Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

INLAND PORT TRANSPORTATION EVALUATION GUIDE  

E-Print Network [OSTI]

INLAND PORT TRANSPORTATION EVALUATION GUIDE by Robert Harrison, Center for Transportation Research Transportation Institute, The Texas A&M University System; and Jolanda Prozzi, Center for Transportation Research, The University of Texas at Austin CENTER FOR TRANSPORTATION RESEARCH Bureau of Engineering Research

Texas at Austin, University of

2

Independent Oversight Evaluation, Office of Secure Transportation...  

Office of Environmental Management (EM)

Evaluation, Office of Secure Transportation - February 2004 Independent Oversight Evaluation, Office of Secure Transportation - February 2004 February 2004 Evaluation of the Office...

3

Vapor-phase heat-transport system  

SciTech Connect (OSTI)

A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

Hedstrom, J.C.

1983-01-01T23:59:59.000Z

4

Development of dense-phase pneumatic transport of coal  

SciTech Connect (OSTI)

Dense phase pneumatic transport system has been developed to reduce entrained particles as is seen in the belt conveyor system. High mass flow rate and dense phase (Loading ratio = 50--100kg-coal/kg-N{sub 2}) transport has been achieved by applying this plug flow system to pneumatic conveying of coal (Average particle diameter = 2.5 mm).

Horisaka, S.; Ikemiya, H.; Kajiwara, T. [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan)

1996-12-31T23:59:59.000Z

5

Computational phase imaging based on intensity transport  

E-Print Network [OSTI]

Light is a wave, having both an amplitude and a phase. However, optical frequencies are too high to allow direct detection of phase; thus, our eyes and cameras see only real values - intensity. Phase carries important ...

Waller, Laura A. (Laura Ann)

2010-01-01T23:59:59.000Z

6

Mainstreaming Transport Co-benefits Approach: A Guide to Evaluating...  

Open Energy Info (EERE)

Guide to Evaluating Transport Projects AgencyCompany Organization: Institute for Global Environmental Strategies Focus Area: Multi-sector Impact Evaluation Topics: Best Practices...

7

Road Transportable Analytical Laboratory system. Phase 1  

SciTech Connect (OSTI)

This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

1993-09-01T23:59:59.000Z

8

STOMP Subsurface Transport Over Multiple Phases: Application guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and ground water at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstrated Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineering simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator are documented in three companion guide guides. This document, the Application Guide, provides a suite of example applications of the STOMP simulator.

Nichols, W.E.; Aimo, N.J.; Oostrom, M.; White, M.D.

1997-09-01T23:59:59.000Z

9

STOMP Subsurface Transport Over Multiple Phases: User`s guide  

SciTech Connect (OSTI)

The U.S. Department of Energy, through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and groundwater at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstration Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride, on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineer simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest National Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator theory and discussions on the governing equations, constitutive relations, and numerical solution algorithms for the STOMP simulator.

White, M.D.; Oostrom, M.

1997-10-01T23:59:59.000Z

10

Climate policies for road transport revisited (I): Evaluation...  

Open Energy Info (EERE)

of the current framework Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate policies for road transport revisited (I): Evaluation of the current framework...

11

Assessment of radionuclide vapor-phase transport in unsaturated tuff  

SciTech Connect (OSTI)

This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the accessible environment as the concentration in the aerosols will be equal to that in the ground water. A conservative analysis of air diffusion in a stagnant liquid film indicated that for all expected repository conditions, aerosol formation is not possible. The migration of volatile species was examined both in the vicinity of a waste canister and outside the thermally disturbed zone. Two-dimensional (radial) and three-dimensional (radial-vertical) coupled heat transfer-gas flow-liquid flow simulations were performed using the TOUGH computer code. The gas flow rate relative to the liquid flow rate predicted from the simulations allowed calculations of mobility ratios due to convection which led to the conclusion that, except for the immediate region near the canister, transport in the liquid phase will be dominant for radionuclides heavier than radon. Near the waste canister, iodine transport may also be important in the vapor phase. Bounding calculations for vertical mobility ratios were carried out as a function of saturation. These calculations are conservative and agree well with the two-dimensional simulations. Based on this analysis, it is clear that vapor-phase transport will not be important for radionuclides such as cesium and heavier species. Vapor transport for iodine may play a role in the overall release scenario depending on the particular repository conditions.

Smith, D.M.; Updegraff, C.D.; Bonano, E.J.; Randall, J.D.

1986-11-01T23:59:59.000Z

12

Two-phase microfluidics, heat and mass transport in direct methanol fuel cells  

E-Print Network [OSTI]

CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

13

Parking and routing information system phase 1 evaluation -- Individual evaluation test plans  

SciTech Connect (OSTI)

A parking and routing information system (PARIS) is being designed and deployed at a test site on the Mountain Home Veterans Administration campus in Johnson City, Tennessee using three sensor technologies. The purpose of the PARIS project is to demonstrate innovative integration of vehicle sensing technologies with parking management strategies to improve mobility and relieve congestion associated with a growing medical/technology complex. This technical memorandum presents the four individual evaluation test plans, System Performance Individual Evaluation Test Plan, User Acceptance Individual Evaluation Test Plan, Institutional and Business Issues Individual Evaluation Test Plan, and Transportation Systems Individual Evaluation Test Plan, which were developed to support ORNL`s responsibilities and functions during the four studies. The plans define the level of effort required to satisfy the data collection, processing, and analysis requirements for the assessment of the system performance, user acceptance, institutional and business issues, and transportation systems components of the PARIS phase 1 evaluation. Each plan is divided into three subsections: executive summary, detailed study design, and study management.

Carter, R.J.

1997-04-01T23:59:59.000Z

14

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen  

Broader source: Energy.gov [DOE]

Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen.Solid and liquid hydrogen carriers for use in hydrogen storage and delivery.

15

NREL: Transportation Research - Fleet Test and Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of medium-duty truck with

16

West Village Student Housing Phase I: Apartment Monitoring and Evaluation  

SciTech Connect (OSTI)

Building America team Alliance for Residential Building Innovation (ARBI) worked with the University of California, Davis (UC Davis) and the developer partner West Village Community Partnership (WVCP) to evaluate performance on 192 student apartments completed in September, 2011 as part of Phase I of the multi-purpose West Village project. West Village, the largest planned zero net energy community in the United States. The campus neighborhood is designed to enable faculty, staff and students to affordably live near campus, take advantage of environmentally friendly transportation options, and participate fully in campus life. The aggressive energy efficiency measures that are incorporated in the design contribute to source energy reductions of 37% over the B10 Benchmark. The energy efficiency measures that are incorporated into these apartments include increased wall & attic insulation, high performance windows, high efficiency heat pumps for heating and cooling, central heat pump water heaters (HPWHs), 100% high efficacy lighting, and ENERGY STAR major appliances. Results discuss how measured energy use compares to modeling estimates over a 10 month monitoring period and includes a cost effective evaluation.

German, A.; Bell, C.; Dakin, B.; Hoeschele, M.

2014-06-01T23:59:59.000Z

17

Public Health Air Surveillance Evaluation Project Public Health Air Surveillance Evaluation (PHASE) Project  

E-Print Network [OSTI]

Public Health Air Surveillance Evaluation Project Public Health Air Surveillance Evaluation (PHASE) Project Evaluating, Developing, and Delivering Air Quality Characterization Data to Environmental Public Public Health Tracking (EPHT) Network. The EPA is developing routinely available air quality information

18

The University of Reading Helen Dacre Evaluating pollution transport in  

E-Print Network [OSTI]

The University of Reading Helen Dacre Evaluating pollution transport in weather prediction models Outline Air pollution forecasting Offline forecasting Online forecasting Aim Overview of ETEX 2 case Conclusions and future work #12;The University of Reading Helen Dacre Offline Air Pollution Forecasting

Dacre, Helen

19

Evaluation of phase change materials for reconfigurable interconnects  

E-Print Network [OSTI]

The possible use of programmable integrated circuit interconnect vias using an indirectly heated phase change material is evaluated. Process development and materials investigations are examined. Devices capable of multiple ...

Khoo, Chee Ying

2010-01-01T23:59:59.000Z

20

Evaluating and Minimizing Distributed Cavity Phase Errors in Atomic Clocks  

E-Print Network [OSTI]

We perform 3D finite element calculations of the fields in microwave cavities and analyze the distributed cavity phase errors of atomic clocks that they produce. The fields of cylindrical cavities are treated as an azimuthal Fourier series. Each of the lowest components produces clock errors with unique characteristics that must be assessed to establish a clock's accuracy. We describe the errors and how to evaluate them. We prove that sharp structures in the cavity do not produce large frequency errors, even at moderately high powers, provided the atomic density varies slowly. We model the amplitude and phase imbalances of the feeds. For larger couplings, these can lead to increased phase errors. We show that phase imbalances produce a novel distributed cavity phase error that depends on the cavity detuning. We also design improved cavities by optimizing the geometry and tuning the mode spectrum so that there are negligible phase variations, allowing this source of systematic error to be dramatically reduced.

Li, Ruoxin

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluating and Minimizing Distributed Cavity Phase Errors in Atomic Clocks  

E-Print Network [OSTI]

We perform 3D finite element calculations of the fields in microwave cavities and analyze the distributed cavity phase errors of atomic clocks that they produce. The fields of cylindrical cavities are treated as an azimuthal Fourier series. Each of the lowest components produces clock errors with unique characteristics that must be assessed to establish a clock's accuracy. We describe the errors and how to evaluate them. We prove that sharp structures in the cavity do not produce large frequency errors, even at moderately high powers, provided the atomic density varies slowly. We model the amplitude and phase imbalances of the feeds. For larger couplings, these can lead to increased phase errors. We show that phase imbalances produce a novel distributed cavity phase error that depends on the cavity detuning. We also design improved cavities by optimizing the geometry and tuning the mode spectrum so that there are negligible phase variations, allowing this source of systematic error to be dramatically reduced.

Ruoxin Li; Kurt Gibble

2010-08-09T23:59:59.000Z

22

International Journal of Mass Spectrometry 219 (2002) 7377 Protein charge transport in gas phase  

E-Print Network [OSTI]

temperature limit, the rotational energy can be transferred with very high efficiency and hence one obtainsInternational Journal of Mass Spectrometry 219 (2002) 73­77 Protein charge transport in gas phase high charge transport efficiency. (Int J Mass Spectrom 219 (2002) 73­77) © 2002 Elsevier Science B

Sheu, Sheh-Yi

23

The Intercontinental Chemical Transport Experiment Phase B (INTEX-B): An update  

E-Print Network [OSTI]

the transport and transformation of gases and aerosols on transcontinental/intercontinental scales and assess, aerosols and precursors, and the long-lived greenhouse gases. The first phase (INTEX-A) was completed the Mexico City Megaplex; - Investigate the transport of Asian and North America pollution to the eastern

24

TRANSPORTATION CASK RECEIPT/RETURN FACILITY CRITICALITY SAFETY EVALUATIONS  

SciTech Connect (OSTI)

The purpose of this design calculation is to demonstrate that the handling operations of transportation casks performed in the Transportation Cask Receipt and Return Facility (TCRRF) and Buffer Area meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC [Bechtel SAIC Company] 2004 [DIRS 171599], Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''Transportation Cask Receipt/Return Facility Description Document'' (BSC 2004 [DIRS 170217], Section 3.2.3). Specific scope of work contained in this activity consists of the following items: (1) Evaluate criticality effects for both dry and fully flooded conditions pertaining to TCRRF and Buffer Area operations for defense in depth. (2) Evaluate Category 1 and 2 event sequences for the TCRRF as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). This evaluation includes credible fuel reconfiguration conditions. In addition to the scope of work listed above, an evaluation was also performed of modeling assumptions for commercial spent nuclear fuel (CSNF) regarding inclusion of plenum and end regions of the active fuel. This calculation is limited to CSNF and US Department of Energy (DOE) SNF. it should be mentioned that the latter waste form is evaluated more in depth in the ''Canister Handling Facility Criticality Safety Calculations (BSC 2004 [DIRS 167614]). Further, the design and safety analyses of the naval SNF canisters are the responsibility of the US Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the TCRRF and Buffer Area and may not reflect the ongoing design evolution of the facility. However, it is anticipated that design changes to the facility layout will have little or no impact on the criticality results and/or conclusions presented in this document. This calculation is subject to the ''Quality Assurance Requirements and Description'' (DOE 2004 [DIRS 171539]) because the TCRRF is included in the Q-List (BSC 2004 [DIRS 168361], p. A-3) as an item important to safety. This calculation is prepared in accordance with AP-3.12Q, ''Design Calculations and Analyses'' [DIRS 168413].

C.E. Sanders

2005-04-26T23:59:59.000Z

25

X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate  

E-Print Network [OSTI]

X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate an effect of a partially reversible x-ray-induced increase of diffuse x-ray scattering in both congruent been attributed to x-ray-induced decay of the ferroelectric phase at room temperature. The x-ray

Byer, Robert L.

26

The Evaluation of Transportation and Land Use Plans Using Linked Economic and GIS Models  

E-Print Network [OSTI]

Attempts to base the economic evaluation travel no state isurban economyand and economic evaluations. for devlsing andEvaluation of Transportation and Land Use Plans Using Linked Economic and

Johnston, Robert A.

1995-01-01T23:59:59.000Z

27

Phase II Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This report documents pertinent transport data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU) 98. The purpose of this data compilation and related analyses is to provide the primary reference to support parameterization of the Phase II FF CAU transport model.

DeNovio, Nicole M.; Bryant, Nathan; King, Chrissi B.; Bhark, Eric; Drellack, Sigmund L.; Pickens, John F.; Farnham, Irene; Brooks, Keely M.; Reimus, Paul; Aly, Alaa

2005-04-01T23:59:59.000Z

28

Initial laboratory evaluation of color video cameras: Phase 2  

SciTech Connect (OSTI)

Sandia National Laboratories has considerable experience with monochrome video cameras used in alarm assessment video systems. Most of these systems, used for perimeter protection, were designed to classify rather than to identify intruders. The monochrome cameras were selected over color cameras because they have greater sensitivity and resolution. There is a growing interest in the identification function of security video systems for both access control and insider protection. Because color camera technology is rapidly changing and because color information is useful for identification purposes, Sandia National Laboratories has established an on-going program to evaluate the newest color solid-state cameras. Phase One of the Sandia program resulted in the SAND91-2579/1 report titled: Initial Laboratory Evaluation of Color Video Cameras. The report briefly discusses imager chips, color cameras, and monitors, describes the camera selection, details traditional test parameters and procedures, and gives the results reached by evaluating 12 cameras. Here, in Phase Two of the report, we tested 6 additional cameras using traditional methods. In addition, all 18 cameras were tested by newly developed methods. This Phase 2 report details those newly developed test parameters and procedures, and evaluates the results.

Terry, P.L.

1993-07-01T23:59:59.000Z

29

Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A  

SciTech Connect (OSTI)

This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

ARD, K.E.

1999-07-14T23:59:59.000Z

30

Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package  

SciTech Connect (OSTI)

Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

None

1996-12-01T23:59:59.000Z

31

Gain margin and phase margin analysis of a nuclear reactor control system with multiple transport lags  

SciTech Connect (OSTI)

In this paper a method for finding the boundaries of constant gain margin and phase margin of control systems with transport lags and adjustable parameters is presented. The considered systems are first modified by adding a gain-phase margin tester, then the characteristic equations are formulated, and finally the stability equations are used to find the boundaries of constant gain margin and phase margin. The main advantage of the proposed method is to obtain complete information about the effects of adjustable parameters on gain margin and phase margin and their corresponding crossover frequencies. In order to show the usefulness of the proposed method a nuclear reactor control system with multiple transport lags is chosen as one of the examples.

Chang, C.H. (Institute of Electronics, National Chiao-Tung Univ. (TW)); Han, K.W. (Chung-Shan Institute and National Chiao-Tung Univ., Hsinchu (TW))

1989-08-01T23:59:59.000Z

32

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

SciTech Connect (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

33

A Model of Gas-Phase Transport During the Initial Stages of Sintering of Silicon Carbide  

E-Print Network [OSTI]

A Model of Gas-Phase Transport During the Initial Stages of Sintering of Silicon Carbide Anil Kaza investigate this process using a computational model based on codiffusion of multiple gas species, which This paper describes a computational model that tracks diffu- sion of multiple gas species and so predicts

Matthewson, M. John

34

CONTAINMENT EVALUATION OF BREACHED AL-SNF FOR CASK TRANSPORT  

SciTech Connect (OSTI)

Aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to the Savannah River Site. To enter the U.S., the cask with loaded fuel must be certified to comply with the requirements in the Title 10 of the U.S. Code of Federal Regulations, Part 71. The requirements include demonstration of containment of the cask with its contents under normal and accident conditions. Al-SNF is subject to corrosion degradation in water storage, and many of the fuel assemblies are ''failed'' or have through-clad damage. A methodology has been developed with technical bases to show that Al-SNF with cladding breaches can be directly transported in standard casks and maintained within the allowable release rates. The approach to evaluate the limiting allowable leakage rate, L{sub R}, for a cask with breached Al-SNF for comparison to its test leakage rate could be extended to other nuclear material systems. The approach for containment analysis of Al-SNF follows calculations for commercial spent fuel as provided in NUREG/CR-6487 that adopts ANSI N14.5 as a methodology for containment analysis. The material-specific features and characteristics of damaged Al-SNF (fuel materials, fabrication techniques, microstructure, radionuclide inventory, and vapor corrosion rates) that were derived from literature sources and/or developed in laboratory testing are applied to generate the four containment source terms that yield four separate cask cavity activity densities; namely, those from fines; gaseous fission product species; volatile fission product species; and fuel assembly crud. The activity values, A{sub 2}, are developed per the guidance of 10CFR71. The analysis is performed parametrically to evaluate maximum number of breached assemblies and exposed fuel area for a proposed shipment in a cask with a test leakage rate.

Vinson, D. W.; Sindelar, R. L.; Iyer, N. C.

2005-11-07T23:59:59.000Z

35

STACE: Source Term Analyses for Containment Evaluations of transport casks  

SciTech Connect (OSTI)

Following the guidance of ANSI N14.5, the STACE methodology provides a technically defensible means for estimating maximum permissible leakage rates. These containment criteria attempt to reflect the true radiological hazard by performing a detailed examination of the spent fuel, CRUD, and residual contamination contributions to the releasable source term. The evaluation of the spent fuel contribution to the source term has been modeled fairly accurately using the STACE methodology. The structural model predicts the cask drop load history, the mechanical response of the fuel assembly, and the probability of cladding breach. These data are then used to predict the amount of fission gas, volatile species, and fuel fines that are releasable from the cask. There are some areas where data are sparse or lacking (e.g., the quantity and size distribution of fuel rod breaches) in which experimental validation is planned. The CRUD spallation fraction is the major area where no quantitative data has been found; therefore, this also requires experimental validation. In the interim, STACE conservatively assumes a 100% spallation fraction for computing the releasable activity. The source term methodology also conservatively assumes that there is 1 Ci of residual contamination available for release in the transport cask. However, residual contamination is still by far the smallest contributor to the source term activity.

Seager, K. D.; Gianoulakis, S. E. [Sandia National Labs., Albuquerque, NM (United States); Barrett, P. R.; Rashid, Y. R. [ANATECH Research Corp., La Jolla, CA (United States); Reardon, P. C. [GRAM, Inc., Albuquerque, NM (United States)

1992-01-01T23:59:59.000Z

36

Study of second phase in bioabsorbable magnesium alloys: Phase stability evaluation via Dmol{sup 3} calculation  

SciTech Connect (OSTI)

Thermodynamical stabilities of four conventional second phases as well as magnesium matrix in bioabsorbable magnesium alloys were investigated theoretically via computer calculation method. Model of individual phase and systems including phase and four water molecular (phase-4H{sub 2}O) were established to simulate the in vitro and in vivo environment. Local orbital density functional theory approach was applied to calculate the total energy for the individual phase and phase-4H{sub 2}O system. The results demonstrated that all the second phases possessed higher phase stability compared with magnesium matrix, but the phase stability was quite different for different types of second phases or second phase-4H{sub 2}O systems. Furthermore, a schematic process of inflammation reaction caused by magnesium alloy implants was proposed for the further evaluation on biocompatibility of different second phases.

Yang, Huazhe [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Biophysics, China Medical University, Shenyang 110001 (China); Liu, Chen [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wan, Peng; Tan, Lili; Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

2013-11-01T23:59:59.000Z

37

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE I TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitricformicglycolic and nitricformicsugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitricformicglycolic flowsheet. Further evaluation of this flowsheet eliminated the formic acid1, and as a result, the nitricglycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitricglycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitricformic acid flowsheet melter test (unbubbled) to baseline the Cold Cap Evaluation Furnace (CEF) cold cap and vapor space data to the benchmark melter flammability models ? Phase II - A nitricglycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters for the melter flammability models o Quantify off-gas surging potential of the feed o Characterize off-gas condensate for complete organic and inorganic carbon species Prior to startup, a number of improvements and modifications were made to the CEF, including addition of cameras, vessel support temperature measurement, and a heating element near the pour tube. After charging the CEF with cullet from a previous Sludge Batch 6 (SB6) run, the melter was slurry-fed with SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 6 days. Process data was collected throughout testing and included melter operation variables and off-gas chemistry. In order to satisfy the objective of Phase I testing, vapor space steady testing in the range of ~300C-700C was conducted without argon bubbling to baseline the melter data to the existing DWPF melter flammability model. Adjustments to heater outputs, air flows and feed rate were necessary in order to achieve the vapor space temperatures in this range. The results of the Phase I testing demonstrated that the CEF is capable of operating under the low vapor space temperatures A melter pressure of -5 inches of water was not sustained throughout the run, but the melter did remain slightly negative even with the maximum air flows required for the lowest temperature conditions were used. The auxiliary pour tube heater improved the pouring behavior at all test conditions, including reduced feed rates required for the low vapor space testing. Argon bubbling can be used to promote mixing and increase feed rate at multiple conditions. Improvements due to bubbling have been determined previously; however, the addition of the cameras to the CEF allows for visual observation during a range of bubbling configurations. The off-gas analysis system proved to be robust and capable of operating for long durations. The total operational hours on the melter vessel are approximately 385 hours. Dimensional measurements taken prior to Phase I testing and support block temperatures recorded during Phase I testing are available if an extension of service life beyond 1250 hours is desired in the future.

Johnson, F.; Miller, D.; Zamecnik, J.; Lambert, D.

2014-04-22T23:59:59.000Z

38

Thermoelectric transport of Se-rich Ag{sub 2}Se in normal phases and phase transitions  

SciTech Connect (OSTI)

Small amount of Se atoms are used to tune the carrier concentrations (n{sub H}) and electrical transport in Ag{sub 2}Se. Significant enhancements in power factor and thermoelectric figure of merit (zT) are observed in the compositions of Ag{sub 2}Se{sub 1.06} and Ag{sub 2}Se{sub 1.08}. The excessive Se atoms do not change the intrinsically electron-conducting character in Ag{sub 2}Se. The detailed analysis reveals the experiment optimum carrier concentration in Ag{sub 2}Se is around 5??10{sup 18}?cm{sup ?3}. We also investigate the temperature of maximum zT and the thermoelectric transport during the first order phase transitions using the recently developed measurement system.

Mi, Wenlong; Lv, Yanhong [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Qiu, Pengfei; Shi, Xun, E-mail: xshi@mail.sic.ac.cn, E-mail: cld@mail.sic.ac.cn; Chen, Lidong, E-mail: xshi@mail.sic.ac.cn, E-mail: cld@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); Zhang, Tiansong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China)

2014-03-31T23:59:59.000Z

39

Tune Evaluation From Phased BPM Turn-By-Turn Data  

E-Print Network [OSTI]

In fast ramping synchrotrons like the Fermilab Booster the conventional methods of betatron tune evaluation from the turn-by-turn data may not work due to rapid changes of the tunes (sometimes in a course of a few dozens of turns) and a high level of noise. We propose a technique based on phasing of signals from a large number of BPMs which significantly increases the signal to noise ratio. Implementation of the method in the Fermilab Booster control system is described and some measurement results are presented.

Alexahin, Y; Marsh, W

2012-01-01T23:59:59.000Z

40

ALTERNATE REDUCTANT COLD CAP EVALUATION FURNACE PHASE II TESTING  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitricformicglycolic and nitricformicsugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitricformicglycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitricglycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitricglycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) to address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): ? Phase I - A nitricformic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; ? Phase II - A nitricglycolic acid flowsheet melter test (unbubbled and bubbled) to: o Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; o Quantify off-gas surging potential of the feed; o Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.

Johnson, F.; Stone, M.; Miller, D.

2014-09-03T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A method for evaluating transport energy consumption in suburban areas  

SciTech Connect (OSTI)

Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

2012-02-15T23:59:59.000Z

42

Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the Corrective Action Strategy in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

Gregg Ruskuaff

2010-01-01T23:59:59.000Z

43

Yakima River Basin Phase II Fish Screen Evaluations, 2001.  

SciTech Connect (OSTI)

In the summer and fall of 2001 the Pacific Northwest National Laboratory (PNNL) evaluated 23 Phase II fish screen sites in the Yakima River Basin as part of a multi-year study for the Bonneville Power Administration (BPA) on the effectiveness of fish screening devices. Data were collected to determine if velocities in front of the screens and in the bypasses met current National Marine Fisheries Service (NMFS) criteria to promote safe and timely fish passage and whether bypass outfall conditions allowed fish to safely return to the river. Based on our studies in 2001, we concluded that: in general, water velocity conditions at the screen sites met fish passage criteria set forth by the NMFS; most facilities efficiently protected juvenile fish from entrainment, impingement, or migration delay; automated cleaning brushes generally functioned properly; chains and other moving parts were well greased and operative; and removal of sediment build-up and accumulated leafy and woody debris are areas that continue to improve. Continued periodic screen evaluations will increase the effectiveness of screen operation and maintenance practices by confirming the effectiveness (or ineffectiveness) of screen operating procedures at individual sites. Where procedures are being followed and problems still occur, evaluation results can be used to suggest means to better protect fish at screening facilities. There has been a progressive improvement in the maintenance and effectiveness of fish screen facilities in the Yakima River Basin during the last several years, in part, as a result of regular screen evaluations and the rapid feedback of information necessary to improve operations and design of these important fish protection devices. Continued periodic screen evaluations will increase the effectiveness of screen operation and maintenance practices by confirming the effectiveness (or ineffectiveness) of screen operating procedures at individual sites. Where procedures are being followed and problems still occur, evaluation results can be used to suggest means to better protect fish at screening facilities. There has been a progressive improvement in the maintenance and effectiveness of fish screen facilities in the Yakima River Basin during the last several years, in part, as a result of regular screen evaluations and the rapid feedback of information necessary to improve operations and design of these important fish protection devices.

Carter, J.A.; McMichael, Geoffrey A.; Chamness, M.A.

2002-01-01T23:59:59.000Z

44

. . . developing, evaluating and marketing technology products to improve our transportation system A Publication of the  

E-Print Network [OSTI]

Vehicle Technology, the UI team has competed in the Clean Snowmobile Challenge for the past two years. . . developing, evaluating and marketing technology products to improve our transportation system A Publication of the National Institute for Advanced Transportation Technology TECH BRIEF March 2003

Kyte, Michael

45

Annual Merit Review Evaluates Impact of Sustainable Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

one of many that is being evaluated at the Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting this week. | Photo by...

46

Transportation Market Distortions  

E-Print Network [OSTI]

of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

Litman, Todd

2006-01-01T23:59:59.000Z

47

Turbulence and transport studies with phase contrast imaging in the Alcator C-Mod tokamak and comparisons with gyrokinetic simulations  

E-Print Network [OSTI]

An upgraded phase contrast imaging (PCI) diagnostic is used to study turbulence and transport in Alcator C-Mod. The upgraded PCI system is capable of measuring density fluctuations with high temporal (2 kHz-5 MHz) and ...

Lin, Liang, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

48

Driven coupled Morse oscillators --- visualizing the phase space and characterizing the transport  

E-Print Network [OSTI]

Recent experimental and theoretical studies indicate that intramolecular energy redistribution (IVR) is nonstatistical on intermediate timescales even in fairly large molecules. Therefore, it is interesting to revisit the the old topic of IVR versus quantum control and one expects that a classical-quantum perspective is appropriate to gain valuable insights into the issue. However, understanding classical phase space transport in driven systems is a prerequisite for such a correspondence based approach and is a challenging task for systems with more then two degrees of freedom. In this work we undertake a detailed study of the classical dynamics of a minimal model system - two kinetically coupled coupled Morse oscillators in the presence of a monochromatic laser field. Using the technique of wavelet transforms a representation of the high dimensional phase space, the resonance network or Arnold web, is constructed and analysed. The key structures in phase space which regulate the dissociation dynamics are identified. Furthermore, we show that the web is nonuniform with the classical dynamics exhibiting extensive stickiness, resulting in anomalous transport. Our work also shows that pairwise irrational barriers might be crucial even in higher dimensional systems.

Astha Sethi; Srihari Keshavamurthy

2012-08-28T23:59:59.000Z

49

The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems  

E-Print Network [OSTI]

In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous- crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.

Cristiano F. Woellner; Leonardo D. Machado; Pedro A. S. Autreto; Jose A. Freire; Douglas S. Galvao

2015-01-07T23:59:59.000Z

50

A two-phase flow model of sediment transport: transition from bedload to suspended load  

E-Print Network [OSTI]

The transport of dense particles by a turbulent flow depends on two dimensionless numbers. Depending on the ratio of the shear velocity of the flow to the settling velocity of the particles (or the Rouse number), sediment transport takes place in a thin layer localized at the surface of the sediment bed (bedload) or over the whole water depth (suspended load). Moreover, depending on the sedimentation Reynolds number, the bedload layer is embedded in the viscous sublayer or is larger. We propose here a two-phase flow model able to describe both viscous and turbulent shear flows. Particle migration is described as resulting from normal stresses, but is limited by turbulent mixing and shear-induced diffusion of particles. Using this framework, we theoretically investigate the transition between bedload and suspended load.

Filippo Chiodi; Philippe Claudin; Bruno Andreotti

2014-09-02T23:59:59.000Z

51

Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York  

SciTech Connect (OSTI)

A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions.

Ecker, R.M.; Walters, W.H.; Onishi, Y.

1982-08-01T23:59:59.000Z

52

Long-Range Atmospheric Transport of Polycyclic Aromatic Hydrocarbons: A Global 3-D Model Analysis Including Evaluation of Arctic Sources  

E-Print Network [OSTI]

We use the global 3-D chemical transport model GEOS-Chem to simulate long-range atmospheric transport of polycyclic aromatic hydrocarbons (PAHs). To evaluate the models ability to simulate PAHs with different volatilities, ...

Friedman, Carey

53

NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547  

SciTech Connect (OSTI)

Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H. [United States Nuclear Regulatory Commission, Rockville, Maryland 20852 (United States); Pan, Y. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX 78238 (United States)

2012-07-01T23:59:59.000Z

54

Relationship between transport properties and phase transformations in mixed-conducting oxides  

SciTech Connect (OSTI)

To elucidate the relationship between transport properties and phase transformations in mixed-conducting oxides, Sr{sub 0.9}Ca{sub 0.1}Co{sub 0.89}Fe{sub 0.11}O{sub 3-} {sub {delta}} (SCCFO) and SrCoO{sub 3-} {sub {delta}} (SCO) were chosen as the model materials and have been investigated in detail. Oxygen permeation measurements verified that both oxides are well permeable to oxygen at elevated temperatures, e.g., at 900 deg. C during a cooling procedure, oxygen permeation rates as large as 1.5 and 2.0 mL/min/cm{sup 2} could be obtained with disk-shaped SCCFO and SCO membranes of thickness 1.5 mm, respectively. But when cooled to critical temperatures, the oxygen permeability of these kinds of oxides diminished sharply, which could be recovered by increasing the temperature again to certain values. Abrupt changes on electrical conductivity were also observed for both oxides around the same region of temperature as that of oxygen permeability. As indicated by high-temperature X-ray diffraction and thermal analysis, the SCCFO and SCO systems undergo phase transformation between a low-temperature orthorhombic brownmillerite structure (B) or a hexagonal 2H-type structure (H) and a high-temperature cubic perovskite structure (C), respectively. The present results suggest the observed abrupt changes in transport properties versus temperature are attributed to such phase transformation, which may be directly associated with the order-disorder transition of oxygen vacancies. Moreover, compared to the B/C transformation that mainly involves an order-disorder transition on the oxygen sublattice, the H/C one necessarily also involves the cooperative long-range reorganization on the cation sublattice. Therefore it occurs at a higher temperature and absorbs more heat quantity than those of B/C transformation.

Deng, Z.Q. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)]. E-mail: dzqm@dicp.ac.cn; Yang, W.S. [State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Liu, W. [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Chen, C.S. [Laboratory of Advanced Functional Materials and Devices, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

2006-02-15T23:59:59.000Z

55

NREL: Transportation Research - Fleet Test and Evaluation Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of medium-duty truck

56

EVALUATION OF TRANSPORTATION OPTIONS FOR INTERMEDIATE NON DESTRUCTIVE EXAMINATIONS  

SciTech Connect (OSTI)

Idaho National Laboratory (INL) shipments of irradiated experiments from the Advanced Test Reactor (ATR) to the Hot Fuels Examination Facility (HFEF) have historically been accomplished using the General Electric Model 2000 (GE 2000) Type B shipping container. Battelle Energy Alliance (BEA) concerns regarding the future availability and leasing and handling costs associated with the GE 2000 cask have warranted an evaluation of alternative shipping options. One or more of these shipping options may be utilized to perform non destructive examinations (NDE) such as neutron radiography and precision gamma scans of irradiated experiments at HFEF and then return the experiments to ATR for further irradiation, hereafter referred to as intermediate NDE.

Case, Susan; Hoggard, Gary

2014-07-01T23:59:59.000Z

57

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect (OSTI)

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

58

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect (OSTI)

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

59

Transportation  

E-Print Network [OSTI]

Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

Vinson, Steve

2013-01-01T23:59:59.000Z

60

Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem  

E-Print Network [OSTI]

The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta < m_e/m_p, the waves propagate as inertial Alfven waves. In the presence of strong spatial gradients, these generate field-aligned electric fields that can accelerate electrons to energies on the order of 10 keV and above, including by repeated interactions between el...

Fletcher, L

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS  

SciTech Connect (OSTI)

Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 {micro}l to 0.5 {micro}l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10{sup -5} % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO{sub 2}/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO{sub 2}/water and real oils at high pressures and temperatures.

Jorge Gabitto; Maria Barrufet

2002-09-01T23:59:59.000Z

62

Evaluation of 241-AZ tank farm supporting phase 1 privatization waste feed delivery  

SciTech Connect (OSTI)

This evaluation is one in a series of evaluations determining the process needs and assessing the adequacy of existing and planned equipment in meeting those needs at various double-shell tank farms in support of Phase 1 privatization. A number of tank-to-tank transfers and waste preparation activities are needed to process and feed waste to the private contractor in support of Phase 1 privatization. The scope of this evaluation is limited to process needs associated with 241-AZ tank farm during the Phase 1 privatization.

CARLSON, A.B.

1998-11-19T23:59:59.000Z

63

TECHNICAL EVALUATION OF THE SAFE TRANSPORTATION OF WASTE CONTAINERS COATED WITH POLYUREA  

SciTech Connect (OSTI)

This technical report is to evaluate and establish that the transportation of waste containers (e.g. drums, wooden boxes, fiberglass-reinforced plywood (FRP) or metal boxes, tanks, casks, or other containers) that have an external application of polyurea coating between facilities on the Hanford Site can be achieved with a level of onsite safety equivalent to that achieved offsite. Utilizing the parameters, requirements, limitations, and controls described in the DOE/RL-2001-36, ''Hanford Sitewide Transportation Safety Document'' (TSD) and the Department of Energy Richland Operations (DOE-RL) approved package specific authorizations (e.g. Package Specific Safety Documents (PSSDs), One-Time Requests for Shipment (OTRSs), and Special Packaging Authorizations (SPAS)), this evaluation concludes that polyurea coatings on packages does not impose an undue hazard for normal and accident conditions. The transportation of all packages on the Hanford Site must comply with the transportation safety basis documents for that packaging system. Compliance with the requirements, limitations, or controls described in the safety basis for a package system will not be relaxed or modified because of the application of polyurea. The inspection criteria described in facility/projects procedures and work packages that ensure compliance with Container Management Programs and transportation safety basis documentation dictate the need to overpack a package without consideration for polyurea. This technical report reviews the transportation of waste packages coated with polyurea and does not credit the polyurea with enhancing the structural, thermal, containment, shielding, criticality, or gas generating posture of a package. Facilities/Projects Container Management Programs must determine if a container requires an overpack prior to the polyurea application recognizing that circumstances newly discovered surface contamination or loss of integrity may require a previously un-overpacked package to subsequently require overpacking. Therefore, the polyurea coating can not be credited to avoid the need to overpack a package or enhance the transportation safety of a structurally sound package that has polyurea on the exterior.

VAIL, T.S.

2007-03-30T23:59:59.000Z

64

Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow  

E-Print Network [OSTI]

Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase cell membranes, a net flux of water was found to flow from the hot to the cold side of the full, 2008. Published January 8, 2009. Proper water management is critical to achieve high performance

Mench, Matthew M.

65

Modeling of Gas Phase Transport and Composition Evolution during the Initial Stage Sintering of Boron Carbide with Carbon Additions  

E-Print Network [OSTI]

1 Modeling of Gas Phase Transport and Composition Evolution during the Initial Stage Sintering the pores close. This process is examined using a computational model based on co-diffusion of multiple gas is to model the gas diffusion to determine the needed hold time as a function of key parameters

Matthewson, M. John

66

Combinatorial theory of the semiclassical evaluation of transport moments. I. Equivalence with the random matrix approach  

SciTech Connect (OSTI)

To study electronic transport through chaotic quantum dots, there are two main theoretical approaches. One involves substituting the quantum system with a random scattering matrix and performing appropriate ensemble averaging. The other treats the transport in the semiclassical approximation and studies correlations among sets of classical trajectories. There are established evaluation procedures within the semiclassical evaluation that, for several linear and nonlinear transport moments to which they were applied, have always resulted in the agreement with random matrix predictions. We prove that this agreement is universal: any semiclassical evaluation within the accepted procedures is equivalent to the evaluation within random matrix theory. The equivalence is shown by developing a combinatorial interpretation of the trajectory sets as ribbon graphs (maps) with certain properties and exhibiting systematic cancellations among their contributions. Remaining trajectory sets can be identified with primitive (palindromic) factorisations whose number gives the coefficients in the corresponding expansion of the moments of random matrices. The equivalence is proved for systems with and without time reversal symmetry.

Berkolaiko, G., E-mail: berko@math.tamu.edu [Department of Mathematics, Texas A and M University, College Station, Texas 77843-3368 (United States); Kuipers, J., E-mail: Jack.Kuipers@physik.uni-regensburg.de [Institut fr Theoretische Physik, Universitt Regensburg, D-93040 Regensburg (Germany)

2013-11-15T23:59:59.000Z

67

STOMP Subsurface Transport Over Multiple Phases, Version 4.0, Users Guide  

SciTech Connect (OSTI)

This guide describes the general use, input file formatting, compilation and execution of the STOMP (Subsurface Transport Over Multiple Phases) simulator, a scientific tool for analyzing single and multiple phase subsurface flow and transport. A description of the simulators governing equations, constitutive functions and numerical solution algorithms are provided in a companion theory guide. In writing these guides for the STOMP simulator, the authors have assumed that the reader comprehends concepts and theories associated with multiple-phase hydrology, heat transfer, thermodynamics, radioactive chain decay, and relative permeability-saturation-capillary pressure constitutive relations. The authors further assume that the reader is familiar with the computing environment on which they plan to compile and execute the STOMP simulator. Source codes for the sequential versions of the simulator are available in pure FORTRAN 77 or mixed FORTRAN 77/90 forms. The pure FORTRAN 77 source code form requires a parameters file to define the memory requirements for the array elements. The mixed FORTRAN 77/90 form of the source code uses dynamic memory allocation to define memory requirements, based on a FORTRAN 90 preprocessor STEP, that reads the input files. The simulator utilizes a variable source code configuration, which allows the execution memory and speed to be tailored to the problem specifics, and essentially requires that the source code be assembled and compiled through a software maintenance utility. The memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. Selected operational modes of the STOMP simulator are available for scalable execution on multiple processor (i.e., parallel) computers. These versions of the simulator are written in pure FORTRAN 90 with imbedded directives that are interpreted by a FORTRAN preprocessor. Without the preprocessor, the scalable version of the simulator can be executed sequentially on a single processor computer. The scalable versions of the STOMP modes carry the -Sc designator on the operational mode name. For example, STOMP-WCS-Sc is the scalable version of the STOMP-WCS (Water-CO2-Salt) mode. A separate mode containing an evaporation model as a boundary condition on the upper surface of the computation domain has also been included. This mode, STOMP-WAE-B (Water-Air-Energy-Barriers) can be viewed as an extension of the STOMP-WAE (Water-Air-Energy) mode. Details of this particular mode are outlined by Ward et al. (2005)(a). STOMP V4.0 includes the reactive transport module ECKEChem (Equilibrium-Conservation-Kinetic Equation Chemistry) for the STOMP-W (Water) and STOMP-WCS (Water-CO2-Salt) modes. For this particular module, the -R designator is included in the operational mode name (e.g., STOMP-W-R, STOMP-WCS-R-Sc). This mode is described in detail by White and McGrail (2005)(b). For all operational modes and processor implementations, the memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. Additional information about the simulator can be found on the STOMP webpage: http://stomp.pnl.gov. The website includes an introductory short course with problems ranging from simple one-dimensional saturated flow to complex multiphase system computations.

White, Mark D.; Oostrom, Martinus

2006-06-09T23:59:59.000Z

68

Evaluation of a slotted orifice plate flow meter using horizontal two phase flow  

E-Print Network [OSTI]

EVALUATION OF A SLOTTED ORIFICE PLATE FLOW METER USING HORIZONTAL TWO PHASE FLOW A Thesis by ANITA ELENA FLORES Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2000 Major Subject: Mechanical Engineering EVALUATION OF A SLOTTED ORIFICE PLATE FLOW METER USING HORIZONTAL TWO PHASE FLOW A Thesis by ANITA ELENA FLORES Submitted to Texas A&M University in partial fulfillment...

Flores, Anita Elena

2000-01-01T23:59:59.000Z

69

Evaluation of the quality of mangoes arriving in the port of Rotterdam by sea transport  

E-Print Network [OSTI]

. This paper is a response to the problems reported back and observed. The main objective of this paper is to determine and evaluate the causes of losses of mangoes arriving by sea transport in Rotterdam, Holland. The fruits were ~ for their quality both... of the fruits at anival. During and after the maturation process, development of decay and physiological disorders such as scalds and discoloration were the major factors affecting fruit quality. More appropriate installations and quality control were...

De Botton, Cecilia Gomes

1991-01-01T23:59:59.000Z

70

Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase 2. Technical completion report  

SciTech Connect (OSTI)

Pore level laboratory experiments using microscopy permit the in situ visualization of flow and transport phenomena, that can be recorded on film or videotape. One of the principal tools for visualization is the etched glass micromodel, which is composed of a transparent two dimensional network of three dimensional pores. The spatial scale of interest in these models extends from the individual pore, up to a network of pores, perhaps with small scale heterogeneities. Micromodels are best used to help validate concepts and assumptions, and to elucidate new, previously unrecognized phenomena for further study. They are not quantitative tools, but should be used in combination with quantitative tools such as column studies or mathematical models. There are three applications: multi-phase flow, colloid transport, and bacterial transport and colonization. Specifically the authors have examined behavior of relevance to liquid-liquid mass transfer (solubilization of capillary trapped organic liquids); liquid-gas mass transfer (in situ volatilization); mathematical models of multi-phase pressure-saturation relationships; colloid movement, attachment and detachment in the presence of fluid-fluid interfaces, clay interference with multi-phase flow; and heterogeneity effects on multi-phase flow and colloid movement.

Wilson, J.L.

1997-01-01T23:59:59.000Z

71

Study of Pu consumption in light water reactors: Evaluation of GE advanced boiling water reactor plants, compilation of Phase 1C task reports  

SciTech Connect (OSTI)

This report summarizes the evaluations conducted during Phase 1C of the Pu Disposition Study have provided further results which reinforce the conclusions reached during Phase 1A & 1B: These conclusions clearly establish the benefits of the fission option and the use of the ABWR as a reliable, proven, well-defined and cost-effective means available to disposition the weapons Pu. This project could be implemented in the near-term at a cost and on a schedule being validated by reactor plants currently under construction in Japan and by cost and schedule history and validated plans for MOX plants in Europe. Evaluations conducted during this phase have established that (1) the MOX fuel is licensable based on existing criteria for new fuel with limited lead fuel rod testing, (2) that the applicable requirements for transport, handling and repository storage can be met, and (3) that all the applicable safeguards criteria can be met.

Not Available

1994-01-15T23:59:59.000Z

72

Development of the FMT chemical transport simulator: Advective transport sensitivity to aqueous density and mineral volume fraction coupled to phase compositions  

SciTech Connect (OSTI)

The Fracture-Matrix Transport (FMT) code couples saturated porous media advection and diffusion with mechanistic chemical models for speciation and interphase reactions. FMT is being developed to support actinide solubility and retardation studies for the Waste Isolation Pilot Plant (WIPP), USDOE facility for demonstrating safe disposal of transuranic waste. Hydrologic studies of water-bearing units above the WIPP indicate double-porosity transport behavior in some locations, with groundwater concentrations ranging which potable to highly concentrated. Previously, FMT simulated such systems in two-dimensions on the continuum from advection- to diffusion-dominated, with a user-specified velocity field that allows double-porosity transport. However, aqueous density was assumed constant, and reactive minerals were assumed to occupy negligible volume. Both of these assumptions can be considered poor for evaporite systems, where large changes in porosity and aqueous density can result from high mineral solubilities. Therefore, further development of FMT has relaxed these restrictions, allowing aqueous density to vary with phase composition, and allowing void volume to change as minerals dissolve and precipitate. This paper describes the additional mathematical complexity required to simulate such systems. The sensitivity of advection-dominated transport to these variables is explored through an extended example.

Novak, C.F.

1993-12-31T23:59:59.000Z

73

Transport of heat and mass in a two-phase mixture. From a continuous to a discontinuous description  

E-Print Network [OSTI]

We present a theory which describes the transport properties of the interfacial region with respect to heat and mass transfer. Postulating the local Gibbs relation for a continuous description inside the interfacial region, we derive the description of the Gibbs surface in terms of excess densities and fluxes along the surface. We introduce overall interfacial resistances and conductances as the coefficients in the force-flux relations for the Gibbs surface. We derive relations between the local resistivities for the continuous description inside the interfacial region and the overall resistances of the surface for transport between the two phases for a mixture. It is shown that interfacial resistances depend among other things on the enthalpy profile across the interface. Since this variation is substantial the coupling between heat and mass flow across the surface are also substantial. In particular, the surface puts up much more resistance to the heat and mass transfer then the homogeneous phases over a di...

Glavatskiy, Kirill

2010-01-01T23:59:59.000Z

74

Project identification and evaluation techniques for transportation infrastructure : assessing their role in metropolitan areas of developing countries  

E-Print Network [OSTI]

Project identification and evaluation of transportation infrastructure play a vital role in shaping and sustaining the forms of cities all over the world. These cities differ substantially in character and urban form and ...

Kumar, Vimal, S.M. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

75

Models for source term, flow, transport and dose assessment in NRC`s Iterative Performance Assessment, Phase 2  

SciTech Connect (OSTI)

The core consequence modules for the recently completed Phase 2 Iterative Performance Assessment (IPA) of the Yucca Mountain repository for high-level nuclear waste depend on models for releases from the engineered barrier system (source term), flow of liquid and gas, transport of radionuclides in the geosphere and assessment of dose to target populations. The source term model includes temperature and moisture phenomena in the near-field environment, general, pitting and crevice corrosion, contact of the waste form by water, dissolution and oxidation of the waste form, and transport of dissolved and gaseous radionuclides from the waste package by advection and diffusion. The liquid flow and transport models describe water flow through fractures and matrix in both the unsaturated and saturated zones. Models for flow of gas and transport of {sup 14}CO{sub 2} released from the engineered barrier system to the atmosphere take into account repository heat and the geothermal gradient. The dose assessment model calculates doses to a regional population and a farm family for an assumed reference biosphere in the vicinity of the repository. The Phase 2 IPA led to a number of suggestions for model improvement: (1) improve the ability of the models to include spatial and temporal variability in the parameters; (2) improve the coupling among processes, especially the effects of changing environments in the waste packages; (3) develop more mechanistic models, but abstracted for use in total system performance assessment; and (4) use more site specific parameters, especially for the dose assessments.

McCartin, T.; Codell, R.; Neel, R.; Ford, W.; Wescott, R.; Bradbury, J. [Nuclear Regulatory Commission, Washington, DC (United States); Sagar, B.; Walton, J. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX (United States)

1994-12-31T23:59:59.000Z

76

Two-phase flow and transport Volume 3, Part 3, pp 337347  

E-Print Network [OSTI]

cells include hydrogen or refor- mate/air PEM fuel cells (PEMFC) and PEM-based direct methanol fuel and transport processes occur in DMFC anodes as carbon dioxide bubbles are generated from the anodic reaction of the aqueous methanol solution. The formation of CO2 bubbles in the porous anode and their subsequent transport

77

Evaluation of FSV-1 cask for the transport of LWR irradiated fuel assemblies  

SciTech Connect (OSTI)

The Model FSV-1 spent fuel shipping cask was designed by General Atomic Company (GA) to service the Fort St. Vrain (FSV) nuclear generating station, a High Temperature Gas Reactor (HTGR) owned and operated by Public Service Company of Colorado (PSC). This report presents an evaluation of the suitability of the FSV-1 cask for the transport of irradiated Light Water Reactor (LWR) fuel assemblies from both Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). The FSV-1 cask evaluation parameters covered a wide spectrum of LWR fuel assemblies, based on burnup in Megawatt Days/Metric Ton of Heavy Metal (MWD/MTHM) and years of decay since irradiation. The criteria for suitability included allowable radiation dose rates, cask surface and interior temperatures and the Gross Vehicle Weight (GVW) of the complete shipping system.

Not Available

1980-05-01T23:59:59.000Z

78

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-Transmission SignTransport

79

Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones  

E-Print Network [OSTI]

in previous studies. This dissertation systematically investigates their influence on the gas phase flow and transport of VOCs in soil and ground water remediation processes using analytically and numerically mathematical modeling. New semi...

You, Kehua

2013-04-19T23:59:59.000Z

80

Transport of heat and mass in a two-phase mixture. From a continuous to a discontinuous description  

E-Print Network [OSTI]

We present a theory which describes the transport properties of the interfacial region with respect to heat and mass transfer. Postulating the local Gibbs relation for a continuous description inside the interfacial region, we derive the description of the Gibbs surface in terms of excess densities and fluxes along the surface. We introduce overall interfacial resistances and conductances as the coefficients in the force-flux relations for the Gibbs surface. We derive relations between the local resistivities for the continuous description inside the interfacial region and the overall resistances of the surface for transport between the two phases for a mixture. It is shown that interfacial resistances depend among other things on the enthalpy profile across the interface. Since this variation is substantial the coupling between heat and mass flow across the surface are also substantial. In particular, the surface puts up much more resistance to the heat and mass transfer then the homogeneous phases over a distance comparable to the thickness of the surface. This is the case not only for the pure heat conduction and diffusion but also for the cross effects like thermal diffusion. For the excess fluxes along the surface and the corresponding thermodynamic forces we derive expressions for excess conductances as integrals over the local conductivities along the surface. We also show that the curvature of the surface affects only the overall resistances for transport across the surface and not the excess conductivities along the surface.

Kirill Glavatskiy; Dick Bedeaux

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Development and evaluation of a thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic rocks  

E-Print Network [OSTI]

evaluation of a thermodynamic dataset for phases of interestKeywords: Thermodynamic dataset CO2water basaltABSTRACT A thermodynamic dataset describing 36 mineral

Aradottir, E.S.P.

2013-01-01T23:59:59.000Z

82

Effect of phase transition on quantum transport in group-IV two-dimensional U-shape device  

SciTech Connect (OSTI)

The effect of phase-transition from the quantum-spin-hall to the band-insulator phase on the transport through a three-terminal U-shape spin-separator has been computationally investigated via non-equilibrium green function formalism. Two-dimensional group-IV elements have been comprehensively appraised as the device material. The device separates the unpolarized current injected at the source-terminal into nearly 100% spin-polarized currents of the opposite polarities at the two drain terminals. The phase-transition activated by the electric-field orthogonal to the device is shown to extensively influence the current magnitude and its spin-polarization, and the effect is stronger for materials with smaller intrinsic spin-orbit coupling. Moreover, the device length and the area under field are shown to critically affect the device characteristics on phase change. It is shown that the same device can be operated as a spin-filter by inducing phase-transition selectively in the channel. The results are important for designing spin-devices from Group-IV monolayers.

Sadi, Mohammad Abdullah; Gupta, Gaurav, E-mail: a0089293@nus.edu.sg; Liang, Gengchiau [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

2014-10-21T23:59:59.000Z

83

Micromachined Linear Brownian Motor: Transportation of Nanobeads by Brownian Motion Using Three-Phase Dielectrophoretic Ratchet  

E-Print Network [OSTI]

-Phase Dielectrophoretic Ratchet Ersin ALTINTAS , Karl F. BOHRINGER1 , and Hiroyuki FUJITA Center for International-of-freedom of the random motion of beads into one dimension, which was rectified by a three-phase dielectrophoretic ratchet. [DOI: 10.1143/JJAP.47.8673] KEYWORDS: Brownian motion, dielectrophoresis, flashing ratchet, nanobead

84

Charge transport in silver chalcogenides in the region of phase transition  

SciTech Connect (OSTI)

Data on the {sigma}(T), R(T), and U(T) dependences in Ag{sub 2}Te, Ag{sub 2}Se, and Ag{sub 2}S in the region of the phase transition are analyzed. It is found that the phase transition in Ag{sub 2}Te is accompanied by a decrease in the electron concentration and this transition in Ag{sub 2}Se is accompanied by an increase in this concentration. The concentration of intrinsic charge carriers in Ag{sub 2}Te decreases by a factor of 4 as a result of the phase transition and increases by a factor of 2 in Ag{sub 2}Se. The effect of variation in the energy-band parameters in the region of phase transition on the electron mobility is considered. It is established that, in Ag{sub 2}Te and Ag{sub 2}S, electrons are scattered by optical phonons in the region of the phase transition, while electrons are scattered by acoustic phonons in the {alpha} and {beta} phases. It is assumed that the anomalously large increase in {sigma} and U in Ag{sub 2}S as a result of the phase transition is caused by an increase in the concentration n and a simultaneous decrease in {sigma}{sub g} and m{sub n}{sup *} by a factor of about 2.

Aliev, S. A.; Agaev, Z. F., E-mail: agayevz@rambler.ru; Zul'figarov, E. I. [National Academy of Sciences of Azerbaijan, Institute of Physics (Azerbaijan)

2007-09-15T23:59:59.000Z

85

A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation  

SciTech Connect (OSTI)

This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

2012-08-01T23:59:59.000Z

86

Investigation of two-phase transport phenomena in microchannels using a microfabricated experimental structure  

E-Print Network [OSTI]

. This work microfabricates experimental structures with distributed water injection as well as with heating of the distributed water injection decreases as the pressure drop increases. As the water injection rate is lower fails to keep up with its production and accumulation. Water transport also has an impact on the thermal

Hidrovo, Carlos H.

87

Using a scalable modeling and simulation framework to evaluate the benefits of intelligent transportation systems.  

SciTech Connect (OSTI)

A scalable, distributed modeling and simulation framework has been developed at Argonne National Laboratory to study Intelligent Transportation Systems. The framework can run on a single-processor workstation, or run distributed on a multiprocessor computer or network of workstations. The framework is modular and supports plug-in models, hardware, and live data sources. The initial set of models currently includes road network and traffic flow, probe and smart vehicles, traffic management centers, communications between vehicles and centers, in-vehicle navigation systems, roadway traffic advisories. The modeling and simulation capability has been used to examine proposed ITS concepts. Results are presented from modeling scenarios from the Advanced Driver and Vehicle Advisory Navigation Concept (ADVANCE) experimental program to demonstrate how the framework can be used to evaluate the benefits of ITS and to plan future ITS operational tests and deployment initiatives.

Ewing, T.; Tentner, A.

2000-03-21T23:59:59.000Z

88

Phase-sensitive probes of nuclear polarization in spin-blockaded transport  

E-Print Network [OSTI]

Spin-blockaded quantum dots provide a unique setting for studying nuclear-spin dynamics in a nanoscale system. Despite recent experimental progress, observing phase-sensitive phenomena in nuclear spin dynamics remains ...

Levitov, Leonid

89

SAMFT1D: Single-phase and multiphase flow and transport in 1 dimension. Version 2.0, Documentation and user`s guide  

SciTech Connect (OSTI)

This report documents a one-dimensional numerical model, SAMFT1D, developed to simulate single-phase and multiphase fluid flow and solute transport in variably saturated porous media. The formulation of the governing equations and the numerical procedures used in the code for single-phase and multiphase flow and transport are presented. The code is constructed to handle single-phase as well as two or three-phase flow conditions using two integrated sets of computational modules. The fully implicit scheme is used in the code for both single-phase and multiphase flow simulations. Either the Crank-Nicholson scheme or the fully implicit scheme may be used in the transport simulation. The single-phase modules employ the Galerkin and upstream weighted residual finite element techniques to model flow and transport of water (aqueous phase) containing dissolved single-species contaminants concurrently or sequentially, and include the treatment of various boundary conditions and physical processes. The multiphase flow modules use block-centered finite difference techniques to simulate two or three-phase flow problems, and treat different boundary conditions in terms of source/sink terms fully implicitly. Whereas the multiphase solute transport modules employ finite element schemes to handle single-species transport in multiphase fluid systems. This document has been produced as a user`s manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and simulation restart procedures.

Wu, Y.S.; Huyakorn, P.S.; Panday, S.; Park, N.S.; Kool, J.B. [HydroGeoLogic, Inc., Herndon, VA (United States)

1991-09-01T23:59:59.000Z

90

Phase-Controlled Growth of Metastable Fe5Si3 Nanowires by a Vapor Transport Method  

E-Print Network [OSTI]

to produce other metal-rich silicide nanostructures for future spintronic devices. Introduction Iron. Depending on the concentration ratio of FeI2(g) to SiI4(g), different phases of iron silicides are formed. The growth of nanowires is facilitated by the initial nucleation of silicide particles on the substrate

Kim, Bongsoo

91

Electrochimica Acta 52 (2007) 61256140 A two-dimensional, two-phase mass transport model  

E-Print Network [OSTI]

in the unsaturated porous medium flow theory. The two-phase flow behavior in the anode flow channel is modeled by integrating those in the different regions is solved numerically using a home-written computer code because of its high efficiency, high energy density, low emission and simple structure [1]. However

Zhao, Tianshou

92

Oil transportation in the global landscape : the Murmansk Oil Terminal and Pipeline proposal evaluated  

E-Print Network [OSTI]

Oil and transportation have been commingled since the first oil reserves were discovered. The importance of energy, namely oil, and the transportation of that energy from the producers to the consumers is persistently ...

Roy, Ankur, 1976-

2003-01-01T23:59:59.000Z

93

New Method for Evaluating Irreversible Adsorption and Stationary Phase Bleed in Gas Chromatographic Capillary Columns  

SciTech Connect (OSTI)

A novel method for the evaluation of gas chromatographic (GC) column inertness has been developed using a tandem GC approach. Typically column inertness is measured by analyte peak shape evaluation. In general, silica, glass, and metal surfaces are chemically reactive and can cause analyte adsorption, which typically is observed as chromatographic peak tailing. Adsorption processes produce broad, short chromatographic peaks that confound peak area determinations because a significant portion can reside in the noise. In addition, chromatographic surfaces and stationary phases can irreversibly adsorb certain analytes without obvious degradation of peak shape. The inertness measurements described in this work specifically determine the degree of irreversible adsorption behavior of specific target compounds at levels ranging from approximately 50 picograms to 1 nanogram on selected gas chromatographic columns. Chromatographic columns with 5% phenylmethylsiloxane, polyethylene glycol (wax), trifluoropropylsiloxane, and 78% cyanopropylsiloxane stationary phases were evaluated with a variety of phosphorus- and sulfur- containing compounds selected as test compounds due to their ease of adsorption and importance in trace analytical detection. In addition, the method was shown effective for characterizing column bleed.

Wright, Bob W.; Wright, Cherylyn W.

2012-10-26T23:59:59.000Z

94

Sediment and radionuclide transport in rivers. Phase 2. Field sampling program for Cattaraugus and Buttermilk Creeks, New York  

SciTech Connect (OSTI)

As part of a study on sediment and radionuclide transport in rivers, Pacific Northwest Laboratory (PNL) is investigating the effect of sediment on the transport of radionuclides in Cattaraugus and Buttermilk Creeks, New York. A source of radioactivity in these creeks is the Western New York Nuclear Service Center which consists of a low-level waste disposal site and a nuclear fuel reprocessing plant. Other sources of radioactivity include fallout from worldwide weapons testing and natural background radioactivity. The major objective of the PNL Field Sampling Program is to provide data on sediment and radionuclide characteristics in Cattaraugus and Buttermilk Creeks to verify the use of the Sediment and Radionuclide Transport model, SERATRA, for nontidal rivers. This report covers the results of field data collection conducted during September 1978. Radiological analysis of sand, silt, and clay size fractions of suspended and bed sediment, and water were performed. Results of these analyses indicate that the principal radionuclides occurring in these two water courses, with levels significantly higher than background levels, during the Phase 2 sampling program were Cesium-137 and Strontium-90. These radionuclides had significantly higher activity levels above background in the bed sediment, suspended sediment, and water samples. Other radionuclides that are possibly being released into the surface water environment by the Nuclear Fuel Services facilities are Plutonium-238, 239, and 240, Americium-241, Curium-244, and Tritium. More radionuclides were consistently found in the bed sediment as compared to suspended sediment. The fewest radionuclides were found in the water of Buttermilk and Cattaraugus Creeks. The higher levels were found in the bed sediments for the gamma-emitters and in the suspended sediment for the alpha and beta-emitters (not including Tritium).

Walters, W.H.; Ecker, R.M.; Onishi, Y.

1982-04-01T23:59:59.000Z

95

Joining of Ion Transport Membranes Using a Novel Transient Liquid Phase Process  

SciTech Connect (OSTI)

The feasibility of a novel transient liquid phase (TLP) joining method has been demonstrated in joining La{sub 0.9}Ca{sub 0.1}FeO{sub 3} materials. Metal oxide powders were processed to form the TLP compositions which were used in the joining process. The method has been successful in producing joint interfaces that effectively disappear, as they are the same material and have the same properties as the joined parts. The feasibility of the method has been demonstrated for a single system, but many systems where the method can potentially be applied have been identified.

Darryl P. Butt

2006-08-30T23:59:59.000Z

96

The Evaluation of Multimodal Transportation Systems for Economic Efficiency and Other Impacts  

E-Print Network [OSTI]

Then, we the economic evaluation modeling in Intermodal ofurban economyand and economic evaluations. for devising andtransportation for the economic evaluation of regional

Johnston, Robert A.

1994-01-01T23:59:59.000Z

97

Development and evaluation of a workpiece temperature analyzer (WPTA) for industrial furances (Phase 1)  

SciTech Connect (OSTI)

This project is directed toward the research, development, and evaluation of a viable commercial product-a workpiece temperature measurement analyzer (WPTA) for fired furnaces based on unique radiation properties of surfaces. This WPTA will provide for more uniform, higher quality products and reduce product rejects as well as permit the optimum use of energy. The WPTA may also be utilized in control system applications including metal heat treating, forging furnaces, and ceramic firing furnaces. A large market also exists in the chemical process and refining industry. WPTA applications include the verification of product temperature/time cycles, and use as a front-end sensor for automatic feedback control systems. This report summarizes the work performed in Phase 1 of this three-phase project. The work Phase 1 included the application evaluation; the evaluation of present technologies and limitations; and the development of a preliminary conceptual WPTA design, including identification of technical and economic benefits. Recommendations based on the findings of this report include near-term enhancement of the capabilities of the Pyrolaser, and long-term development of an instrument based on Raman Spectroscopy. Development of the Pyrofiber, fiberoptics version of the Pyrolaser, will be a key to solving present problems involving specularity, measurement angle, and costs of multipoint measurement. Extending the instrument's measurement range to include temperatures below 600{degrees}C will make the product useful for a wider range of applications. The development of Raman Spectroscopy would result in an instrument that could easily be adapted to incorporate a wealth of additional nondestructive analytical capabilities, including stress/stain indication, crystallography, species concentrations, corrosion studies, and catalysis studies, in addition to temperature measurement. 9 refs., 20 figs., 16 tabs.

Not Available

1991-10-01T23:59:59.000Z

98

In-vessel thermohydraulics evaluation of an unprotected transient overpower accident and delayed neutron precursor concentration transport analysis using a multidimensional code  

SciTech Connect (OSTI)

This paper reports on a three-dimensional in-vessel thermohydraulics analysis that is carried out for the early phase of an unprotected transient overpower (UTOP) accident and delayed neutron precursor concentration transport in a typical loop-type fast breeder reactor plant. In the UTOP calculations, the time at which the sodium temperature reaches the reactor trip level is evaluated based on calculated upper plenum flow and temperature distributions. For fission product release from the core assemblies, the delayed neutron precursor concentration in the sodium that reaches the detectors depends on the location of the faulted assembly. Three-dimensional flow patterns, and hence, the residence time in the upper plenum. Delayed neutron precursors that bypassed the recirculation flow to appear in the plenum primarily contribute to the peak concentration.

Muramatsu, T.; Ninokata, H. (Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan))

1992-02-01T23:59:59.000Z

99

Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics  

SciTech Connect (OSTI)

Regulating the temperature of building integrated photovoltaics (BIPV) using phase change materials (PCMs) reduces the loss of temperature dependent photovoltaic (PV) efficiency. Five PCMs were selected for evaluation all with melting temperatures {proportional_to}25 {+-} 4 C and heat of fusion between 140 and 213 kJ/kg. Experiments were conducted at three insolation intensities to evaluate the performance of each PCM in four different PV/PCM systems. The effect on thermal regulation of PV was determined by changing the (i) mass of PCM and (ii) thermal conductivities of the PCM and PV/PCM system. A maximum temperature reduction of 18 C was achieved for 30 min while 10 C temperature reduction was maintained for 5 h at -1000 W/m{sup 2} insolation. (author)

Hasan, A.; Norton, B. [Dublin Energy Lab., Focas Institute, School of Physics, Dublin Institute of Technology, Kevin St., Dublin 8 (Ireland); McCormack, S.J. [Department of Civil, Structure and Environmental Engineering, Trinity College Dublin, Dublin 1 (Ireland); Huang, M.J. [Centre for Sustainable Technologies, University of Ulster, Newtownabbey, N. Ireland, BT370QB (United Kingdom)

2010-09-15T23:59:59.000Z

100

Ultrasonic Phased Array Evaluation of Control Rod Drive Mechanism (CRDM) Nozzle Interference Fit and Weld Region  

SciTech Connect (OSTI)

In this investigation, non-destructive and destructive testing were used to evaluate potential boric acid leakage paths around an Alloy 600 CRDM penetration (Nozzle 63) from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2003. For this investigation, Nozzle 63 was examined using phased array ultrasonic testing. Prior to examining Nozzle 63, a CRDM penetration mockup with known notches and boric acid deposits was used to assess probe sensitivity, resolution and calibration. Following the non-destructive testing of Nozzle 63, the nozzle was destructively examined to visually assess the leak paths. These destructive and nondestructive results are compared and results are presented. The results of this investigation may be used by NRC to evaluate licensees volumetric leak path assessment methodologies and to support regulatory inspection requirements.

Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Mathews, Royce; Hanson, Brady D.; Diaz, Aaron A.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An evaluation of high viscosity, crowded phase emulsions as herbicide carriers when applied through the bifluid spray system  

E-Print Network [OSTI]

AN EVALUATION OF HIGH VISCOSITY, CROWDED PHASE EMULSIONS AS HERBICIDE CARRIERS WHEN APPLIED THROUGH THE BIFLUID SPRAY SYSTEM A Thesis By PHIL J, PHILLIPS Submitted to the Graduate School of the Agricultural and Mechanical College of Texas... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1963 Range Management AN EVALUATION OF HIGH VISCOSITY, CROWDED PHASE EMULSIONS AS HERBICIDE CARRIERS WHEN APPLIED THROUGH THE BIFLUID SPRAY SYSTEM A Thesis By PHIL J...

Phillips, Phil J

1963-01-01T23:59:59.000Z

102

Phase retrieval using radiation and matter-wave fields: Validity of Teague's method for solution of the transport-of-intensity equation  

SciTech Connect (OSTI)

Although originally developed for coherent paraxial scalar electromagnetic radiation in the visible-light regime, phase retrieval using the transport-of-intensity equation has been successfully applied to a range of paraxial radiation and matter-wave fields. Such applications include using electron wave fields to quantitatively image magnetic skyrmions and spin ices, propagation-based phase-contrast imaging using cold neutrons and hard x-rays, and visible-light refractive imaging of the projected column density of cold-atom clouds. Teague's method for phase retrieval using the transport-of-intensity equation, which renders the phase of a paraxial complex wave indirectly measurable via the existence of a conserved current, has been applied to a broad variety of situations which include all of the experiments described above. However, these applications have been undertaken without a thorough analysis of the underlying validity of the method. Here we derive sufficient conditions for the phase-retrieval solution provided by Teague's method to coincide with the true phase of the paraxial radiation or matter-wave field. We also present a sufficient condition guaranteeing that the discrepancy between the true phase function and that reconstructed using Teague's solution is small. These conditions demonstrate that, in most practical cases, for phase-amplitude retrieval using the transport-of-intensity equation, the Teague solution is very close to the exact solution. However, we also describe a counter example in the context of phase-amplitude retrieval using hard x-rays, in which the relative root-mean-square difference between the exact solution and that obtained using Teague's method is 9%. These findings clarify the foundations of one of the most widely applied methods for propagation-based phase retrieval of both paraxial matter and radiation wave fields and define a region for its applicability.

Schmalz, Jelena A. [School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); Gureyev, Timur E. [CSIRO Materials Science and Engineering, PB 33, Clayton South MDC, VIC 3169 (Australia); School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); Paganin, David M. [School of Physics, Monash University, VIC 3800 (Australia); Pavlov, Konstantin M. [School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); School of Physics, Monash University, VIC 3800 (Australia)

2011-08-15T23:59:59.000Z

103

Transport Model Linear Evaluation Parametric Scan: limit of Te,i = 0  

E-Print Network [OSTI]

, G. W. Hammett Princeton Plasma Physics Laboratory, Princeton, NJ 2011 U.S. Transport Task Force]. In addition, the outward heat flux is less than the convective heat flux, due to preferential transport of low-ion coupling suppress the edge Ti resulting in a steep ion temperature gradient and low Ti /Te which drive

Hammett, Greg

104

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1xZn2Sb2**  

E-Print Network [OSTI]

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1±xZn2Sb. Introduction Because of their ability to convert waste heat into electricity, thermoelectric materials have in efficiency, thermoelectric materials could pro- vide a substantial amount of electrical power from automotive

105

Evaluation of Transportation Vibration Associated with Relocation of Work in Process As Part of KCRIMS  

SciTech Connect (OSTI)

During relocation of the Kansas City Plant (KCP) from the site at Bannister Road to the site at Botts Road, work in process (WIP) within a production department must be transported. This report recommends packaging to mitigate vibration levels experienced by products during between-facility transportation. Measurements and analysis demonstrate that this mitigation results in vibration levels less than those experienced by the product during routine production processes within potentially damaging frequency ranges.

Hartwig, Troy

2013-04-01T23:59:59.000Z

106

Tribological evaluation of high-speed steels with a regulated carbide phase  

SciTech Connect (OSTI)

Wear resistance of a commercial steel and titanium-niobium high-speed steels with a regulated carbide phase was evaluated by employing a micro-scale abrasive wear test with alumina particles. The worn volumes and corresponding wear coefficients were the lowest for the new non-ledeburitic grades containing titanium, then the two niobium grades, the conventional (both wrought and by powder metallurgy) steels exhibited the worse wear resistance. Fractography SEM observations together with energy-dispersive X-ray (EDX) chemical analysis revealed the decisive role of the steels' MC particles in the wear process. These carbides influenced the abrasion by stoppage of the wear scars and/or changing their trajectories. Directional and nondirectional abrasion modes in the steels tested using alumina and carborundum abrasives were found and are discussed.

Richter, Janusz

2003-06-15T23:59:59.000Z

107

Inland-transport modes for coal and coal-derived energy: an evaluation method for comparing environmental impacts  

SciTech Connect (OSTI)

This report presents a method for evaluating relative environmental impacts of coal transportation modes (e.g., unit trains, trucks). Impacts of each mode are evaluated (rated) for a number of categories of environmental effects (e.g., air pollution, water pollution). The overall environmental impact of each mode is determined for the coal origin (mine-mouth area), the coal or coal-energy product destination (demand point), and the line-haul route. These origin, destination, and en route impact rankings are then combined into a systemwide ranking. Thus the method accounts for the many combinations of transport modes, routes, and energy products that can satisfy a user's energy demand from a particular coal source. Impact ratings and system rankings are not highly detailed (narrowly defined). Instead, environmental impacts are given low, medium, and high ratings that are developed using environmental effects data compiled in a recent Argonne National Laboratory report entitled Data for Intermodal Comparison of Environmental Impacts of Inland Transportation Alternatives for Coal Energy (ANL/EES-TM-206). The ratings and rankings developed for this report are generic. Using the method presented, policy makers can apply these generic data and the analytical framework given to particular cases by adding their own site specific data and making some informed judgements. Separate tables of generic ratings and rankings are developed for transportation systems serving coal power plants, coal liquefaction plants, and coal gasification plants. The final chapter presents an hypothetical example of a site-specific application and adjustment of generic evaluations. 44 references, 2 figures, 14 tables.

Bertram, K.M.

1983-06-01T23:59:59.000Z

108

Energy Dependence of Directed Flow in Au+Au Collisions from a Multi-phase Transport Model  

E-Print Network [OSTI]

The directed flow of charged hadron and identified particles has been studied in the framework of a multi-phase transport (AMPT) model, for $^{197}$Au+$^{197}$Au collisions at $\\sqrt{s_{NN}}=$200, 130, 62.4, 39, 17.2 and 9.2 GeV. The rapidity, centrality and energy dependence of directed flow for charged particles over a wide rapidity range are presented. AMPT model gives the correct $v_1(y)$ slope, as well as its trend as a function of energy, while it underestimates the magnitude. Within the AMPT model, the proton $v_1$ slope is found to change its sign when the energy increases to 130 GeV - a feature that is consistent with ``anti-flow''. Hadronic re-scattering is found having little effect on $v_1$ at top RHIC energies. These studies can help us to understand the collective dynamics at early times in relativistic heavy-ion collisions, and they can also be served as references for the RHIC Beam Energy Scan program.

J. Y. Chen; J. X. Zuo; X. Z. Cai; F. Liu; Y. G. Ma; A. H. Tang

2009-12-09T23:59:59.000Z

109

Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report  

SciTech Connect (OSTI)

During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

NONE

1995-05-01T23:59:59.000Z

110

Evaluation of gas-phase technetium decontamination and safety related experiments during FY 1994. A report of work in progress  

SciTech Connect (OSTI)

Laboratory activities for FY94 included: evaluation of decontamination of Tc by gas-phase techniques, evaluation of diluted ClF{sub 3} for removing U deposits, evaluation of potential hazard of wet air inlekage into a vessel containing ClF{sub 3}, planning and preparation for experiments to assess hazard of rapid reaction of ClF{sub 3} and hydrated UO{sub 2}F{sub 2} or powdered Al, and preliminary evaluation of compatibility of Tenic valve seat material.

Simmons, D.W.; Munday, E.B.

1995-05-01T23:59:59.000Z

111

An Evaluation of Open MPI's Matching Transport Layer on the Cray XT  

SciTech Connect (OSTI)

Open MPI was initially designed to support a wide variety of high-performance networks and network programming interfaces. Recently, Open MPI was enhanced to support networks that have full support for MPI matching semantics. Previous Open MPI efforts focused on networks that require the MPI library to manage message matching, which is sub-optimal for some networks that inherently support matching. We describes a new matching transport layer in Open MPI, present results of micro-benchmarks and several applications on the Cray XT platform, and compare performance of the new and the existing transport layers, as well as the vendor-supplied implementation of MPI.

Graham, Richard L [ORNL; Brightwell, Ron [Sandia National Laboratories (SNL); Barrett, Brian [Los Alamos National Laboratory (LANL); Bosilca, George [University of Tennessee, Knoxville (UTK); Pjesivac-Grbovic, Jelena [University of Tennessee, Knoxville (UTK)

2007-01-01T23:59:59.000Z

112

Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program  

SciTech Connect (OSTI)

This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type B shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

S. G. Johnson; K. L. Lively

2010-05-01T23:59:59.000Z

113

Geographic Information Systems-Transportation ISTEA management systems server-net prototype pooled fund study: Phase B summary  

SciTech Connect (OSTI)

The Geographic Information System-Transportation (GIS-T) ISTEA Management Systems Server Net Prototype Pooled Fund Study represents the first national cooperative effort in the transportation industry to address the management and monitoring systems as well as the statewide and metropolitan transportation planning requirements of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). The Study was initiated in November 1993 through the Alliance for Transportation Research and under the leadership of the New Mexico State Highway and Transportation Department. Sandia National Laboratories, an Alliance partner, and Geographic Paradigm Computing. Inc. provided technical leadership for the project. In 1992, the Alliance for Transportation Research, the New Mexico State Highway and Transportation Department, Sandia National Laboratories, and Geographic Paradigm Computing, Inc., proposed a comprehensive research agenda for GIS-T. That program outlined a national effort to synthesize new transportation policy initiatives (e.g., management systems and Intelligent Transportation Systems) with the GIS-T server net ideas contained in the NCHRP project {open_quotes}Adaptation of GIS to Transportation{close_quotes}. After much consultation with state, federal, and private interests, a project proposal based on this agenda was prepared and resulted in this Study. The general objective of the Study was to develop GIS-T server net prototypes supporting the ISTEA requirements for transportation planning and management and monitoring systems. This objective can be further qualified to: (1) Create integrated information system architectures and design requirements encompassing transportation planning activities and data. (2) Encourage the development of functional GIS-T server net prototypes. (3) Demonstrate multiple information systems implemented in a server net environment.

Espinoza, J. Jr.; Dean, C.D.; Armstrong, H.M. [and others

1997-06-01T23:59:59.000Z

114

Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

2009-01-01T23:59:59.000Z

115

EXPERIMENTAL EVALUATION OF CHEMICAL SEQUESTRATION OF CARBON DIOXIDE IN DEEP AQUIFER MEDIA - PHASE II  

SciTech Connect (OSTI)

In 1998 Battelle was selected by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under a Novel Concepts project grant to continue Phase II research on the feasibility of carbon dioxide (CO{sub 2}) sequestration in deep saline formations. The focus of this investigation is to conduct detailed laboratory experiments to examine factors that may affect chemical sequestration of CO{sub 2} in deep saline formations. Reactions between sandstone and other geologic media from potential host reservoirs, brine solutions, and CO{sub 2} are being investigated under high-pressure conditions. Some experiments also include sulfur dioxide (SO{sub 2}) gases to evaluate the potential for co-injection of CO{sub 2} and SO{sub 2} related gases in the deep formations. In addition, an assessment of engineering and economic aspects is being conducted. This current Technical Progress Report describes the status of the project as of September 2000. The major activities undertaken during the quarter included several experiments conducted to investigate the effects of pressure, temperature, time, and brine composition on rock samples from potential host reservoirs. Samples (both powder and slab) were taken from the Mt. Simon Sandstone, a potential CO{sub 2} host formation in the Ohio, the Eau Claire Shale, and Rome Dolomite samples that form the caprock for Mt. Simon Sandstone. Also, a sample with high calcium plagioclase content from Frio Formation in Texas was used. In addition, mineral samples for relatively pure Anorthite and glauconite were experimented on with and without the presence of additional clay minerals such as kaolinite and montmorillonite. The experiments were run for one to two months at pressures similar to deep reservoirs and temperatures set at 50 C or 150 C. Several enhancements were made to the experimental equipment to allow for mixing of reactants and to improve sample collection methods. The resulting fluids (gases and liquids) as well as the rock samples were characterized to evaluate the geochemical changes over the experimental period. Preliminary results from the analysis are presented in the report. More detailed interpretation of the results will be presented in the technical report at the end of Phase II.

Neeraj Gupta; Bruce Sass; Jennifer Ickes

2000-11-28T23:59:59.000Z

116

Evaluate and characterize mechanisms controlling transport, fate, and effects of army smokes in the aerosol wind tunnel: Transport, transformations, fate, and terrestrial ecological effects of hexachloroethane obscurant smokes  

SciTech Connect (OSTI)

The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing the importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.

Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.; Fellows, R.J.; Van Voris, P.; McVeety, B.D.; Li, Shu-mei W.; McFadden, K.M.

1989-09-01T23:59:59.000Z

117

Phase II test plan for the evaluation of the performance of container filling systems  

SciTech Connect (OSTI)

The PHMC will provide tank wastes for final treatment by BNFL from Hanford's waste tanks. Concerns about the ability for ''grab'' sampling to provide large volumes of representative waste samples has led to the development of a nested, fixed-depth sampling system. Preferred concepts for filling sample containers that meet RCRA organic sample criteria were identified by a PHMC Decision Board. These systems will replace the needle based sampling ''T'' that is currently on the sampling system. This test plan document identifies cold tests with simulants that will demonstrate the preferred bottle filling concepts abilities to provide representative waste samples and will meet RCRA criteria. Additional tests are identified that evaluate the potential for cross-contamination between samples and the ability for the system to decontaminate surfaces which have contacted tank wastes. These tests will be performed with kaolid/water and sand/water slurry simulants in the test rig that was used by AEAT to complete Phase 1 tests in FY 1999.

BOGER, R.M.

1999-09-28T23:59:59.000Z

118

A methodology for the evaluation of the turbine jet engine fragment threat to generic air transportable containers  

SciTech Connect (OSTI)

Uncontained, high-energy gas turbine engine fragments are a potential threat to air-transportable containers carried aboard jet aircraft. The threat to a generic example container is evaluated by probability analyses and penetration testing to demonstrate the methodology to be used in the evaluation of a specific container/aircraft/engine combination. Fragment/container impact probability is the product of the uncontained fragment release rate and the geometric probability that a container is in the path of this fragment. The probability of a high-energy rotor burst fragment from four generic aircraft engines striking one of the containment vessels aboard a transport aircraft is approximately 1.2 {times} 10{sup {minus}9} strikes/hour. Finite element penetration analyses and tests can be performed to identify specific fragments which have the potential to penetrate a generic or specific containment vessel. The relatively low probability of engine fragment/container impacts is primarily due to the low release rate of uncontained, hazardous jet engine fragments.

Harding, D.C.; Pierce, J.D.

1993-06-01T23:59:59.000Z

119

A generalized real options methodology for evaluating investments under uncertainty with application to air transportation  

E-Print Network [OSTI]

Real options analysis is being increasingly used as a tool to evaluate investments under uncertainty; however, traditional real options methodologies have some shortcomings that limit their utility, such as the use of the ...

Miller, Bruno, 1974-

2005-01-01T23:59:59.000Z

120

Evaluation of Stress Before, During, and After Transport in Naive Yearling Horses  

E-Print Network [OSTI]

months of age be given 0.9 ? 1.0 m 2 per horse and adult horses over the age of 24 months be allowed 1.2 m 2 per horse (ARMCANZ, 1987). While this code is much more specific than the 9 CFR Chapter 88 published in the U.S., it is only a set... (? SEM) by dietary supplement treatment during the 6 hour transport period of Trials 1 and 2. .................................... 39 Table 10 Least squares means of cortisol, corticosterone and DHEA concentrations (? SEM) for dietary...

Garey, Shannon M.

2010-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Direct evaluation of ballistic phonon transport in a multi-walled carbon nanotube  

SciTech Connect (OSTI)

Phonon confinement and in situ thermal conductance measurements in an individual multi-walled carbon nanotube (MWNT) are reported. Focused ion beam (FIB) irradiation was used to successively shorten a 4.8??m long MWNT, eventually yielding a 0.3??m long MWNT. After the first FIB irradiation, a 41% reduction in conductance was achieved, compared with that of the pristine MWNT. This was because the contributions from phonons with long free paths were excluded by scattering at FIB-induced defects. Phonon transport in linked multiple-length nanotubes was also investigated.

Hayashi, Hiroyuki [Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395 (Japan); Takahashi, Koji, E-mail: takahashi@aero.kyushu-u.ac.jp [Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395 (Japan); JST, CREST, Kyushu University, Fukuoka 819-0395 (Japan); International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Ikuta, Tatsuya; Nishiyama, Takashi [Department of Aeronautics and Astronautics, Kyushu University, Fukuoka 819-0395 (Japan); JST, CREST, Kyushu University, Fukuoka 819-0395 (Japan); Takata, Yasuyuki [JST, CREST, Kyushu University, Fukuoka 819-0395 (Japan); International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Zhang, Xing [International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395 (Japan); Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

2014-03-17T23:59:59.000Z

122

Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report  

SciTech Connect (OSTI)

Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

1998-07-01T23:59:59.000Z

123

TECHNICAL EVALUATION REPORT TUBA CITY FINAL PHASE I GROUND-WATER COMPLIANCE ACTION PLAN  

E-Print Network [OSTI]

remediation at the site, and is expected to last approximately 3 years. Phase I includes installation of additional recovery wells and Phase II will include expansion of remediation capacity and monitoring to ensure the aquifer restoration standards are met. Phases I and II of ground-water remediation are expected to last approximately 12 years. DESCRIPTION OF THE REQUEST: The U.S. Department of Energy (DOE) has requested concurrence from the U.S. Nuclear

unknown authors

2000-01-01T23:59:59.000Z

124

Evaluating the relationship between use phase environmental impacts and manufacturing process precision  

E-Print Network [OSTI]

between use phase environmental impacts and manufacturingprecision and environmental impacts may be developed forDewulf W (2009) Environmental Impact Analysis of Composite

Helu, Moneer; Vijayaraghavan, Athulan; Dornfeld, David

2011-01-01T23:59:59.000Z

125

Yakima and Touchet River Basins Phase II Fish Screen Evaluation, 2006-2007 Annual Report.  

SciTech Connect (OSTI)

In 2006, Pacific Northwest National Laboratory (PNNL) researchers evaluated 27 Phase II fish screen sites in the Yakima and Touchet river basins. Pacific Northwest National Laboratory performs these evaluations for Bonneville Power Administration (BPA) to determine whether the fish screening devices meet those National Marine Fisheries (NMFS) criteria for juvenile fish screen design, that promote safe and timely passage of juvenile salmonids. The NMFS criteria against which the sites were evaluated are as follows: (1) a uniform flow distribution over the screen surface to minimize approach velocity; (2) approach velocities less than or equal to 0.4 ft/s protects the smallest salmonids from impingement; (3) sweep velocities that are greater than approach velocities to minimize delay of out-migrating juveniles and minimize sediment deposition near the screens; (4) a bypass flow greater than or equal to the maximum flow velocity vector resultant upstream of the screens to also minimize delay of out-migrating salmonids; (5) a gradual and efficient acceleration of flow from the upstream end of the site into the bypass entrance to minimize delay of out-migrating salmonids; and (6) screen submergence between 65% and 85% for drum screen sites. In addition, the silt and debris accumulation next to the screens should be kept to a minimum to prevent excessive wear on screens, seals and cleaning mechanisms. Evaluations consist of measuring velocities in front of the screens, using an underwater camera to assess the condition and environment in front of the screens, and noting the general condition and operation of the sites. Results of the evaluations in 2006 include the following: (1) Most approach velocities met the NMFS criterion of less than or equal to 0.4 ft/s. Of the sites evaluated, 31% exceeded the criterion at least once. Thirty-three percent of flat-plate screens had problems compared to 25% of drum screens. (2) Woody debris and gravel deposited during high river levels were a problem at several sites. In some cases, it was difficult to determine the bypass pipe was plugged until several weeks had passed. Slow bypass flow caused by both the obstructions and high river levels may have discouraged fish from entering the bypass, but once they were in the bypass, they may have had no safe exit. Perhaps some tool or technique can be devised that would help identify whether slow bypass flow is caused by pipe blockage or by high river levels. (3) Bypass velocities generally were greater than sweep velocities, but sweep velocities often did not increase toward the bypass. The latter condition could slow migration of fish through the facility. (4) Screen and seal materials generally were in good condition. (5) Automated cleaning brushes generally functioned properly; chains and other moving parts were typically well-greased and operative. (6) Washington Department of Fish and Wildlife (WDFW) and U.S. Bureau of Reclamation (USBR) generally operated and maintained fish screen facilities in a way that provided safe passage for juvenile fish. (7) Efforts with WDFW to find optimal louver settings at Naches-Selah were partly successful. The number of spots with excessive approach velocities was decreased, but we were unable to adjust the site to bring all approach values below 0.4 ft/s. (8) In some instances, irrigators responsible for specific maintenance at their sites (e.g., debris removal) did not perform their tasks in a way that provided optimum operation of the fish screen facility. Enforcement personnel proved effective at reminding irrigation districts of their responsibilities to maintain the sites for fish protection as well as irrigation. (9) We recommend placing datasheets providing up-to-date operating criteria and design flows in each site's logbox. The datasheet should include bypass design flows and a table showing depths of water over the weir and corresponding bypass flow. A similar datasheet relating canal gage readings and canal discharge in cubic feet per second would help identify times when the canal is taking mo

Chamness, Mickie; Tunnicliffe, Cherylyn [Pacific Northwest National Laboratory

2007-03-01T23:59:59.000Z

126

Testing and Evaluation Protocol for Mobile and Transportable Radiation Monitors Used for Homeland  

E-Print Network [OSTI]

................................................................................................................2 7. Guidance for testing ANSI N42.42 data format requirements ................................2 8. Test modifications from ANSI/IEEE N42.43-2006 requirements...........................3 9 on the performance requirements established in ANSI N42.43, "American National Standard for Evaluation

127

An original method to evaluate the transport parameters and reconstruct the electric field in solid-state photodetectors  

SciTech Connect (OSTI)

A method for reconstructing the spatial profile of the electric field along the thickness of a generic bulk solid-state photodetector is proposed. Furthermore, the mobility and lifetime of both electrons and holes can be evaluated contextually. The method is based on a procedure of minimization built up from current transient profiles induced by laser pulses in a planar detector at different applied voltages. The procedure was tested in CdTe planar detectors for X- and Gamma rays. The devices were measured in a single-carrier transport configuration by impinging laser light on the sample cathode. This method could be suitable for many other devices provided that they are made of materials with sufficiently high resistivity, i.e., with a sufficiently low density of intrinsic carriers.

Santi, A.; Piacentini, G. [DiFeST, Department of Physics and Earth Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma (Italy); Zanichelli, M.; Pavesi, M., E-mail: maura.pavesi@unipr.it [DiFeST, Department of Physics and Earth Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma (Italy); IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, 43124 Parma (Italy); Cola, A.; Farella, I. [IMM-CNR, Institute for Microelectronics and Microsystems, Via Monteroni, 73100 Lecce (Italy)

2014-05-12T23:59:59.000Z

128

Predictive two-dimensional scrape-off layer plasma transport modeling of phase-I operations of tokamak SST-1 using SOLPS5  

SciTech Connect (OSTI)

Computational analysis of coupled plasma and neutral transport in the Scrape-Off Layer (SOL) region of the Steady-State Superconducting Tokamak (SST-1) is done using SOLPS for Phase-I of double-null divertor plasma operations. An optimum set of plasma parameters is explored computationally for the first phase operations with the central objective of achieving an effective control over particle and power exhaust. While the transport of plasma species is treated using a fluid model in the B2.5 code, a full kinetic description is provided by the EIRENE code for the neutral particle transport in a realistic geometry. Cases with and without external gas puffing are analyzed for finding regimes where an effective control of plasma operations can be exercised by controlling the SOL plasma conditions over a range of heating powers. In the desired parameter range, a reasonable neutral penetration across the SOL is observed, capable of causing a variation of up to 15% of the total input power, in the power deposited on the divertors. Our computational characterization of the SOL plasma with input power 1 MW and lower hybrid current drive, for the separatrix density up to 10{sup 19}?m{sup ?3}, indicates that there will be access to high recycling operations producing reduction in the temperature and the peak heat flux at the divertor targets. This indicates that a control of the core plasma density and temperature would be achievable. A power balance analysis done using the kinetic neutral transport code EIRENE indicates about 60%-75% of the total power diverted to the targets, providing quantitative estimates for the relative power loading of the targets and the rest of the plasma facing components.

Himabindu, M.; Tyagi, Anil; Sharma, Devendra; Deshpande, Shishir P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Bonnin, Xavier [Laboratoire des Sciences des Procds et des Matriaux, CNRS, Universit Paris13, Sorbonne Paris Cit, Villetaneuse 93430 (France)] [Laboratoire des Sciences des Procds et des Matriaux, CNRS, Universit Paris13, Sorbonne Paris Cit, Villetaneuse 93430 (France)

2014-02-15T23:59:59.000Z

129

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

130

Evaluation of melter technologies for vitrification of Hanford site low-level tank waste - phase 1 testing summary report  

SciTech Connect (OSTI)

Following negotiation of the fourth amendment to the Tri- Party Agreement for Hanford Site cleanup, commercially available melter technologies were tested during 1994 and 1995 for vitrification of the low-level waste (LLW) stream to be derived from retrieval and pretreatment of the radioactive defense wastes stored in 177 underground tanks. Seven vendors were selected for Phase 1 testing to demonstrate vitrification of a high-sodium content liquid LLW simulant. The tested melter technologies included four Joule-heated melters, a carbon electrode melter, a combustion melter, and a plasma melter. Various dry and slurry melter feed preparation processes also were tested. The technologies and Phase 1 testing results were evaluated and a preliminary technology down-selection completed. This report describes the Phase 1 LLW melter vendor testing and the tested technologies, and summarizes the testing results and the preliminary technology recommendations.

Wilson, C.N., Westinghouse Hanford

1996-06-27T23:59:59.000Z

131

Environmental Chemistry CHM1401H Transport and Fate of Chemical Species in the Environment  

E-Print Network [OSTI]

and solid phases of environmental significance, it will be shown how to build, use, and evaluate simulationEnvironmental Chemistry CHM1401H Transport and Fate of Chemical Species in the Environment. Photochemistry. Environmental influences on chemistry. Phase partitioning. Phase partitioning. Sorption

Chan, Hue Sun

132

Evaluation of the phase content and properties of a detonation gun coating  

SciTech Connect (OSTI)

X-ray diffraction techniques were used to identify the phases present in four molybdenum base D-Gun{trademark} coatings because the common method of an SEM equipped with energy dispersive spectroscopy could not distinguish between the phases. The overlapping diffraction peaks from the coatings were resolved using a profile fitting computer routine. Powder samples from each phase present in the coatings were obtained and reference samples prepared and measured. The Reference Intensity Ratio method was used to quantify the amount of each phase present in each coating. Regression analysis was used to relate coating hardness and laboratory wear test results to the amount of molybdenum in each coating. Hardness appears to be unrelated to molybdenum whereas the erosion and abrasion results can be represented by a linear relationship.

Whichard, G.C.; Stavros, A.J. [Praxair Surface Technologies, Inc., Indianapolis, IN (United States)

1994-12-31T23:59:59.000Z

133

Evaluation on the thin-film phase change material-based technologies  

E-Print Network [OSTI]

Two potential applications of thin film phase-change materials are considered, non-volatile electronic memories and MEMS (Micro-Electro-Mechanical Systems) actuators. The markets for those two applications are fast growing ...

Guo, Qiang, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

134

EVALUATION OF THOR MINERALIZED WASTE FORMS FOR THE DOE ADVANCED REMEDIATION TECHNOLOGIES PHASE 2 PROJECT  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. The Supplemental Treatment chosen will immobilize that portion of the retrieved LAW that is not sent to the WTP's LAW Vitrification facility into a solidified waste form. The solidified waste will then be disposed on the Hanford site in the Integrated Disposal Facility (IDF). In addition, the WTP LAW Vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as Cs-137, I-129, Tc-99, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap. The current waste disposal path for the WTP-SW is to recycle it to the supplemental LAW treatment to avoid a large steady state accumulation in the pretreatment-vitrification loop. Fluidized Bed Steam Reforming (FBSR) offers a moderate temperature (700-750 C) continuous method by which LAW and/or WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product, which is one of the objectives of this current study, is being investigated to prevent dispersion during transport or burial/storage but is not necessary for performance. FBSR testing of a Hanford LAW simulant and a WTP-SW simulant at the pilot scale was performed by THOR Treatment Technologies, LLC at Hazen Research Inc. in April/May 2008. The Hanford LAW simulant was the Rassat 68 tank blend and the target concentrations for the LAW was increased by a factor of 10 for Sb, As, Ag, Cd, and Tl; 100 for Ba and Re (Tc surrogate); 1,000 for I; and 254,902 for Cs based on discussions with the DOE field office and the environmental regulators and an evaluation of the Hanford Tank Waste Envelopes A, B, and C. It was determined through the evaluation of the actual tank waste metals concentrations that some metal levels were not sufficient to achieve reliable detection in the off-gas sampling. Therefore, the identified metals concentrations were increased in the Rassat simulant processed by TTT at HRI to ensure detection and enable calculation of system removal efficiencies, product retention efficiencies, and mass balance closure without regard to potential results of those determinations or impacts on product durability response such as Toxicity Characteristic Leach Procedure (TCLP). A WTP-SW simulant based on melter off-gas analyses from Vitreous State Laboratory (VSL) was also tested at HRI in the 15-inch diameter Engineering Scale Test Demonstration (ESTD) dual reformer at HRI in 2008. The target concentrations for the Resource Conservation and Recovery Act (RCRA) metals were increased by 16X for Se, 29X for Tl, 42X for Ba, 48X for Sb, by 100X for Pb and Ni, 1000X for Ag, and 1297X for Cd to ensure detection by the an

Crawford, C.; Jantzen, C.

2012-02-02T23:59:59.000Z

135

EDS Coal Liquefaction Process Development. Phase V. Laboratory evaluation of the characteristics of EDS Illinois bottoms  

SciTech Connect (OSTI)

This interim report documents work carried out by Combustion Engineering, Inc. under a contract to Exxon Research and Engineering Company to develop a conceptual Hybrid Boiler design fueled by the vacuum distillation residue (vacuum bottoms) derived from Illinois No. 6 coal in the EDS Coal Liquefaction Process. This report was prepared by Combustion Engineering, Inc., and is the first of two reports on the predevelopment phase of the Hybrid Boiler program. This report covers the results of a laboratory investigation to assess the fuel and ash properties of EDS vacuum bottoms. The results of the laboratory testing reported here were used in conjunction with Combustion Engineering's design experience to predict fuel performance and to develop appropriate boiler design parameters. These boiler design parameters were used to prepare the engineering design study reported in EDS Interim Report FE-2893-113, the second of the two reports on the predevelopment phase of the Hybrid Boiler Program. 46 figures, 29 tables.

Lao, T C; Levasseur, A A

1984-02-01T23:59:59.000Z

136

Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications  

SciTech Connect (OSTI)

The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

2010-06-01T23:59:59.000Z

137

Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data  

E-Print Network [OSTI]

Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

Stoffelen, Ad

138

DOE/SC-ARM-P-07-006 Evaluation of Mixed-Phase Cloud Microphysics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)38232 Revision 1SC6

139

ART CCIM Phase II-A Off-Gas System Evaluation Test Plan  

SciTech Connect (OSTI)

This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

Nick Soelberg; Jay Roach

2009-01-01T23:59:59.000Z

140

STOMP Subsurface Transport Over Multiple Phases: STOMP-CO2 and STOMP-CO2e Guide: Version 1.0  

SciTech Connect (OSTI)

This STOMP (Subsurface Transport Over Multiple Phases) guide document describes the theory, use, and application of the STOMP-CO2 and STOMP-CO2e operational modes. These operational modes of the STOMP simulator are configured to solve problems involving the sequestration of CO2 in geologic saline reservoirs. STOMP-CO2 is the isothermal version and STOMP-CO2e is the nonisothermal version. These core operational modes solve the governing conservation equations for component flow and transport through geologic media; where, the STOMP-CO2 components are water, CO2 and salt and the STOMP-CO2e operational mode also includes an energy conservation equation. Geochemistry can be included in the problem solution via the ECKEChem (Equilibrium-Conservation-Kinetic-Equation Chemistry) module, and geomechanics via the EPRMech (Elastic-Plastic-Rock Mechanics) module. This addendum is designed to provide the new user with a full guide for the core capabilities of the STOMP-CO2 and -CO2e simulators, and to provide the experienced user with a quick reference on implementing features. Several benchmark problems are provided in this addendum, which serve as starting points for developing inputs for more complex problems and as demonstrations of the simulators capabilities.

White, Mark D.; Bacon, Diana H.; McGrail, B. Peter; Watson, David J.; White, Signe K.; Zhang, Z. F.

2012-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-10-01T23:59:59.000Z

142

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network [OSTI]

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Alain Bourgeat; Mladen Jurak; Farid Sma

2008-02-29T23:59:59.000Z

143

Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository  

E-Print Network [OSTI]

We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

Bourgeat, Alain; Sma, Farid

2008-01-01T23:59:59.000Z

144

Evaluation of asbestos-abatement techniques. Phase 1. Removal. Final report  

SciTech Connect (OSTI)

Airborne asbestos levels were measured by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and phase constrast microscopy (PCM) before, during, and after removal of sprayed-on acoustical plaster from the ceilings of four suburban schools. Air samples were collected at three types of sites: indoor sites with asbestos-containing material (ACM), indoor sites without ACM (indoor control), and sites outside the building (outdoor control). Bulk samples of the ACM were collected prior to the removal and analyzed by polarized light microscopy (PLM). A vigorous quality-assurance program was applied to all aspects of the study. Airborne asbestos levels were low before and after removal. Elevated, but still relatively low levels were measured outside the work area during removal. This emphasizes the need for careful containment of the work area.

Chesson, J.; Margeson, D.P.; Ogden, J.; Reichenbach, N.G.; Bauer, K.

1985-10-01T23:59:59.000Z

145

Evaluate and characterize mechanisms controlling transport, fate and effects of army smokes in an aerosol wind tunnel: Transport, transformations, fate and terrestrial ecological effects of fog oil obscurant smokes: Final report  

SciTech Connect (OSTI)

The terrestrial transport, chemical fate, and ecological effects of fog oil (FO) smoke obscurants were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on an exposure scenario, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of fog oil smoke/obscurants is establishing the importance of environmental parameters, such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and three soil types. 29 refs., 35 figs., 32 tabs.

Cataldo, D.A.; Van Voris, P.; Ligotke, M.W.; Fellows, R.J.; McVeety, B.D.; Li, Shu-mei W.; Bolton, H. Jr.; Fredrickson, J.K.

1989-01-01T23:59:59.000Z

146

Tier I ecological evaluation for phase III channel improvements to the John. F. Baldwin ship channel  

SciTech Connect (OSTI)

To assist the US Army Corps of Engineers (USACE) in determing whether the material from proposed dredging of the John F. Baldwin Ship Channel (JFBSC) is suitable for unrestricted, unconfined open-ocean disposal, Battelle/Marine Sciences Laboratory (MSL) prepared this report. Based on these findings, sediments that would be removed during Phase III improvements to the JFBSC fail to meet the three suitability criteria for open-ocean disposal. Firstly, fine-grained sediments comprise a significant fraction of the bottom material in some areas of the channel, and this material is not exposed to high current or wave energy. Dredged material from the JFBSC is not being proposed for beach nourishment; therefore the second criterion is not met. JFBSC sediments do not meet the third criterion because, although they may be substantially similar to substrates at several of the proposed disposal sites, they are from an area that historically has experienced loading of contaminants, which toxicology studies have shown have the potential to result in acute toxicity or significant bioaccumulation.

Bienert, R.W.; Shreffler, D.K.; Word, J.Q.; Kohn, N.P. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1994-05-01T23:59:59.000Z

147

EVALUATION OF ALTERNATIVE FILTER MEDIA FOR THE ROTARY MICROFILTER, PHASE 2  

SciTech Connect (OSTI)

Testing was conducted at the Savannah River National Laboratory (SRNL) to investigate filter membrane performance in an effort to increase rotary microfilter (RMF) throughput. Membranes were tested in the SpinTek Filtration, Inc. Static Test Cell (STC), which permitted quick and easy testing of several different membranes. Testing consisted of 100 hours tests with two different slurry feeds, based on recommendations from the phase 1 testing. One feed contained Monosodium Titanate (MST) solids in a simulated salt solution. The other feed contained simulated sludge batch 6 (SB6) solids in a simulated salt solution. Five membranes were tested, one each from filter manufactures Pall and Porvair and three from the Oak Ridge National Laboratory (ORNL). The membrane from Pall is the current membrane used on the latest generation RMF. The Porvair membrane performed well in previous STC tests as well as one of the ORNL membranes. The other two membranes from ORNL were recently developed and not available for the previous STC test. The results indicate that the Porvair filter performed best with the MST slurry and the ORNL SVB6-1B filter performed best with the SB6 slurry. Difficulty was encountered with the ORNL filters due to their dimensional thickness, which was greater than the recommended filter thickness for the STC. The STC equipment was modified to complete the testing of the ORNL filters.

Fowley, M.

2012-07-31T23:59:59.000Z

148

Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming  

SciTech Connect (OSTI)

During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

1983-12-01T23:59:59.000Z

149

Evaluation of a New Mixed-Phase Cloud Microphysics Parameterization with CAM3 Single-Column Model and M-PACE Observations  

SciTech Connect (OSTI)

Most global climate models generally prescribe the partitioning of condensed water into liquid droplets and ice crystals in mixed-phase clouds according to a temperature-dependent function, which affects modeled cloud phase, cloud lifetime and radiative properties. This study evaluates a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the NCAR Community Atmospheric Model Version 3 (CAM3) single column model (SCAM). It is shown that SCAM with the new scheme produces a more realistic simulation of the cloud phase structure and the partitioning of condensed waterinto liquid droplets against observations during the M-PACE than the standard CAM. Sensitivity test indicates that ice number concentration could play an important role in the simulated mixed-phase cloud microphysics, and thereby needs to be realistically represented in global climate models.

Liu, Xiaohong; Xie, Shaocheng; Ghan, Steven J.

2007-12-14T23:59:59.000Z

150

Phase 1 - Evaluation of a Functional Interconnect System for Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

This project is focused on evaluating the suitability of materials and complex multi-materials systems for use as solid oxide fuel cell interconnects. ATI Allegheny Ludlum has generated promising results for interconnect materials which incorporate modified surfaces. Methods for producing these surfaces include cladding, which permits the use of novel materials, and modifications via unique thermomechanical processing, which allows for the modification of materials chemistry. The University of Pittsburgh is assisting in this effort by providing use of their in-place facilities for dual atmosphere testing and ASR measurements, along with substantial work to characterize post-exposure specimens. Carnegie Mellon is testing interconnects for chromia scale spallation resistance using macro-scale and nano-scale indentation tests. Chromia spallation can increase electrical resistance to unacceptable levels and interconnect systems must be developed that will not experience spallation within 40,000 hours at operating temperatures. Spallation is one of three interconnect failure mechanisms, the others being excessive growth of the chromia scale (increasing electrical resistance) and scale evaporation (which can poison the cathode). The goal of indentation fracture testing at Carnegie Mellon is to accelerate the evaluation of new interconnect systems (by inducing spalls at after short exposure times) and to use fracture mechanics to understand mechanisms leading to premature interconnect failure by spallation. Tests include bare alloys from ATI and coated systems from DOE Laboratories and industrial partners, using ATI alloy substrates. West Virginia University is working towards developing a cost-effective material for use as a contact material in the cathode chamber of the SOFC. Currently materials such as platinum are well suited for this purpose, but are cost-prohibitive. For the solid-oxide fuel cell to become a commercial reality it is imperative that lower cost components be developed. Based on the results obtained to date, it appears that sterling silver could be an inexpensive, dependable candidate for use as a contacting material in the cathode chamber of the solid-oxide fuel cell. Although data regarding pure silver samples show a lower rate of thickness reduction, the much lower cost of sterling silver makes it an attractive alternative for use in SOFC operation.

James M. Rakowski

2006-09-30T23:59:59.000Z

151

VOLUME 81, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 9 NOVEMBER 1998 Cotunneling Transport and Quantum Phase Transitions in Coupled Josephson-Junction Chains  

E-Print Network [OSTI]

Transport and Quantum Phase Transitions in Coupled Josephson-Junction Chains with Charge Frustration Mahn of ultrasmall Josephson junctions, where the particle-hole symmetry is broken by the gate voltage applied blockade. Especially, in Josephson-junction arrays, the charging energy in competition with the Josephson

Choi, Mahn-Soo

152

Evaluation of Catalysts from Different Origin for Vapor Phase Upgrading in Biomass Pyrolysis  

SciTech Connect (OSTI)

Liquid fuels and chemicals from biomass resources arouse much interests in research and development. Fast pyrolysis of biomass has the potential to effectively change solid biomass materials into liquid products. However, bio-oil from traditional pyrolysis processes is difficult to apply in industry, because of its complicated composition, high oxygen content, low stability, etc. Upgrading or refining of the bio-oil should be performed for industrial application of biomass pyrolysis. Often, the process would be done in a separate reactor downstream of the pyrolysis process. In this paper, a laboratory scale micro test facility was constructed, wherein the pyrolysis of pine and catalytic upgrading of the resulting vapors were closely coupled in one reactor. The composition of vapor effluent was monitored with a molecular beam mass spectrometer (MBMS) for the online evaluation of the catalyst performance. Catalysts from different origin were tested and compared for the effectiveness of pyrolysis vapor upgrading, namely commercial zeolites, Ni based steam reforming catalyst, CaO, MgO, and several laboratory-made catalysts. The reaction temperature for catalytic upgrading varied between 400 and 600 centigrade, and the gaseous residence time ranged from 0.1 second to above 2 second, to simulate the conditions in industrial application. It is revealed that some catalysts are active in transform most of primary biomass pyrolysis vapors into hydrocarbons, resulting in nonoxygenated products, which is beneficial for downstream utilization. Others are not as effective, results in minor improvement compared with blank test results.

Zhang, X.; Mukarakate, C.; Zheng, Z.; Nimlos, M.

2012-01-01T23:59:59.000Z

153

Evaluation of diurnal thermal energy storage combined with cogeneration systems. Phase 2  

SciTech Connect (OSTI)

This report describes the results of a study of thermal energy storage (TES) systems integrated with combined-cycle gas turbine cogeneration systems. Integrating thermal energy storage with conventional cogeneration equipment increases the initial cost of the combined system; but, by decoupling electric power and process heat production, the system offers two significant advantages. First, electric power can be generated on demand, irrespective of the process heat load profile, thus increasing the value of the power produced. Second, although supplementary firing could be used to serve independently varying electric and process heat loads, this approach is inefficient. Integrating TES with cogeneration can serve the two independent loads while firing all fuel in the gas turbine. An earlier study analyzed TES integrated with a simple-cycle cogeneration system. This follow-on study evaluated the cost of power produced by a combined-cycle electric power plant (CC), a combined-cycle cogeneration plant (CC/Cogen), and a combined-cycle cogeneration plant integrated with thermal energy storage (CC/TES/Cogen). Each of these three systems was designed to serve a fixed (24 hr/day) process steam load. The value of producing electricity was set at the levelized cost for a CC plant, while the value of the process steam was for a conventional stand-alone boiler. The results presented here compared the costs for CC/TES/Cogen system with those of the CC and the CC/Cogen plants. They indicate relatively poor economic prospects for integrating TES with a combined-cycle cogeneration power plant for the assumed designs. The major reason is the extremely close approach temperatures at the storage media heaters, which makes the heaters large and therefore expensive.

Somasundaram, S.; Brown, D.R.; Drost, M.K.

1993-07-01T23:59:59.000Z

154

Application of optical triangulation profilometry and optical phase ranging profilometry to the figure evaluation of solar mirrors  

SciTech Connect (OSTI)

The techniques of optical triangulation profilometry (OTP) and optical phase ranging profilometry (OPRP) are proposed for evaluation of the figure of solar mirrors. The theoretical basis for each method is discussed and the results of initial feasibility experiments are reported. In OTP and OPRP the de-specularized mirror surface is probed with one or more visible laser beams. In OTP, two beams are required for the triangulation of coordinates on the mirror surface. In OPRP the second laser beam is retained within the instrument to form the reference leg of a long wavelength interferometer. Both methods are particularly adaptable to computer control for fast, automated analysis of mirror surfaces. In addition the proposed devices are compact and sturdy enough for easy implementation in field evaluation programs. The experimental resolution capability of the unoptimized OTP system is greater than or equal to 0.1 inch (2.54 mm). With further improvement of the beam projection and coincidence assessment systems, the design resolution goal of greater than or equal to 0.1 mm appears achievable. The results of the preliminary resolution capability experiments on the OPRP system are inconclusive. This is thought to be a result of poor performance of components comprising the modulation and detection subsystems. A full assessment of OPRP capability will require a further investigation effort.

Griffin, J.W.; Lind, M.A.

1980-12-01T23:59:59.000Z

155

Improvements in Low-Frequency, Ultrasonic Phased-Array Evaluation for Thick Section Cast Austenitic Stainless Steel Piping Components  

SciTech Connect (OSTI)

Research is being conducted for the U.S. Nuclear Regulatory Commission (NRC) at the Pacific Northwest National Laboratory (PNNL) to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light water reactor (LWR) components. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in coarse-grained steel components. This particular study focused on the evaluation of custom-designed, low-frequency (500 kHz) phased-array (PA) probes for examining welds in thick-section cast austenitic stainless steel (CASS) piping. In addition, research was conducted to observe ultrasonic sound field propagation effects from known coarse-grained microstructures found in parent CASS material. The study was conducted on a variety of thick-wall, coarse-grained CASS specimens that were previously inspected by an older generation 500-kHz PA-UT probe and acquisition instrument configuration. This comparative study describes the impact of the new PA probe design on flaw detection and sizing in a low signal-to-noise environment. The set of Pressurized Water Reactor Owners Group (PWROG) CASS specimens examined in this study are greater than 50.8-mm (2.0-in.) thick with documented flaws and microstructures. These specimens are on loan to PNNL from the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina. The flaws contained within these specimens are thermal fatigue cracks (TFC) or mechanical fatigue cracks (MFC) and range from 13% to 42% in through-wall extent. In addition, ultrasonic signal continuity was evaluated on two CASS parent material ring sections by examining the edge-of-pipe response (corner geometry) for regions of signal loss.

Anderson, Michael T.; Crawford, Susan L.; Diaz, Aaron A.; Moran, Traci L.

2010-12-01T23:59:59.000Z

156

A screening model for evaluating the degradation and transport of MTBE and other fuel oxygenates in the subsurface  

SciTech Connect (OSTI)

Methyl tert-butyl ether (MTBE) has received high attention as it contributed to cleaner air and contaminated thousands of underground storage tank sites. Because MTBE is very water soluble, it is more difficult to remove from water by conventional remediation techniques. Therefore, biodegradation of MTBE has become a remediation alternative. In order to understand the transport and transformation processes, they present a closed form solution as a screening tool in this paper. The possible reaction pathways of first-order reactions are described as a reaction matrix. The singular value decomposition is conducted analytically to decouple the partial differential equations of the multi-species transport system coupled by the reaction matrix into multiple independent subsystems. Therefore, the complexity of mathematical description for the reactive transport system is significantly reduced and analytical solutions may be previously available or easily derived.

Sun, Y; Lu, X

2004-04-20T23:59:59.000Z

157

Effect of the magnetic phase transition on the charge transport in layered semiconductor ferromagnets TlCrS{sub 2} and TlCrSe{sub 2}  

SciTech Connect (OSTI)

TlCrS{sub 2} and TlCrSe{sub 2} crystals were synthesized by solid-state reaction. X-ray diffraction analysis showed that TlCrS{sub 2} and TlCrSe{sub 2} compounds crystallize in the hexagonal crystal system with lattice parameters a = 3.538 A, c = 21.962 A, c/a {approx} 6.207, z = 3; a = 3.6999 A, c = 22.6901 A, c/a {approx} 6.133, z = 3; and X-ray densities {rho}{sub x} = 6.705 and 6.209 g/cm{sup 3}, respectively. Magnetic and electric studies in a temperature range of 77-400 K showed that TlCrS{sub 2} and TlCrSe{sub 2} are semiconductor ferromagnets. Rather large deviations of the experimental effective magnetic moment of TlCrS{sub 2} (3.26 {mu}{sub B}) and TlCrSe{sub 2} (3.05 {mu}{sub B}) from the theoretical one (3.85 {mu}{sub B}) are attributed to two-dimensional magnetic ordering in the paramagnetic region of strongly layered ferromagnets TlCrS{sub 2} and TlCrSe{sub 2}. The effect of the magnetic phase's transition on the charge transport in TlCrS{sub 2} and TlCrSe{sub 2} is detected.

Veliyev, R. G.; Sadikhov, R. Z.; Kerimova, E. M., E-mail: ekerimova@physics.ab.az; Asadov, Yu. G.; Jabbarov, A. I. [Azerbaijan National Academy of Sciences, Institute of Physics (Azerbaijan)

2009-09-15T23:59:59.000Z

158

Evaluating the Potential Impact of Using the Transport, Aging and Disposal (TAD) Canister on Yucca Mountain Pre-Closure Operations  

SciTech Connect (OSTI)

The development and preliminary use of an integrated model to explore the impact of various operational scenarios of the pre-closure waste management system of Yucca Mountain (YM) is described. The capabilities of the model are illustrated by applying it to a simplified operational scenario using Transport, Aging, and Disposal (TAD) Canisters. The application uses existing data on spent nuclear fuel to model the effect on above ground aging at YM by varying four parameters: (1) utility loading behavior, (2) thermal limit for transportation casks, (3) thermal limit for emplacement, and (4) emplacement capacity at YM. Results show that the thermal limit for emplacement is the most important parameter with respect to above ground aging demands at YM. Transportation heat limit is also important, but less so if the capacity of YM is expanded or if older fuel is sent first. Easing the constraint of the emplacement limit, if feasible, would be a preferable method of reducing aging demands, especially under an expanded emplacement capacity. Consequently, there may be incentive for Department of Energy (DOE) to either specify a lower transportation limit or a higher emplacement limit if it wishes to reduce the potential demands on the Aging Facility at YM. (authors)

Spradley, L. [Research Assistant, Civil and Environmental Engineering, Vanderbilt University, VU Station, Nashville, TN (United States); Abkowitz, M. [Civil and Environmental Engineering, Vanderbilt University (United States); Clarke, J.H. [Civil and Environmental Engineering, Vanderbilt University (United States)

2008-07-01T23:59:59.000Z

159

Philippines-Measuring, Reporting, and Verifying (MRV) of Transport...  

Open Energy Info (EERE)

Reporting, and Verifying (MRV) of Transport Nationally Appropriate Mitigation Actions (NAMAs) Phase II)...

160

GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUID BED BOILERS (Phase II--Evaluation of the Oxyfuel CFB Concept)  

SciTech Connect (OSTI)

The overall project goal is to determine if carbon dioxide can be captured and sequestered at a cost of about $10/ton of carbon avoided, using a newly constructed Circulating Fluidized Bed combustor while burning coal with a mixture of oxygen and recycled flue gas, instead of air. This project is structured in two Phases. Phase I was performed between September 28, 2001 and May 15, 2002. Results from Phase I were documented in a Topical Report issued on May 15, 2003 (Nsakala, et al., 2003), with the recommendation to evaluate, during Phase II, the Oxyfuel-fired CFB concept. DOE NETL accepted this recommendation, and, hence approved the project continuation into Phase II. Phase 2. The second phase of the project--which includes pilot-scale tests of an oxygen-fired circulating fluidized bed test facility with performance and economic analyses--is currently underway at ALSTOM's Power Plant Laboratories, located in Windsor, CT (US). The objective of the pilot-scale testing is to generate detailed technical data needed to establish advanced CFB design requirements and performance when firing coals and delayed petroleum coke in oxygen/carbon dioxide mixtures. Results will be used in the design of oxygen-fired CFB boilers--both retrofit and new Greenfield--as well as to provide a generic performance database for other researchers. At the conclusion of Phase 2, revised costs and performance will be estimated for both retrofit and new Greenfield design concepts with CO2 capture, purification, compression, and liquefaction.

John L. Marion; Nsakala ya Nsakala

2003-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A new challenge for the energy efficiency evaluation community: energy savings and emissions reductions from urban transportation policies  

E-Print Network [OSTI]

programs for industries, residential and commercial sectors. But now the largest share of the energyA new challenge for the energy efficiency evaluation community: energy savings and emissions de Nantes, France Abstract The energy efficiency evaluation community has a large experience about

Boyer, Edmond

162

Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

Nathan Bryant

2008-05-01T23:59:59.000Z

163

Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts  

E-Print Network [OSTI]

We evaluate the distributed cavity phase and microwave lensing frequency shifts, which were the two largest sources of uncertainty for the NPL-CsF2 cesium fountain clock. We report measurements that confirm a detailed theoretical model of the microwave cavity fields and the frequency shifts of the clock that they produce. The model and measurements significantly reduce the distributed cavity phase uncertainty to $1.1 \\times 10^{-16}$. We derive the microwave lensing frequency shift for a cylindrical cavity with circular apertures. An analytic result with reasonable approximations is given, in addition to a full calculation that indicates a shift of $6.2 \\times 10^{-17}$. The measurements and theoretical models we report, along with improved evaluations of collisional and microwave leakage induced frequency shifts, reduce the frequency uncertainty of the NPL-CsF2 standard to $2.3 \\times 10^{-16}$, nearly a factor of two lower than its most recent complete evaluation.

Ruoxin Li; Kurt Gibble; Krzysztof Szymaniec

2011-07-12T23:59:59.000Z

164

Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0  

SciTech Connect (OSTI)

This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. Assess the level of quality of the data and associated documentation. Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

John McCord

2007-09-01T23:59:59.000Z

165

Gas-phase transport of WF6 through annular nanopipes in TiN during chemical vapor deposition of W on TiN/Ti/SiO2 structures for integrated  

E-Print Network [OSTI]

Gas-phase transport of WF6 through annular nanopipes in TiN during chemical vapor deposition of W through the 106-nm-thick TiN film. W piles up at the TiN/Ti interface, while F rapidly saturates the TiN-sectional and scanning transmission electron microscopy analyses demonstrate that WF6 penetrates into the TiN layer

Allen, Leslie H.

166

Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase B: Mid-Scale Testing at PNNL  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4.

Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

1999-03-30T23:59:59.000Z

167

2012 Annual Report: Simulate and Evaluate the Cesium Transport and Accumulation in Fukushima-Area Rivers by the TODAM Code  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory initiated the application of the time-varying, one-dimensional sediment-contaminant transport code, TODAM (Time-dependent, One-dimensional, Degradation, And Migration) to simulate the cesium migration and accumulation in the Ukedo River in Fukushima. This report describes the preliminary TODAM simulation results of the Ukedo River model from the location below the Ougaki Dam to the river mouth at the Pacific Ocean. The major findings of the 100-hour TODAM simulation of the preliminary Ukedo River modeling are summarized as follows:

Onishi, Yasuo; Yokuda, Satoru T.

2013-03-28T23:59:59.000Z

168

Evaluation of Mixed-Phase Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 and AM2 for Mixed-Phase Arctic Cloud Experiment  

SciTech Connect (OSTI)

By making use of the in-situ data collected from the recent Atmospheric Radiation Measurement Mixed-Phase Arctic Cloud Experiment, we have tested the mixed-phase cloud parameterizations used in the two major U.S. climate models, the National Center for Atmospheric Research Community Atmosphere Model version 3 (CAM3) and the Geophysical Fluid Dynamics Laboratory climate model (AM2), under both the single-column modeling framework and the U.S. Department of Energy Climate Change Prediction Program-Atmospheric Radiation Measurement Parameterization Testbed. An improved and more physically based cloud microphysical scheme for CAM3 has been also tested. The single-column modeling tests were summarized in the second quarter 2007 Atmospheric Radiation Measurement metric report. In the current report, we document the performance of these microphysical schemes in short-range weather forecasts using the Climate Chagne Prediction Program Atmospheric Radiation Measurement Parameterizaiton Testbest strategy, in which we initialize CAM3 and AM2 with realistic atmospheric states from numerical weather prediction analyses for the period when Mixed-Phase Arctic Cloud Experiment was conducted.

Xie, S; Boyle, J; Klein, S; Liu, X; Ghan, S

2007-06-01T23:59:59.000Z

169

Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region  

SciTech Connect (OSTI)

Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.

Kevin Crist

2005-10-02T23:59:59.000Z

170

Criticality Evaluation of Plutonium-239 Moderated by High-Density Polyethylene in Stainless Steel and Aluminum Containers Suitable for Non-Exclusive Use Transport  

SciTech Connect (OSTI)

Research is conducted at the Joint Actinide Shock Physics Experimental Facility (JASPER) on the effects of high pressure and temperature environments on plutonium-239, in support of the stockpile stewardship program. Once an experiment has been completed, it is necessary to transport the end products for interim storage or final disposition. Federal shipping regulations for nonexclusive use transportation require that no more than 180 grams of fissile material are present in at least 360 kilograms of contiguous non-fissile material. To evaluate the conservatism of these regulatory requirements, a worst-case scenario of 180g {sup 239}Pu and a more realistic scenario of 100g {sup 239}Pu were modeled using one of Lawrence Livermore National Laboratory's Monte Carlo transport codes known as COG 10. The geometry consisted of {sup 239}Pu spheres homogeneously mixed with high-density polyethylene surrounded by a cube of either stainless steel 304 or aluminum. An optimized geometry for both cube materials and hydrogen-to-fissile isotope (H/X) ratio were determined for a single unit. Infinite and finite 3D arrays of these optimized units were then simulated to determine if the systems would exceed criticality. Completion of these simulations showed that the optimal H/X ratio for the most reactive units ranged from 800 to 1600. A single unit of either cube type for either scenario would not reach criticality. An infinite array was determined to reach criticality only for the 180g case. The offsetting of spheres in their respective cubes was also considered and showed a considerable decrease in the number of close-packed units needed to reach criticality. These results call into question the current regulations for fissile material transport, which under certain circumstances may not be sufficient in preventing the development of a critical system. However, a conservative, theoretical approach was taken in all assumptions and such idealized configurations may not be likely to be encountered in actual packaging, transportation, and storage configurations. Modeling of realistic, as-built configurations is beyond the scope of this study.

Watson, T T

2007-08-10T23:59:59.000Z

171

Safety evaluation for packaging for the transport of K Basin sludge samples in the PAS-1 cask  

SciTech Connect (OSTI)

This safety evaluation for packaging authorizes the shipment of up to two 4-L sludge samples to and from the 325 Lab or 222-S Lab for characterization. The safety of this shipment is based on the current U.S. Department of Energy Certification of Compliance (CoC) for the PAS-1 cask, USA/9184/B(U) (DOE).

SMITH, R.J.

1998-11-17T23:59:59.000Z

172

High-solids black liquor firing in pulp and paper industry kraft recovery boilers. Quarterly report, Phase 1a: Black liquor gasifier evaluation  

SciTech Connect (OSTI)

This project phase addresses the following workscope: Conduct bench-scale tests of a low temperature, partial combustion gasifier; Prepare a gasifier pilot-plant preliminary design and cost estimate and prepare a budgetary cost estimate of the balance of the program; Outline a test program to evaluate gasification; Prepare an economic/market analysis of gasification and solicit pulp and paper industry support for subsequent phases; and Prepare a final report and conduct a project review prior to commencement of work leading to construction of any pilot scale components or facilities. The primary accomplishments included completion of installation of the bench-scale black liquor gasifier and supporting systems, preparing test plans and related safety procedures and detailed operating procedures, defining the functional design requirements and outlining the test plans for the pilot-scale gasifier, and preparing a preliminary economic assessment of the black liquor gasifier. This work accomplished under Phase 1a during this period is further described by task.

NONE

1996-07-01T23:59:59.000Z

173

A field evaluation of the movement of selected metals in revegetated strip mine overburden and laboratory assessment of transport mechanisms  

E-Print Network [OSTI]

placement of materials following the excavation and sampling of lignite at a test pit. The effect of varying ratios of lime and gypsum had on revegetation were studied. Resultant overburden'pH and electrical conductivity (EC) wire evaluated... are needed to ach1eve energy self sufficiency for the Un1ted States. Advanced technology is needed to economically harness the cleanest source of alternate energy, the sun. However, another source of energy available us1ng present-day technology is coal...

Launius, Kenneth Wayne

1980-01-01T23:59:59.000Z

174

Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations  

SciTech Connect (OSTI)

Mixed-phase stratus clouds are ubiquitous in the Arctic and play an important role in climate in this region. However, climate models have generally proven unsuccessful at simulating the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. An ice nucleation parameterization and a vapor deposition scheme were developed that together provide a physically-consistent treatment of mixed-phase clouds in global climate models. These schemes have been implemented in the National Center for Atmospheric Research (NCAR) Community Atmospheric Model Version 3 (CAM3). This report documents the performance of these schemes against ARM Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the CAM single column model version (SCAM). SCAM with our new schemes has a more realistic simulation of the cloud phase structure and the partitioning of condensed water into liquid droplets against observations during the M-PACE than the standard CAM simulations.

Liu, X; Ghan, SJ; Xie, S

2007-04-01T23:59:59.000Z

175

Phase II Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Nye County, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This report documents pertinent hydrologic data and data analyses as part of the Phase II Corrective Action Investigation (CAI) for Frenchman Flat (FF) Corrective Action Unit (CAU): CAU 98. The purpose of this data compilation and related analyses is to provide the primary reference to support the development of the Phase II FF CAU groundwater flow model.

John McCord

2004-12-01T23:59:59.000Z

176

Plenary II -- Evaluation of Shortline Railroads  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Shortline Railroads Tasked for the Transportation of Spent Nuclear Fuel Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads...

177

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-12-01T23:59:59.000Z

178

An Evaluation of the Effectiveness of Flow Augmentation in the Snake River, 1991-1995 : Phase I: Final Report  

SciTech Connect (OSTI)

The purpose of this evaluation was to estimate the volume and shape of flow augmentation water delivered in the Snake Basin during the years 1991 through 1995, and to assess the biological consequences to ESA-listed salmon stocks in that drainage. HDR Engineering, Inc. calculated flow augmentation estimates and compared their values to those reported by agencies in the Northwest. BioAnalysts, Inc. conducted the biological evaluation.

Giorgi, Albert E.; Schlecte, J.Warren [Bio Analysts, Inc., Redmond, WA (United States)]|[HDR Engineering, Inc., Salt Lake City, UT (United States)

1997-07-01T23:59:59.000Z

179

UZ Colloid Transport Model  

SciTech Connect (OSTI)

The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations.

M. McGraw

2000-04-13T23:59:59.000Z

180

Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 A of -42-foot project)  

SciTech Connect (OSTI)

The Battelle/Marine Sciences Laboratory (MSL) conducted a study to determine whether dredged sediments from Oakland Inner and Outer Harbors were suitable for ocean disposal. Nineteen test treatments, six reference treatments, and three control treatments were tested for physical/chemical parameters, water column effects, dredged- sediment toxicity, and bioaccumulation potential. Physical/chemical parameters were analyzed at each site and each composite sediment to a depth of -44 ft MLLW. These parameters included analysis for geological characteristics, conventional sediment measurements (grain size, total volatile solids, total organic carbon, oil and grease, and total petroleum hydrocarbons), metals,, polynuclear aromatic hydrocarbons (PAHs), pesticides, butyltins, and polychlorinated biphenyls (PCBs). Physical/chemical data were used in support of the toxicological and bioaccumulation testing, but were not used in the decision-making criteria described in the Draft Implementation manual under Tier III testing. To evaluate water column effects, MSL conducted suspended-particulate-phase (SPP) test using the mysid shrimp Holmesimysis sculpta, speckled sanddab citharichtys stigmaeus, and larvae of the pacific oyster Crassostrea gigas. Both a 48-h and a 96-h test were performed. The MSL evaluated dredged-sediment toxicity by conducting a total of eight solid-phase toxicity tests using the following organisms: the bivalve clam Macoma nasuta, the polychaete worm Nepthys caecoides, the speckled sanddab C. stigmaeus, and the amphipod Rhepoxynius abronius. Test duration ranged from 10 to 28 days. Bioaccumulation potential was evaluated in the 28-day M. Nasuta and N. caecoides solid-phase exposures by measuring the contaminants of concern present in their tissues after exposure to test, reference, and control sediments. This report contains the data and test results.

Ward, J.A.; Word, J.Q.; Pinza, M.R.; Mayhew, H.L.; Barrows, E.S.; Lefkovitz, L.F. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Beam Phase and Energy Tolerances in the CLIC RTML  

E-Print Network [OSTI]

Tight beam phase and energy constraints are imposed on the CLIC ring to main linac transport (RTML) to achieve the demanded performance of the following main linac and at the interaction point. A major issue will be energy jitter which is converted by the bunch compressor chicanes into beam phase jitter. Constraints on the two bunch compression stages, the booster linac and the incoming beam are evaluated. As an alternative to the current second stage of bunch compression a beam line is studied which inherently prevents incoming energy jitter from becoming beam phase jitter while preserving the required bunch compression.

Stulle, Frank

2011-01-01T23:59:59.000Z

182

Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario  

SciTech Connect (OSTI)

In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

2008-07-01T23:59:59.000Z

183

Transportation Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

184

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

185

Greening Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

186

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

187

Evaluation of conceptual, mathematical and physical-and-chemical models for describing subsurface radionuclide transport at the Lake Karachai Waste Disposal Site  

SciTech Connect (OSTI)

The goal of this work was to develop the methodology and to improve understanding of subsurface radionuclide transport for application to the Lake Karachai Site and to identify the influence of the processes and interactions involved into transport and fate of the radionuclides. The report is focused on two sets of problems, which have to do both with, hydrodynamic and hydrogeochemical aspects of the contaminant transport.

Rumynin, V.G.; Mironenko, V.A.; Sindalovsky, L.N.; Boronina, A.V.; Konosavsky, P.K.; Pozdniakov, S.P.

1998-06-01T23:59:59.000Z

188

Evaluation of flyash surface phenomena and the application of surface analysis technology. Summary report: Phase I. [44 elements; 86 references  

SciTech Connect (OSTI)

The factors governing the formation of flyash surfaces during and following coal combustion are reviewed. The competing chemical and physical processes during the evolution of inorganic material in coal during combustion into flyash are described with respect to various surface segregation processes. Two mechanisms leading to surface enrichment are volatilization-condensation processes and diffusion processes within individual flyash particles. The experimental evidence for each of these processes is reviewed. It is shown that the volatilization-condensation process is the major factor leading to trace element enrichment in smaller flyash particles. Evidence also exists from surface analyses of flyash and representative mineral matter that diffusion processes may lead to surface enrichment of elements not volatilized or cause transport of surface-condensed elements into the flyash matrix. The semiquantitative determination of the relative importance of these two processes can be determined by comparison of concentration versus particle size profiles with surface-depth profiles obtained using surface analysis techniques. A brief description of organic transformations on flyash surfaces is also presented. The various surface analytical techniques are reviewed and the relatively new technique of Static-Secondary Ion Mass Spectroscopy is suggested as having significant advantages in studies of surfaces and diffusion processes in model systems. Several recommendations are made for research relevant to flyash formation and processes occurring on flyash surfaces.

Smith, R.D.

1981-06-01T23:59:59.000Z

189

Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling data that is completed in two parts: the first addressing the groundwater flow model, and the second the transport model. (2) Development of a groundwater flow model. (3) Development of a groundwater transport model. This report presents the results of the first part of the first step, documenting the data compilation, evaluation, and analysis for the groundwater flow model. The second part, documentation of transport model data will be the subject of a separate report. The purpose of this document is to present the compilation and evaluation of the available hydrologic data and information relevant to the development of the Yucca Flat/Climax Mine CAU groundwater flow model, which is a fundamental tool in the prediction of the extent of contaminant migration. Where appropriate, data and information documented elsewhere are summarized with reference to the complete documentation. The specific task objectives for hydrologic data documentation are as follows: (1) Identify and compile available hydrologic data and supporting information required to develop and validate the groundwater flow model for the Yucca Flat/Climax Mine CAU. (2) Assess the quality of the data and associated documentation, and assign qualifiers to denote levels of quality. (3) Analyze the data to derive expected values or spatial distributions and estimates of the associated uncertainty and variability.

John McCord

2006-06-01T23:59:59.000Z

190

Comparison of an Ultrasonic Phased Array Evaluation with Destructive Analysis of a Documented Leak Path in a Nozzle Removed from Service  

SciTech Connect (OSTI)

Non-destructive and destructive testing methods were employed to evaluate a documented boric acid leakage path through an Alloy 600 control rod drive mechanism (CRDM) penetration from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2002. A previous ultrasonic in-service-inspection (ISI) conducted by industry prior to the head removal, identified a probable leakage path in Nozzle 63 located in the interference fit between the penetration tube and the vessel head. In this current examination, Nozzle 63 was examined using phased array (PA) ultrasonic testing with a 5.0-MHz, eight-element annular array; immersion data were acquired from the nozzle inner diameter (ID) surface. A variety of focal laws were employed to evaluate the signal responses from the interference fit region. These responses were compared to responses obtained from a mockup specimen that was used to determine detection limits and characterization capabilities for wastage and boric acid presence in the interference fit region. Nozzle 63 was destructively examined after the completion of the ultrasonic nondestructive evaluation (NDE) to visually assess the leak paths. These destructive and nondestructive results compared favorably

Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.; Hanson, Brady D.; Mathews, Royce

2012-09-24T23:59:59.000Z

191

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy Savers [EERE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San...

192

Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors based on metalorganic vapor-phase epitaxy-grown epilayers  

SciTech Connect (OSTI)

Charge transport properties of p-CdTe/n-CdTe/n{sup +}-Si diode-type nuclear radiation detectors, fabricated by growing p-and n-type CdTe epilayers on (211) n{sup +}-Si substrates using metalorganic vapor-phase epitaxy (MOVPE), were studied by analyzing current-voltage characteristics measured at various temperatures. The diode fabricated shows good rectification properties, however, both forward and reverse biased currents deviate from their ideal behavior. The forward current exhibits typical feature of multi-step tunneling at lower biases; however, becomes space charge limited type when the bias is increased. On the other hand, the reverse current exhibits thermally activated tunneling-type current. It was found that trapping centers at the p-CdTe/n-CdTe junction, which were formed due to the growth induced defects, determine the currents of this diode, and hence limit the performance of the nuclear radiation detectors developed.

Niraula, M.; Yasuda, K.; Wajima, Y.; Yamashita, H.; Tsukamoto, Y.; Suzuki, Y.; Matsumoto, M.; Takai, N.; Tsukamoto, Y.; Agata, Y. [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan)] [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan)

2013-10-28T23:59:59.000Z

193

Campus Village Transportation  

E-Print Network [OSTI]

Emmanuel Hernandez THE CAMPUS V ILLAGE : TRANSPORTATION Objective The Campus Village is a new community being constructed in northwest Lawrence with a intergenerational focus in mind. The site will be equipped with housing for students, athletes..., retirement community members, and families. The overall objective of this study was to evaluate the citys current transportation network and make recommendations on that network to better accommodate the needs of the new property. Specifically, the goal...

Hernandez, Emmanuel

2014-11-19T23:59:59.000Z

194

AMPX-77 Phase 1 certification package  

SciTech Connect (OSTI)

The AMPX-77 Phase 1 modules have been certified. AMPX-77 is a modular code system for generating coupled multigroup neutron-gamma cross section libraries from Evaluated Nuclear Data Files (ENDF/B). All basic cross-section data are input from the formats used by the ENDF/B, and output can be obtained from a variety of formats, included in its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-ray data. The AMPX-77 code system will be used at SRS to perform critical calculations related to nuclear criticality safety. The AMPX-77 modular codes system contains forty-seven separate modules. For the certification process, the 47 modules have been divided into three groups or phases. This Certification Package is for the Phase 1 modules: BONAMI, LAPHNGAS, MALOCS, NITAWL, ROLAIDS, SMUG, and XSDRNPM.

Niemer, K.A.

1994-03-01T23:59:59.000Z

195

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications Phase II. Final report  

SciTech Connect (OSTI)

The research program had as goals the development and demonstration of significant improvements in processing methods, process controls, and nondestructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1370{degrees}C. In Phase I of the program a process was developed that resulted in a silicon nitride - 4 w% yttria HIP`ed material (NCX 5102) that displayed unprecedented strength and reliability. An average tensile strength of 1 GPa and a strength distribution following a 3-parameter Weibull distribution were demonstrated by testing several hundred buttonhead tensile specimens. The Phase II program focused on the development of methodology for colloidal consolidation producing green microstructure which minimizes downstream process problems such as drying, shrinkage, cracking, and part distortion during densification. Furthermore, the program focused on the extension of the process to gas pressure sinterable (GPS) compositions. Excellent results were obtained for the HIP composition processed for minimal density gradients, both with respect to room-temperature strength and high-temperature creep resistance. Complex component fabricability of this material was demonstrated by producing engine-vane prototypes. Strength data for the GPS material (NCX-5400) suggest that it ranks very high relative to other silicon nitride materials in terms of tensile/flexure strength ratio, a measure of volume quality. This high quality was derived from the closed-loop colloidal process employed in the program.

Pujari, V.J.; Tracey, D.M.; Foley, M.R. [and others

1996-02-01T23:59:59.000Z

196

Ecological evaluation of Oakland Harbor Phase 3-38-foot composites relative to the Alcatraz Island Environs (R-AM)  

SciTech Connect (OSTI)

The Water Resources Development Act of 1986 (Public Law 99--662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner Harbors to accommodate deeper-draft vessels. Battelle/Marine Sciences Laboratory (MSL) conducted a study for USACE to determine whether potential dredged sediments in Oakland Inner Harbor were suitable for open-water disposal, following the guidelines of the Draft Ecological Evaluation of Proposed Discharge of Dredged Material into Ocean Waters, otherwise known as the implementation Manual (EPA/USACE 1990). This report summarizes the collection, chemical analysis, toxicity testing, and bioaccumulation analysis of sediments collected to {minus}38 ft relative to mean lower low water from Oakland Inner Harbor. Six dredged material composite samples (COMPs) were compared to reference sediment from the area surrounding Alcatraz Island and its dredged material disposal site, designated the Alcatraz Island Environs (R-AM). Examination of the results of toxicity tests and bioaccumulation analysis will assist USACE in determining the effects of in-bay disposal of the Oakland Inner Harbor dredged material on the Alcatraz Island Environs.

Mayhew, H.L.; Kohn, N.P.; Ward, J.A.; Word, J.Q.; Pinza, M.R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1992-01-01T23:59:59.000Z

197

DOE Transportation Protocols Topic Group Jacksonville, Florida...  

Broader source: Energy.gov (indexed) [DOE]

in Phase 2 will consist of analyzing the compiled information to determine where standardization may be appropriate. During Phase 3, DOE will identify and explain the evaluation...

198

Development of a self-consistent thermodynamic- and transport-property correlation framework for the coal conversion industry. Phase I. Semiannual report, September 1, 1980-February 28, 1981  

SciTech Connect (OSTI)

During the first half year of this research program the following elements of research have been performed: (1) the development of an improved pure component data bank, including collection and processing of data which is 70% complete as to substance, (2) calculation of distillable coal fluid thermodynamic properties using a multiparameter corresponding states correlation, (3) application of the most general density-cubic equation of pure fluids and (4) initiation of research to extend the corresponding states correlation framework to polar fluids. Primary conclusions of the first phase of this research program are that the three parameter corresponding states correlation predicts lighter coal fluid properties to a reasonable level of accuracy, and that a cubic equation can predict pure fluid thermodynamic properties on par with non-cubic equations of state.

Starling, K.E.; Lee, L.L.; Kumar, K.H.

1981-01-01T23:59:59.000Z

199

Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project)  

SciTech Connect (OSTI)

The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accomodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site enviromments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 1 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains project background, materials and methods, results, discussion, and conclusions.

Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1992-06-01T23:59:59.000Z

200

Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project). Volume 1, Analyses and discussion  

SciTech Connect (OSTI)

The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accomodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site enviromments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 1 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains project background, materials and methods, results, discussion, and conclusions.

Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project)  

SciTech Connect (OSTI)

The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accommodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site environments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 2 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains the Appendixes (A through N), which provide details of the data analyses and full presentation of the data and results.

Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1992-06-01T23:59:59.000Z

202

Ecological evaluation of proposed discharge of dredged material from Oakland Harbor into ocean waters (Phase 3 B of -42-foot project). Volume 2, Appendixes  

SciTech Connect (OSTI)

The Water Resources Development Act of 1986 (Public Law 99-662) authorized the US Army Corps of Engineers (USACE) San Francisco District, to deepen and widen the navigational channels of the Oakland Inner and Outer Harbors to accommodate deeper-draft vessels. The USACE is considering several disposal options for the dredged material removed during these channel improvements including open-water disposal. Dredged material proposed for open-water disposal must be evaluated to determine the potential impacts of the disposal activity on the water column and disposal site environments. The USACE requested that Battelle/Marine Sciences Laboratory (MSL) conduct studies to evaluate open-water disposal options for Oakland Harbor sediments. This request developed into the Oakland Harbor Phase III Program. This is Volume 2 of a two-volume report that presents information gathered to determine the suitability of ocean disposal of sediments dredged from Oakland Harbor. This volume contains the Appendixes (A through N), which provide details of the data analyses and full presentation of the data and results.

Kohn, N.P.; Ward, J.A.; Mayhew, H.L.; Word, J.Q.; Barrows, E.S.; Goodwin, S.M.; Lefkovitz, L.F. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1992-06-01T23:59:59.000Z

203

Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A  

SciTech Connect (OSTI)

Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encompasses primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.

2009-11-30T23:59:59.000Z

204

Field studies of virus transport in a heterogeneous sandy aquifer  

E-Print Network [OSTI]

water. Ground water transport models can be used to predict the transport of viruses. However, if current public domain virus transport models are to be used for this purpose, they need to be verified under operating field conditions. To evaluate...

Vogel, Jason Robert

1997-01-01T23:59:59.000Z

205

Sensitivity and uncertainty analyses applied to one-dimensional radionuclide transport in a layered fractured rock: MULTFRAC --Analytic solutions and local sensitivities; Phase 2, Iterative performance assessment: Volume 1  

SciTech Connect (OSTI)

Exact analytical solutions based on the Laplace transforms are derived for describing the one-dimensional space-time-dependent, advective transport of a decaying species in a layered, saturated rock system intersected by a planar fracture of varying aperture. These solutions, which account for advection in fracture, molecular diffusion into the rock matrix, adsorption in both fracture and matrix, and radioactive decay, predict the concentrations in both fracture and rock matrix and the cumulative mass in the fracture. The solute migration domain in both fracture and rock is assumed to be semi-infinite with non-zero initial conditions. The concentration of each nuclide at the source is allowed to decay either continuously or according to some periodical fluctuations where both are subjected to either a step or band release mode. Two numerical examples related to the transport of Np-237 and Cm-245 in a five-layered system of fractured rock were used to verify these solutions with several well established evaluation methods of Laplace inversion integrals in the real and complex domain. In addition, with respect to the model parameters, a comparison of the analytically derived local sensitivities for the concentration and cumulative mass of Np-237 in the fracture with the ones obtained through a finite-difference method of approximation is also reported.

Gureghian, A.B.; Wu, Y.T.; Sagar, B. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses; Codell, R.A. [Nuclear Regulatory Commission, Washington, DC (United States)

1992-12-01T23:59:59.000Z

206

Lie-transform theory of transport in plasma turbulence  

SciTech Connect (OSTI)

From the Vlasov equation, a phase-space transport equation is derived by using the Lie-transform approach, and its connection with the quasilinear transport, nonlinear stochastic transport, and fractional transport equations are discussed. The phase-space transport equation indicates a particle redistribution in the real space induced by the inhomogeneity in the energy space distribution and by the correlation between the change of position and the change of energy.

Wang, Shaojie, E-mail: wangsj@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

2014-07-15T23:59:59.000Z

207

Method and apparatus for optical phase error correction  

DOE Patents [OSTI]

The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

DeRose, Christopher; Bender, Daniel A.

2014-09-02T23:59:59.000Z

208

Preliminary Simulations of CO2 Transport in the Dolostone Formations in the Ordos Basin, China  

SciTech Connect (OSTI)

This report summarizes preliminary 2-D reactive-transport simulations on the injection, storage and transport of supercritical CO{sub 2} in dolostone formations in the Ordos Basin in China. The purpose of the simulations was to evaluate the role that basin heterogeneity, permeability, CO{sub 2} flux, and geochemical reactions between the carbonate geology and the CO{sub 2} equilibrated brines have on the evolution of porosity and permeability in the storage reservoir. The 2-D simulation of CO{sub 2} injection at 10{sup 3} ton/year corresponds to CO{sub 2} injection at a rate of 3 x 10{sup 5} ton/year in a 3-D, low permeable rock. An average permeability of 10 md was used in the simulation and reflects the upper range of permeability reported for the Ordos Basin Majiagou Group. Transport and distribution of CO{sub 2} between in the gas, aqueous, and solid phases were followed during a 10-year injection phase and a 10-year post injection phase. Our results show that CO{sub 2} flux and the spatial distribution of reservoir permeability will dictate the transport of CO{sub 2} in the injection and post injection phases. The injection rate of supercritical CO{sub 2} into low permeable reservoirs may need to be adjusted to avoid over pressure and mechanical damage to the reservoir. Although it should be noted that 3-D simulations are needed to more accurately model pressure build-up in the injection phase. There is negligible change in porosity and permeability due to carbonate mineral dissolution or anhydrite precipitation because a very small amount of carbonate dissolution is required to reach equilibrium with respect these phases. Injected CO{sub 2} is stored largely in supercritical and dissolved phases. During the injection phase, CO{sub 2} is transport driven by pressure build up and CO{sub 2} buoyancy.

Hao, Y; Wolery, T; Carroll, S

2009-04-30T23:59:59.000Z

209

High-solids black liquor firing in pulp and paper industry kraft recovery boilers: Phase Ia - Low-temperature gasifier evaluation. Final report, November 1, 1995--October 31, 1996  

SciTech Connect (OSTI)

This project, conducted under The United States Department of Energy (DOE) Cooperative Agreement DE-FC36-94GO10002/A002, was part of a multiple-phase effort to develop technologies that improve the energy efficiency and economics of chemical process recovery in the pulp and paper industry. The approach taken was to consider two major alternatives in two phases. Phase I, conducted previously, considered means to improve pulp mill recovery boilers using high-solids advanced combustion of black liquor; while this project, Phase la, considered means to recover kraft pulping mill process chemicals by low-temperature black liquor gasification. The principal steps previously proposed in this program were: (1) Evaluate these two technologies, high-solids advanced combustion and gasification, and then select a path forward using the more promising of these two options for future work. (2) Design and construct a pilot-scale unit based on the selected technology, and using that unit, develop the precompetitive data necessary to make commercialization attractive. (3) Develop and deploy a first-of-a-kind (FOAK) commercial unit in a kraft pulp mill. Phase I, which evaluated the high-solids advanced combustion option, was concluded in 1995. Results of that project phase were reported previously. This report describes the work conducted in Phase Ia. The work is described in Sections 1 through 4 and six appendices provide additional detail.

Southards, W.T.; Blude, J.D.; Dickinson, J.A. [and others

1997-06-01T23:59:59.000Z

210

Research and development of a proton-exchange-membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 4 of the Phase II report  

SciTech Connect (OSTI)

This 4th quarter report summarizes activity from July 1, 1995 through October 1, 1995; the report is organized as usual into sections describing background information and work performed under the main WBS categories: The Fuel Processor (WBS 1.0) team activity during this quarter focused on the continued design/development of the full scale fuel processing hardware. The combustor test stand has been completed allowing more detailed testing of the various parts of the combustor subsystem; this subsystem is currently being evaluated using the dual fuel (methanol/hydrogen) option to gain a better understanding of the control issues. The Fuel Cell Stack (WBS 2.0) team activity focused on material analysis and testing to determine the appropriate approach for the first GM stack. Five hundred hours of durability was achieved on a single cell fixture using coated titanium plates (anode and cathode) with no appreciable voltage degradation of the SEL (Stack Engineering Lab) produced MEA. Additionally, the voltage level drop across each of the plates remained low (<5mv) over the full test period; The system integration and control team focused on the initial layout and configuration of the system; and the Reference powertrain and commercialization studies are currently under review.

NONE

1995-10-20T23:59:59.000Z

211

Advancing Transportation Through Vehicle Electrification - PHEV...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vssarravt067bazzi2010p.pdf More Documents & Publications Advancing Transportation Through Vehicle Electrification - PHEV...

212

Transportation Security  

Broader source: Energy.gov (indexed) [DOE]

Preliminary Draft - For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work...

213

Computational Transportation  

E-Print Network [OSTI]

), in-vehicle computers, and computers in the transportation infrastructure are integrated ride- sharing, real-time multi-modal routing and navigation, to autonomous/assisted driving

Illinois at Chicago, University of

214

Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report  

SciTech Connect (OSTI)

The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

1994-10-01T23:59:59.000Z

215

Development and initial evaluation of a dynamic species-resolved model for gas phase chemistry and size-resolved gas//particle  

E-Print Network [OSTI]

condensed products of gas phase oxidation, the present model can be viewed as the most detailed SOA of the semivolatile or nonvolatile products of VOC oxidation between the gas and particle phases. Chem- ical analysis of the SOA identifies many products that condense, thereby allowing formulation of gas phase path- ways

Dabdub, Donald

216

Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTC 1  

SciTech Connect (OSTI)

The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

Andrews, Robert

2013-09-01T23:59:59.000Z

217

Sparse Twisted Tensor Frame Discretization Parametric Transport Operators  

E-Print Network [OSTI]

Parametric, high-dimensional transport Equations such as Vlasov-Poisson, Boltzmann and Radiative Transfer associated with the transport equation and by subsequent Galerkin discretization with a novel, sparse tensor of the phase space. In [22], for a model parametric transport problem arising in radiative transport, the use

Grohs, Philipp

218

Experimental validation of GADRAS's coupled neutron-photon inverse radiation transport solver.  

SciTech Connect (OSTI)

Sandia National Laboratories has developed an inverse radiation transport solver that applies nonlinear regression to coupled neutron-photon deterministic transport models. The inverse solver uses nonlinear regression to fit a radiation transport model to gamma spectrometry and neutron multiplicity counting measurements. The subject of this paper is the experimental validation of that solver. This paper describes a series of experiments conducted with a 4.5 kg sphere of {alpha}-phase, weapons-grade plutonium. The source was measured bare and reflected by high-density polyethylene (HDPE) spherical shells with total thicknesses between 1.27 and 15.24 cm. Neutron and photon emissions from the source were measured using three instruments: a gross neutron counter, a portable neutron multiplicity counter, and a high-resolution gamma spectrometer. These measurements were used as input to the inverse radiation transport solver to evaluate the solver's ability to correctly infer the configuration of the source from its measured radiation signatures.

Mattingly, John K.; Mitchell, Dean James; Harding, Lee T.

2010-08-01T23:59:59.000Z

219

New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark  

SciTech Connect (OSTI)

PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

2012-10-01T23:59:59.000Z

220

Pipeline and vehicle transportation problems in the petroleum industry.  

E-Print Network [OSTI]

???In the petroleum industry, petroleum product logistics can be divided into two phases: first logistics, which is mainly provided through pipeline transportation or railway, refers (more)

Zhen, Feng ( ??)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NREL: Transportation Research - Transportation Secure Data Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation PhotoSystemsTransportation Secure

222

NREL: Transportation Research - Transportation and Hydrogen Newsletter:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation PhotoSystemsTransportation

223

Comparative study of Waste Isolation Pilot Plant (WIPP) transportation alternatives  

SciTech Connect (OSTI)

WIPP transportation studies in the Final Supplement Environmental Impact Statement for WIPP are the baseline for this report. In an attempt to present the most current analysis, this study incorporates the most relevant data available. The following three transportation options are evaluated for the Disposal Phase, which is assumed to be 20 years: Truck shipments, consisting of a tractor and trailer, with three TRUPACT-IIs or one RH-72B; Regular commercial train shipments consisting of up to three railcars carrying up to 18 TRUPACT-IIs or up to six RH-72Bs; Dedicated train shipments consisting of a locomotive, an idle car, railcars carrying 18 TRUPACT-IIs or six RH-72Bs, another idle car, and a caboose or passenger car with an emergency response specialist. No other cargo is carried. This report includes: A consideration of occupational and public risks and exposures, and other environmental impacts; A consideration of emergency response capabilities; and An extimation of comparative costs.

Not Available

1994-02-01T23:59:59.000Z

224

Microstructure Reconstruction and Direct Evaluation of Li-Ion Battery Cathodes Fuqiang Liu* and N A Siddique  

E-Print Network [OSTI]

Microstructure Reconstruction and Direct Evaluation of Li-Ion Battery Cathodes Fuqiang Liu* and N of Texas at Arlington, Arlington, Texas 76019, USA High-capacity Li-ion batteries are among the best of the major challenges in Li-ion batteries is to improve mass transport across multiple phase interfaces

Liu, Fuqiang

225

Vadose Zone Transport Field Study: Summary Report  

SciTech Connect (OSTI)

From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energys Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanfords vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNLs Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.

Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

2006-07-31T23:59:59.000Z

226

Evaluating the End-of-Life Phase of Consumer Electronics:Methods and Tools to Improve Product Design and Material Recovery  

E-Print Network [OSTI]

based on primary metallurgy . . . . . 4.10 Plasticswas developed based on primary metallurgy but can be used tothe EoL phase. The main metallurgy routes are copper/lead/

Mangold, Jennifer Ann

2013-01-01T23:59:59.000Z

227

Evaluation of A New Mixed-Phase Cloud Microphysics Parameterization with the NCAR Climate Atmospheric Model (CAM3) and ARM Observations Fourth Quarter 2007 ARM Metric Report  

SciTech Connect (OSTI)

Mixed-phase clouds are composed of a mixture of cloud droplets and ice crystals. The cloud microphysics in mixed-phase clouds can significantly impact cloud optical depth, cloud radiative forcing, and cloud coverage. However, the treatment of mixed-phase clouds in most current climate models is crude and the partitioning of condensed water into liquid droplets and ice crystals is prescribed as temperature dependent functions. In our previous 2007 ARM metric reports a new mixed-phase cloud microphysics parameterization (for ice nucleation and water vapor deposition) was documented and implemented in the NCAR Community Atmospheric Model Version 3 (CAM3). The new scheme was tested against the Atmospheric Radiation Measurement (ARM) Mixed-phase Arctic Cloud Experiment (M-PACE) observations using the single column modeling and short-range weather forecast approaches. In this report this new parameterization is further tested with CAM3 in its climate simulations. It is shown that the predicted ice water content from CAM3 with the new parameterization is in better agreement with the ARM measurements at the Southern Great Plain (SGP) site for the mixed-phase clouds.

X Liu; SJ Ghan; S Xie; J Boyle; SA Klein

2007-09-30T23:59:59.000Z

228

Transport and mechanical property evaluation of (AgSbTe){sub 1-x}(GeTe){sub x} (x=0.80, 0.82, 0.85, 0.87, 0.90)  

SciTech Connect (OSTI)

(AgSbTe{sub 2}){sub 1-x}(GeTe){sub x} (known collectively by the acronym of their constituent elements as TAGS-x, where x designates the mole fraction of GeTe) materials, despite being described over 40 years ago, have only recently been studied in greater detail from a fundamental standpoint. We have prepared a series of samples with composition (AgSbTe{sub 2}){sub 1-x}(GeTe){sub x} (x=0.80, 0.82, 0.85, 0.87 and 0.90). Cast ingots of the above compositions were ground and consolidated by spark plasma sintering (SPS). Sintering conditions, specifically high applied pressures of 65 MPa and slow heating rates, were identified as important variables that lead to samples with low porosity and good mechanical strength. The resulting ingots were cut for high temperature electrical, thermal transport and mechanical property evaluation. TAGS-85 was found to have the highest ZT of all samples investigated (ZT=1.36 at 700 K) as a result of its very low value of thermal conductivity. Hall effect measurements performed from 5 to 300 K found these materials to have complex multi-band transport characteristics. - Graphical Abstract: Powder X-ray diffraction of TAGS-x (x=0.80, 0.82, 0.85, 0.87 and 0.90) showing characteristic bifurcation indicative of rhombohedral structure.

Salvador, James R., E-mail: james.salvador@gm.c [Materials and Processes Laboratory, GM R and D Center, Warren, MI 48090 (United States); Yang, J. [Materials and Processes Laboratory, GM R and D Center, Warren, MI 48090 (United States); Shi, X. [Optimal, Inc. Plymouth Township, MI 48170 (United States); Wang, H.; Wereszczak, A.A. [High Temperature Materials Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

2009-08-15T23:59:59.000Z

229

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

2003-11-01T23:59:59.000Z

230

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

231

Neurotransmitter Transporters  

E-Print Network [OSTI]

at specialized synaptic junctions where electrical excitability in the form of an action potential is translated membrane of neurons and glial cells. Transporters harness electrochemical gradients to force the movement.els.net #12;The response produced when a transmitter interacts with its receptors, the synaptic potential

Bergles, Dwight

232

Transportation System Concept of Operations  

SciTech Connect (OSTI)

The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

N. Slater-Thompson

2006-08-16T23:59:59.000Z

233

Oxygen Transport Membranes  

SciTech Connect (OSTI)

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

234

Impact of risk sharing on competitive bidding in truckload transportation  

E-Print Network [OSTI]

The purpose of this research was to evaluate whether a shipper's fuel surcharge (FSC) program affected its per-load transportation costs in the United States full-truckload (TL) transportation industry. In this study, we ...

Abramson, Molly (Molly Elizabeth)

2012-01-01T23:59:59.000Z

235

Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask  

SciTech Connect (OSTI)

The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

2001-11-20T23:59:59.000Z

236

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

237

NREL: Transportation Research - Transportation and Hydrogen Newsletter...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Future of Sustainable Transportation This is the January 2015 issue of the Transportation and Hydrogen Newsletter. Illustration of an electric vehicle Illustration of an...

238

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

Stefan Miska; Troy Reed; Ergun Kuru

2004-09-30T23:59:59.000Z

239

UFD Storage and Transportation - Transportation Working Group Report  

SciTech Connect (OSTI)

The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report

Maheras, Steven J.; Ross, Steven B.

2011-08-01T23:59:59.000Z

240

Evaluation of a surgical service in the chronic phase of a refugee camp: an example from the Thai-Myanmar border  

E-Print Network [OSTI]

-4] and reproductive health, the latter including female genital mutilation, refugee rights to abortion and family planning [5-9]. The focus is on the so called emergent phase [10] of crisis situations which pertains to acute events (natural disaster, war, terrorist... and the majority of morbidity is associated with infectious and chronic diseases; while war trauma and reproductive health problems exist, these are comparatively minor. One of the principle health issues is multi-drug resis- tant Plasmodium falciparum malaria...

Weerasuriya, Chathika K; Tan, Saw O; Alexakis, Lykourgos C; Set, Aung K; Rijken, Marcus J; Martyn, Paul; Nosten, Franois; McGready, Rose

2012-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Greening Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky LearningGetGraphene's 3D CounterpartDepartmentTransportation

242

Transportation Infrastructure  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy3 Archive Transportation Fact of the Week

243

RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS  

SciTech Connect (OSTI)

The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

S. Magnuson

2004-11-01T23:59:59.000Z

244

Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports  

SciTech Connect (OSTI)

This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

NONE

1993-09-15T23:59:59.000Z

245

Final Report: Design & Evaluation of Energy Efficient Modular Classroom Structures Phase II / Volume I-VII, January 17, 1995 - October 30, 1999  

SciTech Connect (OSTI)

We are developing innovations to enable modular builders to improve the energy performance of their classrooms with no increase in first cost. The Modern Building Systems' (MBS) classroom building conforms to the stringent Oregon energy code, and at $18/ft{sup 2} ($1.67/m{sup 2}) (FOB the factory) it is at the low end of the cost range for modular classrooms. We have investigated daylighting, cross-ventilation, solar preheat of ventilation air, air-to-air heat exchanger, electric lighting controls, and down-sizing HVAC systems as strategies to improve energy performance. We were able to improve energy performance with no increase in first cost in all climates examined. Two papers and a full report on Phase I of this study are available. The work described in this report is from the second phase of the project. In the first phase we redesigned the basic modular classroom to incorporate energy strategies including daylighting, cross-ventilation, solar preheating of ventilation air, and insulation. We also explored thermal mass but determined that it was not a cost-effective strategy in the five climates we examined. Energy savings ranged from 6% to 49% with an average of 23%. Paybacks ranged from 1.3 years to 23.8 years, an average of 12.1 years. In Phase II the number of baseline buildings was expanded by simulating buildings that would be typical of those produced by Modern Building Systems, Inc. (MBS) for each of the seven locations/climates. A number of parametric simulations were performed for each energy strategy. Additionally we refined our previous algorithm for a solar ventilation air wall preheater and developed an algorithm for a roof preheater configuration. These algorithms were coded as functions in DOE 2.1E. We were striving for occupant comfort as well as energy savings. We performed computer analyses to verify adequate illumination on vertical surfaces and acceptable glare levels when using daylighting. We also used computational fluid dynamics software to determine air distribution from cross-ventilation and used the resulting interior wind speeds to calculate occupant comfort and allowable outside air temperatures for cross-ventilation.

NONE

1999-10-30T23:59:59.000Z

246

Transportation of medical isotopes  

SciTech Connect (OSTI)

A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

Nielsen, D.L.

1997-11-19T23:59:59.000Z

247

Santa Clara Valley Transportation Authority and San Mateo County...  

Energy Savers [EERE]

Santa Clara Valley Transportation Authority and San Mateo County Transit District Fuel Cell Transit Buses: Preliminary Evaluation Results vtaprelimevalresults.pdf More...

248

Fuel-Neutral Studies of Particulate Matter Transport Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Program Annual Merit Review and Peer Evaluation ace056stewart2011o.pdf More Documents & Publications Fuel-Neutral Studies of Particulate Matter Transport Emissions...

249

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Peer Evaluation arravt052tiebert2011p.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through...

250

Ponderomotive phase plate for transmission electron microscopes  

DOE Patents [OSTI]

A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

Reed, Bryan W. (Livermore, CA)

2012-07-10T23:59:59.000Z

251

Transporting particulate material  

DOE Patents [OSTI]

A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

2011-08-30T23:59:59.000Z

252

Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada with Errata Sheet 1, 2, 3, Revision 1  

SciTech Connect (OSTI)

As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additional model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.

Greg Ruskauff

2009-02-01T23:59:59.000Z

253

Sigma phase formation kinetics in stainless steel laminate composites  

SciTech Connect (OSTI)

Stainless steel laminate composites were made to simulate weld microstructures. The use of laminates with variations in chemical composition allows for one dimensional analysis of phase transformation associated with the more complex three-dimensional solidification experience of weld metal. Alternate layers of austenitic (304L and 316L) and ferritic (Ebrite) stainless steels allowed for the study of sigma phase formation at the austenite-ferrite interface in duplex stainless steel. Two austenitic stainless steels, 304L (18.5Cr-9.2Ni-0.3Mo) and 316L (16.2Cr-10.1Ni-2.6Mo), and one ferritic stainless steel, Ebrite (26.3Cr-0Ni-1.0Mo) were received in the form of sheet which was laboratory cold rolled to a final thickness of 0.25 mm (0.030 in.). Laminate composites were prepared by laboratory hot rolling a vacuum encapsulated compact of alternating layers of the ferrite steel with either 304L or 316L stainless steel sheets. Laminate composite specimens, which simulate duplex austenite-ferrite weld metal structure, were used to establish the kinetics of nucleation and growth of sigma phase. The factors affecting sigma phase formation were identified. The effects of time, temperature, and transport of chromium and nickel were evaluated and used to establish a model for sigma phase formation in the austenite-ferrite interfacial region. Information useful for designing stainless steel welding consumables to be used for high temperature service was determined.

Wenmen, D.W.; Olson, D.L.; Matlock, D.K. [Colorado School of Mines, Golden, CO (United States)] [and others

1994-12-31T23:59:59.000Z

254

Transportation Security | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Security SHARE Global Threat Reduction Initiative Transportation Security Cooperation Secure Transport Operations (STOP) Box Security of radioactive material while...

255

Strategic Freight Transportation Contract Procurement  

E-Print Network [OSTI]

Based Procurement for Transportation Services, Journal ofCoia, A. , Evolving transportation exchanges, World trade,an Auction Based Transportation Marketplace, Transportation

Nandiraju, Srinivas

2006-01-01T23:59:59.000Z

256

"Educating transportation professionals."  

E-Print Network [OSTI]

"Educating transportation professionals." Michael Demetsky Henry L. Kinnier Professor mjd of Virginia Charlottesville, VA 434.924.7464 Transportation Engineering & Management Research Our group works closely with the Virginia Center for Transportation Innovation and Research (VCTIR), located

Acton, Scott

257

Independent Oversight Evaluation, Office of Secure Transportation -  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel CellandVehiclesImplementationImmobilizationFebruary 2004 |

258

Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter  

SciTech Connect (OSTI)

Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

Chakraborty, S.; Kroposki, B.; Kramer, W.

2008-11-01T23:59:59.000Z

259

Alpha phase precipitation from phase-separated beta phase in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission Alpha phase precipitation from phase-separated beta...

260

Final Technical Report; Geothermal Resource Evaluation and Definitioni (GRED) Program-Phases I, II, and III for the Animas Valley, NM Geothermal Resource  

SciTech Connect (OSTI)

This report contains a detailed summary of a methodical and comprehensive assessment of the potential of the Animas Valley, New Mexico geothermal resource leasehold owned by Lightning Dock Geothermal, Inc. Work described herein was completed under the auspices of the Department of Energy (DOE) Cooperative Agreement DE-FC04-00AL66977, Geothermal Resource Evaluation and Definition (GRED) Program, and the work covers the time span from June 2001 through June 2004. Included in this new report are detailed results from the GRED Program, including: geophysical and geochemical surveys, reflection seismic surveys, aeromagnetic surveys, gravity and electrical resistivity surveys, soil thermal ion and soil carbon dioxide flux surveys, four temperature gradient holes, and one deep exploratory well.

Cunniff, Roy A.; Bowers, Roger L.

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fish Research Project, Oregon : Evaluation of the Success of Supplementing Imnaha River Steelhead with Hatchery Reared Smolts: Phase One : Completion Report.  

SciTech Connect (OSTI)

Two streams in the Imnaha River subbasin (Camp Creek and Little Sheep Creek) and eight streams in the Grande Ronde River subbasin (Catherine, Deer, Five Points, Fly, Indian, Lookingglass, Meadow, and Sheep creeks) were selected as study streams to evaluate the success and impacts of steelhead supplementation in northeast Oregon. The habitat of the study streams was inventoried to compare streams and to evaluate whether habitat might influence the performance parameters we will measure in the study. The mean fecundity of hatchery and natural steelhead 1-salts returning to Little Sheep Creek fish facility in 1990 and 1991 ranged from 3,550 to 4,663 eggs/female; the mean fecundity of hatchery and natural steelhead 2-salts ranged from 5,020 to 5,879 eggs/female. Variation in length explained 57% of the variation in fecundity of natural steelhead, but only 41% to 51% of the variation in fecundity of hatchery steelhead. Adult steelhead males had an average spermatocrit of 43.9% at spawning. We were also able to stain sperm cells so that viable cells could be distinguished from dead cells. Large, red disc tags may be the most useful for observing adults on the spawning grounds. The density of wild, juvenile steelhead ranged from 0 fish/l00{sup 2} to 35.1 (age-0) and 14.0 (age-1) fish/l00m{sup 2}. Evidence provided from the National Marine Fisheries Service suggests that hatchery and wild fish within a subbasin are genetically similar. The long-term experimental design is presented as a component of this report.

Carmichael, Richard W.; Whitesel, Timothy A.; Jonasson, Brian C.

1995-08-01T23:59:59.000Z

262

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In this quarter a systematic analysis on the decomposition behavior of the OTM membranes at air and nitrogen were initiated to understand the structural and stoichiometric changes associated with elevated temperatures. Evaluation of the flexural strengths using 4-point bend test was also started for the dual phase membranes. Initial results on the synthesis of dual phase composite materials have been obtained. The measurements have focused on the compatibility of mixed conductors with the pure ionic conductors yttria stabilized zirconia (YSZ) and gadolinium doped ceria (GDC). The initial results obtained for three different mixed conductors suggest that (GDC) is the better choice. A new membrane permeation system has been designed and tested and sintering studies of biphasic systems are in progress.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2006-05-01T23:59:59.000Z

263

Transportation Efficiency Resources  

Broader source: Energy.gov [DOE]

Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and...

264

Chapter 12 Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-1 November 2012 Words in bold and acronyms are defined in Chapter 32, Glossary and Acronyms. Chapter 12 Transportation This chapter describes existing transportation resources in...

265

Sustainability and Transport  

E-Print Network [OSTI]

2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

Gilbert, Richard

2006-01-01T23:59:59.000Z

266

Improvements in 500-kHz Ultrasonic Phased-Array Probe Designs for Evaluation of Thick Section Cast Austenitic Stainless Steel Piping Welds  

SciTech Connect (OSTI)

PNNL has been studying and performing confirmatory research on the inspection of piping welds in coarse-grained steels for over 30 years. More recent efforts have been the application of low frequency phased array technology to this difficult to inspect material. The evolution of 500 kHz PA probes and the associated electronics and scanning protocol are documented in this report. The basis for the probe comparisons are responses from one mechanical fatigue crack and two thermal fatigue cracks in large-bore cast mockup specimens on loan from the Electric Power Research Institution. One of the most significant improvements was seen in the use of piezo-composite elements in the later two probes instead of the piezo-ceramic material used in the prototype array. This allowed a reduction in system gain of 30 dB and greatly reduced electronic noise. The latest probe had as much as a 5 dB increase in signal to noise, adding to its flaw discrimination capability. The system electronics for the latest probe were fully optimized for a 500 kHz center frequency, however significant improvements were not observed in the center frequency of the flaw responses. With improved scanner capabilities, smaller step sizes were used, allowing both line and raster data improvements to be made with the latest probe. The small step sizes produce high resolution images that improve flaw discrimination and, along with the increased signal-to-noise ratio inherent in the latest probe design, enhanced detection of the upper regions of the flaw make depth sizing more plausible. Finally, the physical sizes of the probes were progressively decreased allowing better access to the area of interest on specimens with weld crowns, and the latest probe was designed with non-integral wedges providing flexibility in focusing on different specimen geometries.

Crawford, Susan L.; Cinson, Anthony D.; Moran, Traci L.; Anderson, Michael T.; Diaz, Aaron A.

2011-02-01T23:59:59.000Z

267

Intermodal transportation of spent fuel  

SciTech Connect (OSTI)

Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate.

Elder, H.K.

1983-09-01T23:59:59.000Z

268

Results from One- and Two- Phase Fluid Flow Calculations within the Preliminary Safety Analysis of the Gorleben Site - 13310  

SciTech Connect (OSTI)

Rock salt is one of the possible host rock formations for the disposal of high-level radioactive wastes in Germany. The Preliminary Safety Analysis of the Gorleben Site (Vorlaeufige Sicherheitsanalyse Gorleben, VSG) evaluates the long-term safety of a hypothetical repository in the salt dome of Gorleben, Germany. A mature repository concept and detailed knowledge of the site allowed a detailed process analysis within the project by numerical modeling of single-phase and two-phase flow. The possibility of liquid transport from the shafts to the emplacement drifts is one objective of the present study. Also, the implications of brine inflow on radionuclide transport and gas generation are investigated. Pressure build-up due to rock convergence and gas generation, release of volatile radionuclides from the waste and pressure-driven contaminant transport were considered, too. The study confirms that the compaction behavior of salt grit backfill is one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants. Due to the interaction between compaction, saturation and pore pressure, complex flow patterns evolve. Emplacement drifts serve as gas sinks or sources at different times. In most calculation cases, the backfill reaches its final porosity after a few hundred years. The repository is then sealed and radionuclides can only be transported by diffusion in the liquid phase. Estimates for the final porosity of compacted backfill range between 0 % and 2 %. The exact properties of the backfill regarding single- and two-phase flow are not well known for this porosity range. The study highlights that this uncertainty has a profound impact on flow and transport processes over long time-scales. Therefore, more research is needed to characterize the properties of crushed salt grit at low porosities or to reduce the adverse effects of possible higher porosities by repository optimization. (authors)

Kock, Ingo; Larue, Juergen; Fischer, Heidi; Frieling, Gerd; Navarro, Martin; Seher, Holger [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)] [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)

2013-07-01T23:59:59.000Z

269

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network [OSTI]

Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

270

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

The Quarter began with installing the new drill pipe, hooking up the new hydraulic power unit, completing the pipe rotation system (Task 4 has been completed), and making the SWACO choke operational. Detailed design and procurement work is proceeding on a system to elevate the drill-string section. The prototype Foam Generator Cell has been completed by Temco and delivered. Work is currently underway to calibrate the system. Literature review and preliminary model development for cuttings transportation with polymer foam under EPET conditions are in progress. Preparations for preliminary cuttings transport experiments with polymer foam have been completed. Two nuclear densitometers were re-calibrated. Drill pipe rotation system was tested up to 250 RPM. Water flow tests were conducted while rotating the drill pipe up to 100 RPM. The accuracy of weight measurements for cuttings in the annulus was evaluated. Additional modifications of the cuttings collection system are being considered in order to obtain the desired accurate measurement of cuttings weight in the annular test section. Cutting transport experiments with aerated fluids are being conducted at EPET, and analyses of the collected data are in progress. The printed circuit board is functioning with acceptable noise level to measure cuttings concentration at static condition using ultrasonic method. We were able to conduct several tests using a standard low pass filter to eliminate high frequency noise. We tested to verify that we can distinguish between different depths of sand in a static bed of sand. We tested with water, air and a mix of the two mediums. Major modifications to the DTF have almost been completed. A stop-flow cell is being designed for the DTF, the ACTF and Foam Generator/Viscometer which will allow us to capture bubble images without the need for ultra fast shutter speeds or microsecond flash system.

Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mengjiao Yu; Ramadan Ahmed; Mark Pickell; Len Volk; Lei Zhou; Zhu Chen; Aimee Washington; Crystal Redden

2003-09-30T23:59:59.000Z

271

Development of improved processing and evaluation methods for high reliability structural ceramics for advanced heat engine applications, Phase 1. Final report  

SciTech Connect (OSTI)

The program goals were to develop and demonstrate significant improvements in processing methods, process controls and non-destructive evaluation (NDE) which can be commercially implemented to produce high reliability silicon nitride components for advanced heat engine applications at temperatures to 1,370{degrees}C. The program focused on a Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} high temperature ceramic composition and hot-isostatic-pressing as the method of densification. Stage I had as major objectives: (1) comparing injection molding and colloidal consolidation process routes, and selecting one route for subsequent optimization, (2) comparing the performance of water milled and alcohol milled powder and selecting one on the basis of performance data, and (3) adapting several NDE methods to the needs of ceramic processing. The NDE methods considered were microfocus X-ray radiography, computed tomography, ultrasonics, NMR imaging, NMR spectroscopy, fluorescent liquid dye penetrant and X-ray diffraction residual stress analysis. The colloidal consolidation process route was selected and approved as the forming technique for the remainder of the program. The material produced by the final Stage II optimized process has been given the designation NCX 5102 silicon nitride. According to plan, a large number of specimens were produced and tested during Stage III to establish a statistically robust room temperature tensile strength database for this material. Highlights of the Stage III process demonstration and resultant database are included in the main text of the report, along with a synopsis of the NCX-5102 aqueous based colloidal process. The R and D accomplishments for Stage I are discussed in Appendices 1--4, while the tensile strength-fractography database for the Stage III NCX-5102 process demonstration is provided in Appendix 5. 4 refs., 108 figs., 23 tabs.

Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Wilkens, C.A.; Yeckley, R.L. [Norton Co., Northboro, MA (United States)

1993-08-01T23:59:59.000Z

272

NREL: Transportation Research - Transportation News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation PhotoSystems

273

Transport equations in tokamak plasmas  

SciTech Connect (OSTI)

Tokamak plasma transport equations are usually obtained by flux surface averaging the collisional Braginskii equations. However, tokamak plasmas are not in collisional regimes. Also, ad hoc terms are added for neoclassical effects on the parallel Ohm's law, fluctuation-induced transport, heating, current-drive and flow sources and sinks, small magnetic field nonaxisymmetries, magnetic field transients, etc. A set of self-consistent second order in gyroradius fluid-moment-based transport equations for nearly axisymmetric tokamak plasmas has been developed using a kinetic-based approach. The derivation uses neoclassical-based parallel viscous force closures, and includes all the effects noted above. Plasma processes on successive time scales and constraints they impose are considered sequentially: compressional Alfven waves (Grad-Shafranov equilibrium, ion radial force balance), sound waves (pressure constant along field lines, incompressible flows within a flux surface), and collisions (electrons, parallel Ohm's law; ions, damping of poloidal flow). Radial particle fluxes are driven by the many second order in gyroradius toroidal angular torques on a plasma species: seven ambipolar collision-based ones (classical, neoclassical, etc.) and eight nonambipolar ones (fluctuation-induced, polarization flows from toroidal rotation transients, etc.). The plasma toroidal rotation equation results from setting to zero the net radial current induced by the nonambipolar fluxes. The radial particle flux consists of the collision-based intrinsically ambipolar fluxes plus the nonambipolar fluxes evaluated at the ambipolarity-enforcing toroidal plasma rotation (radial electric field). The energy transport equations do not involve an ambipolar constraint and hence are more directly obtained. The 'mean field' effects of microturbulence on the parallel Ohm's law, poloidal ion flow, particle fluxes, and toroidal momentum and energy transport are all included self-consistently. The final comprehensive equations describe radial transport of plasma toroidal rotation, and poloidal and toroidal magnetic fluxes, as well as the usual particle and energy transport.

Callen, J. D.; Hegna, C. C.; Cole, A. J. [University of Wisconsin, Madison, Wisconsin 53706-1609 (United States)

2010-05-15T23:59:59.000Z

274

Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects.  

E-Print Network [OSTI]

?? Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are (more)

Uraz, Emre

2011-01-01T23:59:59.000Z

275

Natural System Evaluation and Tool Development: International...  

Broader source: Energy.gov (indexed) [DOE]

collaboration on the natural system evaluation and tool development included: (1) data interpretation of colloid-facilitated transport experiments at Grimsel Test Site, (2)...

276

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-07-01T23:59:59.000Z

277

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

278

Graduate Certificate in Transportation  

E-Print Network [OSTI]

Graduate Certificate in Transportation Nohad A. Toulan School of Urban Studies and Planning of Engineering and Computer Science integrated transportation systems. The Graduate Certificate in Transportation their capabilities. Students in the program can choose among a wide range of relevant courses in transportation

Bertini, Robert L.

279

TRANSPORTATION Annual Report  

E-Print Network [OSTI]

2003 CENTER FOR TRANSPORTATION STUDIES Annual Report #12;Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Avenue S.E. Minneapolis, MN publication is a report of transportation research, education, and outreach activities for the period July

Minnesota, University of

280

Regional Transportation Coordination Study  

E-Print Network [OSTI]

Regional Planning Commission Wanda Carter-Dyer Public Transportation Coordinator Texas Department of Transportation Councilperson Debra Martinez Briseno Cities in Calhoun County Laura G. Sanders Executive Director Golden Crescent Workforce... Regional Planning Commission Wanda Carter-Dyer Public Transportation Coordinator Texas Department of Transportation Councilperson Debra Martinez Briseno Cities in Calhoun County Laura G. Sanders Executive Director Golden Crescent Workforce...

Golden Crescent Regional Planning Commission

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr  

E-Print Network [OSTI]

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation ope

282

Graduate Studies Transportation Systems Engineering  

E-Print Network [OSTI]

Graduate Studies Transportation Systems Engineering TRANSPORTATION SYSTEMS The transportation that transportation systems engineering can promote a thriving economy and a better quality of life by ensuring that transportation systems themselves affect the environment through operations, construction, and maintenance

Jacobs, Laurence J.

283

Introduction Transport in disordered graphene  

E-Print Network [OSTI]

Introduction Transport in disordered graphene Summary Ballistic transport in disordered graphene P, Gornyi, Mirlin Ballistic transport in disordered graphene #12;Introduction Transport in disordered graphene Summary Outline 1 Introduction Model Experimental motivation Transport in clean graphene 2

Fominov, Yakov

284

Minnesota's Transportation Economic Development (TED)  

E-Print Network [OSTI]

Minnesota's Transportation Economic Development (TED) Pilot Program Center for Transportation Studies Transportation Research Conference May 24-25, 2011 #12;Transportation Role in Economic Development · Carefully targeted transportation infrastructure improvements will: ­ Stimulate new economic development

Minnesota, University of

285

Electronic structure and transport in molecular and nanoscale electronics  

E-Print Network [OSTI]

Two approaches based on first-principles method are developed to qualitatively and quantitatively study electronic structure and phase-coherent transport in molecular and nanoscale electronics, where both quantum mechanical ...

Qian, Xiaofeng

2008-01-01T23:59:59.000Z

286

Energy Policy Act transportation rate study: Interim report on coal transportation  

SciTech Connect (OSTI)

The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

NONE

1995-10-01T23:59:59.000Z

287

Studying colloid transport in porous media using a geocentrifuge Prabhakar Sharma,1,2,3  

E-Print Network [OSTI]

Studying colloid transport in porous media using a geocentrifuge Prabhakar Sharma,1,2,3 Markus enhance the transport of contaminants. The excessive time required to conduct flow and transport experiments in porous media led to the use of centrifuges to evaluate subsurface transport processes

Flury, Markus

288

Thermodynamics and Mass Transport in Multicomponent,  

E-Print Network [OSTI]

Thermodynamics and Mass Transport in Multicomponent, Multiphase H2O Systems of Planetary Interest, cryogenic systems, thermodynamics, fluid dynamics, clathrates, Mars, Enceladus, sound speed Abstract Heat of the noncondensible components can greatly alter the thermodynamic properties of the phases and their flow properties

Jellinek, Mark

289

ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING  

E-Print Network [OSTI]

ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN. Introduction Saturated flow and single phase solute transport in confined ground- water systems are modelled one has to resort to indirect, or inverse, techniques to populate the model. In a groundwater system

Knowles, Ian W.

290

ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING  

E-Print Network [OSTI]

ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN. Introduction Saturated flow and single phase solute transport in confined ground­ water systems are modelled to resort to indirect, or inverse, techniques to populate the model. In a groundwater system one

Knowles, Ian W.

291

Multi-phasing CFD  

SciTech Connect (OSTI)

Computational fluid dynamics for multiphase flows is an emerging field. Due to the complexity and divergence of multiphase thermal and hydraulic problems, further development of multiphase flow modelling, closure laws and numerical methods is needed in order to achieve the general purpose and optimised CFD (Computational Fluid Dynamics) methods, which will be applicable to the wide variety of multiphase flow problems. In the paper, an original approach to the various aspects of multiphase CFD modelling is presented. It is based on the multi-fluid modelling approach, development of necessary closure laws and derivation of appropriate numerical methods for efficient governing equations solution. Velocity and pressure fields are solved with the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) type pressure-corrector method developed for the multiphase flow conditions. For the solution of scalar parameters transport equations both implicit and explicit methods are presented. The implicit method is suitable for steady state, slow transients and problems without the sharp fronts propagation. Explicit method is developed in order to predict scalar parameters fronts propagation, as well as phase interface tracking problems. The challenge towards the multiphase flow solution on both the macro and micro level is presented in order to perform multiphase CFD simulations and analyses of multiphase flows in complex geometry of nuclear power plant components, such as nuclear fuel rod bundles thermal-hydraulics. Presented methodology and obtained CFD results comprise micro-scale phenomena of phases' separation, interface tracking, heated surfaces dry-out and critical heat flux occurrence, as well as macro-scale transport and distributions of phase volumes. (authors)

Stosic, Zoran V. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia)

2002-07-01T23:59:59.000Z

292

Transportation Baseline Schedule  

SciTech Connect (OSTI)

The 1999 National Transportation Program - Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste/material transportation. The companion 1999 Transportation Barriers Analysis analyzes the data and identifies existing and potential problems that may prevent or delay transportation activities based on the data presented. The 1999 Transportation Baseline Schedule (this report) uses the same data to provide an overview of the transportation activities of DOE EM waste/materials. This report can be used to identify areas where stakeholder interface is needed, and to communicate to stakeholders the quantity/schedule of shipments going through their area. Potential bottlenecks in the transportation system can be identified; the number of packages needed, and the capacity needed at receiving facilities can be planned. This report offers a visualization of baseline DOE EM transportation activities for the 11 major sites and the Geologic Repository Disposal site (GRD).

Fawcett, Ricky Lee; John, Mark Earl

2000-01-01T23:59:59.000Z

293

Water Transport Within the STack: Water Transport Exploratory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE...

294

Marine and River Dune Dynamics MARID IV 15 & 16 April 2013 -Bruges, Belgium Numerical simulation of turbulent sediment transport  

E-Print Network [OSTI]

simulation of turbulent sediment transport O. Durán (1,2) , B. Andreotti (1) , P. Claudin (1) 1. Laboratoire Carolina 27515, USA Abstract Sediment transport is studied by means of two phase numerical simulations to empirical transport laws. The vertical velocities of the grains are small and sediment transport occurs

Claudin, Philippe

295

Theoretical study of particle transport in electron internal transport barriers in TCV  

SciTech Connect (OSTI)

Previous results from the analysis of fully non inductively sustained electron internal transport barriers (eITBs) in TCV show that a strong coupling exists between electron temperature and density profiles inside the barrier. A phenomenology that is completely different from the standard L-mode is observed . New experimental results assess transient phases to calculate particle convection and diffusion coefficients, allowing also to discuss the role of neoclassical transport. Gyrokinetic and gyrofluid analysis of steady-state eITBs provide tools to understand the mechanism that drive the observed density peaking in advanced scenarios with internal transport barriers and dominant electron heating.

Fable, E.; Sauter, O.; Marinoni, A.; Zucca, C. [Centre de Recherches en Physique des Plasmas, Association EURATOM -- Confederation Suisse, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

2006-11-30T23:59:59.000Z

296

Implementation of Benchmarking Transportation Logistics Practices and Future Benchmarking Organizations  

SciTech Connect (OSTI)

The purpose of the Office of Civilian Radioactive Waste Management's (OCRWM) Logistics Benchmarking Project is to identify established government and industry practices for the safe transportation of hazardous materials which can serve as a yardstick for design and operation of OCRWM's national transportation system for shipping spent nuclear fuel and high-level radioactive waste to the proposed repository at Yucca Mountain, Nevada. The project will present logistics and transportation practices and develop implementation recommendations for adaptation by the national transportation system. This paper will describe the process used to perform the initial benchmarking study, highlight interim findings, and explain how these findings are being implemented. It will also provide an overview of the next phase of benchmarking studies. The benchmarking effort will remain a high-priority activity throughout the planning and operational phases of the transportation system. The initial phase of the project focused on government transportation programs to identify those practices which are most clearly applicable to OCRWM. These Federal programs have decades of safe transportation experience, strive for excellence in operations, and implement effective stakeholder involvement, all of which parallel OCRWM's transportation mission and vision. The initial benchmarking project focused on four business processes that are critical to OCRWM's mission success, and can be incorporated into OCRWM planning and preparation in the near term. The processes examined were: transportation business model, contract management/out-sourcing, stakeholder relations, and contingency planning. More recently, OCRWM examined logistics operations of AREVA NC's Business Unit Logistics in France. The next phase of benchmarking will focus on integrated domestic and international commercial radioactive logistic operations. The prospective companies represent large scale shippers and have vast experience in safely and efficiently shipping spent nuclear fuel and other radioactive materials. Additional business processes may be examined in this phase. The findings of these benchmarking efforts will help determine the organizational structure and requirements of the national transportation system. (authors)

Thrower, A.W. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Patric, J. [Booz Allen Hamilton, Washington, DC (United States); Keister, M. [Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

297

Structure-dynamics relationship in coherent transport through disordered systems  

E-Print Network [OSTI]

Quantum transport is strongly influenced by interference with phase relations that depend sensitively on the scattering medium. Since even small changes in the geometry of the medium can turn constructive interference to destructive, a clear relation between structure and fast, efficient transport is difficult to identify. Here we present a complex network analysis of quantum transport through disordered systems to elucidate the relationship between transport efficiency and structural organization. Evidence is provided for the emergence of structural classes with different geometries but similar high efficiency. Specifically, a structural motif characterised by pair sites which are not actively participating to the dynamics renders transport properties robust against perturbations. Our results pave the way for a systematic rationalization of the design principles behind highly efficient transport which is of paramount importance for technological applications as well as to address transport robustness in natural light harvesting complexes.

Stefano Mostarda; Federico Levi; Diego Prada-Gracia; Florian Mintert; Francesco Rao

2013-07-17T23:59:59.000Z

298

Electric field controlled emulsion phase contactor  

DOE Patents [OSTI]

A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

Scott, Timothy C. (Knoxville, TN)

1995-01-01T23:59:59.000Z

299

Electric field controlled emulsion phase contactor  

DOE Patents [OSTI]

A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

Scott, T.C.

1995-01-31T23:59:59.000Z

300

Transportation Infrastructure and Sustainable Development  

E-Print Network [OSTI]

A Better Forecasting Tool for Transportation Decision-making, Mineta Transportation Institute, San Jose Stateat the 2008 meeting of the Transportation Research Board and

Boarnet, Marlon G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

302

The universal radiative transport equation  

E-Print Network [OSTI]

THE UNIVERSAL RADIATIVE TRANSPORT EQUATION Rudolph W.The Universal Radiative Transport Equation Rudolph W.The various radiative transport equations used in general

Preisendorfer, Rudolph W

1959-01-01T23:59:59.000Z

303

Transportation Management Workshop: Proceedings  

SciTech Connect (OSTI)

This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

Not Available

1993-10-01T23:59:59.000Z

304

Transportation Management Research Collection /  

E-Print Network [OSTI]

, Peterbilt Motors, and General Electric. He was a national panel member of the American Arbitration, Noise and Environmental Pollution, Transportation Co-ordination and Consolidation, Transportation -- Docket 8613 1957 Civil Aeronautics Board General passenger fare investigation -- Docket 8008 et al

Handy, Todd C.

305

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

1995-09-27T23:59:59.000Z

306

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

1995-09-27T23:59:59.000Z

307

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

1996-10-02T23:59:59.000Z

308

Transportation Investment and  

E-Print Network [OSTI]

Transportation Investment and Economic Development: Has the TIED turned? David Levinson University Transportation Investments was Historically Concomitant with Land and Economic Development #12;Canals Railways Surfaced Roads Crude Oil Pipelines Gas Pipelines Telegraph 1825 1985 Proportion of Maximum Extent Growth

Levinson, David M.

309

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

SciTech Connect (OSTI)

This report describes activities for the thirteenth quarter of work performed under this agreement. EnviRes initiated a wire transfer of funds for procurement of a pressure vessel and associated refractory lining. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-01-01T23:59:59.000Z

310

Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.  

SciTech Connect (OSTI)

In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from the Snake River Basin averaged 0.45% (SE=0.11%), including age-1-ocean returns, for release years 1996 through 2003. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2003), it was estimated that on average approximately 86% of the total integrated mortality for nontransported, tagged hatchery spring and summer Chinook, and 74% for steelhead, occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the systemwide T/I are weighted averages of the dam-specific T/I ratios for each transport dam (with {ge} 5,000 tagged fish transported), weighted by the probabilities of being transported at each dam. The systemwide T/I compares the observed SAR under the existing transportation system with the expected SAR if the transportation system had not been operated. Estimates of 1.0 indicate that the systemwide transportation program has no effect on SAR, while estimates > 1.0 indicate that the transportation program increases SAR. Excluding the 2001 release group, the geometric mean of the systemwide T/I estimates for hatchery spring Chinook salmon from the Snake River Basin was 1.15 (SE=0.03) for release years 1997 through 2003. The geometric mean of the systemwide T/I estimates for hatchery summer Chinook salmon from the Snake River Basin was 1.28 (SE=0.13) for release years 1997 through 2000 and 2003. Estimates were much higher for the 2001 release groups. These estimates reflect transportation from Lower Granite and/or Little Goose for most release years, depending on the number of tagged smolts actually transported at each dam during each release year. Differential post-Bonneville mortality (D) is the ratio of post-Bonneville survival to Lower Granite Dam of transported fish to that of nontransported ('inriver') fish. Excluding the 2001 release year, the geometric mean of the D estimates for hatchery spring Chinook salmon from the Snake River Basin

Buchanan, Rebecca A.; Skalski, John R.

2007-12-07T23:59:59.000Z

311

Lubbock Metropolitan Transportation Plan  

E-Print Network [OSTI]

for Users (SAFETEA-LU) and its predecessors, the Transportation Equity Act for the 21st Century (TEA-21) and the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, specified the transportation systems on which certain federal funds can... in Chapter 5 ? Streets and Highways; Chapter 6 ? Public Transportation; Chapter 7 ? Bicycle and Pedestrian Plan; Chapter 8 ? Lubbock International Airport and Chapter 9 ? Railroads and Trucking. Federally funded transit projects were developed...

Lubbock Metropolitan Planning Organization

2007-09-18T23:59:59.000Z

312

Transportation and its Infrastructure  

E-Print Network [OSTI]

subsidies on fossil transport fuels, subsidies on commutingC. , 2003: Subsidies that encourage fossil fuel use in

2007-01-01T23:59:59.000Z

313

Subcritical Fluctuations at the Electroweak Phase Transition  

E-Print Network [OSTI]

We study the importance of thermal fluctuations during the electroweak phase transition. We evaluate in detail the equilibrium number density of large amplitude subcritical fluctuations and discuss the importance of phase mixing to the dynamics of the phase transition. Our results show that, for realistic Higgs masses, the phase transition can be completed by the percolation of the true vacuum, induced by the presence of subcritical fluctuations.

Rudnei O. Ramos

1996-07-24T23:59:59.000Z

314

Northwestern University Transportation Center  

E-Print Network [OSTI]

Northwestern University Transportation Center 2011 Business Advisory Committee NUTC #12;#12;I have the pleasure of presenting our Business Advisory Committee members--a distinguished group of transportation industry lead- ers who have partnered with the Transportation Center in advancing the state of knowledge

Bustamante, Fabián E.

315

PalladianDigest Transportation  

E-Print Network [OSTI]

PalladianDigest CONNECT. EMPOWER. GROW. Tackling Transportation Challenges Nebraska has been a vital link in the nation's transportation system since the days when carts, wagons to University of Nebraska­Lincoln research. That's fine with UNL transportation researchers, said Larry Rilett

Farritor, Shane

316

TRANSPORTATION: THE POTENTIAL  

E-Print Network [OSTI]

INTERMODAL TRANSPORTATION: THE POTENTIAL AND THE CHALLENGE A Summary Report 2003 #12;June 2003 To the Reader This report summarizes the second James L. Oberstar Forum on Transportation Policy and Technology. Over two days, we explored the chal- lenges and opportunities in intermodal transportation, addressing

Minnesota, University of

317

Louisiana Transportation Research Center  

E-Print Network [OSTI]

Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

Harms, Kyle E.

318

Introduction to Transportation Planning  

E-Print Network [OSTI]

Introduction to Transportation Planning CMP 4710/6710 Fall 2012 3 Credit Hours Room: ARCH 229 on a Saturday night, transportation is not an objective in and of itself, but a means to carry out the functions of daily living (i.e., it's a "derived good"). As a consequence, the transportation systems we build

Tipple, Brett

319

Rural Intelligent Transportation Systems  

E-Print Network [OSTI]

Rural Intelligent Transportation Systems In a technical session at the 2011 NACE conference, Dennis Foderberg of SEH Inc. discussed intelligent transportation systems (ITS) developed by SEH in collaboration with Network Transportation Technologies, Inc. These systems address the problem of crashes on low-volume roads

Minnesota, University of

320

An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles  

SciTech Connect (OSTI)

In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.

Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji; Fan, Zongwei [State Key Lab of Fluid Power Transmission and Control, Department of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

2014-08-14T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-08-01T23:59:59.000Z

322

Journal of Statistical Physics, Vol. 95, Nos. 12, 1999 Radiative Transport in a Periodic Structure  

E-Print Network [OSTI]

; final December 1, 1998 We derive radiative transport equations for solutions of a Schrodinger equation and the Bloch wave expansion. The streaming part of the radiative transport equations is determined entirely Radiative transport equations describe propagation of the phase space energy density of high frequency waves

Fannjiang, Albert

323

Radiative transport limit for the random Schrodinger Guillaume Bal George Papanicolaou y Leonid Ryzhik z  

E-Print Network [OSTI]

Radiative transport limit for the random Schrodinger equation Guillaume Bal #3; George of the radiative transport limit for the average phase space density of solutions of the Schrodinger equation to the solution of a radiative transport equation. The propagation of wave energy in a scattering medium

Ryzhik, Lenya

324

Final report for the ASC gas-powder two-phase flow modeling project AD2006-09.  

SciTech Connect (OSTI)

This report documents activities performed in FY2006 under the ''Gas-Powder Two-Phase Flow Modeling Project'', ASC project AD2006-09. Sandia has a need to understand phenomena related to the transport of powders in systems. This report documents a modeling strategy inspired by powder transport experiments conducted at Sandia in 2002. A baseline gas-powder two-phase flow model, developed under a companion PEM project and implemented into the Sierra code FUEGO, is presented and discussed here. This report also documents a number of computational tests that were conducted to evaluate the accuracy and robustness of the new model. Although considerable progress was made in implementing the complex two-phase flow model, this project has identified two important areas that need further attention. These include the need to compute robust compressible flow solutions for Mach numbers exceeding 0.35 and the need to improve conservation of mass for the powder phase. Recommendations for future work in the area of gas-powder two-phase flow are provided.

Evans, Gregory Herbert; Winters, William S.

2007-01-01T23:59:59.000Z

325

Transportation YOU 2013 DC Youth Summit WTS Transportation YOU  

E-Print Network [OSTI]

Transportation YOU 2013 DC Youth Summit WTS Transportation YOU CTS Research Conference May 21, 2014 Lisa Rasmussen, WTS / Kimley-Horn and Associates, Inc #12;Transportation YOU 2013 DC Youth SummitTransportation YOU 2013 DC Youth Summit Agenda What is Transportation YOU? Transportation YOU ­ WTS Local Chapter

Minnesota, University of

326

Theory of contributon transport  

SciTech Connect (OSTI)

A general discussion of the physics of contributon transport is presented. To facilitate this discussion, a Boltzmann-like transport equation for contributons is obtained, and special contributon cross sections are defined. However, the main goal of this study is to identify contributon transport equations and investigate possible deterministic solution techniques. Four approaches to the deterministic solution of the contributon transport problem are investigated. These approaches are an attempt to exploit certain attractive properties of the contributon flux, psi = phi phi/sup +/, where phi and phi/sup +/ are the solutions to the forward and adjoint Boltzmann transport equations.

Painter, J.W.; Gerstl, S.A.W.; Pomraning, G.C.

1980-10-01T23:59:59.000Z

327

Center for Intermodal Transportation Safety  

E-Print Network [OSTI]

Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

Fernandez, Eduardo

328

Public Works Transportation Infrastructure Study  

E-Print Network [OSTI]

Public Works Transportation Infrastructure Study Minneapolis City of Lakes Minneapolis Public Works Transportation Infrastructure Study #12;Public Works Transportation Infrastructure Study Minneapolis City Works Transportation Infrastructure Study Minneapolis City of Lakes Background: · Currently, funding

Minnesota, University of

329

Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials  

SciTech Connect (OSTI)

The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

Ceder, Gerbrand; Marzari, Nicola

2011-08-31T23:59:59.000Z

330

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect (OSTI)

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

331

Transportation System Requirements Document  

SciTech Connect (OSTI)

This Transportation System Requirements Document (Trans-SRD) describes the functions to be performed by and the technical requirements for the Transportation System to transport spent nuclear fuel (SNF) and high-level radioactive waste (HLW) from Purchaser and Producer sites to a Civilian Radioactive Waste Management System (CRWMS) site, and between CRWMS sites. The purpose of this document is to define the system-level requirements for Transportation consistent with the CRWMS Requirement Document (CRD). These requirements include design and operations requirements to the extent they impact on the development of the physical segments of Transportation. The document also presents an overall description of Transportation, its functions, its segments, and the requirements allocated to the segments and the system-level interfaces with Transportation. The interface identification and description are published in the CRWMS Interface Specification.

Not Available

1993-09-01T23:59:59.000Z

332

Transportation risk assessment for ethanol transport  

E-Print Network [OSTI]

(California, Texas Gulf Coast, New England Atlantic Coast) will be of particular interest. The goal is to conduct a quantitative risk assessment on the pipeline, truck, and rail transportation modes to these areas. As a result of the quantitative risk...

Shelton Davis, Anecia Delaine

2009-05-15T23:59:59.000Z

333

Alternative Transportation Technologies: Hydrogen, Biofuels,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced...

334

Approaches to Quantify Potential Contaminant Transport in the Lower Carbonate Aquifer from Underground Nuclear Testing at Yucca Flat, Nevada National Security Site, Nye County, Nevada - 12434  

SciTech Connect (OSTI)

Quantitative modeling of the potential for contaminant transport from sources associated with underground nuclear testing at Yucca Flat is an important part of the strategy to develop closure plans for the residual contamination. At Yucca Flat, the most significant groundwater resource that could potentially be impacted is the Lower Carbonate Aquifer (LCA), a regionally extensive aquifer that supplies a significant portion of the water demand at the Nevada National Security Site, formerly the Nevada Test Site. Developing and testing reasonable models of groundwater flow in this aquifer is an important precursor to performing subsequent contaminant transport modeling used to forecast contaminant boundaries at Yucca Flat that are used to identify potential use restriction and regulatory boundaries. A model of groundwater flow in the LCA at Yucca Flat has been developed. Uncertainty in this model, as well as other transport and source uncertainties, is being evaluated as part of the Underground Testing Area closure process. Several alternative flow models of the LCA in the Yucca Flat/Climax Mine CAU have been developed. These flow models are used in conjunction with contaminant transport models and source term models and models of contaminant transport from underground nuclear tests conducted in the overlying unsaturated and saturated alluvial and volcanic tuff rocks to evaluate possible contaminant migration in the LCA for the next 1,000 years. Assuming the flow and transport models are found adequate by NNSA/NSO and NDEP, the models will undergo a peer review. If the model is approved by NNSA/NSO and NDEP, it will be used to identify use restriction and regulatory boundaries at the start of the Corrective Action Decision Document Corrective Action Plan (CADD/CAP) phase of the Corrective Action Strategy. These initial boundaries may be revised at the time of the Closure Report phase of the Corrective Action Strategy. (authors)

Andrews, Robert W.; Birdie, Tiraz [Navarro-INTERA LLC, Las Vegas, Nevada 89030 (United States); Wilborn, Bill; Mukhopadhyay, Bimal [National Nuclear Security Administration/Nevada Site Office, Las Vegas, Nevada 89030 (United States)

2012-07-01T23:59:59.000Z

335

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

S. Bandopadhyay; N. Nagabhushana

2003-08-07T23:59:59.000Z

336

Used Fuel Disposition Campaign Phase I Ring Compression Testing...  

Broader source: Energy.gov (indexed) [DOE]

of the technical basis for extended storage and transportation of high-burnup fuel. This report highlights the results of completed Phase I testing of high-burnup M5...

337

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

338

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

S. Bandopadhyay; T. Nithyanantham

2006-12-31T23:59:59.000Z

339

Decoherent time-dependent transport beyond Landauer-Bttiker: a Quantum Drift alternative to Quantum Jumps  

E-Print Network [OSTI]

We present a model for decoherence in time-dependent transport. It boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the Quantum Drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike Quantum Jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state $\\left\\vert 0\\right\\rangle $ that undergoes decoherence. We show the equivalence with the decoherent steady state transport in presence of a B\\"{u}ttiker's voltage probe. In order to test the dynamics, we consider two many-spin systems whith a local energy fluctuation. A two-spin system is reduced to a two level system (TLS) that oscillates among $\\left\\vert 0\\right\\rangle $ $\\equiv $ $ \\left\\vert \\uparrow \\downarrow \\right\\rangle $ and $\\left\\vert 1\\right\\rangle \\equiv $ $\\left\\vert \\downarrow \\uparrow \\right\\rangle $. We show that QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the non-trivial bifurcation of the damping rates at a critical point, i.e. the quantum dynamical phase transition. We also address the spin-wave like dynamics of local polarization in a spin chain. The QD average solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt Echo (LE), we find that the pure states $\\left\\vert 0\\right\\rangle $ and $\\left\\vert 1\\right \\rangle $ are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state. Because its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.

Lucas J. Fernndez-Alczar; Horacio M. Pastawski

2015-01-26T23:59:59.000Z

340

EBS Radionuclide Transport Abstraction  

SciTech Connect (OSTI)

The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

J. Prouty

2006-07-14T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Activity of group-transported horses during onboard rest stops  

E-Print Network [OSTI]

Activity of group-transported horses was evaluated during onboard rest stops to determine if horses derive meaningful rest. A single-deck semi-trailer separated into three compartments was used for all shipments. In Experiment One, twelve video...

Keen, Heidi A.

2007-04-25T23:59:59.000Z

342

Advances in Inverse Transport Methods and Applications to Neutron Tomography  

E-Print Network [OSTI]

The purpose of the inverse-transport problems that we address is to reconstruct the material distribution inside an unknown object undergoing a nondestructive evaluation. We assume that the object is subjected to incident beams of photons...

Wu, Zeyun

2011-02-22T23:59:59.000Z

343

Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP  

SciTech Connect (OSTI)

Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv#19;en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv#19;en Eigenmodes) and to other numerical codes or theories.

Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

2014-02-28T23:59:59.000Z

344

Heat storage system utilizing phase change materials government rights  

DOE Patents [OSTI]

A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

Salyer, Ival O. (Dayton, OH)

2000-09-12T23:59:59.000Z

345

Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification Ram 1500 PHEV  

Broader source: Energy.gov [DOE]

Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

346

Alternative Fuel Transportation Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Merit Review: EPAct State and Alternative Fuel Provider Fleets "Alternative Fuel Transportation Program" Dana O'Hara, DOE Ted Sears, NREL Vehicle Technologies Program June 20,...

347

Sustainable Transportation (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

Not Available

2012-09-01T23:59:59.000Z

348

Energy Storage and Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage and Transportation INL Logo Search Skip Navigation Links Home Newsroom About INL Careers Research Programs Energy and Environment National and Homeland Security New Energy...

349

Transportation and its Infrastructure  

E-Print Network [OSTI]

Options for Liquid Biofuels Development in Ireland. SEI, 562006: Outlook for advanced biofuels. Energy Policy, 34(17),40 pp. IEA, 2004c: Biofuels for Transport: An International

2007-01-01T23:59:59.000Z

350

Radioactive Material Transportation Practices  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

2002-09-23T23:59:59.000Z

351

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

SciTech Connect (OSTI)

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

352

Safety analysis report for packaging (onsite) sample pig transport system  

SciTech Connect (OSTI)

This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

MCCOY, J.C.

1999-03-16T23:59:59.000Z

353

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

A non-agglomerated and nanocrystalline-sized powder was successfully produced using ethylene glycol nitrate methods. The LSFT powder prepared using this method exhibits well dispersed and nano-sized particles about 100-200 nm. The density of LSFT sintered at 1300 C was about 90% of the theoretical density at which is 100 C less than that of the previous LSFT which was sintered at 1400 C. The sample sintered at 1400 C exhibited the evidence of a liquid phase at the grain boundaries and 2nd phase formation which probably caused low mechanical stability. The electrical conductivity and Seebeck coefficient were measured as a function of temperature. The LSFT-CGO specimens were cut from the as sintered bars and used for the evaluation of Mechanical Properties after polishing. The effect of strain rate on the flexural strength of the LSFT-CGO test specimens was studied. Three strain rates 6, 60 and 600 {micro}m/ min were chosen for this study. It is observed from the results that with increasing cross head speed the membrane takes higher loads to fail. A reduction in the strength of the membrane was observed at 1000 C in N{sub 2}. Two different routes were investigated to synthesis GDC using either formate or carbonate precursors. The precursor and CGO particle morphologies were examined by scanning electron microscopy. The thermal decomposition behaviors of Ce(Gd)(HCOO){sub 3} and Ce(Gd)(CO{sub 3})(OH) were determined by thermogravimetric analysis (TGA) at a rate of 3 C/min in air. The X-ray powder diffraction patterns of the precursor and CGO were collected and nitrogen adsorption isotherms were measured. Conductivity measurements were made by AC impedance spectroscopy on sintered disks in air using platinum electrodes.

S. Bandopadhyay; T. Nithyanantham

2006-06-30T23:59:59.000Z

354

A compact micro-wave synthesizer for transportable cold-atom interferometers  

SciTech Connect (OSTI)

We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of {sup 87}Rb at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at Laboratoire national de mtrologie et d'essais?Systmes de rfrence temps espace (LNE-SYRTE). In free-running mode, it features a residual phase noise level of ?65 dB rad{sup 2} Hz{sup ?1} at 10 Hz offset frequency and a white phase noise level in the order of ?120 dB rad{sup 2} Hz{sup ?1} for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time, and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity, and power consumption paves the way towards field and mobile operations.

Lautier, J.; Lours, M.; Landragin, A., E-mail: arnaud.landragin@obspm.fr [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de lObservatoire, 75014 Paris (France)

2014-06-15T23:59:59.000Z

355

2006 TRANSPORTATION TOMORROW SURVEY JOINT PROGRAM IN TRANSPORTATION  

E-Print Network [OSTI]

2006 TRANSPORTATION TOMORROW SURVEY JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2006 Transportation Tomorrow Survey Data Presentation #12;2006 TRANSPORTATION TOMORROW SURVEY JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO City of Hamilton City of Kawartha Lakes City of Guelph City of Brantford

Toronto, University of

356

Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

Ring, S.

1994-12-01T23:59:59.000Z

357

Biofuels and Transportation  

E-Print Network [OSTI]

Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

Minnesota, University of

358

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

2010-05-14T23:59:59.000Z

359

Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

2003-04-04T23:59:59.000Z

360

Northwestern University Transportation Center  

E-Print Network [OSTI]

and challenges for our society. Energy and sustainability, economic growth and development, quality of life in the world to recognize transportation as an interdisciplinary field, the Transportation Center was founded, as the tradition lives on, and the Center continues to renew itself and engage faculty and students with new

MacIver, Malcolm A.

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

MAESTRAEN TRANSPORTE ESPECIALIZACINEN  

E-Print Network [OSTI]

investigaciones que permitan la comprensión de distintos componentes delsistema del transporte así como para Investigación de Operaciones y Redes de transporte Medidas y Administración del Tránsito Tecnologías de

Vásquez, Carlos

362

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight  

E-Print Network [OSTI]

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

363

Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.  

SciTech Connect (OSTI)

The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in this series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release groups were pooled across the entire Snake River Basin upstream of Lower Granite Dam for this report. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.92% with an estimated standard error (dSE) of 0.25% for wild spring and summer Chinook salmon for tagged groups released from 1996 through 2004, omitting age-1-ocean (jack) returns. Only for the 1999 and 2000 release years did the wild Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for wild steelhead from the Snake River Basin averaged 0.63% (dSE = 0.15%), including age-1-ocean returns, for release years 1996 through 2004. For release years when the ocean return probability from Bonneville back to Bonneville could be estimated (i.e., 1999 through 2004), it was estimated that on average approximately 83% of the total integrated mortality for nontransported, tagged wild spring and summer Chinook, and 78% for steelhead (omitting the 2001 release year), occurred during the ocean life stage (i.e., from Bonneville to Bonneville). This suggests that additional monitoring and research efforts should include the ocean and estuary environment. Annual estimates of the dam-specific T/I for Lower Granite Dam were available for the 2003 and 2004 release years for both wild Chinook salmon and wild steelhead. The estimated T/I for Lower Granite was significantly > 1.0 for Chinook in 2004 (P < 0.0001) and for steelhead in both 2003 (P < 0.0001) and 2004 (P < 0.0001), indicating that for these release years, wild fish transported at Lower Granite returned there in higher proportions than fish that were returned to the river at Lower Granite, or that passed Lower Granite without detection as juveniles. Annual estimates of the dam-specific T/I for Little Goose Dam were available for wild Chinook salmon for both 2003 and 2004. The estimated T/I for Little Goose was significantly > 1.0 for wild Chinook in 2004 (P = 0.0024), but not in 2003 (P = 0.1554). Differential post-Bonneville mortality (D) is the ratio of pos

Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

2008-12-03T23:59:59.000Z

364

STRUCTURAL REQUIREMENTS OF ORGANIC ANION TRANSPORTING POLYPEPTIDE MEDIATED TRANSPORT  

E-Print Network [OSTI]

The organic anion transporting polypeptides (human: OATP; other: Oatp) form a mammalian transporter superfamily that mediates the transport of structurally unrelated compounds across the cell membrane. Members in this ...

Weaver, Yi Miao

2010-04-12T23:59:59.000Z

365

Solid phase microextraction field kit  

DOE Patents [OSTI]

A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

Nunes, Peter J.; Andresen, Brian D.

2005-08-16T23:59:59.000Z

366

Development of novel active transport membrande devices  

SciTech Connect (OSTI)

Air Products has undertaken a research program to fabricate and evaluate gas separation membranes based upon promising ``active-transport`` (AT) materials recently developed in our laboratories. Active Transport materials are ionic polymers and molten salts which undergo reversible interaction or reaction with ammonia and carbon dioxide. The materials are useful for separating these gases from mixtures with hydrogen. Moreover, AT membranes have the unique property of possessing high permeability towards ammnonia and carbon dioxide but low permeability towards hydrogen and can thus be used to permeate these components from a gas stream while retaining hydrogen at high pressure.

Laciak, D.V.

1994-11-01T23:59:59.000Z

367

Safety evaluation for packaging (onsite) product removal can containers  

SciTech Connect (OSTI)

This safety evaluation for packaging allows the transport of nine Product Removal (PR) Cans with their Containers from the PUREX Facility to the Plutonium Finishing Plant.

Boettger, J.S.

1997-04-29T23:59:59.000Z

368

Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay  

SciTech Connect (OSTI)

During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

2008-10-15T23:59:59.000Z

369

Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996  

SciTech Connect (OSTI)

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

Fuller, T.F.; Kunz, H.R.; Moore, R.

1996-11-01T23:59:59.000Z

370

First principles study of the structural, electronic, and transport properties of triarylamine-based nanowires  

SciTech Connect (OSTI)

We investigate with state of the art density functional theory the structural, electronic, and transport properties of a class of recently synthesized nanostructures based on triarylamine derivatives. First, we consider the single molecule precursors in the gas phase and calculate their static properties, namely (i) the geometrical structure of the neutral and cationic ions, (ii) the electronic structure of the frontier molecular orbitals, and (iii) the ionization potential, hole extraction potential, and internal reorganization energy. This initial study does not evidence any direct correlation between the properties of the individual molecules and their tendency to self-assembly. Subsequently, we investigate the charge transport characteristics of the triarylamine derivatives nanowires, by using Marcus theory. For one derivative we further construct an effective Hamiltonian including intermolecular vibrations and evaluate the mobility from the Kubo formula implemented with Monte Carlo sampling. These two methods, valid respectively in the sequential hopping and polaronic band limit, give us values for the room-temperature mobility in the range 0.112 cm{sup 2}/Vs. Such estimate confirms the superior transport properties of triarylamine-based nanowires, and make them an attracting materials platform for organic electronics.

Akande, Akinlolu, E-mail: akandea@tcd.ie; Bhattacharya, Sandip; Cathcart, Thomas; Sanvito, Stefano [School of Physics, AMBER and CRANN Institute, Trinity College Dublin, Dublin 2 (Ireland)] [School of Physics, AMBER and CRANN Institute, Trinity College Dublin, Dublin 2 (Ireland)

2014-02-21T23:59:59.000Z

371

Life-cycle Environmental Inventory of Passenger Transportation in the United States  

E-Print Network [OSTI]

Area,Chicago,andNewYorkCity are evaluated capturing passenger transportation life?cycle energyArea, Chicago, and New York City are evaluated capturing passenger trans- portation life-cycle energy

Chester, Mikhail V

2008-01-01T23:59:59.000Z

372

Transportation activity analysis using smartphones  

E-Print Network [OSTI]

Transportation activity surveys investigate when, where and how people travel in urban areas to provide information necessary for urban transportation planning. In Singapore, the Land Transport Authority (LTA) carries out ...

Xiao, Yu

373

Manifestations of quantum phase transitions in transport through nanosystems  

SciTech Connect (OSTI)

The award led to several important new results in theory of interacting low-dimensional systems. The results are relevant for both traditional condensed matter systems, such as quantum wires and quantum spin chains, and for the relatively new field of ultra-cold atomic gases.

Pustilnik, Michael

2014-08-28T23:59:59.000Z

374

E-Print Network 3.0 - adiabatic two-phase flow Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

power-clock 8;. A PMOS SCAL gate operates in two phases: discharge and evaluate. The energy... . The two phases in the operation of an NMOS gate are charge and evaluate. 3...

375

Transportation Economic Assistance Program (Wisconsin)  

Broader source: Energy.gov [DOE]

The Transportation Economic Assistance Program provides state grants to private business and local governments to improve transportation to projects improving economic conditions and creating or...

376

EBS Radionuclide Transport Abstraction  

SciTech Connect (OSTI)

The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

J.D. Schreiber

2005-08-25T23:59:59.000Z

377

Transportation risk assessment for ethanol transport  

E-Print Network [OSTI]

the quantitative risks involved with an ethanol pipeline. Pipelines that run from the Midwest, where the vast majority of ethanol is produced, to the target areas where reformulated gasoline is required (California, Texas Gulf Coast, New England Atlantic Coast... Atlantic Coast because of the large volume. It is beneficial to look at these areas as opposed to the iv smaller areas because pipeline transportation requires very large volumes. In order to find a meaningful comparison between all three...

Shelton Davis, Anecia Delaine

2008-10-10T23:59:59.000Z

378

Transportation Planning & Decision Science Group Transportation Systems Research Group Diane Davidson Keith Kahl  

E-Print Network [OSTI]

and Peer Evaluation Meetings (AMR) for the Hydrogen and Fuel Cells Program and the Vehicle Technologies of Hydrogen Fuel Cell Vehicle Technology and Prospects for the Future" P.T. Jones ­ "Dynamic Wireless Power-Board Storage Pressure for Hydrogen Fuel Cell Vehicles" Poster Presentations: Stacy Davis ­ "Transportation

379

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

be generated from coal and nuclear energy in contrast to 7%in the use of coal and nuclear energy for transportation andparticularly for coal and nuclear energy utilization, would

Cairns, Elton J.

2012-01-01T23:59:59.000Z

380

Managing Director Buildings, Transportation  

E-Print Network [OSTI]

Site Development Will Terris Manager Gardening Maintenance Jim Gish Manager Landscape Specialty Tegwyn Maintenance and project Delivery Scott Sherwood Director Transportation Services Glenl Wear Director Grounds Supervisor Specialty Crews 17 Area supervisors Custodial Maintenance Charles Anderson Supervisor Activity

Seamons, Kent E.

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Transportation Baseline Report  

SciTech Connect (OSTI)

The National Transportation Program 1999 Transportation Baseline Report presents data that form a baseline to enable analysis and planning for future Department of Energy (DOE) Environmental Management (EM) waste and materials transportation. In addition, this Report provides a summary overview of DOEs projected quantities of waste and materials for transportation. Data presented in this report were gathered as a part of the IPABS Spring 1999 update of the EM Corporate Database and are current as of July 30, 1999. These data were input and compiled using the Analysis and Visualization System (AVS) which is used to update all stream-level components of the EM Corporate Database, as well as TSD System and programmatic risk (disposition barrier) information. Project (PBS) and site-level IPABS data are being collected through the Interim Data Management System (IDMS). The data are presented in appendices to this report.

Fawcett, Ricky Lee; Kramer, George Leroy Jr.

1999-12-01T23:59:59.000Z

382

Transportation Energy and Alternatives  

E-Print Network [OSTI]

Station in Indonesia Hydrogen refueling in Munich, Germany "You will never see widespread use of the fuel fuels" Potentially used for Transportation · Biogas (primarily for onsite electrical generation) LFG

Handy, Susan L.

383

Accident resistant transport container  

DOE Patents [OSTI]

The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

Andersen, John A. (Albuquerque, NM); Cole, James K. (Albuquerque, NM)

1980-01-01T23:59:59.000Z

384

Interactive Transportable Architecture  

E-Print Network [OSTI]

Transportable architecture which embeds the means to communicate with real or imaginary digital information spaces in a natural fashion offers unprecedented opportunities to make multimedia experiences available to the public almost everywhere. This installation demonstrates an example of interactive transportable architecture which incorporates unencumebered real-time body tracking and gesture recognition to explore a 3-D cityscape and a brain-like web-based information space.

Oliver Irschitz; Priam Givord; Newyork Exit Newyork; Flavia Sparacino

385

Thermoelectric transport in superlattices  

SciTech Connect (OSTI)

The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

Reinecke, T.L.; Broido, D.A.

1997-07-01T23:59:59.000Z

386

Fluid transport container  

DOE Patents [OSTI]

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

1995-11-14T23:59:59.000Z

387

Metropolitan Transportation Plan 2035  

E-Print Network [OSTI]

Adopted by the Tyler Area MPO Policy Committee December 4, 2009 METROPOLITAN TRANSPORTATION PLAN 2035 Revised April 22, 2010 Adopted by the Tyler Area MPO Policy Committee December 4, 2009 Amended/Revised April 22, 2010 Prepared by: Bucher..., Willis, and Ratliff Corporation 1828 East Southeast Loop 323, Suite 202 Tyler, Texas 75701 903.581.7844 This Document Serves as an Update to the Tyler Area Metropolitan Transportation Plan 2030. Portions of that Document were Unchanged and Appear...

Tyler Area Metropolitan Planning Organization

2009-12-04T23:59:59.000Z

388

Membrane Transport Chloride Transport Across Vesicle and Cell  

E-Print Network [OSTI]

Membrane Transport Chloride Transport Across Vesicle and Cell Membranes by Steroid-Based Receptors-established that molecules which transport cations across cell membranes (cationophores) can have potent biological effects the formation of an ion pair.[4a­g] Anion transport by purely electroneutral systems is still quite rare.[4j

Smith, Bradley D.

389

B. TRANSPORTATION, CIRCULATION AND PARKING B. TRANSPORTATION, CIRCULATION AND  

E-Print Network [OSTI]

B. TRANSPORTATION, CIRCULATION AND PARKING 231 B. TRANSPORTATION, CIRCULATION AND PARKING on transportation and connectivity issues common to UCSF as a whole. Please refer to Chapter 5, Plans for Existing characteristics specific to each individual UCSF site. DETERMINANTS OF THE 1996 LRDP The transportation

Mullins, Dyche

390

Slovak Nuclear Regulatory Body Position in the Transport of Radioactive Waste  

SciTech Connect (OSTI)

This paper describes safety requirements for transport of radioactive waste in Slovakia and the role of regulatory body in the transport licensing and assessment processes. Importance of radioactive waste shipments have been increased since 1999 by starting of NPP A-1 decommissioning and operation of near surface disposal facility. Also some information from history of shipment as well as future activities are given. Legal basis for radioactive waste transport is resulting from IAEA recommendations in this area. Different types of transport equipment were approved by regulatory body for both liquid and solid waste and transportation permits were issued to their shipment. Regulatory body attention during evaluation of transport safety is focused mainly on ability of individual packages to withstand different transport conditions and on safety analyses performed for transport equipment for liquid waste with high frequency of shipments. During past three years no event was occurred in connection with radioactive waste transport in Slovakia.

Homola, J.

2003-02-27T23:59:59.000Z

391

Vadose Zone Transport Field Study: Status Report  

SciTech Connect (OSTI)

Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of the past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.

Gee, Glendon W.; Ward, Anderson L.

2001-11-30T23:59:59.000Z

392

Texas Transportation Poll Final report  

E-Print Network [OSTI]

Texas Transportation Poll Final report PRC 14-16-F #12;2 Texas Transportation Poll Texas A&M Transportation Institute PRC 14-16-F September 2014 Authors Chris Simek Tina Geiselbrecht #12;3 Table of Contents .......................................................................................................................... 8 Transportation Funding

393

Transportation Systems Engineering GRADUATE STUDIES  

E-Print Network [OSTI]

Transportation Systems Engineering GRADUATE STUDIES TRANSPORTATION SYSTEMS are the building blocks and provides for an improved quality of life. However, transportation systems by their very nature also affect the environment through physical construction and operation of transportation facilities, and through the travel

Wang, Yuhang

394

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

395

Phase I Report: DARPA Exoskeleton Program  

SciTech Connect (OSTI)

The Defense Advanced Research Projects Agency (DARPA) inaugurated a program addressing research and development for an Exoskeleton for Human Performance Augmentation in FY!2001. A team consisting of Oak Ridge National Laboratory, the prime contractor, AeroVironment, Inc., the Army Research Laboratory, the University of Minnesota, and the Virginia Polytechnic Institute has recently completed an 18-month Phase I effort in support of this DARPA program. The Phase I effort focused on the development and proof-of-concept demonstrations for key enabling technologies, laying the foundation for subsequently building and demonstrating a prototype exoskeleton. The overall approach was driven by the need to optimize energy efficiency while providing a system that augmented the operator in as transparent manner as possible (non-impeding). These needs led to the evolution of two key distinguishing features of this team's approach. The first is the ''no knee contact'' concept. This concept is dependent on a unique Cartesian-based control scheme that uses force sensing at the foot and backpack attachments to allow the exoskeleton to closely follow the operator while avoiding the difficulty of connecting and sensing position at the knee. The second is an emphasis on energy efficiency manifested by an energetic, power, actuation and controls approach designed to enhance energy efficiency as well as a reconfigurable kinematic structure that provides a non-anthropomorphic configuration to support an energy saving long-range march/transport mode. The enabling technologies addressed in the first phase were controls and sensing, the soft tissue interface between the machine and the operator, the power system, and actuation. The controller approach was implemented and demonstrated on a test stand with an actual operator. Control stability, low operator fatigue, force amplification and the human interface were all successfully demonstrated, validating the controls approach. A unique, lightweight, low profile, multi-axis foot sensor (an integral element of the controls approach) was designed, fabricated, and its performance verified. A preliminary conceptual design of the human coupling and soft tissue interface, based on biomechanics research has been developed along with a test plan to support an iterative design process. The power system concept, a fuel cell hybrid power supply using chemical generated hydrogen, was successfully demonstrated and shown to be able to efficiently meet both steady-state and transient peak loads. Two actuator approaches, a piezoelectric actuator, with theoretical high power densities and an approach based on a high-performance, high-speed electric motor driving a miniature hydraulic pump have been investigated. The first shows great potential but will require further research before reaching that promise. The other approach has been modeled and simulated and shown to provide the possibility for significant energy savings (>30%) and improved power densities in comparison to conventional hydraulics. Biomechanics analysis and testing were also performed in support of these enabling technologies, to provide a basis for design criteria. An analysis was performed to determine baseline data for initial mechanical design and power supply sizing. Testing conducted to evaluate boot sole thickness found that thickness increases up to two inches could be accommodated without significant impact on human factors issues. This 18-month long Phase I effort has evaluated key enabling technologies and demonstrated advances in these technologies that have significantly increased the likelihood of building a functional prototype exoskeleton.

Jansen, J.F.

2004-01-21T23:59:59.000Z

396

Synthesis of alloys with controlled phase structure  

DOE Patents [OSTI]

A method for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures .apprxeq.300 C. and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures .apprxeq.300 C. thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds.

Guthrie, Stephen Everett (Livermore, CA); Thomas, George John (Livermore, CA); Bauer, Walter (Livermore, CA); Yang, Nancy Yuan Chi (Lafayette, CA)

1999-04-20T23:59:59.000Z

397

Synthesis of alloys with controlled phase structure  

DOE Patents [OSTI]

A method is described for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures {approx_equal}300 C and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures {approx_equal}300 C thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds. 4 figs.

Guthrie, S.E.; Thomas, G.J.; Bauer, W.; Yang, N.Y.C.

1999-04-20T23:59:59.000Z

398

Director Position Center for Urban Transportation  

E-Print Network [OSTI]

Director Position Center for Urban Transportation The Center for Urban Transportation Research for state policymakers, transportation agencies, transportation professionals and the public. CUTR conducts of Transportation's Federal Transit Administration and Federal Highway Administration, the Florida Department

Arslan, Hüseyin

399

Delaware Transportation Infrastructure Forum Problem Identification Statements  

E-Print Network [OSTI]

2013 Delaware Transportation Infrastructure Forum Problem Identification Statements Sponsored by The Delaware Center for Transportation and the Delaware Department of Transportation Delaware Center for Transportation Your main resource for transportation education and research Identifying Important Issues Related

Firestone, Jeremy

400

JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO  

E-Print Network [OSTI]

JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2001 TRANSPORTATION TOMORROW SURVEY of Transportation, Ontario Additions in 1996 Regional Municipalities of Niagara, Waterloo Counties of Peterborough not to participate) #12;JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2001 TRANSPORTATION TOMORROW SURVEY

Toronto, University of

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Decoherent time-dependent transport beyond the Landauer-Bttiker formulation: a quantum-drift alternative to quantum jumps  

E-Print Network [OSTI]

We present a model for decoherence in time-dependent transport. It boils down into a form of wave function that undergoes a smooth stochastic drift of the phase in a local basis, the Quantum Drift (QD) model. This drift is nothing else but a local energy fluctuation. Unlike Quantum Jumps (QJ) models, no jumps are present in the density as the evolution is unitary. As a first application, we address the transport through a resonant state $\\left\\vert 0\\right\\rangle $ that undergoes decoherence. We show the equivalence with the decoherent steady state transport in presence of a B\\"{u}ttiker's voltage probe. In order to test the dynamics, we consider two many-spin systems whith a local energy fluctuation. A two-spin system is reduced to a two level system (TLS) that oscillates among $\\left\\vert 0\\right\\rangle $ $\\equiv $ $ \\left\\vert \\uparrow \\downarrow \\right\\rangle $ and $\\left\\vert 1\\right\\rangle \\equiv $ $\\left\\vert \\downarrow \\uparrow \\right\\rangle $. We show that QD model recovers not only the exponential damping of the oscillations in the low perturbation regime, but also the non-trivial bifurcation of the damping rates at a critical point, i.e. the quantum dynamical phase transition. We also address the spin-wave like dynamics of local polarization in a spin chain. The QD average solution has about half the dispersion respect to the mean dynamics than QJ. By evaluating the Loschmidt Echo (LE), we find that the pure states $\\left\\vert 0\\right\\rangle $ and $\\left\\vert 1\\right \\rangle $ are quite robust against the local decoherence. In contrast, the LE, and hence coherence, decays faster when the system is in a superposition state. Because its simple implementation, the method is well suited to assess decoherent transport problems as well as to include decoherence in both one-body and many-body dynamics.

Lucas J. Fernndez-Alczar; Horacio M. Pastawski

2015-02-27T23:59:59.000Z

402

Disposal systems evaluations and tool development : Engineered Barrier System (EBS) evaluation.  

SciTech Connect (OSTI)

Key components of the nuclear fuel cycle are short-term storage and long-term disposal of nuclear waste. The latter encompasses the immobilization of used nuclear fuel (UNF) and radioactive waste streams generated by various phases of the nuclear fuel cycle, and the safe and permanent disposition of these waste forms in geological repository environments. The engineered barrier system (EBS) plays a very important role in the long-term isolation of nuclear waste in geological repository environments. EBS concepts and their interactions with the natural barrier are inherently important to the long-term performance assessment of the safety case where nuclear waste disposition needs to be evaluated for time periods of up to one million years. Making the safety case needed in the decision-making process for the recommendation and the eventual embracement of a disposal system concept requires a multi-faceted integration of knowledge and evidence-gathering to demonstrate the required confidence level in a deep geological disposal site and to evaluate long-term repository performance. The focus of this report is the following: (1) Evaluation of EBS in long-term disposal systems in deep geologic environments with emphasis on the multi-barrier concept; (2) Evaluation of key parameters in the characterization of EBS performance; (3) Identification of key knowledge gaps and uncertainties; and (4) Evaluation of tools and modeling approaches for EBS processes and performance. The above topics will be evaluated through the analysis of the following: (1) Overview of EBS concepts for various NW disposal systems; (2) Natural and man-made analogs, room chemistry, hydrochemistry of deep subsurface environments, and EBS material stability in near-field environments; (3) Reactive Transport and Coupled Thermal-Hydrological-Mechanical-Chemical (THMC) processes in EBS; and (4) Thermal analysis toolkit, metallic barrier degradation mode survey, and development of a Disposal Systems Evaluation Framework (DSEF). This report will focus on the multi-barrier concept of EBS and variants of this type which in essence is the most adopted concept by various repository programs. Empasis is given mainly to the evaluation of EBS materials and processes through the analysis of published studies in the scientific literature of past and existing repository research programs. Tool evaluations are also emphasized, particularly on THCM processes and chemical equilibria. Although being an increasingly important aspect of NW disposition, short-term or interim storage of NW will be briefly discussed but not to the extent of the EBS issues relevant to disposal systems in deep geologic environments. Interim storage will be discussed in the report Evaluation of Storage Concepts FY10 Final Report (Weiner et al. 2010).

Rutqvist, Jonny (LBNL); Liu, Hui-Hai (LBNL); Steefel, Carl I. (LBNL); Serrano de Caro, M. A. (LLNL); Caporuscio, Florie Andre (LANL); Birkholzer, Jens T. (LBNL); Blink, James A. (LLNL); Sutton, Mark A. (LLNL); Xu, Hongwu (LANL); Buscheck, Thomas A. (LLNL); Levy, Schon S. (LANL); Tsang, Chin-Fu (LBNL); Sonnenthal, Eric (LBNL); Halsey, William G. (LLNL); Jove-Colon, Carlos F.; Wolery, Thomas J. (LLNL)

2011-01-01T23:59:59.000Z

403

Task 3: PNNL Visit by JAEA Researchers to Participate in TODAM Code Applications to Fukushima Rivers and to Evaluate the Feasibility of Adaptation of FLESCOT Code to Simulate Radionuclide Transport in the Pacific Ocean Coastal Water Around Fukushima  

SciTech Connect (OSTI)

Four JAEA researchers visited PNNL for two weeks in February, 2013 to learn the PNNL-developed, unsteady, one-dimensional, river model, TODAM and the PNNL-developed, time-dependent, three dimensional, coastal water model, FLESCOT. These codes predict sediment and contaminant concentrations by accounting sediment-radionuclide interactions, e.g., adsorption/desorption and transport-deposition-resuspension of sediment-sorbed radionuclides. The objective of the river and coastal water modeling is to simulate 134Cs and 137Cs migration in Fukushima rivers and the coastal water, and their accumulation in the river and ocean bed along the Fukushima coast. Forecasting the future cesium behavior in the river and coastal water under various scenarios would enable JAEA to assess the effectiveness of various on-land remediation activities and if required, possible river and coastal water clean-up operations to reduce the contamination of the river and coastal water, agricultural products, fish and other aquatic biota. PNNL presented the following during the JAEA visit to PNNL: TODAM and FLESCOTs theories and mathematical formulations TODAM and FLESCOT model structures Past TODAM and FLESCOT applications Demonstrating these two codes' capabilities by applying them to simple hypothetical river and coastal water cases. Initial application of TODAM to the Ukedo River in Fukushima and JAEA researchers' participation in its modeling. PNNL also presented the relevant topics relevant to Fukushima environmental assessment and remediation, including PNNL molecular modeling and EMSL computer facilities Cesium adsorption/desorption characteristics Experiences of connecting molecular science research results to macro model applications to the environment EMSL tour Hanford Site road tour. PNNL and JAEA also developed future course of actions for joint research projects on the Fukushima environmental and remediation assessments.

Onishi, Yasuo

2013-03-29T23:59:59.000Z

404

Options Study - Phase II  

SciTech Connect (OSTI)

The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to identify any nuclear fuel cycle technology or option that may result in a significant beneficial impact to the issues as compared to the current U.S. approach of once-through use of nuclear fuel in LWRs or similar reactors followed by direct disposal of UNF. This approach was taken because incremental differences may be difficult to clearly identify and justify due to the large uncertainties that can be associated with the specific causes of the issues. Phase II of this Options Study continued the review of nuclear fuel cycle options that was initiated and documented during Phase I, concentrating on reviewing and summarizing the potential of integrated nuclear fuel cycles. However, based on the reviews of previous studies and available data, it was not always possible to clearly determine sufficiently large differences between the various fuel cycle and technology options for some of the issues or evaluation measures, for example, in cases where only incremental differences with respect to the issues might be achieved regardless of the fuel cycle option or technologies being considered, or where differences were insufficient to clearly rise above the uncertainties.

R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

2010-09-01T23:59:59.000Z

405

Interphase transport in horizontal stratified cocurrent flow  

SciTech Connect (OSTI)

The problem of interfacial transport is cocurrent, horizontal stratified gas-liquid systems is considered. Local condensation heat transfer coefficients and interface shear stress were obtained from mass and force balances. These balances were based on gas phase pitot traverses at various streamwise locations. Laser anemometer measurements of liquid mean and rms fluctuation velocities were made at similar locations. The laser anemometer data supported the value for the interface shear velocity obtained by the gas phase force balance. Based on cocurrent stratified air-water flow data the noncondensing interface shear stress was found to be a function of the relative velocity betwen the phases and the liquid fraction. Incorporated into Linehan's relation for condensing flow shear stress, the correlation was found to estimate the shear velicity for the condensation data considered. Local condensation heat transfer coefficients and gas absorption mass transfer coefficients were found to be directly proportional ot the shear velocity. If the inner scales u. and /u. are substituted into Lamont's models for the interface mass transfer coefficient, many features of the present correlation for scalar transfer are predicted. The correlations for interfacial shear stress and scalar transport can be combined ot yield an interactive technique suitable for an engineering analysis of the interfacial heat, mass, and momentum transfer in a single driving force cocurrent system.

Jensen, R.J.

1982-01-01T23:59:59.000Z

406

Exploring guanidinoglycoside molecular transporters  

E-Print Network [OSTI]

gradient of 10 30% acetonitrile (0.1% TFA) in water (0.1%phase HPLC (10 25% acetonitrile, 0.1% TFA) in water (0.1%phase HPLC, 15 26% acetonitrile (0.1% TFA) in water (0.1%

Dix, Andrew Vincent

2011-01-01T23:59:59.000Z

407

Transportation megaproject procurement : benefits and challenges for PPPs and alternative delivery strategies, and the resulting implications for Crossrail  

E-Print Network [OSTI]

This thesis evaluates the applicability of public-private partnerships (PPPs) and alternative delivery strategies to transportation megaprojects. There has been tremendous expansion of innovative procurement and financing ...

Kay, Michael A. (Michael Adam)

2009-01-01T23:59:59.000Z

408

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes  

E-Print Network [OSTI]

and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operations pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian

409

Multicomponent Transport through Realistic Zeolite Membranes: Characterization & Transport in Nanoporous Networks  

SciTech Connect (OSTI)

These research studies focused on the characterization and transport for porous solids which comprise both microporosity and mesoporosity. Such materials represent membranes made from zeolites as well as for many new nanoporous solids. Several analytical sorption techniques were developed and evaluated by which these multi-dimensional porous solids could be quantitatively characterized. Notably an approach by which intact membranes could be studied was developed and applied to plate-like and tubular supported zeolitic membranes. Transport processes were studied experimentally and theoretically based on the characterization studies.

William C. Conner

2007-08-02T23:59:59.000Z

410

Efficient Transportation Decision Public Web Site: Bridging the Gap Between Transportation Planning and the Public  

E-Print Network [OSTI]

for accomplishing transportation planning and projectprocess the Efficient Transportation Decision Making (Process - is to make transportation decisions more quickly

Roaza, Ruth

2007-01-01T23:59:59.000Z

411

Transportation Institutional Plan  

SciTech Connect (OSTI)

This Institutional Plan is divided into three chapters. Chapter 1 provides background information, discusses the purposes of the Plan and the policy guidance for establishing the transportation system, and describes the projected system and the plans for its integrated development. Chapter 2 discusses the major participants who must interact to build the system. Chapter 3 suggests mechanisms for interaction that will foster wide participation in program planning and implementation and provides a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. Also included in this Plan are four appendices. Of particular importance is Appendix A, which includes detailed discussion of specific transportation issues. Appendices B, C, and D provide supporting material to assist the reader in understanding the roles of the involved institutions.

Not Available

1986-08-01T23:59:59.000Z

412

Transport properties of a meson gas  

E-Print Network [OSTI]

We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.

D. Fernandez-Fraile; A. Gomez Nicola

2007-07-09T23:59:59.000Z

413

Experimental constraints on transport  

SciTech Connect (OSTI)

Characterization of the cross-field energy transport in magnetic confinement experiments in a manner applicable to the accurate assessment of future machine performance continues to be a challenging goal. Experimental results from the DIII-D tokamak in the areas of dimensionless scaling and non-diffusive transport represent progress toward this goal. Dimensionless scaling shows how beneficial the increase in machine size and magnetic field is for future devices. The experiments on DIII-D are the first to determine separately the electron and ion scaling with normalized gyroradius {rho}{sub *}; the electrons scale as expected from gyro-Bohm class theories, while the ions scale consistent with the Goldston empirical scaling. This result predicts an increase in transport relative to Bohm diffusion as {rho}{sub *} decreases in future devices. The existence of distinct {rho}{sub *} scalings for ions and electrons cautions against a physical interpretation of one-fluid or global analysis. The second class of experiments reported here are the first to demonstrate the existence of non-diffusive energy transport. Electron cyclotron heating was applied at the half radius; the electron temperature profile remains substantially peaked. Power balance analysis indicates that heat must flow in the direction of increasing temperature, which is inconsistent with purely diffusive transport. The dynamics of electron temperature perturbations indicate the presence in the heat flux of a term dependent on temperature rather than its gradient. These two observations strongly constrain the types of models which can be applied to cross-field heat transport.

Luce, T.C.; Petty, K.H.; Burrell, K.H.; Forest, C.B.; Gohil, P.; Groebner, R.J.; De Haas, J.C.M.; James, R.A.; Makowski, M.A.

1994-12-01T23:59:59.000Z

414

Radiative transport limit for the random Schrdinger equation  

E-Print Network [OSTI]

We give a detailed mathematical analysis of the radiative transport limit for the average phase space density of solutions of the Schroedinger equation with time dependent random potential. Our derivation is based on the construction of an approximate martingale for the random Wigner distribution.

Guillaume Bal; George Papanicolaou; Leonid Ryzhik

2001-08-14T23:59:59.000Z

415

Simulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors  

E-Print Network [OSTI]

. In this paper, using the example of the thermal processing of ceramic gas sensors, an integrated compu- tationalSimulating Microstructural Evolution and Electrical Transport in Ceramic Gas Sensors Yunzhi Wang in ceramic gas sensors has been proposed. First, the particle-flow model and the continuum-phase-field method

Ciobanu, Cristian

416

A non-isothermal PEM fuel cell model including two water transport mechanisms in the  

E-Print Network [OSTI]

A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

Mnster, Westflische Wilhelms-Universitt

417

Transporting Hazardous Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From modeling and simulationTransporting

418

Smart vehicular transportation systems  

SciTech Connect (OSTI)

This work builds upon established Sandia intelligent systems technology to develop a unique approach for the integration of intelligent system control into the US Highway and urban transportation systems. The Sandia developed concept of the COPILOT controller integrates a human driver with computer control to increase human performance while reducing reliance on detailed driver attention. This research extends Sandia expertise in sensor based, real-time control of robotics systems to high speed transportation systems. Knowledge in the form of maps and performance characteristics of vehicles provides the automatic decision making intelligence needed to plan optimum routes, maintain safe driving speeds and distances, avoid collisions, and conserve fuel.

Little, C.Q.; Wilson, C.W.

1997-05-01T23:59:59.000Z

419

Association of automobile passenger transportation and economic growth in Japan  

E-Print Network [OSTI]

) (Nember) January 1969 ABSTRACT Association cf Automobile Passenger Transportation and Economic Growth in Japan. (January 1969) Teruhiko Boric, B. A. , &faseda University Directed by: Dr. ~felvin L. Greenhut In order to evaluate the growth... of Japanese post-war passenger transportation, a comparative study of the U. S. passenger transporta- ti. on development between 1910 and 1940 has been made. The growth rate of automobile ownership prior to the Great Depression is larger than the rate...

Horie, Teruhiko

1969-01-01T23:59:59.000Z

420

The Lattice Boltzmann Method applied to neutron transport  

SciTech Connect (OSTI)

In this paper the applicability of the Lattice Boltzmann Method to neutron transport is investigated. One of the main features of the Lattice Boltzmann method is the simultaneous discretization of the phase space of the problem, whereby particles are restricted to move on a lattice. An iterative solution of the operator form of the neutron transport equation is presented here, with the first collision source as the starting point of the iteration scheme. A full description of the discretization scheme is given, along with the quadrature set used for the angular discretization. An angular refinement scheme is introduced to increase the angular coverage of the problem phase space and to mitigate lattice ray effects. The method is applied to a model problem to investigate its applicability to neutron transport and the results are compared to a reference solution calculated, using MCNP. (authors)

Erasmus, B.; Van Heerden, F. A. [South African Nuclear Energy Corporation - Necsa, Building P-1900, PO Box 582, Pretoria, 0001 (South Africa)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation phase evaluate" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Rio Grande sediment study -- Supply and transport  

SciTech Connect (OSTI)

The 1992 New Mexico State Legislature directed the Interstate Stream Commission (ISC) to study the feasibility of clearing and deepening the channel of the Rio Grande between Albuquerque and Elephant Butte to improve water conveyance and water conservation. The ISC requested the US Army Corps of Engineers-Albuquerque District (COE) to undertake this study under the Planning Assistance to States Program. The study was divided into two phases. Phase 1 consisted of an analysis of the sediment contribution to the Rio grande from the tributaries and an evaluation of the existing US Geological Survey (USGS) sediment gage data. Phase 2 will be an analysis, through the use of an HEC-6, Scour and Deposition in Rivers and Reservoirs, computer model, to determine the long-term performance of any Rio Grande channel improvements. This narrative presents the Phase 1 methods and results.

Diniz, E. [Resource Technology, Inc., Albuquerque, NM (United States); Eidson, D.; Bourgeois, M. [Army Corps of Engineers, Albuquerque, NM (United States)

1995-12-31T23:59:59.000Z

422

Robustness of phase retrieval methods in x-ray phase contrast imaging: A comparison  

SciTech Connect (OSTI)

Purpose: The robustness of the phase retrieval methods is of critical importance for limiting and reducing radiation doses involved in x-ray phase contrast imaging. This work is to compare the robustness of two phase retrieval methods by analyzing the phase maps retrieved from the experimental images of a phantom. Methods: Two phase retrieval methods were compared. One method is based on the transport of intensity equation (TIE) for phase contrast projections, and the TIE-based method is the most commonly used method for phase retrieval in the literature. The other is the recently developed attenuation-partition based (AP-based) phase retrieval method. The authors applied these two methods to experimental projection images of an air-bubble wrap phantom for retrieving the phase map of the bubble wrap. The retrieved phase maps obtained by using the two methods are compared. Results: In the wrap's phase map retrieved by using the TIE-based method, no bubble is recognizable, hence, this method failed completely for phase retrieval from these bubble wrap images. Even with the help of the Tikhonov regularization, the bubbles are still hardly visible and buried in the cluttered background in the retrieved phase map. The retrieved phase values with this method are grossly erroneous. In contrast, in the wrap's phase map retrieved by using the AP-based method, the bubbles are clearly recovered. The retrieved phase values with the AP-based method are reasonably close to the estimate based on the thickness-based measurement. The authors traced these stark performance differences of the two methods to their different techniques employed to deal with the singularity problem involved in the phase retrievals. Conclusions: This comparison shows that the conventional TIE-based phase retrieval method, regardless if Tikhonov regularization is used or not, is unstable against the noise in the wrap's projection images, while the AP-based phase retrieval method is shown in these experiments to be superior to the TIE-based method for the robustness in performing the phase retrieval.

Yan, Aimin; Wu, Xizeng; Liu, Hong [Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama 35233 (United States); Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

2011-09-15T23:59:59.000Z

423

Modeling Studies on the Transport of Benzene and H2S in CO2-Water Systems  

SciTech Connect (OSTI)

In this study, reactive transport simulations were used to assess the mobilization and transport of organics with supercritical CO{sub 2} (SCC), and the co-injection and transport of H{sub 2}S with SCC. These processes were evaluated at conditions of typical storage reservoirs, and for cases of hypothetical leakage from a reservoir to an overlying shallower fresh water aquifer. Modeling capabilities were developed to allow the simulation of multiphase flow and transport of H{sub 2}O, CO{sub 2}, H{sub 2}S, as well as specific organic compounds (benzene), coupled with multicomponent geochemical reaction and transport. This included the development of a new simulator, TMVOC-REACT, starting from existing modules of the TOUGH2 family of codes. This work also included an extensive literature review, calculation, and testing of phase-partitioning properties for mixtures of the phases considered. The reactive transport simulations presented in this report are primarily intended to illustrate the capabilities of the new simulator. They are also intended to help evaluate and understand various processes at play, in a more qualitative than quantitative manner, and only for hypothetical scenarios. Therefore, model results are not intended as realistic assessments of groundwater quality changes for specific locations, and they certainly do not provide an exhaustive evaluation of all possible site conditions, especially given the large variability and uncertainty in hydrogeologic and geochemical parameter input into simulations. The first step in evaluating the potential mobilization and transport of organics was the identification of compounds likely to be present in deep storage formations, and likely to negatively impact freshwater aquifers if mobilized by SCC. On the basis of a literature review related to the occurrence of these organic compounds, their solubility in water and SCC, and their toxicity (as reflected by their maximum contaminant levels MCL), benzene was selected as a key compound for inclusion into numerical simulations. Note that considering additional organic compounds and/or mixtures of such compounds in the simulations was beyond the scope of this study, because of the effort required to research, calculate, and validate the phase-partitioning data necessary for simulations. The injection of CO{sub 2} into a deep saline aquifer was simulated, followed by modeling the leaching of benzene by SCC and transport of benzene to an overlying aquifer along a hypothetical leakage pathway. One- and two-dimensional models were set up for this purpose. The target storage formation was assumed to initially contain about 10{sup -4} ppm benzene. Model results indicate that: (1) SCC efficiently extracts benzene from the storage formation. (2) Assuming equilibrium, the content of benzene in SCC is roportional to the concentration of benzene in the aqueous and solid phases. (3) Benzene may co-migrate with CO{sub 2} into overlying aquifers if a leakage pathway is present. Because the aqueous solubility of benzene in contact with CO{sub 2} is lower than the aqueous solubility of CO{sub 2}, benzene is actually enriched in the CO{sub 2} phase as the plume advances. (4) For the case studied here, the resulting aqueous benzene concentration in the overlying aquifer is on the same order of magnitude as the initial concentration in the storage formation. This generic modeling study illustrates, in a semi-quantitative manner, the possible mobilization of benzene by SCC. The extent to which the mobilization of this organic compound evolves temporally and spatially depends on a large number of controlling parameters and is largely site specific. Therefore, for more 'truly' predictive work, further sensitivity studies should be conducted, and further modeling should be integrated with site-specific laboratory and/or field experimental data. The co-injection of H{sub 2}S with CO{sub 2} into a deep saline aquifer was also simulated. In addition, the model considered leakage of the supercritical CO{sub 2}+H{sub 2}S mixture along a preferential p

Zheng, L.; Spycher, N.; Xu, T.; Apps, J.; Kharaka, Y.; Birkholzer, J.T.

2010-11-05T23:59:59.000Z

424

Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544  

SciTech Connect (OSTI)

At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill material. This paper describes the ex situ soil segregation methods, the considerations of each method, and the estimated cost savings from minimizing the volume of soil requiring transportation and off-site disposal. (authors)

Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States)] [U.S. Army Corps of Engineers, Buffalo District, 1776 Niagara St., Buffalo, NY 14207 (United States); Elliott, Robert 'Dan' [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States)] [U.S. Army Reserve, 812A Franklin St.,Worcester, MA 01604 (United States); Durham, Lisa [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)] [Argonne National Laboratory, Environmental Science Division, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

2013-07-01T23:59:59.000Z

425

Transport coefficients of a massive pion gas  

E-Print Network [OSTI]

We review or main results concerning the transport coefficients of a light meson gas, in particular we focus on the case of a massive pion gas. Leading order results according to the chiral power-counting are presented for the DC electrical conductivity, thermal conductivity, shear viscosity, and bulk viscosity. We also comment on the possible correlation between the bulk viscosity and the trace anomaly in QCD, as well as the relation between unitarity and a minimum of the quotient $\\eta/s$ near the phase transition.

D. Fernandez-Fraile; A. Gomez Nicola

2009-12-20T23:59:59.000Z

426

Interphase transport in horizontal stratified cocurrent flow  

SciTech Connect (OSTI)

The problem of interfacial transport in cocurrent, horizontal stratified gas-liquid systems is considered. Local condensation heat transfer coefficients and interface shear stress were obtained from mass and force balances. Based on cocurrent stratified air-water flow data, the noncondensing interface shear stress was found to be a function of the relative velocity between the phases and the liquid fraction. Incorporated into Linehan's relation for condensing flow shear stress, the correlation was found to estimate the shear velocity for the condensation data considered. Local condensation heat transfer coefficients and gas absorption mass transfer coefficients were found to be directly proportional to the shear velocity.

Jensen, R.J.; Yuen, M.C.

1982-05-01T23:59:59.000Z

427

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

428

Method of using an electric field controlled emulsion phase contactor  

DOE Patents [OSTI]

A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

Scott, Timothy C. (Knoxville, TN)

1993-01-01T23:59:59.000Z

429

ADVANCED CUTTINGS TRANSPORT STUDY  

SciTech Connect (OSTI)

This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

2003-01-30T23:59:59.000Z

430

Regional Transportation Performance Measures  

E-Print Network [OSTI]

in place for maintenance of pavements and structures But only general goals for modernization Case for Performance-Based Funding: What Partners Say The Pew Center on the States' recently ranked Mobility Reliability Accessibility Livability 12 #12;Transportation Performance Measurement Concepts

Illinois at Chicago, University of

431

Transportation Project Funding &  

E-Print Network [OSTI]

Transportation Center William W. Hay Railroad Engineering Seminar March 14, 2014 #12;© 2013 Stephen E. Schlickman-off benefits Strengthen revenue generation through increased ridership Reduce maintenance expenses #12 © 2013 Stephen E. Schlickman 6 #12;Financing Risk issues Reliability of your revenue stream Community

Barkan, Christopher P.L.

432

21st Annual Transportation  

E-Print Network [OSTI]

would cost more than $40 billion over next 20 years ·! If used alone, state gas tax would need more than Investment Plan ·! Mn/DOT Statewide Transportation Plan #12;MHSIS goals ·! Develop a long range vision expansions ·!Fiscally-constrained approach #12;New investment strategy ·! Realistic ·! Innovative ·! Focuses

Minnesota, University of

433

Transport of Entanglement  

E-Print Network [OSTI]

We consider the propagation of two-photon light in a random medium. We show that the Wigner distribution of the two-photon wave function obeys an equation that is analogous to the radiative transport equation for classical light. Using this result, we predict that the entanglement of a photon pair is destroyed with propagation.

Manabu Machida; Vadim A Markel; John C Schotland

2012-10-17T23:59:59.000Z

434

Policy Research TRANSPORTATION  

E-Print Network [OSTI]

to attract businesses and jobs to Texas, as the state has become increasingly dependent on the efficient will continue to be an important part of the 21st century transportation model, more efficient use of available and innovation; and · Serve as an independent resource to the Texas Legislature, providing analyses of the state

435

Ionic (Proton) Transport Hydrogen  

E-Print Network [OSTI]

environments - #12;Technology Options -- Ionic Transport Separation Systems Central, Semi-Central (coal/Semi-Central Systems Coal is the cheapest fuel, but requires the greatest pre-conditioning Clean-up of syngas requires Energy Systems ChevronTexaco SRI Consulting SAIC ChevronTexaco Technology Ventures #12;Performance

436

Storing and transporting energy  

DOE Patents [OSTI]

Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

McClaine, Andrew W. (Lexington, MA); Brown, Kenneth (Reading, MA)

2010-09-07T23:59:59.000Z

437

TRANSPORTATION Policy Research CENTER  

E-Print Network [OSTI]

, and describes conditions necessary for successful public-private transportation partnerships. The researchers found that effective P3 programs rely on these factors for their success: Enabling Legislation in the process is necessary. Economic Environment: Favorable economic conditions conducive to investment-- from

438

Artificial oxygen transport protein  

DOE Patents [OSTI]

This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

Dutton, P. Leslie

2014-09-30T23:59:59.000Z

439

Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions  

SciTech Connect (OSTI)

In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

2010-05-30T23:59:59.000Z

440

Saturated Zone Colloid Transport  

SciTech Connect (OSTI)

This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Satura