Sample records for transportation phase determine

  1. Phase stable RF transport system

    DOE Patents [OSTI]

    Curtin, Michael T. (Los Alamos, NM); Natter, Eckard F. (San Francisco, CA); Denney, Peter M. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.

  2. Vapor-phase heat-transport system

    SciTech Connect (OSTI)

    Hedstrom, J.C.

    1983-01-01T23:59:59.000Z

    A vapor-phase heat-transport system is being tested in one of the passive test cells at Los Alamos. The system consists of one selective-surface collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by gravity or with a pump. Results from several operating configurations are presented, together with a comparison with other passive systems. A new self-pumping concept is presented.

  3. Development of dense-phase pneumatic transport of coal

    SciTech Connect (OSTI)

    Horisaka, S.; Ikemiya, H.; Kajiwara, T. [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan)

    1996-12-31T23:59:59.000Z

    Dense phase pneumatic transport system has been developed to reduce entrained particles as is seen in the belt conveyor system. High mass flow rate and dense phase (Loading ratio = 50--100kg-coal/kg-N{sub 2}) transport has been achieved by applying this plug flow system to pneumatic conveying of coal (Average particle diameter = 2.5 mm).

  4. Computational phase imaging based on intensity transport

    E-Print Network [OSTI]

    Waller, Laura A. (Laura Ann)

    2010-01-01T23:59:59.000Z

    Light is a wave, having both an amplitude and a phase. However, optical frequencies are too high to allow direct detection of phase; thus, our eyes and cameras see only real values - intensity. Phase carries important ...

  5. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect (OSTI)

    Gabitto, Jorge; Barufet, Maria

    2002-11-20T23:59:59.000Z

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  6. Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils

    SciTech Connect (OSTI)

    Gabitto, Jorge; Barrufet, Maria

    2001-12-18T23:59:59.000Z

    The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibria, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.

  7. Road Transportable Analytical Laboratory system. Phase 1

    SciTech Connect (OSTI)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01T23:59:59.000Z

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  8. Assessment of radionuclide vapor-phase transport in unsaturated tuff

    SciTech Connect (OSTI)

    Smith, D.M.; Updegraff, C.D.; Bonano, E.J.; Randall, J.D.

    1986-11-01T23:59:59.000Z

    This report describes bounding calculations performed to investigate the possibility of radionuclide migration in a vapor phase associated with the emplacement of high-level waste canister in unsaturated tuff formations. Two potential radionuclide transport mechanisms in the vapor phase were examined: aerosol migration and convection/diffusion of volatile species. The former may have significant impact on the release of radionuclides to the accessible environment as the concentration in the aerosols will be equal to that in the ground water. A conservative analysis of air diffusion in a stagnant liquid film indicated that for all expected repository conditions, aerosol formation is not possible. The migration of volatile species was examined both in the vicinity of a waste canister and outside the thermally disturbed zone. Two-dimensional (radial) and three-dimensional (radial-vertical) coupled heat transfer-gas flow-liquid flow simulations were performed using the TOUGH computer code. The gas flow rate relative to the liquid flow rate predicted from the simulations allowed calculations of mobility ratios due to convection which led to the conclusion that, except for the immediate region near the canister, transport in the liquid phase will be dominant for radionuclides heavier than radon. Near the waste canister, iodine transport may also be important in the vapor phase. Bounding calculations for vertical mobility ratios were carried out as a function of saturation. These calculations are conservative and agree well with the two-dimensional simulations. Based on this analysis, it is clear that vapor-phase transport will not be important for radionuclides such as cesium and heavier species. Vapor transport for iodine may play a role in the overall release scenario depending on the particular repository conditions.

  9. Two-phase microfluidics, heat and mass transport in direct methanol fuel cells

    E-Print Network [OSTI]

    CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

  10. Groundwater flow with energy transport and waterice phase change: Numerical simulations, benchmarks, and application to

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes propor transport; Freezing; Cold regions; Benchmark; Modelling 1. Introduction The freezing and thawingGroundwater flow with energy transport and water­ice phase change: Numerical simulations

  11. Determining pressure-temperature phase diagrams of materials

    E-Print Network [OSTI]

    Baldock, Robert J N; Bartók, Albert P; Payne, Michael C; Csányi, Gábor

    2015-01-01T23:59:59.000Z

    We extend the Nested Sampling algorithm to simulate materials under periodic boundary and constant pressure conditions, and show how it can be efficiently used to determine the phase diagram directly from the potential energy in a highly automated fashion. The only inputs required are the composition and the desired pressure and temperature ranges, in particular solid-solid phase transitions are recovered without any a priori knowledge about the structure of solid phases. We apply the algorithm to the Lennard-Jones system, aluminium, and the NiTi shape memory alloy.

  12. Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen

    Broader source: Energy.gov [DOE]

    Toward new solid and liquid phase systems for the containment, transport and delivery of hydrogen.Solid and liquid hydrogen carriers for use in hydrogen storage and delivery.

  13. Two-phase flow and transport Volume 3, Part 3, pp 337347

    E-Print Network [OSTI]

    Two-phase flow and transport C.-Y. Wang Volume 3, Part 3, pp 337­347 in Handbook of Fuel Cells cells include hydrogen or refor- mate/air PEM fuel cells (PEMFC) and PEM-based direct methanol fuel fuel cells. The two-phase flow and transport through the porous structure of GDL, which underlies

  14. Two-phase ow and transport in the air cathode of proton exchange membrane fuel cells

    E-Print Network [OSTI]

    Two-phase ¯ow and transport in the air cathode of proton exchange membrane fuel cells Z.H. Wanga rights reserved. Keywords: Two-phase transport; PEM fuel cells; Analytical modeling; Numerical simulation excessive water, in parti- cular, for the air cathode of direct methanol PEM fuel cells. Modeling water

  15. VAPOUR PHASE CHEMICAL TRANSPORT PROPERTIES OF THE CADMIUM TELLURIDE-IODINE SYSTEM

    E-Print Network [OSTI]

    Boyer, Edmond

    , it was shown that no iodine chemical transport is possible in closed tubes in the hot-cold direction, but only was explained in terms of a reverse (cold-hot) iodine transport associated with a reduced sublimation tendency155 VAPOUR PHASE CHEMICAL TRANSPORT PROPERTIES OF THE CADMIUM TELLURIDE-IODINE SYSTEM C. PAORICI

  16. STOMP Subsurface Transport Over Multiple Phases: Application guide

    SciTech Connect (OSTI)

    Nichols, W.E.; Aimo, N.J.; Oostrom, M.; White, M.D.

    1997-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and ground water at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstrated Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineering simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator are documented in three companion guide guides. This document, the Application Guide, provides a suite of example applications of the STOMP simulator.

  17. STOMP Subsurface Transport Over Multiple Phases: User`s guide

    SciTech Connect (OSTI)

    White, M.D.; Oostrom, M.

    1997-10-01T23:59:59.000Z

    The U.S. Department of Energy, through the Office of Technology Development, has requested the demonstration of remediation technologies for the cleanup of volatile organic compounds and associated radionuclides within the soil and groundwater at arid sites. This demonstration program, called the VOC-Arid Soils Integrated Demonstration Program (Arid-ID), has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon tetrachloride, on the Hanford Site near Richland, Washington. A principal subtask of the Arid-ID program involves the development of an integrated engineering simulator for evaluating the effectiveness and efficiency of various remediation technologies. The engineering simulator`s intended users include scientists and engineers who are investigating soil physics phenomena associated with remediation technologies. Principal design goals for the engineer simulator include broad applicability, verified algorithms, quality assurance controls, and validated simulations against laboratory and field-scale experiments. An important goal for the simulator development subtask involves the ability to scale laboratory and field-scale experiments to full-scale remediation technologies, and to transfer acquired technology to other arid sites. The STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the Pacific Northwest National Laboratory for modeling remediation technologies. Information on the use, application, and theoretical basis of the STOMP simulator theory and discussions on the governing equations, constitutive relations, and numerical solution algorithms for the STOMP simulator.

  18. Conceptual Design Phase of Project on Design and Development of Airships for Transportation of Goods

    E-Print Network [OSTI]

    Ramu, Palaniappan

    Conceptual Design Phase of Project on Design and Development of Airships for Transportation Team 2 Literature Review 3 Requirements Capture 4 Discussions with Airship Manufacturers 5 Identification of Vendors and Resource Agencies 6 Regulations related to airship design, manufacture

  19. International Journal of Mass Spectrometry 219 (2002) 7377 Protein charge transport in gas phase

    E-Print Network [OSTI]

    Sheu, Sheh-Yi

    temperature limit, the rotational energy can be transferred with very high efficiency and hence one obtainsInternational Journal of Mass Spectrometry 219 (2002) 73­77 Protein charge transport in gas phase high charge transport efficiency. (Int J Mass Spectrom 219 (2002) 73­77) © 2002 Elsevier Science B

  20. d+Au Collisions from A MultiPhase Transport Model

    E-Print Network [OSTI]

    Lin, Zi-wei

    d+Au Collisions from A MultiPhase Transport Model Structure of AMPT Model Results for d's Parton Cascade) Partons freeze out Lund fragmentation to hadrons using HIJING ART (A Relativistic Transport model for hadrons) A+B Final output Zhang et al, PRC61; ZWL et al, PRC64, NPA698 Wang

  1. Atomic oxygen flux determined by mixed-phase Ag/Ag2O deposition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxygen flux determined by mixed-phase AgAg2O deposition. Atomic oxygen flux determined by mixed-phase AgAg2O deposition. Abstract: The flux of atomic oxygen generated in a...

  2. Position for determining gas-phase volatile organic compound concentrations in transuranic waste containers. Revision 2

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.] [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R. [Benchmark Environmental Corp. (United States)] [Benchmark Environmental Corp. (United States)

    1998-06-01T23:59:59.000Z

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  3. Position for determining gas phase volatile organic compound concentrations in transuranic waste containers. Revision 1

    SciTech Connect (OSTI)

    Connolly, M.J.; Liekhus, K.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Djordjevic, S.M.; Loehr, C.A.; Spangler, L.R. [Benchmark Environmental Corp., Albuquerque, NM (United States)

    1995-08-01T23:59:59.000Z

    In the conditional no-migration determination (NMD) for the test phase of the Waste Isolation Pilot Plant (WIPP), the US Environmental Protection Agency (EPA) imposed certain conditions on the US Department of Energy (DOE) regarding gas phase volatile organic compound (VOC) concentrations in the void space of transuranic (TRU) waste containers. Specifically, the EPA required the DOE to ensure that each waste container has no layer of confinement that contains flammable mixtures of gases or mixtures of gases that could become flammable when mixed with air. The EPA also required that sampling of the headspace of waste containers outside inner layers of confinement be representative of the entire void space of the container. The EPA stated that all layers of confinement in a container would have to be sampled until DOE can demonstrate to the EPA that sampling of all layers is either unnecessary or can be safely reduced. A test program was conducted at the Idaho National Engineering Laboratory (INEL) to demonstrate that the gas phase VOC concentration in the void space of each layer of confinement in vented drums can be estimated from measured drum headspace using a theoretical transport model and that sampling of each layer of confinement is unnecessary. This report summarizes the studies performed in the INEL test program and extends them for the purpose of developing a methodology for determining gas phase VOC concentrations in both vented and unvented TRU waste containers. The methodology specifies conditions under which waste drum headspace gases can be said to be representative of drum gases as a whole and describes a method for predicting drum concentrations in situations where the headspace concentration is not representative. The methodology addresses the approach for determining the drum VOC gas content for two purposes: operational period drum handling and operational period no-migration calculations.

  4. Transport parameter determination and modeling of sodium and strontium plumes at the Idaho National Engineering Laboratory

    E-Print Network [OSTI]

    Londergan, John Thomas

    1987-01-01T23:59:59.000Z

    TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Geophysics TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Approved...

  5. TRANSPORT AND PHASE EQUILIBRIA PROPERITIES FOR STEAM FLOODING OF HEAVY OILS

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2002-09-01T23:59:59.000Z

    Hydrocarbon/water and CO{sub 2} systems are frequently found in petroleum recovery processes, petroleum refining, and gasification of coals, lignites and tar sands. Techniques to estimate the phase volume and phase composition are indispensable to design and improve oil recovery processes such as steam, hot water, or CO{sub 2}/steam combinations of flooding techniques typically used for heavy oils. An interdisciplinary research program to quantify transport, PVT, and equilibrium properties of selected oil/CO{sub 2}/water mixtures at pressures up to 10,000 psia and at temperatures up to 500 F has been put in place. The objectives of this research include experimental determination and rigorous modeling and computation of phase equilibrium diagrams, and volumetric properties of hydrocarbon/CO{sub 2}/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils. Highlighting the importance of phase behavior, researchers ([1], and [2]) insist on obtaining truly representative reservoir fluids samples for experimental analysis. The prevailing sampling techniques used for compositional analysis of the fluids have potential for a large source of error. These techniques bring the sample to atmospheric conditions and collect the liquid and vapor portion of the samples for further analysis. We developed a new experimental technique to determine phase volumes, compositions and equilibrium K-values at reservoir conditions. The new methodology is able to measure phase volume and composition at reservoir like temperatures and pressures. We use a mercury free PVT system in conjunction with a Hewlett Packard gas chromatograph capable of measuring compositions on line at high pressures and temperatures. This is made possible by an essentially negligible disturbance of the temperature and pressure equilibrium during phase volume and composition measurements. In addition, not many samples are withdrawn for compositional analysis because a negligible volume (0.1 {micro}l to 0.5 {micro}l) is sent directly to the gas chromatograph through sampling valves. These amounts are less than 1 x 10{sup -5} % of total volume and do not affect the overall composition or equilibrium of the system. A new method to compute multi-component phase equilibrium diagrams based on an improved version of the Peng-Robinson equation has been developed [3]. This new version of the Peng-Robinson equation uses a new volume translation scheme and new mixing rules to improve the accuracy of the calculations. Calculations involving multicomponent mixtures of CO{sub 2}/water and hydrocarbons have been completed. A scheme to lump multi-component materials such as, oils into a small set of ''pseudo-components'' according to the technique outlined by Whitson [4] has been implemented. This final report presents the results of our experimental and predicted phase behavior diagrams and calculations for mixtures of CO{sub 2}/water and real oils at high pressures and temperatures.

  6. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    SciTech Connect (OSTI)

    None

    1996-12-01T23:59:59.000Z

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  7. Gain margin and phase margin analysis of a nuclear reactor control system with multiple transport lags

    SciTech Connect (OSTI)

    Chang, C.H. (Institute of Electronics, National Chiao-Tung Univ. (TW)); Han, K.W. (Chung-Shan Institute and National Chiao-Tung Univ., Hsinchu (TW))

    1989-08-01T23:59:59.000Z

    In this paper a method for finding the boundaries of constant gain margin and phase margin of control systems with transport lags and adjustable parameters is presented. The considered systems are first modified by adding a gain-phase margin tester, then the characteristic equations are formulated, and finally the stability equations are used to find the boundaries of constant gain margin and phase margin. The main advantage of the proposed method is to obtain complete information about the effects of adjustable parameters on gain margin and phase margin and their corresponding crossover frequencies. In order to show the usefulness of the proposed method a nuclear reactor control system with multiple transport lags is chosen as one of the examples.

  8. Simulation and Comparison of Particle Injection in an Indoor Environment Using the Species Transport and Discrete Phase Models

    SciTech Connect (OSTI)

    Zheng, Zhongquan C.; Wei, Zhenglun A.; Bennett, James S.; Yang, Xiaofan

    2012-12-11T23:59:59.000Z

    In simulating fluid/solid-particle multiphase -flows, various methods are available. One approach is the combined Euler-Lagrange method, which simulates the fluid phase flow in the Eulerian framework and the discrete phase (particle) motion in the Lagrangian framework simultaneously. The Lagrangian approach, where particle motion is determined by the current state of the fluid phase flow, is also called the discrete phase model (DPM), in the context of numerical flow simulation. In this method, the influence of the particle motions on the fluid flow can be included (two-way interactions) but are more commonly excluded (one-way interactions, when the discrete phase concentration is dilute. The other approach is to treat the particle number concentration as a continuous species, a necessarily passive quantity determined by the fluid flow, with no influences from the particles on the fluid flow (one-way interactions only), except to the extent the discrete phase “continuum” alters the overall fluid properties, such as density. In this paper, we compare these two methods with experimental data for an indoor environmental chamber. The effects of injection particle numbers and the related boundary conditions are investigated. In the Euler-Lagrange interaction or DPM model for incompressible flow, the Eulerian continuous phase is governed by the Reynolds-averaged N-S (RANS) equations. The motions of particles are governed by Newton’s second law. The effects of particle motions are communicated to the continuous phase through a force term in the RANS equations. The second formulation is a pure Eulerian type, where only the particle-number concentration is addressed, rather than the motion of each individual particle. The fluid flow is governed by the same RANS equations without the particle force term. The particle-number concentration is simulated by a species transport equation. Comparisons among the models and with experimental and literature data are presented. Particularly, results with different numbers of released particles in the DPM will be investigated.

  9. Effect of equilibrium phase transition on multiphase transport in relativistic heavy ion collisions

    E-Print Network [OSTI]

    Yu Meiling; Du Jiaxin; Liu Lianshou

    2006-06-24T23:59:59.000Z

    The hadronization scheme for parton transport in relativistic heavy ion collisions is considered in detail. It is pointed out that the traditional scheme for particles being freezed out one by one leads to serious problem on unreasonable long lifetime for partons. A super-cooling of the parton system followed by a collective phase transition is implemented in a simple way. It turns out that the modified model with a global phase transition is able to reproduce the experimental longitudinal distributions of final state particles better than the original one does. The encouraging results indicate that a relevant parton transport model for relativistic heavy ion collision should take equilibrium phase transition into proper account.

  10. Thermoelectric transport of Se-rich Ag{sub 2}Se in normal phases and phase transitions

    SciTech Connect (OSTI)

    Mi, Wenlong; Lv, Yanhong [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Qiu, Pengfei; Shi, Xun, E-mail: xshi@mail.sic.ac.cn, E-mail: cld@mail.sic.ac.cn; Chen, Lidong, E-mail: xshi@mail.sic.ac.cn, E-mail: cld@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); Zhang, Tiansong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China)

    2014-03-31T23:59:59.000Z

    Small amount of Se atoms are used to tune the carrier concentrations (n{sub H}) and electrical transport in Ag{sub 2}Se. Significant enhancements in power factor and thermoelectric figure of merit (zT) are observed in the compositions of Ag{sub 2}Se{sub 1.06} and Ag{sub 2}Se{sub 1.08}. The excessive Se atoms do not change the intrinsically electron-conducting character in Ag{sub 2}Se. The detailed analysis reveals the experiment optimum carrier concentration in Ag{sub 2}Se is around 5?×?10{sup 18}?cm{sup ?3}. We also investigate the temperature of maximum zT and the thermoelectric transport during the first order phase transitions using the recently developed measurement system.

  11. A source-term method for determining spent-fuel transport cask containment requirements: Executive summary

    SciTech Connect (OSTI)

    Sanders, T.L.; Seager, K.D. (Sandia National Labs., Albuquerque, NM (United States)); Reardon, P.C. (GRAM, Inc., Albuquerque, NM (United States))

    1993-02-01T23:59:59.000Z

    This Executive Summary presents the methodology for determining containment requirements for spent-fuel transport casks under normal and hypothetical accident conditions. Three sources of radioactive material are considered: (1) the spent fuel itself, (2) radioactive material, referred to as CRUD, attached to the outside surfaces of fuel rod cladding, and (3) residual contamination adhering to interior surfaces of the cask cavity. The methodologies for determining the concentrations of freely suspended radioactive materials within a spent-fuel transport cask for these sources are discussed in much greater detail in three companion reports: A Method for Determining the Spent-Fuel Contribution to Transport Cask Containment Requirements,'' Estimate of CRUD Contribution to Shipping Cask Containment Requirements,'' and A Methodology for Estimating the Residual Contamination Contribution to the Source Term in a Spent-Fuel Transport Cask.'' Examples of cask containment requirements that combine the individually determined containment requirements for the three sources are provided, and conclusions from the three companion reports to this Executive Summary are presented.

  12. Turbulence and transport studies with phase contrast imaging in the Alcator C-Mod tokamak and comparisons with gyrokinetic simulations

    E-Print Network [OSTI]

    Lin, Liang, Ph. D. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    An upgraded phase contrast imaging (PCI) diagnostic is used to study turbulence and transport in Alcator C-Mod. The upgraded PCI system is capable of measuring density fluctuations with high temporal (2 kHz-5 MHz) and ...

  13. Determination of transport parameters from coincident chloride and tritium plumes at the Idaho National Engineering Laboratory

    E-Print Network [OSTI]

    Fryar, Alan Ernest

    1986-01-01T23:59:59.000Z

    -radioactive waste, but rad1onuclides are often toxic at far lower concentrations than are hazardous non-radi oacti ve speci es (Freeze and Cherry, 1979). Most radioactive waste, in terms of activity, is generated at vari ous stages of what Freeze and Cherry...DETERMINATION OF TRANSPORT PARAMETERS FROM COINCIDENT CHLORIDE AND TRITIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by ALAN ERNEST FRYAR Submitted to the Graduate College of Texas A&M University in partial fulfillment...

  14. An in situ geophone-calibration method for broadband amplitude and phase determination

    E-Print Network [OSTI]

    Peoples, Christopher James

    1993-01-01T23:59:59.000Z

    AN IN SITU GEOPHONE-CALIBRATION METHOD FOR BROADBAND AMPLITUDE AND PHASE DETERMINATION A Thesis by CHRISTOPHER JAMES PEOPLES Approved as to style and content by: Steven, Harder (Chair of Committee) Antho F. angi (Member) Robert Beck Clark... (Member) Joe S. Watkins (Head of Department) May 1993 ABSTRACT An In Situ Geophone-Calibration Method for Broadband Amplitude and Phase Determination. (May 1993) Christopher James Peoples, B. S. , University of California, Riverside Chair...

  15. The Influence of Morphology on the Charge Transport in Two-Phase Disordered Organic Systems

    E-Print Network [OSTI]

    Cristiano F. Woellner; Leonardo D. Machado; Pedro A. S. Autreto; Jose A. Freire; Douglas S. Galvao

    2015-01-07T23:59:59.000Z

    In this work we use a three-dimensional Pauli master equation to investigate the charge carrier mobility of a two-phase system, which can mimic donor-acceptor and amorphous- crystalline bulk heterojunctions. Our approach can be separated into two parts: the morphology generation and the charge transport modeling in the generated blend. The morphology part is based on a Monte Carlo simulation of binary mixtures (donor/acceptor). The second part is carried out by numerically solving the steady-state Pauli master equation. By taking the energetic disorder of each phase, their energy offset and domain morphology into consideration, we show that the carrier mobility can have a significant different behavior when compared to a one-phase system. When the energy offset is non-zero, we show that the mobility electric field dependence switches from negative to positive at a threshold field proportional to the energy offset. Additionally, the influence of morphology, through the domain size and the interfacial roughness parameters, on the transport was also investigated.

  16. Driven coupled Morse oscillators --- visualizing the phase space and characterizing the transport

    E-Print Network [OSTI]

    Astha Sethi; Srihari Keshavamurthy

    2012-08-28T23:59:59.000Z

    Recent experimental and theoretical studies indicate that intramolecular energy redistribution (IVR) is nonstatistical on intermediate timescales even in fairly large molecules. Therefore, it is interesting to revisit the the old topic of IVR versus quantum control and one expects that a classical-quantum perspective is appropriate to gain valuable insights into the issue. However, understanding classical phase space transport in driven systems is a prerequisite for such a correspondence based approach and is a challenging task for systems with more then two degrees of freedom. In this work we undertake a detailed study of the classical dynamics of a minimal model system - two kinetically coupled coupled Morse oscillators in the presence of a monochromatic laser field. Using the technique of wavelet transforms a representation of the high dimensional phase space, the resonance network or Arnold web, is constructed and analysed. The key structures in phase space which regulate the dissociation dynamics are identified. Furthermore, we show that the web is nonuniform with the classical dynamics exhibiting extensive stickiness, resulting in anomalous transport. Our work also shows that pairwise irrational barriers might be crucial even in higher dimensional systems.

  17. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to Berkeley...

  18. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Print Home Agenda Awards Exhibitors Lodging Posters Registration Transportation Workshops Contact Us User Meeting Archives Users' Executive Committee Getting to...

  19. New determination of the D0?K??+?0 and D0?K??+?+?? coherence factors and average strong-phase differences

    SciTech Connect (OSTI)

    Libby, J.; Malde, S.; Powell, A.; Wilkinson, G.; Asner, David M.; Bonvicini, Giovanni; Briere, R. A.; Gershon, T.; Naik, P.; Pedlar, Todd K.; Rademacker, J.; Ricciardi, S.; Thomas, C.

    2014-07-14T23:59:59.000Z

    New determination of the D0!K?!+!0 and D0!K?!+!+!? coherence factors and average strong-phase differences

  20. Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin-pumping

    SciTech Connect (OSTI)

    Boone, C. T.; Nembach, Hans T.; Shaw, Justin M.; Silva, T. J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2013-04-21T23:59:59.000Z

    We measured spin-transport in nonferromagnetic (NM) metallic multilayers from the contribution to damping due to spin pumping from a ferromagnetic Co{sub 90}Fe{sub 10} thin film. The multilayer stack consisted of NM{sub 1}/NM{sub 2}/Co{sub 90}Fe{sub 10}(2 nm)/NM{sub 2}/NM{sub 3} with varying NM materials and thicknesses. Using conventional theory for one-dimensional diffusive spin transport in metals, we show that the effective damping due to spin pumping can be strongly affected by the spin transport properties of each NM in the multilayer, which permits the use of damping measurements to accurately determine the spin transport properties of the various NM layers in the full five-layer stack. We find that due to its high electrical resistivity, amorphous Ta is a poor spin conductor, in spite of a short spin-diffusion length of 1.0 nm, and that Pt is an excellent spin conductor by virtue of its low electrical resistivity and a spin diffusion length of only 0.5 nm. Spin Hall effect measurements may have underestimated the spin Hall angle in Pt by assuming a much longer spin diffusion length.

  1. Impulsive phase flare energy transport by large-scale Alfven waves and the electron acceleration problem

    E-Print Network [OSTI]

    L. Fletcher; H. S. Hudson

    2007-12-20T23:59:59.000Z

    The impulsive phase of a solar flare marks the epoch of rapid conversion of energy stored in the pre-flare coronal magnetic field. Hard X-ray observations imply that a substantial fraction of flare energy released during the impulsive phase is converted to the kinetic energy of mildly relativistic electrons (10-100 keV). The liberation of the magnetic free energy can occur as the coronal magnetic field reconfigures and relaxes following reconnection. We investigate a scenario in which products of the reconfiguration - large-scale Alfven wave pulses - transport the energy and magnetic-field changes rapidly through the corona to the lower atmosphere. This offers two possibilities for electron acceleration. Firstly, in a coronal plasma with beta energies on the order of 10 keV and above, including by repeated interactions between electrons and wavefronts. Secondly, when they reflect and mode-convert in the chromosphere, a cascade to high wavenumbers may develop. This will also accelerate electrons by turbulence, in a medium with a locally high electron number density. This concept, which bridges MHD-based and particle-based views of a flare, provides an interpretation of the recently-observed rapid variations of the line-of-sight component of the photospheric magnetic field across the flare impulsive phase, and offers solutions to some perplexing flare problems, such as the flare "number problem" of finding and resupplying sufficient electrons to explain the impulsive-phase hard X-ray emission.

  2. Transportation

    E-Print Network [OSTI]

    Vinson, Steve

    2013-01-01T23:59:59.000Z

    Transportation in ancient Egypt entailed the use of boats2007 Land transport in Roman Egypt: A study of economics andDieter 1991 Building in Egypt: Pharaonic stone masonry. New

  3. Experimental phasing for structure determination using membrane-protein crystals grown by the lipid cubic phase method

    SciTech Connect (OSTI)

    Li, Dianfan; Pye, Valerie E.; Caffrey, Martin, E-mail: martin.caffrey@tcd.ie [Trinity College Dublin, Dublin (Ireland)

    2015-01-01T23:59:59.000Z

    Very little information is available in the literature concerning the experimental heavy-atom phasing of membrane-protein structures where the crystals have been grown using the lipid cubic phase (in meso) method. In this paper, pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine labelling as applied to an integral membrane kinase crystallized in meso are described. An assay to assess cysteine accessibility for mercury labelling of membrane proteins is introduced. Despite the marked increase in the number of membrane-protein structures solved using crystals grown by the lipid cubic phase or in meso method, only ten have been determined by SAD/MAD. This is likely to be a consequence of the technical difficulties associated with handling proteins and crystals in the sticky and viscous hosting mesophase that is usually incubated in glass sandwich plates for the purposes of crystallization. Here, a four-year campaign aimed at phasing the in meso structure of the integral membrane diacylglycerol kinase (DgkA) from Escherichia coli is reported. Heavy-atom labelling of this small hydrophobic enzyme was attempted by pre-labelling, co-crystallization, soaking, site-specific mercury binding to genetically engineered single-cysteine mutants and selenomethionine incorporation. Strategies and techniques for special handling are reported, as well as the typical results and the lessons learned for each of these approaches. In addition, an assay to assess the accessibility of cysteine residues in membrane proteins for mercury labelling is introduced. The various techniques and strategies described will provide a valuable reference for future experimental phasing of membrane proteins where crystals are grown by the lipid cubic phase method.

  4. Underground Test Area Subproject Phase I Data Analysis Task. Volume V - Transport Parameter and Source Term Data Documentation Package

    SciTech Connect (OSTI)

    None

    1996-12-01T23:59:59.000Z

    Volume V of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the transport parameter and source term data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  5. Mesoscale Phase-Field Modeling of Charge Transport in Nanocomposite Electrodes for Lithium-ion Batteries

    SciTech Connect (OSTI)

    Hu, Shenyang Y.; Li, Yulan; Rosso, Kevin M.; Sushko, Maria L.

    2013-01-10T23:59:59.000Z

    A phase-field model is developed to investigate the influence of microstructure, thermodynamic and kinetic properties, and charging conditions on charged particle transport in nanocomposite electrodes. Two sets of field variables are used to describe the microstructure. One is comprised of the order parameters describing size, orientation and spatial distributions of nanoparticles, and the other is comprised of the concentrations of mobile species. A porous nanoparticle microstructure filled with electrolyte is taken as a model system to test the phase-field model. Inhomogeneous and anisotropic dielectric constants and mobilities of charged particles, and stresses associated with lattice deformation due to Li-ion insertion/extraction are considered in the model. Iteration methods are used to find the elastic and electric fields in an elastically and electrically inhomogeneous medium. The results demonstrate that the model is capable of predicting charge separation associated with the formation of a double layer at the electrochemical interface between solid and electrolyte, and the effect of microstructure, inhomogeneous and anisotropic thermodynamic and kinetic properties, charge rates, and stresses on voltage versus current density and capacity during charging and discharging.

  6. Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow

    E-Print Network [OSTI]

    Mench, Matthew M.

    -Change-Induced Flow Soowhan Kim* and M. M. Mench**,z Fuel Cell Dynamics and Diagnostics Laboratory, DepartmentInvestigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase electrolyte fuel cell materials subjected to a temperature gradient. Contrary to thermo-osmotic flow in fuel

  7. The Determination of Pertechnetate and Non-Pertechnetate Species in Hanford Tanks - Phase 1

    SciTech Connect (OSTI)

    Duncan, James B. [Washington River Protection Solutions LLC, WA (United States); Catlow, Stanley A. [Advanced Technologies and Laboratories International, Inc. (United States)

    2014-02-01T23:59:59.000Z

    An analytical method is required to distinguish between the pertechnetate and non-pertechnetate forms of technetium; currently, the methods available only report the total technetium present in a sample. The overall objective of this effort is to develop a method for routinely analyzing Hanford tank waste for technetium in the pertechnetate and the non-pertechnetate forms. A phased approach will be deployed to accomplish this objective: Phase I Comparison of existing technetium analysis methods with modification; Phase II Demonstration of modified methods using non-pertechnetate spiked simulants; and, Phase III Demonstration of chosen method on Hanford tank sample containing non-pertechnetate. This report describes the Phase I work, providing a comparison of Aliquat 336 and TEVA(R)1 in the removal of pertechnetate and discussing the subsequent analysis for technetium in both alkaline and acidic environments without oxidation. The effort was executed under LAB-PLN-13-00004, The Determination of Pertechnetate and Non-Pertechnetate Species in Hanford Tanks Phase I.

  8. STOMP Subsurface Transport Over Multiple Phases, Version 4.0, User’s Guide

    SciTech Connect (OSTI)

    White, Mark D.; Oostrom, Martinus

    2006-06-09T23:59:59.000Z

    This guide describes the general use, input file formatting, compilation and execution of the STOMP (Subsurface Transport Over Multiple Phases) simulator, a scientific tool for analyzing single and multiple phase subsurface flow and transport. A description of the simulator’s governing equations, constitutive functions and numerical solution algorithms are provided in a companion theory guide. In writing these guides for the STOMP simulator, the authors have assumed that the reader comprehends concepts and theories associated with multiple-phase hydrology, heat transfer, thermodynamics, radioactive chain decay, and relative permeability-saturation-capillary pressure constitutive relations. The authors further assume that the reader is familiar with the computing environment on which they plan to compile and execute the STOMP simulator. Source codes for the sequential versions of the simulator are available in pure FORTRAN 77 or mixed FORTRAN 77/90 forms. The pure FORTRAN 77 source code form requires a parameters file to define the memory requirements for the array elements. The mixed FORTRAN 77/90 form of the source code uses dynamic memory allocation to define memory requirements, based on a FORTRAN 90 preprocessor STEP, that reads the input files. The simulator utilizes a variable source code configuration, which allows the execution memory and speed to be tailored to the problem specifics, and essentially requires that the source code be assembled and compiled through a software maintenance utility. The memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. Selected operational modes of the STOMP simulator are available for scalable execution on multiple processor (i.e., parallel) computers. These versions of the simulator are written in pure FORTRAN 90 with imbedded directives that are interpreted by a FORTRAN preprocessor. Without the preprocessor, the scalable version of the simulator can be executed sequentially on a single processor computer. The scalable versions of the STOMP modes carry the “-Sc” designator on the operational mode name. For example, STOMP-WCS-Sc is the scalable version of the STOMP-WCS (Water-CO2-Salt) mode. A separate mode containing an evaporation model as a boundary condition on the upper surface of the computation domain has also been included. This mode, STOMP-WAE-B (Water-Air-Energy-Barriers) can be viewed as an extension of the STOMP-WAE (Water-Air-Energy) mode. Details of this particular mode are outlined by Ward et al. (2005)(a). STOMP V4.0 includes the reactive transport module ECKEChem (Equilibrium-Conservation-Kinetic Equation Chemistry) for the STOMP-W (Water) and STOMP-WCS (Water-CO2-Salt) modes. For this particular module, the “-R” designator is included in the operational mode name (e.g., STOMP-W-R, STOMP-WCS-R-Sc). This mode is described in detail by White and McGrail (2005)(b). For all operational modes and processor implementations, the memory requirements for executing the simulator are dependent on the complexity of physical system to be modeled and the size and dimensionality of the computational domain. Likewise execution speed depends on the problem complexity, size and dimensionality of the computational domain, and computer performance. Additional information about the simulator can be found on the STOMP webpage: http://stomp.pnl.gov. The website includes an introductory short course with problems ranging from simple one-dimensional saturated flow to complex multiphase system computations.

  9. Low-energy effective theory in the bulk for transport in a topological phase

    E-Print Network [OSTI]

    Barry Bradlyn; N. Read

    2015-02-15T23:59:59.000Z

    We construct a low-energy effective action for a two-dimensional non-relativistic topological (i.e.\\ gapped) phase of matter in a continuum, which completely describes all of its bulk electrical, thermal, and stress-related properties in the limit of low frequencies, long distances, and zero temperature, without assuming either Lorentz or Galilean invariance. This is done by generalizing Luttinger's approach to thermoelectric phenomena, via the introduction of a background vielbein (i.e.\\ gravitational) field and spin connection a la Cartan, in addition to the electromagnetic vector potential, in the action for the microscopic degrees of freedom (the matter fields). Crucially, the geometry of spacetime is allowed to have timelike and spacelike torsion. These background fields make all natural invariances--- under U(1) gauge transformations, translations in both space and time, and spatial rotations---appear locally, and corresponding conserved currents and the stress tensor can be obtained, which obey natural continuity equations. On integrating out the matter fields, we derive the most general form of a local bulk induced action to first order in derivatives of the background fields, from which thermodynamic and transport properties can be obtained. We show that the gapped bulk cannot contribute to low-temperature thermoelectric transport other than the ordinary Hall conductivity; the other thermoelectric effects (if they occur) are thus purely edge effects. The coupling to "reduced" spacelike torsion is found to be absent in minimally-coupled models, and using a generalized Belinfante stress tensor, the stress response to time-dependent vielbeins (i.e.\\ strains) is the Hall viscosity, which is robust against perturbations and related to the spin current as in earlier work.

  10. ZnO nanorod growth by plasma-enhanced vapor phase transport with different growth durations

    SciTech Connect (OSTI)

    Kim, Chang-Yong; Oh, Hee-bong [Department of Nano Science and Engineering, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Ryu, Hyukhyun, E-mail: hhryu@inje.ac.kr [Department of Nano Science and Engineering, Center for Nano Manufacturing, Inje University, Obang-dong, Gimhae, Gyeongnam 621-749 (Korea, Republic of); Yun, Jondo [Department of Nano Science and Engineering, Kyungnam University, Changwon, Gyeongnam 631-701 (Korea, Republic of); Lee, Won-Jae [Department of Materials and Components Engineering, Dong-Eui University, 995 Eomgwangno, Busanjin-gu, Busan 614-714 (Korea, Republic of)

    2014-09-01T23:59:59.000Z

    In this study, the structural properties of ZnO nanostructures grown by plasma-enhanced vapor phase transport (PEVPT) were investigated. Plasma-treated oxygen gas was used as the oxygen source for the ZnO growth. The structural properties of ZnO nanostructures grown for different durations were measured by scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The authors comprehensively analyzed the growth of the ZnO nanostructures with different growth durations both with and without the use of plasma-treated oxygen gas. It was found that PEVPT has a significant influence on the growth of the ZnO nanorods. PEVPT with plasma-treated oxygen gas facilitated the generation of nucleation sites, and the resulting ZnO nanorod structures were more vertical than those prepared by conventional VPT without plasma-treated oxygen gas. As a result, the ZnO nanostructures grown using PEVPT showed improved structural properties compared to those prepared by the conventional VPT method.

  11. Desalination-of water by vapor-phase transport through hydrophobic nanopores

    E-Print Network [OSTI]

    Lee, Jongho

    We propose a new approach to desalination of water whereby a pressure difference across a vapor-trapping nanopore induces selective transport of water by isothermal evaporation and condensation across the pore. Transport ...

  12. Determination of peripheral underdosage at the lung-tumor interface using Monte Carlo radiation transport calculations

    SciTech Connect (OSTI)

    Taylor, Michael, E-mail: michael.taylor@rmit.edu.au [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia); Dunn, Leon; Kron, Tomas; Height, Felicity; Franich, Rick [School of Applied Sciences, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria (Australia); Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, Victoria (Australia)

    2012-04-01T23:59:59.000Z

    Prediction of dose distributions in close proximity to interfaces is difficult. In the context of radiotherapy of lung tumors, this may affect the minimum dose received by lesions and is particularly important when prescribing dose to covering isodoses. The objective of this work is to quantify underdosage in key regions around a hypothetical target using Monte Carlo dose calculation methods, and to develop a factor for clinical estimation of such underdosage. A systematic set of calculations are undertaken using 2 Monte Carlo radiation transport codes (EGSnrc and GEANT4). Discrepancies in dose are determined for a number of parameters, including beam energy, tumor size, field size, and distance from chest wall. Calculations were performed for 1-mm{sup 3} regions at proximal, distal, and lateral aspects of a spherical tumor, determined for a 6-MV and a 15-MV photon beam. The simulations indicate regions of tumor underdose at the tumor-lung interface. Results are presented as ratios of the dose at key peripheral regions to the dose at the center of the tumor, a point at which the treatment planning system (TPS) predicts the dose more reliably. Comparison with TPS data (pencil-beam convolution) indicates such underdosage would not have been predicted accurately in the clinic. We define a dose reduction factor (DRF) as the average of the dose in the periphery in the 6 cardinal directions divided by the central dose in the target, the mean of which is 0.97 and 0.95 for a 6-MV and 15-MV beam, respectively. The DRF can assist clinicians in the estimation of the magnitude of potential discrepancies between prescribed and delivered dose distributions as a function of tumor size and location. Calculation for a systematic set of 'generic' tumors allows application to many classes of patient case, and is particularly useful for interpreting clinical trial data.

  13. Phase retrieval with the transport-of-intensity equation in an arbitrarily-shaped aperture by iterative discrete cosine transforms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Lei; Zuo, Chao; Idir, Mourad; Qu, Weijuan; Asundi, Anand

    2015-01-01T23:59:59.000Z

    A novel transport-of-intensity equation (TIE) based phase retrieval method is proposed with putting an arbitrarily-shaped aperture into the optical wavefield. In this arbitrarily-shaped aperture, the TIE can be solved under non-uniform illuminations and even non-homogeneous boundary conditions by iterative discrete cosine transforms with a phase compensation mechanism. Simulation with arbitrary phase, arbitrary aperture shape, and non-uniform intensity distribution verifies the effective compensation and high accuracy of the proposed method. Experiment is also carried out to check the feasibility of the proposed method in real measurement. Comparing to the existing methods, the proposed method is applicable for any types of phasemore »distribution under non-uniform illumination and non-homogeneous boundary conditions within an arbitrarily-shaped aperture, which enables the technique of TIE with hard aperture become a more flexible phase retrieval tool in practical measurements.« less

  14. Transport of heat and mass in a two-phase mixture. From a continuous to a discontinuous description

    E-Print Network [OSTI]

    Glavatskiy, Kirill

    2010-01-01T23:59:59.000Z

    We present a theory which describes the transport properties of the interfacial region with respect to heat and mass transfer. Postulating the local Gibbs relation for a continuous description inside the interfacial region, we derive the description of the Gibbs surface in terms of excess densities and fluxes along the surface. We introduce overall interfacial resistances and conductances as the coefficients in the force-flux relations for the Gibbs surface. We derive relations between the local resistivities for the continuous description inside the interfacial region and the overall resistances of the surface for transport between the two phases for a mixture. It is shown that interfacial resistances depend among other things on the enthalpy profile across the interface. Since this variation is substantial the coupling between heat and mass flow across the surface are also substantial. In particular, the surface puts up much more resistance to the heat and mass transfer then the homogeneous phases over a di...

  15. Solid-phase chelation for the determination of trace elements by ICP-MS

    SciTech Connect (OSTI)

    Taylor, D.B.; Kingston, H.M.; Nogay, D. [Duquesne Univ., Pittsburgh, PA (United States)

    1995-12-31T23:59:59.000Z

    A low pressure method for the concentration of analytes and elimination of matrix elements prior to determination by ICP-MS is described. The method reduces the interferences caused by high concentrations of matrix elements in samples and biases caused by differences between samples and standards by delivering the analytes to the ICP-MS in a consistent nitric acid matrix. The method uses a commercially available low pressure sample manipulation system (PrepLab, Fisons) to perform Solid Phase Chelation (SPC) on an iminodiacetate column. The effectiveness of the method is demonstrated for the determination of Cd, Co, Cu, Mn, Ni, Pb, U, and Zn in the certified reference materials CASS-2, near shore seawater, NASS-4, open ocean seawater, and 1643b, trace elements in water. The detection limits for 10 mL samples ranged from 0.4 ng L{sup -1} for Co to 5.6 ng L{sup -1} for Ni and Zn.

  16. Bedload Transport. Part 1: Two-Phase Model and 3D Numerical Implementation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by Ouriemi et al. (2009a) to study bedload transport in pipe flows. The governing equations are discretized flows with the hydrate or sand issues in oil production and granular transport in food or pharmaceutical the fluid-particle interaction is assumed to follow a Darcy law. This approach allows to predict

  17. DETERMINING THE OPTIMUM PLACEMENT OF A PHASE CHANGE MATERIALS (PCM) THERMAL SHIELD INSIDE FRAME WALLS USING A DYNAMIC WALL SIMULATOR

    E-Print Network [OSTI]

    Reshmeen, Silvia

    2009-12-23T23:59:59.000Z

    ABSTRACT This thesis presents the results of an experimental study to determine the optimum placement and the thermal performance of a Phase Change Materials (PCMs) thermal shield incorporated into frame wall insulation systems for the purpose...

  18. Influence of Atmospheric Pressure and Water Table Fluctuations on Gas Phase Flow and Transport of Volatile Organic Compounds (VOCs) in Unsaturated Zones

    E-Print Network [OSTI]

    You, Kehua

    2013-04-19T23:59:59.000Z

    Understanding the gas phase flow and transport of volatile organic compounds (VOCs) in unsaturated zones is indispensable to develop effective environmental remediation strategies, to create precautions for fresh water protection, and to provide...

  19. The use of the stationary phase method as a mathematical tool to determine the path of optical beams

    E-Print Network [OSTI]

    Carvalho, Silvânia A

    2015-01-01T23:59:59.000Z

    We use the stationary phase method to determine the path of optical beams which propagate through a dielectric block. In the presence of partial internal reflection, we recover the geometrical result obtained by using the Snell law. For total internal reflection, the stationary phase method overreaches the Snell law predicting the Goos-Haenchen shift.

  20. Transport of heat and mass in a two-phase mixture. From a continuous to a discontinuous description

    E-Print Network [OSTI]

    Kirill Glavatskiy; Dick Bedeaux

    2010-06-30T23:59:59.000Z

    We present a theory which describes the transport properties of the interfacial region with respect to heat and mass transfer. Postulating the local Gibbs relation for a continuous description inside the interfacial region, we derive the description of the Gibbs surface in terms of excess densities and fluxes along the surface. We introduce overall interfacial resistances and conductances as the coefficients in the force-flux relations for the Gibbs surface. We derive relations between the local resistivities for the continuous description inside the interfacial region and the overall resistances of the surface for transport between the two phases for a mixture. It is shown that interfacial resistances depend among other things on the enthalpy profile across the interface. Since this variation is substantial the coupling between heat and mass flow across the surface are also substantial. In particular, the surface puts up much more resistance to the heat and mass transfer then the homogeneous phases over a distance comparable to the thickness of the surface. This is the case not only for the pure heat conduction and diffusion but also for the cross effects like thermal diffusion. For the excess fluxes along the surface and the corresponding thermodynamic forces we derive expressions for excess conductances as integrals over the local conductivities along the surface. We also show that the curvature of the surface affects only the overall resistances for transport across the surface and not the excess conductivities along the surface.

  1. Effect of phase transition on quantum transport in group-IV two-dimensional U-shape device

    SciTech Connect (OSTI)

    Sadi, Mohammad Abdullah; Gupta, Gaurav, E-mail: a0089293@nus.edu.sg; Liang, Gengchiau [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2014-10-21T23:59:59.000Z

    The effect of phase-transition from the quantum-spin-hall to the band-insulator phase on the transport through a three-terminal U-shape spin-separator has been computationally investigated via non-equilibrium green function formalism. Two-dimensional group-IV elements have been comprehensively appraised as the device material. The device separates the unpolarized current injected at the source-terminal into nearly 100% spin-polarized currents of the opposite polarities at the two drain terminals. The phase-transition activated by the electric-field orthogonal to the device is shown to extensively influence the current magnitude and its spin-polarization, and the effect is stronger for materials with smaller intrinsic spin-orbit coupling. Moreover, the device length and the area under field are shown to critically affect the device characteristics on phase change. It is shown that the same device can be operated as a spin-filter by inducing phase-transition selectively in the channel. The results are important for designing spin-devices from Group-IV monolayers.

  2. Solid-phase extraction preconcentration and radiometric determination of strontium radionuclides in environmental samples

    SciTech Connect (OSTI)

    Malofeeva, G.I.; Danilova, T.V.; Petrukhin, O.M.; Spivakov, B.Ya. [Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow (Russian Federation)

    1994-06-01T23:59:59.000Z

    The determination of strontium radionuclides in environmental samples often require preconcentration. In many cases, it is necessary to preconcentrate from large volumes of sample solutions containing predominant amounts of alkali and alkaline-earth metals, and the enrichment factors in the procedure must be high. Problems of this kind can be efficiently solved by means of solid-phase extraction (SPE). Until recently, coordinatively saturated metal chelates were the only compounds employed in the SPE method. In this paper, the authors demonstrate the possibility of using cationic metal complexes for metal preconcentration in the form of ion associates, taking the system strontium-dicyclohexyl-18-crown-6 (DCH18C6)-ion-pairing reagent as an example. The metal distribution ratio depends on many parameters, and the prescribed adsorption conditions must be strictly met to achieve complete recovery. A procedure for {sup 90} Sr preconcentration is developed and is applicable to analysis of environmental samples and certain foodstuffs.

  3. Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  4. Micromachined Linear Brownian Motor: Transportation of Nanobeads by Brownian Motion Using Three-Phase Dielectrophoretic Ratchet

    E-Print Network [OSTI]

    -Phase Dielectrophoretic Ratchet Ersin ALTINTAS Ã , Karl F. BO¨HRINGER1 , and Hiroyuki FUJITA Center for International-of-freedom of the random motion of beads into one dimension, which was rectified by a three-phase dielectrophoretic ratchet. [DOI: 10.1143/JJAP.47.8673] KEYWORDS: Brownian motion, dielectrophoresis, flashing ratchet, nanobead

  5. Phase-sensitive probes of nuclear polarization in spin-blockaded transport

    E-Print Network [OSTI]

    Levitov, Leonid

    Spin-blockaded quantum dots provide a unique setting for studying nuclear-spin dynamics in a nanoscale system. Despite recent experimental progress, observing phase-sensitive phenomena in nuclear spin dynamics remains ...

  6. A method for determining the spent-fuel contribution to transport cask containment requirements

    SciTech Connect (OSTI)

    Sanders, T.L.; Seager, K.D. [Sandia National Labs., Albuquerque, NM (United States); Rashid, Y.R.; Barrett, P.R. [ANATECH Research Corp., La Jolla, CA (United States); Malinauskas, A.P. [Oak Ridge National Lab., TN (United States); Einziger, R.E. [Pacific Northwest Lab., Richland, WA (United States); Jordan, H. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Duffey, T.A.; Sutherland, S.H. [APTEK, Inc., Colorado Springs, CO (United States); Reardon, P.C. [GRAM, Inc., Albuquerque, NM (United States)

    1992-11-01T23:59:59.000Z

    This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs.

  7. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Gregg Ruskuaff

    2010-01-01T23:59:59.000Z

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  8. Supercooling transition in phase separated manganite thin films: An electrical transport study

    SciTech Connect (OSTI)

    Singh, Sandeep [National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Department of Applied Physics, Delhi Technological University, Delhi 110042 (India); Kumar, Pawan [National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Siwach, P. K.; Singh, H. K., E-mail: hks65@nplindia.org [National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Tyagi, Pawan Kumar [Department of Applied Physics, Delhi Technological University, Delhi 110042 (India)

    2014-05-26T23:59:59.000Z

    The impact of variation in the relative fractions of the ferromagnetic metallic and antiferromagnetic/charge ordered insulator phases on the supercooling/superheating transition in strongly phase separated system, La{sub 5/8?y}Pr{sub y}Ca{sub 3/8}MnO{sub 3} (y ? 0.4), has been studied employing magnetotransport measurements. Our study clearly shows that the supercooling transition temperature is non-unique and strongly depends on the magneto-thermodynamic path through which the low temperature state is accessed. In contrast, the superheating transition temperature remains constant. The thermo-magnetic hysteresis, the separation of the two transitions and the associated resistivity, all are functions of the relative fraction of the coexisting phases.

  9. Determination of volume fractions in two-phase flows from sound speed measurement

    SciTech Connect (OSTI)

    Chaudhuri, Anirban [Los Alamos National Laboratory; Sinha, Dipen N. [Los Alamos National Laboratory; Osterhoudt, Curtis F. [University of Alaska

    2012-08-15T23:59:59.000Z

    Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.

  10. Determination of transport parameters of coincident inorganic and organic plumes in the Savannah River Plant M-Area, Aiken, South Carolina

    E-Print Network [OSTI]

    Cauffman, Toya Lyn

    1987-01-01T23:59:59.000Z

    DETERMINATION OF TRANSPORT PARAMETERS OF COINCIDENT INORGANIC AND ORGANIC PLUMES IN THE SAVANNAH RIVER PLANT M-AREA, AIKEN, SOUTH CAROLINA A Thesis by TOYA. LYN CAUFFMAN Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1987 Major Subject: Geology DETERMINATION OF TRANSPORT PARAMETERS OF COINCIDENT INORGANIC AND ORGANIC PLUMES IN THE SAVANNAH RIVER PLANT M-AREA, AIKEN& SOUTH CAROLINA A Thesis...

  11. Electrochimica Acta 52 (2007) 61256140 A two-dimensional, two-phase mass transport model

    E-Print Network [OSTI]

    Zhao, Tianshou

    in the unsaturated porous medium flow theory. The two-phase flow behavior in the anode flow channel is modeled by integrating those in the different regions is solved numerically using a home-written computer code because of its high efficiency, high energy density, low emission and simple structure [1]. However

  12. Multilevel Monte Carlo for two phase flow and Buckley–Leverett transport in random heterogeneous porous media

    SciTech Connect (OSTI)

    Müller, Florian, E-mail: florian.mueller@sam.math.ethz.ch; Jenny, Patrick, E-mail: jenny@ifd.mavt.ethz.ch; Meyer, Daniel W., E-mail: meyerda@ethz.ch

    2013-10-01T23:59:59.000Z

    Monte Carlo (MC) is a well known method for quantifying uncertainty arising for example in subsurface flow problems. Although robust and easy to implement, MC suffers from slow convergence. Extending MC by means of multigrid techniques yields the multilevel Monte Carlo (MLMC) method. MLMC has proven to greatly accelerate MC for several applications including stochastic ordinary differential equations in finance, elliptic stochastic partial differential equations and also hyperbolic problems. In this study, MLMC is combined with a streamline-based solver to assess uncertain two phase flow and Buckley–Leverett transport in random heterogeneous porous media. The performance of MLMC is compared to MC for a two dimensional reservoir with a multi-point Gaussian logarithmic permeability field. The influence of the variance and the correlation length of the logarithmic permeability on the MLMC performance is studied.

  13. Using tracer experiments to determine deep saline aquifers caprocks transport characteristics for carbon dioxide storage

    E-Print Network [OSTI]

    Boyer, Edmond

    for carbon dioxide storage P. Bachaud1,2 , Ph. Berne1 , P. Boulin1,3,4 , F. Renard5,6 , M. Sardin2 , J caprocks from a deep saline aquifer in the Paris basin. Introduction Storage of carbon dioxide in deep bubble. Determination of the diffusion properties is also required since they will govern how dissolved

  14. Sediment and radionuclide transport in rivers. Phase 2. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect (OSTI)

    Walters, W.H.; Ecker, R.M.; Onishi, Y.

    1982-04-01T23:59:59.000Z

    As part of a study on sediment and radionuclide transport in rivers, Pacific Northwest Laboratory (PNL) is investigating the effect of sediment on the transport of radionuclides in Cattaraugus and Buttermilk Creeks, New York. A source of radioactivity in these creeks is the Western New York Nuclear Service Center which consists of a low-level waste disposal site and a nuclear fuel reprocessing plant. Other sources of radioactivity include fallout from worldwide weapons testing and natural background radioactivity. The major objective of the PNL Field Sampling Program is to provide data on sediment and radionuclide characteristics in Cattaraugus and Buttermilk Creeks to verify the use of the Sediment and Radionuclide Transport model, SERATRA, for nontidal rivers. This report covers the results of field data collection conducted during September 1978. Radiological analysis of sand, silt, and clay size fractions of suspended and bed sediment, and water were performed. Results of these analyses indicate that the principal radionuclides occurring in these two water courses, with levels significantly higher than background levels, during the Phase 2 sampling program were Cesium-137 and Strontium-90. These radionuclides had significantly higher activity levels above background in the bed sediment, suspended sediment, and water samples. Other radionuclides that are possibly being released into the surface water environment by the Nuclear Fuel Services facilities are Plutonium-238, 239, and 240, Americium-241, Curium-244, and Tritium. More radionuclides were consistently found in the bed sediment as compared to suspended sediment. The fewest radionuclides were found in the water of Buttermilk and Cattaraugus Creeks. The higher levels were found in the bed sediments for the gamma-emitters and in the suspended sediment for the alpha and beta-emitters (not including Tritium).

  15. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect (OSTI)

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01T23:59:59.000Z

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions.

  16. Phase retrieval using radiation and matter-wave fields: Validity of Teague's method for solution of the transport-of-intensity equation

    SciTech Connect (OSTI)

    Schmalz, Jelena A. [School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); Gureyev, Timur E. [CSIRO Materials Science and Engineering, PB 33, Clayton South MDC, VIC 3169 (Australia); School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); Paganin, David M. [School of Physics, Monash University, VIC 3800 (Australia); Pavlov, Konstantin M. [School of Science and Technology, University of New England, Armidale, NSW 2351 (Australia); School of Physics, Monash University, VIC 3800 (Australia)

    2011-08-15T23:59:59.000Z

    Although originally developed for coherent paraxial scalar electromagnetic radiation in the visible-light regime, phase retrieval using the transport-of-intensity equation has been successfully applied to a range of paraxial radiation and matter-wave fields. Such applications include using electron wave fields to quantitatively image magnetic skyrmions and spin ices, propagation-based phase-contrast imaging using cold neutrons and hard x-rays, and visible-light refractive imaging of the projected column density of cold-atom clouds. Teague's method for phase retrieval using the transport-of-intensity equation, which renders the phase of a paraxial complex wave indirectly measurable via the existence of a conserved current, has been applied to a broad variety of situations which include all of the experiments described above. However, these applications have been undertaken without a thorough analysis of the underlying validity of the method. Here we derive sufficient conditions for the phase-retrieval solution provided by Teague's method to coincide with the true phase of the paraxial radiation or matter-wave field. We also present a sufficient condition guaranteeing that the discrepancy between the true phase function and that reconstructed using Teague's solution is small. These conditions demonstrate that, in most practical cases, for phase-amplitude retrieval using the transport-of-intensity equation, the Teague solution is very close to the exact solution. However, we also describe a counter example in the context of phase-amplitude retrieval using hard x-rays, in which the relative root-mean-square difference between the exact solution and that obtained using Teague's method is 9%. These findings clarify the foundations of one of the most widely applied methods for propagation-based phase retrieval of both paraxial matter and radiation wave fields and define a region for its applicability.

  17. Phase-induced transport in atomic gases: from superfluid to Mott insulator

    E-Print Network [OSTI]

    Sebastiano Peotta; Chih-Chun Chien; Massimiliano Di Ventra

    2014-11-23T23:59:59.000Z

    Recent experimental realizations of artificial gauge fields for cold atoms are promising for generating steady states carrying a mass current in strongly correlated systems, such as the Bose-Hubbard model. Moreover, a homogeneous condensate confined by hard-wall potentials from laser sheets has been demonstrated, which provides opportunities for probing the intrinsic transport properties of isolated quantum systems. Using the time-dependent Density Matrix Renormalization Group (TDMRG), we analyze the effect of the lattice and interaction strength on the current generated by a quench in the artificial vector potential when the density varies from low values (continuum limit) up to integer filling in the Mott-insulator regime. There is no observable mass current deep in the Mott-insulator state as one may expect. Other observable quantities used to characterize the quasi-steady state in the bulk of the system are the Drude weight and entanglement entropy production rate. The latter in particular provides a striking signature of the superfluid-Mott insulator transition. Furthermore, an interesting property of the superfluid state is the formation of shock and rarefaction waves at the boundaries due to the hard-wall confining potentials. We provide results for the height and the speed of the shock front that propagates from the boundary toward the center of the lattice. Our results should be verifiable with current experimental capabilities.

  18. Unique determination of the -CN group tilt angle in Langmuir monolayers using sum-frequency polarization null angle and phase

    SciTech Connect (OSTI)

    Velarde Ruiz Esparza, Luis A.; Wang, Hongfei

    2013-10-14T23:59:59.000Z

    The relative phase and amplitude ratio between the ssp and ppp polarization combinations of the vibrational sum-frequency generation (SFG) response can be uniquely and accurately determined by the polarization null angle (PNA) method. In this report we show that PNA measurements of the -CN vibration in the 4-n pentyl-4'-cyanoterphenyl (5CT) Langmuir monolayer at the air/water interface yields ssp and ppp response of the same phase, while those in the 4-n-octyl-4'cyanobiphenyl (8CB) Langmuir monolayer have the opposite phase. Accordingly, the -CN group in the 5CT monolayer is tilted around 25+/-2 from the interface normal, while that in the 8CB is tilted around 57+/-2, consistent with the significant differences in the phase diagrams and hydrogen bonding SFG spectra of the two Langmuir monolayers as reported in the literature. These results also demonstrate that in SFG studies the relative phase information of the different polarization combinations, especially for the ssp and ppp, is important in the unique determination of the tilt angle and conformation of a molecular group at the interface.

  19. Structure determination of the high-pressure phase of CdSe

    SciTech Connect (OSTI)

    Li, Yanchun, E-mail: liyc@ihep.ac.cn, E-mail: liuj@ihep.ac.cn; Lin, Chuanlong; Li, Xiaodong; Liu, Jing, E-mail: liyc@ihep.ac.cn, E-mail: liuj@ihep.ac.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, 100049 Beijing (China); Li, Gong [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Xu, Jian [Institute of Fluid Physics, China Academy of Engineering Physics, P. O. Box 919-102, Mianyang, Sichuan 621900 (China)

    2014-06-14T23:59:59.000Z

    Structural phase transition sequence of CdSe has been investigated at pressures up to 60?GPa under quasi-hydrostatic conditions using synchrotron X-ray diffraction. A phase transition from the wurtzite type (B4) to the NaCl-type (B1) structure has been observed, followed by another phase transition to an orthorhombic structure at 27?GPa, in agreement with previous reports. We show that this high-pressure orthorhombic phase has a Pnma symmetry rather than being a Cmcm-symmetric structure as previously suggested. From our observations, the appearance of the new reflections and reflection splitting with increasing pressure is due to the change of atomic relative positions in crystal lattice and the difference in the compression ratio of lattice parameters for the Pnma structure, and we find no evidence for the third phase transition reported previously. The pressure-induced phase transition of CdSe has been further confirmed by the density-functional theory calculations.

  20. Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1xZn2Sb2**

    E-Print Network [OSTI]

    Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1±xZn2Sb. Introduction Because of their ability to convert waste heat into electricity, thermoelectric materials have in efficiency, thermoelectric materials could pro- vide a substantial amount of electrical power from automotive

  1. Determination of Transport Properties From Flowing Fluid Temperature LoggingIn Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    SciTech Connect (OSTI)

    Mukhopadhyay, Sumit; Tsang, Yvonne W.

    2008-08-01T23:59:59.000Z

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper [Mukhopadhyay et al., 2008], we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks.

  2. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

  3. Geographic Information Systems-Transportation ISTEA management systems server-net prototype pooled fund study: Phase B summary

    SciTech Connect (OSTI)

    Espinoza, J. Jr.; Dean, C.D.; Armstrong, H.M. [and others

    1997-06-01T23:59:59.000Z

    The Geographic Information System-Transportation (GIS-T) ISTEA Management Systems Server Net Prototype Pooled Fund Study represents the first national cooperative effort in the transportation industry to address the management and monitoring systems as well as the statewide and metropolitan transportation planning requirements of the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). The Study was initiated in November 1993 through the Alliance for Transportation Research and under the leadership of the New Mexico State Highway and Transportation Department. Sandia National Laboratories, an Alliance partner, and Geographic Paradigm Computing. Inc. provided technical leadership for the project. In 1992, the Alliance for Transportation Research, the New Mexico State Highway and Transportation Department, Sandia National Laboratories, and Geographic Paradigm Computing, Inc., proposed a comprehensive research agenda for GIS-T. That program outlined a national effort to synthesize new transportation policy initiatives (e.g., management systems and Intelligent Transportation Systems) with the GIS-T server net ideas contained in the NCHRP project {open_quotes}Adaptation of GIS to Transportation{close_quotes}. After much consultation with state, federal, and private interests, a project proposal based on this agenda was prepared and resulted in this Study. The general objective of the Study was to develop GIS-T server net prototypes supporting the ISTEA requirements for transportation planning and management and monitoring systems. This objective can be further qualified to: (1) Create integrated information system architectures and design requirements encompassing transportation planning activities and data. (2) Encourage the development of functional GIS-T server net prototypes. (3) Demonstrate multiple information systems implemented in a server net environment.

  4. About the determination of critical exponents related to possible phase transitions in nuclear fragmentation

    E-Print Network [OSTI]

    B. Elattari; J. Richert; P. Wagner

    1997-05-30T23:59:59.000Z

    We introduce a method based on the finite size scaling assumption which allows to determine numerically the critical point and critical exponents related to observables in an infinite system starting from the knowledge of the observables in finite systems. We apply the method to bond percolation in 2 dimensions and compare the results obtained when the bond probability p or the fragment multiplicity m are chosen as the relevant parameter.

  5. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM MeasurementsDetermination of

  6. Phonon dispersion curves determination in (delta)-phase Pu-Ga alloys

    SciTech Connect (OSTI)

    Wong, J; Clatterbuck, D; Occelli, F; Farber, D; Schwartz, A; Wall, M; Boro, C; Krisch, M; Beraud, A; Chiang, T; Xu, R; Hong, H; Zschack, P; Tamura, N

    2006-02-07T23:59:59.000Z

    We have designed and successfully employed a novel microbeam on large grain sample concept to conduct high resolution inelastic x-ray scattering (HRIXS) experiments to map the full phonon dispersion curves of an fcc {delta}-phase Pu-Ga alloy. This approach obviates experimental difficulties with conventional inelastic neutron scattering due to the high absorption cross section of the common {sup 239}Pu isotope and the non-availability of large (mm size) single crystal materials for Pu and its alloys. A classical Born von-Karman force constant model was used to model the experimental results, and no less than 4th nearest neighbor interactions had to be included to account for the observation. Several unusual features including, a large elastic anisotropy, a small shear elastic modulus, (C{sub 11}-C{sub 12})/2, a Kohn-like anomaly in the T{sub 1}[011] branch, and a pronounced softening of the T[111] branch towards the L point in the Brillouin are found. These features may be related to the phase transitions of plutonium and to strong coupling between the crystal structure and the 5f valence instabilities. Our results represent the first full phonon dispersions ever obtained for any Pu-bearing material, thus ending a 40-year quest for this fundamental data. The phonon data also provide a critical test for theoretical treatments of highly correlated 5f electron systems as exemplified by recent dynamical mean field theory (DMFT) calculations for {delta}-plutonium. We also conducted thermal diffuse scattering experiments to study the T(111) dispersion at low temperatures with an attempt to gain insight into bending of the T(111) branch in relationship to the {delta} {yields} {alpha}{prime} transformation.

  7. Phase 1. Screening guidelines to determine the structures exempt from Executive Order 12941

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This report presents data regarding the guidelines for determining structures that are exempt from executive order 12941. Executive order 12941 was enacted to assure seismic safety of existing federally owned or leased buildings. This reports considered only the minimum amount of information. This information varied from building to building and from site to site. The scope of the guidelines is to cover all five DOE sites that fall under the DOE Oak Ridge Operations and are operated by LMES. These facilities are the ORNL, Y-12 Plant, K-25 Site all at Oak Ridge, Tennessee; the Paducah Gaseous Diffusion Plant, Paducah, Kentucky; and the Portsmouth Gaseous Diffusion Plant, Portsmouth, Ohio. Off site facilities, owned or leased, that are occupied by LMES are also included.

  8. Mathematical transport modeling for determination of effectiveness of Kepone clean up activities in the James River estuary

    SciTech Connect (OSTI)

    Onishi, Y.

    1980-01-01T23:59:59.000Z

    During the period of 1966-1975, a highly chlorinated pesticide, Kepone, was discharged to the environment around Hopewell, Virginia. Much of the Kepone that reached the James River estuary was adsorbed by river sediment, becoming a long-term source of pollution. In order to identify an optimal location to remove Kepone from the river bed and to assess the effectiveness of the clean up activities to reduce the Kepone level in the river, the mathematical simulation of sediment and Kepone transport in the James River estuary was performed by applying the sediment-containment transport model, FETRA, to an 86-km river reach between Bailey and Burwell Bays. The FETRA code is an unsteady, two-dimensional, finite element interactions. The submodels are: (1) a sediment transport submodel, (2) a dissolved contaminant transport submodel, and (3) a particulate contaminant (contaminant adsorbed by sediment) transport submodel. FETRA also predicts changes in river bed conditions of sediment and contaminant. The value of applying models to dredging activity goes beyond this specific example. Through the sensitivity analysis, one can employ models to predict the most cost effective strategy for dredging. Properly constructed strategies will take advantage of river and coastal water dynamics to reduce the total volume of sediments to be dredged. Results of the simulation can also be used to predict subsequent environmental impacts.

  9. Predictive two-dimensional scrape-off layer plasma transport modeling of phase-I operations of tokamak SST-1 using SOLPS5

    SciTech Connect (OSTI)

    Himabindu, M.; Tyagi, Anil; Sharma, Devendra; Deshpande, Shishir P. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Bonnin, Xavier [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, Université Paris13, Sorbonne Paris Cité, Villetaneuse 93430 (France)] [Laboratoire des Sciences des Procédés et des Matériaux, CNRS, Université Paris13, Sorbonne Paris Cité, Villetaneuse 93430 (France)

    2014-02-15T23:59:59.000Z

    Computational analysis of coupled plasma and neutral transport in the Scrape-Off Layer (SOL) region of the Steady-State Superconducting Tokamak (SST-1) is done using SOLPS for Phase-I of double-null divertor plasma operations. An optimum set of plasma parameters is explored computationally for the first phase operations with the central objective of achieving an effective control over particle and power exhaust. While the transport of plasma species is treated using a fluid model in the B2.5 code, a full kinetic description is provided by the EIRENE code for the neutral particle transport in a realistic geometry. Cases with and without external gas puffing are analyzed for finding regimes where an effective control of plasma operations can be exercised by controlling the SOL plasma conditions over a range of heating powers. In the desired parameter range, a reasonable neutral penetration across the SOL is observed, capable of causing a variation of up to 15% of the total input power, in the power deposited on the divertors. Our computational characterization of the SOL plasma with input power 1 MW and lower hybrid current drive, for the separatrix density up to 10{sup 19}?m{sup ?3}, indicates that there will be access to high recycling operations producing reduction in the temperature and the peak heat flux at the divertor targets. This indicates that a control of the core plasma density and temperature would be achievable. A power balance analysis done using the kinetic neutral transport code EIRENE indicates about 60%-75% of the total power diverted to the targets, providing quantitative estimates for the relative power loading of the targets and the rest of the plasma facing components.

  10. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Jerome Eyer

    2003-01-01T23:59:59.000Z

    The Earth Sciences and Resources Institute, University of South Carolina is conducting a proof of concept study to determine the location and distribution of subsurface DNAPL carbon tetrachloride (CCl{sub 4}) contamination at the 216-Z-9 crib, 200 West area, DOE Hanford Site, Washington by use of two-dimensional high-resolution seismic reflection surveys and borehole geophysical data. The study makes use of recent advances in seismic reflection amplitude versus offset (AVO) technology to directly detect the presence of subsurface DNAPL. The techniques proposed are noninvasive means of site characterization and direct free-phase DNAPL detection. This final report covers the results of Tasks 1, 2, and 3. Task (1) contains site evaluation and seismic modeling studies. The site evaluation consists of identifying and collecting preexisting geological and geophysical information regarding subsurface structure and the presence and quantity of DNAPL. The seismic modeling studies were undertaken to determine the likelihood that an AVO response exists and its probable manifestation. Task (2) is the design and acquisition of 2-D seismic reflection data to image areas of probable high concentration of DNAPL. Task (3) is the processing and interpretation of the 2-D data. During the commission of these tasks four seismic reflection profiles were collected. Subsurface velocity information was obtained by vertical seismic profile surveys in three wells. The interpretation of these data is in two parts. Part one is the construction and interpretation of structural contour maps of the contact between the Hanford Fine unit and the underlying Plio/Pleistocene unit and of the contact between the Plio/Pleistocene unit and the underlying caliche layer. These two contacts were determined to be the most likely surfaces to contain the highest concentration CCl{sub 4}. Part two of the interpretation uses the results of the AVO modeling to locate any seismic amplitude anomalies that might be associated with the presence of high concentrations of CCl{sub 4}. Based on the modeling results three different methods of AVO analysis were preformed on the seismic data: enhanced amplitude stacks, offset range limited stacks, and gradient stacks. Seismic models indicate that the reflection from the contact between the Hanford Fine and the Plio/Pleistocene should exhibit amplitude variations where there are high concentrations of CCl{sub 4}. A series of different scenarios were modeled. The first scenario is the Hanford Fine pores are 100% saturated with CCl{sub 4} and the underlying Plio/Pleistocene pores are saturated with air. In this scenario the reflection coefficients are slightly negative at the small angles of incidence and become increasing more negative at the larger angles of incidence (dim-out). The second scenario is the Hanford Fine pores are saturated with air and Plio/Pleistocene pores are saturated with CCl{sub 4}. In this scenario the reflection coefficients are slightly positive at the small angles of incidence and become negative at the large angles of incidence (polarity reversal). Finally the third scenario is both the Hanford Fine and the Plio/Pleistocene pores are saturated CCl{sub 4}. In this scenario the reflection coefficients at the small angles of incidence are slightly positive, but much less than background response, and with increasing angle of incidence the reflection coefficients become slightly more positive. On the field data areas where extraction wells have high concentrations of CCl{sub 4} a corresponding dim-out and/or a polarity reversal is noted.

  11. Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating

    E-Print Network [OSTI]

    Geb, David; Zhou, Feng; Catton, Ivan

    2012-01-01T23:59:59.000Z

    to Solid Phase Induction Heating Nonintrusive measurementsgeneration rate via induction heating. The fluid temperaturetechnique, induction heating, bypass effect, channeling

  12. Method and apparatus for maintaining condensable constituents of a gas in a vapor phase during sample transport

    DOE Patents [OSTI]

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-18T23:59:59.000Z

    A system for fluid transport at elevated temperatures having a conduit having a fluid inlet end and a fluid outlet end and at least one heating element disposed within the conduit providing direct heating of a fluid flowing through the conduit. The system is particularly suited for preventing condensable constituents of a high temperature fluid from condensing out of the fluid prior to analysis of the fluid. In addition, operation of the system so as to prevent the condensable constituents from condensing out of the fluid surprisingly does not alter the composition of the fluid.

  13. STOMP Subsurface Transport Over Multiple Phases: STOMP-CO2 and STOMP-CO2e Guide: Version 1.0

    SciTech Connect (OSTI)

    White, Mark D.; Bacon, Diana H.; McGrail, B. Peter; Watson, David J.; White, Signe K.; Zhang, Z. F.

    2012-04-03T23:59:59.000Z

    This STOMP (Subsurface Transport Over Multiple Phases) guide document describes the theory, use, and application of the STOMP-CO2 and STOMP-CO2e operational modes. These operational modes of the STOMP simulator are configured to solve problems involving the sequestration of CO2 in geologic saline reservoirs. STOMP-CO2 is the isothermal version and STOMP-CO2e is the nonisothermal version. These core operational modes solve the governing conservation equations for component flow and transport through geologic media; where, the STOMP-CO2 components are water, CO2 and salt and the STOMP-CO2e operational mode also includes an energy conservation equation. Geochemistry can be included in the problem solution via the ECKEChem (Equilibrium-Conservation-Kinetic-Equation Chemistry) module, and geomechanics via the EPRMech (Elastic-Plastic-Rock Mechanics) module. This addendum is designed to provide the new user with a full guide for the core capabilities of the STOMP-CO2 and -CO2e simulators, and to provide the experienced user with a quick reference on implementing features. Several benchmark problems are provided in this addendum, which serve as starting points for developing inputs for more complex problems and as demonstrations of the simulator’s capabilities.

  14. Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository

    E-Print Network [OSTI]

    Bourgeat, Alain; Smaï, Farid

    2008-01-01T23:59:59.000Z

    We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

  15. Two phase partially miscible flow and transport modeling in porous media: application to gas migration in a nuclear waste repository

    E-Print Network [OSTI]

    Alain Bourgeat; Mladen Jurak; Farid Smaï

    2008-02-29T23:59:59.000Z

    We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.

  16. Auxiliary analyses in support of performance assessment of a hypothetical low-level waste facility: Two-phase flow and contaminant transport in unsaturated soils with application to low-level radioactive waste disposal. Volume 2

    SciTech Connect (OSTI)

    Binning, P. [Newcastle Univ., NSW (Australia); Celia, M.A.; Johnson, J.C. [Princeton Univ., NJ (United States). Dept. of Civil Engineering and Operations Research

    1995-05-01T23:59:59.000Z

    A numerical model of multiphase air-water flow and contaminant transport in the unsaturated zone is presented. The multiphase flow equations are solved using the two-pressure, mixed form of the equations with a modified Picard linearization of the equations and a finite element spatial approximation. A volatile contaminant is assumed to be transported in either phase, or in both phases simultaneously. The contaminant partitions between phases with an equilibrium distribution given by Henry`s Law or via kinetic mass transfer. The transport equations are solved using a Galerkin finite element method with reduced integration to lump the resultant matrices. The numerical model is applied to published experimental studies to examine the behavior of the air phase and associated contaminant movement under water infiltration. The model is also used to evaluate a hypothetical design for a low-level radioactive waste disposal facility. The model has been developed in both one and two dimensions; documentation and computer codes are available for the one-dimensional flow and transport model.

  17. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTC 1

    SciTech Connect (OSTI)

    Andrews, Robert

    2013-09-01T23:59:59.000Z

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  18. A VUV Photoionization and Ab Initio Determination of the Ionization Energy of a Gas-Phase Sugar (Deoxyribose)

    E-Print Network [OSTI]

    Krylov, Anna I.

    , the structure that dominates in the gas phase, were calculated using high-level electronic structure methods with electronic structure calculations of vertical and adiabatic ionization energies (VIEs and AIEs). Ab initio molecular dynamics calculations. The experimental threshold 9.4 (±0.05) eV for neutral water elimination

  19. Implementation of Benchmarking Transportation Logistics Practices and Future Benchmarking Organizations

    SciTech Connect (OSTI)

    Thrower, A.W. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Patric, J. [Booz Allen Hamilton, Washington, DC (United States); Keister, M. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01T23:59:59.000Z

    The purpose of the Office of Civilian Radioactive Waste Management's (OCRWM) Logistics Benchmarking Project is to identify established government and industry practices for the safe transportation of hazardous materials which can serve as a yardstick for design and operation of OCRWM's national transportation system for shipping spent nuclear fuel and high-level radioactive waste to the proposed repository at Yucca Mountain, Nevada. The project will present logistics and transportation practices and develop implementation recommendations for adaptation by the national transportation system. This paper will describe the process used to perform the initial benchmarking study, highlight interim findings, and explain how these findings are being implemented. It will also provide an overview of the next phase of benchmarking studies. The benchmarking effort will remain a high-priority activity throughout the planning and operational phases of the transportation system. The initial phase of the project focused on government transportation programs to identify those practices which are most clearly applicable to OCRWM. These Federal programs have decades of safe transportation experience, strive for excellence in operations, and implement effective stakeholder involvement, all of which parallel OCRWM's transportation mission and vision. The initial benchmarking project focused on four business processes that are critical to OCRWM's mission success, and can be incorporated into OCRWM planning and preparation in the near term. The processes examined were: transportation business model, contract management/out-sourcing, stakeholder relations, and contingency planning. More recently, OCRWM examined logistics operations of AREVA NC's Business Unit Logistics in France. The next phase of benchmarking will focus on integrated domestic and international commercial radioactive logistic operations. The prospective companies represent large scale shippers and have vast experience in safely and efficiently shipping spent nuclear fuel and other radioactive materials. Additional business processes may be examined in this phase. The findings of these benchmarking efforts will help determine the organizational structure and requirements of the national transportation system. (authors)

  20. Philippines-Measuring, Reporting, and Verifying (MRV) of Transport...

    Open Energy Info (EERE)

    Reporting, and Verifying (MRV) of Transport Nationally Appropriate Mitigation Actions (NAMAs) Phase II)...

  1. Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination

    SciTech Connect (OSTI)

    Çakir, Asli; Aktürk, Selçuk [Mu?la Üniversitesi, Fizik Bölümü, 48000 Mu?la (Turkey); Righi, Lara [Dipartimento Chimica GIAF, Universita di Parma, Parco Area delle Scienze 17/A, 43010 Parma (Italy); Albertini, Franca [IMEM-CNR, Parco Area delle Scienze 37/A, 43010 Parma (Italy); Acet, Mehmet; Farle, Michael [Faculty of Physics and Center for Nanointegration (CENIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2013-11-14T23:59:59.000Z

    Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50–x}Ga{sub x} in the composition range 12?x?25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M?L1{sub 0},?5M?7M, and 5M?7M?L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.

  2. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01T23:59:59.000Z

    This semi-annual technical progress report is for part of Task 4 (site evaluation), on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The Second deployment site is the Department of Defense (DOD) Charleston Navy Weapons Station, Solid Waste Management Unit 12 (SWMU-12) Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Base upon the review of existing data and due to the shallow target depth the project team has collected three Vertical Seismic Profiles (VSP) and experimental reflection line. At the time of preparing this report VSP data and experimental reflection line data has been collected and has have preliminary processing on the data sets.

  3. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-12-01T23:59:59.000Z

    This annual technical progress report is for part of Task 4 (site evaluation), Task 5 (2D seismic design, acquisition, and processing), and Task 6 (2D seismic reflection, interpretation, and AVO analysis) on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford Site. After the SUBCON midyear review in Albuquerque, NM, it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as a monitoring tool to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. The second deployment is to the Department of Defense (DOD) Charleston Naval Weapons Station Solid Waste Management Unit 12 (SWMU-12), Charleston, SC to further test the technique to detect high concentrations of DNAPL. The Charleston Naval Weapons Station SWMU-12 site was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Naval Facilities Engineering Command Southern Division (NAVFAC) personnel. Based upon the review of existing data and due to the shallow target depth, the project team collected three Vertical Seismic Profiles (VSP) and an experimental P-wave seismic reflection line. After preliminary data analysis of the VSP data and the experimental reflection line data, it was decided to proceed with Task 5 and Task 6. Three high resolution P-wave reflection profiles were collected with two objectives; (1) design the reflection survey to image a target depth of 20 feet below land surface to assist in determining the geologic controls on the DNAPL plume geometry, and (2) apply AVO analysis to the seismic data to locate the zone of high concentration of DNAPL. Based upon the results of the data processing and interpretation of the seismic data, the project team was able to map the channel that is controlling the DNAPL plume geometry. The AVO analysis located a major amplitude anomaly, which was tested using a Geoprobe{trademark} direct push system. The Geoprobe{trademark} was equipped with a membrane interface probe (MIP) that was interfaced with a sorbent trap/gas chromatograph (GC) system. Both the Photo Ionization Detector (PID) and Electron Capture Detector (ECD) on the GC exceeded the maximum measurement values through the anomaly. A well was installed to collect a water sample. The concentration of chlorinated solvents in the water sample was in excess of 500 ppm. Other amplitude anomalies located directly under an asphalt road were also tested. Both the PID and ECD were zero. It appears that editing of poor quality near-offset traces during data processing caused these anomalies. Not having the full range of source to receiver offset traces in those areas resulted in a false anomaly during AVO analysis. This phenomenon was also observed at the beginning and end of each seismic profile also for the same reason. Based upon the water samples and MIP probes, it appears that surface seismic and AVO analysis were able to detect the area of highest concentration of DNAPL.

  4. NON-INVASIVE DETERMINATION OF THE LOCATION AND DISTRIBUTION OF FREE-PHASE DENSE NONAQUEOUS PHASE LIQUIDS (DNAPL) BY SEISMIC REFLECTION TECHNIQUES

    SciTech Connect (OSTI)

    Michael G. Waddell; William J. Domoracki; Tom J. Temples

    2001-05-01T23:59:59.000Z

    This semi-annual technical progress report is for Task 4 site evaluation, Task 5 seismic reflection design and acquisition, and Task 6 seismic reflection processing and interpretation on DOE contact number DE-AR26-98FT40369. The project had planned one additional deployment to another site other than Savannah River Site (SRS) or DOE Hanford. During this reporting period the project had an ASME peer review. The findings and recommendation of the review panel, as well at the project team response to comments, are in Appendix A. After the SUBCON midyear review in Albuquerque, NM and the peer review it was decided that two additional deployments would be performed. The first deployment is to test the feasibility of using non-invasive seismic reflection and AVO analysis as monitoring to assist in determining the effectiveness of Dynamic Underground Stripping (DUS) in removal of DNAPL. Under the rescope of the project, Task 4 would be performed at the Charleston Navy Weapons Station, Charleston, SC and not at the Dynamic Underground Stripping (DUS) project at SRS. The project team had already completed Task 4 at the M-area seepage basin, only a few hundred yards away from the DUS site. Because the geology is the same, Task 4 was not necessary. However, a Vertical Seismic Profile (VSP) was conducted in one well to calibrate the geology to the seismic data. The first deployment to the DUS Site (Tasks 5 and 6) has been completed. Once the steam has been turned off these tasks will be performed again to compare the results to the pre-steam data. The results from the first deployment to the DUS site indicated a seismic amplitude anomaly at the location and depths of the known high concentrations of DNAPL. The deployment to another site with different geologic conditions was supposed to occur during this reporting period. The first site selected was DOE Paducah, Kentucky. After almost eight months of negotiation, site access was denied requiring the selection of another site. An alternate, site the Department of Defense (DOD) Charleston Navy Weapons Station, Charleston, SC was selected in consultation with National Energy Technology Laboratory (NETL) and DOD Navy Facilities Engineering Command Southern Division (NAVFAC) personnel. Tasks 4, 5, and 6 will be performed at the Charleston Navy Weapons Station. Task 4 will be executed twice. The project team had almost completed Task 4 at Paducah before access was denied.

  5. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01T23:59:59.000Z

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  6. Gas-phase transport of WF6 through annular nanopipes in TiN during chemical vapor deposition of W on TiN/Ti/SiO2 structures for integrated

    E-Print Network [OSTI]

    Allen, Leslie H.

    Gas-phase transport of WF6 through annular nanopipes in TiN during chemical vapor deposition of W through the 106-nm-thick TiN film. W piles up at the TiN/Ti interface, while F rapidly saturates the TiN-sectional and scanning transmission electron microscopy analyses demonstrate that WF6 penetrates into the TiN layer

  7. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    John McCord

    2007-09-01T23:59:59.000Z

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  8. B. TRANSPORTATION, CIRCULATION AND PARKING B. TRANSPORTATION, CIRCULATION AND

    E-Print Network [OSTI]

    Mullins, Dyche

    B. TRANSPORTATION, CIRCULATION AND PARKING 231 B. TRANSPORTATION, CIRCULATION AND PARKING on transportation and connectivity issues common to UCSF as a whole. Please refer to Chapter 5, Plans for Existing characteristics specific to each individual UCSF site. DETERMINANTS OF THE 1996 LRDP The transportation

  9. Model independent determination of the CKM phase $?$ using input from $D^0-\\bar{D}^0$ mixing

    E-Print Network [OSTI]

    Samuel Harnew; Jonas Rademacker

    2014-12-23T23:59:59.000Z

    We present a new, amplitude model-independent method to measure the CP violation parameter $\\gamma$ in $B^- \\to DK^-$ and related decays. Information on charm interference parameters, usually obtained from charm threshold data, is obtained from charm mixing. By splitting the phase space of the $D$ meson decay into several bins, enough information can be gained to measure $\\gamma$ without input from the charm threshold. We demonstrate the feasibility of this approach with a simulation study of $B^- \\to DK^-$ with $D \\to K^+ \\pi^- \\pi^+ \\pi^-$. We compare the performance of our novel approach to that of a previously proposed binned analysis which uses charm interference parameters obtained from threshold data. While both methods provide useful constraints, the combination of the two by far outperforms either of them applied on their own. Such an analysis would provide a highly competitive measurement of $\\gamma$. Our simulation studies indicate, subject to assumptions about data yields and the amplitude structure of $D^0 \\to K^+ \\pi^- \\pi^+ \\pi^-$, a statistical uncertainty on $\\gamma$ of $\\sim 13^{\\circ}$ with existing data and $4^{\\circ}$ for the LHCb-upgrade.

  10. Experimental transport of intensity diffraction tomography

    E-Print Network [OSTI]

    Lee, Justin Wu

    2011-01-01T23:59:59.000Z

    In this thesis, I perform intensity-based tomographic phase imaging in two ways. First, I utilize the paraxial transport of intensity equation (TIE) to construct phase maps of a phase object at multiple projection angles ...

  11. X-ray determination of threading dislocation densities in GaN/Al{sub 2}O{sub 3}(0001) films grown by metalorganic vapor phase epitaxy

    SciTech Connect (OSTI)

    Kopp, Viktor S., E-mail: victor.kopp@pdi-berlin.de; Kaganer, Vladimir M. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Baidakova, Marina V.; Lundin, Wsevolod V.; Nikolaev, Andrey E.; Verkhovtceva, Elena V.; Yagovkina, Maria A. [Ioffe Physical-Technical Institute of the Russian Academy of Sciences, Politekhnicheskaya 26, 194021 St.-Petersburg (Russian Federation); Cherkashin, Nikolay [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse (France)

    2014-02-21T23:59:59.000Z

    Densities of a- and a+c-type threading dislocations for a series of GaN films grown in different modes by metalorganic vapor phase epitaxy are determined from the x-ray diffraction profiles in skew geometry. The reciprocal space maps are also studied. Theory of x-ray scattering from crystals with dislocations is extended in order to take into account contribution from both threading and misfit dislocations. The broadening of the reciprocal space maps along the surface normal and the rotation of the intensity distribution ellipse is attributed to misfit dislocations at the interface. We find that the presence of a sharp AlN/GaN interface leads to an ordering of misfit dislocations and reduces strain inhomogeneity in GaN films.

  12. Pion capture and transport system for PRISM

    E-Print Network [OSTI]

    McDonald, Kirk

    solenoid cold mass Transport pions+muons in long 2T solenoid channelPion capture and transport system for PRISM M. Yoshida Osaka Univ. 2005/8/28 NuFACT06 at UCI #12 and transport system proton beam Phase rotator PRIME detector #12;Concepts of pion capture/transport system

  13. Radiation Transport Simulation Studies Using MCNP for a Cow Phantom to Determine an Optimal Detector Configuration for a New Livestock Portal 

    E-Print Network [OSTI]

    Joe Justina, -

    2012-10-19T23:59:59.000Z

    scalable gamma radiation portal monitor (RPM) which can be used to assess the level of contamination on large animals like cattle. This work employed a Monte Carlo N-Particle (MCNP) radiation transport code for the purpose. A virtual system of cow...

  14. Inverse Problems in Transport Theory

    E-Print Network [OSTI]

    The inverse scattering problem for (2.1) is the following: Does S determine ...... J. Voigt, Spectral properties of the neutron transport equation, J. Math. Anal. Appl.

  15. Local Transportation

    E-Print Network [OSTI]

    Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

  16. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work...

  17. Chamber transport

    SciTech Connect (OSTI)

    OLSON,CRAIG L.

    2000-05-17T23:59:59.000Z

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

  18. Methanol engine conversion feasibility study: Phase 1

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    This report documents the selection of the surface-assisted ignition technique to convert two-stroke Diesel-cycle engines to methanol fuel. This study was the first phase of the Florida Department of Transportation methanol bus engine development project. It determined both the feasibility and technical approach for converting Diesel-cycle engines to methanol fuel. State-of-the-art conversion options, associated fuel formulations, and anticipated performance were identified. Economic considerations and technical limitations were examined. The surface-assisted conversion was determined to be feasible and was recommended for hardware development.

  19. Determination of the optical properties of La2-xBaxCuO? for several dopings, including the anomalous x=1/8 phase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Homes, C. C.; Hücker, M.; Li, Q.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Tranquada, J. M.

    2012-04-01T23:59:59.000Z

    The optical properties of single crystals of the high-temperature superconductor La2-xBaxCuO? have been measured over a wide frequency and temperature range for light polarized in the a-b planes and along the c axis. Three different Ba concentrations have been examined, x=0.095 with a critical temperature Tc=32 K, x=0.125 where the superconductivity is dramatically weakened with Tc?2.4 K, and x=0.145 with Tc?24 K. The in-plane behavior of the optical conductivity for these materials at high temperature is described by a Drude-like response with a scattering rate that decreases with temperature. Below Tc in the x=0.095 and 0.145 materials there is a clear signature of the formation of a superconducting state in the optical properties allowing the superfluid density (?s0) and the penetration depth to be determined. In the anomalous 1/8 phase, some spectral weight shifts from lower to higher frequency (?300 cm?¹) on cooling below the spin-ordering temperature Tso?42 K, associated with the onset of spin-stripe order; we discuss alternative interpretations in terms of a conventional density-wave gap versus the response to pair-density-wave superconductivity. The two dopings for which a superconducting response is observed both fall on the universal scaling line ?s0/8?4.4?dcTc, which is consistent with the observation of strong dissipation within the a-b planes. The optical properties for light polarized along the c axis reveal an insulating character dominated by lattice vibrations, superimposed on a weak electronic background. No Josephson plasma edge is observed in the low-frequency reflectance along the c axis for x=1/8; however, sharp plasma edges are observed for x=0.095 and 0.145 below Tc.

  20. Determination of the optical properties of La2-xBaxCuO? for several dopings, including the anomalous x=1/8 phase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Homes, C. C.; Hücker, M.; Li, Q.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Tranquada, J. M.

    2012-04-01T23:59:59.000Z

    The optical properties of single crystals of the high-temperature superconductor La2-xBaxCuO? have been measured over a wide frequency and temperature range for light polarized in the a-b planes and along the c axis. Three different Ba concentrations have been examined, x=0.095 with a critical temperature Tc=32 K, x=0.125 where the superconductivity is dramatically weakened with Tc?2.4 K, and x=0.145 with Tc?24 K. The in-plane behavior of the optical conductivity for these materials at high temperature is described by a Drude-like response with a scattering rate that decreases with temperature. Below Tc in the x=0.095 and 0.145 materials there is amore »clear signature of the formation of a superconducting state in the optical properties allowing the superfluid density (?s0) and the penetration depth to be determined. In the anomalous 1/8 phase, some spectral weight shifts from lower to higher frequency (?300 cm?¹) on cooling below the spin-ordering temperature Tso?42 K, associated with the onset of spin-stripe order; we discuss alternative interpretations in terms of a conventional density-wave gap versus the response to pair-density-wave superconductivity. The two dopings for which a superconducting response is observed both fall on the universal scaling line ?s0/8?4.4?dcTc, which is consistent with the observation of strong dissipation within the a-b planes. The optical properties for light polarized along the c axis reveal an insulating character dominated by lattice vibrations, superimposed on a weak electronic background. No Josephson plasma edge is observed in the low-frequency reflectance along the c axis for x=1/8; however, sharp plasma edges are observed for x=0.095 and 0.145 below Tc.« less

  1. Microbial Transport in the Subsurface

    SciTech Connect (OSTI)

    Ginn, Timothy R.; Camesano, Terri; Scheibe, Timothy D.; Nelson, Kirk B.; Clement, T. P.; Wood, Brian D.

    2005-12-01T23:59:59.000Z

    In this article we focus on the physical, chemical, and biological processes involved in the transport of bacteria in the saturated subsurface. We will first review conceptual models of bacterial phases in the subsurface, and then the processes controlling fate and transport on short (e.g., bioremediation) time scales. Finally we briefly review field bacterial transport experiments and discuss a number of issues that impact the application of current process descriptions and models at the field scale.

  2. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J. Prouty

    2006-07-14T23:59:59.000Z

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  3. Phase-Trafficking Methods in Natural Products, Modulators of Organic Anion Transporting Polypeptides from Rollinia emarginata, and Pregnane and Cardiac Glycosides from Asclepias spp.

    E-Print Network [OSTI]

    Araya Barrantes, Juan Jose

    2012-05-31T23:59:59.000Z

    .............................................................................................................. 1 1.1. Relevance of natural products in medicinal chemistry ............................................... 2 1.2. Natural products-based drug discovery ....................................................................... 5 1.2.1. Biomass... workflow Explora?on Lead Selec?on Lead Op?miza?on Preclinical development Clinical phases 6 1.2.1. Biomass procurement: selection, collection, and identification The first step in any natural products-based drug...

  4. {sup 222}Rn in water: A comparison of two sample collection methods and two sample transport methods, and the determination of temporal variation in North Carolina ground water

    SciTech Connect (OSTI)

    Hightower, J.H. III [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering] [North Carolina Univ., Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1994-12-31T23:59:59.000Z

    Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA`s standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations.

  5. CX-005708: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005708: Categorical Exclusion Determination Phase 3 - Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems CX(s)...

  6. Mass-Conserved Phase Field Models for Binary Fluids

    E-Print Network [OSTI]

    2012-07-13T23:59:59.000Z

    The commonly used incompressible phase field models for non-reactive, bi- nary fluids, in which the Cahn-Hilliard equation is used for the transport of phase.

  7. Fastest Path Determination at Lane Granularity using a Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture

    E-Print Network [OSTI]

    Miller, Jeffrey A.

    -to- vehicle-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2VFastest Path Determination at Lane Granularity using a Vehicle-to-Vehicle-to- Infrastructure (V2V2I University of Alaska, Anchorage jmiller@uaa.alaska.edu Abstract ­ In this paper, I describe the vehicle

  8. Lie-transform theory of transport in plasma turbulence

    SciTech Connect (OSTI)

    Wang, Shaojie, E-mail: wangsj@ustc.edu.cn [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2014-07-15T23:59:59.000Z

    From the Vlasov equation, a phase-space transport equation is derived by using the Lie-transform approach, and its connection with the quasilinear transport, nonlinear stochastic transport, and fractional transport equations are discussed. The phase-space transport equation indicates a particle redistribution in the real space induced by the inhomogeneity in the energy space distribution and by the correlation between the change of position and the change of energy.

  9. CX-001616: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    6: Categorical Exclusion Determination CX-001616: Categorical Exclusion Determination Analysis of Multiple Pathways for Converting Coal to Liquid Transportation Fuels CX(s)...

  10. Metastable phases determination of U-2.5Zr-7.5Nb and U-3.0Zr-9.0Nb alloys by Rietveld method

    SciTech Connect (OSTI)

    Dias Pais, R. W.; Dos Santos, A. M. M.; Lameiras, F. S.; Cantagalli, N. M.; De Paula, R. G.; Ferraz, W. B. [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, CNEN, Av. Presidente Antonio Carlos 6.627, 31270-901 - Belo Horizonte, MG (Brazil)

    2012-07-01T23:59:59.000Z

    The Rietveld refinement has been employed for study of metastable phase of alloys U-2.5Zr-7.5Nb(wt%) and U-3Zr-9Nb(wt%). The ingots of both alloys were produced in vacuum induction furnace at temperature of about 1500 deg.C followed by cooling to room temperature. The samples with 2.5 cm in diameter and 0.3 cm of thickness was homogenized at 1000 deg.C/16 hours and treated isothermally at (i) 600 deg.C for 0.5, 3 and 24 hours and (ii) 300 deg.C for 4 minutes, 20 minutes and 17.5 hours. At the end of each treatment the samples were water quenched. Data from X-ray diffraction were collected at room temperature with a Rigaku diffractometer D Max-RAPID radiation Cuk{alpha} using steps of 0.02 deg. (2{theta}) with scan angle in the range of 20-80 deg. (2{theta}). The full diffraction pattern was analyzed by the Rietveld method using the GSAS program. The result shows that the non-resolved appearance of the XRD patterns added to the proximity of the Bragg reflections of the transition phase makes the refinement of alloys a challenging task. For the isothermal treatment at 600 deg.C during 0.5 and 3 hours both alloys showed the majority presence of {gamma}{sup S} phase fallow by {gamma}{sup 0} phase in minor amounts. For 24 hours at 600 deg.C occurred the decomposition of phases with the presence of {gamma}{sup S} + {alpha}. Isothermal treatment at 300 deg.C for both alloys is characterized by the presence of phases {gamma}{sup 0} + {alpha}'' where the concentration of the {alpha}'' phase increases with time of heat treatment. (authors)

  11. Development of a self-consistent thermodynamic- and transport-property correlation framework for the coal conversion industry. Phase I. Semiannual report, September 1, 1980-February 28, 1981

    SciTech Connect (OSTI)

    Starling, K.E.; Lee, L.L.; Kumar, K.H.

    1981-01-01T23:59:59.000Z

    During the first half year of this research program the following elements of research have been performed: (1) the development of an improved pure component data bank, including collection and processing of data which is 70% complete as to substance, (2) calculation of distillable coal fluid thermodynamic properties using a multiparameter corresponding states correlation, (3) application of the most general density-cubic equation of pure fluids and (4) initiation of research to extend the corresponding states correlation framework to polar fluids. Primary conclusions of the first phase of this research program are that the three parameter corresponding states correlation predicts lighter coal fluid properties to a reasonable level of accuracy, and that a cubic equation can predict pure fluid thermodynamic properties on par with non-cubic equations of state.

  12. Directed Transport of Atoms in a Hamiltonian Quantum Ratchet

    E-Print Network [OSTI]

    Salger, Tobias; Hecking, Tim; Geckeler, Carsten; Morales-Molina, Luis; Weitz, Martin; 10.1126/science.1179546

    2009-01-01T23:59:59.000Z

    We demonstrate the operation of a quantum ratchet in the absence of dissipative processes within the observation time (Hamiltonian regime). An atomic rubidium Bose-Einstein condensate is exposed to a sawtooth-like optical lattice potential, whose amplitude is periodically modulated in time. The ratchet transport arises from broken spatiotemporal symmetries of the driven potential, resulting in a desymmetrisation of transporting Eigenstates (Floquet states). The measured atomic current oscillates around a non-zero stationary value at longer observation times, shows resonances at positions determined by the photon recoil and depends on the initial phase of the drive, providing different lines of evidence for the full quantum character of the ratchet transport. The results provide a proof of principle demonstration of a quantum motor.

  13. Method and apparatus for optical phase error correction

    DOE Patents [OSTI]

    DeRose, Christopher; Bender, Daniel A.

    2014-09-02T23:59:59.000Z

    The phase value of a phase-sensitive optical device, which includes an optical transport region, is modified by laser processing. At least a portion of the optical transport region is exposed to a laser beam such that the phase value is changed from a first phase value to a second phase value, where the second phase value is different from the first phase value. The portion of the optical transport region that is exposed to the laser beam can be a surface of the optical transport region or a portion of the volume of the optical transport region. In an embodiment of the invention, the phase value of the optical device is corrected by laser processing. At least a portion of the optical transport region is exposed to a laser beam until the phase value of the optical device is within a specified tolerance of a target phase value.

  14. Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    SciTech Connect (OSTI)

    Kaszuba, John; Sims, Kenneth

    2014-09-30T23:59:59.000Z

    An integrated field-laboratory program evaluated the use of radon and CO2 flux measurements to constrain source and timescale of CO2 fluxes in environments proximate to CO2 storage reservoirs. By understanding the type and depth of the gas source, the integrity of a CO2 storage reservoir can be assessed and monitored. The concept is based on correlations of radon and CO2 fluxes observed in volcanic systems. This fundamental research is designed to advance the science of Monitoring, Verification, and Accounting (MVA) and to address the Carbon Storage Program goal of developing and validating technologies to ensure 99 percent storage performance. Graduate and undergraduate students conducted the research under the guidance of the Principal Investigators; in doing so they were provided with training opportunities in skills required for implementing and deploying CCS technologies. Although a final method or “tool” was not developed, significant progress was made. The field program identified issues with measuring radon in environments rich in CO2. Laboratory experiments determined a correction factor to apply to radon measurements made in CO2-bearing environments. The field program also identified issues with radon and CO2-flux measurements in soil gases at a natural CO2 analog. A systematic survey of radon and CO2 flux in soil gases at the LaBarge CO2 Field in Southwest Wyoming indicates that measurements of 222Rn (radon), 220Rn (thoron), and CO2 flux may not be a robust method for monitoring the integrity of a CO2 storage reservoir. The field program was also not able to correlate radon and CO2 flux in the CO2-charged springs of the Thermopolis hydrothermal system. However, this part of the program helped to motivate the aforementioned laboratory experiments that determined correction factors for measuring radon in CO2-rich environments. A graduate student earned a Master of Science degree for this part of the field program; she is currently employed with a geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO2-bearing experiments is greater at all temperatures compared to the experiments without CO2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO2-rich waters.

  15. HYDROGEN GENERATION FROM SLUDGE SAMPLE BOTTLES CAUSED BY RADIOLYSIS AND CHEMISTRY WITH CONCETNRATION DETERMINATION IN A STANDARD WASTE BOX (SWB) OR DRUM FOR TRANSPORT

    SciTech Connect (OSTI)

    RILEY DL; BRIDGES AE; EDWARDS WS

    2010-03-30T23:59:59.000Z

    A volume of 600 mL of sludge, in 4.1 L sample bottles (Appendix 7.6), will be placed in either a Super Pig (Ref. 1) or Piglet (Ref. 2, 3) based on shielding requirements (Ref. 4). Two Super Pigs will be placed in a Standard Waste Box (SWB, Ref. 5), as their weight exceeds the capacity of a drum; two Piglets will be placed in a 55-gallon drum (shown in Appendix 7.2). The generation of hydrogen gas through oxidation/corrosion of uranium metal by its reaction with water will be determined and combined with the hydrogen produced by radiolysis. The hydrogen concentration in the 55-gallon drum and SWB will be calculated to show that the lower flammability limit of 5% hydrogen is not reached. The inner layers (i.e., sample bottle, bag and shielded pig) in the SWB and drum will be evaluated to assure no pressurization occurs as the hydrogen vents from the inner containers (e.g., shielded pigs, etc.). The reaction of uranium metal with anoxic liquid water is highly exothermic; the heat of reaction will be combined with the source term decay heat, calculated from Radcalc, to show that the drum and SWB package heat load limits are satisfied. This analysis does five things: (1) Estimates the H{sub 2} generation from the reaction of uranium metal with water; (2) Estimates the H{sub 2} generation from radiolysis (using Radcalc 4.1); (3) Combines both H{sub 2} generation amounts, from Items 1 and 2, and determines the percent concentration of H{sub 2} in the interior of an SWB with two Super Pigs, and the interior of a 55-gallon drum with two Piglets; (4) From the combined gas generation rate, shows that the pressure at internal layers is minimal; and (5) Calculates the maximum thermal load of the package, both from radioactive decay of the source and daughter products as calculated/reported by Radcalc 4.1, and from the exothermic reaction of uranium metal with water.

  16. Phase I Hydrologic Data for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    John McCord

    2006-06-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) initiated the Underground Test Area (UGTA) Project to assess and evaluate the effects of the underground nuclear weapons tests on groundwater beneath the Nevada Test Site (NTS) and vicinity. The framework for this evaluation is provided in Appendix VI, Revision No. 1 (December 7, 2000) of the Federal Facility Agreement and Consent Order (FFACO, 1996). Section 3.0 of Appendix VI ''Corrective Action Strategy'' of the FFACO describes the process that will be used to complete corrective actions specifically for the UGTA Project. The objective of the UGTA corrective action strategy is to define contaminant boundaries for each UGTA corrective action unit (CAU) where groundwater may have become contaminated from the underground nuclear weapons tests. The contaminant boundaries are determined based on modeling of groundwater flow and contaminant transport. A summary of the FFACO corrective action process and the UGTA corrective action strategy is provided in Section 1.5. The FFACO (1996) corrective action process for the Yucca Flat/Climax Mine CAU 97 was initiated with the Corrective Action Investigation Plan (CAIP) (DOE/NV, 2000a). The CAIP included a review of existing data on the CAU and proposed a set of data collection activities to collect additional characterization data. These recommendations were based on a value of information analysis (VOIA) (IT, 1999), which evaluated the value of different possible data collection activities, with respect to reduction in uncertainty of the contaminant boundary, through simplified transport modeling. The Yucca Flat/Climax Mine CAIP identifies a three-step model development process to evaluate the impact of underground nuclear testing on groundwater to determine a contaminant boundary (DOE/NV, 2000a). The three steps are as follows: (1) Data compilation and analysis that provides the necessary modeling data that is completed in two parts: the first addressing the groundwater flow model, and the second the transport model. (2) Development of a groundwater flow model. (3) Development of a groundwater transport model. This report presents the results of the first part of the first step, documenting the data compilation, evaluation, and analysis for the groundwater flow model. The second part, documentation of transport model data will be the subject of a separate report. The purpose of this document is to present the compilation and evaluation of the available hydrologic data and information relevant to the development of the Yucca Flat/Climax Mine CAU groundwater flow model, which is a fundamental tool in the prediction of the extent of contaminant migration. Where appropriate, data and information documented elsewhere are summarized with reference to the complete documentation. The specific task objectives for hydrologic data documentation are as follows: (1) Identify and compile available hydrologic data and supporting information required to develop and validate the groundwater flow model for the Yucca Flat/Climax Mine CAU. (2) Assess the quality of the data and associated documentation, and assign qualifiers to denote levels of quality. (3) Analyze the data to derive expected values or spatial distributions and estimates of the associated uncertainty and variability.

  17. CX-001555: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Intelligent Transportation System Phase 1 (T1)CX(s) Applied: B5.1Date: 03/31/2010Location(s): Saint Louis, MissouriOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  18. Crystal phase identification

    DOE Patents [OSTI]

    Michael, Joseph R. (Albuquerque, NM); Goehner, Raymond P. (Albuquerque, NM); Schlienger, Max E. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A method and apparatus for determining the crystalline phase and crystalline characteristics of a sample. This invention provides a method and apparatus for unambiguously identifying and determining the crystalline phase and crystalline characteristics of a sample by using an electron beam generator, such as a scanning electron microscope, to obtain a backscattered electron Kikuchi pattern of a sample, and extracting crystallographic and composition data that is matched to database information to provide a quick and automatic method to identify crystalline phases.

  19. Computational Transportation

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ), in-vehicle computers, and computers in the transportation infrastructure are integrated ride- sharing, real-time multi-modal routing and navigation, to autonomous/assisted driving

  20. Determination of structure and phase transition of light element nanocomposites in mesoporous silica: case study of NH3BH3 in MCM-41

    SciTech Connect (OSTI)

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2009-09-30T23:59:59.000Z

    The structure of ammonia borane (AB), NH3BH3, infused in mesoporous silica MCM-41 and its evolution over the temperature range of 80 to 300 K was investigated using the atomic pair distribution function (PDF) analysis of synchrotron X-ray powder diffraction data in order to understand the origin of improved dehydrogenation properties of the system. Our study shows how X-ray PDF analysis can be used to elucidate the structure of light guest species loaded in mesoporous silica materials despite of its low scattering power of composed elements (N, B, and H) compared to its host (SiO2). PDF analyses of two AB-loaded compositions with weight ratio AB:MCM-41=1:1 and 3:1 provide a strong evidence that AB aggregate, previously found in AB:MCM-41?1:1 samples, is same species as neat AB. For both of them an orthorhombic to tetragonal structural phase transition occurs at 225 K on warming. On the other hand, AB residing inside meso-pores, which is found in AB:MCM-41=1:2 sample, does not undergo such phase transition. It rather stays in tetragonal phase over a wide temperature range of 110 to 240 K and starts to lose structural correlation above 240 K. This strongly suggests that nano-confinement of AB inside meso-pores stabilizes high temperature tetragonal phase at much lower temperature. These results provide important clues to two critical questions: why nan-compositions of AB leads dehydrogenation to lower temperature and why the neat AB like propoerties are recovered at high AB loading samples. This work was supported by the US Department of Energy Office of Basic Energy Sciences, Chemical Sciences program. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  1. Research and development of a proton-exchange-membrane (PEM) fuel cell system for transportation applications. Progress report for Quarter 4 of the Phase II report

    SciTech Connect (OSTI)

    NONE

    1995-10-20T23:59:59.000Z

    This 4th quarter report summarizes activity from July 1, 1995 through October 1, 1995; the report is organized as usual into sections describing background information and work performed under the main WBS categories: The Fuel Processor (WBS 1.0) team activity during this quarter focused on the continued design/development of the full scale fuel processing hardware. The combustor test stand has been completed allowing more detailed testing of the various parts of the combustor subsystem; this subsystem is currently being evaluated using the dual fuel (methanol/hydrogen) option to gain a better understanding of the control issues. The Fuel Cell Stack (WBS 2.0) team activity focused on material analysis and testing to determine the appropriate approach for the first GM stack. Five hundred hours of durability was achieved on a single cell fixture using coated titanium plates (anode and cathode) with no appreciable voltage degradation of the SEL (Stack Engineering Lab) produced MEA. Additionally, the voltage level drop across each of the plates remained low (<5mv) over the full test period; The system integration and control team focused on the initial layout and configuration of the system; and the Reference powertrain and commercialization studies are currently under review.

  2. MSTS - Multiphase Subsurface Transport Simulator theory manual

    SciTech Connect (OSTI)

    White, M.D.; Nichols, W.E.

    1993-05-01T23:59:59.000Z

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the {open_quotes}User`s Guide and Reference{close_quotes} companion document.

  3. Finite element analysis of heat transport in a hydrothermal zone

    SciTech Connect (OSTI)

    Bixler, N.E.; Carrigan, C.R.

    1987-01-01T23:59:59.000Z

    Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).

  4. Optimal concentrations in transport systems

    E-Print Network [OSTI]

    Kim, Wonjung

    Many biological and man-made systems rely on transport systems for the distribution of material, for example matter and energy. Material transfer in these systems is determined by the flow rate and the concentration of ...

  5. Transportation Market Distortions

    E-Print Network [OSTI]

    Litman, Todd

    2006-01-01T23:59:59.000Z

    of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

  6. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25T23:59:59.000Z

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  7. Map-likelihood phasing

    SciTech Connect (OSTI)

    Terwilliger, Thomas C., E-mail: terwilliger@lanl.gov [Bioscience Division, Mail Stop M888, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2001-12-01T23:59:59.000Z

    A map-likelihood function is described that can yield phase probabilities with very low model bias. The recently developed technique of maximum-likelihood density modification [Terwilliger (2000 ?), Acta Cryst. D56, 965–972] allows a calculation of phase probabilities based on the likelihood of the electron-density map to be carried out separately from the calculation of any prior phase probabilities. Here, it is shown that phase-probability distributions calculated from the map-likelihood function alone can be highly accurate and that they show minimal bias towards the phases used to initiate the calculation. Map-likelihood phase probabilities depend upon expected characteristics of the electron-density map, such as a defined solvent region and expected electron-density distributions within the solvent region and the region occupied by a macromolecule. In the simplest case, map-likelihood phase-probability distributions are largely based on the flatness of the solvent region. Though map-likelihood phases can be calculated without prior phase information, they are greatly enhanced by high-quality starting phases. This leads to the technique of prime-and-switch phasing for removing model bias. In prime-and-switch phasing, biased phases such as those from a model are used to prime or initiate map-likelihood phasing, then final phases are obtained from map-likelihood phasing alone. Map-likelihood phasing can be applied in cases with solvent content as low as 30%. Potential applications of map-likelihood phasing include unbiased phase calculation from molecular-replacement models, iterative model building, unbiased electron-density maps for cases where 2F{sub o} ? F{sub c} or ?{sub A}-weighted maps would currently be used, structure validation and ab initio phase determination from solvent masks, non-crystallographic symmetry or other knowledge about expected electron density.

  8. electrifyingthefuture transportation

    E-Print Network [OSTI]

    Birmingham, University of

    electrifyingthefuture transportation The UK Government's carbon reduction strategy vehicles and the new Birmingham Science City Energy Systems Integration Laboratory (ESIL) will further enhance this work. The laboratory - unique within the UK and world leading - brings together cutting edge

  9. Determining impact routes for sulfide ore transportation

    E-Print Network [OSTI]

    Chow, Tzeekiu Edwin

    the data. After importing the required shapefiles (US Grid with census data, US Cities, Rail, Federal Land

  10. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    SciTech Connect (OSTI)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01T23:59:59.000Z

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  11. Foam Transport in Porous Media - A Review

    SciTech Connect (OSTI)

    Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong

    2009-11-11T23:59:59.000Z

    Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The transport of foam in porous media is complicated in that the number of lamellae present governs flow characteristics such as viscosity, relative permeability, fluid distribution, and interactions between fluids. Hence, foam is a non-Newtonian fluid. During transport, foam destruction and formation occur. The net result of the two processes determines the foam texture (i.e., bubble density). Some of the foam may be trapped during transport. According to the impacts of the aqueous and gas flow rates, foam flow generally has two regimes – weak and strong foam. There is also a minimum pressure gradient to initiate foam flow and a critical capillary for foam to be sustained. Similar to other fluids, the transport of foam is described by Darcy’s law with the exception that the foam viscosity is variable. Three major approaches to modeling foam transport in porous media are the empirical, semi-empirical, and mechanistic methods. Mechanistic approaches can be complete in principal but may be difficult to obtain reliable parameters, whereas empirical and semi-empirical approaches can be limited by the detail used to describe foam rheology and mobility. Mechanistic approaches include the bubble population-balance model, the network/percolation theory, the catastrophe theory, and the filtration theory. Among these methods, all were developed for modeling polyhedral foam with the exception that the method based on the filtration theory was for the ball foam (microfoam).

  12. The determination of interfacial structure and phase transitions in Al/Cu and Al/Ni interfaces by means of surface extended x-ray absorption fine structure

    SciTech Connect (OSTI)

    Barrera, E.V. (Rice Univ., Houston, TX (United States). Dept. of Mechanical Engineering and Materials Science); Heald, S.M. (Brookhaven National Lab., Upton, NY (United States))

    1991-01-01T23:59:59.000Z

    Surface extended x-ray absorption fine structure (SEXAFS) was used to investigate the interfacial conditions of Al/Cu and Al/Ni shallow buried interfaces. Previous studies using glancing angle extended x-ray absorption fine structure, x-ray reflectivity, photoemission, and SEXAFS produced conflicting results as to whether or not the interfaces between Al and Cu and Al and Ni were reacted upon room temperature deposition. In this study polycrystalline bilayers of Al/Cu and Al/Ni and trilayers of Al/Cu/Al and Al/Ni/Al were deposited on tantalum foil at room temperature in ultra high vacuum and analyzed to evaluate the reactivity of these systems on a nanometer scale. It become overwhelming apparent that the interfacial phase reactions were a function of the vacuum conditions. Samples deposited with the optimum vacuum conditions showed reaction products upon deposition at room temperature which were characterized by comparisons to standards and by least squares fitting the be CuAl{sub 2} and NiAl{sub 3} respectively. The results of this study that the reacted zone thicknesses were readily dependent on the deposition parameters. For both Al on Cu and Al on Ni as well as the metal on Al conditions 10{Angstrom} reaction zones were observed. These reaction zones were smaller than that observed for bilayers of Al on Cu (30{Angstrom}) and Al on Ni (60{Angstrom}) where deposition rates were much higher and samples were much thicker. The reaction species are evident by SEXAFS, where the previous photoemission studies only indicated that changes had occurred. Improved vacuum conditions as compared to the earlier experiments is primarily the reason reactions on deposition were seen in this study as compared to the earlier SEXAFS studies.

  13. The determination of interfacial structure and phase transitions in Al/Cu and Al/Ni interfaces by means of surface extended x-ray absorption fine structure

    SciTech Connect (OSTI)

    Barrera, E.V. [Rice Univ., Houston, TX (United States). Dept. of Mechanical Engineering and Materials Science; Heald, S.M. [Brookhaven National Lab., Upton, NY (United States)

    1991-12-31T23:59:59.000Z

    Surface extended x-ray absorption fine structure (SEXAFS) was used to investigate the interfacial conditions of Al/Cu and Al/Ni shallow buried interfaces. Previous studies using glancing angle extended x-ray absorption fine structure, x-ray reflectivity, photoemission, and SEXAFS produced conflicting results as to whether or not the interfaces between Al and Cu and Al and Ni were reacted upon room temperature deposition. In this study polycrystalline bilayers of Al/Cu and Al/Ni and trilayers of Al/Cu/Al and Al/Ni/Al were deposited on tantalum foil at room temperature in ultra high vacuum and analyzed to evaluate the reactivity of these systems on a nanometer scale. It become overwhelming apparent that the interfacial phase reactions were a function of the vacuum conditions. Samples deposited with the optimum vacuum conditions showed reaction products upon deposition at room temperature which were characterized by comparisons to standards and by least squares fitting the be CuAl{sub 2} and NiAl{sub 3} respectively. The results of this study that the reacted zone thicknesses were readily dependent on the deposition parameters. For both Al on Cu and Al on Ni as well as the metal on Al conditions 10{Angstrom} reaction zones were observed. These reaction zones were smaller than that observed for bilayers of Al on Cu (30{Angstrom}) and Al on Ni (60{Angstrom}) where deposition rates were much higher and samples were much thicker. The reaction species are evident by SEXAFS, where the previous photoemission studies only indicated that changes had occurred. Improved vacuum conditions as compared to the earlier experiments is primarily the reason reactions on deposition were seen in this study as compared to the earlier SEXAFS studies.

  14. Oxygen Transport Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay

    2008-08-30T23:59:59.000Z

    The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

  15. CX-011085: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011085: Categorical Exclusion Determination Alaska Wind Energy Research Project (formally "St. Paul Wind Technology Development Project, Phase 2")...

  16. CX-008507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008507: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3 Date: 07162012...

  17. CX-011434: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011434: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase III (Categorical Exclusion (CX)-A Tasks) CX(s)...

  18. CX-008235: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-008235: Categorical Exclusion Determination Harnessing the Hydro-Electric Potential of Engineered Drops in the Columbia Basin Project: Phase 1 CX(s)...

  19. CX-009299: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009299: Categorical Exclusion Determination Optimization of Pressurized Oxy-Combustion with Flameless Reactor - Phase I CX(s) Applied: B3.6...

  20. CX-009298: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009298: Categorical Exclusion Determination Optimization of Pressurized Oxy-Combustion with Flameless Reactor - Phase I CX(s) Applied: B3.6...

  1. Transportation System Concept of Operations

    SciTech Connect (OSTI)

    N. Slater-Thompson

    2006-08-16T23:59:59.000Z

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, authorized the DOE to develop and manage a Federal system for the disposal of SNF and HLW. OCRWM was created to manage acceptance and disposal of SNF and HLW in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. This responsibility includes managing the transportation of SNF and HLW from origin sites to the Repository for disposal. The Transportation System Concept of Operations is the core high-level OCRWM document written to describe the Transportation System integrated design and present the vision, mission, and goals for Transportation System operations. By defining the functions, processes, and critical interfaces of this system early in the system development phase, programmatic risks are minimized, system costs are contained, and system operations are better managed, safer, and more secure. This document also facilitates discussions and understanding among parties responsible for the design, development, and operation of the Transportation System. Such understanding is important for the timely development of system requirements and identification of system interfaces. Information provided in the Transportation System Concept of Operations includes: the functions and key components of the Transportation System; system component interactions; flows of information within the system; the general operating sequences; and the internal and external factors affecting transportation operations. The Transportation System Concept of Operations reflects OCRWM's overall waste management system policies and mission objectives, and as such provides a description of the preferred state of system operation. The description of general Transportation System operating functions in the Transportation System Concept of Operations is the first step in the OCRWM systems engineering process, establishing the starting point for the lower level descriptions. of subsystems and components, and the Transportation System Requirements Document. Other program and system documents, plans, instructions, and detailed designs will be consistent with and informed by the Transportation System Concept of Operations. The Transportation System Concept of Operations is a living document, enduring throughout the OCRWM systems engineering lifecycle. It will undergo formal approval and controlled revisions as appropriate while the Transportation System matures. Revisions will take into account new policy decisions, new information available through system modeling, engineering investigations, technical analyses and tests, and the introduction of new technologies that can demonstrably improve system performance.

  2. CX-003569: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Ohio Advanced Transportation Partnership - Pike Delta York Schools Propane Vehicle Fueling Station CX(s) Applied: B5.1 Date: 08242010 Location(s): Delta, Ohio...

  3. CX-006894: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Ohio Advanced Transportation PartnershipFrito Lay Cincinnati Propane Fueling Infrastructure CX(s) Applied: B5.1 Date: 09282011 Location(s): West...

  4. Experimental constraints on transport

    SciTech Connect (OSTI)

    Luce, T.C.; Petty, K.H.; Burrell, K.H.; Forest, C.B.; Gohil, P.; Groebner, R.J.; De Haas, J.C.M.; James, R.A.; Makowski, M.A.

    1994-12-01T23:59:59.000Z

    Characterization of the cross-field energy transport in magnetic confinement experiments in a manner applicable to the accurate assessment of future machine performance continues to be a challenging goal. Experimental results from the DIII-D tokamak in the areas of dimensionless scaling and non-diffusive transport represent progress toward this goal. Dimensionless scaling shows how beneficial the increase in machine size and magnetic field is for future devices. The experiments on DIII-D are the first to determine separately the electron and ion scaling with normalized gyroradius {rho}{sub *}; the electrons scale as expected from gyro-Bohm class theories, while the ions scale consistent with the Goldston empirical scaling. This result predicts an increase in transport relative to Bohm diffusion as {rho}{sub *} decreases in future devices. The existence of distinct {rho}{sub *} scalings for ions and electrons cautions against a physical interpretation of one-fluid or global analysis. The second class of experiments reported here are the first to demonstrate the existence of non-diffusive energy transport. Electron cyclotron heating was applied at the half radius; the electron temperature profile remains substantially peaked. Power balance analysis indicates that heat must flow in the direction of increasing temperature, which is inconsistent with purely diffusive transport. The dynamics of electron temperature perturbations indicate the presence in the heat flux of a term dependent on temperature rather than its gradient. These two observations strongly constrain the types of models which can be applied to cross-field heat transport.

  5. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    40 pp. IEA, 2004c: Biofuels for Transport: An Internationalthe ACT Map scenario, transport biofuels production reachesestimates that biofuels’ share of transport fuel could

  6. Feasibility study: Assess the feasibility of siting a monitored retrievable storage facility. Phase 1

    SciTech Connect (OSTI)

    King, J.W.

    1993-08-01T23:59:59.000Z

    The purpose of phase one of this study are: To understand the waste management system and a monitored retrievable storage facility; and to determine whether the applicant has real interest in pursuing the feasibility assessment process. Contents of this report are: Generating electric power; facts about exposure to radiation; handling storage, and transportation techniques; description of a proposed monitored retrievable storage facility; and benefits to be received by host jurisdiction.

  7. Viscosity near phase transitions

    E-Print Network [OSTI]

    Antonio Dobado; Felipe J. Llanes-Estrada; Juan M. Torres-Rincon

    2010-09-30T23:59:59.000Z

    Probably the most enticing observation in theoretical physics during the last decade was the discovery of the great amount of consequences obtained from the AdS/CFT conjecture put forward by Maldacena. In this work we review how this correspondence can be used to address hydrodynamic properties such as the viscosity of some strongly interacting systems. We also employ the Boltzmann equation for those systems closer to low-energy QCD, and argue that this kind of transport coefficients can be related to phase transitions, in particular the QGP/hadronic phase transition studied in heavy ion collisions.

  8. NREL: Transportation Research - Transportation and Hydrogen Newsletter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Sustainable Transportation This is the January 2015 issue of the Transportation and Hydrogen Newsletter. Illustration of an electric vehicle Illustration of an...

  9. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30T23:59:59.000Z

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimization of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.

  10. Kinetic Theory of Turbulent Multiphase Phase | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solids particles interacting with a turbulent gas phase such as those in gasification rectors. Understanding the transport of heat and mass in turbulent flows, and...

  11. Atomistic Study of Transport Properties at the Nanoscale 

    E-Print Network [OSTI]

    Haskins, Justin

    2013-01-11T23:59:59.000Z

    - being probed in graphene, graphene nano ribbons, carbon nanotubes, and fullerenes to determine their influence on transport; overall, these structures yield a large range of thermal transport, 10-2500 W/mK....

  12. Information theory and crystallographic phase determination

    E-Print Network [OSTI]

    Britten, Patricia Louise

    1981-01-01T23:59:59.000Z

    , 1949) H = in(2ve) c (36) and H = ln[(2ve) ~A ~ ] (37) These results are applicable to signal processing and spectrum estimation. Zn 1967, Burg described a method for estimating the power spectral density of a uniformly sampled random process...

  13. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearchNewsTransportation News

  14. Transport and Dissipation in Quantum Pumps

    E-Print Network [OSTI]

    J. E. Avron; A. Elgart; G. M. Graf; L. Sadun

    2003-05-23T23:59:59.000Z

    This paper is about adiabatic transport in quantum pumps. The notion of ``energy shift'', a self-adjoint operator dual to the Wigner time delay, plays a role in our approach: It determines the current, the dissipation, the noise and the entropy currents in quantum pumps. We discuss the geometric and topological content of adiabatic transport and show that the mechanism of Thouless and Niu for quantized transport via Chern numbers cannot be realized in quantum pumps where Chern numbers necessarily vanish.

  15. Ponderomotive phase plate for transmission electron microscopes

    DOE Patents [OSTI]

    Reed, Bryan W. (Livermore, CA)

    2012-07-10T23:59:59.000Z

    A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.

  16. Transporting particulate material

    DOE Patents [OSTI]

    Aldred, Derek Leslie (North Hollywood, CA); Rader, Jeffrey A. (North Hollywood, CA); Saunders, Timothy W. (North Hollywood, CA)

    2011-08-30T23:59:59.000Z

    A material transporting system comprises a material transporting apparatus (100) including a material transporting apparatus hopper structure (200, 202), which comprises at least one rotary transporting apparatus; a stationary hub structure (900) constraining and assisting the at least one rotary transporting apparatus; an outlet duct configuration (700) configured to permit material to exit therefrom and comprising at least one diverging portion (702, 702'); an outlet abutment configuration (800) configured to direct material to the outlet duct configuration; an outlet valve assembly from the material transporting system venting the material transporting system; and a moving wall configuration in the material transporting apparatus capable of assisting the material transporting apparatus in transporting material in the material transporting system. Material can be moved from the material transporting apparatus hopper structure to the outlet duct configuration through the at least one rotary transporting apparatus, the outlet abutment configuration, and the outlet valve assembly.

  17. Thermodynamics of Blue Phases In Electric Fields

    E-Print Network [OSTI]

    O. Henrich; D. Marenduzzo; K. Stratford; M. E. Cates

    2010-03-04T23:59:59.000Z

    We present extensive numerical studies to determine the phase diagrams of cubic and hexagonal blue phases in an electric field. We confirm the earlier prediction that hexagonal phases, both 2 and 3 dimensional, are stabilized by a field, but we significantly refine the phase boundaries, which were previously estimated by means of a semi-analytical approximation. In particular, our simulations show that the blue phase I -- blue phase II transition at fixed chirality is largely unaffected by electric field, as observed experimentally.

  18. Transportation Security | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Security SHARE Global Threat Reduction Initiative Transportation Security Cooperation Secure Transport Operations (STOP) Box Security of radioactive material while...

  19. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect (OSTI)

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01T23:59:59.000Z

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the transportation importance was mirrored by the importance assigned by the UFD Storage Task. A few of the more significant differences are described in Section 3 of this report

  20. Determination of Water Saturation in Relatively Dry Porous Media...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests. Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests....

  1. "Educating transportation professionals."

    E-Print Network [OSTI]

    Acton, Scott

    "Educating transportation professionals." Michael Demetsky Henry L. Kinnier Professor mjd of Virginia Charlottesville, VA 434.924.7464 Transportation Engineering & Management Research Our group works closely with the Virginia Center for Transportation Innovation and Research (VCTIR), located

  2. Phase I Transport Model of Corrective Action Units 101 and 102: Central and Western Pahute Mesa, Nevada Test Site, Nye County, Nevada with Errata Sheet 1, 2, 3, Revision 1

    SciTech Connect (OSTI)

    Greg Ruskauff

    2009-02-01T23:59:59.000Z

    As prescribed in the Pahute Mesa Corrective Action Investigation Plan (CAIP) (DOE/NV, 1999) and Appendix VI of the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008), the ultimate goal of transport analysis is to develop stochastic predictions of a contaminant boundary at a specified level of uncertainty. However, because of the significant uncertainty of the model results, the primary goal of this report was modified through mutual agreement between the DOE and the State of Nevada to assess the primary model components that contribute to this uncertainty and to postpone defining the contaminant boundary until additional model refinement is completed. Therefore, the role of this analysis has been to understand the behavior of radionuclide migration in the Pahute Mesa (PM) Corrective Action Unit (CAU) model and to define, both qualitatively and quantitatively, the sensitivity of such behavior to (flow) model conceptualization and (flow and transport) parameterization.

  3. Sustainability and Transport

    E-Print Network [OSTI]

    Gilbert, Richard

    2006-01-01T23:59:59.000Z

    2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

  4. Chapter 12 Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-1 November 2012 Words in bold and acronyms are defined in Chapter 32, Glossary and Acronyms. Chapter 12 Transportation This chapter describes existing transportation resources in...

  5. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to...

  6. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  7. Sigma phase formation kinetics in stainless steel laminate composites

    SciTech Connect (OSTI)

    Wenmen, D.W.; Olson, D.L.; Matlock, D.K. [Colorado School of Mines, Golden, CO (United States)] [and others

    1994-12-31T23:59:59.000Z

    Stainless steel laminate composites were made to simulate weld microstructures. The use of laminates with variations in chemical composition allows for one dimensional analysis of phase transformation associated with the more complex three-dimensional solidification experience of weld metal. Alternate layers of austenitic (304L and 316L) and ferritic (Ebrite) stainless steels allowed for the study of sigma phase formation at the austenite-ferrite interface in duplex stainless steel. Two austenitic stainless steels, 304L (18.5Cr-9.2Ni-0.3Mo) and 316L (16.2Cr-10.1Ni-2.6Mo), and one ferritic stainless steel, Ebrite (26.3Cr-0Ni-1.0Mo) were received in the form of sheet which was laboratory cold rolled to a final thickness of 0.25 mm (0.030 in.). Laminate composites were prepared by laboratory hot rolling a vacuum encapsulated compact of alternating layers of the ferrite steel with either 304L or 316L stainless steel sheets. Laminate composite specimens, which simulate duplex austenite-ferrite weld metal structure, were used to establish the kinetics of nucleation and growth of sigma phase. The factors affecting sigma phase formation were identified. The effects of time, temperature, and transport of chromium and nickel were evaluated and used to establish a model for sigma phase formation in the austenite-ferrite interfacial region. Information useful for designing stainless steel welding consumables to be used for high temperature service was determined.

  8. Alpha phase precipitation from phase-separated beta phase in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alpha phase precipitation from phase-separated beta phase in a model Ti-Mo-Al alloy studied by direct coupling of transmission Alpha phase precipitation from phase-separated beta...

  9. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat

  10. Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestr

    E-Print Network [OSTI]

    Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freig pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation ope

  11. Graduate Certificate in Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Graduate Certificate in Transportation Nohad A. Toulan School of Urban Studies and Planning of Engineering and Computer Science integrated transportation systems. The Graduate Certificate in Transportation their capabilities. Students in the program can choose among a wide range of relevant courses in transportation

  12. TRANSPORTATION Annual Report

    E-Print Network [OSTI]

    Minnesota, University of

    2003 CENTER FOR TRANSPORTATION STUDIES Annual Report #12;Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Avenue S.E. Minneapolis, MN publication is a report of transportation research, education, and outreach activities for the period July

  13. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    SciTech Connect (OSTI)

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31T23:59:59.000Z

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  14. A CASE STUDY OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ACCIDENTAL RELEASE

    SciTech Connect (OSTI)

    Buckley, R.; Hunter, C.; Werth, D.; Whiteside, M.; Chen, K.; Mazzola, C.

    2012-08-01T23:59:59.000Z

    A train derailment that occurred in Graniteville, South Carolina during the early morning hours of 06 January, 2005 resulted in the prompt release of approximately 60 tons of chlorine to the environment. Comprehensive modeling of the transport and fate of this release was performed including the characterization of the initial three-phased chlorine release, a detailed determination of the local atmospheric conditions acting to generate, disperse, and deplete the chlorine vapor cloud, the establishment of physical exchange mechanisms between the airborne vapor and local surface waters, and local aquatic dilution and mixing.

  15. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-07-30T23:59:59.000Z

    This Quarter has been divided between running experiments and the installation of the drill-pipe rotation system. In addition, valves and piping were relocated, and three viewports were installed. Detailed design work is proceeding on a system to elevate the drill-string section. Design of the first prototype version of a Foam Generator has been finalized, and fabrication is underway. This will be used to determine the relationship between surface roughness and ''slip'' of foams at solid boundaries. Additional cups and rotors are being machined with different surface roughness. Some experiments on cuttings transport with aerated fluids have been conducted at EPET. Theoretical modeling of cuttings transport with aerated fluids is proceeding. The development of theoretical models to predict frictional pressure losses of flowing foam is in progress. The new board design for instrumentation to measure cuttings concentration is now functioning with an acceptable noise level. The ultrasonic sensors are stable up to 190 F. Static tests with sand in an annulus indicate that the system is able to distinguish between different sand concentrations. Viscometer tests with foam, generated by the Dynamic Test Facility (DTF), are continuing.

  16. Electronic structure and transport in molecular and nanoscale electronics

    E-Print Network [OSTI]

    Qian, Xiaofeng

    2008-01-01T23:59:59.000Z

    Two approaches based on first-principles method are developed to qualitatively and quantitatively study electronic structure and phase-coherent transport in molecular and nanoscale electronics, where both quantum mechanical ...

  17. Minnesota's Transportation Economic Development (TED)

    E-Print Network [OSTI]

    Minnesota, University of

    Minnesota's Transportation Economic Development (TED) Pilot Program Center for Transportation Studies Transportation Research Conference May 24-25, 2011 #12;Transportation Role in Economic Development · Carefully targeted transportation infrastructure improvements will: ­ Stimulate new economic development

  18. Introduction Transport in disordered graphene

    E-Print Network [OSTI]

    Fominov, Yakov

    Introduction Transport in disordered graphene Summary Ballistic transport in disordered graphene P, Gornyi, Mirlin Ballistic transport in disordered graphene #12;Introduction Transport in disordered graphene Summary Outline 1 Introduction Model Experimental motivation Transport in clean graphene 2

  19. CX-004109: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-004109: Categorical Exclusion Determination Phase 2 - A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and...

  20. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  1. Determination of the optical properties of La2-xBaxCuO? for several dopings, including the anomalous x=1/8 phase

    SciTech Connect (OSTI)

    Homes, C. C.; Hücker, M.; Li, Q.; Xu, Z. J.; Wen, J. S.; Gu, G. D.; Tranquada, J. M.

    2012-04-01T23:59:59.000Z

    The optical properties of single crystals of the high-temperature superconductor La2-xBaxCuO? have been measured over a wide frequency and temperature range for light polarized in the a-b planes and along the c axis. Three different Ba concentrations have been examined, x=0.095 with a critical temperature Tc=32 K, x=0.125 where the superconductivity is dramatically weakened with Tc?2.4 K, and x=0.145 with Tc?24 K. The in-plane behavior of the optical conductivity for these materials at high temperature is described by a Drude-like response with a scattering rate that decreases with temperature. Below Tc in the x=0.095 and 0.145 materials there is a clear signature of the formation of a superconducting state in the optical properties allowing the superfluid density (?s0) and the penetration depth to be determined. In the anomalous 1/8 phase, some spectral weight shifts from lower to higher frequency (?300 cm?¹) on cooling below the spin-ordering temperature Tso?42 K, associated with the onset of spin-stripe order; we discuss alternative interpretations in terms of a conventional density-wave gap versus the response to pair-density-wave superconductivity. The two dopings for which a superconducting response is observed both fall on the universal scaling line ?s0/8?4.4?dcTc, which is consistent with the observation of strong dissipation within the a-b planes. The optical properties for light polarized along the c axis reveal an insulating character dominated by lattice vibrations, superimposed on a weak electronic background. No Josephson plasma edge is observed in the low-frequency reflectance along the c axis for x=1/8; however, sharp plasma edges are observed for x=0.095 and 0.145 below Tc.

  2. Determination of irreversibility field variations in mono- and multifilamentary (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} tapes by transport current methods

    SciTech Connect (OSTI)

    Anderson, J.W.; Parrell, J.A.; Polak, M.; Larbalestier, D.C. [Applied Superconductivity Center and Materials Science Program, University of Wisconsin--Madison, Madison, Wisconsin 53706 (United States)] [Applied Superconductivity Center and Materials Science Program, University of Wisconsin--Madison, Madison, Wisconsin 53706 (United States)

    1997-12-01T23:59:59.000Z

    The irreversibility field, H{sup {asterisk}}, has been measured for a variety of mono- and multifilamentary (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (2223) tapes using two different transport current techniques. It is common to characterize the quality of 2223 tapes by their zero-field, 77 K critical current density [J{sub c}(0T, 77 K)], even though this ignores the fact that significant self-fields depress J{sub c}(0T,77K) and the possibility that the in-field J{sub c}(B) characteristics may be optimized independently of the J{sub c}(0T,77K) value. To provide more useful information, we propose a second characterization, that of the irreversibility field, H{sup {asterisk}}. Having both H{sup {asterisk}} and J{sub c}(0T,77K) information helps in separating the two independent contributions that better connectivity and stronger flux pinning can make to the J{sub c} of a tape. We illustrate this point with results from a variety of mono- and multifilamentary Bi-2223/Ag tapes in damaged and undamaged conditions, which show that H{sup {asterisk}} (77 K) can vary from {approximately}100 to {approximately}200mT and not directly correlate with J{sub c}(0T,77K). The two proposed protocols for H{sup {asterisk}} measurement are robust and compatible with common transport measurement procedures. {copyright} {ital 1997 American Institute of Physics.}

  3. Forced transport of deformable containers through narrow constrictions

    E-Print Network [OSTI]

    Remy Kusters; Thijs van der Heijden; Badr Kaoui; Jens Harting; Cornelis Storm

    2014-11-19T23:59:59.000Z

    We study, numerically and analytically, the forced transport of deformable containers through a narrow constriction. Our central aim is to quantify the competition between the constriction geometry and the active forcing, regulating whether and at which speed a container may pass through the constriction and under what conditions it gets stuck. We focus, in particular, on the interrelation between the force that propels the container and the radius of the channel, as these are the external variables that may be directly controlled in both artificial and physiological settings. We present Lattice-Boltzmann simulations that elucidate in detail the various phases of translocation, and present simplified analytical models that treat two limiting types of these membrane containers: deformational energy dominated by the bending or stretching contribution. In either case we find excellent agreement with the full simulations, and our results reveal that not only the radius but also the length of the constriction determines whether or not the container will pass.

  4. ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING

    E-Print Network [OSTI]

    Knowles, Ian W.

    ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN. Introduction Saturated flow and single phase solute transport in confined ground- water systems are modelled one has to resort to indirect, or inverse, techniques to populate the model. In a groundwater system

  5. ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING

    E-Print Network [OSTI]

    Knowles, Ian W.

    ON THE RECOVERY OF TRANSPORT PARAMETERS IN GROUNDWATER MODELLING IAN KNOWLES AND AIMIN YAN. Introduction Saturated flow and single phase solute transport in confined ground­ water systems are modelled to resort to indirect, or inverse, techniques to populate the model. In a groundwater system one

  6. Thermodynamics and Mass Transport in Multicomponent,

    E-Print Network [OSTI]

    Manga, Michael

    Thermodynamics and Mass Transport in Multicomponent, Multiphase H2O Systems of Planetary Interest, cryogenic systems, thermodynamics, fluid dynamics, clathrates, Mars, Enceladus, sound speed Abstract Heat of the noncondensible components can greatly alter the thermodynamic properties of the phases and their flow properties

  7. CX-011810: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011810: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership Phase III - Subtask 1.7 CX(s) Applied: B3.1, B3.7 Date:...

  8. CX-008508: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008508: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3, B5.13 Date: 07...

  9. CX-008505: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008505: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3, B1.3 Date: 07...

  10. CX-006772: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006772: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09162011 Location(s):...

  11. CX-006773: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006773: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09162011 Location(s):...

  12. CX-006770: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006770: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09162011 Location(s): South...

  13. CX-006771: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006771: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09162011 Location(s):...

  14. CX-003764: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Ohio Advanced Transportation Project- Ace Taxi Propane AutoGas Fueling Station CX(s) Applied: B5.1 Date: 09172010 Location(s): Cleveland,...

  15. CX-004662: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Testing of Chinese Coal in a Transport Reactor Integrated Gasification (TRIG) System CX(s) Applied: B3.6 Date: 12092010 Location(s): Grand Forks, North...

  16. CX-004476: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Testing of Indian Coal in a Transport Reactor Integrated Gasification (TRIG) System CX(s) Applied: B3.6 Date: 11182010 Location(s): Grand Forks, North...

  17. Probability of spent fuel transportation accidents

    SciTech Connect (OSTI)

    McClure, J. D.

    1981-07-01T23:59:59.000Z

    The transported volume of spent fuel, incident/accident experience and accident environment probabilities were reviewed in order to provide an estimate of spent fuel accident probabilities. In particular, the accident review assessed the accident experience for large casks of the type that could transport spent (irradiated) nuclear fuel. This review determined that since 1971, the beginning of official US Department of Transportation record keeping for accidents/incidents, there has been one spent fuel transportation accident. This information, coupled with estimated annual shipping volumes for spent fuel, indicated an estimated annual probability of a spent fuel transport accident of 5 x 10/sup -7/ spent fuel accidents per mile. This is consistent with ordinary truck accident rates. A comparison of accident environments and regulatory test environments suggests that the probability of truck accidents exceeding regulatory test for impact is approximately 10/sup -9//mile.

  18. Secure Transportation Management

    SciTech Connect (OSTI)

    Gibbs, P. W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-10-15T23:59:59.000Z

    Secure Transport Management Course (STMC) course provides managers with information related to procedures and equipment used to successfully transport special nuclear material. This workshop outlines these procedures and reinforces the information presented with the aid of numerous practical examples. The course focuses on understanding the regulatory framework for secure transportation of special nuclear materials, identifying the insider and outsider threat(s) to secure transportation, organization of a secure transportation unit, management and supervision of secure transportation units, equipment and facilities required, training and qualification needed.

  19. Water Transport Within the STack: Water Transport Exploratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Within the STack: Water Transport Exploratory Studies Water Transport Within the STack: Water Transport Exploratory Studies Part of a 100 million fuel cell award announced by DOE...

  20. Linear phase distribution of acoustical vortices

    SciTech Connect (OSTI)

    Gao, Lu; Zheng, Haixiang [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, 1 Wenyuan Road, Xianlin District, Nanjing 210023 (China); Ma, Qingyu, E-mail: maqingyu@njnu.edu.cn [Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics Science and Technology, Nanjing Normal University, 1 Wenyuan Road, Xianlin District, Nanjing 210023 (China); Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 (China); Tu, Juan; Zhang, Dong [Laboratory of Modern Acoustics of MOE, Nanjing University, Nanjing 210093 (China)

    2014-07-14T23:59:59.000Z

    Linear phase distribution of phase-coded acoustical vortices was theoretically investigated based on the radiation theory of point source, and then confirmed by experimental measurements. With the proposed criterion of positive phase slope, the possibility of constructing linear circular phase distributions is demonstrated to be determined by source parameters. Improved phase linearity can be achieved at larger source number, lower frequency, smaller vortex radius, and/or longer axial distance. Good agreements are observed between numerical simulations and measurement results for circular phase distributions. The favorable results confirm the feasibility of precise phase control for acoustical vortices and suggest potential applications in particle manipulation.

  1. Optimal Transportation Theory with Repulsive Costs

    E-Print Network [OSTI]

    Simone Di Marino; Augusto Gerolin; Luca Nenna

    2015-06-15T23:59:59.000Z

    This paper intents to present the state of art and recent developments of the optimal transportation theory with many marginals for a class of repulsive cost functions. We introduce some aspects of the Density Functional Theory (DFT) from a mathematical point of view, and revisit the theory of optimal transport from its perspective. Moreover, in the last three sections, we describe some recent and new theoretical and numerical results obtained for the Coulomb cost, the repulsive harmonic cost and the determinant cost.

  2. Structure-dynamics relationship in coherent transport through disordered systems

    E-Print Network [OSTI]

    Stefano Mostarda; Federico Levi; Diego Prada-Gracia; Florian Mintert; Francesco Rao

    2013-07-17T23:59:59.000Z

    Quantum transport is strongly influenced by interference with phase relations that depend sensitively on the scattering medium. Since even small changes in the geometry of the medium can turn constructive interference to destructive, a clear relation between structure and fast, efficient transport is difficult to identify. Here we present a complex network analysis of quantum transport through disordered systems to elucidate the relationship between transport efficiency and structural organization. Evidence is provided for the emergence of structural classes with different geometries but similar high efficiency. Specifically, a structural motif characterised by pair sites which are not actively participating to the dynamics renders transport properties robust against perturbations. Our results pave the way for a systematic rationalization of the design principles behind highly efficient transport which is of paramount importance for technological applications as well as to address transport robustness in natural light harvesting complexes.

  3. Multi-phasing CFD

    SciTech Connect (OSTI)

    Stosic, Zoran V. [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany); Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia)

    2002-07-01T23:59:59.000Z

    Computational fluid dynamics for multiphase flows is an emerging field. Due to the complexity and divergence of multiphase thermal and hydraulic problems, further development of multiphase flow modelling, closure laws and numerical methods is needed in order to achieve the general purpose and optimised CFD (Computational Fluid Dynamics) methods, which will be applicable to the wide variety of multiphase flow problems. In the paper, an original approach to the various aspects of multiphase CFD modelling is presented. It is based on the multi-fluid modelling approach, development of necessary closure laws and derivation of appropriate numerical methods for efficient governing equations solution. Velocity and pressure fields are solved with the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) type pressure-corrector method developed for the multiphase flow conditions. For the solution of scalar parameters transport equations both implicit and explicit methods are presented. The implicit method is suitable for steady state, slow transients and problems without the sharp fronts propagation. Explicit method is developed in order to predict scalar parameters fronts propagation, as well as phase interface tracking problems. The challenge towards the multiphase flow solution on both the macro and micro level is presented in order to perform multiphase CFD simulations and analyses of multiphase flows in complex geometry of nuclear power plant components, such as nuclear fuel rod bundles thermal-hydraulics. Presented methodology and obtained CFD results comprise micro-scale phenomena of phases' separation, interface tracking, heated surfaces dry-out and critical heat flux occurrence, as well as macro-scale transport and distributions of phase volumes. (authors)

  4. Transportation Infrastructure and Sustainable Development

    E-Print Network [OSTI]

    Boarnet, Marlon G.

    2008-01-01T23:59:59.000Z

    A Better Forecasting Tool for Transportation Decision-making,” Mineta Transportation Institute, San Jose Stateat the 2008 meeting of the Transportation Research Board and

  5. Transportation Analysis | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

  6. Transportation Investment and

    E-Print Network [OSTI]

    Levinson, David M.

    Transportation Investment and Economic Development: Has the TIED turned? David Levinson University Transportation Investments was Historically Concomitant with Land and Economic Development #12;Canals Railways Surfaced Roads Crude Oil Pipelines Gas Pipelines Telegraph 1825 1985 Proportion of Maximum Extent Growth

  7. Transportation Management Research Collection /

    E-Print Network [OSTI]

    Handy, Todd C.

    , Peterbilt Motors, and General Electric. He was a national panel member of the American Arbitration, Noise and Environmental Pollution, Transportation Co-ordination and Consolidation, Transportation -- Docket 8613 1957 Civil Aeronautics Board ­ General passenger fare investigation -- Docket 8008 et al

  8. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  9. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  10. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  11. Biofuels and Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    Biofuels and Transportation Impacts and Uncertainties Some Observations of a Reformed Ethanol and Logistics Symposium 3 Topics · Why Biofuels · Ethanol Economics · Ethanol Transportation Equipment Biofuels? · National Security · Reduce Imports of oil · Peak Oil · Replace Fossil Resources

  12. Linear Motor Powered Transportation

    E-Print Network [OSTI]

    Thornton, Richard D.

    This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

  13. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  14. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    SciTech Connect (OSTI)

    Meng, Jianxin; Mei, Deqing, E-mail: meidq-127@zju.edu.cn; Yang, Keji; Fan, Zongwei [State Key Lab of Fluid Power Transmission and Control, Department of Mechanical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027 (China)

    2014-08-14T23:59:59.000Z

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.

  15. Indianapolis Public Transportation Corporation

    SciTech Connect (OSTI)

    Not Available

    2004-12-01T23:59:59.000Z

    Fact sheet describes the National Renewable Energy Laboratory's evaluation of Indianapolis Public Transportation Corporation's (IndyGo's) hybrid electric buses.

  16. Lubbock Metropolitan Transportation Plan

    E-Print Network [OSTI]

    Lubbock Metropolitan Planning Organization

    2007-09-18T23:59:59.000Z

    for Users (SAFETEA-LU) and its predecessors, the Transportation Equity Act for the 21st Century (TEA-21) and the Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991, specified the transportation systems on which certain federal funds can... in Chapter 5 ? Streets and Highways; Chapter 6 ? Public Transportation; Chapter 7 ? Bicycle and Pedestrian Plan; Chapter 8 ? Lubbock International Airport and Chapter 9 ? Railroads and Trucking. Federally funded transit projects were developed...

  17. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    subsidies on fossil transport fuels, subsidies on commutingC. , 2003: Subsidies that encourage fossil fuel use in

  18. Computational study of the transport mechanisms of molecules and ions in solid materials 

    E-Print Network [OSTI]

    Zhang, Yingchun

    2009-06-02T23:59:59.000Z

    DOE target of 6.5wt% at at 294 bar at 273 K, and 309 bar at 300 K. In the second part of this dissertation, we study the lithium ion transport from a solid electrolyte phase to a solid electrode phase. Improvement of ionic transport in solid...

  19. Edge Transport Barrier Studies On the Alcator C-Mod Tokamak

    E-Print Network [OSTI]

    Hughes, Jerry

    tokamak edge transport barrier (ETB) · ETB diagnosis on C-Mod with edge Thomson scattering · Edge phase tokamak edge transport barrier (ETB) · ETB diagnosis on C-Mod with edge Thomson scattering · Edge phase · Conclusions #12;J.W. Hughes, Ph.D. Defense. July 5, 2005. Slide 4 ETBs on tokamaks · Localized reduction

  20. Northwestern University Transportation Center

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Northwestern University Transportation Center 2011 Business Advisory Committee NUTC #12;#12;I have the pleasure of presenting our Business Advisory Committee members--a distinguished group of transportation industry lead- ers who have partnered with the Transportation Center in advancing the state of knowledge

  1. PalladianDigest Transportation

    E-Print Network [OSTI]

    Farritor, Shane

    PalladianDigest CONNECT. EMPOWER. GROW. Tackling Transportation Challenges Nebraska has been a vital link in the nation's transportation system since the days when carts, wagons to University of Nebraska­Lincoln research. That's fine with UNL transportation researchers, said Larry Rilett

  2. TRANSPORTATION: THE POTENTIAL

    E-Print Network [OSTI]

    Minnesota, University of

    INTERMODAL TRANSPORTATION: THE POTENTIAL AND THE CHALLENGE A Summary Report 2003 #12;June 2003 To the Reader This report summarizes the second James L. Oberstar Forum on Transportation Policy and Technology. Over two days, we explored the chal- lenges and opportunities in intermodal transportation, addressing

  3. Louisiana Transportation Research Center

    E-Print Network [OSTI]

    Harms, Kyle E.

    Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

  4. Introduction to Transportation Planning

    E-Print Network [OSTI]

    Tipple, Brett

    Introduction to Transportation Planning CMP 4710/6710 Fall 2012 3 Credit Hours Room: ARCH 229 on a Saturday night, transportation is not an objective in and of itself, but a means to carry out the functions of daily living (i.e., it's a "derived good"). As a consequence, the transportation systems we build

  5. Rural Intelligent Transportation Systems

    E-Print Network [OSTI]

    Minnesota, University of

    Rural Intelligent Transportation Systems In a technical session at the 2011 NACE conference, Dennis Foderberg of SEH Inc. discussed intelligent transportation systems (ITS) developed by SEH in collaboration with Network Transportation Technologies, Inc. These systems address the problem of crashes on low-volume roads

  6. Electric field controlled emulsion phase contactor

    DOE Patents [OSTI]

    Scott, T.C.

    1995-01-31T23:59:59.000Z

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figs.

  7. Salinity tolerance in plants: attempts to manipulate ion transport

    E-Print Network [OSTI]

    Vadim Volkov

    2014-11-06T23:59:59.000Z

    Ion transport is the major determining factor of salinity tolerance in plants. A simple scheme of a plant cell with ion fluxes provides basic understanding of ion transport and the corresponding changes of ion concentrations under salinity. The review describes in detail basic principles of ion transport for a plant cell, introduces set of transporters essential for sodium and potassium uptake and efflux, analyses driving forces of ion transport and compares ion fluxes measured by several techniques. Study of differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes offers knowledge for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion transport. Several attempts to overexpress or knockout ion transporters for changing salinity tolerance are described. Future perspectives are questioned with more attention given to potential candidate ion channels and transporters for altered expression. The potential direction of increasing salinity tolerance by modifying ion channels and transporters is discussed and questioned. An alternative approach from synthetic biology is to modify the existing membrane transport proteins or create new ones with desired properties for transforming agricultural crops. The approach had not been widely used earlier and leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis.

  8. Transportation YOU 2013 DC Youth Summit WTS Transportation YOU

    E-Print Network [OSTI]

    Minnesota, University of

    Transportation YOU 2013 DC Youth Summit WTS Transportation YOU CTS Research Conference May 21, 2014 Lisa Rasmussen, WTS / Kimley-Horn and Associates, Inc #12;Transportation YOU 2013 DC Youth SummitTransportation YOU 2013 DC Youth Summit Agenda What is Transportation YOU? Transportation YOU ­ WTS Local Chapter

  9. Center for Intermodal Transportation Safety

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

  10. Public Works Transportation Infrastructure Study

    E-Print Network [OSTI]

    Minnesota, University of

    Public Works Transportation Infrastructure Study Minneapolis City of Lakes Minneapolis Public Works Transportation Infrastructure Study #12;Public Works Transportation Infrastructure Study Minneapolis City Works Transportation Infrastructure Study Minneapolis City of Lakes Background: · Currently, funding

  11. Evaluation of Stress Before, During, and After Transport in Naive Yearling Horses

    E-Print Network [OSTI]

    Garey, Shannon M.

    2010-07-14T23:59:59.000Z

    Recently, the European Union published regulations regarding the welfare of horses during transport requiring that horses be transported in individual stalls separated by partitions. The objective of this study was to determine if concentrations...

  12. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-07-30T23:59:59.000Z

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

  13. Used Fuel Disposition Campaign Phase I Ring Compression Testing...

    Broader source: Energy.gov (indexed) [DOE]

    of the technical basis for extended storage and transportation of high-burnup fuel. This report highlights the results of completed Phase I testing of high-burnup M5...

  14. PCR detection of groundwater bacteria associated with colloidal transport

    SciTech Connect (OSTI)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29T23:59:59.000Z

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  15. Reduced Fast Ion Transport Model For The Tokamak Transport Code TRANSP

    SciTech Connect (OSTI)

    Podesta,, Mario; Gorelenkova, Marina; White, Roscoe

    2014-02-28T23:59:59.000Z

    Fast ion transport models presently implemented in the tokamak transport code TRANSP [R. J. Hawryluk, in Physics of Plasmas Close to Thermonuclear Conditions, CEC Brussels, 1 , 19 (1980)] are not capturing important aspects of the physics associated with resonant transport caused by instabilities such as Toroidal Alfv#19;en Eigenmodes (TAEs). This work describes the implementation of a fast ion transport model consistent with the basic mechanisms of resonant mode-particle interaction. The model is formulated in terms of a probability distribution function for the particle's steps in phase space, which is consistent with the MonteCarlo approach used in TRANSP. The proposed model is based on the analysis of fast ion response to TAE modes through the ORBIT code [R. B. White et al., Phys. Fluids 27 , 2455 (1984)], but it can be generalized to higher frequency modes (e.g. Compressional and Global Alfv#19;en Eigenmodes) and to other numerical codes or theories.

  16. Drift-flux analysis of two-phase flow in microgravity

    E-Print Network [OSTI]

    Braisted, Jonathan David

    2004-01-01T23:59:59.000Z

    are highly advantageous over single-phase systems. Two-phase fluid loops provide significant thermal transport advantages over their single-phase counterparts and are able to carry more energy per unit mass than single-phase systems. They are also able...

  17. Radioactive Material Transportation Practices

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-09-23T23:59:59.000Z

    Establishes standard transportation practices for Departmental programs to use in planning and executing offsite shipments of radioactive materials including radioactive waste. Does not cancel other directives.

  18. Alternative Fuel Transportation Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review: EPAct State and Alternative Fuel Provider Fleets "Alternative Fuel Transportation Program" Dana O'Hara, DOE Ted Sears, NREL Vehicle Technologies Program June 20,...

  19. Transportation and its Infrastructure

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Options for Liquid Biofuels Development in Ireland. SEI, 562006: Outlook for advanced biofuels. Energy Policy, 34(17),40 pp. IEA, 2004c: Biofuels for Transport: An International

  20. Transportation Energy Futures

    E-Print Network [OSTI]

    DeLuchi, Mark A.

    1989-01-01T23:59:59.000Z

    TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

  1. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  2. Heat storage system utilizing phase change materials government rights

    DOE Patents [OSTI]

    Salyer, Ival O. (Dayton, OH)

    2000-09-12T23:59:59.000Z

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  3. Inflammatory Gene Expression in Goats in Response to Transport

    E-Print Network [OSTI]

    Carter, Mark

    2012-10-19T23:59:59.000Z

    was to determine whether expression of immune-related genes changes in goats that are exposed to transport stress. In this study, 15 Spanish-Boer goats ranging from 3 to 4 yrs of age were transported for 12 h. Goats were divided into 5 groups of 3 and placed in 1...

  4. Aligning Data to Support Transportation Emerging Challenges &

    E-Print Network [OSTI]

    , vehicles, communications... · The transportation system ­ Finance ­ paying the bills ­ Privatization projections to determine whether, when, and where projected climate changes in their regions might? Essential data elements? http://www.climatescience.gov/Library/sap/sap4-7/final-report/ #12;9 Getting Ready

  5. 2006 TRANSPORTATION TOMORROW SURVEY JOINT PROGRAM IN TRANSPORTATION

    E-Print Network [OSTI]

    Toronto, University of

    2006 TRANSPORTATION TOMORROW SURVEY JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2006 Transportation Tomorrow Survey Data Presentation #12;2006 TRANSPORTATION TOMORROW SURVEY JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO City of Hamilton City of Kawartha Lakes City of Guelph City of Brantford

  6. Thirty Years of Turnstiles and Transport

    E-Print Network [OSTI]

    J. D. Meiss

    2015-02-28T23:59:59.000Z

    To characterize transport in a deterministic dynamical system is to compute exit time distributions from regions or transition time distributions between regions in phase space. This paper surveys the considerable progress on this problem over the past thirty years. Primary measures of transport for volume-preserving maps include the exiting and incoming fluxes to a region. For area-preserving maps, transport is impeded by curves formed from invariant manifolds that form partial barriers, e.g., stable and unstable manifolds bounding a resonance zone or cantori, the remnants of destroyed invariant tori. When the map is exact volume preserving, a Lagrangian differential form can be used to reduce the computation of fluxes to finding a difference between the action of certain key orbits, such as homoclinic orbits to a saddle or to a cantorus. Given a partition of phase space into regions bounded by partial barriers, a Markov tree model of transport explains key observations, such as the algebraic decay of exit and recurrence distributions.

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-08-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

  9. Microbial controls on contaminant metal transport in porous media 

    E-Print Network [OSTI]

    Kapetas, Leon

    2011-11-24T23:59:59.000Z

    and IOCS materials were determined through batch adsorption experiments, providing a mechanistic explanation of the adsorption process. Reactive transport models incorporating kinetics and surface complexation are developed to describe zinc movement through...

  10. Ballistic Transport in Nanostructures, and its Application to Functionalized Nanotubes

    E-Print Network [OSTI]

    Marzari, Nicola

    We developed and implemented a first-principles based theory of the Landauer ballistic conductance, to determine the transport properties of nanostructures and molecular-electronics devices. Our approach starts from a ...

  11. Activity of group-transported horses during onboard rest stops

    E-Print Network [OSTI]

    Keen, Heidi A.

    2007-04-25T23:59:59.000Z

    Activity of group-transported horses was evaluated during onboard rest stops to determine if horses derive meaningful rest. A single-deck semi-trailer separated into three compartments was used for all shipments. In Experiment One, twelve video...

  12. http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight

    E-Print Network [OSTI]

    http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

  13. INLAND PORT TRANSPORTATION EVALUATION GUIDE

    E-Print Network [OSTI]

    Texas at Austin, University of

    INLAND PORT TRANSPORTATION EVALUATION GUIDE by Robert Harrison, Center for Transportation Research Transportation Institute, The Texas A&M University System; and Jolanda Prozzi, Center for Transportation Research, The University of Texas at Austin CENTER FOR TRANSPORTATION RESEARCH Bureau of Engineering Research

  14. MAESTRAEN TRANSPORTE ESPECIALIZACINEN

    E-Print Network [OSTI]

    Vásquez, Carlos

    investigaciones que permitan la comprensión de distintos componentes delsistema del transporte así como para Investigación de Operaciones y Redes de transporte Medidas y Administración del Tránsito Tecnologías de

  15. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04T23:59:59.000Z

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  16. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14T23:59:59.000Z

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

  17. Expert systems in transportation

    SciTech Connect (OSTI)

    O'Leary, K.P.

    1988-01-01T23:59:59.000Z

    The 5 papers in the report deal with the following areas: Knowledge representation and software selection for expert-systems design; Expert-system architecture for retaining-wall design; Development of expert-systems technology in the California Department of Transportation; Development of an expert system to assist in the interactive graphic transit system design process; Expert systems development for contingency transportation planing.

  18. amphetamine-induced reverse transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model for analyzing the transport performance of a Reversed Field Pinch (RFP)-type of thermonuclear fusion reactor has been developed. The study has been focused on determining...

  19. Experimental and theoretical investigation of transport phenomena in nanoparticle colloids (nanofluids)

    E-Print Network [OSTI]

    Williams, Wesley Charles, 1976-

    2007-01-01T23:59:59.000Z

    This study investigates the thermal transport behavior of nanoparticle colloids or nanofluids. The major efforts are: to determine methods to characterize a nanoparticle colloid's mass loading, chemical constituents, ...

  20. Volumetric Properties and Fluid Phase Equilibria of CO2 + H2O

    SciTech Connect (OSTI)

    Capobianco, Ryan [Virginia Polytechnic Institute and State University; Gruszkiewicz, Miroslaw {Mirek} S [ORNL; Wesolowski, David J [ORNL; Cole, David R [ORNL; Bodnar, Robert [Virginia Polytechnic Institute and State University

    2013-01-01T23:59:59.000Z

    The need for accurate modeling of fluid-mineral processes over wide ranges of temperature, pressure and composition highlighted considerable uncertainties of available property data and equations of state, even for the CO2 + H2O binary system. In particular, the solubility, activity, and ionic dissociation equilibrium data for the CO2-rich phase, which are essential for understanding dissolution/precipitation, fluid-matrix reactions, and solute transport, are uncertain or missing. In this paper we report the results of a new experimental study of volumetric and phase equilibrium properties of CO2 + H2O, to be followed by measurements for bulk and confined multicomponent fluid mixtures. Mixture densities were measured by vibrating tube densimetry (VTD) over the entire composition range at T = 200 and 250 C and P = 20, 40, 60, and 80 MPa. Initial analysis of the mutual solubilities, determined from volumetric data, shows good agreement with earlier results for the aqueous phase, but finds that the data of Takenouchi and Kennedy (1964) significantly overestimated the solubility of water in supercritical CO2 (by a factor of more than two at 200 C). Resolving this well-known discrepancy will have a direct impact on the accuracy of predictive modeling of CO2 injection in geothermal reservoirs and geological carbon sequestration through improved equations of state, needed for calibration of predictive molecular-scale models and large-scale reactive transport simulations.

  1. Phasing Loops

    E-Print Network [OSTI]

    Guinski, Rodrigo 1980-

    2012-11-30T23:59:59.000Z

    -access memory RGB red, blue and green RGBA red, blue, green and alpha SWF Shockwave Flash, multimedia, vector graphics and ActionScript file format vi TABLE OF CONTENTS Page INTRODUCTION... variations before repetitions begin to happen. The images are chosen at random and slowly fade in and out; the duration of each image is also randomly determined. The speed in which the images fade in and out can be 29 chosen by the user in the DVD...

  2. Improving Efficiency and Equity in Transportation Finance

    E-Print Network [OSTI]

    Watts, Michael

    2006-01-01T23:59:59.000Z

    Fueling Transportation Finance. ” Ian W. H. Parry andFueling Transportation Finance. ” Transportation ResearchFueling Transportation Finance: A Primer on the Gas Tax •

  3. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Systems Analysis Home Transportation Energy Predictive Simulation of Engines Transportation Energy Systems Analysis Transportation Energy Systems AnalysisTara...

  4. Determination of phase equilibria for the binary systems polystyrene/cyclohexane and polystyrene/toluene and for the ternary system polystyrene/cyclohexane/toluene at 423 K, 433 K, and 448 K using perturbation gas chromatography / cby Kathryn Rion Hanneman

    E-Print Network [OSTI]

    Hanneman, Kathryn Rion

    1984-01-01T23:59:59.000Z

    -of-state model, and the lattice-fluid model of Sanchez and Lacombe. The vapor-liquid equilibrium data were found to be insensitive to the cyclohexane/toluene fit parameter in the Flory's equation-of-state model, the Flory-Huggins (volume and segment fraction...) model and the Sanchez and Lacombe model. However, the vapor-liquid equilibrium data's sensitivity to the CH/T parameter in Bonner and Brockmeier's simplified Flory's model was not determined. At the temperatures and solvent partial pressures studied...

  5. Supercooling and phase coexistence in cosmological phase transitions

    SciTech Connect (OSTI)

    Megevand, Ariel; Sanchez, Alejandro D. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, (7600) Mar del Plata (Argentina)

    2008-03-15T23:59:59.000Z

    Cosmological phase transitions are predicted by particle physics models, and have a variety of important cosmological consequences, which depend strongly on the dynamics of the transition. In this work we investigate in detail the general features of the development of a first-order phase transition. We find thermodynamical constraints on some quantities that determine the dynamics, namely, the latent heat, the radiation energy density, and the false-vacuum energy density. Using a simple model with a Higgs field, we study numerically the amount and duration of supercooling and the subsequent reheating and phase coexistence. We analyze the dependence of the dynamics on the different parameters of the model, namely, the energy scale, the number of degrees of freedom, and the couplings of the scalar field with bosons and fermions. We also inspect the implications for the cosmological outcomes of the phase transition.

  6. Transportation activity analysis using smartphones

    E-Print Network [OSTI]

    Xiao, Yu

    Transportation activity surveys investigate when, where and how people travel in urban areas to provide information necessary for urban transportation planning. In Singapore, the Land Transport Authority (LTA) carries out ...

  7. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

    2004-05-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

  8. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

    2003-11-01T23:59:59.000Z

    The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

  9. Solid phase microextraction field kit

    DOE Patents [OSTI]

    Nunes, Peter J.; Andresen, Brian D.

    2005-08-16T23:59:59.000Z

    A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.

  10. Optimal transportation for the determinant G. Carlier, B. Nazaret

    E-Print Network [OSTI]

    Carlier, Guillaume

    is the best way to jointly draw (X, Y, Z) in such a way that the simplex generated by (X, Y, Z) has maximal)d(x, y). In his famous article [1], Brenier solved the case H(x, y) = x, y and proved (under mild to the books of Villani [6] and Rachev and R¨uschendorf [5] and the references therein. In the present article

  11. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has| Methodology24,Jim

  12. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-02-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

  13. CX-001942: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination Oakland University Human Health Sciences Building (HHB) Ground Source Heat Pump (Phase 2) CX(s) Applied: A9, B5.1 Date: 04142010 Location(s): Michigan Office(s):...

  14. CX-000954: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000954: Categorical Exclusion Determination Building 94 Computational Science Computer Room 103 Renovation - Phase II CX(s) Applied: B1.29, B1.31 Date: 03012010...

  15. Transportation Economic Assistance Program (Wisconsin)

    Broader source: Energy.gov [DOE]

    The Transportation Economic Assistance Program provides state grants to private business and local governments to improve transportation to projects improving economic conditions and creating or...

  16. Transportation Resources | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources The following means of transportation are available for getting to Argonne. Airports Argonne is located within 25 miles of two major Chicago airports:...

  17. Sandia National Laboratories: Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E. Coli Bacteria Engineered to Eat Switchgrass and Make Transportation Fuels On December 7, 2011, in Energy, JBEI, News, Renewable Energy, Transportation Energy A milestone has...

  18. Sandia National Laboratories: Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JBEI, News, News & Events, Partnership, Renewable Energy, Systems Analysis, Transportation Energy Biofuels hold great promise for the future of transportation energy, but...

  19. Subsurface Flow and Transport | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subsurface related to contaminant transport, carbon cycling, enhanced oil recovery and carbon dioxide sequestration. See a complete list of Subsurface Flow and Transport...

  20. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    natural gas and liquefied petroleum gas have continued to make small contributions to transportation,transportation actions include electric power sector actions, eg coal to natural gas

  1. Superconnections and Parallel Transport

    E-Print Network [OSTI]

    Dumitrescu, Florin

    2007-01-01T23:59:59.000Z

    This note addresses the construction of a notion of parallel transport along superpaths arising from the concept of a superconnection on a vector bundle over a manifold $M$. A superpath in $M$ is, loosely speaking, a path in $M$ together with an odd vector field in $M$ along the path. We also develop a notion of parallel transport associated with a connection (a.k.a. covariant derivative) on a vector bundle over a \\emph{supermanifold} which is a direct generalization of the classical notion of parallel transport for connections over manifolds.

  2. Transportation 2035 Longview Metropolitan Transportation Plan

    E-Print Network [OSTI]

    Longview Metropolitan Planning Organization

    2009-11-12T23:59:59.000Z

    Owen, MPO Director Melissa Bechtold, Transportation Planner Nalora Moser, Planning Technician MPO TECHNICAL COMMITTEE Karen Owen, City of Longview Fred Marquez, TXDOT-Austin Dale Spitz, TXDOT-Tyler District Debbie Sadler, City of White... Oak Will Buskell, TXDOT-Longview Area Rea Donna Jones, TXDOT-Atlanta District Margie McAllister, TCEQ-Austin Randy Redmond, TXDOT-Tyler District John Paul Jones, Harrison County Keith Bonds, City of Longview Steve Juneau, TXDOT-Marshall...

  3. NREL: Transportation Research - Transportation Secure Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearchNewsTransportation

  4. Manifestations of quantum phase transitions in transport through nanosystems

    SciTech Connect (OSTI)

    Pustilnik, Michael

    2014-08-28T23:59:59.000Z

    The award led to several important new results in theory of interacting low-dimensional systems. The results are relevant for both traditional condensed matter systems, such as quantum wires and quantum spin chains, and for the relatively new field of ultra-cold atomic gases.

  5. Structural analysis in support of the waterborne transport of radioactive materials

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1996-08-01T23:59:59.000Z

    The safety of the transportation of radioactive materials by road and rail has been well studied and documented. However, the safety of waterborne transportation has received much less attention. Recent highly visible waterborne transportation campaigns have led to DOE and IAEA to focus attention on the safety of this transportation mode. In response, Sandia National Laboratories is conducting a program to establish a method to determine the safety of these shipments. As part of that program the mechanics involved in ship-to-ship collisions are being evaluated to determine the loadings imparted to radioactive material transportation packages during these collisions. This paper will report on the results of these evaluations.

  6. PBA Transportation Websites

    Broader source: Energy.gov [DOE]

    PBA Transportation Websites presented to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of systems analysis in DOE Hydrogen Program.

  7. Transportation and Stationary Power

    E-Print Network [OSTI]

    ) is small. Previous feedback from industry has indicated that existing transportation fuel providers (oil for multiple fuel cell applications, including material handling equipment, backup power, and light- or heavy

  8. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    E-Print Network [OSTI]

    Cairns, Elton J.

    2012-01-01T23:59:59.000Z

    be generated from coal and nuclear energy in contrast to 7%in the use of coal and nuclear energy for transportation andparticularly for coal and nuclear energy utilization, would

  9. Atmospheric Transport of Radionuclides

    SciTech Connect (OSTI)

    Crawford, T.V.

    2003-03-03T23:59:59.000Z

    The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

  10. Clean Transportation Internship Description

    E-Print Network [OSTI]

    Clean Transportation Internship Description The NC Solar Center at North Carolina State University to other ongoing projects by focusing on time-sensitive tasks. While the main thrust of this internship

  11. Alternative Fuel Transportation Program

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    federal register Monday May 17, 1999 Part II Department of Energy Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 Alternative Fuel Transportation Program; P-series...

  12. Accident resistant transport container

    DOE Patents [OSTI]

    Andersen, John A. (Albuquerque, NM); Cole, James K. (Albuquerque, NM)

    1980-01-01T23:59:59.000Z

    The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

  13. Metropolitan Transportation Plan 2035

    E-Print Network [OSTI]

    Tyler Area Metropolitan Planning Organization

    2009-12-04T23:59:59.000Z

    Adopted by the Tyler Area MPO Policy Committee December 4, 2009 METROPOLITAN TRANSPORTATION PLAN 2035 Revised April 22, 2010 Adopted by the Tyler Area MPO Policy Committee December 4, 2009 Amended/Revised April 22, 2010 Prepared by: Bucher..., Willis, and Ratliff Corporation 1828 East Southeast Loop 323, Suite 202 Tyler, Texas 75701 903.581.7844 This Document Serves as an Update to the Tyler Area Metropolitan Transportation Plan 2030. Portions of that Document were Unchanged and Appear...

  14. Thermoelectric transport in superlattices

    SciTech Connect (OSTI)

    Reinecke, T.L.; Broido, D.A.

    1997-07-01T23:59:59.000Z

    The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

  15. Interactive Transportable Architecture

    E-Print Network [OSTI]

    Oliver Irschitz; Priam Givord; Newyork Exit Newyork; Flavia Sparacino

    Transportable architecture which embeds the means to communicate with real or imaginary digital information spaces in a natural fashion offers unprecedented opportunities to make multimedia experiences available to the public almost everywhere. This installation demonstrates an example of interactive transportable architecture which incorporates unencumebered real-time body tracking and gesture recognition to explore a 3-D cityscape and a brain-like web-based information space.

  16. Campus Village Transportation

    E-Print Network [OSTI]

    Hernandez, Emmanuel

    2014-11-19T23:59:59.000Z

    Emmanuel Hernandez THE CAMPUS V ILLAGE : TRANSPORTATION Objective The Campus Village is a new community being constructed in northwest Lawrence with a intergenerational focus in mind. The site will be equipped with housing for students, athletes..., retirement community members, and families. The overall objective of this study was to evaluate the city’s current transportation network and make recommendations on that network to better accommodate the needs of the new property. Specifically, the goal...

  17. Regional Transportation Coordination Study

    E-Print Network [OSTI]

    Golden Crescent Regional Planning Commission

    Committee for this study. ? Develop a coordination public transportation plan ? Identify resources required to develop the plan ? Provide policy guidance to lead the planning and coordination effort Golden Crescent Regional Transit 1... of Texas. This resource will be relied upon for further development of the Intermodal Transportation Terminal. ? FTA Section 5309 (Bus) Discretionary Support ? To assist in meeting the GCRPC?s capital replacement needs. This resource...

  18. Compositional modeling in porous media using constant volume flash and flux computation without the need for phase identification

    SciTech Connect (OSTI)

    Polívka, Ond?ej, E-mail: ondrej.polivka@fjfi.cvut.cz; Mikyška, Ji?í, E-mail: jiri.mikyska@fjfi.cvut.cz

    2014-09-01T23:59:59.000Z

    The paper deals with the numerical solution of a compositional model describing compressible two-phase flow of a mixture composed of several components in porous media with species transfer between the phases. The mathematical model is formulated by means of the extended Darcy's laws for all phases, components continuity equations, constitutive relations, and appropriate initial and boundary conditions. The splitting of components among the phases is described using a new formulation of the local thermodynamic equilibrium which uses volume, temperature, and moles as specification variables. The problem is solved numerically using a combination of the mixed-hybrid finite element method for the total flux discretization and the finite volume method for the discretization of transport equations. A new approach to numerical flux approximation is proposed, which does not require the phase identification and determination of correspondence between the phases on adjacent elements. The time discretization is carried out by the backward Euler method. The resulting large system of nonlinear algebraic equations is solved by the Newton–Raphson iterative method. We provide eight examples of different complexity to show reliability and robustness of our approach.

  19. Determination of Methyl tert-Butyl Ether and tert-Butyl Alcohol in Water by Solid-Phase Microextraction/Head Space Analysis in Comparison to EPA Method 5030/8260B

    SciTech Connect (OSTI)

    Oh, Keun-Chan; Stringfellow, William T.

    2003-10-02T23:59:59.000Z

    Methyl tert-butyl ether (MTBE) is now one of the most common groundwater contaminants in the United States. Groundwater contaminated with MTBE is also likely to be contaminated with tert-butyl alcohol (TBA), because TBA is a component of commercial grade MTBE, TBA can also be used as a fuel oxygenate, and TBA is a biodegradation product of MTBE. In California, MTBE is subject to reporting at concentrations greater than 3 {micro}g/L. TBA is classified as a ''contaminant of current interest'' and has a drinking water action level of 12 {micro}g/L. In this paper, we describe the development and optimization of a simple, automated solid phase microextraction (SPME) method for the analysis of MTBE and TBA in water and demonstrate the applicability of this method for monitoring MTBE and TBA contamination in groundwater, drinking water, and surface water. In this method, the headspace (HS) of a water sample is extracted with a carboxen/polydimethylsiloxane SPME fiber, the MTBE and TBA are desorbed into a gas chromatograph (GC), and detected using mass spectrometry (MS). The method is optimized for the routine analysis of MTBE and TBA with a level of quantitation of 0.3 {micro}g/L and 4 {micro}g/L, respectively, in water. MTBE quantitation was linear for over two orders of concentration (0.3 {micro}g/L -80 {micro}g/L). TBA was found to be linear within the range of 4 {micro}g/L-7,900 {micro}g/L. The lower level of detection for MTBE is 0.03 {micro}g/L using this method. This SPME method using headspace extraction was found to be advantageous over SPME methods requiring immersion of the fiber into the water samples, because it prolonged the life of the fiber by up to 400 sample analyses. This is the first time headspace extraction SPME has been shown to be applicable to the measurement of both MTBE and TBA at concentrations below regulatory action levels. This method was compared with the certified EPA Method 5030/8260B (purge-and-trap/GC/MS) using split samples from laboratory bioreactors treating MTBE contaminated water and applied to environmental samples collected throughout the East Bay area of California. Results from the SPME-HS/GC/MS method were directly comparable to the EPA Method 5030/8260B. This method provides an simple, inexpensive, accurate, and sensitive alternative to EPA Method 5030/8260B for the analysis of MTBE and TBA in water samples.

  20. Model for assessing bronchial mucus transport

    SciTech Connect (OSTI)

    Agnew, J.E.; Bateman, J.R.M.; Pavia, D.; Clarke, S.W.

    1984-02-01T23:59:59.000Z

    The authors propose a scheme for the assessment of regional mucus transport using inhaled Tc-99m aerosol particles and quantitative analysis of serial gamma-camera images. The model treats input to inner and intermediate lung regions as the total of initial deposition there plus subsequent transport into these regions from more peripheral airways. It allows for interregional differences in the proportion of particles deposited on the mucus-bearing conducting airways, and does not require a gamma image 24 hr after particle inhalation. Instead, distribution of particles reaching the respiratory bronchioles or alveoli is determined from a Kr-81m ventilation image, while the total amount of such deposition is obtained from 24-hr Tc-99m retention measured with a sensitive counter system. The model is applicable to transport by mucociliary action or by cough, and has been tested in ten normal and ten asthmatic subjects.

  1. Transportation Shock and Vibration Literature Review

    SciTech Connect (OSTI)

    Maheras, Steven J.; Lahti, Erik A.; Ross, Steven B.

    2013-06-06T23:59:59.000Z

    This report fulfills the M4 milestone M4FT-13OR08220112, "Report Documenting Experimental Activities." The purpose of this report is to document the results of a literature review conducted of studies related to the vibration and shock associated with the normal conditions of transport for rail shipments of used nuclear fuel from commercial light-water reactors. As discussed in Adkins (2013), the objective of this report is to determine if adequate data exist that would enable the impacts of the shock and vibration associated with the normal conditions of transport on commercial light-water reactor used nuclear fuel shipped in current generation rail transportation casks to be realistically modeled.

  2. Application of reactive transport modelling to growth and transport of microorganisms in the capillary fringe

    E-Print Network [OSTI]

    Hron, Pavel; Bastian, Peter; Gallert, Claudia; Winter, Josef; Ippisch, Olaf

    2014-01-01T23:59:59.000Z

    A multicomponent multiphase reactive transport simulator has been developed to facilitate the investigation of a large variety of phenomena in porous media including component transport, diffusion, microbiological growth and decay, cell attachment and detachment and phase exchange. The coupled problem is solved using operator splitting. This approach allows a flexible adaptation of the solution strategy to the concrete problem. Moreover, the individual submodels were optimised to be able to describe behaviour of Escherichia coli (HB101 K12 pGLO) in the capillary fringe in the presence or absence of dissolved organic carbon and oxygen under steady-state and flow conditions. Steady-state and flow through experiments in a Hele-Shaw cell, filled with quartz sand, were conducted to study eutrophic bacterial growth and transport in both saturated and unsaturated porous media. As E. coli cells can form the green fluorescent protein (GFP), the cell densities, calculated by evaluation of measured fluorescence intensit...

  3. Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions

    SciTech Connect (OSTI)

    Kandlikar, S.G.; Lu, Z.; Rao, N.; Sergi, J.; Rath, C.; Dade, C.; Trabold, T.; Owejan, J.; Gagliardo, J.; Allen, J.; Yassar, R.S.; Medici, E.; Herescu, A.

    2010-05-30T23:59:59.000Z

    In this program, Rochester Institute of Technology (RIT), General Motors (GM) and Michigan Technological University (MTU) have focused on fundamental studies that address water transport, accumulation and mitigation processes in the gas diffusion layer and flow field channels of the bipolar plate. These studies have been conducted with a particular emphasis on understanding the key transport phenomena which control fuel cell operation under freezing conditions. Technical accomplishments are listed below: • Demonstrated that shutdown air purge is controlled predominantly by the water carrying capacity of the purge stream and the most practical means of reducing the purge time and energy is to reduce the volume of liquid water present in the fuel cell at shutdown. The GDL thermal conductivity has been identified as an important parameter to dictate water accumulation within a GDL. • Found that under the normal shutdown conditions most of the GDL-level water accumulation occurs on the anode side and that the mass transport resistance of the membrane electrode assembly (MEA) thus plays a critically important role in understanding and optimizing purge. • Identified two-phase flow patterns (slug, film and mist flow) in flow field channel, established the features of each pattern, and created a flow pattern map to characterize the two-phase flow in GDL/channel combination. • Implemented changes to the baseline channel surface energy and GDL materials and evaluated their performance with the ex situ multi-channel experiments. It was found that the hydrophilic channel (contact angle ? ? 10?) facilitates the removal of liquid water by capillary effects and by reducing water accumulation at the channel exit. It was also found that GDL without MPL promotes film flow and shifts the slug-to-film flow transition to lower air flow rates, compared with the case of GDL with MPL. • Identified a new mechanism of water transport through GDLs based on Haines jump mechanism. The breakdown and redevelopment of the water paths in GDLs lead to an intermittent water drainage behavior, which is characterized by dynamic capillary pressure and changing of breakthrough location. MPL was found to not only limit the number of water entry locations into the GDL (thus drastically reducing water saturation), but also stabilizes the water paths (or morphology). • Simultaneously visualized the water transport on cathode and anode channels of an operating fuel cell. It was found that under relatively dry hydrogen/air conditions at lower temperatures, the cathode channels display a similar flow pattern map to the ex-situ experiments under similar conditions. Liquid water on the anode side is more likely formed via condensation of water vapor which is transported through the anode GDL. • Investigated the water percolation through the GDL with pseudo-Hele-Shaw experiments and simulated the capillary-driven two-phase flow inside gas diffusion media, with the pore size distributions being modeled by using Weibull distribution functions. The effect of the inclusion of the microporous layer in the fuel cell assembly was explored numerically. • Developed and validated a simple, reliable computational tool for predicting liquid water transport in GDLs. • Developed a new method of determining the pore size distribution in GDL using scanning electron microscope (SEM) image processing, which allows for separate characterization of GDL wetting properties and pore size distribution. • Determined the effect of surface wettability and channel cross section and bend dihedral on liquid holdup in fuel cell flow channels. A major thrust of this research program has been the development of an optimal combination of materials, design features and cell operating conditions that achieve a water management strategy which facilitates fuel cell operation under freezing conditions. Based on our various findings, we have made the final recommendation relative to GDL materials, bipolar design and surface properties, and the combination of materials, design featur

  4. A COMPREHENSIVE ANALYSIS OF CHLORINE TRANSPORT AND FATE FOLLOWING A LARGE ENVIRONMENTAL RELEASE

    SciTech Connect (OSTI)

    Buckley, R.; Hunter, C.; Werth, D.; Chen, K.; Whiteside, M.; Mazzola, C.

    2011-05-10T23:59:59.000Z

    A train derailment occurred in Graniteville, South Carolina during the early morning of January 6, 2005, and resulted in the release of a large amount of cryogenic pressurized liquid chlorine to the environment in a short time period. A comprehensive evaluation of the transport and fate of the released chlorine was performed, accounting for dilution, diffusion, transport and deposition into the local environment. This involved the characterization of a three-phased chlorine release, a detailed determination of local atmospheric mechanisms acting on the released chlorine, the establishment of atmospheric-hydrological physical exchange mechanisms, and aquatic dilution and mixing. This presentation will provide an overview of the models used in determining the total air-to-water mass transfer estimated to have occurred as a result of the roughly 60 tons of chlorine released into the atmosphere from the train derailment. The assumptions used in the modeling effort will be addressed, along with a comparison with available observational data to validate the model results. Overall, model-estimated chlorine concentrations in the airborne plume compare well with human and animal exposure data collected in the days after the derailment.

  5. Texas Transportation Poll Final report

    E-Print Network [OSTI]

    Texas Transportation Poll Final report PRC 14-16-F #12;2 Texas Transportation Poll Texas A&M Transportation Institute PRC 14-16-F September 2014 Authors Chris Simek Tina Geiselbrecht #12;3 Table of Contents .......................................................................................................................... 8 Transportation Funding

  6. Transportation Systems Engineering GRADUATE STUDIES

    E-Print Network [OSTI]

    Wang, Yuhang

    Transportation Systems Engineering GRADUATE STUDIES TRANSPORTATION SYSTEMS are the building blocks and provides for an improved quality of life. However, transportation systems by their very nature also affect the environment through physical construction and operation of transportation facilities, and through the travel

  7. JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO

    E-Print Network [OSTI]

    Toronto, University of

    JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2001 TRANSPORTATION TOMORROW SURVEY of Transportation, Ontario Additions in 1996 Regional Municipalities of Niagara, Waterloo Counties of Peterborough not to participate) #12;JOINT PROGRAM IN TRANSPORTATION UNIVERSITY OF TORONTO 2001 TRANSPORTATION TOMORROW SURVEY

  8. Director Position Center for Urban Transportation

    E-Print Network [OSTI]

    Arslan, Hüseyin

    Director Position Center for Urban Transportation The Center for Urban Transportation Research for state policymakers, transportation agencies, transportation professionals and the public. CUTR conducts of Transportation's Federal Transit Administration and Federal Highway Administration, the Florida Department

  9. Delaware Transportation Infrastructure Forum Problem Identification Statements

    E-Print Network [OSTI]

    Firestone, Jeremy

    2013 Delaware Transportation Infrastructure Forum Problem Identification Statements Sponsored by The Delaware Center for Transportation and the Delaware Department of Transportation Delaware Center for Transportation Your main resource for transportation education and research Identifying Important Issues Related

  10. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-05-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped Ti-substituted perovskites, La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Ti{sub x}O{sub 3}, with 0 {le} x {le} 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3C) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x > 0.10, while the unit cell volume remains nearly constant for x > 0.10. The average (Mn,Ti)-O bond length increases up to x = 0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x = 0.15 at room temperature. Below the Curie temperature TC, the resistance exhibits metallic behavior for the x {le} 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x {ge} 0.10 samples. A peak in resistivity appears below TC for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x {le} 0.10 compounds. The maximum MR effect is about 70% for La{sub 0.7}Sr{sub 0.3}Mn{sub 0.8}Ti{sub 0.2}O{sub 3}. The separation of TC and the resistivity maximum temperature T{sub {rho},max} enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. The bulk densities of the membranes were determined using the Archimedes method. The bulk density was 5.029 and 5.57 g/cc for LSFT and dual phase membranes, respectively. The microstructure of the dual phase membrane was analyzed using SEM. It is evident from the micrograph that the microstructure is composed of dual phases. The dense circular regions are enclosed by the less dense, continuous phase which accommodates most of the pores. The pores are normally aggregated and found clustered along the dense regions where as the dense regions do not have pores. Upon closer observation of the micrograph it is revealed that the dense region has a clear circular cleavage or crack as their boundary. The circular cleavage clearly encompasses a dense region and which consists of no pore or any flaw that is visible. The size distribution of the dense, discontinuous regions is varying from 5 to 20 {micro}m with a D{sub 50} of 15 {micro}m. The grain size distribution was estimated from the micrographs using image analysis and a unimodal distribution of grains was observed with an average grain size of 1.99 {micro}m. The chemical compositions of the membranes were analyzed using EDS analysis and no other impurities were observed. The XRD analysis was carried out for the membranes and the phase purity was confirmed. The fracture toughness of LSFT membranes at room temperature has to be calculated using the Vickers indentation method. An electrochemical cell has been designed and built for measurements of the ionic conductivity by the use of blocking electrodes. Preliminary measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Modifications to the apparatus to improve the data quality have been completed. Electron microscopy studies of the origin of the slow kinetics on reduction of ferrites have been initiated. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradient

  11. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method

    SciTech Connect (OSTI)

    Porytsky, P. [Institute for Nuclear Research, 03680 Kyiv (Ukraine); Krivtsun, I.; Demchenko, V. [Paton Welding Institute, 03680 Kyiv (Ukraine); Reisgen, U.; Mokrov, O.; Zabirov, A. [RWTH Aachen University, ISF-Welding and Joining Institute, 52062 Aachen (Germany); Gorchakov, S.; Timofeev, A.; Uhrlandt, D. [Leibniz Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald (Germany)

    2013-02-15T23:59:59.000Z

    Transport properties (thermal conductivity, viscosity, and electrical conductivity) for multicomponent Ar-Fe thermal plasmas at atmospheric pressure have been determined by means of two different methods. The transport coefficients set based on Grad's method is compared with the data obtained when using the Chapman-Enskog's method. Results from both applied methods are in good agreement. It is shown that the Grad method is suitable for the determination of transport properties of the thermal plasmas.

  12. Global optimization for the phase stability problem

    SciTech Connect (OSTI)

    Floudas, C.; McDonald, C.

    1994-12-31T23:59:59.000Z

    The Gibbs tangent plane criterion is an important tool in determining the quality of obtained solutions to the phase and chemical equilibrium problem. The ability to determine if a postulated solution is thermodynamically stable is very useful in the search for the equilibrium solution. In this work simpler formulations are presented for the phase stability problem where non-ideal liquid phases are modeled using the NRTL and UNIQUAC models. It is shown how the global minimum of the tangent plane distance function can be obtained. Computational results demonstrate the efficiency of the proposed global optimization algorithms.

  13. An investigation to determine appropriate abbreviations for variable message signs

    E-Print Network [OSTI]

    Hustad, Marc William

    1998-01-01T23:59:59.000Z

    abbreviated words and phrases that New Jersey transportation agencies were currently using or planning to use. The primary objectives of this research were to determine local (New Jersey) and out-of-state (Texas) driver understanding of selected abbreviations...

  14. Efficient Transportation Decision Public Web Site: Bridging the Gap Between Transportation Planning and the Public

    E-Print Network [OSTI]

    Roaza, Ruth

    2007-01-01T23:59:59.000Z

    for accomplishing transportation planning and projectprocess – the Efficient Transportation Decision Making (Process - is to make transportation decisions more quickly

  15. Synthesis of alloys with controlled phase structure

    DOE Patents [OSTI]

    Guthrie, S.E.; Thomas, G.J.; Bauer, W.; Yang, N.Y.C.

    1999-04-20T23:59:59.000Z

    A method is described for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures {approx_equal}300 C and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures {approx_equal}300 C thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds. 4 figs.

  16. Synthesis of alloys with controlled phase structure

    DOE Patents [OSTI]

    Guthrie, Stephen Everett (Livermore, CA); Thomas, George John (Livermore, CA); Bauer, Walter (Livermore, CA); Yang, Nancy Yuan Chi (Lafayette, CA)

    1999-04-20T23:59:59.000Z

    A method for preparing controlled phase alloys useful for engineering and hydrogen storage applications. This novel method avoids melting the constituents by employing vapor transport, in a hydrogen atmosphere, of an active metal constituent, having a high vapor pressure at temperatures .apprxeq.300 C. and its subsequent condensation on and reaction with the other constituent (substrate) of an alloy thereby forming a controlled phase alloy and preferably a single phase alloy. It is preferred that the substrate material be a metal powder such that diffusion of the active metal constituent, preferably magnesium, and reaction therewith can be completed within a reasonable time and at temperatures .apprxeq.300 C. thereby avoiding undesirable effects such as sintering, local compositional inhomogeneities, segregation, and formation of unwanted second phases such as intermetallic compounds.

  17. A non-isothermal PEM fuel cell model including two water transport mechanisms in the

    E-Print Network [OSTI]

    Münster, Westfälische Wilhelms-Universität

    A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

  18. Transport properties of a meson gas

    E-Print Network [OSTI]

    D. Fernandez-Fraile; A. Gomez Nicola

    2007-07-09T23:59:59.000Z

    We present recent results on a systematic method to calculate transport coefficients for a meson gas (in particular, we analyze a pion gas) at low temperatures in the context of Chiral Perturbation Theory. Our method is based on the study of Feynman diagrams with a power counting which takes into account collisions in the plasma by means of a non-zero particle width. In this way, we obtain results compatible with analysis of Kinetic Theory with just the leading order diagram. We show the behavior with temperature of electrical and thermal conductivities and shear and bulk viscosities, and we discuss the fundamental role played by unitarity. We obtain that bulk viscosity is negligible against shear viscosity near the chiral phase transition. Relations between the different transport coefficients and bounds on them based on different theoretical approximations are also discussed. We also comment on some applications to heavy-ion collisions.

  19. Exploring guanidinoglycoside molecular transporters

    E-Print Network [OSTI]

    Dix, Andrew Vincent

    2011-01-01T23:59:59.000Z

    gradient of 10 – 30% acetonitrile (0.1% TFA) in water (0.1%phase HPLC (10 – 25% acetonitrile, 0.1% TFA) in water (0.1%phase HPLC, 15 – 26% acetonitrile (0.1% TFA) in water (0.1%

  20. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    SciTech Connect (OSTI)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-02-25T23:59:59.000Z

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research.

  1. Transportation Institutional Plan

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    This Institutional Plan is divided into three chapters. Chapter 1 provides background information, discusses the purposes of the Plan and the policy guidance for establishing the transportation system, and describes the projected system and the plans for its integrated development. Chapter 2 discusses the major participants who must interact to build the system. Chapter 3 suggests mechanisms for interaction that will foster wide participation in program planning and implementation and provides a framework for managing and resolving the issues related to development and operation of the transportation system. A list of acronyms and a glossary are included for the reader's convenience. Also included in this Plan are four appendices. Of particular importance is Appendix A, which includes detailed discussion of specific transportation issues. Appendices B, C, and D provide supporting material to assist the reader in understanding the roles of the involved institutions.

  2. Intermodal Transportation, USACE Style

    SciTech Connect (OSTI)

    Grumski, K. M.; Coutts, P. W.

    2002-02-27T23:59:59.000Z

    The US Army Corps of Engineers (USACE) has developed project management techniques with a proven track record for safe and successful results for constructing large scale and massive projects such as improving our nations water transportation systems, flood control, bridges and dams. Applying many of these techniques to the Formerly Utilized Sites Remedial Action Program (FUSRAP) managed by USACE to remediate the environment is achieving the same safe and successful results as their construction projects. This paper examines the additional economics and improved safety results of using intermodal containers and a combination of rail and truck transportation conveyances to transport the contaminated soil and debris from the Linde FUSRAP site, located in Tonawanda, New York.

  3. Incommensurate Structure of Phosphorus Phase IV

    SciTech Connect (OSTI)

    Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Akahama, Yuichi; Kawamura, Haruki [Graduate School of Material Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297 (Japan); Ohishi, Yasuo [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Mikazuki, Sayo-gun, Hyogo 679-5198 (Japan)

    2007-04-27T23:59:59.000Z

    There are six known phases for phosphorus at room temperature under high pressure. Only the structure of phase IV, which exists from 107 GPa to 137 GPa, remains unsolved. We performed a powder x-ray diffraction experiment and a Rietveld analysis and successfully determined its structure to be an incommensurately modulated structure by only 1 site of atomic position. High-pressure phases of halogens and chalcogens have previously been shown to have a similar modulated structure; however, phosphorus phase IV is different from them and was shown to be the third case.

  4. The Lattice Boltzmann Method applied to neutron transport

    SciTech Connect (OSTI)

    Erasmus, B.; Van Heerden, F. A. [South African Nuclear Energy Corporation - Necsa, Building P-1900, PO Box 582, Pretoria, 0001 (South Africa)

    2013-07-01T23:59:59.000Z

    In this paper the applicability of the Lattice Boltzmann Method to neutron transport is investigated. One of the main features of the Lattice Boltzmann method is the simultaneous discretization of the phase space of the problem, whereby particles are restricted to move on a lattice. An iterative solution of the operator form of the neutron transport equation is presented here, with the first collision source as the starting point of the iteration scheme. A full description of the discretization scheme is given, along with the quadrature set used for the angular discretization. An angular refinement scheme is introduced to increase the angular coverage of the problem phase space and to mitigate lattice ray effects. The method is applied to a model problem to investigate its applicability to neutron transport and the results are compared to a reference solution calculated, using MCNP. (authors)

  5. Smart vehicular transportation systems

    SciTech Connect (OSTI)

    Little, C.Q.; Wilson, C.W.

    1997-05-01T23:59:59.000Z

    This work builds upon established Sandia intelligent systems technology to develop a unique approach for the integration of intelligent system control into the US Highway and urban transportation systems. The Sandia developed concept of the COPILOT controller integrates a human driver with computer control to increase human performance while reducing reliance on detailed driver attention. This research extends Sandia expertise in sensor based, real-time control of robotics systems to high speed transportation systems. Knowledge in the form of maps and performance characteristics of vehicles provides the automatic decision making intelligence needed to plan optimum routes, maintain safe driving speeds and distances, avoid collisions, and conserve fuel.

  6. Postirradiation examination of BEATRIX-II, Phase 1

    SciTech Connect (OSTI)

    Slagle, O.D.; Hobbs, F.D.; Baldwin, D.L.; Hollenberg, G.W. [Pacific Northwest Lab., Richland, WA (United States); Takahashi, T.; Noda, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan); Verrall, R.A. [AECL Research, Chalk River, ON (Canada). Chalk River Labs.

    1993-09-01T23:59:59.000Z

    BEATRIX-II is an in situ tritium recovery experiment that was designed to characterize the behavior of lithium ceramics irradiated to high burnup in a fast neutron flux. Postirradiation examination was carried out on the Phase 1 vented canisters: one containing a Li{sub 2}O ring capable of temperature changes and the other a Li{sub 2}O solid specimen with a center temperature of 1,000{degrees}C. The tritium inventory of the ring specimen at 650{degrees}C was determined to be in the range from 0.2--0.6 wppm while for the solid specimen the inventory varied from 1.4 wppm at the surface to 0.06 wppm at the inner surface. Downstream transport of the Li{sub 2}O by the sweep gas was determined to be insignificant from analyses of acid rinses of selected canister surfaces. Densification and restructuring of the solid specimen during irradiation resulted in the development of a central annulus. Ceramography was used to characterize the columnar grain structure and the mechanisms involved in its evolution.

  7. Stochastic webs and quantum transport in superlattices: an introductory review

    E-Print Network [OSTI]

    S. M. Soskin; P. V. E. McClintock; T. M. Fromhold; I. A. Khovanov; R. Mannella

    2009-11-11T23:59:59.000Z

    Stochastic webs were discovered, first by Arnold for multi-dimensional Hamiltonian systems, and later by Chernikov et al. for the low-dimensional case. Generated by weak perturbations, they consist of thread-like regions of chaotic dynamics in phase space. Their importance is that, in principle, they enable transport from small energies to high energies. In this introductory review, we concentrate on low-dimensional stochastic webs and on their applications to quantum transport in semiconductor superlattices subject to electric and magnetic fields. We also describe a recently-suggested modification of the stochastic web to enhance chaotic transport through it and we discuss its possible applications to superlattices. keywords: stochastic webs; quantum transport; superlattices; separatrix chaos

  8. TRANSPORT...18 SHOPPING...22

    E-Print Network [OSTI]

    Brierley, Andrew

    of renewable energy sources, paying attention to the environmental impact of our activities, and setting, while changes are made here on the ground through campaigns around transport, food and ethical targets for the reduction of energy consumption, and the attainment of carbon neutrality. I am delighted

  9. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W. (Lexington, MA); Brown, Kenneth (Reading, MA)

    2010-09-07T23:59:59.000Z

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  10. Policy Research TRANSPORTATION

    E-Print Network [OSTI]

    to attract businesses and jobs to Texas, as the state has become increasingly dependent on the efficient will continue to be an important part of the 21st century transportation model, more efficient use of available and innovation; and · Serve as an independent resource to the Texas Legislature, providing analyses of the state

  11. Artificial oxygen transport protein

    DOE Patents [OSTI]

    Dutton, P. Leslie

    2014-09-30T23:59:59.000Z

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  12. ADVANCED CUTTINGS TRANSPORT STUDY

    SciTech Connect (OSTI)

    Troy Reed; Stefan Miska; Nicholas Takach; Kaveh Ashenayi; Mark Pickell; Len Volk; Mike Volk; Lei Zhou; Zhu Chen; Crystal Redden; Aimee Washington

    2003-01-30T23:59:59.000Z

    This is the second quarterly progress report for Year-4 of the ACTS Project. It includes a review of progress made in: (1) Flow Loop construction and development and (2) research tasks during the period of time between October 1, 2002 and December 30, 2002. This report presents a review of progress on the following specific tasks. (a) Design and development of an Advanced Cuttings Transport Facility Task 3: Addition of a Cuttings Injection/Separation System, Task 4: Addition of a Pipe Rotation System. (b) New research project (Task 9b): ''Development of a Foam Generator/Viscometer for Elevated Pressure and Elevated Temperature (EPET) Conditions''. (d) Research project (Task 10): ''Study of Cuttings Transport with Aerated Mud Under Elevated Pressure and Temperature Conditions''. (e) Research on three instrumentation tasks to measure: Cuttings concentration and distribution in a flowing slurry (Task 11), Foam texture while transporting cuttings. (Task 12), and Viscosity of Foam under EPET (Task 9b). (f) New Research project (Task 13): ''Study of Cuttings Transport with Foam under Elevated Pressure and Temperature Conditions''. (g) Development of a Safety program for the ACTS Flow Loop. Progress on a comprehensive safety review of all flow-loop components and operational procedures. (Task 1S). (h) Activities towards technology transfer and developing contacts with Petroleum and service company members, and increasing the number of JIP members.

  13. Parking & Transportation Services Sustainability &

    E-Print Network [OSTI]

    Minnesota, University of

    responsibility. Embracing the policies of the larger university, Parking and Transportation Services has institution, to take a leadership role in encouraging environmental responsibility on a statewide level Development at the U of M ­ for purchasing practices from diverse suppliers · 2010 Transit System of the Year

  14. 21st Annual Transportation

    E-Print Network [OSTI]

    Minnesota, University of

    would cost more than $40 billion over next 20 years ·! If used alone, state gas tax would need more than Investment Plan ·! Mn/DOT Statewide Transportation Plan #12;MHSIS goals ·! Develop a long range vision expansions ·!Fiscally-constrained approach #12;New investment strategy ·! Realistic ·! Innovative ·! Focuses

  15. NON-PROLIFERATION IMPACT ASSESSMENT FOR GNEP: ISSUES ASSOCIATED WITH TRANSPORTATION.

    SciTech Connect (OSTI)

    Radel, Ross; Rochau, Gary E.

    2008-03-01T23:59:59.000Z

    This report evaluates transportation issues for nuclear material in the proposed Global Nuclear Energy Partnership (GNEP) fuel cycle. Since many details of the GNEP program are yet to be determined, this document is intended only to identify general issues. The existing regulatory environment is determined to be largely prepared to incorporate the changes that the GNEP program will introduce. Nuclear material vulnerability and attractiveness are considered with respect to the various transport stages within the GNEP fuel cycle. Physical protection options are then outlined for the transportation of this nuclear material. It is determined that increased transportation security will be required for the GNEP fuel cycle, particularly for international transport. Finally, transportation considerations for several fuel cycle scenarios are discussed. These scenarios compare the current %22once-through%22 fuel cycle with various aspects of the proposed GNEP fuel cycle. 3

  16. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07T23:59:59.000Z

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  17. CrowdPhase: crowdsourcing the phase problem

    SciTech Connect (OSTI)

    Jorda, Julien; Sawaya, Michael R. [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Yeates, Todd O., E-mail: yeates@mbi.ucla.edu [Institute for Genomics and Proteomics, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); Molecular Biology Institute, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States); University of California, 611 Charles Young Drive East, Los Angeles, CA 90095 (United States)

    2014-06-01T23:59:59.000Z

    The idea of attacking the phase problem by crowdsourcing is introduced. Using an interactive, multi-player, web-based system, participants work simultaneously to select phase sets that correspond to better electron-density maps in order to solve low-resolution phasing problems. The human mind innately excels at some complex tasks that are difficult to solve using computers alone. For complex problems amenable to parallelization, strategies can be developed to exploit human intelligence in a collective form: such approaches are sometimes referred to as ‘crowdsourcing’. Here, a first attempt at a crowdsourced approach for low-resolution ab initio phasing in macromolecular crystallography is proposed. A collaborative online game named CrowdPhase was designed, which relies on a human-powered genetic algorithm, where players control the selection mechanism during the evolutionary process. The algorithm starts from a population of ‘individuals’, each with a random genetic makeup, in this case a map prepared from a random set of phases, and tries to cause the population to evolve towards individuals with better phases based on Darwinian survival of the fittest. Players apply their pattern-recognition capabilities to evaluate the electron-density maps generated from these sets of phases and to select the fittest individuals. A user-friendly interface, a training stage and a competitive scoring system foster a network of well trained players who can guide the genetic algorithm towards better solutions from generation to generation via gameplay. CrowdPhase was applied to two synthetic low-resolution phasing puzzles and it was shown that players could successfully obtain phase sets in the 30° phase error range and corresponding molecular envelopes showing agreement with the low-resolution models. The successful preliminary studies suggest that with further development the crowdsourcing approach could fill a gap in current crystallographic methods by making it possible to extract meaningful information in cases where limited resolution might otherwise prevent initial phasing.

  18. Phase equilibrium measurements on nine binary mixtures

    SciTech Connect (OSTI)

    Wilding, W.V. [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.] [Brigham Young Univ., Provo, UT (United States). Chemical Engineering Dept.; Giles, N.F.; Wilson, L.C. [Wiltec Research Co. Inc., Provo, UT (United States)] [Wiltec Research Co. Inc., Provo, UT (United States)

    1996-11-01T23:59:59.000Z

    Phase equilibrium measurements have been performed on nine binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following systems at two temperatures each: (aminoethyl)piperazine + diethylenetriamine; 2-butoxyethyl acetate + 2-butoxyethanol; 2-methyl-2-propanol + 2-methylbutane; 2-methyl-2-propanol + 2-methyl-2-butene; methacrylonitrile + methanol; 1-chloro-1,1-difluoroethane + hydrogen chloride; 2-(hexyloxy)ethanol + ethylene glycol; butane + ammonia; propionaldehyde + butane. Equilibrium vapor and liquid phase compositions were derived form the PTx data using the Soave equation of state to represent the vapor phase and the Wilson or the NRTL activity coefficient model to represent the liquid phase. A large immiscibility region exists in the butane + ammonia system at 0 C. Therefore, separate vapor-liquid-liquid equilibrium measurements were performed on this system to more precisely determine the miscibility limits and the composition of the vapor phase in equilibrium with the two liquid phases.

  19. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08T23:59:59.000Z

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  20. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01T23:59:59.000Z

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  1. Method of using an electric field controlled emulsion phase contactor

    DOE Patents [OSTI]

    Scott, T.C.

    1993-11-16T23:59:59.000Z

    A system is described for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity. 5 figures.

  2. Wind motor applications for transportation

    SciTech Connect (OSTI)

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

    1996-12-31T23:59:59.000Z

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  3. Three phase carbon EOS model with electronic excitation

    SciTech Connect (OSTI)

    van Thiel, M.; Ree, F.H.; Grover, R.

    1987-07-01T23:59:59.000Z

    A simple and rapid way for computing EOS data of multiphase solids with a liquid phase is described with emphasis on carbon. The method uses a scaling model for the liquid phase and includes a provision for electronic effects. The free energy minimum determines the stable phase.

  4. Institute of Transport Studies PSU Transportation Seminar, 21 May 2010

    E-Print Network [OSTI]

    Bertini, Robert L.

    comparison · Market size and segments · Emerging issues · Conclusions #12;3 Institute of Transport Studies profession #12;4 Institute of Transport Studies E-Bike Fundamentals · E-bike physics 101 ­ Kinetic energy ­ Power required for movement #12;5 Institute of Transport Studies Kinetic energy · Kinetic energy

  5. 35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION

    E-Print Network [OSTI]

    35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS IN CALIFORNIA INTRODUCTION The introduction of alternative fuels into California's transportation market has supply at low prices. But, with an uncertain long-term future for oil supplies and prices, alternative

  6. EFFECT OF TRANSPORTING SALTSTONE SAMPLES PRIOR TO SET

    SciTech Connect (OSTI)

    Reigel, M.

    2013-05-21T23:59:59.000Z

    The Saltstone Sampling and Analyses Plan provides a basis for the quantity (and configuration) of saltstone grout samples required for conducting a study directed towards correlation of the Performance Assessment (PA) related properties of field-emplaced samples and samples processed and cured in the laboratory. The testing described in the saltstone sampling and analyses plan will be addressed in phases. The initial testing (Phase I) includes collecting samples from the process room in the Saltstone Production Facility (SPF) and transporting them to Savannah River National Laboratory (SRNL) where they will cure under a temperature profile that mimics the temperature in the Saltstone Disposal Unit (SDU) and then be analyzed. SRNL has previously recommended that after the samples of fresh (uncured) saltstone are obtained from the SPF process room, they are allowed to set prior to transporting them to SRNL for curing. The concern was that if the samples are transported before they are set, the vibrations during transport may cause artificial delay of structure development which could result in preferential settling or segregation of the saltstone slurry. However, the results of this testing showed there was no clear distinction between the densities of the cylinder sections for any of the transportation scenarios tested (1 day, 1 hour, and 0 minutes set time prefer to transportation) . The bottom section of each cylinder was the densest for each transportation scenario, which indicates some settling in all the samples. Triplicate hydraulic conductivity measurements on samples from each set of time and transportation scenarios indicated that those samples transported immediately after pouring had the highest hydraulic conductivity. Conversely, samples that were allowed to sit for an hour before being transported had the lowest hydraulic conductivity. However, the hydraulic conductivities of all three samples fell within an acceptable range. Based on the cured property analysis of the three samples, there is no clear conclusion about transporting the samples before they are set; however, experience with saltstone grout indicates the samples should sit and develop some structure before being transported to SRNL for curing.

  7. We're All Transportation Planners

    E-Print Network [OSTI]

    Curry, Melanie

    2006-01-01T23:59:59.000Z

    of facts that global warming is real, that transportationCalifornia Transportation Center, with help is a majorresearch on compelling transportation can both reduce the

  8. Essays on Transportation Safety, Economics, and Policy

    E-Print Network [OSTI]

    Scholl, Patricia Lynn

    2011-01-01T23:59:59.000Z

    2002. TCF, 2000, “Widening the Transportation Divide: HowGovernor Davis’ Transportation Plan Leaves Transit-People Stranded”, Transportation Choices Forum, 2000.

  9. Review of petroleum transport network models and their applicability to a national refinery model

    SciTech Connect (OSTI)

    Hooker, J. N.

    1982-04-01T23:59:59.000Z

    This report examines four petroleum transport network models to determine whether parts of them can be incorporated into the transportation component of a national refinery model. Two questions in particular are addressed. (a) How do the models under examination represent the oil transport network, estimate link capacities, and calculate transport costs. (b) Are any of these network representations, capacity estimates, or cost functions suitable for inclusion in a linear programming model of oil refinery and primary distribution in the US. Only pipeline and waterway transport is discussed. The models examined are the Department of Energy's OILNET model, the Department of Transportation's Freight Energy Model, the Federal Energy Administration Petroleum Transportation Network Model, and an Oak Ridge National Laboratory oil pipeline energy model. Link capacity and cost functions are recommended for each transport mode. The coefficients of the recommended pipeline cost functions remain to be estimated.

  10. Integrated transportation system design optimization

    E-Print Network [OSTI]

    Taylor, Christine P. (Christine Pia), 1979-

    2007-01-01T23:59:59.000Z

    Traditionally, the design of a transportation system has focused on either the vehicle design or the network flow, assuming the other as given. However, to define a system level architecture for a transportation system, ...

  11. Transforming California's Freight Transport System

    E-Print Network [OSTI]

    California at Davis, University of

    Transforming California's Freight Transport System Policy Forum on the Role of Freight Transport Standard #12;2050 Vision- Key Conceptual Outcomes Technology Transformation Early Action Cleaner Combustion Multiple Strategies Federal Action Efficiency Gains Energy Transformation 9 #12;Further reduce localized

  12. Peristaltic particle transport using the Lattice Boltzmann method

    SciTech Connect (OSTI)

    Connington, Kevin William [Los Alamos National Laboratory; Kang, Qinjun [Los Alamos National Laboratory; Viswanathan, Hari S [Los Alamos National Laboratory; Abdel-fattah, Amr [Los Alamos National Laboratory; Chen, Shiyi [JOHNS HOPKINS UNIV.

    2009-01-01T23:59:59.000Z

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  13. Sandia National Laboratories: Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Testing Phenomenological Modeling Risk and Safety Assessment Cyber-Based Vulnerability Assessments Uncertainty Analysis Transportation Safety Fire Science Human...

  14. Transporting export coal from Appalachia

    SciTech Connect (OSTI)

    Not Available

    1982-11-01T23:59:59.000Z

    This publication is part of a series titled Market Guide for Steam Coal Exports from Appalachia. It focuses on the transportation link in the steam-coal supply chain, enabling producers to further assess their transportation options and their ability to compete in the export-coal marketplace. Transportation alternatives and handling procedures are discussed, and information is provided on the costs associated with each element in the transportation network.

  15. Vadose Zone Transport Field Study: Summary Report

    SciTech Connect (OSTI)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31T23:59:59.000Z

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.

  16. Integrated Transportation System Design Optimization

    E-Print Network [OSTI]

    Integrated Transportation System Design Optimization by Christine Taylor B.S. Cornell University by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Professor Jaime Peraire Chairman, Department Graduate Committee #12;2 #12;Integrated Transportation System Abstract Traditionally, the design of a transportation system has focused on either the vehicle design

  17. Council of University Transportation Centers

    E-Print Network [OSTI]

    Nagurney, Anna

    Council of University Transportation Centers 13th Anniversary CUTC Awards Banquet January 9, 2010 Omni Shoreham Hotel Washington, D.C. #12;Council of University Transportation Centers 13th Anniversary Awards Banquet Saturday, January 9, 2010 Welcome Stephen Albert, CUTCVice-President WesternTransportation

  18. Transportation Center Seminar........ Patrice Marcotte

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Transportation Center Seminar........ Patrice Marcotte Professor and Acting Director Computer on a Transportation Network With Rigid Capacities" Abstract: Static network equilibrium is a well transportation network, taking into account that users behave selfishly, i.e., only travel on shortest paths

  19. 2-D weighted least-squares phase unwrapping

    DOE Patents [OSTI]

    Ghiglia, Dennis C. (Placitas, NM); Romero, Louis A. (Albuquerque, NM)

    1995-01-01T23:59:59.000Z

    Weighted values of interferometric signals are unwrapped by determining the least squares solution of phase unwrapping for unweighted values of the interferometric signals; and then determining the least squares solution of phase unwrapping for weighted values of the interferometric signals by preconditioned conjugate gradient methods using the unweighted solutions as preconditioning values. An output is provided that is representative of the least squares solution of phase unwrapping for weighted values of the interferometric signals.

  20. Fuel cell water transport

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E. (Los Alamos, NM); Hedstrom, James C. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    The moisture content and temperature of hydrogen and oxygen gases is regulated throughout traverse of the gases in a fuel cell incorporating a solid polymer membrane. At least one of the gases traverses a first flow field adjacent the solid polymer membrane, where chemical reactions occur to generate an electrical current. A second flow field is located sequential with the first flow field and incorporates a membrane for effective water transport. A control fluid is then circulated adjacent the second membrane on the face opposite the fuel cell gas wherein moisture is either transported from the control fluid to humidify a fuel gas, e.g., hydrogen, or to the control fluid to prevent excess water buildup in the oxidizer gas, e.g., oxygen. Evaporation of water into the control gas and the control gas temperature act to control the fuel cell gas temperatures throughout the traverse of the fuel cell by the gases.

  1. Parallel Transports in Webs

    E-Print Network [OSTI]

    Christian Fleischhack

    2003-07-17T23:59:59.000Z

    For connected reductive linear algebraic structure groups it is proven that every web is holonomically isolated. The possible tuples of parallel transports in a web form a Lie subgroup of the corresponding power of the structure group. This Lie subgroup is explicitly calculated and turns out to be independent of the chosen local trivializations. Moreover, explicit necessary and sufficient criteria for the holonomical independence of webs are derived. The results above can even be sharpened: Given an arbitrary neighbourhood of the base points of a web, then this neighbourhood contains some segments of the web whose parameter intervals coincide, but do not include 0 (that corresponds to the base points of the web), and whose parallel transports already form the same Lie subgroup as those of the full web do.

  2. Transport of free surface liquid films and drops by external ratchets and self-ratcheting mechanisms

    E-Print Network [OSTI]

    Uwe Thiele; Karin John

    2010-01-14T23:59:59.000Z

    We discuss the usage of ratchet mechanisms to transport a continuous phase in several micro-fluidic settings. In particular, we study the transport of a dielectric liquid in a heterogeneous ratchet capacitor that is periodically switched on and off. The second system consists of drops on a solid substrate that are transported by different types of harmonic substrate vibrations. We argue that the latter can be seen as a self-ratcheting process and discuss analogies between the employed class of thin film equations and Fokker-Planck equations for transport of discrete objects in a 'particle ratchet'.

  3. Collective transport of weakly interacting molecular motors with Langmuir kinetics

    E-Print Network [OSTI]

    Sameep Chandel; Abhishek Chaudhuri; Sudipto Muhuri

    2015-01-09T23:59:59.000Z

    Filament based intracellular transport involves the collective action of molecular motor proteins. Experimental evidences suggest that microtubule (MT) filament bound motor proteins such as {\\it kinesins} weakly interact among themselves during transport and with the surrounding cellular environment. Motivated by these observations we study a driven lattice gas model for collective unidirectional transport of molecular motors on open filament, which incorporates the short-range interactions between the motors on filaments and couples the transport process on filament with surrounding cellular environment through adsorption-desorption Langmuir (LK) kinetics of the motors. We analyse this model within the framework of a Mean Field (MF) theory in the limit of {\\it weak} interactions between the motors. We point to the mapping of this model with the non-conserved version of Katz-Lebowitz-Spohn (KLS) model. The system exhibits rich phase behavior with variety of inhomogeneous phases including localized shocks in the bulk of the filament. We obtain the steady state density and current profiles and analyse their variation as function of the strength of interaction. We compare these MF results with Monte Carlo simulations and find that the MF analysis shows reasonably good agreement as long as the motors are weakly interacting. We also construct the non-equilibrium MF phase diagram.

  4. Pancharatnam Phase and Photon Polarization Optics

    E-Print Network [OSTI]

    S. C. Tiwari

    2006-02-04T23:59:59.000Z

    Parallel transport of a vector around a closed curve on the surface of a sphere leads to a direction holonomy which can be related with a geometric phase that is equal to the solid angle subtended by the closed curve. Since Pancharatnam phase is half of the solid angle subtended by the polarization cycle on the Poincare sphere, quantum parallel transport law takes recourse o spin-half wave function to obtain this result. A critique is offered on this factor of half anomaly in the geometric phase, and a natural resolution using Riemann sphere polarization representation is suggested. It is argued that spin angular momentum of photon is fundamental in polarization optics, and new insights are gained based on the hypothesis that two helicity states correspond to two distinct species of photon. This approach leads to the concept of a physical Poincare sphere: nonlinearity and jumps in the Pancharatnam phase find a simple physical explanation while novel features pertaining to the discrete and pulsating sphere are predicted. Paired photon spin zero structure of unpolarized light is also discussed. An outline of possible experimental tests is presented.

  5. Rail transportation update

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2009-01-15T23:59:59.000Z

    Record western coal shipments and lucrative export traffic lead America's railroad to their fourth most profitable year in history. But with the coal boom going bust, higher rates, and a new administration and congress, what sort of transportation year can coal mines and shippers expect in 2009? The article gives the opinions of company executives and discusses findings of the recent so-called Christenson Report which investigated growing railroad market power. 1 ref., 1 fig.

  6. Multiscale thermal transport.

    SciTech Connect (OSTI)

    Graham, Samuel Jr. (; .); Wong, C. C.; Piekos, Edward Stanley

    2004-02-01T23:59:59.000Z

    A concurrent computational and experimental investigation of thermal transport is performed with the goal of improving understanding of, and predictive capability for, thermal transport in microdevices. The computational component involves Monte Carlo simulation of phonon transport. In these simulations, all acoustic modes are included and their properties are drawn from a realistic dispersion relation. Phonon-phonon and phonon-boundary scattering events are treated independently. A new set of phonon-phonon scattering coefficients are proposed that reflect the elimination of assumptions present in earlier analytical work from the simulation. The experimental component involves steady-state measurement of thermal conductivity on silicon films as thin as 340nm at a range of temperatures. Agreement between the experiment and simulation on single-crystal silicon thin films is excellent, Agreement for polycrystalline films is promising, but significant work remains to be done before predictions can be made confidently. Knowledge gained from these efforts was used to construct improved semiclassical models with the goal of representing microscale effects in existing macroscale codes in a computationally efficient manner.

  7. Transportation of medical isotopes

    SciTech Connect (OSTI)

    Nielsen, D.L.

    1997-11-19T23:59:59.000Z

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  8. Surety applications in transportation

    SciTech Connect (OSTI)

    Matalucci, R.V.; Miyoshi, D.S.

    1998-01-01T23:59:59.000Z

    Infrastructure surety can make a valuable contribution to the transportation engineering industry. The lessons learned at Sandia National Laboratories in developing surety principles and technologies for the nuclear weapons complex and the nuclear power industry hold direct applications to the safety, security, and reliability of the critical infrastructure. This presentation introduces the concepts of infrastructure surety, including identification of the normal, abnormal, and malevolent threats to the transportation infrastructure. National problems are identified and examples of failures and successes in response to environmental loads and other structural and systemic vulnerabilities are presented. The infrastructure surety principles developed at Sandia National Laboratories are described. Currently available technologies including (a) three-dimensional computer-assisted drawing packages interactively combined with virtual reality systems, (b) the complex calculational and computational modeling and code-coupling capabilities associated with the new generation of supercomputers, and (c) risk-management methodologies with application to solving the national problems associated with threats to the critical transportation infrastructure are discussed.

  9. Basic Physics of Tokamak Transport Final Technical Report.

    SciTech Connect (OSTI)

    Sen, Amiya K.

    2014-05-12T23:59:59.000Z

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.

  10. PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    Bertini, Robert L.

    PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES DEPARTMENT OF CIVIL & ENVIRONMENTAL Transportation System Performance Report December 27, 2005 #12;2Second Annual Portland Metropolitan Region Transportation System Performance Report Portland State University Center for Transportation Studies 2005

  11. Transportation Analysis, Modeling, and Simulation (TAMS) Application

    E-Print Network [OSTI]

    Transportation Analysis, Modeling, and Simulation (TAMS) Application Center for Transportation Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Center for Transportation Analysis (CTA) TAMS application is a web-based tool that supports

  12. Gas Phase Chromatography of some Group 4, 5, and 6 Halides

    SciTech Connect (OSTI)

    Sylwester, Eric Robert

    1998-10-01T23:59:59.000Z

    Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr{sub 4}, HfBr{sub 4}, RfBr{sub 4}, NbBr{sub 5}, TaOBr{sub 3}, HaCl{sub 5}, WBr{sub 6}, FrBr, and BiBr{sub 3}. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography. Adsorption Enthalpy ({Delta}H{sub a}) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and {Delta}H{sub a} was observed: RfBr{sub 4} > ZrBr{sub 4} > HfBr{sub 4}. The {Delta}H{sub a} values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of {sup 261}Rf was performed. {sup 261}Rf was produced via the {sup 248}Cm({sup 18}O, 5n) reaction and observed with a half-life of 74{sub -6}{sup +7} seconds, in excellent agreement with the previous measurement of 78{sub -6}{sup +11} seconds. We recommend a new half-life of 75{+-}7 seconds for {sup 261}Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature) instrument have been completed. Thermochromatography is a technique that can be used to study the volatility and {Delta}H{sub a} of longer-lived isotopes off-line, Future work will include a comparison between the two techniques and the use of thermochromatography to study isotopes in a wider range of half-lives and molecular structures.

  13. AMPX-77 Phase 1 certification package

    SciTech Connect (OSTI)

    Niemer, K.A.

    1994-03-01T23:59:59.000Z

    The AMPX-77 Phase 1 modules have been certified. AMPX-77 is a modular code system for generating coupled multigroup neutron-gamma cross section libraries from Evaluated Nuclear Data Files (ENDF/B). All basic cross-section data are input from the formats used by the ENDF/B, and output can be obtained from a variety of formats, included in its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-ray data. The AMPX-77 code system will be used at SRS to perform critical calculations related to nuclear criticality safety. The AMPX-77 modular codes system contains forty-seven separate modules. For the certification process, the 47 modules have been divided into three groups or phases. This Certification Package is for the Phase 1 modules: BONAMI, LAPHNGAS, MALOCS, NITAWL, ROLAIDS, SMUG, and XSDRNPM.

  14. Evolution of the Oligopeptide Transporter (OPT) family

    E-Print Network [OSTI]

    Gomolplitinant, Kenny Matee

    2010-01-01T23:59:59.000Z

    Jr. 2007. The bile/arsenite/riboflavin transporter (BART)and 3) the Bile acid/Arsenite/Riboflavin Transporter (BART)

  15. Enhancing Transportation Energy Security through Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Security through Advanced Combustion and Fuels Technologies Enhancing Transportation Energy Security through Advanced Combustion and Fuels Technologies 2005...

  16. Transportation and Stationary Power Integration: Workshop Proceedings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration: Workshop Proceedings Transportation and Stationary Power Integration: Workshop Proceedings Proceedings for the Transportation and Stationary Power Integration Workshop...

  17. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

  18. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  19. Spring 2014 National Transportation Stakeholder Forum Meeting...

    Office of Environmental Management (EM)

    Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota NTSF 2014 Meeting Agenda...

  20. PROCEEDINGS: Conference on Transportation in Developing Countries

    E-Print Network [OSTI]

    Cervero, Robert; Sperling, Daniel; Mason, Jonathan

    1998-01-01T23:59:59.000Z

    Environment, and Ecology Enhancing Mobility: Transportation Technologies, Operations, Design Non-Motorized Transportation: Mobility and Safety Economics, Financing,

  1. Nanoscale thermal transport. II. 2003–2012

    SciTech Connect (OSTI)

    Cahill, David G., E-mail: d-cahill@illinois.edu; Braun, Paul V. [Department of Materials Science and Engineering and the Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States); Chen, Gang [Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139 (United States); Clarke, David R. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Fan, Shanhui [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States); Goodson, Kenneth E. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Keblinski, Pawel [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); King, William P. [Department of Mechanical Sciences and Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Mahan, Gerald D. [Department of Physics, Penn State University, University Park, Pennsylvania 16802 (United States); Majumdar, Arun [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States); Maris, Humphrey J. [Department of Physics, Brown University, Providence, Rhode Island 02912 (United States); Phillpot, Simon R. [Department of Materials Science and Engineering, University of Florida, Gainseville, Florida 32611 (United States); Pop, Eric [Department of Electrical and Computer Engineering, University of Illinois, Urbana, Illinois 61801 (United States); Shi, Li [Department of Mechanical Engineering, University of Texas, Autin, Texas 78712 (United States)

    2014-03-15T23:59:59.000Z

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ?1?nm, the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal analysis using proximal probes has achieved spatial resolution of 10?nm, temperature precision of 50 mK, sensitivity to heat flows of 10 pW, and the capability for thermal analysis of sub-femtogram samples.

  2. Computational models for the berry phase in semiconductor quantum dots

    SciTech Connect (OSTI)

    Prabhakar, S., E-mail: rmelnik@wlu.ca; Melnik, R. V. N., E-mail: rmelnik@wlu.ca [M2NeT Lab, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5 (Canada); Sebetci, A. [Department of Mechanical Engineering, Mevlana University, 42003, Konya (Turkey)

    2014-10-06T23:59:59.000Z

    By developing a new model and its finite element implementation, we analyze the Berry phase low-dimensional semiconductor nanostructures, focusing on quantum dots (QDs). In particular, we solve the Schrödinger equation and investigate the evolution of the spin dynamics during the adiabatic transport of the QDs in the 2D plane along circular trajectory. Based on this study, we reveal that the Berry phase is highly sensitive to the Rashba and Dresselhaus spin-orbit lengths.

  3. Phase I Report: DARPA Exoskeleton Program

    SciTech Connect (OSTI)

    Jansen, J.F.

    2004-01-21T23:59:59.000Z

    The Defense Advanced Research Projects Agency (DARPA) inaugurated a program addressing research and development for an Exoskeleton for Human Performance Augmentation in FY!2001. A team consisting of Oak Ridge National Laboratory, the prime contractor, AeroVironment, Inc., the Army Research Laboratory, the University of Minnesota, and the Virginia Polytechnic Institute has recently completed an 18-month Phase I effort in support of this DARPA program. The Phase I effort focused on the development and proof-of-concept demonstrations for key enabling technologies, laying the foundation for subsequently building and demonstrating a prototype exoskeleton. The overall approach was driven by the need to optimize energy efficiency while providing a system that augmented the operator in as transparent manner as possible (non-impeding). These needs led to the evolution of two key distinguishing features of this team's approach. The first is the ''no knee contact'' concept. This concept is dependent on a unique Cartesian-based control scheme that uses force sensing at the foot and backpack attachments to allow the exoskeleton to closely follow the operator while avoiding the difficulty of connecting and sensing position at the knee. The second is an emphasis on energy efficiency manifested by an energetic, power, actuation and controls approach designed to enhance energy efficiency as well as a reconfigurable kinematic structure that provides a non-anthropomorphic configuration to support an energy saving long-range march/transport mode. The enabling technologies addressed in the first phase were controls and sensing, the soft tissue interface between the machine and the operator, the power system, and actuation. The controller approach was implemented and demonstrated on a test stand with an actual operator. Control stability, low operator fatigue, force amplification and the human interface were all successfully demonstrated, validating the controls approach. A unique, lightweight, low profile, multi-axis foot sensor (an integral element of the controls approach) was designed, fabricated, and its performance verified. A preliminary conceptual design of the human coupling and soft tissue interface, based on biomechanics research has been developed along with a test plan to support an iterative design process. The power system concept, a fuel cell hybrid power supply using chemical generated hydrogen, was successfully demonstrated and shown to be able to efficiently meet both steady-state and transient peak loads. Two actuator approaches, a piezoelectric actuator, with theoretical high power densities and an approach based on a high-performance, high-speed electric motor driving a miniature hydraulic pump have been investigated. The first shows great potential but will require further research before reaching that promise. The other approach has been modeled and simulated and shown to provide the possibility for significant energy savings (>30%) and improved power densities in comparison to conventional hydraulics. Biomechanics analysis and testing were also performed in support of these enabling technologies, to provide a basis for design criteria. An analysis was performed to determine baseline data for initial mechanical design and power supply sizing. Testing conducted to evaluate boot sole thickness found that thickness increases up to two inches could be accommodated without significant impact on human factors issues. This 18-month long Phase I effort has evaluated key enabling technologies and demonstrated advances in these technologies that have significantly increased the likelihood of building a functional prototype exoskeleton.

  4. Ratchet transport for a chain of interacting charged particles

    E-Print Network [OSTI]

    S. I. Denisov; E. S. Denisova; P. Hänggi

    2006-03-15T23:59:59.000Z

    We study analytically and numerically the overdamped, deterministic dynamics of a chain of {\\it charged}, interacting particles driven by a longitudinal alternating electric field and additionally interacting with a smooth ratchet potential. We derive the equations of motion, analyze the general properties of their solutions and find the drift criterion for chain motion. For ratchet potentials of the form of a double-sine and a phase-modulated sine it is demonstrated that both, a so-called integer and fractional transport of the chain can occur. Explicit results for the directed chain transport for these two classes of ratchet potentials are presented.

  5. Analysis of Nuclear Quantum Phase Transitions

    SciTech Connect (OSTI)

    Li, Z. P.; Meng, J. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Niksic, T.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Lalazissis, G. A. [Department of Theoretical Physics, Aristotle University of Thessaloniki, GR-54124 (Greece); Ring, P. [Physik-Department der Technischen Universitaet Muenchen, D-85748 Garching (Germany)

    2009-08-26T23:59:59.000Z

    A microscopic analysis, based on nuclear energy density functionals, is presented for shape phase transitions in Nd isotopes. Low-lying excitation spectra and transition probabilities are calculated starting from a five-dimensional Hamiltonian, with parameters determined by constrained relativistic mean-field calculations for triaxial shapes. The results reproduce available data, and show that there is an abrupt change of structure at N = 90, that corresponds to a first-order quantum phase transition between spherical and axially deformed shapes.

  6. Optimum phase space probabilities from quantum tomography

    SciTech Connect (OSTI)

    Roy, Arunabha S., E-mail: roy.arunabha@gmail.com [King's College, London (United Kingdom); Roy, S. M., E-mail: smroy@hbcse.tifr.res.in [HBCSE, Tata Institute of Fundamental Research, Mumbai (India)

    2014-01-15T23:59:59.000Z

    We determine a positive normalised phase space probability distribution P with minimum mean square fractional deviation from the Wigner distribution W. The minimum deviation, an invariant under phase space rotations, is a quantitative measure of the quantumness of the state. The positive distribution closest to W will be useful in quantum mechanics and in time frequency analysis. The position-momentum correlations given by the distribution can be tested experimentally in quantum optics.

  7. Phase formation in ZrFe multilayers: Effect of irradiation A. T. Motta

    E-Print Network [OSTI]

    Motta, Arthur T.

    of the wavelength, indicating a process controlled by atomic transport. Amorphization was also achieved by 900 ke disappears first, indicating that amorphization takes place in the Zr layer by atomic transport of Fe from, likely because there was competition with formation of other phases. The reaction kinetics were

  8. Collective Phase Sensitivity

    E-Print Network [OSTI]

    Yoji Kawamura; Hiroya Nakao; Kensuke Arai; Hiroshi Kori; Yoshiki Kuramoto

    2008-07-08T23:59:59.000Z

    The collective phase response to a macroscopic external perturbation of a population of interacting nonlinear elements exhibiting collective oscillations is formulated for the case of globally-coupled oscillators. The macroscopic phase sensitivity is derived from the microscopic phase sensitivity of the constituent oscillators by a two-step phase reduction. We apply this result to quantify the stability of the macroscopic common-noise induced synchronization of two uncoupled populations of oscillators undergoing coherent collective oscillations.

  9. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect (OSTI)

    Kushner, Mark Jay [University of Michigan] [University of Michigan

    2014-07-10T23:59:59.000Z

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  10. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  11. Computer Modeling of Transport of Oxidizing Species in Grain Boundaries during Zirconium Corrosion

    SciTech Connect (OSTI)

    Xian-Ming Bai; Yongfeng Zhang; Michael R. Tonks

    2014-06-01T23:59:59.000Z

    Zirconium (Zr) based alloys are widely used as the cladding materials in light-water reactors. The water-side corrosion of these alloys degrades their structural integrity and poses serious safety concerns. During the Zr corrosion process, a thin Zr oxide (ZrO2) layer forms on the alloy surface and serves as a barrier layer for further corrosion. The majority of the oxide has the monoclinic phase. At the transition region between the oxide and the metal, the oxide contains a thin layer of stabilized tetragonal phase. It is found that the texture of the tetragonal layer determines the protectiveness of the oxide for corrosion. The transport of oxidizing species, such as anion defects, cation defects, and electron through the tetragonal oxide layer could be the rate limiting step of the corrosion. The defect diffusion can be affected by the growing stresses and microstructures such as grain boundaries and dislocations. In this work molecular dynamics simulations are used to investigate the anion and cation diffusion in bulk and at grain boundaries in tetragonal ZrO2. The results show that defect diffusion at grain boundaries is complex and the behavior strongly depends on the grain boundary type. For most of the grain boundaries studied the defect diffusion are much slower than in the bulk, implying that grain boundaries may not be fast defect transport paths during corrosion. The connection between the modeling results and published experimental work will also be discussed. This work is funded by the Laboratory Directed Research and Development (LDRD) program at Idaho National Laboratory.

  12. verification & Validation of High-Order Short-Characteristics-Based Deterministic Transport Methodology on Unstructured Grids

    SciTech Connect (OSTI)

    Azmy, Yousry; Wang, Yaqi

    2013-12-20T23:59:59.000Z

    The research team has developed a practical, high-order, discrete-ordinates, short characteristics neutron transport code for three-dimensional configurations represented on unstructured tetrahedral grids that can be used for realistic reactor physics applications at both the assembly and core levels. This project will perform a comprehensive verification and validation of this new computational tool against both a continuous-energy Monte Carlo simulation (e.g. MCNP) and experimentally measured data, an essential prerequisite for its deployment in reactor core modeling. Verification is divided into three phases. The team will first conduct spatial mesh and expansion order refinement studies to monitor convergence of the numerical solution to reference solutions. This is quantified by convergence rates that are based on integral error norms computed from the cell-by-cell difference between the code’s numerical solution and its reference counterpart. The latter is either analytic or very fine- mesh numerical solutions from independent computational tools. For the second phase, the team will create a suite of code-independent benchmark configurations to enable testing the theoretical order of accuracy of any particular discretization of the discrete ordinates approximation of the transport equation. For each tested case (i.e. mesh and spatial approximation order), researchers will execute the code and compare the resulting numerical solution to the exact solution on a per cell basis to determine the distribution of the numerical error. The final activity comprises a comparison to continuous-energy Monte Carlo solutions for zero-power critical configuration measurements at Idaho National Laboratory’s Advanced Test Reactor (ATR). Results of this comparison will allow the investigators to distinguish between modeling errors and the above- listed discretization errors introduced by the deterministic method, and to separate the sources of uncertainty.

  13. Transport Model with Quasipions

    E-Print Network [OSTI]

    Xiong, L.; Ko, Che Ming; Koch, V.

    1993-01-01T23:59:59.000Z

    , the transport model that takes into account both nucleon-nucleon collisions and the nuclear mean-field po- tential (normally called the Ulasov-Uehling-Uhlenbeck or Boltzmann-Uehling-Uhlenbeck model [3]) have been ex- tended to include the pion degree... equation, the pion collision term is obtained from the imaginary part of its self-energy. In nuclear medium, the pion self-energy is modified by the strong p-wave pion- nucleon interaction. This not only afFects the production and absorption of the pion...

  14. Transportation Politics and Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003ToolsearchTransportation Equipment

  15. Sandia Energy - Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home Stationary Power Nuclear Fuel Cycle

  16. Natural Gas Transportation Resiliency

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancyNationalNatural GasImports byTransportation

  17. Transportation Storage Interface

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation Work Package Reports | DepartmentAT THE

  18. National Transportation Stakeholders Forum

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of EnergyofPROTECTING ENERGYGrid Study U.S.TRANSPORTATION

  19. REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.

    SciTech Connect (OSTI)

    SCHWARTZ,S.E.; MCGRAW,R.; BENKOVITZ,C.M.; WRIGHT,D.L.

    2001-04-01T23:59:59.000Z

    Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

  20. Simulation of transportation of low enriched uranium solutions

    SciTech Connect (OSTI)

    Hope, E.P.; Ades, M.J.

    1996-08-01T23:59:59.000Z

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes.

  1. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect (OSTI)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01T23:59:59.000Z

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  2. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01T23:59:59.000Z

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  3. Options Study - Phase II

    SciTech Connect (OSTI)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01T23:59:59.000Z

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to identify any nuclear fuel cycle technology or option that may result in a significant beneficial impact to the issues as compared to the current U.S. approach of once-through use of nuclear fuel in LWRs or similar reactors followed by direct disposal of UNF. This approach was taken because incremental differences may be difficult to clearly identify and justify due to the large uncertainties that can be associated with the specific causes of the issues. Phase II of this Options Study continued the review of nuclear fuel cycle options that was initiated and documented during Phase I, concentrating on reviewing and summarizing the potential of integrated nuclear fuel cycles. However, based on the reviews of previous studies and available data, it was not always possible to clearly determine sufficiently large differences between the various fuel cycle and technology options for some of the issues or evaluation measures, for example, in cases where only incremental differences with respect to the issues might be achieved regardless of the fuel cycle option or technologies being considered, or where differences were insufficient to clearly rise above the uncertainties.

  4. Structure determination of enterovirus 71

    SciTech Connect (OSTI)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-02-20T23:59:59.000Z

    Enterovirus 71 is a picornavirus that causes hand, foot and mouth disease but may induce fatal neurological illness in infants and young children. Enterovirus 71 crystallized in a body-centered orthorhombic space group with two particles in general orientations in the crystallographic asymmetric unit. Determination of the particle orientations required that the locked rotation function excluded the twofold symmetry axes from the set of icosahedral symmetry operators. This avoided the occurrence of misleading high rotation-function values produced by the alignment of icosahedral and crystallographic twofold axes. Once the orientations and positions of the particles had been established, the structure was solved by molecular replacement and phase extension.

  5. Nanoengineered membranes for controlled transport

    DOE Patents [OSTI]

    Doktycz, Mitchel J. (Oak Ridge, TN) [Oak Ridge, TN; Simpson, Michael L. (Knoxville, TN) [Knoxville, TN; McKnight, Timothy E. (Greenback, TN) [Greenback, TN; Melechko, Anatoli V. (Oak Ridge, TN) [Oak Ridge, TN; Lowndes, Douglas H. (Knoxville, TN) [Knoxville, TN; Guillorn, Michael A. (Knoxville, TN) [Knoxville, TN; Merkulov, Vladimir I. (Oak Ridge, TN) [Oak Ridge, TN

    2010-01-05T23:59:59.000Z

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  6. ELECTROCHEMICAL POWER FOR TRANSPORTATION

    SciTech Connect (OSTI)

    Cairns, Elton J.; Hietbrink, Earl H.

    1981-01-01T23:59:59.000Z

    This section includes some historical background of the rise and fall and subsequent rebirth of the electric vehicle; and a brief discussion of current transportation needs, and environmental and energy utilization issues that resulted in the renewed interest in applying electrochemical energy conversion technology to electric vehicle applications. Although energy utilization has evolved to be the most significant and important issue, the environmental issue will be discussed first in this section only because of its chronological occurrence. The next part of the chapter is a review of passenger and commercial electric vehicle technology with emphasis on vehicle design and demonstrated performance of vehicles with candidate power sources being developed. This is followed by a discussion of electrochemical power source requirements associated with future electric vehicles that can play a role in meeting modern transportation needs. The last part of the chapter includes first a discussion of how to identify candidate electrochemical systems that might be of interest in meeting electric vehicle power source requirements. This is then followed by a review of the current technological status of these systems and a discussion of the most significant problems that must be resolved before each candidate system can be a viable power source.

  7. Transport in Charged Colloids Driven by Thermoelectricity

    E-Print Network [OSTI]

    Alois Würger

    2014-01-29T23:59:59.000Z

    We study the thermal diffusion coefficient DT of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions.

  8. Transport Properties for Triangular Barriers in Graphene

    E-Print Network [OSTI]

    Abderrahim El Mouhafid; Ahmed Jellal

    2013-11-30T23:59:59.000Z

    We theoretically study the electronic transport properties of Dirac fermions through one and double triangular barriers in graphene. Using the transfer matrix method, we determine the transmission, conductance and Fano factor. They are obtained to be various parameters dependent such as well width, barrier height and barrier width. Therefore, different discussions are given and comparison with the previous significant works is done. In particular, it is shown that at Dirac point the Dirac fermions always own a minimum conductance associated with a maximum Fano factor and change their behaviors in an oscillatory way (irregularly periodical tunneling peaks) when the potential of applied voltage is increased.

  9. NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547

    SciTech Connect (OSTI)

    Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H. [United States Nuclear Regulatory Commission, Rockville, Maryland 20852 (United States); Pan, Y. [Center for Nuclear Waste Regulatory Analyses, San Antonio, TX 78238 (United States)

    2012-07-01T23:59:59.000Z

    Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

  10. Spent fuel integrity during transportation

    SciTech Connect (OSTI)

    Funk, C.W.; Jacobson, L.D.

    1980-01-01T23:59:59.000Z

    The conditions of recent shipments of light water reactor spent fuel were surveyed. The radioactivity level of cask coolant was examined in an attempt to find the effects of transportation on LWR fuel assemblies. Discussion included potential cladding integrity loss mechanisms, canning requirements, changes of radioactivity levels, and comparison of transportation in wet or dry media. Although integrity loss or degradation has not been identified, radioactivity levels usually increase during transportation, especially for leaking assemblies.

  11. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOE Patents [OSTI]

    The United States of America as represented by the United States Department of Energy (Washington, DC)

    2009-12-15T23:59:59.000Z

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  12. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    SciTech Connect (OSTI)

    NSTec Radioactive Waste

    2010-10-12T23:59:59.000Z

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products.

  13. Electron concentration and phase stability in NbCr2-based Laves phase alloys

    SciTech Connect (OSTI)

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-05-12T23:59:59.000Z

    Phase stability in NbCr{sub 2}-based transition-metal Laves phases was studied, based on the data reported for binary X-Cr, Nb-X, and ternary Nb-Cr-X phase diagrams. It was shown that when the atomic size ratios are kept identical, the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based transition-metal Laves phases. The e/a ratios for different Laves polytypes were determined as followed: with e/a < 5.76, the C15 structure is stabilized; at an e/a range of 5.88--7.53, the C14 structure is stabilized; with e/a > 7.65, the C15 structure is stabilized again. A further increase in the electron concentration factor (e/a > 8) leads to the disordering of the alloy. The electron concentration effect on the phase stability of Mg-based Laves phases and transition-metal A{sub 3}B intermetallic compounds is also reviewed and compared with the present observations in transition-metal Laves phases. In order to verify the e/a/phase stability relationship experimentally, additions of Cu (with e/a = 11) were selected to replace Cr in the NbCr{sub 2} Laves phase. Experimental results for the ternary Nb-Cr-Cu system are reported and discussed in terms of the correlation between the e/a ratio and phase stability in NbCr{sub 2}-based Laves phases. A new phase was found, which has an average composition of Nb-47Cr-3Cu. Within the solubility limit, the electron concentration and phase stability relationship is obeyed in the Nb-Cr-Cu system.

  14. Microfluidics Transport and Path Control via Programmable Electrowetting on Dielectric

    SciTech Connect (OSTI)

    Theodore W. Von Bitner, Ph.D.

    2002-08-22T23:59:59.000Z

    This research was conducted in collaboration with Professor Chang-Jin Kim of the University of California, Los Angeles. In phase I, the IOS-UCLA collaboration demonstrated the transport and manipulation of insulting liquid droplets using the principles of EWOD. A postage stamp sized array of electronically addressable Teflon pads, whose surface tension characteristics could be altered on command through computer algorithms, was developed and tested using deionized water as the liquid. Going beyond the tasks originally proposed for Phase I, droplet manipulation was achieved and droplet stability in the EWOD device was examined.

  15. Modeling Radionuclide Transport in Clays

    E-Print Network [OSTI]

    Zheng, L.

    2014-01-01T23:59:59.000Z

    Radionuclide Transport in Clays May 2012 Zheng, L. , J.a single sample of Opalinus Clay. Geochimica et Cosmochimicaadsorption onto kaolinite based clay minerals using FITEQL

  16. Transport Properties for Combustion Modeling

    E-Print Network [OSTI]

    Brown, N.J.

    2010-01-01T23:59:59.000Z

    a critical role in combustion processes just as chemicalparameters are essential for combustion modeling; molecularwith Application to Combustion. Transport Theor Stat 2003;

  17. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Broader source: Energy.gov (indexed) [DOE]

    Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Results of two Reports from the National Research Council...

  18. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01T23:59:59.000Z

    thereby contributing to energy security. Most also reducesuch as improved energy security, many transport GHGincluding energy cost savings, oil security, and pollution

  19. OVERVIEW OF PROPOSED TRANSPORTATION ENERGY

    E-Print Network [OSTI]

    ......................................................................................................................12 California Freight Energy Demand Model..............................................................................................13 California Transit Energy Demand ModelOVERVIEW OF PROPOSED TRANSPORTATION ENERGY ANALYSES FOR THE 2007 INTEGRATED ENERGY POLICY REPORT

  20. Sandia National Laboratories: Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Research & Capabilities, Sensors & Optical Diagnostics, Transportation Energy Allowing single-shot measurements of all major species in nonsooting flames...

  1. Sandia National Laboratories: Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, News, News & Events, Research & Capabilities, Systems Analysis, Transportation Energy By combining advanced theory and high-fidelity large eddy simulation,...

  2. Hazardous Waste Transporter Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

  3. Alternative Transportation Technologies: Hydrogen, Biofuels,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles Presented at the U.S. Department of Energy Light Duty Vehicle...

  4. Beam Phase and Energy Tolerances in the CLIC RTML

    E-Print Network [OSTI]

    Stulle, Frank

    2011-01-01T23:59:59.000Z

    Tight beam phase and energy constraints are imposed on the CLIC ring to main linac transport (RTML) to achieve the demanded performance of the following main linac and at the interaction point. A major issue will be energy jitter which is converted by the bunch compressor chicanes into beam phase jitter. Constraints on the two bunch compression stages, the booster linac and the incoming beam are evaluated. As an alternative to the current second stage of bunch compression a beam line is studied which inherently prevents incoming energy jitter from becoming beam phase jitter while preserving the required bunch compression.

  5. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01T23:59:59.000Z

    Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

  6. Controlled particle transport in a plasma chamber with striped electrode

    SciTech Connect (OSTI)

    Jiang Ke; Li Yangfang; Shimizu, T.; Konopka, U.; Thomas, H. M.; Morfill, G. E. [Max-Planck-Institute for Extraterrestrial Physics, 85748 Garching (Germany)

    2009-12-15T23:59:59.000Z

    The controlled transport of micrometer size dust particles in a parallel-plate radio frequency discharge has been investigated. The lower stainless steel electrode consisted of 100 independently controllable electrical metal stripes. The voltage signals on these stripes were modulated, causing traveling plasma sheath distortions. Because the particles trapped in local potential wells moved according to the direction of the distortion, the transport velocity could be actively controlled by adjusting frequencies and phase shifts of the applied periodic voltage signals. To investigate the detailed principle of this transport, molecular dynamic simulations was performed to reproduce the observations with the plasma background conditions calculated by separated particle-in-cell simulations for the experimental parameters. The findings will help develop novel technologies for investigating large-scale complex plasma systems and techniques for achieving clean environments in plasma processing reactors.

  7. Proton Transport by the Influenza M2 Protein Gregory S. Boebinger, National High Magnetic Field Laboratory

    E-Print Network [OSTI]

    Weston, Ken

    Proton Transport by the Influenza M2 Protein Gregory S. Boebinger, National High Magnetic Field infections) in native like lipid bilayers has allowed us to determine a novel mechanism for proton transport that has not been observed in any other protein. At the heart of this proton channel is a set of 4

  8. Spin-dependent thermoelectric transport coefficients in near perfect quantum wires A. Ramsak,1,2

    E-Print Network [OSTI]

    Ramsak, Anton

    Spin-dependent thermoelectric transport coefficients in near perfect quantum wires T. Rejec,1 A 2002 Thermoelectric transport coefficients are determined for semiconductor quantum wires with weak in thermoelectric coefficients are also found in standard strongly correlated systems: the Anderson model,6

  9. The Low-Recycling Lithium Boundary and Implications for Plasma Transport

    E-Print Network [OSTI]

    Hammett, Greg

    The Low-Recycling Lithium Boundary and Implications for Plasma Transport Erik Michael Granstedt transport mechanism in high-temperature low-recycling fusion experiments, and in the absence of stabilizing hydrogen and impurity emission in LTX in order to determine the lower bound on recycling that can

  10. MARITIME ADMINISTRATION U.S. Department of Transportation

    E-Print Network [OSTI]

    US Army Corps of Engineers

    to be determined One-on-one Interviews Key stakeholders at ports, railroads, shippers, logistics service Logistics and market issues Agricultural Production and Exports Energy extraction equipment and bulk of agricultural trade Consider more efficient uses of existing transportation infrastructure that might defer

  11. International Symposium Transport and Air Pollution Session 6: Biofuels 2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1Sth International Symposium Transport and Air Pollution Session 6: Biofuels 2 Determination of VOC components in the exhaust of light vehicles fuelled with different biofuels F. Gazier 1,4*, A. De/bende 1 of the emissions shows changes with the composition of the biofuel in the levels of hydrocarbons, aromatic

  12. FY 2010 Report on Customer Service Texas Transportation Institute

    E-Print Network [OSTI]

    , processes and products to improve the state and nation's transportation systems. The Texas Department and to identify areas of improvement. On-site interviews were conducted at 36 TxDOT offices (25 TxDOT Districts for a sponsoring agency or organization, and who determine overall direction for their agency's or company

  13. Ion transport through a graphene nanopore

    E-Print Network [OSTI]

    Guohui Hu; Mao Mao; Sandip Ghosal

    2013-01-09T23:59:59.000Z

    Molecular dynamics simulation is utilized to investigate the ionic transport of NaCl in solution through a graphene nanopore under an applied electric field. Results show the formation of concentration polarization layers in the vicinity of the graphene sheet. The non-uniformity of the ion distribution gives rise to an electric pressure which drives vortical motions in the fluid if the electric field is sufficiently strong to overcome the influence of viscosity and thermal fluctuations. The relative importance of hydrodynamic transport and thermal fluctuations in determining the pore conductivity is investigated. A second important effect that is observed is the mass transport of water through the nanopore, with an average velocity proportional to the applied voltage and independent of the pore diameter. The flux arises as a consequence of the asymmetry in the ion distribution with respect to reflection about the plane of the graphene sheet. The accumulation of liquid molecules in the vicinity of the nanopore due to reorientation of the water dipoles by the local electric field is seen to result in a local increasein the liquid density. Results confirm that the electric conductance is proportional to the nanopore diameter for the parameter regimes that we simulated. The occurrence of fluid vortices is found to result in an increase in the effective electrical conductance.

  14. RADIATION-INDUCED DECOMPOSITION OF U(VI) ALTERATION PHASES OF UO2

    SciTech Connect (OSTI)

    S. Utsunomiya; R.C. Ewing

    2005-09-08T23:59:59.000Z

    U{sup 6+}-phases are common alteration products of spent nuclear fuel under oxidizing conditions, and they may potentially incorporate actinides, such as long-lived {sup 239}Pu and {sup 237}Np, delaying their transport to the biosphere. In order to evaluate the ballistic effects of {alpha}-decay events on the stability of the U{sup 6+}-phases, we report, for the first time, the results of ion beam irradiations (1.0 MeV Kr{sup 2+}) for six different structures of U{sup 6+}-phases: uranophane, kasolite, boltwoodite, saleeite, carnotite, and liebigite. The target uranyl-minerals were characterized by powder X-ray diffraction and identification confirmed by SAED (selected area electron diffraction) in TEM (transmission electron microscopy). The TEM observation revealed no initial contamination of uraninite in these U{sup 6+} phases. All of the samples were irradiated with in situ TEM observation using 1.0 MeV Kr{sup 2+} in the IVEM (intermediate-voltage electron microscope) at the IVEM-Tandem Facility of Argonne National Laboratory. The ion flux was 6.3 x 10{sup 11} ions/cm{sup 2}/sec. The specimen temperatures during irradiation were 298 and 673 K, respectively. The Kr{sup 2+}-irradiation decomposed the U{sup 6+}-phases to nanocrystals of UO{sub 2} at doses as low as 0.006 dpa. The cumulative doses for the pure U{sup 6+}-phases, e.g., uranophane, at 0.1 and 1 million years (m.y.) are calculated to be 0.009 and 0.09 dpa using SRIM2003. However, with the incorporation of 1 wt.% {sup 239}Pu, the calculated doses reach 0.27 and {approx}1.00 dpa in ten thousand and one hundred thousand years, respectively. Under oxidizing conditions, multiple cycles of radiation-induced decomposition to UO{sub 2} followed by alteration to U{sup 6+}-phases should be further investigated to determine the fate of trace elements that may have been incorporated in the U{sup 6+}-phases.

  15. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01T23:59:59.000Z

    In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Processing of perovskites of LSC, LSF and LSCF composition for evaluation of mechanical properties as a function of environment are begun. The studies are to be in parallel with LSFCO composition to characterize the segregation of cations and slow crack growth in environmental conditions. La{sub 1-x}Sr{sub x}FeO{sub 3-d} has also been characterized for paramagnetic ordering at room temperature and the evolution of magnetic moments as a function of temperature are investigated. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport.

  16. Hydrogen transport membranes

    DOE Patents [OSTI]

    Mundschau, Michael V.

    2005-05-31T23:59:59.000Z

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  17. Modeling the Transport Sector: The Role of Existing Fuel Taxes in Climate Policy

    E-Print Network [OSTI]

    Paltsev, Sergey.

    Existing fuel taxes play a major role in determining the welfare effects of exempting the transportation sector from measures to control greenhouse gases. To study this phenomenon we modify the MIT Emissions Prediction and ...

  18. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-04-09T23:59:59.000Z

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  19. Conceptual design report for immobilized high-level waste interim storage facility (Phase 1)

    SciTech Connect (OSTI)

    Burgard, K.C.

    1998-06-02T23:59:59.000Z

    The Hanford Site Canister Storage Building (CSB Bldg. 212H) will be utilized to interim store Phase 1 HLW products. Project W-464, Immobilized High-Level Waste Interim Storage, will procure an onsite transportation system and retrofit the CSB to accommodate the Phase 1 HLW products. The Conceptual Design Report establishes the Project W-464 technical and cost basis.

  20. Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Manipulating particle trajectories with phase-control in surface acoustic wave microfluidics Nathan microfluidic flow mixer Biomicrofluidics 6, 012803 (2012) Cell separation and transportation between two particle trajectories with phase-control in surface acoustic wave microfluidics Nathan D. Orloff,1 Jaclyn R

  1. Technical Analysis of the Hydrogen Energy Station Concept, Phase I and Phase II

    SciTech Connect (OSTI)

    TIAX, LLC

    2005-05-04T23:59:59.000Z

    Phase I Due to the growing interest in establishing a domestic hydrogen infrastructure, several hydrogen fueling stations already have been established around the country as demonstration units. While these stations help build familiarity with hydrogen fuel in their respective communities, hydrogen vehicles are still several years from mass production. This limited number of hydrogen vehicles translates to a limited demand for hydrogen fuel, a significant hurdle for the near-term establishment of commercially viable hydrogen fueling stations. By incorporating a fuel cell and cogeneration system with a hydrogen fueling station, the resulting energy station can compensate for low hydrogen demand by providing both hydrogen dispensing and combined heat and power (CHP) generation. The electrical power generated by the energy station can be fed back into the power grid or a nearby facility, which in turn helps offset station costs. Hydrogen production capacity not used by vehicles can be used to support building heat and power loads. In this way, an energy station can experience greater station utility while more rapidly recovering capital costs, providing an increased market potential relative to a hydrogen fueling station. At an energy station, hydrogen is generated on-site. Part of the hydrogen is used for vehicle refueling and part of the hydrogen is consumed by a fuel cell. As the fuel cell generates electricity and sends it to the power grid, excess heat is reclaimed through a cogeneration system for use in a nearby facility. Both the electrical generation and heat reclamation serve to offset the cost of purchasing the equivalent amount of energy for nearby facilities and the energy station itself. This two-phase project assessed the costs and feasibility of developing a hydrogen vehicle fueling station in conjunction with electricity and cogenerative heat generation for nearby Federal buildings. In order to determine which system configurations and operational patterns would be most viable for an energy station, TIAX developed several criteria for selecting a representative set of technology configurations. TIAX applied these criteria to all possible technology configurations to determine an optimized set for further analysis, as shown in Table ES-1. This analysis also considered potential energy station operational scenarios and their impact upon hydrogen and power production. For example, an energy station with a 50-kWe reformer could generate enough hydrogen to serve up to 12 vehicles/day (at 5 kg/fill) or generate up to 1,200 kWh/day, as shown in Figure ES-1. Buildings that would be well suited for an energy station would utilize both the thermal and electrical output of the station. Optimizing the generation and utilization of thermal energy, hydrogen, and electricity requires a detailed look at the energy transfer within the energy station and the transfer between the station and nearby facilities. TIAX selected the Baseline configuration given in Table ES-1 for an initial analysis of the energy and mass transfer expected from an operating energy station. Phase II The purpose of this technical analysis was to analyze the development of a hydrogen-dispensing infrastructure for transportation applications through the installation of a 50-75 kW stationary fuel cell-based energy station at federal building sites. The various scenarios, costs, designs and impacts of such a station were quantified for a hypothetical cost-shared program that utilizes a natural gas reformer to provide hydrogen fuel for both the stack(s) and a limited number of fuel cell powered vehicles, with the possibility of using cogeneration to support the building heat load.

  2. 22nd Annual Transportation Research Conference

    E-Print Network [OSTI]

    Minnesota, University of

    22nd Annual Transportation Research Conference May 24-25, 2011 Crowne Plaza St. Paul Riverfront for Transportation Studies 22nd Annual Transportation Research Conference Welcome to the Conference The University of Minnesota's Center for Transportation Studies is pleased to present its 22nd Annual Transportation Research

  3. Information House Committee on Transportation

    E-Print Network [OSTI]

    . The energy efficiency and environmental advantage of rail over trucks are well established in terms Transportation Institute Page 2 MULTIMODAL FREIGHT Texas has a well developed and efficient multimodal, or more than $690 billion. Railroads transport more than a third of the tonmiles for freight valued

  4. Radioactive Material Transportation Practices Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04T23:59:59.000Z

    This Manual establishes standard transportation practices for the Department of Energy, including National Nuclear Security Administration to use in planning and executing offsite shipments of radioactive materials and waste. The revision reflects ongoing collaboration of DOE and outside organizations on the transportation of radioactive material and waste. Cancels DOE M 460.2-1.

  5. Road Weather and Transportation Systems

    E-Print Network [OSTI]

    Bertini, Robert L.

    Road Weather and Transportation Systems Rhonda Young, P.E., PhD Associate Professor Dept. of Civil & Arch. Engineering Portland State University April 18, 2014 #12;Engineering Perspective of Road Weather · How does weather impact transportation systems? · As engineers, is there anything we can do

  6. 2030 Transportation and Mobility Plan

    E-Print Network [OSTI]

    Bi-State Metropolitan Planning Organization

    2006-08-11T23:59:59.000Z

    The Bi-State MPO 2030 T RANSPORTATION A N D MOBILITY PLAN Transport t at t i i on Invest t ment t s f f... 2030 Transportation and Mobility Plan Prepared by: The Bi-State MPO Staff In cooperation with: The Cities and Towns of Alma Arkoma Barling Bonanza Fort Smith Greenwood Kibler Lavaca Moffett Muldrow Pocola Roland Rudy Spiro...

  7. San Angelo Metropolitan Transportation Plan

    E-Print Network [OSTI]

    San Angelo Metropolitan Planning Organization

    2009-11-16T23:59:59.000Z

    : City of San Angelo Tom Green County Concho Valley Transit District Texas Department of Transportation U.S. Department of Transportation Federal Highway Administration Federal Transit Administration Approved... Director Concho Valley Council of Governments * Elected Non-Voting Members Drew Darby* State Representative, State of Texas Robert Duncan* State Senator, State of Texas Peggy Thurin Statewide Planning Coordinator...

  8. Contaminant Transport in Hydrogeologic Systems 

    E-Print Network [OSTI]

    Chin, C.; Redden, D. L.

    1981-01-01T23:59:59.000Z

    , the evaluation of dispersivity under field conditions is a costly and time consuming job. The process of transporting a specific conservative ion species in an aquifer is analogous to the transport of heat in the system. Because of this analogy, the original...

  9. CREATING A BALANCED TRANSPORTATION SYSTEM

    E-Print Network [OSTI]

    Bertini, Robert L.

    think we need to make people aware that our traffic concepts of today are not sustainable) Orange .Transport . Architecture .Water management . #12;5 The Netherlands (as it is) Orange .Transport . Architecture .Water management . #12;6 United States Oregon Portland The Netherlands Utrecht Founded 1776 1859

  10. 7, 38373857, 2007 Global transports

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and 180 are still transporting into soil and water. It is found that lighter PCBs have more long range international concern with identifying and managing environmentally persistent substances that are bothACPD 7, 3837­3857, 2007 Global transports and budgets of PCBs P. Huang et al. Title Page Abstract

  11. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham

    2006-12-31T23:59:59.000Z

    Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

  12. Stabilising the Blue Phases

    E-Print Network [OSTI]

    G. P. Alexander; J. M. Yeomans

    2006-09-22T23:59:59.000Z

    We present an investigation of the phase diagram of cholesteric liquid crystals within the framework of Landau - de Gennes theory. The free energy is modified to incorporate all three Frank elastic constants and to allow for a temperature dependent pitch in the cholesteric phase. It is found that the region of stability of the cubic blue phases depends significantly on the value of the elastic constants, being reduced when the bend elastic constant is larger than splay and when twist is smaller than the other two. Most dramatically we find a large increase in the region of stability of blue phase I, and a qualitative change in the phase diagram, in a system where the cholesteric phase displays helix inversion.

  13. Oxygen Transport Ceramic Membranes

    SciTech Connect (OSTI)

    S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

    2005-11-01T23:59:59.000Z

    The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

  14. Interference Effect in Multi-level Transport through a Quantum Dot Hisashi Aikawa, Kensuke Kobayashi, Akira Sano, Shingo Katsumoto, and Yasuhiro Iye

    E-Print Network [OSTI]

    Katsumoto, Shingo

    to the leads and the phase of traversing electrons is locked. We have detected the phase change at the vertices and a model to solve the problem of "in-phase Coulomb peaks" ubiquitously observed in transport through of Coulomb-diamond-like structures in the excitation spectrum. One of the two levels is strongly coupled

  15. INTERFACIAL AREA TRANSPORT AND REGIME TRANSITION IN COMBINATORIAL CHANNELS

    SciTech Connect (OSTI)

    Seugjin Kim

    2011-01-28T23:59:59.000Z

    . This study investigates the geometric effects of 90-degree vertical elbows and flow configurations in two-phase flow. The study shows that the elbows make a significant effect on the transport characteristics of two-phase flow, which includes the changes in interfacial structures, bubble interaction mechanisms and flow regime transition. The effect of the elbows is characterized for global and local two-phase flow parameters. The global two-phase flow parameters include two-phase pressure, interfacial structures and flow regime transition. In order to characterize the frictional pressure drop and minor loss across the vertical elbows, pressure measurements are obtained across the test section over a wide range of flow conditions in both single-phase and two-phase flow conditions. A two-phase pressure drop correlation analogous to Lockhart-Martinelli correlation is proposed to predict the minor loss across the elbows. A high speed camera is employed to perform extensive flow visualization studies across the elbows in vertical upward, horizontal and vertical downward sections and modified flow regime maps are proposed. It is found that modified flow regime maps immediately downstream of the vertical upward elbow deviate significantly from the conventional flow regime map. A qualitative assessment of the counter-current flow limitation characteristics specific to the current experimental facility is performed. A multi-sensor conductivity probe is used to measure local two-phase flow parameters such as: void fraction, bubble velocity, interfacial area concentration and bubble frequency. The local measurements are obtained for six different flow conditions at ten measurement locations along axial direction of the test section. Both the vertical-upward and vertical-downward elbows have a significant impact on bubble distribution, resulting in, a bimodal distribution along the horizontal radius of the tube cross-section and migration of bubbles towards the inside of the elbow curvatures immediately downstream of the vertical-upward and vertical-downward elbows, respectively. The elbow effect decays further downstream of the elbow and bubbles migrate to more conventional distribution patterns. The axial transport of void fraction and interfacial area concentration shows that the elbows promote bubble disintegration. Preliminary comparisons between the interfacial area transport model and the experimental data for verticalupward and vertical downward section are also presented.

  16. Transportation Research Board Conference January 10, 2005 Using Custom Transportation Data

    E-Print Network [OSTI]

    Bertini, Robert L.

    Transportation Research Board Conference January 10, 2005 Using Custom Transportation Data Collection Software with Handheld Computers for Education, Research, and Practice Transportation Research, Andrew Byrd, Michael Rose, Tarek Abou El-Seoud #12;Transportation Research Board Conference January 10

  17. Chaotic Transport in Planar Periodic Vortical Flows

    E-Print Network [OSTI]

    Taehoon Ahn; Seunghwan Kim

    1993-09-24T23:59:59.000Z

    We have studied a chaotic transport in a two-dimensional periodic vortical flow under a time-dependent perturbation with period T where the global diffusion occurs along the stochastic web. By using the Melnikov method we construct the separatrix map describing the approximate dynamics near the saddle separatrices. Focusing on the small T, the width of the stochastic layer is calculated analytically by using the residue criterion and the diffusion constant by using the random phase assumption and correlated random walks. The analytical results are in good agreements with the results of two different types of numerical simulations by integrations of the Hamilton's equation of motion and by iterations of the separatrix map, which establishes the validity of the use of the separatrix map.

  18. NORIA. Nonisothermal Two-Phase Porous Flow

    SciTech Connect (OSTI)

    Bixler, N.E. [Sandia National Labs., Albuquerque, NM (United States)

    1992-02-26T23:59:59.000Z

    NORIA is a finite element program that simultaneously solves four nonlinear parabolic, partial differential equations that describe the transport of water, water vapor, air, and energy through partially saturated porous media. NORIA is designed for the analysis of two-dimensional, non-isothermal, unsaturated porous flow problems. Nearly all material properties, such as permeability, can either be set to constant values or defined as functions of the dependent and independent variables by user-supplied subroutines. The gas phase is taken to be ideal. NORIA is intended to solve nonisothermal problems in which large gradients are expected in the gas pressure.

  19. Flexoelectric blue phases

    E-Print Network [OSTI]

    G P Alexander; J M Yeomans

    2007-07-01T23:59:59.000Z

    We describe the occurence and properties of liquid crystal phases showing two dimensional splay and bend distortions which are stabilised by flexoelectric interactions. These phases are characterised by regions of locally double splayed order separated by topological defects and are thus highly analogous to the blue phases of cholesteric liquid crystals. We present a mean field analysis based upon the Landau--de Gennes Q-tensor theory and construct a phase diagram for flexoelectric structures using analytic and numerical results. We stress the similarities and discrepancies between the cholesteric and flexoelectric cases.

  20. Thermodynamically Stable Blue Phases

    E-Print Network [OSTI]

    F. Castles; S. M. Morris; E. M. Terentjev; H. J. Coles

    2011-01-28T23:59:59.000Z

    We show theoretically that flexoelectricity stabilizes blue phases in chiral liquid crystals. Induced internal polarization reduces the elastic energy cost of splay and bend deformations surrounding singular lines in the director field. The energy of regions of double twist is unchanged. This in turn reduces the free energy of the blue phase with respect to that of the chiral nematic phase, leading to stability over a wider temperature range. The theory explains the discovery of large temperature range blue phases in highly flexoelectric "bimesogenic" and "bent-core" materials, and predicts how this range may be increased further.

  1. Holographic Magnetic Phase Transition

    E-Print Network [OSTI]

    Gilad Lifschytz; Matthew Lippert

    2009-06-21T23:59:59.000Z

    We study four-dimensional interacting fermions in a strong magnetic field, using the holographic Sakai-Sugimoto model of intersecting D4 and D8 branes in the deconfined, chiral-symmetric parallel phase. We find that as the magnetic field is varied, while staying in the parallel phase, the fermions exhibit a first-order phase transition in which their magnetization jumps discontinuously. Properties of this transition are consistent with a picture in which some of the fermions jump to the lowest Landau level. Similarities to known magnetic phase transitions are discussed.

  2. Phase 1 -- 4

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements" " " "Phase Two - Initial Project Development" "Replace Std Task 2-1","DO RFP Development - On Site Consultation","FEMP Services will provide technical consultation...

  3. Multi-Path Transportation Futures Study - Lessons for the Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study Multi-Path Transportation Futures Study - Lessons for the Transportation Energy...

  4. Transportation Center Seminar Series presents..... Marshall Lindsey

    E-Print Network [OSTI]

    Bustamante, Fabián E.

    Transportation Center Seminar Series presents..... Marshall Lindsey Transportation Center for reducing automobile use. Bio: Marshall Lindsey has a BS in Chemical Engineering from Case Western emissions associated with transportation in Chicago. In addition to his academic pursuits, Marshall has

  5. Molecular Weight & Energy Transport 7 September 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    't transport the bulk of the energy in the sun. #12;Molecular Weight & Energy Transport 7 September 2011 Goals · Review mean molecular weight this intuitively before looking back at your quantitative results. #12;molecular weight & energy transport 2 Energy

  6. PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES

    E-Print Network [OSTI]

    Bertini, Robert L.

    PORTLAND STATE UNIVERSITY CENTER FOR TRANSPORTATION STUDIES DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING SCHOOL OF URBAN STUDIES AND PLANNING First Annual Portland Metropolitan Region Transportation System Performance Report September 8, 2004 #12;2First Annual Portland Metropolitan Region Transportation

  7. Report on the 1961 TRANSPORTATION RESEARCH--------.. . -. .

    E-Print Network [OSTI]

    ) ) ) Report on the 1961 TRANSPORTATION RESEARCH--------.. . -. . AND SERVICE ACTIVITIES IC C Negotiations with carriers ..·..... Resea rch activities ·...........·... Transportation Section staff resea rch . Transportation rate indexes .... Fish meal, scrap, and solublf's information

  8. Parking & Transportation Department RESIDENT -PERSONAL INFORMATION

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Parking & Transportation Department RESIDENT - PERSONAL INFORMATION Date know if you are interested in: Public Transportation Car Pool Van Pool _____________________________________________________________________________________ Please be sure to contact the Parking & Transportation Department with any changes to your information, i

  9. It's About Time: Investing in Transportation to

    E-Print Network [OSTI]

    MARCH 2011 It's About Time: Investing in Transportation to Keep Texas Economically Competitive #12 of Contents Preface 1 The Challenge Facing Texans 3 Texas Transportation Action Principles 6 Texas' Deteriorating Transportation System: Background and Measurement 8 Baseline Scenario: Unacceptable Conditions

  10. Public School Transportation National and Regional

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Public School Transportation National and Regional Perspectives: An Update Presented to Education University #12;Table of Contents I. Current Transportation Funding Policies ..................................................................................................................................1 B. Transportation Funding Options Used by States

  11. Baton Rouge Metropolitan Transportation Plan Update

    E-Print Network [OSTI]

    Capital Region Planning Commission

    (028) SUBMITTED TO: LOUISIANA DEPARTMENT OF TRANSPORTATION AND DEVELOPMENT SUBMITTED BY: IN ASSOCIATION WITH: & FINAL Metropolitan Transportation Plan Update Baton Rouge, LA... ............................189? X. APPENDIX .........................................................................................................................195? ? Metropolitan Transportation Plan Update...

  12. Anomalous transport through porous and fractured media

    E-Print Network [OSTI]

    Kang, Peter Kyungchul

    2014-01-01T23:59:59.000Z

    Anomalous transport, understood as the nonlinear scaling with time of the mean square displacement of transported particles, is observed in many physical processes, including contaminant transport through porous and fractured ...

  13. Biofuel Feedstock Inter-Island Transportation

    E-Print Network [OSTI]

    Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office ........................................................................... 11 Options for liquid biofuel feedstock transport ............................................................................. agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid

  14. Fuel Cells for Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

  15. Metastable phase boundaries of quasicrystalline phases. [Al-Mn; Al-Ru

    SciTech Connect (OSTI)

    Follstaedt, D.M.; Knapp, J.A.

    1987-01-01T23:59:59.000Z

    The melting curve (T/sub 0/) of the metastable icosahedral phase and the liquidus of the decagonal phase of Al-Mn have been obtained for 14 to 22 at. % Mn. Icosahedral Al-Mn has a congruent melting point of 910 +- 20/sup 0/C at 20 at. % Mn, and melts approx.30/sup 0/C lower than crystalline compounds with the same composition. Icosahedral Al/sub 82/Ru/sub 18/ was determined to melt at 1260 +- 30/sup 0/C. These results were obtained by forming single-phase icosahedral alloys with ion beam mixing, and by rapid heating to accurately known temperatures with electron beams.

  16. THE PHASES DIFFERENTIAL ASTROMETRY DATA ARCHIVE. I. MEASUREMENTS AND DESCRIPTION

    E-Print Network [OSTI]

    Muterspaugh, Matthew W.

    The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) monitored 51 subarcsecond binary systems to determine precision binary orbits, study the geometries of triple and quadruple star systems, and ...

  17. U.S. Virgin Islands Transportation Petroleum Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2011-09-01T23:59:59.000Z

    This NREL technical report determines a way for USVI to meet its petroleum reduction goal in the transportation sector. It does so first by estimating current petroleum use and key statistics and characteristics of USVI transportation. It then breaks the goal down into subordinate goals and estimates the petroleum impacts of these goals with a wedge analysis. These goals focus on reducing vehicle miles, improving fuel economy, improving traffic flow, using electric vehicles, using biodiesel and renewable diesel, and using 10% ethanol in gasoline. The final section of the report suggests specific projects to achieve the goals, and ranks the projects according to cost, petroleum reduction, time frame, and popularity.

  18. East Texas Regional Transportation Coordination Plan

    E-Print Network [OSTI]

    East Texas Council of Governments

    transportation resources are utilized as efficiently as possible, the Texas Legislature passed HB 3588 in 2003, which amended the Texas Transportation Code to add Chapter 461 ? Statewide Coordination of Public Transportation. Its overall purpose is to maximize... transportation resources by coordinating services. The intent of coordination is to eliminate waste, generate increased efficiencies, and further the state?s efforts to reduce air pollution (Texas Statutes Transportation Code, 2006). The Texas Transportation...

  19. OXYGEN TRANSPORT CERAMIC MEMBRANES

    SciTech Connect (OSTI)

    Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

    2003-01-01T23:59:59.000Z

    In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

  20. Toward alternative transportation fuels

    SciTech Connect (OSTI)

    Sperling, D. (Univ. of California, Davis (USA))

    1990-01-01T23:59:59.000Z

    At some time in the future the U.S. will make a transition to alternative fuels for transportation. The motivation for this change is the decline in urban air quality and the destruction of the ozone layer. Also, there is a need for energy independence. The lack of consensus on social priorities makes it difficult to compare benefits of different fuels. Fuel suppliers and automobile manufacturers would like to settle on a single alternative fuel. The factors of energy self-sufficiency, economic efficiency, varying anti-pollution needs in different locales, and global warming indicate a need for multiple fuels. It is proposed that instead of a Federal command-and-control type of social regulation for alternative fuels for vehicles, the government should take an incentive-based approach. The main features of this market-oriented proposal would be averaging automobile emission standards, banking automobile emissions reductions, and trading automobile emission rights. Regulation of the fuel industry would allow for variations in the nature and magnitude of the pollution problems in different regions. Different fuels or fuel mixture would need to be supplied for each area. The California Clean Air Resources Board recently adopted a fuel-neutral, market-oriented regulatory program for reducing emissions. This program will show if incentive-based strategies can be extended to the nation as a whole.