

    Slaybaugh, R.R.

    1997-08-29

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  18. Using a town’s GIS project to create a deer-vehicle accident management plan

    E-Print Network [OSTI]

    Rogers, Elizabeth I.

    2003-01-01

    interests focus on ways to use GIS to address wildlife andUSING A TOWN’S GIS PROJECT TO CREATE A DEER-VEHICLE ACCIDENTto use data from the town’s GIS project to better understand

  19. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    SciTech Connect (OSTI)

    Jon Chorover, University of Arizona; Peggy O'Ă?Â?Ă?Â?Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  20. Recreation Adjustment Plan nets positive results Springfield project helps modernize process

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Russellville DARDANELLE Pope Dardanelle L & D Arthur V. Ormond L & D Conway Conway Faulkner Toad Suck Ferry L & D Lake Conway Perry Lake Maumelle Pulaski Little Rock Mu rray L & D Davi d D. Terry L & D White;2 In This Issue: Project Update Little Rock Key Projects Project and issue updates

  1. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01

    2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

  2. Abstract. We consider the design of line plans in public transport at a min-imal total cost. Both, linear and nonlinear integer programming are adequate

    E-Print Network [OSTI]

    Lübbecke, Marco

    Abstract. We consider the design of line plans in public transport at a min- imal total cost. Both techniques. We derive and compare lower bounds from different lineariza- tions in order to assess the quality of the story, namely service versus cost aspects. While travelers demand for convenient, ideally direct

  3. Palouse Subbasin Management Plan 3. Management Plan

    E-Print Network [OSTI]

    Palouse Subbasin Management Plan 3. Management Plan FINAL DRAFT ~ May 2004 Project Lead: Palouse-Rock Lake Conservation District Trevor Cook, Project Manager PO Box 438 St. John WA 99171 (509) 648;Palouse Subbasin Plan: MANAGEMENT PLAN Management Plan: Page 3 - 1 3. Management Plan 3.1 Background

  4. Conditional stochastic modeling of transport of contaminant in the vadose zone. Final project report

    SciTech Connect (OSTI)

    Yeh, T.C.J.; Harter, T.

    1995-06-01

    Spatial heterogeneity media leads to uncertainty in predicting both flow and transport in the vadose zone. In this work an efficient and flexible, combined analytical-numerical Monte Carlo approach is developed for the analysis of steady-state flow and transient transport processes in highly heterogeneous, variably saturated porous media. The approach is also used for the investigation of the validity of linear, first order analytical stochastic models. A combined analytical-numerical conditional simulation algorithm is developed to estimate the impact of in-situ soil hydraulic measurements on reducing the uncertainty of concentration and solute flux predictions.

  5. Chernobyl Studies Project: Working group 7.0, Environmental transport and health effects. Progress report, March--September 1994

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M.

    1994-12-01

    In April 1988, the US and the former-USSR signed a Memorandum of Cooperation (MOC) for Civilian Nuclear Reactor Safety; this MOC was a direct result of the accident at the Chernobyl Nuclear Power Plant Unit 4 and the following efforts by the two countries to implement a joint program to improve the safety of nuclear power plants and to understand the implications of environmental releases. A Joint Coordinating Committee for Civilian Nuclear Reactor Safety (JCCCNRS) was formed to implement the MOC. The JCCCNRS established many working groups; most of these were the responsibility of the Nuclear Regulatory Commission, as far as the US participation was concerned. The lone exception was Working Group 7 on Environmental Transport and Health Effects, for which the US participation was the responsibility of the US Department of Energy (DOE). The purpose of Working Group 7 was succintly stated to be, ``To develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` To implement the work DOE then formed two subworking groups: 7.1 to address Environmental Transport and 7.2 to address Health Effects. Thus, the DOE-funded Chernobyl Studies Project began. The majority of the initial tasks for this project are completed or near completion. The focus is now turned to the issue of health effects from the Chernobyl accident. Currently, we are involved in and making progress on the case-control and co-hort studies of thyroid diseases among Belarussian children. Dosimetric aspects are a fundamental part of these studies. We are currently working to implement similar studies in Ukraine. A major part of the effort of these projects is supporting these studies, both by providing methods and applications of dose reconstruction and by providing support and equipment for the medical teams.

  6. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    SciTech Connect (OSTI)

    Jacobsen, P.H.

    1997-09-23

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  7. Lift-and-Project Relaxations of AC Microgrid Distribution System Planning

    E-Print Network [OSTI]

    Taylor, Joshua A.

    2011-01-01

    We apply relaxation procedures to polynomial optimization problems that originate in transmission system planning, and obtain new convex formulations for the AC case. The approach is novel because the optimization is ...

  8. Contractor Work Planning and Control Lessons Learned from DOE and International Projects

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bob McQuinn; URS Global Management and Operations Services; Frank McCoy and Rick Runnels; URS - Professional Solutions. Contractor Work Planning and Control-URS Lessons Learned.

  9. 2012 Annual Workforce Analysis and Staffing Plan Report- West Valley Demonstration Project

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  10. Site 300 hazardous-waste-assessment project. Interim report: December 1981. Preliminary site reconnaissance and project work plan

    SciTech Connect (OSTI)

    Raber, E.; Helm, D.; Carpenter, D.; Peifer, D.; Sweeney, J.

    1982-01-20

    This document was prepared to outline the scope and objectives of the Hazardous Waste Assessment Project (HWAP) at Site 300. This project was initiated in October, 1981, to investigate the existing solid waste landfills in an effort to satisfy regulatory guidelines and assess the potential for ground-water contamination. This involves a site-specific investigation (utilizing geology, hydrology, geophysics and geochemistry) with the goal of developing an effective ground-water quality monitoring network. Initial site reconnaissance work has begun and we report the results, to date, of our geologic hydrogeologic studies. All known solid waste disposal locations are underlain by rocks of either the Late Miocene Neroly Formation or the Cierbo Formation, both of which are dominantly sandstones interbedded with shale and claystone. The existence of a regional confined (artesian) aquifer, as well as a regional water-table aquifer is postulated for Site 300. Preliminary analysis has led to an understanding of directions and depths of regional ground-water flow.

  11. Mixed and Low-Level Waste Treatment Facility project. Appendix A, Environmental and regulatory planning and documentation: Draft

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental & Regulatory Planning & Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL`s waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  12. DRAFT - DOE G 413.3-15, Department of Energy Guide for Project Execution Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The proposed revision to this Department of Energy Guide focuses on updating terminology and references, and alignment with Secretarial policy memoranda on project management issued since the last update to DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets.

  13. High-Temperature Gas-Cooled Reactor Steam Cycle/Cogeneration Lead Project strategy plan

    SciTech Connect (OSTI)

    None

    1982-03-01

    The strategy for developing the HTGR system and introducing it into the energy marketplace is based on using the most developed technology path to establish a HTGR-Steam Cycle/Cogeneration (SC/C) Lead Project. Given the status of the HTGR-SC/C technology, a Lead Plant could be completed and operational by the mid 1990s. While there is remaining design and technology development that must be accomplished to fulfill technical and licensing requirements for a Lead Project commitment, the major barriers to the realization a HTGR-SC/C Lead Project are institutional in nature, e.g. Project organization and management, vendor/supplier development, cost/risk sharing between the public and private sector, and Project financing. These problems are further exacerbated by the overall pervading issues of economic and regulatory instability that presently confront the utility and nuclear industries. This document addresses the major institutional issues associated with the HTGR-SC/C Lead Project and provides a starting point for discussions between prospective Lead Project participants toward the realization of such a Project.

  14. Wesbrook Place Neighbourhood Plan

    E-Print Network [OSTI]

    .4 The Approach to Plan Making 1.4.1 Planning Objectives that Support the University Vision 1.4.2 Planning Objectives from Guiding Land Use Planning Documents 1.4.3 Planning Objectives from Public Consultation 1.4.5 Interface with Green Academic Lands 2.5 Circulation and Transportation 2.5.1 Transportation Objectives 2

  15. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08.

  16. UBC Social Ecological Economic Development Studies (SEEDS) Student Report The Sustainability of the UBC Food System Project: A Sustainable Business Plan for

    E-Print Network [OSTI]

    UBC Social Ecological Economic Development Studies (SEEDS) Student Report The Sustainability of the UBC Food System Project: A Sustainable Business Plan for Agora David Coney, Sandra Jacob, Yee Wah Lee the current status of the subject matter of a project/report". #12;1 The Sustainability of the UBC Food System

  17. Please keep a copy for your records August, 11, Telecom_ Study_Plan_Project Management_8-21-2011.docx Stevens Institute of Technology

    E-Print Network [OSTI]

    Yang, Eui-Hyeok

    : Services & Technology 3 MGT 609 Project Management 3 MGT 600 Managerial Accounting (or MGT 6xx AccountingPlease keep a copy for your records August, 11, Telecom_ Study_Plan_Project Management_8-21-2011.docx Stevens Institute of Technology Castle Point on Hudson Hoboken, NJ 07030 FAX 201

  18. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    SciTech Connect (OSTI)

    HUNACEK, G.S.

    2000-08-01

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

  19. Final report on the Background Soil Characterization Project at the Oak Ridge Reservation, Oak Ridge, Tennessee. Volume 3: Project Plan

    SciTech Connect (OSTI)

    Hatmaker, T.L.; Hook, L.A.; Jackson, B.L.

    1993-10-01

    The Background Soil Characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents. ORR background soil characterization data will be used for two purposes. The first application will be in differentiating between naturally occurring constituents and site-related contamination. This is a very important step in a risk assessment because if sufficient background data are not available, no constituent known to be a contaminant can be eliminated from the assessment even if the sampled concentration is measured at a minimum level. The second use of the background data will be in calculating baseline risks against which site-specific contamination risks can be compared.

  20. The decision-making modeling for concurrent planning of construction projects 

    E-Print Network [OSTI]

    Shim, Euysup

    2009-05-15

    conditions. Furthermore, the model was applied to a hypothetical construction project. From the simulations the major conclusions include: (1) The decentralized approach becomes preferred with more activities; (2) Considering more methods provides more...

  1. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  2. River Protection Project (RPP) Immobilized Low Activity Waste (ILAW) Disposal Plan

    SciTech Connect (OSTI)

    BRIGGS, M.G.

    2000-09-22

    This document replaces HNF-1517, Rev 2 which is deleted. It incorporates updates to reflect changes in programmatic direction associated with the vitrification plant contract change and associated DOE/ORP guidance. In addition it incorporates the cancellation of Project W-465, Grout Facility, and the associated modifications to Project W-520, Immobilized High-Level Waste Disposal Facility. It also includes document format changes and section number modifications consistent with CH2M HILL Hanford Group, Inc. procedures.

  3. Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.WeekProducts >Transportation currently accounts for 71% of

  4. Portsmouth Proposed Plan for the Process Buildings and Complex Facilities Decontamination and Decommissioning Evaluation Project

    Broader source: Energy.gov [DOE]

    DOE has evaluated alternatives for demolishing the buildings at the Portsmouth Site. Two remedial alternatives were developed for consideration. This Proposed Plan describes the required no-action alternative (Alternative 1) and a D&D alternative (Alternative 2). The preferred alternative is Alternative 2, controlled demolition of the process buildings and complex facilities.

  5. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    SciTech Connect (OSTI)

    Tim Echelard

    2006-03-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort, the U.S. Department of Energy (DOE) determined that the degree of uncertainty in transport predictions for PSA remained unacceptably large. As a result, a second CAIP was developed by DOE and approved by the Nevada Division of Environmental Protection (NDEP) in December 1998 (DOE/NV, 1998a). This plan prescribed a rigorous analysis of uncertainty in the Shoal model and quantification of methods of reducing uncertainty through data collection. This analysis is termed a Data Decision Analysis (Pohll et al., 1999a) and formed the basis for a second major characterization effort at PSA (Pohll et al., 1999b). The details for this second field effort are presented in an Addendum to the CAIP, which was approved by NDEP in April 1999 (DOE/NV, 1999a). Four additional characterization wells were drilled at PSA during summer and fall of 1999; details of the drilling and well installation are in IT Corporation (2000), with testing reported in Mihevc et al. (2000). A key component of the second field program was a tracer test between two of the new wells (Carroll et al., 2000; Reimus et al., 2003). Based on the potential exposure pathways, two corrective action objectives were identified for CAU 447: Prevent or mitigate exposure to groundwater contaminants of concern at concentrations exceeding regulatory maximum contaminant levels or risk-based levels; and Reduce the risk to human health and the environment to the extent practicable. Based on the review of existing data, the results of the modeling, future use, and current operations at PSA, the following alternatives have been developed for consideration at CAU 447: Alternative 1--No Further Action; Alternative 2--Proof-of-Concept and Monitoring with Institutional Controls; and Alternative 3--Contaminant Control. The corrective action alternatives were evaluated based on the approach outlined in the ''Focused Evaluation of Selected Remedial Alternatives for the Underground Test Area'' (DOE/NV, 1998b). Each alternative was assessed against nine evaluation criteria. These criteria include overall protection of human health and the environment;

  6. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  7. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    Oversight Review, West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation -...

  8. Independent Oversight Review, West Valley Demonstration Project...

    Office of Environmental Management (EM)

    West Valley Demonstration Project Transportation - September 2000 Independent Oversight Review, West Valley Demonstration Project Transportation - September 2000 September 2000...

  9. Motor Transport Co. 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    METROPOLITAN TRANSPORTATION PLAN Prepared by: The Longview Metropolitan Planning Organization In cooperation with: o City of Longview o City of White Oak o Gregg County o Harrison County o Texas Department of Transportation o U.S. Department... of Transportation o Federal Highway Administration o Federal Transit Administration Adopted November 12, 2009 TRANSPORTATION 2035 TABLE OF CONTENTS INTRODUCTION...

  10. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  11. Environmental Effects of Sediment Transport Alteration and Impacts on Protected Species: Edgartown Tidal Energy Project

    SciTech Connect (OSTI)

    Barrett, Stephen B.; Schlezinger, David, Ph.D; Cowles, Geoff, Ph.D; Hughes, Patricia; Samimy; Roland, I.; and Terray, E, Ph.D.

    2012-12-29

    The Islands of Martha�¢����s Vineyard and Nantucket are separated from the Massachusetts mainland by Vineyard and Nantucket Sounds; water between the two islands flows through Muskeget Channel. The towns of Edgartown (on Martha�¢����s Vineyard) and Nantucket recognize that they are vulnerable to power supply interruptions due to their position at the end of the power grid, and due to sea level rise and other consequences of climate change. The tidal energy flowing through Muskeget Channel has been identified by the Electric Power Research Institute as the strongest tidal resource in Massachusetts waters. The Town of Edgartown proposes to develop an initial 5 MW (nameplate) tidal energy project in Muskeget Channel. The project will consist of 14 tidal turbines with 13 providing electricity to Edgartown and one operated by the University of Massachusetts at Dartmouth for research and development. Each turbine will be 90 feet long and 50 feet high. The electricity will be brought to shore by a submarine cable buried 8 feet below the seabed surface which will landfall in Edgartown either on Chappaquiddack or at Katama. Muskeget Channel is located between Martha�¢����s Vineyard and Nantucket. Its depth ranges between 40 and 160 feet in the deepest portion. It has strong currents where water is transferred between Nantucket Sound and the Atlantic Ocean continental shelf to the south. This makes it a treacherous passage for navigation. Current users of the channel are commercial and recreational fishing, and cruising boats. The US Coast Guard has indicated that the largest vessel passing through the channel is a commercial scallop dragger with a draft of about 10 feet. The tidal resource in the channel has been measured by the University of Massachusetts-Dartmouth and the peak velocity flow is approximately 5 knots. The technology proposed is the helical Gorlov-type turbine positioned with a horizontal axis that is positively buoyant in the water column and held down by anchors. This is the same technology proposed by Ocean Renewable Power Company in the Western Passage and Cobscook Bay near Eastport Maine. The blades rotate in two directions capturing the tides energy both during flood and ebb tides. The turbines will be anchored to the bottom and suspended in the water column. Initial depth of the turbines is expected to be about 25 feet below the surface to avoid impacting navigation while also capturing the strongest currents. The Town of Edgartown was initially granted a Preliminary Permit by the Federal Energy Regulatory Commission (FERC) on March 1, 2008, and has recently received a second permit valid through August 2014. The Preliminary Permit gives Edgartown the exclusive right to apply for a power generation license for power generated from the hydrokinetic energy in the water flowing in this area. Edgartown filed a Draft Pilot License Application with FERC on February 1, 2010 and an Expanded Environmental Notification Form with the Massachusetts Environmental Policy Act (MEPA) Office at the same time. It expects to file a Final License Application in late 2013. Harris Miller Miller & Hanson (HMMH) of Burlington Massachusetts is acting as the Project Manager for the Town of Edgartown and collaborating with other partners of the project including the University of Massachusetts - Dartmouth's Marine Renewable Energy Center and the Massachusetts Clean Energy Center. HMMH was awarded a grant under the Department of Energy's Advanced Water Program to conduct marine science and hydrokinetic site-specific environmental studies for projects actively seeking a FERC License. HMMH, on behalf of the Town, is managing this comprehensive study of the marine environment in Muskeget Channel and potential impacts of the tidal project on indicator species and habitats. The University of Massachusetts School of Marine Science and Technology (SMAST) conducted oceanographic studies of tidal currents, tide level, benthic habit

  12. Project Work Plan: Hanford 100-D Area Treatability Demonstration - In Situ Biostimulation for Reducing Barrier

    SciTech Connect (OSTI)

    Fruchter, Jonathan S.; Truex, Michael J.; Vermeul, Vince R.; Long, Philip E.

    2006-05-31

    This work plan supports a new, integrated approach to accelerate cleanup of chromium in the Hanford 100 Areas. This new approach will provide supplemental treatment upgradient of the ISRM barrier by directly treating chromium and other oxidizing species in groundwater (i.e., nitrate and dissolved oxygen), thereby increasing the longevity of the ISRM barrier and protecting the ecological receptors and human health at the river boundary.

  13. White Paper on Ion Beam Transport for ICF: Issues, R&D Need,and Tri-Lab Plans

    SciTech Connect (OSTI)

    Olson, C.; Lee, E.; Langdon, B.

    2005-05-04

    To date, most resources for ion beam fusion have been devoted to development of accelerators and target physics; relatively few resources have gone into ion beam transport development. Because of theoretical studies and substantial experience with electron beam transport, the ion beam transport community is now poised to develop and optimize ion beam transport for ICF. Because of this Tri-Lab effort, a path for coordinated development of ion beam transport has been established. The rate of progress along this path will now be determined largely by the availability of resources.

  14. Modeling vertical and horizontal solute transport for the Weldon Spring Site Remedial Action Project

    SciTech Connect (OSTI)

    Tomasko, D.

    1992-11-01

    This technical memorandum presents a one-dimensional model to simulate the transport of a contaminant that originates as a liquid release, moves vertically downward through a vadose zone, mixes with initially clean groundwater in an unconfined aquifer, and ends at a downgradient extraction well. Vertical and horizontal segments of the contaminant pathway are coupled by assuming that the breakthrough curve of the contaminant at the water table acts as a contaminant source for the unconfined aquifer. For simplicity, this source is assumed to be a time-shifted unit square wave having an amplitude equal to the peak breakthrough concentration at the water table and a duration equal to the full width of the breakthrough curve at the half-maximum concentration value. The effects of dilution at the water-table interface are evaluated with a simple mass-balance equation. Comparing the model results for the chemical plant area of the Weldon Spring site near St. Louis, Missouri, and the Envirocare facility located near Salt Lake City, Utah, with those obtained from a solution formulated with the real and imaginary parts of a Fourier series in Laplace space indicates that the model provides a conservative estimate of the contaminant breakthrough curve at the receptor.

  15. Metropolitan Transportation Plan 2035 

    E-Print Network [OSTI]

    Tyler Area Metropolitan Planning Organization

    2009-12-04

    and vertical concentration distributions with the assumptions of continuous emissions, conservation of mass, steady-state conditions, and normal distribution of crosswind and vertical concentrations of pollutants (Cooper and Alley, 2002). The Gaussian...

  16. Lubbock Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    Lubbock Metropolitan Planning Organization

    2007-09-18

    ..............................................................................................................................40 Marsha Sharp Freeway (US 62/82) ...............................................................................................40 Ports-To-Plains Corridor...

  17. Vulnerability Assessments and Resilience Planning at Federal Facilities. Preliminary Synthesis of Project

    SciTech Connect (OSTI)

    Moss, R. H.; Delgado, A.; Malone, E L.

    2015-08-15

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. Agencies have been experimenting with these frameworks and approaches. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Department of Energy and the Department of Defense. The purpose of the paper is to solicit comments and feedback from interested program managers and analysts before final conclusions are published. The paper describes the characteristics of a systematic process for prioritizing needs for adaptation planning at individual facilities and examines requirements and methods needed. It then suggests a framework of steps for vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. In a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change. The case studies point to several preliminary conclusions; (1) Vulnerability assessments are needed to translate potential changes in climate exposure to estimates of impacts and evaluation of their significance for operations and mission attainment, in other words into information that is related to and useful in ongoing planning, management, and decision-making processes; (2) To increase the relevance and utility of vulnerability assessments to site personnel, the assessment process needs to emphasize the characteristics of the site infrastructure, not just climate change; (3) A multi-tiered framework that includes screening, vulnerability assessments at the most vulnerable installations, and adaptation design will efficiently target high-risk sites and infrastructure; (4) Vulnerability assessments can be connected to efforts to improve facility resilience to motivate participation; and (5) Efficient, scalable methods for vulnerability assessment can be developed, but additional case studies and evaluation are required.

  18. Quality Assurance Project Plan for the Gas Generation Testing Program at the INEL

    SciTech Connect (OSTI)

    NONE

    1994-10-01

    The data quality objectives (DQOs) for the Program are to evaluate compliance with the limits on total gas generation rates, establish the concentrations of hydrogen and methane in the total gas flow, determine the headspace concentration of VOCs in each drum prior to the start of the test, and obtain estimates of the concentrations of several compounds for mass balance purposes. Criteria for the selection of waste containers at the INEL and the parameters that must be characterized prior to and during the tests are described. Collection of gaseous samples from 55-gallon drums of contact-handled transuranic waste for the gas generation testing is discussed. Analytical methods and calibrations are summarized. Administrative quality control measures described in this QAPjP include the generation, review, and approval of project documentation; control and retention of records; measures to ensure that personnel, subcontractors or vendors, and equipment meet the specifications necessary to achieve the required data quality for the project.

  19. Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)

    SciTech Connect (OSTI)

    1992-09-18

    The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to support project facilities in a safe and environmentally acceptable manner; and non-power generating alternatives, such as conservation and demand-side management.

  20. 1.203J / 6.281J / 13.665J / 15.073J / 16.76J / ESD.216J Logistical and Transportation Planning Methods, Fall 2001

    E-Print Network [OSTI]

    Barnett, Arnold

    Quantitative techniques of operations research with emphasis on applications in transportation systems analysis (urban, air, ocean, highway, and pickup and delivery systems) and in the planning and design of logistically ...

  1. 2013 Annual Planning Summary for the Portsmouth and Paducah Project Office

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel Travel ThePresidentialofSubsurfaceto Remote6 Projects(September3 - Federal|

  2. DOE/SC-ARM-11-017 The Two-Column Aerosol Project (TCAP) Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOE ProjectREMOTE-HANDLED TRU764 The Arctic Lower7

  3. DOE/SC-ARM-13-011 Green Ocean Amazon Terrestrial Ecosystem Collaborative Project Science Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOE ProjectREMOTE-HANDLED TRU764 The Arctic63 ARM4891

  4. Transition projects FY 1995 multi-year program plan/fiscal year work plan WBS 1.3.1. and 7.1

    SciTech Connect (OSTI)

    Cartmell, D.B.

    1994-09-01

    This document presents a complete listing and time line of transitional projects associated with the Purex/UO3 deactivation project at the Hanford reservation.

  5. Tropical Western Pacific site science mission plan. Semiannual project report, January--June 1998

    SciTech Connect (OSTI)

    Ackerman, T.; Mather, J.; Clements, W.; Barnes, F.

    1998-11-01

    The Department of Energy`s Atmospheric Radiation Measurement (ARM) program was created in 1989 as part of the US Global Change Research Program to improve the treatment of atmospheric radiative and cloud processes in computer models used to predict climate change. The overall goal of the ARM program is to develop and test parameterizations of important atmospheric processes, particularly cloud and radiative processes, for use in atmospheric models. This goal is being achieved through a combination of field measurements and modeling studies. Three primary locales were chosen for extensive field measurement facilities. These are the Southern Great Plains (SGP) of the United States, the Tropical Western Pacific (TWP), and the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO). This Site Science Mission Plan [RPT(TWP)-010.000] describes the ARM program in the Tropical Western Pacific locale.

  6. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-12-31

    The Rocky Flats Plant is developing, with active stakeholder participation, a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs, relative risks to workers and the public, and waste disposition. Comparative risk analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or end states. These postulated options or end states can be various remedial alternatives, or future endstate uses of federal land.

  7. Comparative risk analysis for the Rocky Flats Plant integrated project planning

    SciTech Connect (OSTI)

    Jones, M.E.; Shain, D.I.

    1994-05-01

    The Rocky Flats Plant is developing, with active stakeholder a comprehensive planning strategy that will support transition of the Rocky Flats Plant from a nuclear weapons production facility to site cleanup and final disposition. Final disposition of the Rocky Flats Plant materials and contaminants requires consideration of the interrelated nature of sitewide problems, such as material movement and disposition, facility and land use endstates, costs relative risks to workers and the public, and waste disposition. Comparative Risk Analysis employs both incremental risk and cumulative risk evaluations to compare risks from postulated options or endstates. These postulated options or endstates can be various remedial alternatives, or future endstate uses of federal agency land. Currently, there does not exist any approved methodology that aggregates various incremental risk estimates. Comparative Risk Analysis has been developed to aggregate various incremental risk estimates to develop a site cumulative risk estimate. This paper discusses development of the Comparative Risk Analysis methodology, stakeholder participation and lessons learned from these challenges.

  8. Regional planning and operations architectures as means to foster transportation integration in the Mexico City Metropolitan Area

    E-Print Network [OSTI]

    Ortiz Mantilla, Bernardo Jose, 1977-

    2005-01-01

    The MCMA complexity in political, institutional, economical, and jurisdictional terms has resulted in limited coordination between MCMA authorities that in conjunction with the limited role of metropolitan transportation ...

  9. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-03-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  10. Independent Verification and Validation Of SAPHIRE 8 Software Quality Assurance Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-02-01

    This report provides an evaluation of the Software Quality Assurance Plan. The Software Quality Assurance Plan is intended to ensure all actions necessary for the software life cycle; verification and validation activities; documentation and deliverables; project management; configuration management, nonconformance reporting and corrective action; and quality assessment and improvement have been planned and a systematic pattern of all actions necessary to provide adequate confidence that a software product conforms to established technical requirements; and to meet the contractual commitments prepared by the sponsor; the Nuclear Regulatory Commission.

  11. Sustainable Transportation: Problems and Solutions by William R. Black and An Introduction to Sustainable Transportation: Policy, Planning, and Implementation By Preston L. Schiller, Eric C. Bruun, and Jeffrey R. Kenworthy

    E-Print Network [OSTI]

    Broaddus, Andrea

    2011-01-01

    sustainable transportation system must offer similar levels of mobilitysustainable transportation system is one that provides transport and mobility

  12. Results From The Salt Disposition Project Next Generation Solvent Demonstration Plan

    SciTech Connect (OSTI)

    Peters, T. B.; Fondeur, F. F.; Taylor-Pashow, K. M.L.

    2014-04-02

    Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Solvent Hold Tank (SHT) samples were taken throughout the Next Generation Solvent (NGS) Demonstration Plan. These samples were analyzed and the results are reported. SHT: The solvent behaved as expected, with no bulk changes in the composition over time, with the exception of the TOA and TiDG. The TiDG depletion is higher than expected, and consideration must be taken on the required rate of replenishment. Monthly sampling of the SHT is warranted. If possible, additional SHT samples for TiDG analysis (only) would help SRNL refine the TiDG degradation model. CWT: The CWT samples show the expected behavior in terms of bulk chemistry. The 137Cs deposited into the CWT varies somewhat, but generally appears to be lower than during operations with the BOBCalix solvent. While a few minor organic components were noted to be present in the Preliminary sample, at this time these are thought to be artifacts of the sample preparation or may be due to the preceding solvent superwash. DSSHT: The DSSHT samples show the predicted bulk chemistry, although they point towards significant dilution at the front end of the Demonstration. The 137Cs levels in the DSSHT are much lower than during the BOBCalix operations, which is the expected observation. SEHT: The SEHT samples represent the most different output of all four of the outputs from MCU. While the bulk chemistry is as expected, something is causing the pH of the SEHT to be higher than what would be predicted from a pure stream of 0.01 M boric acid. There are several possible different reasons for this, and SRNL is in the process of investigating. Other than the pH issue, the SEHT is as predicted. In summary, the NGS Demonstration Plan samples indicate that the MCU system, with the Blend Solvent, is operating as expected. The only issue of concern regards the pH of the SEHT, and SRNL is in the process of investigating this. SRNL results support the transition to routine operations.

  13. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    SciTech Connect (OSTI)

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs.

  14. Handbook for Planning and Conducting Charrettes for High-Performance Projects

    SciTech Connect (OSTI)

    Lindsey, G.; Todd, J. A.; Hayter, S. J.

    2003-08-01

    The purpose of this handbook is to furnish guidance for planning and conducting a"high-performance building" charrette, sometimes called a"greening charrette." The handbook answers typical questions that will arise, such as"What is a charrette?""Why conduct a charrette?""What topics should we cover during the charrette?" and"Whom should we invite?" It also contains samples of agendas, invitation letters, and other commonly used charrette materials. This handbook also outlines the characteristics of a good charrette facilitator. It gives suggestions for the types of experts to invite to the event to motivate participants and answer their questions. The handbook includes sample presentations that can be used by these experts to ensure they address the required technical content. It suggests the types of participants, including technical, political, and community representatives, to invite to the charrette. It offers advice for forming effective breakout groups to ensure that a broad range of complementary expertise is represented in each group. We have also included guidance on how best to include key decision makers and stakeholders who are able to attend only portions of the event.

  15. Engineering work plan for implementing the Process Condensate Recycle Project at the 242-A evaporator

    SciTech Connect (OSTI)

    Haring, D.S.

    1995-02-02

    The 242-A Evaporator facility is used to reduce the volume of waste stored in the Hanford double shell tanks. This facility uses filtered raw water for cooling, de-entrainment pad sprays, pump seal water, and chemical tank make-up. Some of these uses result in the introduction of filtered raw water into the process, thus increasing the volume of waste requiring evaporation and subsequent treatment by the 200 East Effluent Treatment Facility. The pump seal water and the de-entrainment pad spray systems were identified as candidates for a waste minimization upgrade. This work plan describes the activities associated with the design, installation, testing and initial operation of the process condensate recycle system. Implementation of the process condensate recycle system will permit the use of process condensate in place of raw water for the de-entrainment pad sprays and pump seals. This will reduce the amount of low-level liquid waste and generated during facility operation through source reduction and recycling.

  16. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    SciTech Connect (OSTI)

    Chapman, T.E.

    1993-10-01

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacities and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.

  17. INL Site FY 2010 Executable Plan for Energy and Transportation Fuels Management with the FY 2009 Annual Report

    SciTech Connect (OSTI)

    Ernest L. Fossum

    2009-12-01

    It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

  18. An Analysis of the Impacts of British Transport Reforms on Transit Integration in the Metropolitan Areas

    E-Print Network [OSTI]

    Rivasplata, Charles Richard

    2006-01-01

    dares – the London experience, Transportation Planning anddecisions, Transportation 27: 243-267. London Transport (transportation, Mass Transit (November). Transport for London (

  19. Impact evaluation of an energy savings plan project at ARCO Petroleum Products Company

    SciTech Connect (OSTI)

    Spanner, G.E.; Sullivan, G.P.; Dixon, D.R.

    1992-08-01

    This impact evaluation of an energy conservation measure (ECM) that was recently installed at ARCO Petroleum Products Company (ARCO) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy $avings Plan (E$P) Program. The Program makes acquisition payments to firms that install energy conservation measures in their industrial procsses. The objective of this impact evaluation was to assess how much electrical energy is being saved at ARCO as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the ECM was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (ARCO`s Proposal and Completion Report). The ECM itself consists of removing one stage of a six-stage compressor so that its inlet control valve can be opened wider, thereby saving the energy that was previously lost at the valve due to pressure drop. Energy savings resulting from this ECM are expected to be 2,112,800 kwh/yr. The ECM cost $367,650 to install, and ARCO received a payment of $158,460 from Bonneville and $82,902 from its serving utility, Puget Sound Power & Light Company, for the acquisition of energy savings. The ECM would not have been installed without the acquisition payment offered under the E$P Program. The levelized cost of these energy savings to Bonneville will be 6.3 mills/kWh over the ECM`s expected 15-year life, and the levelized cost to the region will be 15.8 mills/kWh.

  20. Impact evaluation of an energy savings plan project at ARCO Petroleum Products Company

    SciTech Connect (OSTI)

    Spanner, G.E.; Sullivan, G.P.; Dixon, D.R.

    1992-08-01

    This impact evaluation of an energy conservation measure (ECM) that was recently installed at ARCO Petroleum Products Company (ARCO) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy $avings Plan (E$P) Program. The Program makes acquisition payments to firms that install energy conservation measures in their industrial procsses. The objective of this impact evaluation was to assess how much electrical energy is being saved at ARCO as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the ECM was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (ARCO's Proposal and Completion Report). The ECM itself consists of removing one stage of a six-stage compressor so that its inlet control valve can be opened wider, thereby saving the energy that was previously lost at the valve due to pressure drop. Energy savings resulting from this ECM are expected to be 2,112,800 kwh/yr. The ECM cost $367,650 to install, and ARCO received a payment of $158,460 from Bonneville and $82,902 from its serving utility, Puget Sound Power Light Company, for the acquisition of energy savings. The ECM would not have been installed without the acquisition payment offered under the E$P Program. The levelized cost of these energy savings to Bonneville will be 6.3 mills/kWh over the ECM's expected 15-year life, and the levelized cost to the region will be 15.8 mills/kWh.

  1. PROJECT NAME: SAN DIEGO DAM (TX.07314) 1. Provide the name of all non-Federal interests planning to act as the sponsor, including

    E-Print Network [OSTI]

    US Army Corps of Engineers

    PROJECT NAME: SAN DIEGO DAM (TX.07314) 1. Provide the name of all non-Federal interests planning for the feasibility study is to detennine the need to update/upgrade the dam in order to assist in our effmis), which allows for flood insurance discounts to local residents. #12;Image 1: Dam location and affected

  2. PROJECT NAME: NEB Range Dam System 1. Provide the name of all non-Federal interests planning to act as the sponsor, including

    E-Print Network [OSTI]

    US Army Corps of Engineers

    PROJECT NAME: NEB Range Dam System 1. Provide the name of all non-Federal interests planning to act for the feasibility study is to determine the need to update/upgrade the dam in order to assist in our efforts), which allows for flood insurance discounts to local residents. #12;Image 1: Dam location and affected

  3. 1.258J / 11.541J / ESD.226J Public Transportation Service and Operations Planning, Spring 2006

    E-Print Network [OSTI]

    Wilson, Nigel

    This course describes the evolution and role of urban public transportation modes, systems, and services, focusing on bus and rail. Technological characteristics and their impacts on capacity, service quality, and cost are ...

  4. 1.258J / 11.541J / ESD.226J Public Transportation Service and Operations Planning, Fall 2003

    E-Print Network [OSTI]

    Wilson, Nigel H. M.

    Evolution and role of urban public transportation modes, systems, and services, focussing on bus and rail. Description of technological characteristics and their impacts on capacity, service quality, and cost. Current ...

  5. Strategic Plan for Coordinating Rural Intelligent Transportation System (ITS) Transit Development in the Great Smoky Mountains National Park

    SciTech Connect (OSTI)

    Truett, L.F.

    2002-12-19

    The Great Smoky Mountains National Park, located along the border between North Carolina and Tennessee, is the most visited national park in the United States. This rugged, mountainous area presents many transportation challenges. The immense popularity of the Smokies and the fact that the primary mode of transportation within the park is the personal vehicle have resulted in congestion, damage to the environment, impacts on safety, and a degraded visitor experience. Access to some of the Smokies historical, cultural, and recreational attractions via a mass transit system could alleviate many of the transportation issues. Although quite a few organizations are proponents of a mass transit system for the Smokies, there is a lack of coordination among all parties. In addition, many local residents are not completely comfortable with the idea of transit in the Smokies. This document provides a brief overview of the current transportation needs and limitations in the Great Smoky Mountains National Park, identifies agencies and groups with particular interests in the Smokies, and offers insights into the benefits of using Intelligent Transportation Systems (ITS) technologies in the Smokies. Recommendations for the use of rural ITS transit to solve two major transportation issues are presented.

  6. The Northwest Geysers EGS Demonstration Project Phase 1: Pre-stimulation coupled geomechanical modeling to guide stimulation and monitoring plans

    SciTech Connect (OSTI)

    Rutqvist, J.; Dobson, P.F.; Oldenburg, C.M.; Garcia, J.; Walters, M.

    2010-10-20

    This paper presents activities and results associated with Phase 1 (pre-stimulation phase) of an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The paper presents development of a 3-D geological model, coupled thermal-hydraulic-mechanical (THM) modeling of proposed stimulation injection as well as current plans for stimulation and monitoring of the site. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths of {approx}3 km. Accurate micro-earthquake monitoring initiated before the start of the injection will be used as a tool for tracking the development of the EGS and monitoring changes in microseismicity. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11) located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir, in agreement with the conclusions of Nielson and Moore (2000).

  7. Next Generation Connecticut & Other Capital Projects

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Next Generation Connecticut & Other Capital Projects Planning, Architectural & Engineering Services September 18, 2014 #12;Agenda Project Updates · Next Generation Connecticut · Master Plan · Projects OF CONNECTICUT | CAMPUS MASTER PLAN SEPT. 12, 2014 7 #12;Master Planning Principles UNIVERSITY OF CONNECTICUT

  8. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  9. Macroalgae Analysis A National GIS-based Analysis of Macroalgae Production Potential Summary Report and Project Plan

    SciTech Connect (OSTI)

    Roesijadi, Guritno; Coleman, Andre M.; Judd, Chaeli; Van Cleve, Frances B.; Thom, Ronald M.; Buenau, Kate E.; Tagestad, Jerry D.; Wigmosta, Mark S.; Ward, Jeffrey A.

    2011-12-01

    The overall project objective is to conduct a strategic analysis to assess the state of macroalgae as a feedstock for biofuels production. The objective in FY11 is to develop a multi-year systematic national assessment to evaluate the U.S. potential for macroalgae production using a GIS-based assessment tool and biophysical growth model developed as part of these activities. The initial model development for both resource assessment and constraints was completed and applied to the demonstration areas. The model for macroalgal growth was extended to the EEZ off the East and West Coasts of the United States, and a plan to merge the findings for an initial composite assessment was developed. In parallel, an assessment of land-based, port, and offshore infrastructure needs based on published and grey literature was conducted. Major information gaps and challenges encountered during this analysis were identified. Also conducted was an analysis of the type of local, state, and federal requirements that pertain to permitting land-based facilities and nearshore/offshore culture operations

  10. California Energy Commission Public Interest Energy Research/Energy System Integration -- Transmission-Planning Research & Development Scoping Project

    E-Print Network [OSTI]

    Eto, Joseph H.; Lesieutre, Bernard; Widergren, Steven

    2004-01-01

    Public Interest Energy Research (PIER) scoping project is toPublic Interest Energy Research (PIER) scoping project is toPublic Interest Energy Research (PIER) scoping project is to

  11. The Northwest Geysers EGS Demonstration Project Phase 1: Pre-stimulation coupled geomechanical modeling to guide stimulation and monitoring plans

    E-Print Network [OSTI]

    Rutqvist, J.

    2012-01-01

    THE NORTHWEST GEYSERS EGS DEMONSTRATION PROJECT PHASE 1:Middletown, California Key words – EGS, Geysers, Injection,an Enhanced Geothermal System (EGS) demonstration project at

  12. Project Controls

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Project controls are systems used to plan, schedule, budget, and measure the performance of a project/program. The cost estimation package is one of the documents that is used to establish the baseline for project controls. This chapter gives a brief description of project controls and the role the cost estimation package plays.

  13. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    SciTech Connect (OSTI)

    Adkins, Harold E.

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of Westinghouse WE 17×17 pressurized water reactor fuel assemblies with a discharge burnup range of 30-58 GWd/MTU (assembly average), loaded in a representative high-capacity (?32 fuel rod assemblies) transportation package. Evaluations will be performed for representative normal conditions of rail transport involving a rail conveyance capable of meeting the Association of American Railroads (AAR) S-2043 specification. UNF modeling is anticipated to be defined to the pellet-cladding level and take in to account influences associated with spacer grids, intermediate fluid mixers, and control components. The influence of common degradation issues such as ductile-to-brittle-transition will also be accounted for. All model development and analysis will be performed with commercially available software packages exclusively. Inputs and analyses will be completely documented, all supporting information will be traceable, and bases will be defendable so as to be most useful to the U.S. Department of Energy community and mission. The expected completion date is the end of fiscal year (FY) 2013.

  14. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  15. A comparative analysis of business structures suitable for farmer-owned wind power projects in the United States

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01

    Wisconsin Community Based Windpower Project Business Plan.Wisconsin Community Based Windpower Project Business Plan

  16. A Numerical Method to solve Optimal Transport Problems with Coulomb Cost

    E-Print Network [OSTI]

    Jean-David Benamou; Guillaume Carlier; Luca Nenna

    2015-05-07

    In this paper, we present a numerical method, based on iterative Bregman projections, to solve the optimal transport problem with Coulomb cost. This is related to the strong interaction limit of Density Functional Theory. The first idea is to introduce an entropic regularization of the Kantorovich formulation of the Optimal Transport problem. The regularized problem then corresponds to the projection of a vector on the intersection of the constraints with respect to the Kullback-Leibler distance. Iterative Bregman projections on each marginal constraint are explicit which enables us to approximate the optimal transport plan. We validate the numerical method against analytical test cases.

  17. PROJECT MANGEMENT PLAN EXAMPLES

    Energy Savers [EERE]

    Hazard Identification and Characterization Examples Example 13 2.02.04 Hazard Baseline Documentation The following is a listing of the hazard baseline documentation for the...

  18. PROJECT MANGEMENT PLAN EXAMPLES

    Energy Savers [EERE]

    and a lead brick will be removed from the 772-D laboratory. Example 19 6.01.01 Characterization and Hazards Identification Accountable Nuclear Material The inventory of nuclear...

  19. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    125E, 126, 126A, and 126B. Room 116 contains the connection point to the plant fiber optics system. Asbestos containing materials are expected to exist in building components...

  20. Project Execution Plan RM

    Office of Environmental Management (EM)

    the policies and practices for managing risk and a summary of the results of the risk analysis? (PEP-4.17) Are key and critical risks identified in accordance with DOE O 413.3A...

  1. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    device such as a WBGT. Worker condition can be checked using body temperature, pulse and visual assessment. Varies by conditions and work tasks. Noise 85 dB continuous for...

  2. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    using wire strippers or other hand tools, fall off ladder or scaffolding if used. Lockouttagout (LOTO) not used properly, all workers not informed of LOTO status. Improper...

  3. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    16 Danger, Caution and Warning Tags WSRC 8Q, Procedure 31 Hazardous Energy Control (LockoutTagout) WSRC 8Q, Procedure 32 Confined Space Entry WSRC 8Q, Procedure 33 Work...

  4. PROJECT MANGEMENT PLAN EXAMPLES

    Broader source: Energy.gov (indexed) [DOE]

    process, and Potential pressurization of gloveboxes due to off-gas from styrene decomposition during the pyrolysis process for polycubes. These items above reflect...

  5. PROJECT MANGEMENT PLAN EXAMPLES

    Energy Savers [EERE]

    the hierarchical and checklist end points methods that are described elsewhere on this web site. In both cases there are steps to identify systems that must remain operational...

  6. PROJECT MANAGEMENT PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that this model will not fully address all energy-water nexus issues. For example, engineering design of the water supply for specific future power plants will require more...

  7. PROJECT MANGEMENT PLAN EXAMPLES

    Energy Savers [EERE]

    criticality safety representative at least annually in accordance with Section 4.1.6 of ANSIANS-8.1- 1983, American National Standard for Nuclear Criticality in Operations with...

  8. PROJECT MANGEMENT PLAN EXAMPLES

    Energy Savers [EERE]

    the open market. A potential use of a D&R subcontract for 322-M could be the D&R of the stainless steel exhaust process vent duct system for the building. This subcontracting...

  9. Dynamic Latent Plan Models

    E-Print Network [OSTI]

    Choudhury, Charisma F.

    Planning is an integral part of many behavioural aspects related to transportation: residential relocation, activity and travel scheduling, route choice, etc. People make plans and then select actions to execute those ...

  10. Financial and Technical Resources for Completing Energy Efficiency Projects - The DOT/FTA Perspective 

    E-Print Network [OSTI]

    Koski, D.

    2011-01-01

    and Technical Resources for Completing Energy Efficiency Projects ? The DOT/FTA Perspective Don Koski, FTA Region VI CATEE Conference November 9, 2011 ?FTA is part of the US DOT with a mission to support public transit through grant programs and policies...://www.ctod.org/portal/ ? National Transit Institute ? Courses on Land Use/Transportation and Transit Oriented Development ? www.ntionline.com FTA Livability Resource Examples Transportation Planning Capacity Building Program http://planning.dot.gov/ Tools for Regional...

  11. Transportation Energy Futures- Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  12. Waste Isolation Pilot Plant Status and Plans - 2010

    Office of Environmental Management (EM)

    Status and Plans WIPP Status and Plans - - 2010 2010 National Transportation Stakeholders Forum National Transportation Stakeholders Forum Chicago, Illinois Chicago, Illinois May...

  13. Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis

    SciTech Connect (OSTI)

    Rutledge, G.; Lane, D.; Edblom, G.

    1980-01-01

    This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

  14. Falls Creek Hydroelectric Project

    SciTech Connect (OSTI)

    Gustavus Electric Company; Richard Levitt; DOE Project Officer - Keith Bennett

    2007-06-12

    This project was for planning and construction of a 700kW hydropower project on the Fall River near Gustavus, Alaska.

  15. The Multi-Scale Mass Transfer Processes Controlling Natural Attenuation and Engineered Remediation: An IFC Focused on Hanford’s 300 Area Uranium Plume Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-31

    The purpose of the project is to conduct research at an Integrated Field-Scale Research Challenge Site in the Hanford Site 300 Area, CERCLA OU 300-FF-5 (Figure 1), to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The project will investigate a series of science questions posed for research related to the effect of spatial heterogeneities, the importance of scale, coupled interactions between biogeochemical, hydrologic, and mass transfer processes, and measurements/approaches needed to characterize a mass-transfer dominated system. The research will be conducted by evaluating three (3) different hypotheses focused on multi-scale mass transfer processes in the vadose zone and groundwater, their influence on field-scale U(VI) biogeochemistry and transport, and their implications to natural systems and remediation. The project also includes goals to 1) provide relevant materials and field experimental opportunities for other ERSD researchers and 2) generate a lasting, accessible, and high-quality field experimental database that can be used by the scientific community for testing and validation of new conceptual and numerical models of subsurface reactive transport.

  16. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation FederatedInformationTITLE:Connect Transportation FUELS

  17. Transition projects, Fiscal Year 1996: Multi-Year Program Plan (MYPP) for WBS 1.31, 7.1, and 6.13. Revision 1, Volume 1

    SciTech Connect (OSTI)

    Cartmell, D.B.

    1995-09-01

    Based on US Department of Energy (DOE), Richland Operations Office (RL) review, specific areas of Westinghouse Hanford Company (WHC), Transition Projects ``Draft`` Multi-Year Program Plan (MYPP) were revised in preparation for the RL approval ceremony on September 26, 1995. These changes were reviewed with the appropriate RL Project Manager. The changes have been incorporated to the MYPP electronic file, and hard copies replacing the ``Draft`` MYPP will be distributed after the formal signing. In addition to the comments received, a summary level schedule and outyear estimates for the K Basin deactivation beginning in FY 2001 have been included. The K Basin outyear waste data is nearing completion this week and will be incorporated. This exclusion was discussed with Mr. N.D. Moorer, RL, Facility Transition Program Support/Integration. The attached MYPP scope/schedule reflects the Integrated Target Case submitted in the April 1995 Activity Data Sheets (ADS) with the exception of B Plant and the Plutonium Finishing Plant (PFP). The 8 Plant assumption in FY 1997 reflects the planning case in the FY 1997 ADS with a shortfall of $5 million. PFP assumptions have been revised from the FY 1997 ADS based on the direction provided this past summer by DOE-Headquarters. This includes the acceleration of the polycube stabilization back to its originally planned completion date. Although the overall program repricing in FY 1996 allowed the scheduled acceleration to fall with the funding allocation, the FY 1997 total reflects a shortfall of $6 million.

  18. Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions

    SciTech Connect (OSTI)

    CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.

    2000-01-01

    A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

  19. Facility stabilization project fiscal year 1997 multi-year work plan (MYWP) for WBS 7.1

    SciTech Connect (OSTI)

    Cartmell, D.B.

    1996-09-01

    This document contains the technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year for the facility stabilization project.

  20. The King's College London HEI project Health, Environment and Reducing air pollution in London, combating cardio-respiratory illness,

    E-Print Network [OSTI]

    Applebaum, David

    the problem Transport for London (TfL) was tasked to develop plans to reduce harmful traffic emissions. Given. The work has had a direct impact on the design of road transport policy in London and maximisesThe King's College London HEI project ­ Health, Environment and Innovation Reducing air pollution

  1. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    SciTech Connect (OSTI)

    Gu, April Z; Wan, Kai-tak

    2014-09-02

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface, to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell-surface interactions is essential for the field. To tackle this, we have developed a number of new Bio-nanomechanical techniques, including reflection interference contrast microscopy (RICM) and bio-AFM (Atomic Force Microscopy), for cell adhesion-detachment measurement of the long-range surface interactions, in combination with mathematical modeling, which would allow us to characterize the mechanical behavior from single cell to multi-cell aggregate, critical thresholds for large scale coaggregation and transportation of cells and aggregates in the presence of long range inter-surface forces etc. Although some technical and mathematical challenges remain, the preliminary results promise great breakthrough potential. In this study, we investigated the cellular surface characteristics of representative bio-remediating microorganisms relevant to DOE IFRC (Integrated Field-Scale Subsurface Research Challenges) sites and their transport behaviors in porous media, aiming to draw a groundbreaking correlation between the micro-scale genetic and biological origin-based cell surface properties, the consequent mechanical adhesion and aggregation behaviors, and the macro-scale microbial mobility and retention in porous media, which are unavailable in the literature. The long-term goal is to significantly improve the mechanistic and quantitative understanding of microbial mobility, sorption, and transport within reactive transport models as needed to manipulate subsurface contaminant fate and transport predictions.

  2. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  3. Project management plan for low-level mixed wastes and greater-than category 3 waste per Tri-Party Agreement M-91-10

    SciTech Connect (OSTI)

    BOUNINI, L.

    1999-06-17

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-Than-Category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10. The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; and (4) an acquisition plan was developed to establish the techuical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are summarized in the table below, along with the required treatment for disposal.

  4. Project management plan for low-level mixed waste and greater-than-category 3 waste per tri-party agreement M-91-10

    SciTech Connect (OSTI)

    BOUNINI, L.

    1999-05-20

    The objective of this project management plan is to define the tasks and deliverables that will support the treatment, storage, and disposal of remote-handled and large container contact-handled low-level mixed waste, and the storage of Greater-thaw category 3 waste. The plan is submitted to fulfill the requirements of the Hanford Federal Facility Agreement and Consent Order Milestone M-91-10, The plan was developed in four steps: (1) the volumes of the applicable waste streams and the physical, dangerous, and radioactive characteristics were established using existing databases and forecasts; (2) required treatment was identified for each waste stream based on land disposal restriction treatment standards and waste characterization data; (3) alternatives for providing the required treatment were evaluated and the preferred options were selected; (4) an acquisition plan was developed to establish the technical, schedule, and cost baselines for providing the required treatment capabilities. The major waste streams are tabulated, along with the required treatment for disposal.

  5. Notice of Intent to Revise Department of Energy (DOE) Guide 413.3-15, Project Execution Plans.

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-01

    The proposed revision to this Department of Energy Guide focuses on updating terminology and references, and alignment with Secretarial policy memoranda on project management issued since the last update to DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets.

  6. Notice of Intent to Revise Department of Energy (DOE) Guide 413.3-15, Project Execution Plans.

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The proposed revision to this Department of Energy Guide focuses on updating terminology and references, and alignment with Secretarial policy memoranda on project management issued since the last update to DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets.

  7. Transportation 2035 Longview Metropolitan Transportation Plan 

    E-Print Network [OSTI]

    Longview Metropolitan Planning Organization

    2009-11-12

    -f Annual Household Income, 2002 II-g Annual Household Income, 2035 III-a Wetlands IV-a FM 2275/George Richey Road Alignment Alternatives IV-b North East Texas Regional Mobility Authority, Toll 49 IV-c Major Streets & Highways VI-a Truck... I-a MPO Boundary II-a 2002 Base Yr. Volume/Capacity II-b Residential Permits & Demolitions, 1999 - 2009 II-c Commercial Permits & Demolitions, 1999 - 2009 II-d Population Growth, 2002 to 2035 II-e Employment Growth, 2002 to 2035 II...

  8. Chernobyl Studies Project. Working Group 7.0, environmental transport and health effects. Progress report, February 1994

    SciTech Connect (OSTI)

    Hendrickson, S.M.

    1994-04-01

    The focus of the Chernobyl Studies Project has now turned to the issue of health effects from the Chernobyl accident. Currently, we are involved in and making progress on the case-control and co-hort studies of thyroid diseases among Belarussian children. Dosimetric aspects are a fundamental part of these studies. We are working to implement similar studies in Ukraine. A major part of the effort of these projects is supporting these studies, both by providing methods and applications of dose reconstruction and by providing support and equipment for the medical teams.

  9. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  10. Physical and Biological Dynamics of Surfzone Bacterial Pollution: Sources, Transports, and Removal Mechanisms

    E-Print Network [OSTI]

    Rippy, Megan Anjuli

    2012-01-01

    and Transport Demonstration Project, Imperial Beach, California,and Transport Demonstration Project, Imperial Beach, California,cross-shore transport of FIB in Southern California. It is,

  11. Physical and biological dynamics of surfzone bacterial pollution : sources, transports, and removal mechanisms

    E-Print Network [OSTI]

    Rippy, Megan Anjuli

    2012-01-01

    and Transport Demonstration Project, Imperial Beach, California,and Transport Demonstration Project, Imperial Beach, California,cross-shore transport of FIB in Southern California. It is,

  12. REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural...

    Energy Savers [EERE]

    FORMAT: Natural Gas Use in Transportation REGULATORY COOPERATION COUNCIL - WORK PLANNING FORMAT: Natural Gas Use in Transportation RCC Workplan NGV.PDF More Documents &...

  13. FEMP Offers Training on Distributed-Scale Renewable Energy Projects...

    Energy Savers [EERE]

    Training on Distributed-Scale Renewable Energy Projects: From Planning to Project Closeout FEMP Offers Training on Distributed-Scale Renewable Energy Projects: From Planning to...

  14. Project Final Report UBC LBS Project Services1 Project Final Report UBC LBS Project Services2

    E-Print Network [OSTI]

    is used as a foundation for all development, land use, and transportation activities at UBC. LBS Project Services is a fee-for-service provider of development, design, and project management servicesProject Final Report UBC LBS Project Services1 #12;Project Final Report UBC LBS Project Services2

  15. Fire fighting in aerospace product development : a study of project capacity and resource planning in an aerospace enterprise

    E-Print Network [OSTI]

    McQuarrie, Allan J. (Allan John), 1963-

    2003-01-01

    It is broadly recognized in the aerospace industry, as well as many others, that organizations which effectively execute development projects to meet desired cost, schedule, and performance targets for their customers ...

  16. Lafayette Metropolitan Planning Organization 2030 Transportation Plan 

    E-Print Network [OSTI]

    Lafayette Metropolitan Planning Organization

    2010-10-31

    ............................................................................................................ v GLOSSARY...................................................................................................................... vi CHAPTER 1: INTRODUCTION .................................................................................... 1 1.0... ...................................................................................................................... 70 APPENDIX 1.0: CODING GUIDE .......................................................................................... 70 APPENDIX 1.1: DEMOGRAPHIC VARIABLES .................................................................. 70 APPENDIX 1...

  17. UMTRA Project remedial action planning and disposal cell design to comply with the proposed EPA (Environmental Protection Agency) standards (40 CFR Part 192)

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project involves stabilizing 24 inactive uranium mill tailings piles in 10 states. Remedial work must meet standards established by the US Environmental Protection Agency (EPA). Remedial action must be designed and constructed to prevent dispersion of the tailings and other contaminated materials, and must prevent the inadvertent use of the tailings by man. This report is prepared primarily for distribution to parties involved in the UMTRA Project, including the US Nuclear Regulatory Commission (NRC), and states and tribes. It is intended to record the work done by the DOE since publication of the proposed EPA groundwater protection standards, and to show how the DOE has attempted to respond and react in a positive way to the new requirements that result from the proposed standards. This report discusses the groundwater compliance strategies now being defined and implemented by the DOE, and details the changes in disposal cell designs that result from studies to evaluate ways to facilitate compliance with the proposed EPA groundwater protection standards. This report also serves to record the technical advances, planning, and progress made on the UMTRA Project since the appearance of the proposed EPA groundwater protection standards. The report serves to establish, document, and disseminate technical approaches and engineering and groundwater information to people who may be interested or involved in similar or related projects. 24 refs., 27 figs., 8 tabs.

  18. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  19. Rulison Monitoring Plan

    SciTech Connect (OSTI)

    2010-07-01

    The Project Rulison Monitoring Plan has been developed as part of the U.S. Department of Energy (DOE) Office of Legacy Management's mission to protect human health and the environment. The purpose of the plan is to monitor fluids from gas wells for radionuclides that would indicate contamination is migrating from the Rulison detonation zone to producing gas wells, allowing action to be taken before the contamination could pose a risk. The Monitoring Plan (1) lists the contaminants present and identifies those that have the greatest potential to migrate from the detonation zone (radionuclide source term), (2) identifies locations that monitor the most likely transport pathways, (3) identifies which fluids will be sampled (gas and liquid) and why, (4) establishes the frequency of sampling, and (5) specifies the most practical analyses and where the analysis results will be reported. The plan does not affect the long-term hydrologic sampling conducted by DOE since 1972, which will continue for the purpose of sampling shallow groundwater and surface water near the site. The Monitoring Plan was developed in anticipation of gas wells being drilled progressively nearer the Rulison site. DOE sampled 10 gas wells in 1997 and 2005 at distances ranging from 2.7 to 7.6 miles from the site to establish background concentrations for radionuclides. In a separate effort, gas industry operators and the Colorado Oil and Gas Conservation Commission (COGCC) developed an industry sampling and analysis plan that was implemented in 2007. The industry plan requires the sampling of gas wells within 3 miles of the site, with increased requirements for wells within 1 mile of the site. The DOE plan emphasizes the sampling of wells near the site (Figure 1), specifically those with a bottom-hole location of 1 mile or less from the detonation, depending on the direction relative to the natural fracture trend of the producing formation. Studies indicate that even the most mobile radionuclides created by the test are unlikely to migrate appreciable distances (hundreds of feet) from the detonation zone (Cooper et al. 2007, 2009). The Monitoring Plan was developed to provide a cautious and comprehensive approach for detecting any potential contaminant migration from the Rulison test site. It also provides an independent confirmation of results from the industry sampling and analysis plan while effectively increasing the sampling frequency of wells near the site.

  20. Independent Verification and Validation Of SAPHIRE 8 System Test Plan Project Number: N6423 U.S. Nuclear Regulatory Commission

    SciTech Connect (OSTI)

    Kent Norris

    2010-02-01

    The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE System Test Plan is to assess the approach to be taken for intended testing activities associated with the SAPHIRE software product. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.