Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Outlook for the Transport Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

2

Winter Fuels Outlook  

Annual Energy Outlook 2012 (EIA)

NCAC-USAEE October 24, 2014 | Washington, DC By Adam Sieminski, Administrator U.S. Energy Information Administration NCAC-USAEE Luncheon October 24, 2014 2 Winter Outlook...

3

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

4

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

5

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

6

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

7

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

8

EIA - International Energy Outlook 2008-Liquid Fuels  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Chapter 2 - Liquid Fuels World liquids consumption increases from 84 million barrels per day in 2005 to 99 million barrels per day in 2030 in the IEO2008 high price case. In the reference case, which reflects a price path that departs significantly from prices prevailing in the first 8 months of 2008, liquids use rises to 113 million barrels per day in 2030. Figure 26. World Liquids Production in the Reference Case, 1990-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800.

9

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

10

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

11

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the world’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nation’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

12

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

13

Short-Term Energy and Winter Fuels Outlook October 2013  

Gasoline and Diesel Fuel Update (EIA)

and Winter Fuels Outlook October 2013 1 and Winter Fuels Outlook October 2013 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas and propane will increase by 13% and 9%, respectively, this winter heating season (October 1 through March 31) compared with last winter. Projected U.S. household expenditures are 2% higher for electricity and 2% lower for heating oil this winter. Although EIA expects average expenditures for households that heat with natural gas will be significantly higher than last winter, spending for gas heat will still be lower than the previous 5-year average (see EIA Short-Term Energy and Winter Fuels Outlook slideshow).  Brent crude oil spot prices fell from a recent peak of $117 per barrel in early September to

14

Winter Fuels Outlook Conference Rescheduled for November 1 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winter Fuels Outlook Conference Rescheduled for November 1 Winter Fuels Outlook Conference Rescheduled for November 1 Winter Fuels Outlook Conference Rescheduled for November 1 October 7, 2013 - 9:50am Addthis DOE's Office of Electricity Delivery and Energy Reliability, Energy Information Administration, and the National Association of State Energy Officials will host the 2013 - 2014 Winter Fuels Outlook Conference on November 1 at the National Press Club in Washington, DC. Originally scheduled for October 8, the conference has been rescheduled due to the shutdown of the Federal government. This supply and demand forecast event will address the effects of projected weather and market factors that may affect the supply, distribution and prices of petroleum, natural gas and electricity this winter. For more information and to register for the

15

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Light-Duty-Vehicle Fuel Demand Outlook for Light-Duty-Vehicle Fuel Demand Gasoline and distillate demand impact of the Energy Independance and Security Act of 2007...

16

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

17

Registration Open for Winter Fuels Outlook Conference on October 10, 2012 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 Registration Open for Winter Fuels Outlook Conference on October 10, 2012 September 12, 2012 - 11:16am Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, U.S. Energy Information Administration (EIA), and the National Association of State Energy Officials are hosting the 2012 - 2013 Winter Fuels Outlook Conference on Wednesday, October 10, 2012 in Washington, DC. This important supply and demand forecast event will address global oil supply uncertainty; the effects of projected winter weather on the demand for heating and key transportation fuels; and a range of market factors that may impact the supply, distribution and prices of petroleum, natural gas and electricity this winter. This annual event helps to inform the entire energy policy and business

18

April 2013 Short-Term Energy and Summer Fuels Outlook  

Gasoline and Diesel Fuel Update (EIA)

and Summer Fuels Outlook and Summer Fuels Outlook (STEO) Highlights  During the April-through-September summer driving season this year, regular gasoline retail prices are forecast to average $3.63 per gallon. The projected monthly average regular retail gasoline price falls from $3.69 per gallon in May to $3.57 per gallon in September. EIA expects regular gasoline retail prices to average $3.56 per gallon in 2013 and $3.39 per gallon in 2014, compared with $3.63 per gallon in 2012. The July 2013 New York harbor reformulated blendstock for oxygenate blending (RBOB) futures contract averaged $2.97 per gallon for the five trading days ending April 4, 2013. Based on the market value of

19

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

GDP per capita Transport Future outlook Drivers of Transport Energyenergy demand per passenger-km. Figure 20. Car Ownership and GDP

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

20

EIA - Assumptions to the Annual Energy Outlook 2009 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2009 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy.

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Worldwide electricity consumption in 2020 is projected to be 76 percent higher than its 1997 level. Long-term growth in electricity consumption is expected to be strongest in the developing economies of Asia, followed by Central and South America. The projected growth rates for electricity consumption in the developing Asian nations are close to 5 percent per year over the International Energy Outlook 2000 (IEO2000) forecast period (Table 20), and the growth rate for Central and South America averages about 4.2 percent per year. As a result, the developing nations in the two regions

22

Registration Open for Winter Fuels Outlook Conference on October 12, 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registration Open for Winter Fuels Outlook Conference on October Registration Open for Winter Fuels Outlook Conference on October 12, 2011 Registration Open for Winter Fuels Outlook Conference on October 12, 2011 September 19, 2011 - 4:55pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability, U.S. Energy Information Administration (EIA), and the National Association of State Energy Officials invite you to participate in the 2011 - 2012 Winter Fuels Outlook Conference. This important supply and demand forecast event will be held on Wednesday, October 12, 2011, from 7:30 a.m. - 3:30 p.m. at The Newseum, 555 Pennsylvania Avenue, N.W., Washington, DC 20001. Event Information Winter Fuels Conference Site Preliminary Agenda Online Registration Addthis Related Articles Registration Open for Winter Fuels Outlook Conference on October 10, 2012

23

EIA - International Energy Outlook 2008-Liquid Fuels Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Figure 26. World Liquids Production in the Reference Case, 1990-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. World Liquids Consumption by Sector, 2005-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 29. World Liquids Consumption by Region and Country Group, 2005 and 2030 Figure 29 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 30. Nominal World Oil Prices in three Cases, 1980-2030 Figure 30 Data. Need help, contact the National Energy Information Center at 202-586-8800.

24

Modelling transport fuel demand  

Science Journals Connector (OSTI)

Transport fuels account for an increasing share of oil ... interest to study the economics of the transport fuel market and thereby to evaluate the efficiency of the price mechanism as an instrument of policy in ...

Thomas Sterner; Carol A. Dahl

1992-01-01T23:59:59.000Z

25

DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013 DOE, EIA, and NASEO Host Winter Fuels Outlook Conference on October 8, 2013 September 26, 2013 - 11:12am Addthis DOE's Office of Electricity Delivery and Energy Reliability, Energy Information Administration, and the National Association of State Energy Officials will host the 2013 - 2014 Winter Fuels Outlook Conference on October 8 at the National Press Club in Washington, DC. This supply and demand forecast event will address the effects of projected weather and market factors that may affect the supply, distribution and prices of petroleum, natural gas and electricity this winter. For more information and to register for the event, visit the 2013 Winter Fuels Outlook Conference website.

26

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

27

Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumption to the Annual Energy Outlook Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).109 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

28

EIA - Assumptions to the Annual Energy Outlook 2008 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2008 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

29

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

30

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

31

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

32

Alternative Fuel Transportation Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

federal federal register Monday May 17, 1999 Part II Department of Energy Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 Alternative Fuel Transportation Program; P-series Fuels; Final Rule 26822 Federal Register / Vol. 64, No. 94 / Monday, May 17, 1999 / Rules and Regulations DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 [Docket No. EE-RM-98-PURE] RIN 1904-AA99 Alternative Fuel Transportation Program; P-Series Fuels AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy (DOE). ACTION: Notice of final rulemaking. SUMMARY: In response to a petition filed by Pure Energy Corporation, DOE is amending the rules for the statutory program that requires certain alternative fuel providers and State government

33

International Energy Outlook 1999  

Gasoline and Diesel Fuel Update (EIA)

ieo99cvr.gif (8385 bytes) ieo99cvr.gif (8385 bytes) Preface This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The International Energy Outlook 1999 (IEO99) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. The report is an extension of EIA’s Annual Energy Outlook 1999 (AEO99), which was prepared using the National Energy Modeling System (NEMS). U.S. projections appearing in IEO99 are consistent with those published in AEO99. IEO99 is provided as a statistical service to energy managers and analysts, both in government and in the private

34

Alternative Fuels Data Center: Alternative Fuel Public Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Public Transportation Vehicle Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

35

NREL: Transportation Research - Fuels Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

36

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

37

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

38

Alternative Fuels Data Center: Clean Transportation Fuel Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Transportation Clean Transportation Fuel Standards to someone by E-mail Share Alternative Fuels Data Center: Clean Transportation Fuel Standards on Facebook Tweet about Alternative Fuels Data Center: Clean Transportation Fuel Standards on Twitter Bookmark Alternative Fuels Data Center: Clean Transportation Fuel Standards on Google Bookmark Alternative Fuels Data Center: Clean Transportation Fuel Standards on Delicious Rank Alternative Fuels Data Center: Clean Transportation Fuel Standards on Digg Find More places to share Alternative Fuels Data Center: Clean Transportation Fuel Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon

39

Alternative Fuels Data Center: Clean Transportation Fuels for School Buses  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Transportation Clean Transportation Fuels for School Buses to someone by E-mail Share Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Facebook Tweet about Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Twitter Bookmark Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Google Bookmark Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Delicious Rank Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on Digg Find More places to share Alternative Fuels Data Center: Clean Transportation Fuels for School Buses on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Clean Transportation Fuels for School Buses

40

Spent Fuel Transportation Risk Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Transportation Risk Assessment Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125 Overview for National Transportation Stakeholders Forum John Cook Division of Spent Fuel Storage and Transportation 1 SFTRA Overview Contents * Project and review teams * Purpose and goals * Basic methodology * Improvements relative to previous studies * Draft NUREG structure and format * Routine shipment analysis and results * Accident condition analysis and results * Findings and conclusions * Schedule 2 SFTRA Research and Review Teams * Sandia National Laboratory Research Team [$1.8M; 9/06-9/12] - Doug Ammerman - principal investigator - Carlos Lopez - thermal - Ruth Weiner - RADTRAN * NRC's SFTRA Technical Review Team - Gordon Bjorkman - structural

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

42

International Energy Outlook 2001 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. The report is an extension of the EIA’s Annual Energy Outlook 2001 (AEO2001), which was prepared using the National Energy Modeling System (NEMS). U.S. projections appearing in the IEO2001 are consistent with those published in the AEO2001. IEO2001 is provided as a statistical service to energy managers and analysts, both in

43

Assumptions to the Annual Energy Outlook 2000 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

44

Assumptions to the Annual Energy Outlook 1999 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

renewable.gif (4875 bytes) renewable.gif (4875 bytes) The NEMS Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittence, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

45

EPAct Transportation Regulatory Activities: Alternative Fuel Petitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Petitions to someone by E-mail Share EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Facebook Tweet about EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Twitter Bookmark EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Google Bookmark EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Delicious Rank EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Digg Find More places to share EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Alternative Fuel Petitions Section 301(2) of the Energy Policy Act of 1992 (EPAct 1992) defines

46

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Before Senate Committee...

47

Alternative Fuels Data Center: Transportation System Efficiency  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Transportation System Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share Alternative Fuels Data Center: Transportation System Efficiency on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework

48

Transportation fuels from synthetic gas  

SciTech Connect

Twenty-five experimental Fischer-Tropsch synthesis runs were made with 14 different catalysts or combinations of catalysts using a Berty reactor system. Two catalysts showed increased selectivity to transportation fuels compared to typical Fischer-Tropsch catalysts. With a catalyst consisting of 5 wt % ruthenium impregnated on a Y zeolite (run number 24), 63 to 70 wt % of the hydrocarbon product was in the gasoline boiling range. Using a 0.5 wt % ruthenium on alumina catalyst (run number 22), 64 to 78 wt % of the hydrocarbon product was in the diesel fuel boiling range. Not enough sample was produced to determine the octane number of the gasoline from run number 24, but it is probably somewhat better than typical Fischer-Tropsch gasoline (approx. 50) and less than unleaded gasoline (approx. 88). The diesel fuel produced in run number 22 consisted of mostly straight chained paraffins and should be an excellent transportation fuel without further refining. The yield of transportation fuels from biomass via gasification and the Fischer-Tropsch synthesis with the ruthenium catalysts identified in the previous paragraph is somewhat less, on a Btu basis, than methanol (via gasification) and wood oil (PERC and LBL processes) yields from biomass. However, the products of the F-T synthesis are higher quality transportation fuels. The yield of transportation fuels via the F-T synthesis is similar to the yield of gasoline via methanol synthesis and the Mobil MTG process.

Baker, E.G.; Cuello, R.

1981-08-01T23:59:59.000Z

49

Annual Energy Outlook with Projections to 2025  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the nnual Energy Outlook Assumptions to the nnual Energy Outlook EIA Glossary Assumptions to the Annual Energy Outlook 2004 Report #: DOE/EIA-0554(2004) Release date: February 2004 Next release date:February 2005 The Assumptions to the Annual Energy Outlook presents the major assumptions of the National Energy Modeling System (NEMS) used to generate the projections in the Annual Energy Outlook. Table of Contents Introduction Macroeconomic Activity Module International Energy Module Household Expenditures Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module Appendix A Adobe Acrobat Logo

50

EIA-Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2007 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind.112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

51

NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

10 1 10 1 NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator U.S. Energy Information Administration EIA Short-Term and Winter Fuels Outlook Richard Newell, NASEO Winter Fuels Conference, October 2010 2 Overview * EIA expects average heating bills to be 3% higher this winter than last - an increase of $24 to a U.S. average of $986 per household * Due to higher fuel prices forecast this winter compared to last - 2% higher electricity prices - 8% higher heating oil prices - 6% higher residential natural gas prices - 11% higher propane prices * Bill increases are moderated by a warmer winter weather forecast for the South, but little change in the Midwest/West; slightly colder in the Northeast * Inventories of fuel oil and natural gas are currently well above typical levels,

52

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

9 U.S. Energy Information Administration | Annual Energy Outlook 2012 Table G1. Heat rates Fuel Units Approximate heat content Coal 1 Production . . . . . . . . . . . . . . . . . ....

53

Methods of producing transportation fuel  

DOE Patents (OSTI)

Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between -5.degree. C. and 350.degree. C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between 150.degree. C. and 350.degree. C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

Nair, Vijay (Katy, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Cherrillo, Ralph Anthony (Houston, TX); Bauldreay, Joanna M. (Chester, GB)

2011-12-27T23:59:59.000Z

54

NREL: Technology Deployment - Fuels, Vehicles, and Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

technical experts, policymakers, and other transportation stakeholders in the public and private sectors Providing technical expertise on alternative fuel vehicles and fueling...

55

Nuclear Fuel Storage and Transportation Planning Project Overview...  

Office of Environmental Management (EM)

Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project...

56

High Octane Fuels Can Make Better Use of Renewable Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Octane Fuels Can Make Better Use of Renewable Transportation Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Breakout Session 1C-Fostering...

57

International Energy Outlook 2000  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Today, the Energy Information Administration (EIA) releases its mid-term projections of international energy use and carbon emissions, published in the International Energy Outlook 2000 (IEO2000). The IEO2000 report provides an assessment of world energy markets with projections of regional energy consumption, energy consumption by primary fuel, electricity consumption, carbon emissions, nuclear generating capacity, international coal trade flows, and energy use in the transportation sector. World oil production projections are also included in the report. The report is an extension of EIA's Annual Energy Outlook (AEO), and the U.S. projections that appear in the IEO are consistent with those published in the AEO. World energy consumption in this year's IEO2000 is projected to

58

International Energy Outlook 2000  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 with projections to 2020 March 16, 2000 Jay E. Hakes Energy Information Administration Next slide Back to first slide View graphic version Notes: Today, the Energy Information Administration (EIA) releases its mid-term projections of international energy use and carbon emissions, published in the International Energy Outlook 2000 (IEO2000). The IEO2000 report provides an assessment of world energy markets with projections of regional energy consumption, energy consumption by primary fuel, electricity consumption, carbon emissions, nuclear generating capacity, international coal trade flows, and energy use in the transportation sector. World oil production projections are also included in the report. The report is an extension of EIA's Annual Energy Outlook (AEO),

59

Electric Industry Outlook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outlook Outlook Challenges and Opportunities that Impact EEI Members and Their Federal Customers Steve Kiesner Director National Customer Markets Federal Utility Partnership Working Group May 22, 2013 San Francisco, CA Agenda  Necessary infrastructure investments to address:  Reliability  Environmental and other policy requirements  And continue the development of a grid for the 21 st Century  Our move to natural gas and what it means to customers  How technology is changing our world and those of our customers  Potential Federal-Utility Partnerships with Electrification as a transportation fuel 2 Infrastructure Investments Richard McMahon Vice President, Finance and Energy Supply Commission lays out U.S. energy efficiency roadmap through 2030

60

Alternative Fuels Data Center: State Transportation Plan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Transportation State Transportation Plan to someone by E-mail Share Alternative Fuels Data Center: State Transportation Plan on Facebook Tweet about Alternative Fuels Data Center: State Transportation Plan on Twitter Bookmark Alternative Fuels Data Center: State Transportation Plan on Google Bookmark Alternative Fuels Data Center: State Transportation Plan on Delicious Rank Alternative Fuels Data Center: State Transportation Plan on Digg Find More places to share Alternative Fuels Data Center: State Transportation Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Transportation Plan The California Department of Transportation (Caltrans) must update the California Transportation Plan (Plan) by December 31, 2015, and every five

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION  

E-Print Network (OSTI)

35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS IN CALIFORNIA INTRODUCTION The introduction of alternative fuels into California's transportation market has supply at low prices. But, with an uncertain long-term future for oil supplies and prices, alternative

62

Alternatives to traditional transportation fuels: An overview  

SciTech Connect

This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

Not Available

1994-06-01T23:59:59.000Z

63

Alternative Fuels Used in Transportation (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Gasoline is the most commonly used fuel for transportation; however, there are multiple alternative fuels that are making their way to the market. These alternative fuels include propane, natural gas, electric hybrids, hydrogen fuel cells, and bio-diesel. Students will probably have heard of some of these alternative fuels, but they may not understand how and why they are better then ordinary gasoline.

64

International energy outlook 1999  

SciTech Connect

This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The report begins with a review of world trends in energy demand. The historical time frame begins with data from 1970 and extends to 1996, providing readers with a 26-year historical view of energy demand. The IEO99 projections covers a 24-year period. The next part of the report is organized by energy source. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in the five fuel chapters, along with a review of the current status of each fuel on a worldwide basis. The third part of the report looks at energy consumption in the end-use sectors, beginning with a chapter on energy use for electricity generation. New to this year`s outlook are chapters on energy use in the transportation sector and on environmental issues related to energy consumption. 104 figs., 87 tabs.

NONE

1999-03-01T23:59:59.000Z

65

Transportation Services Fueling Operation Transportation Services has installed a software system that will facilitate fueling of  

E-Print Network (OSTI)

Transportation Services Fueling Operation Transportation Services has installed a software system into this system. All University vehicles that wish to fuel at UH M noa Transportation Services will be required the application below and submit your application to Transportation Services before attempting to fuel your

66

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

67

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...produce liquid hydrocarbon fuel. In our proposal...production of liquid hydrocarbons. Thus, the goal...sustainable production of hydrocarbon fuel for the transportation...The resulting combustion energy not only provides heat for the endothermic...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

68

International Energy Outlook 2001 - World Energy Consumption  

Gasoline and Diesel Fuel Update (EIA)

World Energy Consumption World Energy Consumption picture of a printer Printer Friendly Version (PDF) This report presents international energy projections through 2020, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity, transportation, and the environment. The International Energy Outlook 2001 (IEO2001) presents the Energy Information Administration (EIA) outlook for world energy markets to 2020. Current trends in world energy markets are discussed in this chapter, followed by a presentation of the IEO2001 projections for energy consumption by primary energy source and for carbon emissions by fossil fuel. Uncertainty in the forecast is highlighted by an examination of alternative assumptions about economic growth and their impacts on the

69

EIA - Assumptions to the Annual Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2010 This report summarizes the major assumptions used in the NEMS to generate the AEO2010 projections. Introduction Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module PDF (GIF) Appendix A: Handling of Federal and Selected State Legislation and Regulation In the Annual Energy Outlook Past Assumptions Editions Download the Report Assumptions to the Annual Energy Outlook 2010 Report Cover. Need help, contact the National Energy Information Center at 202-586-8800.

70

EIA - Assumptions to the Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2009 The Early Release for next year's Annual Energy Outlook will be presented at the John Hopkins Kenney Auditorium on December 14th This report summarizes the major assumptions used in the NEMS to generate the AEO2009 projections. Introduction Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Renewable Fuels Module PDF (GIF) Appendix A: Handling of Federal and Selected State Legislation and Regulation In the Annual Energy Outlook Past Assumptions Editions

71

NREL: Vehicles and Fuels Research - Sustainable Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy's Alternative Fuels Data Center (AFDC) provide an introduction to sustainable transportation. NREL research supports development of electric, hybrid,...

72

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

73

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

74

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

75

Alternative Fuels Data Center: Pittsburgh Livery Company Transports  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pittsburgh Livery Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Pittsburgh Livery Company Transports Customers in Alternative Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Pittsburgh

76

Missouri Agriculture Outlook Conference  

E-Print Network (OSTI)

Missouri Agriculture Outlook Conference Conference Information This conference will discuss the drivers of Missouri agricultural and bio-fuel markets and the implications for Missouri farmsDr.JonHagler, DirectoroftheMissouriDepartment ofAgriculture. · Outlookpresentationsderivedfrom thelatestbaselineresultsof

Noble, James S.

77

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...of liquid hydrocarbon fuels (16, 17). It can...conversion to liquid fuels using the FT process...support total current oil consumption of 13.8 Mbbl/d by the...produce liquid hydrocarbon fuel. In our proposal, the...from the transportation engine. Therefore, for coal...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

78

Alternative transportation fuels and air quality  

Science Journals Connector (OSTI)

Alternative transportation fuels and air quality ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ... Potential Air Quality Effects of Using Ethanol?Gasoline Fuel Blends: A Field Study in Albuquerque, New Mexico ...

Tai Y. Chang; Robert H. Hammerle; Steven M. Japar; Irving T. Salmeen

1991-07-01T23:59:59.000Z

79

Solid fuel applications to transportation engines  

SciTech Connect

The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

Not Available

1980-06-01T23:59:59.000Z

80

SEU43 fuel bundle shielding analysis during spent fuel transport  

SciTech Connect

The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

Margeanu, C. A.; Ilie, P.; Olteanu, G. [Inst. for Nuclear Research Pitesti, No. 1 Campului Street, Mioveni 115400, Arges County (Romania)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Transportation Fuels: The Future is Today (6 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This teacher guide provides extensive background information on transportation fuels to help your students learn about conventional and alternative transportation fuels by evaluating their advantages and disadvantages.

82

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Office of Environmental Management (EM)

Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Presentation made by...

83

Production Costs of Alternative Transportation Fuels | Open Energy...  

Open Energy Info (EERE)

Production Costs of Alternative Transportation Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Production Costs of Alternative Transportation Fuels AgencyCompany...

84

Fuel Cells for Transportation - FY 2001 Progress Report | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells for Transportation - FY 2001 Progress Report Fuel Cells for Transportation - FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION 159.pdf More Documents &...

85

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

86

Fuel cell system for transportation applications  

DOE Patents (OSTI)

A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

1993-01-01T23:59:59.000Z

87

Fuel cell system for transportation applications  

DOE Patents (OSTI)

A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1993-09-28T23:59:59.000Z

88

Fuel Cell Technologies Office: Transport Modeling Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Modeling Transport Modeling Working Group to someone by E-mail Share Fuel Cell Technologies Office: Transport Modeling Working Group on Facebook Tweet about Fuel Cell Technologies Office: Transport Modeling Working Group on Twitter Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Google Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Delicious Rank Fuel Cell Technologies Office: Transport Modeling Working Group on Digg Find More places to share Fuel Cell Technologies Office: Transport Modeling Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

89

Progress in fuel cells for transportation applications  

SciTech Connect

The current and projected states of development of fuel cells are described in terms of availability, performance, and cost. The applicability of various fuel cell types to the transportation application is discussed, and projections of power densities, weights, and volumes of fuel cell systems are made into the early 1990s. Research currently being done to advance fuel cells for vehicular application is described. A summary of near-term design parameters for a fuel cell transit line is given, including bus performance requirements, fuel cell power plant configuration, and battery peaking requirements. The objective of this paper is to determine a fuel cell technology suitable for near-term use as a vehicular power plant. The emphasis of the study is on indirect methanol fuel cell systems.

Murray, H.S.

1986-01-01T23:59:59.000Z

90

Alternative Fuels Data Center: New Orleans Provides Green Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Orleans Provides Orleans Provides Green Transportation to someone by E-mail Share Alternative Fuels Data Center: New Orleans Provides Green Transportation on Facebook Tweet about Alternative Fuels Data Center: New Orleans Provides Green Transportation on Twitter Bookmark Alternative Fuels Data Center: New Orleans Provides Green Transportation on Google Bookmark Alternative Fuels Data Center: New Orleans Provides Green Transportation on Delicious Rank Alternative Fuels Data Center: New Orleans Provides Green Transportation on Digg Find More places to share Alternative Fuels Data Center: New Orleans Provides Green Transportation on AddThis.com... March 19, 2011 New Orleans Provides Green Transportation D iscover how New Orleans provides green transportation with electric street

91

Alternative Fuels Data Center: Advanced Transportation Tax Exclusion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Advanced Transportation Tax Exclusion to someone by E-mail Share Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Facebook Tweet about Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Twitter Bookmark Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Google Bookmark Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Delicious Rank Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on Digg Find More places to share Alternative Fuels Data Center: Advanced Transportation Tax Exclusion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Transportation Tax Exclusion The California Alternative Energy and Advanced Transportation Financing

92

Alternative Fuels Data Center: Biobased Transportation Research Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biobased Biobased Transportation Research Funding to someone by E-mail Share Alternative Fuels Data Center: Biobased Transportation Research Funding on Facebook Tweet about Alternative Fuels Data Center: Biobased Transportation Research Funding on Twitter Bookmark Alternative Fuels Data Center: Biobased Transportation Research Funding on Google Bookmark Alternative Fuels Data Center: Biobased Transportation Research Funding on Delicious Rank Alternative Fuels Data Center: Biobased Transportation Research Funding on Digg Find More places to share Alternative Fuels Data Center: Biobased Transportation Research Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biobased Transportation Research Funding The Surface Transportation Research, Development, and Deployment (STRDD)

93

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...gasoline and 6% of its diesel demand by converting...conversion to liquid fuels using the FT process...total current oil consumption of 13.8 Mbbl/d by...conversion of syngas to diesel is 100% selective...liquid hydrocarbon fuel. In our proposal...the transportation engine. Therefore, for coal...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

94

Alternative Fuels Data Center: Local and Public Transportation Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Local and Public Local and Public Transportation Fleet Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Local and Public Transportation Fleet Alternative Fuel Study on AddThis.com...

95

Used Fuel Testing Transportation Model  

SciTech Connect

This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

Ross, Steven B.; Best, Ralph E.; Maheras, Steven J.; Jensen, Philip J.; England, Jeffery L.; LeDuc, Dan

2014-09-24T23:59:59.000Z

96

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

97

Fuels Performance Group: Center for Transportation Technologies and Systems  

SciTech Connect

Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

Not Available

2008-08-01T23:59:59.000Z

98

The supply security of hydrogen as transport fuel.  

E-Print Network (OSTI)

??The impact that hydrogen and fuel cell technology can have on the security of European transport fuel supply is addressed in this paper. This impact (more)

Hansen, Anders Chr.

2007-01-01T23:59:59.000Z

99

17 - Hydrogen as a fuel in transportation  

Science Journals Connector (OSTI)

Abstract: Hydrogen has attracted fresh attention in recent decades as an alternative renewable and sustainable transportation fuel. Hydrogen can fuel conventional or hybridized power trains, through highly efficient and low emission hydrogen-fueled internal combustion engines (H2ICE) and proton exchange membrane fuel cells (PEMFC). High capacity and cost-effective onboard vehicle hydrogen storage remains a major challenge, along with the affordability of building out a distributed hydrogen production, distribution, and fueling infrastructure. Current practice is to store hydrogen onboard vehicles as a compressed gas, cryogenic liquid, or in chemical form for conversion on demand. Recent hydrogen demonstrations and field trials have advanced the technology, lowered costs, and improved public perception.

J.R. Anstrom

2014-01-01T23:59:59.000Z

100

IEA World Energy Outlook | Open Energy Information  

Open Energy Info (EERE)

IEA World Energy Outlook IEA World Energy Outlook Jump to: navigation, search Tool Summary Name: IEA World Energy Outlook Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Conventional Energy, Energy Efficiency, Renewable Energy Topics: Market analysis, Technology characterizations References: World Energy Outlook[1] The 2010 "edition of the World Energy Outlook - the International Energy Agency's flagship publication and leading source of analysis of global energy trends - presents updated projections of energy demand, production, trade and investment, fuel by fuel and region by region to 2035. WEO-2010 includes, for the first time, the result of a new scenario that takes account of the recent commitments that governments have made to

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...replaced with gasoline hybrid electric vehicles...the use of plug-in hybrid electric vehicles (PHEVs...electricity from a PV grid could be directly used...current transportation fuel infrastructure, the efficiency improvement...through the proposed hybrid hydrogen-carbon economy...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

102

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...with gasoline hybrid electric vehicles...of plug-in hybrid electric vehicles...electricity from a PV grid could be directly...by using solar energy. There are two...transportation fuel infrastructure, the efficiency...the proposed hybrid hydrogen-carbon...material and energy balances. The...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

103

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

> Graphic data - Highlights > Graphic data - Highlights International Energy Outlook 2010 Graphic data - Highlights Figure 1. World marketed energy consumption, 2007-2035 Figure 2. World marketed energy use by fuel type, 1990-2035 Figure 3. World liquids production, 1990-2035 Figure 4. Net change in world natural gas production by region, 2007-2035 Figure 5. World coal consumption by region, 1990-2035 Figure 6. World net electricity generation by fuel, 2007-2035 Figure 7. World renewable electricity generation by energy source excluding world and hydropower, 2007-2035 Figure 8. World delivered energy consumption in the industrial sector, 2007-2035 Figure 9. World delivered energy consumption in the transportation sector, 2005-2035 Figure 10. World energy-related carbon dioxide emissions, 2007-2035

104

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

105

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

106

Environmental and economic assessment of alternative transportation fuels  

E-Print Network (OSTI)

Alternative fuels have the potential to mitigate transportation's impact on the environment and enhance energy security. In this work, we investigate two alternative fuels: liquefied natural gas (LNG) as an aviation fuel, ...

Withers, Mitch Russell

2014-01-01T23:59:59.000Z

107

Alternative Fuels Data Center: Multi-Modal Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Multi-Modal Multi-Modal Transportation to someone by E-mail Share Alternative Fuels Data Center: Multi-Modal Transportation on Facebook Tweet about Alternative Fuels Data Center: Multi-Modal Transportation on Twitter Bookmark Alternative Fuels Data Center: Multi-Modal Transportation on Google Bookmark Alternative Fuels Data Center: Multi-Modal Transportation on Delicious Rank Alternative Fuels Data Center: Multi-Modal Transportation on Digg Find More places to share Alternative Fuels Data Center: Multi-Modal Transportation on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Multi-Modal Transportation Using multiple modes of transportation is the best approach for some

108

Alternative Fuels Data Center: SmartWay Transport Partnership  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

SmartWay Transport SmartWay Transport Partnership to someone by E-mail Share Alternative Fuels Data Center: SmartWay Transport Partnership on Facebook Tweet about Alternative Fuels Data Center: SmartWay Transport Partnership on Twitter Bookmark Alternative Fuels Data Center: SmartWay Transport Partnership on Google Bookmark Alternative Fuels Data Center: SmartWay Transport Partnership on Delicious Rank Alternative Fuels Data Center: SmartWay Transport Partnership on Digg Find More places to share Alternative Fuels Data Center: SmartWay Transport Partnership on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type SmartWay Transport Partnership The SmartWay Transport Partnership is a voluntary partnership between the U.S. Environmental Protection Agency (EPA) and the domestic freight

109

Annual Energy Outlook 2014 foresees growth of LNG as a fuel for...  

Annual Energy Outlook 2012 (EIA)

specific to fuel economics as well as operational, financial, regulatory, and mechanical challenges that may constrain the use of LNG to power freight locomotives. Taking...

110

Missouri Agriculture Outlook Conference  

E-Print Network (OSTI)

Missouri Agriculture Outlook Conference Conference Information Join us to discuss the drivers of Missouri agricultural and bio-fuels markets and participate in a special review of international policy implications for Missouri agriculture. Registration Deadline To guarantee space availability, please register

Noble, James S.

111

Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Veolia Transportation Veolia Transportation Converts Taxi Fleet to Propane to someone by E-mail Share Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Facebook Tweet about Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Twitter Bookmark Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Google Bookmark Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Delicious Rank Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on Digg Find More places to share Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to Propane on AddThis.com... Aug. 17, 2013 Veolia Transportation Converts Taxi Fleet to Propane

112

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

APEC-Alternative Transport Fuels: Implementation Guidelines APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary Name: APEC-Alternative Transport Fuels: Implementation Guidelines Agency/Company /Organization: Asia-Pacific Economic Cooperation Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.egnret.ewg.apec.org/news/Alternative%20Transport%20Fuels%20Final%2 Cost: Free Language: English References: APEC-Alternative Transport Fuels: Implementation Guidelines[1] "Worldwide, there are at least 35 million vehicles already operating on some form of alternative transport fuel and many millions more that are fuelled by blends with conventional gasoline and diesel or powered by electricity. Many alternative fuel programs are being, or have been,

113

Assumptions to the Annual Energy Outlook 1999 - Acronyms  

Gasoline and Diesel Fuel Update (EIA)

acronyms.gif (3143 bytes) acronyms.gif (3143 bytes) AEO Annual Energy Outlook AEO98 Annual Energy Outlook 1998 AEO99 Annual Energy Outlook 1999 AFV AFV Alternative-Fuel Vehicle AGA American Gas Association ANGTS Alaskan Natural Gas Transportation System BEA Bureau of Economic Analysis BSC Boiler/Steam/Cogeneration BTU British Thermal Unit CAAA90 Clean Air Act Amendments of 1990 CBECS Commercial Buildings Energy Consumption Surveys CCAP Climate Change Action Plan CDD Cooling Degree-Days CNG Compressed natural gas DOE U.S. Department of Energy DRB Demonstrated Reserve Base DRI Data Resources, Inc./McGraw Hill EER Energy Efficiency Ratio EIA Energy Information Administration EIS Environmental Impact Statement EPA U.S. Environmental Protection Agency EPACT Energy Policy Act of 1992 EWG Exempt Wholesale Generator FAA Federal Aviation Administration

114

Annual Energy Outlook 2007: With Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

AEO AEO Annual Energy Outlook AEO2006 Annual Energy Outlook2006 AEO2007 Annual Energy Outlook 2007 ANWR Arctic National Wildlife Refuge ASTM American Society for Testing and Materials B2, B5, B20 Biodiesel (2, 5, and 20 percent) BLS Bureau of Labor Statistics BNSF BNSF Railway Company BTC Baku-Tbilisi-Ceyhan pipeline Btu British thermal unit CAAA90 Clean Air Act Amendments of 1990 CAFE Corporate Average Fuel Economy CAIR Clean Air Interstate Rule CAMR Clean Air Mercury Rule CBO Congressional Budget Office CCS Carbon capture and sequestration CFL Compact fluorescent light CHP Combined heat and power CO 2 Carbon dioxide CPI Consumer price index CRP Conservation Reserve Program CSX CSX Transportation CT Computed tomography CTL Coal-to-liquids DB Deutsche Bank AG DDGS Dried distillers' grains and solubles DM&E Dakota Minnesota & Eastern Railroad DOE U.S. Department of

115

Alternative Fuels Data Center: Michigan Transports Students in Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Michigan Transports Michigan Transports Students in Hybrid Electric School Buses to someone by E-mail Share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Facebook Tweet about Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Twitter Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Google Bookmark Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Delicious Rank Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on Digg Find More places to share Alternative Fuels Data Center: Michigan Transports Students in Hybrid Electric School Buses on AddThis.com...

116

Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Truck Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Google Bookmark Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Delicious Rank Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on AddThis.com... Dec. 31, 2009 Biodiesel Truck Transports Capitol Christmas Tree F ollow the Capitol Christmas Tree from Arizona to Washington, D.C., aboard

117

Transportation Outlook 2035: Creating a Blueprint for the Sherman-Denison Region's Future  

E-Print Network (OSTI)

constraints and air quality constraints, and make a recommendation for Transportation Policy Board action. 1.5 BACKGROUND: The Transportation Division of the Texoma Council of Governments provides the staff for the MPO which was designated on May 10... constraints and air quality constraints, and make a recommendation for Transportation Policy Board action. 1.5 BACKGROUND: The Transportation Division of the Texoma Council of Governments provides the staff for the MPO which was designated on May 10...

Sherman-Denison Metropolitan Planning Organization

2009-11-18T23:59:59.000Z

118

International Energy Outlook 2006 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2006 Preface This report presents international energy projections through 2030, prepared by the Energy Information Administration, including outlooks for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2006 (IEO2006) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2006 are consistent with those published in EIA’s Annual Energy Outlook 2006 (AEO2006), which was prepared using the National Energy Modeling System (NEMS). IEO2006 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade

119

NASEO Energy Outlook Conference  

Gasoline and Diesel Fuel Update (EIA)

NASEO Energy Outlook Conference NASEO Energy Outlook Conference 2/26/01 Click here to start Table of Contents NASEO Energy Outlook Conference Retail Product Prices Are Driven By Crude Oil WTI Crude Oil Price: Base Case and 95% Confidence Interval OPEC Crude Oil Production 1998-2001 Annual World Oil Demand Growth by Region, 1991-2001 Total OECD Oil Stocks* Fundamentals Explain High Crude Oil Prices Product Price Spreads Over Crude Oil Vary With Seasons and Supply/Demand Balance U.S. Distillate Inventories Distillate Stocks Are Important Part of East Coast Winter Supply Both Distillate Supply and Demand Reached Extraordinary Levels This Winter Heating Oil Imports Strong in 2001 Retail Heating Oil and Diesel Fuel Prices Consumer Winter Heating Oil Costs Propane prices Influenced by Crude Oil and Natural Gas

120

International Energy Outlook - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2004 Preface This report presents international energy projections through 2025, prepared by the Energy Information Administration, including outlooks for major energy fuels and issues related to electricity and the environment. The International Energy Outlook 2004 (IEO2004) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S. projections appearing in IEO2004 are consistent with those published in EIA’s Annual Energy Outlook 2004 (AEO2004), which was prepared using the National Energy Modeling System (NEMS). IEO2004 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Department of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO2004 projections are based on U.S. and foreign government laws in effect on October 1, 2003.

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternatives to Traditional Transportation Fuels 2009 | Open Energy  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels 2009 Alternatives to Traditional Transportation Fuels 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternatives to Traditional Transportation Fuels 2009 Focus Area: Propane Topics: Policy Impacts Website: www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.p Equivalent URI: cleanenergysolutions.org/content/alternatives-traditional-transportati Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use and the amount of alternative transportation fuels consumed in the United States in 2009. References Retrieved from "http://en.openei.org/w/index.php?title=Alternatives_to_Traditional_Transportation_Fuels_2009&oldid=514311

122

Optimization of Microfluidic Fuel Cells Using Transport Principles  

Science Journals Connector (OSTI)

Optimization of Microfluidic Fuel Cells Using Transport Principles ... In this paper, we describe an approach to designing microfluidic fuel cells that optimizes the reaction?depletion boundary layer using transport principles. ... The data represented as ? or in Figure 7 correspond to microfluidic fuel cells where the gap between consecutive electrodes was not optimized. ...

Jinkee Lee; Keng Guan Lim; G. Tayhas R. Palmore; Anubhav Tripathi

2007-08-30T23:59:59.000Z

123

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel  

E-Print Network (OSTI)

Capturing, Purifying, and Liquefying Landfill Gas for Transportation Fuel TRANSPORTATION ENERGY alternative fuel, and purified landfill gas could provide a renewable domestic source of it. Landfills from landfills and use it in natural gas applications such as fueling motor vehicles. Project

124

Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

(83/3Q) (83/3Q) Short-Term Energy Outlook iuarterly Projections August 1983 Energy Information Administration Washington, D.C. 20585 t rt jrt- .ort- iort- iort- iort- nort- lort- '.ort- ort- Tt- .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Term .-Term -Term xrm Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy -OJ.UUK Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

125

Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel  

Gasoline and Diesel Fuel Update (EIA)

To help ensure that sulfates in engine exhaust do not To help ensure that sulfates in engine exhaust do not prevent manufacturers of heavy-duty diesel engines from meeting new particulate emissions standards for 1994 and later model years, 1 the Clean Air Act Amend- ments of 1990 (CAAA90) require refiners to reduce the sulfur content of on-highway diesel fuel from current average levels of 0.30 percent by weight to no more than 0.05 percent by weight. The new standard, which goes into effect October 1, 1993, also requires that on-highway diesel fuel have a minimum cetane index of 40 or a maximum aromatic content of 35 percent by volume. 2 (See list of terms and definitions on the fol- lowing page.) This provision is designed to prevent any future rises in aromatics levels. 3 Since the direct mea- surement of aromatics is complex, a minimum cetane

126

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

World Energy Demand and Economic Outlook World Energy Demand and Economic Outlook International Energy Outlook 2010 Graphic Data - World Energy Demand and Economic Outlook Figure 12. World marketed energy consumption, 1990-2035 Figure 13. World marketed energy consumption:OECD and Non-OECD, 1990-2035 Figure 14. Shares of world energy consumption in the United States, China, and India, 1990-2035 Figure 15. Marketed energy use in the Non-OECD economies by region, 1990-2035 Figure 16. World marketed energy use by fuel type, 1990-2035 Figure 17. Coal consumption in selected world regions, 1990-2035 Figure 18. World electricity generation by fuel, 2007-2035 Figure 19. Renewable electricity generation in China by energy source, 2007-2035 Figure 20. World nuclear generating capacity by region, 2007 and 2035

127

Cost Analysis of Fuel Cell Systems for Transportation  

E-Print Network (OSTI)

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge Presentation 3 A fuel cell vehicle would contain the PEMFC system modeled in this project along with additional

128

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

129

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

130

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analyses Analyses Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analyses The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation activities within the UFDC are being developed to address issues regarding the extended storage of UNF and its subsequent

131

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

132

NREL: Transportation Research - Alternative Fuel Fleet Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

reduced particulate matter, carbon monoxide, and hydrocarbon emissions. Regional Transportation District Biodiesel Transit Buses In partnership with the Regional Transportation...

133

Making Better Use of Ethanol as a Transportation Fuel With "Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Making Better Use of Ethanol as a Transportation Fuel With "Renewable Super Premium" Breakout...

134

EIA Winter Fuels Outlook  

Annual Energy Outlook 2012 (EIA)

7, 2014 22 * ILLINOIS - retailers indicate the majority of end-users have filled tanks, record corn crop could mean large demand for drying. * IOWA - retailers' storage full...

135

Winter Fuels Outlook  

Gasoline and Diesel Fuel Update (EIA)

New York Energy Forum October 23, 2014 | New York, NY By Adam Sieminski, Administrator U.S. Energy Information Administration New York Energy Forum October 23, 2014 2 Winter...

136

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

137

Estimation of the Transportation Risks for the Spent Fuel in Korea for Various Transportation Scenarios  

SciTech Connect

According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for the spent fuels in Korea. Also, we estimated and compared the transportation risks for these four transportation scenarios. From the results of this study, we found that these four transportation scenarios for spent fuels have a very low radiological risk activity with a manageable safety and health consequences. The results of this study can be used as basic data for the development of safe and economical logistics for a transportation of the spent fuels in Korea by considering the transportation costs for the four scenarios which will be needed in the near future. (authors)

Jongtae, Jeong; Cho, D.K.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong, Daejeon (Korea, Republic of)

2008-07-01T23:59:59.000Z

138

High Octane Fuels Can Make Better Use of Renewable Transportation Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Brian West, Deputy Director, Engines and Emissions Research Center; Oak Ridge National Laboratory

139

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

140

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply Diamond Green Diesel: Diversifying Our Transportation Fuel Supply January 20, 2011 - 3:48pm Addthis Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this project do? Nearly triples the amount of renewable diesel produced domestically Diversifies the U.S. fuel supply Today, Secretary Chu announced the offer of a conditional commitment for a $241 million loan guarantee to Diamond Green Diesel, LLC., the DOE Loan Program's first conditional commitment for an advanced biofuels plant. The loan guarantee will support the construction of a 137-million gallon per year renewable diesel facility that will produce renewable diesel fuel primarily from animal fats, used cooking oil and other waste grease

142

Transportation capabilities study of DOE-owned spent nuclear fuel  

SciTech Connect

This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1994-10-01T23:59:59.000Z

143

Recent Trends in Emerging Transportation Fuels and Energy Consumption  

Science Journals Connector (OSTI)

Several recent trends indicate current developments in energy and transportation fuels. World trade in biofuels is developing in ethanol, wood chips, and vegetable oil / biodiesel with some countries being exp...

B. G. Bunting

2012-01-01T23:59:59.000Z

144

Transportation Fuel Basics - Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains

145

The Future of Low Carbon Transportation Fuels  

E-Print Network (OSTI)

" Nuclear" Oil resources" Unconventional:" oil shale liquid, " oil sands" Coal resources" Transport! Elec

Kammen, Daniel M.

146

Fuel Cell Technologies Office: Transport Modeling Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Modeling Working Group Transport Modeling Working Group The Transport Modeling Working Group meets twice per year to exchange information, create synergies, share experimental and computational results, and collaboratively develop methodologies for and understanding of transport phenomena in polymer electrolyte fuel cell stacks. Its members include principle investigators and supporting personnel from transport-related projects funded by the U.S. Department of Energy (DOE). Learn more about DOE research activities can be found in the Multi-Year Research, Development, and Demonstration Plan. Description Technical Targets Meetings Contacts Description Fuel cell operation relies on effective mass transport of species through individual components and across the interfaces between components. Among these species are hydrogen, oxygen, water, protons, and electrons. Transport behavior is a function of operating conditions and component properties such as microstructure and surface properties. Understanding and optimizing the controlling transport phenomena are critical to the efficient and cost-effective operation of polymer electrolyte fuel cells. A better understanding of mass transport in the fuel cell, especially of water, has the potential to lead to improved designs and more efficient systems.

147

INL Site Executable Plan for Energy and Transportation Fuels Management  

SciTech Connect

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

148

Comparative analyses of spent nuclear fuel transport modal options: Transport options under existing site constraints  

SciTech Connect

The movement of nuclear waste can be accomplished by various transport modal options involving different types of vehicles, transport casks, transport routes, and intermediate intermodal transfer facilities. A series of systems studies are required to evaluate modal/intermodal spent fuel transportation options in a consistent fashion. This report provides total life-cycle cost and life-cycle dose estimates for a series of transport modal options under existing site constraints. 14 refs., 7 figs., 28 tabs.

Brentlinger, L.A.; Hofmann, P.L.; Peterson, R.W.

1989-08-01T23:59:59.000Z

149

Microsoft PowerPoint - 2012_summer_fuels.pptx  

Gasoline and Diesel Fuel Update (EIA)

Summer Transportation Fuels Summer Transportation Fuels O tl k Outlook April 10, 2012 www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Key factors driving the short-term outlook * Recovery in Libyan production but lower crude oil exports from South Sudan, Syria, and Yemen and uncertainty over from South Sudan, Syria, and Yemen and uncertainty over the level and security of supply from Iran and other countries in the Middle East and North Africa region. * Decline in consumption in OECD countries including the United States but continuing consumption growth in emerging economies. economies. * Continuing discount for West Texas Intermediate crude oil relative to other world crudes. 2 2012 Summer Transportation Fuels Outlook World liquid fuels consumption is projected to increase by 0.9

150

Short-Term Energy Outlook April 1999-Summer Gasoline Outlook  

Gasoline and Diesel Fuel Update (EIA)

Summer Motor Gasoline Outlook Summer Motor Gasoline Outlook This year's base case outlook for summer (April-September) motor gasoline markets may be summarized as follows: * Pump Prices: (average regular) projected to average about $1.13 per gallon this summer, up 9-10 cents from last year. The increase, while substantial, still leaves average prices low compared to pre-1998 history, especially in inflation-adjusted terms. * Supplies: expected to be adequate, overall. Beginning-of-season inventories were even with the 1998 level, which was at the high end of the normal range. However, some refinery problems on the West Coast have tightened things up, at least temporarily. * Demand: up 2.0 percent from last summer due to solid economic growth and low (albeit rising) fuel prices; highway travel may reach 1.4 trillion miles for the

151

EIA - International Energy Outlook 2007-World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

and Economic Outlook and Economic Outlook International Energy Outlook 2007 Figure 8. World Marketed Energy Consumption, 1980-2030 Figure 8 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 9. World Marketed Energy Use: OECD and Non-OECD, 2004-2030 Figure 9 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 Figure 10 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 11. World Marketed Energy Use by Fuel Type, 1980-2030 Figure 11 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 12. World Coal Consumption by Region, 2004-2030 Figure 12 Data. Need help, contact the National Energy Information Center at 202-586-8800.

152

World Energy Outlook 2008  

U.S. Energy Information Administration (EIA) Indexed Site

OECD/IEA - OECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover ... ... Transport Energy and CO 2 Where are we going? What are the dangers? How do we change direction? Primarily reporting on: IEA WEO 2008 IEA ETP 2008 On-going work with IEA's Mobility Model One or two detours to talk about modelling © OECD/IEA - 2008 0 2 000 4 000 6 000 8 000 10 000 12 000 14 000 16 000 18 000 1980 1990 2000 2010 2020 2030 Mtoe Other renewables Hydro Nuclear Biomass Gas Coal Oil World energy demand expands by 45% between now and 2030 - an average rate of increase of 1.6% per year - with coal accounting for more than a third of the overall rise Where are we headed? World Energy Outlook 2008 Where are we headed? World Energy Outlook Where are we headed? World Energy Outlook

153

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

SciTech Connect

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

154

EIA - International Energy Outlook 2007 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2007 Preface This report presents international energy projections through 2030, prepared by the Energy Information Administration, including outlooks for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2007 (IEO2007) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2007 are consistent with those published in EIA’s Annual Energy Outlook 2007 (AEO2007), which was prepared using the National Energy Modeling System (NEMS). IEO2007 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade

155

EIA - International Energy Outlook 2008-Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface International Energy Outlook 2008 Preface This report presents international energy projections through 2030, prepared by the Energy Information Administration, including outlooks for major energy fuels and associated carbon dioxide emissions. The International Energy Outlook 2008 (IEO2008) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2008 are consistent with those published in EIA’s Annual Energy Outlook 2008 (AEO2008), which was prepared using the National Energy Modeling System (NEMS). IEO2008 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade

156

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...source of liquid hydrocarbon fuels (16, 17...gasification data provided in...produce liquid hydrocarbon fuel. In our...The resulting combustion energy not only provides heat for the endothermic...pass from the hydrocarbon conversion...well as other heat requirements...From the NRC data in Table E-23...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

157

Fuel cells for electric utility and transportation applications  

SciTech Connect

This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

Srinivasan, S.

1980-01-01T23:59:59.000Z

158

Fuel Cells for Transportation- Research and Development: Program Abstracts  

Energy.gov (U.S. Department of Energy (DOE))

Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant developmental program in the early 1990s. This progress has stimulated enormous interest worldwide in developing fuel cell products for transportation as well as for stationary and portable power applications. The potential markets are huge, but so are the R&D risks. Given the potential for PEM fuel cells to deliver large economic and environmental benefits to the Nation, DOE continues to take a leadership role in developing and validating this technology. DOEs strategy to implement its Fuel Cells for Transportation program has three components: an R&D strategy, a fuels strategy, and a management strategy.

159

Alternative transport fuels for the future  

Science Journals Connector (OSTI)

Petroleum fuels, which are not sustainable and which contribute substantially to greenhouse gas emissions, power nearly all light-duty vehicles. We review the North American literature on alternative fuels such as natural gas, ethanol from corn and biomass, and hydrogen and electricity from renewable resources, as well as propulsion systems including internal combustion engines, electric motors, and fuel cells. Vehicle characteristics including emissions, safety and consumer attributes such as range and power are examined. Results for greenhouse gas emissions and energy use for the well-to-wheel (fuel production and vehicle operation) aspects of the life cycles of the fuel/vehicle combinations are evaluated. While fuel cells and batteries might some day be attractive, in the near term they cannot replace the internal combustion engine. We focus on ethanol and explore its potential to replace nearly all gasoline used in the United States and Canada. We conclude that ethanol produced from biomass is an attractive near/midterm fuel among those that are sustainable.

Heather L. MacLean; Lester B. Lave; W. Michael Griffin

2004-01-01T23:59:59.000Z

160

ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS  

SciTech Connect

Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

Fox, E.

2013-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fuel Life-Cycle Analysis of Hydrogen vs. Conventional Transportation Fuels.  

E-Print Network (OSTI)

??Fuel life-cycle analyses were performed to compare the affects of hydrogen on annual U.S. light-duty transportation emissions in future year 2030. Five scenarios were developed (more)

DeGolyer, Jessica Suzanne

2008-01-01T23:59:59.000Z

162

NREL: Transportation Research - Alternative Fuels Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight....

163

EPAct Alternative Fuel Transportation Program (Brochure)  

SciTech Connect

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2012/fiscal year 2013.

Not Available

2014-06-01T23:59:59.000Z

164

Systems Approach to New Transportation Fuels  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

165

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2010 Graphic Data - Transportation Sector Energy Consumption Figure 91. World liquids consumption by end-use sector, 2007-2035 Figure 92. OECD and Non-OECD transportation sector liquids consumption, 2007-2035 Figure 93. OECD transportation energy use by region, 2007, 2025, and 2035 Figure 94. North America transportation energy use by country, 2007 and 2035 Figure 95. OECD Asia transportation energy use by country, 2007-2035 Figure 96. OECD Asia transportation energy use by country, 2007-2035 Figure 97. Non-OECD transportation energy use by region, 2007-2035 Figure 98. Non-OECD Asia transportation energy use by country, 2007-2035 Figure 99. Transportation energy use per capita in China and South Korea, 2007-2035

166

Annual Energy Outlook with Projections to 2025  

Gasoline and Diesel Fuel Update (EIA)

4 with Projections to 2025 4 with Projections to 2025 Report #: DOE/EIA-0383(2004) Release date: January 2004 Next release date: January 2005 Errata August 25, 2004 The Annual Energy Outlook presents a midterm forecast and analysis of US energy supply, demand, and prices through 2025 Table of Contents Summary Tables Adobe Acrobat Logo Yearly Tables MS Excel Viewer Regional and other detailed tables (Supplemental) MS Excel Viewer Overview Market Drivers Trends in Economic Activity Economic Growth Cases International Oil Markets Energy Demand Projections Residential Sector Commercial Sector Industrial Sector Transportation Sector Alternative Technology Cases Electricity Forecast Electricity Sales Electricity Generating Capacity Electricity Fuel Costs and Prices Electricity from Nuclear Power

167

Annual Energy Outlook 2011 Reference Case  

U.S. Energy Information Administration (EIA) Indexed Site

International Energy Outlook 2013 International Energy Outlook 2013 for Center for Strategic and International Studies July 25, 2013 | Washington, DC by Adam Sieminski, Administrator Key findings of the International Energy Outlook 2013 2 Adam Sieminski, IEO2013 July 25, 2013 * With world GDP rising by 3.6 percent per year, world energy use will grow by 56 percent between 2010 and 2040. Half of the increase is attributed to China and India. * Renewable energy and nuclear power are the world's fastest-growing energy sources, each increasing by 2.5 percent per year; however, fossil fuels continue to supply almost 80 percent of world energy use through 2040. * Natural gas is the fastest growing fossil fuel in the outlook, supported by increasing supplies of shale gas, particularly in the United States.

168

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Graphic Data Graphic Data International Energy Outlook 2006 Figure 1. World Marketed Energy Consumption by Region, 1980-2030 Figure 1 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 2. World Delivered Energy Consumption by End-Use Sector, 2003-2030 Figure 2 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 3. World Marketed Energy Use by Energy Type, 1980-2030 Figure 3 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 4. Fuel Shares of World Marketed Energy Use, 2003, 2015, and 2030 Figure 4 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 5. World Energy Consumption for Electricity Generation by Fuel Type, 2003, 2015, and 2030 Figure 5 Data. Need help, contact the National Energy Information Center at 202-586-8800.

169

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis Analysis Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis While both wet and dry storage have been shown to be safe options for storing used nuclear fuel (UNF), the focus of the program is on dry storage of commercial UNF at reactor or centralized locations. This report focuses on the knowledge gaps concerning extended storage identified in numerous domestic and international investigations and provides the Used Fuel Disposition Campaign"s (UFDC) gap description, any alternate gap descriptions, the rankings by the various organizations, evaluation of the priority assignment, and UFDC-recommended action based on the comparison. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis More Documents & Publications

170

Dual fuel engine control systems for transportation applications  

SciTech Connect

Microprocessor control systems have been developed for dual fuel diesel engines intended for transportation applications. Control system requirements for transportation engines are more demanding than for stationary engines, as the system must be able to cope with variable speed and load. Detailed fuel maps were determined for both normally aspirated and turbocharged diesel engines based on the criterion that the engine did not operate in the regimes where knock or incomplete combustion occurred. The control system was developed so that the engine would follow the detailed fuel map. The input variables to the control system are engine speed and load. Based on this, the system then controls the amount of natural gas and diesel fuel supplied to the engine. The performance of the system is briefly summarized.

Gettel, L.E.; Perry, G.C.; Boisvert, J.; O'Sullivan, P.J.

1987-10-01T23:59:59.000Z

171

Reimagining liquid transportation fuels : sunshine to petrol.  

SciTech Connect

Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much of life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.

Johnson, Terry Alan (Sandia National Laboratories, Livermore, CA); Hogan, Roy E., Jr.; McDaniel, Anthony H. (Sandia National Laboratories, Livermore, CA); Siegel, Nathan Phillip; Dedrick, Daniel E. (Sandia National Laboratories, Livermore, CA); Stechel, Ellen Beth; Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Ambrosini, Andrea; Coker, Eric Nicholas; Staiger, Chad Lynn; Chen, Ken Shuang; Ermanoski, Ivan; Kellog, Gary L.

2012-01-01T23:59:59.000Z

172

Solar Energy for Transportation Fuel (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

Lewis, Nate

2011-04-28T23:59:59.000Z

173

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

174

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

175

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...biomass for the H 2 CAR process will always...improvement in PV cell and electrolyzer efficiencies...generate electricity or hydrogen from solar cells or an alternative...energy as synthetic fuels. Comparison with...requirement for the H 2 CAR process with the...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

176

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network (OSTI)

factors that would enhance or impede development and deployment. · Review other alternative fuels MIT HAROLD SCHOBERT Pennsylvania State University CHRISTOPHER SOMERVILLE Energy BioSciences Institute biomass 085 072 Wheat straw 070 055 a2008 costs = baseline costs #12;BIOCHEMICAL CONVERSION STATUS

177

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

SciTech Connect

Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

Melendez, M.; Theis, K.; Johnson, C.

2007-08-01T23:59:59.000Z

178

Visualization of Fuel Cell Water Transport and Characterization under Freezing Conditions  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, which focuses on fuel cell water transport, was given by Satish Kandlikar at a DOE fuel cell meeting in February 2007.

179

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

180

Annual Energy Outlook 2005-Acronyms  

Gasoline and Diesel Fuel Update (EIA)

AD AD Associated-dissolved (natural gas) AEO2004 Annual Energy Outlook 2004 AEO2005 Annual Energy Outlook 2005 Altos Altos Partners AMT Alternative Minimum Tax ANWR Arctic National Wildlife Refuge Btu British thermal unit CAFE Corporate average fuel economy CAMR Clean Air Mercury Rule CARB California Air Resources Board CBECS Commercial Buildings Energy Consumption Survey (EIA) CBO Congressional Budget Office CCCC Climate Change Credit Corporation CH 4 Methane CHP Combined heat and power CO 2 Carbon dioxide CTL Coal-to-liquids DB Deutsche Bank, A.G. E85 Fuel containing a blend of 70 to 85 percent ethanol and 30 to 15 percent gasoline by volume EEA Energy and Environmental Analysis, Inc. EIA Energy Information Administration EPA U.S. Environmental Protection Agency EPACT Energy Policy Act of 1992 ETBE Ethyl tertiary butyl ether EVA Energy Ventures Analysis, Incorporated FERC

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Off-Highway Transportation-Related Fuel Use  

SciTech Connect

The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usage and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined to include all devices that have wheels, can move or be moved from one point to another, and use fuel. An attempt has been made to exclude off-highway engines that do not meet all three of these criteria (e.g., chain saws and generators). The following approach was used to determine the current off-highway fuel use. First, a literature review was conducted to ensure that all sources with appropriate information would be considered. Secondly, the fuel use data available from each source were compiled and compared in so far as possible. Comparable data sets (i.e., same fuel type; same application) were evaluated. Finally, appropriate data sets were combined to provide a final tally.

Davis, S.C.

2004-05-08T23:59:59.000Z

182

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...United States alone, oil consumption in the transportation...kPa), the lower heating value (LHV) of H...rise in the petroleum price has refocused the...accounts, conventional oil production is predicted...support 67% of US oil consumption equals yr Hkg...the form of its high heating value (HHV). For...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

183

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...in the internal combustion engine will be highly beneficial. Clearly, the proposed...Transportation 1 SI Appendix General information and Assumption Total...of CH4 = 891 kJ/mol LHV of diesel assuming C15H32 = 43.987 MJ/kg. This...the gasifier. 5. Amount of diesel produced from ASPEN model using...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

184

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H13. World net liquids-fired electricity generation by region and country, 2010-2040 (billion kilowatthours) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 93 74 68 66 64 62 60 -1.5 United States a 37 20 17 18 18 18 18 -2.3 Canada 7 7 6 6 6 5 5 -1.0 Mexico/Chile 49 47 45 42 40 38 36 -1.0 OECD Europe 77 73 70 66 63 60 57 -1.0 OECD Asia 112 157 102 97 92 87 83 -1.0 Japan 92 137 83 79 75 71 68 -1.0 South Korea 18 17 16 15 15 14 13 -1.0 Australia/New Zealand 3 3 3 3 2 2 2 -1.0 Total OECD 282 303 239 229 219 209 200 -1.1 Non-OECD Non-OECD Europe and Eurasia

185

Cathode porous transport irreversibility model for PEM fuel cell design  

Science Journals Connector (OSTI)

The influence is studied of slip-irreversibility at the interface between the gas diffusion layer, also referred to here as the porous transport layer, and the catalyst layer of a proton exchange membrane fuel cell (PEMFC). A two-dimensional cathode ... Keywords: catalyst layer, exergy, gas diffusion layer, slip flow irreversibility

E. O. B. Ogedengbe; M. A. Rosen

2009-02-01T23:59:59.000Z

186

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network (OSTI)

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

187

Transportation fuels from biomass via fast pyrolysis and hydroprocessing  

SciTech Connect

Biomass is a renewable source of carbon, which could provide a means to reduce the greenhouse gas impact from fossil fuels in the transportation sector. Biomass is the only renewable source of liquid fuels, which could displace petroleum-derived products. Fast pyrolysis is a method of direct thermochemical conversion (non-bioconversion) of biomass to a liquid product. Although the direct conversion product, called bio-oil, is liquid; it is not compatible with the fuel handling systems currently used for transportation. Upgrading the product via catalytic processing with hydrogen gas, hydroprocessing, is a means that has been demonstrated in the laboratory. By this processing the bio-oil can be deoxygenated to hydrocarbons, which can be useful replacements of the hydrocarbon distillates in petroleum. While the fast pyrolysis of biomass is presently commercial, the upgrading of the liquid product by hydroprocessing remains in development, although it is moving out of the laboratory into scaled-up process demonstration systems.

Elliott, Douglas C.

2013-09-21T23:59:59.000Z

188

WEST VIRGINIA ECONOMIC OUTLOOK  

E-Print Network (OSTI)

WEST VIRGINIA ECONOMIC OUTLOOK 2009 BUREAU OF BUSINESS AND ECONOMIC RESEARCH College of Business and Economics West Virginia University #12;West Virginia Economic Outlook 2009 George W. Hammond, Associate Director, BBER, and Associate Professor of Economics West Virginia Economic Outlook 2009 is published

Mohaghegh, Shahab

189

2014 REGIONAL ECONOMIC OUTLOOK  

E-Print Network (OSTI)

2014 REGIONAL ECONOMIC OUTLOOK #12;2014 REGIONAL ECONOMIC OUTLOOK 2014 Overview The Cincinnati USA Partnership for Economic Development and the Northern Kentucky Chamber of Commerce are pleased to present the 2014 Regional Economic Outlook. This report was prepared by the Cincinnati USA Partnership's Regional

Boyce, Richard L.

190

Cost Analysis of Fuel Cell Systems for Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Ref D0006 SFAA No. DE-SCO2- 98EE50526 Topic 1 Subtopic 1C Agenda EC_2004 10 20 FC Tech Team Presentation 1 1 Project Overview 2 Compressed Hydrogen Storage Cost 3 2004 System Cost Update 4 Appendix Project Overview Approach EC_2004 10 20 FC Tech Team Presentation 2 In our final year of the project, we assessed the cost of compressed hydrogen storage and updated the overall system cost projection. Task 1: PEMFC System Technology Synopsis Task 2: Develop Cost Model and Baseline Estimates Task 3: Identify Opportunities for System Cost Reduction Tasks 4, 5, 6 & 7: Annual Updates

191

Annual Energy Outlook 2000  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Preface The Annual Energy Outlook 2000 (AEO2000) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA’s National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO2000 reference case. The next section, “Legislation and Regulations,” describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. “Issues in Focus” discusses current energy issues—appliance standards, gasoline and diesel fuel standards, natural gas industry expansion, competitive electricity pricing, renewable portfolio standards, and carbon emissions. It is followed by the analysis of energy market trends.

192

International Energy Outlook - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal International Energy Outlook 2004 Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate fuel markets in developing Asia. Figure 52. World Coal Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 53. Coal Share of World Energy Consumption by Sector, 2001 and 2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 54. Coal Share of Regional Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World coal consumption has been in a period of generally slow growth since

193

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2025. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is projected to continue. Although total world consumption of coal in 2001, at 5.26 billion short tons,12 was more than 27 percent higher than the total in 1980, it was 1 percent below the 1989 peak of 5.31 billion short tons (Figure 56). The International Energy Outlook 2003 (IEO2003) reference case projects some growth in coal use between 2001 and 2025, at an average annual rate of 1.5 percent (on a tonnage basis), but with considerable variation among regions.

194

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

energy consumption is projected to increase by 71 percent from 2003 to 2030. energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. In the International Energy Outlook 2006 (IEO2006) ref- erence case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a result of robust economic growth. Worldwide, total energy use grows from 421 quadrillion British thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and 722 quadrillion Btu in 2030 (Figure 1). The most rapid growth in energy demand from 2003 to 2030 is projected for nations outside the Organization

195

4.12 - Hydrogen and Fuel Cells in Transport  

Science Journals Connector (OSTI)

Abstract This chapter reviews the several applications of hydrogen and fuel cells in transport. Early fuel cell markets have tested hydrogen for auxiliary power applications, but other fuels such as methanol, natural gas, and propane have been preferred because they are more available. Until now, the best successes have been forklifts where battery propulsion can be inflexible and hydrogen competes economically. However, the mainstream medium-term market is in buses, taxis, and fleet vehicles with passenger cars following close behind as the infrastructure of hydrogen filling stations becomes more widespread. It is becoming clear that the hybrid fuel cell/battery combination works best in such fleets because there is a need for batteries or supercapacitors providing pulse power and also for regenerative braking. Boats and ships represent a possible application in later years if the leisure market can be tapped and extended. In ports, fuel cell auxiliary power has already proved attractive in terms of emission reductions, and the same is true for airports. Aircraft applications will take longer to develop fully but small lightweight planes are using hydrogen at the present time because it can be generated via solar cells on the wings. Unmanned air vehicles driven by fuel cells are more likely to use propane because such lightweight fuel is easily available

K. Kendall; B.G. Pollet

2012-01-01T23:59:59.000Z

196

Energy Information Administration/Short-Term Energy Outlook - August 2005  

Gasoline and Diesel Fuel Update (EIA)

5 5 1 Short-Term Energy Outlook August 2005 Short-Term Energy Outlook - Regional Enhancements Starting with this edition of the Short-Term Energy Outlook (STEO), EIA is introducing regional projections (the scope of which will vary by fuel) of energy prices, consumption, and production. The addition of regional data and forecasts will allow us to examine regional fuel demands and prices, regional fuel inventory trends, the interaction between regional electricity demand shifts, and regional electric generating capacity. This edition of STEO includes regional projections for heating oil, propane, and gasoline prices and natural gas and electricity demand and prices. Over the next 2 months, we will include additional regional

197

Energy Information Administration (EIA) - International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2006 International Energy Outlook 2006 International Energy Outlook 2006 The International Energy Outlook 2006 (IEO2006) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2006 are consistent with those published in EIA's Annual Energy Outlook 2006 (AEO2006), which was prepared using the National Energy Modeling System (NEMS). Projection Tables Appendix A: Reference Case Appendix B: High Economic Growth Case Appendix C: Low Economic Growth Case Appendix D: Reference Case Projections by End-Use Sector and Region Appendix E: Projections of Oil Production Capacity and Oil Production in Three Cases Appendix F: Reference Case Projections for Electricity Capacity and Generation by Fuel

198

Summary Short-Term Petroleum and Natural Gas Outlook  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Petroleum and Natural Gas Outlook Short-Term Petroleum and Natural Gas Outlook 1/12/01 Click here to start Table of Contents Summary Short-Term Petroleum. and Natural Gas Outlook WTI Crude Oil Price: Base Case and 95% Confidence Interval Real and Nominal Crude Oil Prices OPEC Crude Oil Production 1999-2001 Total OECD Oil Stocks* U.S. Crude Oil Inventory Outlook U.S. Distillate Inventory Outlook Distillate Stocks Are Important Part of East Coast Winter Supply Retail Heating Oil and Diesel Fuel Prices Consumer Winter Heating Costs U.S. Total Gasoline Inventory Outlook Retail Motor Gasoline Prices* U.S. Propane Total Stocks Average Weekly Propane Spot Prices Current Natural Gas Spot Prices: Well Above the Recent Price Range Natural Gas Spot Prices: Base Case and 95% Confidence Interval Working Gas in Storage (Percentage Difference fron Previous 5-Year Average)

199

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

200

Annual Energy Outlook 2012 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2012 Annual Energy Outlook 2012 Release Date: June 25, 2012 | Next Early Release Date: December 5, 2012 | Report Number: DOE/EIA-0383(2012) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2012 presents yearly projections and analysis of energy topics Download the complete June 2012 published report. Executive summary The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2012 (AEO2012) focus on the factors that shape the

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Annual Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2013 presents yearly projections and analysis of energy topics Download the full report. The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2013 (AEO2013) focus on the factors that shape the

202

Annual Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2013 presents yearly projections and analysis of energy topics Download the full report. The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2013 (AEO2013) focus on the factors that shape the

203

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Contacts Preface Highlights World Energy Consumption The World Oil Market (Errata as of May 13, 1998) Natural Gas Coal Nuclear Power Hydroelectric and Other Renewable Energy Electricity Appendix A-World Energy Consumption, Oil Production, and Carbon Emissions Tables (PDF) Click Here For the HTML Version of Appendix A, Tables A1-A13 Click Here For the HTML Version of Appendix A, Tables A14-A26 Click Here For the HTML Version of Appendix A, Tables A27-A39 Click Here For the HTML Version of Appendix A, Tables A40-A50 Appendix B-World Energy Projection System Appendix C-A Status Report on Developing Transportation for Caspian Basin Oil and Gas Production Preface The Energy Information Administration’s outlook for world energy trends is presented in this report. Model projections now extending to the year 2020 are reported, and regional trends are discussed.

204

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights Growth in energy use is projected worldwide through 2020. The demand for electricity in homes, business, and industry is growing in all regions, as is the demand for petroleum-powered personal transportation. The International Energy Outlook 1998 (IEO98) reference case forecast indicates that by 2020, the world will consume three times the energy it consumed 28 years ago in 1970 (Figure 2). Much of the projected growth in energy consumption is attributed to expectations of rapid increases in energy use in the developing world—especially in Asia. Although the economic downturn in Asia that began in mid-1997 and continues into 1998 has lowered expectations for near-term growth in the region, the forecast still suggests that almost half the world’s projected increase in energy

205

Transportation Fuel Basics - Natural Gas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Natural Gas Transportation Fuel Basics - Natural Gas July 30, 2013 - 4:40pm Addthis Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation fuel. About one third of the natural gas used in the United States goes to residential and commercial uses, one third to industrial uses, and one third to electric power production. Natural gas has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic, non-corrosive, and non-carcinogenic. It presents no threat to soil, surface water, or groundwater. Natural gas is a mixture of hydrocarbons, predominantly methane (CH4). As delivered through the nation's pipeline system, it also contains hydrocarbons such as ethane and propane and other gases such as nitrogen,

206

Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Lessons Learned from Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics C. Welch Technical Report NREL/TP-540-39446 February 2006 Lessons Learned from Alternative Transportation Fuels: Modeling Transition Dynamics C. Welch Prepared under Task Nos. HS04.2000 and HS06.1002 Technical Report NREL/TP-540-39446 February 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

207

Renewable & Alternative Fuels - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Renewable & Alternative Fuels Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative Transportation Fuels All Renewable & Alternative Fuels Data Reports Analysis & Projections Most Requested Alternative Fuels Capacity and Generation Consumption Environment Industry Characteristics Prices Production Projections Renewable Energy Type All Reports Don't miss: EIA's Alternative Fuel Vehicle Data. Including two interactive data viewers that provide custom data views of Alternative Fuel Vehicle data for both User & Fuel Data and Supplier Data. EIA's latest Short-Term Energy Outlook for renewables › chart showing U.S. renewable energy supply Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly.

208

International Energy Outlook 2006 - Highlights  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2006 Highlights World energy consumption is projected to increase by 71 percent from 2003 to 2030. Fossil fuels continue to supply much of the energy used worldwide, and oil remains the dominant energy source. Figure 1. World Marketed Energy Consumption by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data In the International Energy Outlook 2006 (IEO2006) reference case, world marketed energy consumption increases on average by 2.0 percent per year from 2003 to 2030. Although world oil prices in the reference case, which remain between $47 and $59 per barrel (in real 2004 dollars), dampen the growth in demand for oil, total world energy use continues to increase as a

209

Annual Energy Outlook 1999 - Acronyms  

Gasoline and Diesel Fuel Update (EIA)

acronyms.gif (3491 bytes) acronyms.gif (3491 bytes) AD - Associated/dissolved natural gas AEO98 - Annual Energy Outlook 1998 AEO99 - Annual Energy Outlook 1999 AFVs - Alternative-fuel vehicles AGA - American Gas Association API - American Petroleum Institute BTAB - BT Alex Brown CAAA90 - Clean Air Act Amendments of 1990 CCAP - Climate Change Action Plan CDM - Clean Development Mechanism CFCs - Chlorofluorocarbons CNG - Compressed natural gas CO - Carbon monoxide CO2 - Carbon dioxide DOE - U.S. Department of Energy DRI - DRI/McGraw-Hill EIA - Energy Information Administration EOR - Enhanced oil recovery EPA - U.S. Environmental Protection Agency EPACT - Energy Policy Act of 1992 ETBE - Ethyl tertiary butyl ether EU - European Union FERC - Federal Energy Regulatory Commission GDP - Gross domestic product

210

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Storage Fuels Storage and Transportation Planning Project (NFST) Program Status Jeff Williams Project Director National Transportation Stakeholders Forum Buffalo, New York May 2013 2  "With the appropriate authorizations from Congress, the Administration currently plans to implement a program over the next 10 years that:  Sites, designs and licenses, constructs and begins operations of a pilot interim storage facility by 2021 with an initial focus on accepting used nuclear fuel from shut-down reactor sites;  Advances toward the siting and licensing of a larger interim storage facility to be available by 2025 that will have sufficient capacity to provide flexibility in the waste management system and allows for acceptance of enough used

211

Fuel Cell Technologies Office: Transportation and Stationary Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation and Stationary Power Integration Workshop Transportation and Stationary Power Integration Workshop On October 27, 2008, more than 55 participants from industry, state and federal government, utilities, national laboratories, and other groups met to discuss the topic of integrating stationary fuel cell combined heat and power (CHP) systems and hydrogen production infrastructure for vehicles. The workshop was co-hosted by the U.S. Department of Energy, the U.S. Fuel Cell Council, and the National Renewable Energy Laboratory, and was held in conjunction with the Fuel Cell Seminar in Phoenix, Arizona. Plenary presentations provided an overview of the integration concept and perspective on the opportunity from federal, state and industry organizations. Workshop participants met in breakout sessions to consider the potential to leverage early hydrogen vehicle refueling infrastructure requirements by co-producing hydrogen in stationary fuel cell CHP applications at select facilities (e.g., military bases, postal facilities, airports, hospitals, etc.). The efficiency, reliability, and emissions benefits of these CHP systems have the potential to offset the up-front capital costs and financial risks associated with producing hydrogen for early vehicle markets.

212

Polymer electrolyte fuel cells: Potential transportation and stationary applications  

SciTech Connect

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry's faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scale transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.

Gottesfeld, S.

1993-01-01T23:59:59.000Z

213

Polymer electrolyte fuel cells: Potential transportation and stationary applications  

SciTech Connect

The application of the polymer electrolyte fuel cell (PEFC) as a primary power source in electric vehicles has received increasing attention during the last few years. This increased attention is the result of a combination of significant technical advances in this fuel cell technology and the initiation of some projects for the demonstration of a complete, PEFC-based power system a bus or in a passenger car. Such demonstration projects reflect an increase in industry`s faith in the potential of this technology for transportation applications, or, at least, in the need for a detailed evaluation of this potential. Nevertheless, large scale transportation applications of PEFCs require a continued concerted effort of research on catalysis, materials and components, combined with the engineering efforts addressing the complete power system. This is required to achieve a cost effective, highly performing PEFC stack and power system. A related set of technical and cost challenges arises in the context of potential applications of PEFCs for stationary power applications, although there are clearly some differences in their nature, particularly, to do with the different types of fuels to be employed for each of these applications. We describe in this contribution some recent results of work performed by the Core Research PEFC Program at Los Alamos National Laboratory, which has addressed materials, components and single cell testing of PEFCS. Also included are some recent observations and some insights regarding the potential of this fuel cell technology for stationary Power generation.

Gottesfeld, S.

1993-04-01T23:59:59.000Z

214

Salt transport extraction of transuranium elements from LWR fuel  

DOE Patents (OSTI)

A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

1992-11-03T23:59:59.000Z

215

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

April 2012 April 2012 | Report Number: DOE/EIA-0383ER(2012) Acronyms List of Acronyms AB 32 Global Warming Solutions Act of 2006 LDVs Light-duty vehicles AEO Annual Energy Outlook LFMM Liquid Fuel Market Module AEO20011 Annual Energy Outlook 2011 LNG Liquefied natural gas AEO2012 Annual Energy Outlook 2012 MACT Maximum achievable control technology bpd barrels per day MATS Mercury and Air Toxics Standards Btu British thermal units mpg miles per gallon CAFE Corporate Average Fuel Economy NGL National gas liquids CAIR Clean Air Interstate Rule NHTSA National Highway Traffic Safety Administration CHP Combined heat and power NOx Nitrogen oxides CO2 Carbon dioxide OCS Outer Continental Shelf CTL Coal-to-liquids OECD Organization for Economic Cooperation and Development

216

EIA - Annual Energy Outlook 2014 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Acronyms Acronyms List of Acronyms AEO Annual Energy Outlook LDV Light-duty vehicle AEO2013 Annual Energy Outlook 2013 LED Light emitting diode AEO20014 Annual Energy Outlook 2014 LNG Liquefied natural gas ATRA American Taxpayer Relief Act of 2012 LPG Liquefied petroleum gases bbl Barrels LRG Liquefied refinery gases Btu British thermal units MATS Mercury and Air Toxics Standards CAFE Corporate Average Fuel Economy MECS Manufacturing Energy Consumption Survey CAIR Clean Air Interstate Rule MMbbl/d Million barrels per day CO2 Carbon dioxide MMBtu Million Btu CTL Coal-to-liquids MMst Million short tons DOE U.S. Department of Energy NEMS National Energy Modeling System E85 Motor fuel containing up to 85% ethanol NGL Natural gas liquids

217

Transportation Center Seminar... Life-Cycle Analysis of Transportation Fuels and Vehicle  

E-Print Network (OSTI)

with life-cycle analysis (LCA). In fact, LCA of transportation fuels and vehicle systems has a history of more than 30 years. Over this period, LCA methodologies have evolved and critical data have become readily available. This is especially true in the past ten years when LCA has been applied extensively

Bustamante, Fabián E.

218

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

219

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Reference case projections for Reference case projections for electricity capacity and generation by fuel This page inTenTionally lefT blank 259 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H1. World total installed generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 1,248 1,316 1,324 1,379 1,456 1,546 1,669 1.0 United States a 1,033 1,080 1,068 1,098 1,147 1,206 1,293 0.8 Canada 137 144 152 163 174 185 198 1.2 Mexico/Chile 78 93 104 118 135 155 177 2.8 OECD Europe 946 1,028 1,096 1,133 1,159 1,185 1,211 0.8 OECD Asia 441 444 473 489 501 516 524 0.6 Japan 287 275 293 300 304 309 306 0.2 South Korea 85 93 100 107 114

220

Transportation Systems Planning and Analysis v0 Fall 2013/2014  

E-Print Network (OSTI)

in the US National Transportation Statistics: Travel Monitoring Highway Statistics Publication Archive://www.bts.gov/publications/national_transportation_statistics/2013/pdf/entire.pdf Energy Flow Diagram: Total Energy_wRejected 2011 ClassicView Energy Outlook: http this link!) Readings: ; Motor Fuel data and the Highway Trust Fund; State Gasoline Taxes Wed Sep 18 Personal

Singh, Jaswinder Pal

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIA - Annual Energy Outlook 2009 - Executive Summary  

Gasoline and Diesel Fuel Update (EIA)

Executive Summary Executive Summary Annual Energy Outlook 2009 with Projections to 2030 Executive Summary The past year has been a tumultuous one for world energy markets, with oil prices soaring through the first half of 2008 and diving in its second half. The downturn in the world economy has had a significant impact on energy demand, and the near-term future of energy markets is tied to the downturn’s uncertain depth and persistence. The recovery of the world’s financial markets is especially important for the energy supply outlook, because the capital-intensive nature of most large energy projects makes access to financing a critical necessity. The projections in AEO2009 look beyond current economic and financial woes and focus on factors that drive U.S. energy markets in the longer term. Key issues highlighted in the AEO2009 include higher but uncertain world oil prices, growing concern about greenhouse gas (GHG) emissions and its impacts on energy investment decisions, the increasing use of renewable fuels, the increasing production of unconventional natural gas, the shift in the transportation fleet to more efficient vehicles, and improved efficiency in end-use appliances. Using a reference case and a broad range of sensitivity cases, AEO2009 illustrates these key energy market trends and explores important areas of uncertainty in the U.S. energy economy. The AEO2009 cases, which were developed before enactment of the American Recovery and Reinvestment Act of 2009 (ARRA2009) in February 2009, reflect laws and policies in effect as of November 2008.

222

Integrated Catalytic Conversion of ?-Valerolactone to Liquid Alkenes for Transportation Fuels  

Science Journals Connector (OSTI)

...for Transportation Fuels 10.1126/science...Chemical and Biological Engineering, University of...synthesis of renewable fuels remains a challenging...corn ethanol and biodiesel, have the capacity...of transportation fuels from biomass: chemistry...catalysts, and engineering. Chem. Rev. 106...

Jesse Q. Bond; David Martin Alonso; Dong Wang; Ryan M. West; James A. Dumesic

2010-02-26T23:59:59.000Z

223

A non-isothermal PEM fuel cell model including two water transport mechanisms in the  

E-Print Network (OSTI)

A non-isothermal PEM fuel cell model including two water transport mechanisms in the membrane K Freiburg Germany A dynamic two-phase flow model for proton exchange mem- brane (PEM) fuel cells and the species concentrations. In order to describe the charge transport in the fuel cell the Poisson equations

Münster, Westfälische Wilhelms-Universität

224

Short-Term Energy Outlook Figures  

U.S. Energy Information Administration (EIA) Indexed Site

Independent Statistics & Analysis" Independent Statistics & Analysis" ,"U.S. Energy Information Administration" ,"Short-Term Energy Outlook Figures, December 2013" ,"U.S. Prices" ,,"West Texas Intermediate (WTI) Crude Oil Price" ,,"U.S. Gasoline and Crude Oil Prices" ,,"U.S. Diesel Fuel and Crude Oil Prices" ,,"Henry Hub Natural Gas Price" ,,"U.S. Natural Gas Prices" ,"World Liquid Fuels" ,,"World Liquid Fuels Production and Consumption Balance" ,,"Estimated Unplanned Crude Oil Production Outages Among OPEC Producers" ,,"Estimated Unplanned Crude Oil Production Disruptions Among non-OPEC Producers" ,,"World Liquid Fuels Consumption" ,,"World Liquid Fuels Consumption Growth"

225

Oil and Gas Outlook  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Outlook For Independent Petroleum Association of America November 13, 2014 | Palm Beach, FL By Adam Sieminski, Administrator U.S. Energy Information Administration Recent...

226

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

4 Regional maps Figure F3. Petroleum Administration for Defense Districts 216 U.S. Energy Information Administration Annual Energy Outlook 2010 Figure F3. Petroleum...

227

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

36 Reference case Energy Information Administration Annual Energy Outlook 2012 6 Table A3. Energy prices by sector and source (2010 dollars per million Btu, unless otherwise...

228

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

-- -- -- -- not reported. See notes at end of table. (continued on next page) U.S. Energy Information Administration | Annual Energy Outlook 2012 116 Comparison with other...

229

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Section 180(c) of the Nuclear of Section 180(c) of the Nuclear Waste Policy Act, as amended National Transportation Stakeholder's Forum Buffalo, NY May 15, 2013 Section 180(c) Mandate "The Secretary shall provide technical assistance and funds to States for training for public safety officials of appropriate units of local government and Indian tribes through whose jurisdiction the Secretary plans to transport spent nuclear fuel or high-level radioactive waste [to an NWPA-authorized facility]. * The training shall cover procedures for safe routine transportation of these materials and procedures for dealing with emergency response situations. * Covers all modes of transport 2 Section 180(c) - Background  DOE nearly implemented Section 180(c) in the mid-

230

Prospect of biofuels as an alternative transport fuel in Australia  

Science Journals Connector (OSTI)

Abstract The prospect of biofuels as a transport alternative fuel in Australia is reviewed and discussed in this paper. The Australian transport sector is the second largest energy consuming sector which consumes about 24% of total energy consumption. A part of this energy demand can be met by ecofriendly biofuels. A wide array of different biofuels feedstocks including Australian native species, their distributions, oil content, traditional uses are reviewed and listed in the descending order of their oil content. The world biofuel scenario as well as the 20 largest biofuel production countries and their mandates on biofuels blending with petroleum diesel are presented. Australias biofuel production, consumption, production facilities and future investment projects are also reviewed and discussed. The study developed a biofuel supply chain for Australia and found that the second generation biofuels have better prospects as a future alternative transport fuel in Australia. These biofuel feedstocks are readily available and can overcome the shortcomings of the first generation biofuels, such as socio-economic, environmental and food versus land use challenges. Although some research is in progress, further study is needed on the process development of second generation biofuel production at commercial scale in Australia and abroad.

A.K. Azad; M.G. Rasul; M.M.K. Khan; Subhash C. Sharma; M.A. Hazrat

2015-01-01T23:59:59.000Z

231

Annual Energy Outlook | OpenEI  

Open Energy Info (EERE)

Annual Energy Outlook Annual Energy Outlook Dataset Summary Description Supplemental Table 147 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook barrel btu conversion EIA energy Energy Information Administration kWh TEF transportation Transportation Energy Futures Data text/csv icon Conversion_Factors.csv (csv, 153.2 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

232

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 9.5 9.5 9.1 8.9 8.7 8.5 8.3 -0.4 Natural gas 19.9 20.8 22.6 24.8 27.1 29.0 30.8 1.5 Coal 4.6 4.4 4.5 4.5 4.4 4.4 4.3 -0.3 Electricity 17.6 20.1 23.1 26.4 30.0 33.9 38.0 2.6 Total 52.0 55.1 59.8 65.0 70.8 76.3 81.8 1.5 Commercial Liquids 4.5 4.2 4.2 4.2 4.1 4.0 3.9 -0.4 Natural gas 8.4 8.8 9.4 10.2 11.1 11.8 12.4 1.3 Coal 1.2 1.2 1.2 1.3 1.3 1.4 1.4 0.5 Electricity 14.8 16.5 18.6 21.3 24.3 27.5 31.1 2.5 Total 28.9 30.8 33.6 37.1 40.9 44.8 49.0 1.8 Industrial Liquids 57.2 61.6 66.4 70.1 74.2 78.2 82.1 1.2 Natural gas 45.5 48.8 54.3 59.0 63.4

233

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F9. Delivered energy consumption in Australia/New Zealand by end-use sector and fuel, 2008-2035 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.1 0.1 0.2 0.2 0.2 0.2 0.2 1.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.2 0.3 0.3 0.3 0.3 0.3 0.3 1.0 Total 0.4 0.5 0.5 0.5 0.5 0.5 0.6 1.1 Commercial Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.2 0.3 0.3 0.3 0.3 0.4 0.4 1.6 Total 0.3 0.4 0.4 0.4 0.4 0.4 0.5 1.2 Industrial Liquids 0.6 0.6 0.6 0.6 0.6 0.7 0.7 0.4 Natural gas 0.8 0.8 1.0 1.0 1.1 1.2 1.2 1.4 Coal 0.3 0.2 0.3 0.3 0.3 0.3 0.3 -0.1 Electricity

234

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F3. Delivered energy consumption in the United States by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 1.1 1.1 1.0 1.0 0.9 0.9 0.9 -1.0 Natural gas 4.9 4.8 4.6 4.5 4.5 4.3 4.2 -0.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.6 Electricity 4.9 4.7 4.8 5.1 5.4 5.7 6.0 0.7 Total 11.4 11.0 11.0 11.0 11.2 11.4 11.6 0.1 Commercial Liquids 0.7 0.7 0.7 0.6 0.6 0.6 0.6 -0.3 Natural gas 3.2 3.4 3.4 3.4 3.5 3.6 3.7 0.5 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -0.7 Electricity 4.5 4.5 4.7 5.0 5.2 5.5 5.7 0.8 Total 8.6 8.8 8.9 9.2 9.5 9.9 10.2 0.6 Industrial Liquids 8.4 8.2 8.7 8.7 8.6 8.6 8.7 0.1 Natural gas 8.0 8.7 9.6 9.8 9.9 10.1 10.4 0.9 Coal 1.6 1.6 1.6 1.6 1.6 1.6

235

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F5. Delivered energy consumption in Mexico and Chile by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.4 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2 Electricity 0.2 0.3 0.4 0.5 0.5 0.6 0.7 4.0 Total 0.6 0.7 0.8 0.8 1.0 1.1 1.2 2.4 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.1 0.2 0.2 0.3 0.4 0.5 0.6 5.5 Total 0.2 0.3 0.3 0.4 0.5 0.6 0.7 4.0 Industrial Liquids 1.1 1.2 1.4 1.6 1.8 2.1 2.4 2.6 Natural gas 1.4 1.5 1.7 1.9 2.2 2.6 3.0 2.5 Coal 0.1 0.1 0.2 0.2 0.2 0.2 0.3 3.1 Electricity

236

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F13. Delivered energy consumption in China by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 1.2 1.1 1.1 1.1 1.0 1.0 0.9 -1.0 Natural gas 0.9 1.6 2.5 3.5 4.7 5.9 7.1 7.2 Coal 3.0 2.9 3.0 3.0 3.0 3.0 2.9 -0.2 Electricity 1.8 2.7 3.8 5.0 6.3 7.8 9.2 5.7 Total 6.9 8.3 10.3 12.5 15.0 17.7 20.0 3.6 Commercial Liquids 1.1 1.0 1.0 1.0 1.0 0.9 0.8 -0.8 Natural gas 0.2 0.4 0.6 0.9 1.2 1.5 1.8 7.1 Coal 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.1 Electricity 0.7 1.0 1.4 1.9 2.6 3.5 4.4 6.5 Total 2.5 2.8 3.5 4.3 5.3 6.4 7.6 3.8 Industrial Liquids 8.4 10.2 11.4 12.2 12.7 13.0 13.0 1.5 Natural gas 1.8 2.5 3.2 3.8 4.2 4.5

237

Alternative World Energy Outlook (AWEO) and the role of hydrogen in a changing energy landscape  

Science Journals Connector (OSTI)

The global energy situation is about to change at an accelerating pace and society is largely unprepared. Common energy analyses, such as the International Energy Agency's World Energy Outlook, do not take into account foreseeable supply mismatches from conventional primary energy sources. It is thus the purpose of this paper to provide a progressive view based on an accelerated transition to renewable energies in the framework of LBST's Alternative World Energy Outlook. A transition to renewable energies appears feasible; however, with an intermediate period with limited supplies between 2015 and 2025. Furthermore, the potential role of hydrogen as a secondary energy carrier is reflected in this context. Hydrogen used for transportation can increase the penetration of intermittent renewable energy sources through offering the ability to convert electricity to fuel.

Martin Zerta; Patrick R. Schmidt; Christoph Stiller; Hubert Landinger

2008-01-01T23:59:59.000Z

238

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Sector Industrial Sector Energy Sector International Energy Outlook 2010 Graphic Data - Industrial Sector Energy Sector Figure 82. Annual changes in world industrial and all other end-use energy consumption from previous year, 2006-2010 Figure 83. World delivered energy consumption in the industral and all other end-use sectors, 2005-2035 Figure 84. OECD and Non-OECD industrial sector energy consumption, 2007-2035 Figure 85. World industrial sector energy consumption by fuel, 2007 and 2035 Figure 86. World industrial sector energy consumption by major energy-intensive industry shares, 2007 Figure 87. OECD and Non-OECD major steel producers, 2008 Figure 88. OECD industrial sector energy consumption by fuel, 2007 and 2035 Figure 89. Non-OECD industrial sector energy consumption by fuel, 2007 and 2035

239

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2010 Graphic Data - Electricity Figure 67. Growth in world electric power generation and total energy consumption, 1990-2035 Figure 68. World net electricity generation by region, 1990-2035 Figure 69. Non-OECD net electricity generation by region, 1990-2035 Figure 70. World net electricity generation by fuel, 2006-2035 Figure 71. World net electricity generation from nuclear power by region, 2007-2030 Figure 72. Net electricity generation in North America, 1990-2035 Figure 73. Net electricity generation in North America by Fuel, 2007 and 2035 Figure 74. Net electricity generation in OECD Europe by fuel, 2007-2035 Figure 75. Net electricity generation in OECD Asia, 2007-2035 Figure 76. Net electricity generation in Non-OECD Europe and Eurasia, 2007-2035

240

Methanol as an alternative transportation fuel in the U.S.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Methanol as an alternative transportation fuel in the US: Methanol as an alternative transportation fuel in the US: Options for sustainable and/or energy-secure transportation L. Bromberg and W.K. Cheng Prepared by the Sloan Automotive Laboratory Massachusetts Institute of Technology Cambridge MA 02139 September 27, 2010 Finalized November 2, 2010 Revised November 28, 2010 Final report UT-Battelle Subcontract Number:4000096701 1 Abstract Methanol has been promoted as an alternative transportation fuel from time to time over the past forty years. In spite of significant efforts to realize the vision of methanol as a practical transportation fuel in the US, such as the California methanol fueling corridor of the 1990s, it did not succeed on a large scale. This white paper covers all important aspects of methanol as a transportation fuel.

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009  

Energy.gov (U.S. Department of Energy (DOE))

Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

242

Durability of Foam Insulation for LH2 Fuel Tanks of Future Subsonic Transports  

Science Journals Connector (OSTI)

The potential short-supply of petroleum-based fuels has led to activities by NASA to establish technical characteristics of air transportation systems that would use hydrogen-fueled aircraft. These activities ...

E. L. Sharpe; R. G. Helenbrook

1979-01-01T23:59:59.000Z

243

China Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

D P O L I T I C S , C H I N E S E A C A D E M Y O F S O C I A L S C I E N C E S China Energy Outlook 2020 2014-7-15 Washington DC World Energy China Outlook | Xiaojie Xu and Chen...

244

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis  

Science Journals Connector (OSTI)

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis ... An energy balance, in broad outline, is presented for the production of a high-quality liquid transportation fuel from residual crop biomass. ... That is, 40% of the initial energy in the biomass will be found in the final liquid fuel after subtracting out external energy supplied for complete processing, including transportation as well as material losses. ...

J. Manganaro; B. Chen; J. Adeosun; S. Lakhapatri; D. Favetta; A. Lawal; R. Farrauto; L. Dorazio; D. J. Rosse

2011-04-20T23:59:59.000Z

245

Natural Gas as a Transportation Fuel: Benefits, Challenges, and Implementation (Presentation)  

SciTech Connect

Presentation for the Clean Cities Website highlighting the benefits, challenges, and implementation considerations when utilizing natural gas as a transportation fuel.

Not Available

2007-07-01T23:59:59.000Z

246

Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Agenda for the Transitioning the Transportation Sector--Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop held September 9, 2014.

247

Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price.  

E-Print Network (OSTI)

??In this thesis we examine how fuel price variation affects the optimal mix of services in intercity transportation. Towards this end, we make two main (more)

Ryerson, Megan Smirti

2010-01-01T23:59:59.000Z

248

Assumptions to the Annual Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Release date: June 2008 Next release date: March 2009 Assumptions to the Annual Energy Outlook 2008 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Natural Gas Transmission and Distribution Module. . . . . . . . . . . . . . . . . . . . . . 113 Petroleum Market Module

249

EIA - International Energy Outlook 2008-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Demand and Economic Outlook Demand and Economic Outlook International Energy Outlook 2008 Figure 9. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 Figure 9 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. World Marketed Energy Consumption: OECD and Non-OECD, 1980-2030 Figure 10 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 11. Marketed Energy Use in the Non-OECD Economies by Region, 1990-2030 Figure 11 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 12. World Marketed Energy Use by Fuel Type,1990-2030 Figure 12 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 13. Coal Consumption in Selected World Regions,1980-2030 Figure 13 Data. Need help, contact the National Energy Information Center at 202-586-8800.

250

Two-phase microfluidics, heat and mass transport in direct methanol fuel cells  

E-Print Network (OSTI)

CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

251

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H5. World installed nuclear generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 115 119 123 130 133 130 135 0.5 United States a 101 104 111 114 114 109 113 0.4 Canada 13 13 11 13 16 16 16 0.7 Mexico/Chile 1 2 2 3 4 5 6 5.1 OECD Europe 132 124 128 142 143 143 142 0.3 OECD Asia 67 45 65 71 79 80 82 0.7 Japan 49 20 34 35 36 37 37 -0.9 South Korea 18 25 32 36 43 43 45 3.2 Australia/New Zealand 0 0 0 0 0 0 0 -- Total OECD 314 288 316 343 355 352 359 0.5 Non-OECD Non-OECD Europe and Eurasia 42 49 58 65 73 80 85 2.4 Russia 24 28 35 40 45 50 55 2.8 Other 17 20 23 25 27 29 29 1.8 Non-OECD Asia 21

252

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H21. World net solar electricity generation by region and country, 2010-2040 (billion kilowatthours) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 4 33 38 42 48 63 101 11.1 United States a 4 32 37 40 46 62 99 11.2 Canada 0 1 1 1 1 1 1 -- Mexico/Chile 0 0 0 0 0 1 1 -- OECD Europe 23 78 85 89 94 98 102 5.1 OECD Asia 5 12 22 33 39 50 50 8.1 Japan 4 7 14 23 29 39 39 8.1 South Korea 1 1 2 2 2 2 2 3.6 Australia/New Zealand 0 4 6 8 8 9 9 -- Total OECD 32 123 145 165 181 211 253 7.1 Non-OECD Non-OECD Europe and Eurasia 0 0 1 1 1 1 1 -- Russia 0 0 0 0 0 0 0 -- Other 0 0 1 1 1 1 1 -- Non-OECD Asia 1 31 76 94 107 120 129 17.2 China 1 26 67 79 90 100 105 17.0 India 0 3 7 13 14 17

253

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H11. World installed other renewable generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 38 40 41 42 43 45 47 0.7 United States a 35 38 39 39 40 41 43 0.7 Canada 2 2 2 2 2 2 2 0.6 Mexico/Chile 1 1 1 1 1 1 2 1.3 OECD Europe 73 75 76 77 78 79 80 0.3 OECD Asia 33 36 36 36 36 36 37 0.3 Japan 27 27 27 27 27 27 27 0.1 South Korea 4 6 6 6 6 6 6 1.2 Australia/New Zealand 2 3 3 3 3 3 3 1.4 Total OECD 144 151 153 155 158 160 163 0.4 Non-OECD Non-OECD Europe and Eurasia 4 4 4 4 4 4 5 0.2 Russia 1 1 1 1 1 1 1 0.3 Other 3 3 3 3 3 3 3 0.2 Non-OECD Asia 26 36 45 54 63 69 73 3.4 China 20 27 36 45 53 59 61 3.9 India 3 4 4 4

254

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

5 5 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H7. World installed hydroelectric generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 170 177 181 190 201 214 228 1.0 United States a 78 78 79 79 79 80 81 0.1 Canada 75 78 80 85 93 101 109 1.3 Mexico/Chile 17 20 22 25 29 33 38 2.8 OECD Europe 151 155 169 176 183 189 195 0.9 OECD Asia 37 39 40 40 40 40 41 0.3 Japan 22 24 24 24 24 25 25 0.3 South Korea 2 2 2 2 2 2 2 0.3 Australia/New Zealand 13 13 13 13 14 14 14 0.3 Total OECD 358 371 389 405 424 443 464 0.9 Non-OECD Non-OECD Europe and Eurasia 87 91 99 103 110 118 125 1.2 Russia 47 49 54 58 62 66 69 1.3 Other 41 42 45 45 48 52 56 1.1 Non-OECD Asia

255

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections for electricity capacity and generation by fuel Table H3. World installed natural-gas-fired generating capacity by region and country, 2010-2040 (gigawatts) Region/country Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 402 435 461 505 568 631 697 1.9 United States a 350 379 390 420 472 519 566 1.6 Canada 20 19 26 28 29 32 35 1.9 Mexico/Chile 31 36 45 56 68 80 95 3.8 OECD Europe 217 219 213 204 218 234 252 0.5 OECD Asia 128 134 140 144 148 157 163 0.8 Japan 83 90 96 97 100 101 101 0.7 South Korea 27 26 26 28 29 35 38 1.1 Australia/New Zealand 18 18 18 19 20 22 23 1.0 Total OECD 746 787 814

256

International energy outlook 1996  

SciTech Connect

This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.

NONE

1996-05-01T23:59:59.000Z

257

Energy Information Administration/Short-Term Energy Outlook - January 2005  

Gasoline and Diesel Fuel Update (EIA)

January 2005 January 2005 1 Short-Term Energy Outlook January 2005 Winter Fuels Update (Figure 1) Consumer prices for heating fuels are relatively unchanged since the December Outlook, leaving projections for household heating fuel expenditures about the same as previously projected, despite continued warm weather in the middle of the heating season. Heating oil expenditures by typical Northeastern households are expected to average 30 percent above last winter's levels, with residential fuel oil prices averaging $1.82 per gallon for the October-to-March period. Expenditures for propane-heated households are expected to increase about 20 percent this winter.

258

Energy Information Administration/Short-Term Energy Outlook - February 2005  

Gasoline and Diesel Fuel Update (EIA)

February 2005 February 2005 1 Short-Term Energy Outlook February 2005 Winter Fuels Update (Figure 1) Despite some cold weather during the second half of January, expected average consumer prices for heating fuels this heating season are little changed since the January Outlook, leaving projections for household heating fuel expenditures about the same as previously reported. Heating oil expenditures by typical Northeastern households are expected to average 32 percent above last winter's levels, with residential fuel oil prices averaging $1.82 per gallon for the October-to-March period. Expenditures for propane-heated households are expected to increase about

259

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

F F Reference case projections by end-use sector and country grouping This page inTenTionally lefT blank 225 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 9.5 9.5 9.1 8.9 8.7 8.5 8.3 -0.4 Natural gas 19.9 20.8 22.6 24.8 27.1 29.0 30.8 1.5 Coal 4.6 4.4 4.5 4.5 4.4 4.4 4.3 -0.3 Electricity 17.6 20.1 23.1 26.4 30.0 33.9 38.0 2.6 Total 52.0 55.1 59.8 65.0 70.8 76.3 81.8 1.5 Commercial Liquids 4.5 4.2 4.2 4.2 4.1 4.0 3.9 -0.4 Natural gas 8.4 8.8 9.4 10.2 11.1 11.8 12.4 1.3 Coal 1.2 1.2 1.2 1.3 1.3 1.4 1.4 0.5 Electricity 14.8

260

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

ScienceCinema (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2013-05-29T23:59:59.000Z

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

SciTech Connect

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2010-01-01T23:59:59.000Z

262

International Energy Outlook 1999 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

natgas.jpg (4355 bytes) natgas.jpg (4355 bytes) Natural gas is the fastest growing primary energy source in the IEO99 forecast. Because it is a cleaner fuel than oil or coal and not as controversial as nuclear power, gas is expected to be the fuel of choice for many countries in the future. Prospects for natural gas demand worldwide remain bright, despite the impact of the Asian economic recession on near-term development. Natural gas consumption in the International Energy Outlook 1999 (IEO99) is somewhat increased from last year’s outlook, and the fuel remains the fastest growing primary energy source in the forecast period. Worldwide gas use more than doubles in the reference case projection, reaching 174 trillion cubic feet in 2020 from 82 trillion cubic feet in 1996 (Figure

263

EIA - Annual Energy Outlook 2011 - overview  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Release Date: April 26, 2011 | Next Early Release Date: January 23, 2012 | Report Number: DOE/EIA-0383(2011) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Changes from Previous AEO Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2011 presents yearly projections and analysis of energy topics Download the complete April 2011 published report. Changes from previous AEO2010 Significant update of the technically recoverable U.S. shale gas

264

EIA - Annual Energy Outlook 2011 - overview  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Release Date: April 26, 2011 | Next Early Release Date: January 23, 2012 | Report Number: DOE/EIA-0383(2011) Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Changes from Previous AEO Executive Summary Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Annual Energy Outlook 2011 presents yearly projections and analysis of energy topics Download the complete April 2011 published report. Changes from previous AEO2010 Significant update of the technically recoverable U.S. shale gas

265

Fuel-Mix, Fuel Efficiency, and Transport Demand Affect Prospects for Biofuels in Northern Europe  

Science Journals Connector (OSTI)

Consumption structure parameters describe how the four road transport processes are being consumed, such as, for example, the amount of car-sharing and private vehicle ownership per capitaand are based on country-specific trend extrapolation using data provided by national statistical agencies and other research institutions (13-17, 35). ... As Ohrogge et al. point out, although there are uncertainties in the pace of electric car development and market penetration, future strategies aimed at promoting bioelectricity instead of ethanol for substituting conventional fuels like gasoline in cars and promoting more diesel engines in heavier vehicles may be the best route to the goal of reducing petroleum consumption and CO2 emissions (69). ... In the case of Sweden, where forest operations are highly and efficiently mechanized, this stage consumes more fossil fuels than other elements of the wood supply chain (such as silviculture and logging operations). ...

Ryan M. Bright; Anders Hammer Strmman

2010-02-17T23:59:59.000Z

266

Assumptions to the Annual Energy Outlook 2001 - Household Expenditures  

Gasoline and Diesel Fuel Update (EIA)

Completed Copy in PDF Format Completed Copy in PDF Format Related Links Annual Energy Outlook2001 Supplemental Data to the AEO2001 NEMS Conference To Forecasting Home Page EIA Homepage Household Expenditures Module Key Assumptions The historical input data used to develop the HEM version for the AEO2001 consists of recent household survey responses, aggregated to the desired level of detail. Two surveys performed by the Energy Information Administration are included in the AEO2001 HEM database, and together these input data are used to develop a set of baseline household consumption profiles for the direct fuel expenditure analysis. These surveys are the 1997 Residential Energy Consumption Survey (RECS) and the 1991 Residential Transportation Energy Consumption Survey (RTECS). HEM uses the consumption forecast by NEMS for the residential and

267

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

268

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

269

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

270

Energy Information Administration/Short-Term Energy Outlook - October 2005  

Gasoline and Diesel Fuel Update (EIA)

5 5 1 October 2005 Short-Term Energy Outlook and Winter Fuels Outlook October 12, 2005 Release (Next Update: November 8, 2005) Overview Warnings from previous Outlooks about the potential adverse impacts of an active hurricane season on domestic energy supply and prices are unfortunately being reflected in the challenging realities brought about by Hurricanes Katrina and Rita. The impact of the hurricanes on oil and natural gas production, oil refining, natural gas processing, and pipeline systems have further strained already-tight natural gas and petroleum product markets on the eve of the 2005-2006 heating season (October through March). This combined Short-Term Energy and Winter Fuels Outlook provides a current view of domestic energy supply and

271

EIA - International Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Emissions Emissions International Energy Outlook 2010 Graphic Data - Emissions Figure 103. World energy-related carbon dioxide emissions, 2007-2035 Figure 104. World energy-related carbon dioxide emissions by fuel type, 1990-2035 Figure 105. U.S.energy-related carbon dioxide emissions by fuel in IEO2009 and IEO2010, 2007, 2015, and 2035 Figure 106. Average annual growth in energy-related carbon dioxide emissions in OECD economies, 2007-2035 Figure 107. Average annual growth in energy-related carbon dioxide emissions in the Non-OECD economies, 2007-2035 Figure 108. World carbon dioxide emissions from liquids combustion, 1990-2035 Figure 109. World carbon dioxide emissions from natural gas combustion, 1990-2035 Figure 110. World carbon dioxide emissions from coal combustion, 1990-2035

272

Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042  

SciTech Connect

The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup fuel storage and transportation. This paper discusses the staff's preliminary considerations on the safety implication of fuel reconfiguration with respect to nuclear safety (subcriticality control), radiation shielding, containment, the performance of the thermal functions of the packages, and the retrievability of the contents from regulatory perspective. (authors)

Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States)] [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States); Wagner, John C. [Oak Ridge National Laboratory (United States)] [Oak Ridge National Laboratory (United States)

2013-07-01T23:59:59.000Z

273

Energy Market Outlook  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Federal Utility Partnership Working Group Energy Market Outlook: Helping Customers Meet Their Diverse Energy Goals, held on May 22-23, 2013 in San Francisco, California.

274

Nuclear power: an outlook  

Science Journals Connector (OSTI)

Nuclear power: an outlook ... For nuclear power to regain public acceptance and investor confidence, the nation's nuclear plants must sustain an unblemished safety record, reflecting an industrywide commitment to the highest professional standards. ...

1983-11-14T23:59:59.000Z

275

Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

Energy Outlook Oil and Gas Strategies Summit May 21, 2014 | New York, NY By Adam Sieminski, EIA Administrator The U.S. has experienced a rapid increase in natural gas and oil...

276

Annual Energy Outlook 2013  

Annual Energy Outlook 2012 (EIA)

oil and natural gas outlook IAEE International Conference June 16, 2014 | New York, NY By Adam Sieminski, EIA Administrator The U.S. has experienced a rapid increase in natural gas...

277

Fuel Cells for Transportation FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION1  

E-Print Network (OSTI)

Fuel Cells for Transportation FY 2001 Progress Report 113 V. PEM STACK COMPONENT COST REDUCTION1 A. High-Performance, Matching PEM Fuel Cell Components and Integrated Pilot Manufacturing Processes Mark K polymer electrolyte membrane (PEM) fuel cell components and pilot manufacturing processes to facilitate

278

A SHARP INTERFACE REDUCTION FOR MULTIPHASE TRANSPORT IN A POROUS FUEL CELL ELECTRODE  

E-Print Network (OSTI)

A SHARP INTERFACE REDUCTION FOR MULTIPHASE TRANSPORT IN A POROUS FUEL CELL ELECTRODE KEITH exchange membrane fuel cell is a highly porous material which acts to distribute reactant gases uniformly perturbation, fuel cell electrodes, free surface. AMS subject classifications. 35B40, 35K55, 76R99, 76S05 1

Stockie, John

279

Hybrid Life-Cycle Assessment of Natural Gas Based Fuel Chains for Transportation  

Science Journals Connector (OSTI)

The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. ... Then, trucks are used to transport the fuels to a fueling station in Geneva, Switzerland. ... In evaluating fuel/vehicle options with the potential to improve the greenness of cars [diesel (direct injection) and ethanol in internal combustion engines, battery-powered, gasoline hybrid elec., and hydrogen fuel cells], we find no option dominates the others on all dimensions. ...

Anders Hammer Strmman; Christian Solli; Edgar G. Hertwich

2006-03-17T23:59:59.000Z

280

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

2001-07-30T23:59:59.000Z

282

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

283

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

284

Liquid Fuels Taxes and Credits (released in AEO2010)  

Reports and Publications (EIA)

Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

2010-01-01T23:59:59.000Z

285

Dynamic analysis and application of fuel elements pneumatic transportation in a pebble bed reactor  

Science Journals Connector (OSTI)

Abstract Almost 10,000 spherical fuel elements are transported pneumatically one by one in the pipeline outside the core of a pebble bed reactor every day. Any failure in the transportation will lead to the shutdown of the reactor, even safety accidents. In order to ensure a stable and reliable transportation, it's of great importance to analyze the motion and force condition of the fuel element. In this paper, we focus on the dynamic analysis of the pneumatic transportation of the fuel element and derive kinetic equations. Then we introduce the design of the transportation pipeline. On this basis we calculate some important data such as the velocity of the fuel element, the force between the fuel element and the pipeline and the efficiency of the pneumatic transportation. Then we analyze these results and provide some suggestions for the design of the pipeline. The experiment was carried out on an experimental platform. The velocities of the fuel elements were measured. The experimental results were consistent with and validated the theoretical analysis. The research may offer the basis for the design of the transportation pipeline and the optimization of the fuel elements transportation in a pebble bed reactor.

Hongbing Liu; Dong Du; Zandong Han; Yirong Zou; Jiluan Pan

2014-01-01T23:59:59.000Z

286

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G7. World petroleum and other liquids production by region and country, Low Oil Price case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 34.9 35.1 37.6 43.9 47.5 50.7 56.3 61.5 1.9 Middle East 23.8 25.4 25.5 30.7 33.6 36.1 40.5 44.7 2.1 North Africa 3.8 2.4 3.7 3.7 3.9 4.0 4.4 4.6 0.7 West Africa 4.4 4.3 5.2 5.8 6.1 6.5 6.8 7.1 1.6 South America 2.9 3.0 3.1 3.6 3.9 4.2 4.6 5.1 2.0 Non-OPEC 51.6 51.6 55.5 56.8 57.8 59.2 58.9 59.6 0.5 OECD 21.2 21.2 23.5 23.2 22.5 22.0 21.6 22.0 0.1

287

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

7 7 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G1. World petroleum and other liquids production by region and country, Reference case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 34.9 35.1 36.1 38.4 40.0 42.5 45.7 48.9 1.1 Middle East 23.8 25.4 24.5 26.7 28.2 30.4 33.1 35.8 1.4 North Africa 3.8 2.4 3.5 3.3 3.3 3.5 3.8 4.0 0.2 West Africa 4.4 4.3 5.1 5.3 5.5 5.6 5.8 5.9 0.9 South America 2.9 3.0 3.0 3.1 3.1 3.0 3.1 3.3 0.4 Non-OPEC 51.8 51.7 55.8 58.2 60.3 61.9 63.7 66.0 0.8 OECD 21.4 21.4 23.9 23.9 23.4 23.0 23.8 24.8 0.5 OECD Americas

288

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G3.World nonpetroleum liquids production by region and country, Reference case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 0.0 0.1 0.2 0.2 0.3 0.3 0.3 0.3 12.5 Biofuels b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Gas-to-liquids 0.0 0.1 0.2 0.2 0.3 0.3 0.3 0.3 12.5 Non-OPEC 1.6 1.6 1.9 2.3 2.8 3.3 3.8 4.3 3.5 OECD 0.8 0.9 1.0 1.2 1.2 1.3 1.4 1.7 2.4 Biofuels b 0.8 0.9 1.0 1.1 1.1 1.1 1.2 1.4 1.8 Coal-to-liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 15.0 Gas-to-liquids

289

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Projections of liquid fuels and other petroleum production in five cases Table G5. World petroleum production by region and country, High Oil Price case, 2010-2040 (million barrels per day) Region/country History (estimates) Projections Average annual percent change, 2010-2040 2010 2011 2015 2020 2025 2030 2035 2040 OPEC a 34.8 35.0 33.9 34.2 36.5 39.3 42.8 45.3 0.9 Middle East 23.8 25.3 23.0 23.6 25.4 27.9 30.8 33.0 1.1 North Africa 3.8 2.4 3.3 3.0 3.1 3.2 3.6 3.7 -0.1 West Africa 4.4 4.3 4.7 4.7 5.0 5.1 5.3 5.3 0.6 South America 2.9 3.0 2.9 3.0 3.0 3.0 3.1 3.3 0.4 Non-OPEC 50.1 50.0 54.1 55.9 56.8 59.5 62.2 65.7 0.9 OECD 20.4 20.3 23.1 23.6 23.4 23.4 24.2 25.2 0.7 OECD Americas 15.2

290

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

Petroleum and Other Liquid Fuels Petroleum and Other Liquid Fuels World liquids consumption in the IEO2007 reference case increases from 83 million barrels per day in 2004 to 118 million barrels per day in 2030. Two-thirds of the increment is projected for use in the transportation sector. In the IEO2007 reference case, world consumption of petroleum and other liquid fuels 4 grows from 83 million barrels oil equivalent per day in 2004 to 97 million in 2015 and 118 million in 2030. The demand for liquids increases strongly in the projections, despite world oil prices that remain above $49 per barrel 5 throughout the period. Much of the overall increase in liquids consump- tion is projected for the nations of non-OECD Asia, where strong economic growth is expected. To meet the increase in liquids consumption in the IEO2007 reference case, liquids production is projected to

291

NREL: Transportation Research - Fuel Combustion and Engine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Combustion and Engine Performance Photo of a gasoline direct injection piston with injector. NREL studies the effects of new fuel properties on performance and emissions in...

292

International Energy Outlook 2013 - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2013 International Energy Outlook 2013 Release Date: July 25, 2013 | Next Release Date: July 2014 (See release cycle changes) | correction | Report Number: DOE/EIA-0484(2013) Correction/Update July 27th A stray "2010" was left in the middle of Figure 1. August 1st Figure title changes (PDF only): Figure 10. World energy-related carbon dioxide emissions by fuel type, 2010-2040 (billion metric tons) This should actually be: Figure 10. World energy-related carbon dioxide emissions by fuel type, 1990-2040 (billion metric tons) Figure 11. OECD and non-OECD carbon intensities, 1990-2040 (metric tons carbon dioxide emitted per million 2010 dollars of gross domestic product) This should actually be: Figure 11. OECD and non-OECD carbon intensities, 1990-2040 (metric tons

293

Annual Energy Outlook-List of Acronyms  

Gasoline and Diesel Fuel Update (EIA)

ABWR ABWR Advanced Boiling Water Reactor AD Associated-dissolved (natural gas) AECL Atomic Energy Canada Limited AEO2003 Annual Energy Outlook 2003 AEO2004 Annual Energy Outlook 2004 ALAPCO Association of Local Air Pollution Control Officials AMT Alternative Minimum Tax ANWR Arctic National Wildlife Refuge AP1000 Advanced Pressurized Water Reactor ARI Advanced Resources International AT-PZEV Advanced technology partial zero-emission vehicle BLS Bureau of Labor Statistics BNFL British Nuclear Fuels Limited plc Btu British thermal unit CAAA90 Clean Air Act Amendments of 1990 CAFE Corporate average fuel economy CARB California Air Resources Board CBO Congressional Budget Office CCAP Climate Change Action Plan CGES Centre for Global Energy Studies CHP Combined heat and power CO 2 Carbon dioxide DB Deutsche Bank A.G. DES Department of Environmental Services (New Hampshire)

294

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

For For U.S. Senate Briefing August 12, 2013 | Washington, DC by Adam Sieminski, Administrator Key findings of the International Energy Outlook 2013 2 Adam Sieminski, IEO2013 August 12, 2013 * With world GDP rising by 3.6 percent per year, world energy use will grow by 56 percent between 2010 and 2040. Half of the increase is attributed to China and India. * Renewable energy and nuclear power are the world's fastest-growing energy sources, each increasing by 2.5 percent per year; however, fossil fuels continue to supply almost 80 percent of world energy use through 2040. * Natural gas is the fastest growing fossil fuel in the outlook, supported by increasing supplies of shale gas, particularly in the United States. * Coal grows faster than petroleum consumption until after 2030, mostly due to

295

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

The World Oil Market The World Oil Market Oil prices are expected to remain relatively low, and resources are not expected to constrain substantial increases in oil demand through 2020. Oil usecontinues to dominate transportation energy markets. Oil Demand Growth in Industrialized Countries Oil Demand Growth in Nonindustrialized Countries Oil Demand and Transportation The Composition of World Oil Supply Worldwide Petroleum Trade in the Reference Case World Oil Price Projections Other Views of Prices and Production Policies To Lessen Environmental Damage from Transportation Fuel Use In the early 1990s, oil demand was relatively flat: oil consumption worldwide was only 1 million barrels per day higher in 1993 than it was in 1989. Since 1993, however, the world’s demand for oil has risen by almost

296

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F15. Delivered energy consumption in Other Non-OECD Asia by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.3 Natural gas 0.4 0.4 0.6 0.7 0.8 0.9 1.1 3.7 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4 Electricity 1.1 1.3 1.5 1.8 2.1 2.4 2.8 3.2 Total 2.1 2.3 2.7 3.1 3.5 4.0 4.6 2.7 Commercial Liquids 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.7 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.2 2.5 Coal 0.0 0.0 0.0 0.0 0.0 0.1 0.1 -- Electricity 0.9 1.1 1.3 1.6 1.9 2.4 2.9 3.9 Total 1.3 1.4 1.7 2.0 2.4 2.9 3.4 3.3 Industrial Liquids 4.8 4.7 5.5 6.2 7.1 8.2 9.6 2.4 Natural gas 3.3 3.3 3.7 4.1 4.6 5.2

297

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

3 3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F19. Delivered energy consumption in Other Central and South America by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.4 0.3 0.3 0.3 0.3 0.3 -0.1 Natural gas 0.4 0.5 0.6 0.7 0.8 1.0 1.1 3.2 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.5 0.6 0.6 0.7 0.8 0.8 0.9 1.9 Total 1.2 1.4 1.5 1.7 1.9 2.1 2.3 2.0 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.4 0.4 0.5 0.5 0.6 0.6 0.7 2.4 Total 0.5 0.5 0.6 0.7 0.8 0.8 0.9 2.2 Industrial Liquids 2.1 2.2 2.2 2.1 2.2 2.3 2.4 0.5 Natural gas 2.6 2.7

298

Argonne Transportation Technology R&D Center - Alternative Fuels -  

NLE Websites -- All DOE Office Websites (Extended Search)

Fischer-Tropsch Fuels Fischer-Tropsch Fuels SunDiesel fuel This Sun Diesel BTL fuel, made from wood chips, results in lower particulate matter and nitrogen oxide emissions. Fischer-Tropsch (F-T) fuels are synthetic diesel fuels produced by converting gaseous hydrocarbons, such as natural gas and gasified coal or biomass, into liquid fuel. These fuels are commonly categorized into the following groups: Biomass to liquids (BTL) Gas to liquids (GTL) Coal to liquids (CTL) Argonne engineers are investigating the performance and emissions data of F-T fuels for both older and newer vehicles. The goal is to provide this data to the U.S. Department of Energy, the auto industry and energy suppliers. Part of the lab's strategy also includes publishing the data to solicit ideas and input from the fuels and combustion community.

299

Driving it home: choosing the right path for fueling North America's transportation future  

SciTech Connect

North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

2007-06-15T23:59:59.000Z

300

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks  

NLE Websites -- All DOE Office Websites (Extended Search)

AURORA Program Overview Topic 4A. Transport within the PEM Stack / Transport Studies Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Award#: DE-EE0000472 US DOE Fuel Cell Projects Kickoff Meeting Washington, DC September 30, 2009 Program Objectives The objective of this program is to optimize the efficiency of a stack technology meeting DOE cost targets. As cost reduction is of central importance in commercialization, the objective of this program addresses all fuel cell applications. AURORA C. Performance Technical Barriers Premise: DOE cost targets can be met by jointly exceeding both the Pt loading (1.0 W/cm2) targets.

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Annual Energy Outlook 2010 with Projections to 2035-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2010 with Projections to 2035 - Graphic Data Annual Energy Outlook 2010 with Projections to 2035 - Graphic Data Annual Energy Outlook 2010 with Projections to 2035 Graphic Data Figure 1. U.S. primary energy consumption, 1980-2035 Figure 1 Data Figure 2. U.S. liquid fuels supply, 1970-2035 Figure 2 Data Figure 3. U.S. natural gas supply, 1990-2035 Figure 3 Data Figure 4. U.S. energy-related carbon dioxide emissions, 2008 and 2035 Figure 4 Data Figure 5. Projected average fleet-wide fuel economy and CO2-equivalent emissions compliance levels for passenger cars, model year 2016 Figure 5 Data Figure 6. Projected average fleet-wide fuel economy and CO2-equivalent emissions compliance levels for light trucks, model year 2016 Figure 6 Data Figure 7. Total energy consumption in three cases, 2005-2035 Figure 7 Data

302

Annual Energy Outlook 2009 with Projections to 2030-Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Annual Energy Outlook 2009 with Projections to 2030 Graphic Data Figure 1. Total liquid fuels demand by sector Figure 1 Data Figure 2. Total natural gas supply by source Figure 2 Data Figure 3. New light-duty vehicle sales shares by type Figure 3 Data Figure 4. Proposed CAFE standards for passenger cars by vehicle footprint, model years 2011-2015 Figure 4 Data Figure 5. Proposed CAFE standards for light trucks by vehicle footprint, model years 2011-2015 Figure 5 Data Figure 6. Average fuel economy of new light-duty vehicles in the AEO2008 and AEO2009 projections, 1995-2030 Figure 6 Data Figure 7. Value of fuel saved by a PHEV compared with a conventional ICE vehicle over the life of the vehicles, by gasoline price and PHEV all-electric driving range

303

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

SciTech Connect

This report describes activities for the third quarter of work performed under this agreement. Atmospheric testing was conducted as scheduled on June 5 through June 13, 2003. The test results were encouraging, however, the rate of carbon dissolution was below expectations. Additional atmospheric testing is scheduled for the first week of September 2003. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product stream. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2003-07-31T23:59:59.000Z

304

Annual Energy Outlook 2001-Acronyms  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Acronyms AD Associated-dissolved (natural gas) AEO Annual Energy Outlook AGA American Gas Association ANWR Arctic National Wildlife Refuge BEA Bureau of Economic Analysis (U.S. Department of Commerce) BRP Blue Ribbon Panel Btu British thermal unit CAAA90 Clean Air Act Amendments of 1990 CARB California Air Resources Board CBECS EIA’s 1995 Commercial Buildings Energy Consumption Survey CCAP Climate Change Action Plan CCTI Climate Change Technology Initiative CDM Clean Development Mechanism CO Carbon monoxide DBAB Deutsche Banc Alex. Brown DOE U.S. Department of Energy DRI Standard & Poor’s DRI E85 Motor fuel containing 85 percent ethanol EIA Energy Information Administration EOR Enhanced oil recovery EPACT Energy Policy Act of 1992

305

International Energy Outlook 2001 - Coal  

Gasoline and Diesel Fuel Update (EIA)

Coal Coal picture of a printer Printer Friendly Version (PDF) Although coal use is expected to be displaced by natural gas in some parts of the world, only a slight drop in its share of total energy consumption is projected by 2020. Coal continues to dominate many national fuel markets in developing Asia. World coal consumption has been in a period of generally slow growth since the late 1980s, a trend that is expected to continue. Although 1999 world consumption, at 4.7 billion short tons,9 was 15 percent higher than coal use in 1980, it was lower than in any year since 1984 (Figure 51). The International Energy Outlook 2001 (IEO2001) reference case projects some growth in coal use between 1999 and 2020, at an average annual rate of 1.5 percent, but with considerable variation among regions.

306

Annual Energy Outlook 2001 - Overview  

Gasoline and Diesel Fuel Update (EIA)

Overview Overview Key Energy Issues to 2020 Prices Consumption Energy Intensity Electricity Generation Production and Imports Carbon Dioxide Emissions Key Energy Issues to 2020 Currently, most attention in energy markets is focused on near-term issues of world oil supply and prices, U.S. natural gas prices, and the transition to restructured electricity markets in several regions of the country. The Annual Energy Outlook 2001 (AEO2001) addresses the longer-term trends of electricity industry restructuring, fossil fuel supply and prices, and the impacts of economic growth on projected energy use and carbon dioxide emissions. AEO2001 does not project short-term events, such as supply disruptions or severe weather. The AEO2001 projections assume a transition to full competitive pricing of

307

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System  

SciTech Connect

PEMFC technology for transportation must be competitive with internal combustion engine powertrains in a number of key metrics, including performance, life, reliability, and cost. Demonstration of PEMFC cost competitiveness has its own challenges because the technology has not been applied to high volume automotive markets. The key stack materials including membranes, electrodes, bipolar plates, and gas diffusion layers have not been produced in automotive volumes to the exacting quality requirements that will be needed for high stack yields and to the evolving property specifications of high performance automotive stacks. Additionally, balance-of-plant components for air, water, and thermal management are being developed to meet the unique requirements of fuel cell systems. To address the question of whether fuel cells will be cost competitive in automotive markets, the DOE has funded this project to assess the high volume production cost of PEM fuel cell systems. In this report a historical perspective of our efforts in assessment of PEMFC cost for DOE is provided along with a more in-depth assessment of the cost of compressed hydrogen storage is provided. Additionally, the hydrogen storage costs were incorporated into a system cost update for 2004. Assessment of cost involves understanding not only material and production costs, but also critical performance metrics, i.e., stack power density and associated catalyst loadings that scale the system components. We will discuss the factors influencing the selection of the system specification (i.e., efficiency, reformate versus direct hydrogen, and power output) and how these have evolved over time. The reported costs reflect internal estimates and feedback from component developers and the car companies. Uncertainty in the cost projection was addressed through sensitivity analyses.

Eric J. Carlson

2004-10-20T23:59:59.000Z

308

On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks  

SciTech Connect

This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry helium and flooded water filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

Samuel Bays; Ayodeji Alajo

2010-05-01T23:59:59.000Z

309

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

The IEO2006 projections indicate continued growth in world energy use, despite The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook. Energy resources are thought to be adequate to support the growth expected through 2030. The International Energy Outlook 2006 (IEO2006) projects strong growth for worldwide energy demand over the 27-year projection period from 2003 to 2030. Despite world oil prices that are 35 percent higher in 2025 than projected in last year's outlook, world economic growth continues to increase at an average annual rate of 3.8 percent over the projection period, driving the robust increase in world energy use. Total world consumption of marketed energy expands from 421 quadrillion Brit- ish thermal units (Btu) in 2003 to 563 quadrillion Btu in 2015 and then to 722 quadrillion Btu in

310

Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Outlook Outlook 2010 Restrospective Review July 2011 www.eia.gov U.S. Depa rtment of Energy W ashington, DC 20585 This page inTenTionally lefT blank 3 U.S. Energy Information Administration | Annual Energy Outlook Retrospective Review While the integrated nature of NEMS may result in some feedback that slightly modifies the initial assumptions about world oil price and the macroeconomic growth environment, these feedbacks tend to be relatively small, so that the initial assumptions for world oil price and the macroeconomic growth environment largely determine the overall projection environ- ment. To the extent that this general environment deviates from the initial assumptions, the NEMS projection results will also deviate. Table 2 provides a summary of the percentage of years in

311

Summer_Gas_Outlook  

Gasoline and Diesel Fuel Update (EIA)

(Energy Information Administration/Short-Term Energy Outlook -- April 2001) (Energy Information Administration/Short-Term Energy Outlook -- April 2001) 1 Summer 2001 Motor Gasoline Outlook Summary April 2001 For the upcoming summer season (April to September), motor gasoline markets are projected to once again exhibit a very tight supply/demand balance. * Retail gasoline prices (regular grade) are expected to average $1.49 per gallon, slightly lower than last summer's average of $1.53 per gallon, but still above the previous (current-dollar) record summer average of $1.35 recorded in 1981. Nominal prices are expected to reach a peak of $1.52 per gallon in June but then decline gradually to about $1.43 by December. These projections presume no

312

The impact of fuel price volatility on transportation mode choice  

E-Print Network (OSTI)

In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight logistics. This thesis explores the impact of fuel price volatility on supply ...

Kim, Eun Hie

2009-01-01T23:59:59.000Z

313

Transportation Fuel Cell R&D Needs (Presentation)  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the DOE Fuel Cell Pre-Solicitation Workshop held January 23-24, 2008 in Golden, Colorado.

314

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

315

Fuel-Neutral Studies of Particulate Matter Transport Emissions  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

316

On direct and indirect methanol fuel cells for transportation applications  

SciTech Connect

Power densities in electrolyte Direct Methanol Fuel Cells have been achieved which are only three times lower than those achieved with similar reformate/air fuel cells. Remaining issues are: improved anode catalyst activity, demonstrated long-term stable performance, and high fuel efficiencies.

Ren, Xiaoming; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

317

Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies  

E-Print Network (OSTI)

Camelina Algae Gasoline Diesel Jet Fuel Liquefied Petroleum Gas Naphtha Residual Oil Hydrogen Fischer Coke Nuclear Energy Hydrogen #12;GREET examines more than 80 vehicle/fuel systems Conventional Spark-Tropsch diesel 4 Dimethyl ether 4 Biodiesel Fuel Cell Vehicles 4 On-board hydroge

Bustamante, Fabián E.

318

The economics of liquid transportation fuels from coal: Past, present and future  

SciTech Connect

This paper reviews the technologies for producing liquid transportation fuels from coal and traces their evolution. Estimates of how their economics have changed with continuing research and development are also given.

Gray, D.; Tomlinson, G.; ElSawy, A. [Mitre Corp., McLean, VA (United States)

1993-08-01T23:59:59.000Z

319

Cost analysis of air cargo transport and effects of fluctuations in fuel price  

Science Journals Connector (OSTI)

Abstract This study developed a model with cost functions formulated for different stages of cargo transport operation. A case analysis was performed with actual data from four air cargo traffic routes and eight aircraft types to validate the applicability of the model. The results show that the optimal payloads for various aircraft types vary with fuel price fluctuations. Furthermore, this study determined optimal types of freighter aircraft for different routes. Freight rates increase with rises in fuel price due to the corresponding increase in the fuel surcharge, thus bringing in higher total revenue. When the increase in total revenue exceeds the rise in fuel cost, the optimal payload will drop. Not only can the cost functions reveal the impact of fuel price fluctuations on different aspects of air cargo transport, they can also assist airlines in selecting the aircraft type with the best fuel economy for different route distances and cargo volumes.

Ching-Cheng Chao; Ching-Wen Hsu

2014-01-01T23:59:59.000Z

320

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

2002-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Producing transportation fuels from algae: In search of synergy  

Science Journals Connector (OSTI)

Abstract The study found that promising algae biofuels R&D breakthroughs (hydrothermal liquefaction technology, high-frequency magnetic impulse cavitation reactors, etc.) and industry milestones (technologies of hydrorefining and catalytic selective oxidation among others), in order to move forward, require for implementation of new synergies and further innovations needed to improve economical production of advanced biofuels that are not applicable today. It seems that already viable state-of-the-art findings must be re-examined extensively in all of the different aspects in order to hasten the commercialisation of algal biofuels production in sustainable biorefineries. The same could be said about the feedstock selection for algal biomass production and its cultivation. It is the first step to successful large-scale algae cultivation in new regions of the world. Based on the above mentioned we identified fourteen promising algae species that can successfully grow in various regions of Russia under local climatic conditions. Samples collected during expedition were analysed at Lomonosov Moscow State University. Providing predetermined alternate periods of light and darkness and for temperature control of the different mediums to improve photosynthetic responses we investigated two different microalgal production systems: open ponds of the volume V=500l and closed bioreactors of the volume V=1.0l. Later on, a review on interdisciplinary synergies between biology and technology to open up new avenues of R&D in the field of algae-for-transport was carried out by leading universities of Lithuania, Russia, and Ukraine. In summary, we found that it is already possible to reduce the price of the 3rd and 4th generation biodiesel fuel from algae by applying the synergistic approaches to sustainable energy production highlighted in this paper, and probably some other ones as well.

Laurencas Raslavi?ius; Vladimir G. Semenov; Nadezhda I. Chernova; Art?ras Kerys; Aleksandr K. Kopeyka

2014-01-01T23:59:59.000Z

322

Annual Energy Outlook 2013 Early Release Reference Case  

Gasoline and Diesel Fuel Update (EIA)

Flex-Fuel Vehicle Modeling in the Flex-Fuel Vehicle Modeling in the Annual Energy Outlook John Maples Office of Energy Consumption and Energy Analysis March 20, 2013 | Washington, DC Light duty vehicle technology and alternative fuel market penetration 2 * Technologies affecting light-duty vehicle fuel economy are considered as either: - subsystem technologies (transmissions, materials, turbo charging) - advanced/alternative fuel vehicles (hybrids, EVs, FFVs) * Manufacturers Technology Choice Component (MTCC) - 9 manufacturers, 16 vehicle types, 6 size classes - adopts vehicle subsystem technologies for all vehicle types (conventional gasoline, FFV, hybrid, diesel, etc.) based on value of fuel economy and/or performance improvement * Consumer Vehicle Choice Component (CVCC)

323

GREET 1.0 -- Transportation fuel cycles model: Methodology and use  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-06-01T23:59:59.000Z

324

EIA-Annual Energy Outlook 2010  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2010 The Annual Energy Outlook presents a projection and analysis of US energy supply, demand, and prices through 2035. The projections are based on results from the Energy Information Administration's National Energy Modeling System. The AEO2010 includes Reference case, additional cases examining alternative energy markets. Executive Summary Issues in Focus includes: Market Trends in Economic Activity No Sunset and Extended Policies cases Energy Demand Projections World oil prices and production trends in AEO2010 Electricity Projections Energy intensity trends in AEO2010 Oil and Natural Gas Projections Natural gas as a fuel for heavy trucks: Issues and incentives Coal Projections Factors affecting the relationship between crude oil and natural gas prices

325

Short Term Energy Outlook ,October 2002  

Gasoline and Diesel Fuel Update (EIA)

October 2002 October 2002 1 Short-Term Energy Outlook October 2002 Overview World Oil Markets: Continued high oil prices are the result of declining OECD commercial oil inventories, worries over a potential clash with Iraq, and OPEC's decision to leave production quotas unchanged at its September meeting. Solid growth in world oil demand this winter (and for 2003 as a whole) is likely to tighten world oil markets and reduce commercial oil inventories. The West Texas Intermediate (WTI) crude oil spot price averaged $29.75 in September, about $3.50 per barrel above the year-ago level and about $10 per barrel above a low point seen last January. Home Heating Costs Outlook: While fuel supplies should remain sufficient under normal weather

326

NREL: Transportation Research - Emissions and Fuel Economy Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that result in...

327

Alternative Fuels Used in Transportation: Science Projects in...  

Energy Savers (EERE)

with a hydroxyl radical (OH). Methanol can be produced from natural gas, coal, residual oil, or biomass. Although vehicles can operate on pure methanol fuel (M100), methanol...

328

The impact of fuel price volatility on transportation mode choice.  

E-Print Network (OSTI)

??In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight (more)

Nsiah-Gyimah, Michael

2009-01-01T23:59:59.000Z

329

Annual Energy Outlook 2006 with Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

ACI ACI Activated carbon injection AD Associated-dissolved (natural gas) AEO Annual Energy Outlook AEO2005 Annual Energy Outlook 2005 AEO2006 Annual Energy Outlook 2006 Altos Altos Partners ANWR Arctic National Wildlife Refuge API American Petroleum Institute BLGCC Black liquor gasification coupled with a combined-cycle power plant BOE Barrels of oil equivalent BTL Biomass-to-liquids Btu British thermal units CAAA90 Clean Air Act Amendments of 1990 CAFE Corporate average fuel economy CAIR Clean Air Interstate Rule CAMR Clean Air Mercury Rule CARB California Air Resources Board CBO Congressional Budget Office CHP Combined heat and power CO 2 Carbon dioxide CPI Consumer price index CRI Color rendering index CTL Coal-to-liquids DB Deutsche Bank AG DCL Direct coal liquefaction DOE U.S. Department of Energy E85 Fuel containing a blend of 70 to 85 percent ethanol EEA Energy and Environmental

330

EIA-Annual Energy Outlook 2010 Early Release Overview  

Gasoline and Diesel Fuel Update (EIA)

Analyses > Annual Energy Outlook Early Release > Overview Analyses > Annual Energy Outlook Early Release > Overview Annual Energy Outlook Early Release Overview Full Printer-Friendly Version Overview Energy Trends to 2035 | Economic Growth | Energy Prices | Energy Consumption by Sector | Energy Consumption by Primary Fuel | Energy Intensity | Energy Production and Imports | Electricity Generation | Energy-Related Carbon Dioxide Emissions | Energy Trends to 2035 In preparing the Annual Energy Outlook 2010 (AEO2010), the Energy Information Administration (EIA) evaluated a wide range of trends and issues that could have major implications for U.S. energy markets. This overview focuses primarily on one case, the AEO2010 reference case, which is presented and compared with the updated Annual Energy Outlook 2009 (updated AEO2009) reference case released in April 20091 (see Table 1 below). Because of the uncertainties inherent in any energy market projection, particularly in periods of high price volatility, rapid market transformation, or active changes in legislation, the reference case results should not be viewed in isolation. Readers are encouraged to review the alternative cases when the complete AEO2010 publication is released in order to gain perspective on how variations in key assumptions can lead to different outlooks for energy markets.

331

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

SciTech Connect

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

332

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 16, 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Table Title Formats Summary Reference Case Tables Year-by-Year Reference Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption

333

EIA - Annual Energy Outlook 2013 Early Release  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2013 Annual Energy Outlook 2013 Release Dates: April 15 - May 2, 2013 | Next Early Release Date: December 2013 (See release cycle changes) | correction | full report Overview Data Reference Case Side Cases Interactive Table Viewer Topics Source Oil/Liquids Natural Gas Coal Electricity Renewable/Alternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication Chapter Market Trends Issues in Focus Legislation & Regulations Comparison Appendices Table Title Formats Summary Reference Case Tables Year-by-Year Reference Case Tables Table 1. Total Energy Supply and Disposition Summary Table 2. Energy Consumption by Sector and Source Table 3. Energy Prices by Sector and Source Table 4. Residential Sector Key Indicators and Consumption

334

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation Annual Energy Outlook Forecast Evaluation by Susan H. Holte In this paper, the Office of Integrated Analysis and Forecasting (OIAF) of the Energy Information Administration (EIA) evaluates the projections published in the Annual Energy Outlook (AEO), (1) by comparing the projections from the Annual Energy Outlook 1982 through the Annual Energy Outlook 2001 with actual historical values. A set of major consumption, production, net import, price, economic, and carbon dioxide emissions variables are included in the evaluation, updating similar papers from previous years. These evaluations also present the reasons and rationales for significant differences. The Office of Integrated Analysis and Forecasting has been providing an

335

Mass transport phenomena in direct methanol fuel cells T.S. Zhao*, C. Xu, R. Chen, W.W. Yang  

E-Print Network (OSTI)

Mass transport phenomena in direct methanol fuel cells T.S. Zhao*, C. Xu, R. Chen, W.W. Yang January 2009 Available online 20 February 2009 Keywords: Fuel cell Direct methanol fuel cell Mass efficient energy production has long been sought to solve energy and environmental problems. Fuel cells

Zhao, Tianshou

336

Fuels options conference  

SciTech Connect

The proceedings of the Fuels Options Conference held May 9-10, 1995 in Atlanta, Georgia are presented. Twenty-three papers were presented at the conference that dealt with fuels outlook; unconventional fuels; fuel specification, purchasing, and contracting; and waste fuels applications. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1995-09-01T23:59:59.000Z

337

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

338

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

7 7 (IEO2007) presents an assessment by the Energy Information Admin- istration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2007 are consistent with those published in EIA's Annual Energy Outlook 2007 (AEO2007), which was pre- pared using the National Energy Modeling System (NEMS). IEO2007 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associa- tions, and other planners and decisionmakers. They are published pursuant to the Department of Energy Orga- nization Act of 1977 (Public Law 95-91), Section 205(c). Projections in IEO2007 are divided according to Organi- zation for Economic Cooperation and Development members (OECD) and non-members (non-OECD). There are

339

International Energy Outlook 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 International Energy Outlook 1997 April 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting; Arthur T. Andersen (202/586-1441), Director, Energy Demand and Integration Division;

340

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 (IEO2006) presents an assessment by the Energy Information Administra- tion (EIA) of the outlook for international energy mar- kets through 2030. U.S. projections appearing in IEO2006 are consistent with those published in EIA's Annual Energy Outlook 2006 (AEO2006), which was pre- pared using the National Energy Modeling System (NEMS). IEO2006 is provided as a service to energy managers and analysts, both in government and in the private sector. The projections are used by international agencies, Federal and State governments, trade associa- tions, and other planners and decisionmakers. They are published pursuant to the Department of Energy Orga- nization Act of 1977 (Public Law 95-91), Section 205(c). IEO2006 focuses exclusively on marketed energy. Non- marketed energy sources, which continue to play an important role in some developing countries, are not included

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

International Energy Outlook 1995  

Gasoline and Diesel Fuel Update (EIA)

5) 5) Distribution Category UC-950 International Energy Outlook 1995 May 1995 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting; Arthur T. Andersen (202/586-1441), Director, Energy Demand and Integration Division;

342

Annual Energy Outlook 1999  

Gasoline and Diesel Fuel Update (EIA)

9) 9) Annual Energy Outlook 1999 With Projections to 2020 December 1998 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. For Further Information . . . The Annual Energy Outlook 1999 (AEO99) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222).

343

Annual Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Distribution Category UC-950 Annual Energy Outlook 1998 With Projections to 2020 December 1997 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administra- tion and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other or- ganization. The Annual Energy Outlook 1998 (AEO98) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Informa- tion Administration (EIA). The projections are based on results from EIA's National Energy Modeling

344

International Energy Outlook - Electicity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Electricity International Energy Outlook 2004 Electricity Electricity consumption nearly doubles in the IEO2004 projections. Developing nations in Asia are expected to lead the increase in world electricity use. Figure 60. World Net Electricity Consumptin, 2001-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 61. World Net Electricity Consumptin by Region, 2001-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data World net electricity consumption is expected nearly double to over the next two decades, according to the International Energy Outlook 2004 (IEO2004) reference case forecast. Total demand for electricity is projected to increase on average by 2.3 percent per year, from 13,290

345

Annual Energy Outlook 2002  

Gasoline and Diesel Fuel Update (EIA)

2) 2) December 2001 Annual Energy Outlook 2002 With Projections to 2020 December 2001 For Further Information . . . The Annual Energy Outlook 2002 (AEO2002) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@ eia.doe.gov, 202/586-2222), Director, Office of Integrated Analysis and Forecasting; Scott Sitzer (ssitzer@ eia.doe.gov, 202/586-2308), Director, Coal and Electric Power Division; Susan H. Holte (sholte@eia.doe.gov, 202/586-4838), Director, Demand and Integration Division; James M. Kendell (jkendell@eia.doe.gov, 202/586-9646), Director, Oil and Gas Division; and Andy S. Kydes (akydes@eia.doe.gov, 202/586-2222), Senior Technical Advisor. For ordering information and questions on other energy statistics available from EIA, please contact EIA's National

346

Annual Energy Outlook 1996  

Gasoline and Diesel Fuel Update (EIA)

96) 96) Distribution Category UC-950 Annual Energy Outlook 1996 With Projections to 2015 January 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. For Further Information . . . The Annual Energy Outlook (AEO) is prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/ 586-1130),

347

Annual Energy Outlook 2001  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Annual Energy Outlook 2001 With Projections to 2020 Preface The Annual Energy Outlook 2001 (AEO2001) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA’s National Energy Modeling System (NEMS). The report begins with an “Overview” summarizing the AEO2001 reference case. The next section, “Legislation and Regulations,” discusses evolving legislative and regulatory issues. “Issues in Focus” discusses the macroeconomic projections, world oil and natural gas markets, oxygenates in gasoline, distributed electricity generation, electricity industry restructuring, and carbon dioxide emissions. It is followed by the analysis of energy market trends.

348

2013 Propane Market Outlook  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Propane Market Outlook Assessment of Key Market Trends, Threats, and Opportunities Facing the Propane Industry Through 2020 P R E S E N T E D B Y : Prepared for the Propane Education & Research Council (PERC) by: ICF International, Inc. 9300 Lee Highway Fairfax, VA 22031 Tel (703) 218-2758 www.icfi.com Principal Authors: Mr. Michael Sloan msloan@icfi.com Mr. Warren Wilczewski wwilczewski@icfi.com Propane Market Outlook at a Glance ¡ Total consumer propane sales declined by more than 17 percent between 2009 and 2012, including 3.3 percent in 2011 and 10 to 12 percent in 2012. The declines in 2011 and 2012 were due primarily to much warmer than normal weather, as well as the impact of higher propane prices and continuing efficiency trends. Sales are expected to rebound in 2013 with a return to more

349

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

2 2 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information Administration / Annual Energy Outlook 2010 213 Appendix F Regional Maps Figure F1. United States Census Divisions Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Source: U.S. Energy Information Administration, Office of Integrated Analysis and Forecasting. Appendix F Regional Maps Figure F1. United States Census Divisions U.S. Energy Information Administration | Annual Energy Outlook 2012

350

International energy outlook 1994  

SciTech Connect

The International Energy Outlook 1994 (IEO94) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets between 1990 and 2010. The report is provided as a statistical service to assist energy managers and analysts, both in government and in the private sector. These forecasts are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Depart. of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO94 projections are based on US and foreign government policies in effect on October 1, 1993-which means that provisions of the Climate Change Action Plan unveiled by the Administration in mid-October are not reflected by the US projections.

Not Available

1994-07-01T23:59:59.000Z

351

Annual Energy Outlook 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Annual Energy Outlook 1997 With Projections to 2015 December 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. For Further Information . . . The Annual Energy Outlook 1997 (AEO97) was prepared by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting, under the direction of Mary J. Hutzler (mhutzler@eia.doe.gov, 202/586-2222). General questions may be addressed to Arthur T. Andersen (aanderse@eia.doe.gov, 202/586-1441),

352

International energy outlook 2006  

SciTech Connect

This report presents international energy projections through 2030, prepared by the Energy Information Administration. After a chapter entitled 'Highlights', the report begins with a review of world energy and economic outlook, followed by energy consumption by end-use sector. The next chapter is on world oil markets. Natural gas, world coal market and electricity consumption and supply are then discussed. The final chapter covers energy-related carbon dioxide emissions.

NONE

2006-06-15T23:59:59.000Z

353

NREL: Vehicles and Fuels Research - Transportation and Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

online animation that shows the variables of filling a fuel tank with compressed natural gas. NREL created an online tool to help drivers learn more about filling a tank with...

354

Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations  

SciTech Connect

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize food versus fuel concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-08-02T23:59:59.000Z

355

The Decline of Fuel Taxes and New Transportation Funding Options  

E-Print Network (OSTI)

). Regardless of the original intent, fuel taxes expanded on the paradigm shift introduced by tolling by creating a system that effectively correlated vehicle usage to tax collected, all while driving down collection costs. In 1932, a federal gas tax of 1... cent was introduced (Tax Foundation, 2012). However, unlike state fuel taxes, which were earmarked for road projects, the federal gas tax was credited to the federal governments general fund, where congressional lawmakers could divert this revenue...

Manning, Kevin M.

2012-12-14T23:59:59.000Z

356

Santa Clara Valley Transportation Authority and San Mateo County Transit District; Fuel Cell Transit Buses: Preliminary Evaluation Results  

SciTech Connect

Report provides preliminary results from an evaluation of prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority (VTA) in San Jose, California.

Eudy, L.; Chandler, K.

2006-03-01T23:59:59.000Z

357

Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results  

SciTech Connect

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

Chandler, K.; Eudy, L.

2006-11-01T23:59:59.000Z

358

Santa Clara Valley Transportation Authority and San Mateo County Transit District-- Fuel Cell Transit Buses: Evaluation Results  

Energy.gov (U.S. Department of Energy (DOE))

This report provides evaluation results for prototype fuel cell transit buses operating at Santa Clara Valley Transportation Authority in San Jose, California.

359

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders National Transportation Stakeholders Forum Forum 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting 2011 Annual Meeting May 11, 2011 May 11, 2011 Evaluation of Shortline Railroads Evaluation of Shortline Railroads & & & & SNF/HLW Rail Shipment Inspections SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel Tasked for the Transportation of Spent Nuclear Fuel Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Evaluation of Shortline Railroads Task: Task: Task: Task: Identify Shortline Railroads Serving Nuclear Power Plants Identify Shortline Railroads Serving Nuclear Power Plants

360

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Developed and Developing World Speaker(s): Lee Schipper Date: February 15, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing countries are expected to rise sharply in the coming decades if current trends continue. Projections of passenger and freight activity, vehicle use, and CO2 emissions push up overall CO2 emissions by a factor of three in Latin American and five in Asia by 2030, even with fuel economy improvements. The increase in car use is in part a result of growing incomes and economic activity, but it also reflects the poor quality of transit and

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermodynamic and transport properties of thoriaurania fuel of Advanced Heavy Water Reactor  

Science Journals Connector (OSTI)

High temperature thermochemistry of thoriaurania fuel for Advanced Heavy Water Reactor was investigated. Oxygen potential development within the matrix and distribution behaviors of the fission products (fps) in different phases were worked out with the help of thermodynamic and transport properties of the fps as well as fission generated oxygen and the detailed balance of the elements. Some of the necessary data for different properties were generated in this laboratory while others were taken from literatures. Noting the behavior of poor transports of gases and volatile species in the thoria rich fuel (thoria3mol% urania), the evaluation shows that the fuel will generally bear higher oxygen potential right from early stage of burnup, and Mo will play vital role to buffer the potential through the formation of its oxygen rich chemical states. The problems related to the poor transport and larger retention of fission gases (Xe) and volatiles (I, Te, Cs) are discussed.

M. Basu (Ali); R. Mishra; S.R. Bharadwaj; D. Das

2010-01-01T23:59:59.000Z

362

Economical production of transportation fuels from coal, natural gas, and other carbonaceous feedstocks  

SciTech Connect

The Nation`s economy and security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help the vehicle manufacturers meet increasingly strict environmental regulations. However, an analysis of US oil production and demand shows that, between now and 2015, a significant increase in imported oil will be needed to meet transportation fuel requirements. One element of an overall Department of Energy`s (DOE) strategy to address this energy security issue while helping meet emissions requirements is to produce premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass, via Fischer-Tropsch (F-T) and other synthesis gas conversion technologies.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

1998-12-31T23:59:59.000Z

363

A method for determining the spent-fuel contribution to transport cask containment requirements  

SciTech Connect

This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs.

Sanders, T.L.; Seager, K.D. [Sandia National Labs., Albuquerque, NM (United States); Rashid, Y.R.; Barrett, P.R. [ANATECH Research Corp., La Jolla, CA (United States); Malinauskas, A.P. [Oak Ridge National Lab., TN (United States); Einziger, R.E. [Pacific Northwest Lab., Richland, WA (United States); Jordan, H. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Duffey, T.A.; Sutherland, S.H. [APTEK, Inc., Colorado Springs, CO (United States); Reardon, P.C. [GRAM, Inc., Albuquerque, NM (United States)

1992-11-01T23:59:59.000Z

364

Annual Energy Outlook 2011: With Projections to 2035  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 2011 Annual Energy Outlook 2011 Table G1. Heat Rates Fuel Units Approximate Heat Content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.933 Consumption . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 19.800 Coke Plants . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 26.327 Industrial . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton 21.911 Residential and Commercial . . . . . . . . . . million Btu per short ton 21.284 Electric Power Sector . . . . . . . . . . . . . . . million Btu per short ton 19.536 Imports . . . . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton

365

Annual Energy Outlook 2011 Reference Case  

Gasoline and Diesel Fuel Update (EIA)

Center for Strategic and International Studies Center for Strategic and International Studies Howard Gruenspecht, Acting Administrator September 19, 2011 | Washington, DC International Energy Outlook 2011 Key findings in the IEO2011 Reference case 2 Howard Gruenspecht CSIS, September 19, 2011 * World energy consumption increases by 53% between 2008 and 2035 with half of the increase attributed to China and India * Renewables are the world's fastest-growing energy source, at 2.8% per year; renewables share of world energy grows to roughly 15% in 2035 * Fossil fuels continue to supply almost 80% of world energy use in 2035 * Liquid fuels remain the largest energy source worldwide through 2035, but the oil share of total energy declines to 28% in 2035, as sustained high oil prices dampen demand and encourage fuel

366

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

SciTech Connect

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

367

The role of natural gas as a vehicle transportation fuel  

E-Print Network (OSTI)

This thesis analyzes pathways to directly use natural gas, as compressed natural gas (CNG) or liquefied natural gas (LNG), in the transportation sector. The thesis focuses on identifying opportunities to reduce market ...

Murphy, Paul Jarod

2010-01-01T23:59:59.000Z

368

Annual Energy Outlook Retrospective Review  

Reports and Publications (EIA)

The Annual Energy Outlook Retrospective Review provides a yearly comparison between realized energy outcomes and the Reference case projections included in previous Annual Energy Outlooks (AEO) beginning with 1982. This edition of the report adds the AEO 2012 projections and updates the historical data to incorporate the latest data revisions.

2014-01-01T23:59:59.000Z

369

Transportation costs for new fuel forms produced from low rank US coals  

SciTech Connect

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01T23:59:59.000Z

370

Assumptions to the Annual Energy Outlook 2007 Report  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Release date: April 2007 Next release date: March 2008 Assumptions to the Annual Energy Outlook 2007 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Natural Gas Transmission and Distribution Module. . . . . . . . . . . . . . . . . . . . . . 107 Petroleum Market Module

371

Annual Energy Outlook 2013 Early Release Reference Case  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Choice Modeling and Vehicle Choice Modeling and Projections for the Annual Energy Outlook John Maples Office of Energy Analysis, Energy Efficiency and End Use January 25, 2013 | Detroit, MI Outline John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 2 * Overview of model structure and inputs * Battery electric vehicles and current state of the market * Projections of battery electric vehicles in the Annual Energy Outlook 2013 * High Battery Technology case in the Annual Energy Outlook 2012 Overview of model structure and inputs 3 John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 Light duty vehicle technology market penetration John Maples, Vehicle Choice Models and Markets Detroit, MI, January 25, 2013 4 * Technologies affecting light-duty vehicle fuel economy are

372

EIA - Annual Energy Outlook 2007 with Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

7 7 International Energy Outlook 2007 The International Energy Outlook 2007 report is available in PDF format only and can be viewed at: http://www.eia.gov/oiaf/ieo/index.html http://www.eia.gov/oiaf/ieo/pdf/0484(2007).pdf Summary tables are available in PDF format at: Appendix A. Reference Case Appendix B. High Economic Growth Case Appendix C. Low Economic Growth Case Appendix D. High World Oil Price Case Appendix E. Low World Oil Price Case Appendix F. Reference Case Projections by End Use Appendix G. Projections of Petroleum and Other Liquids Productions in Three Cases Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel The International Energy Outlook 2006 Report has been archived and is available at: http://www.eia.gov/oiaf/archive/ieoarchive.html

373

Fuel cells for transportation program: FY1997 national laboratory annual report  

SciTech Connect

The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

NONE

1997-12-31T23:59:59.000Z

374

Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996  

SciTech Connect

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

Fuller, T.F.; Kunz, H.R.; Moore, R.

1996-11-01T23:59:59.000Z

375

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

B B World Energy Projection System The projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) are derived from the World Energy Projection System (WEPS). WEPS is an integrated set of personal-computer-based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product [GDP]) and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and

376

Assumptions to the Annual Energy Outlook - Household Expenditures Module  

Gasoline and Diesel Fuel Update (EIA)

Household Expenditures Module Household Expenditures Module Assumption to the Annual Energy Outlook Household Expenditures Module Figure 5. United States Census Divisions. Having problems, call our National Energy Information Center at 202-586-8800 for help. The Household Expenditures Module (HEM) constructs household energy expenditure profiles using historical survey data on household income, population and demographic characteristics, and consumption and expenditures for fuels for various end-uses. These data are combined with NEMS forecasts of household disposable income, fuel consumption, and fuel expenditures by end-use and household type. The HEM disaggregation algorithm uses these combined results to forecast household fuel consumption and expenditures by income quintile and Census Division (see

377

Argonne Transportation - Clean Cities Area of Interest 4: Alternative Fuel,  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Area of Interest 4: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Download Clean Cities Area of Interest 4 Emissions Benefit Tool (Excel 57 KB) This tool has been created for the Clean Cities Funding Opportunity Announcement for Area of Interest 4: Alternative Fuel and Advanced Technology Vehicles Pilot Program. The tool is based off the AirCRED model's methodology using EPA's MOBILE6 model and light duty vehicle and heavy duty engine certification data to generate criteria air pollutant emission credits. However, for this tool, the GREET model is also used to generate data for vehicles not certified and well-to-wheel greenhouse gas emissions. This tool requires the user to input: The number of vehicles planned to be purchased

378

Vehicle Technologies Office: Transitioning the Transportation Sector- Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

The "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" workshop report by Sandia National Laboratory summarizes a workshop that discussed common opportunities and challenges in expanding the use of hydrogen (H2) and natural gas (CNG or LNG) as transportation fuels.

379

International Energy Outlook - Table of Contents  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook International Energy Outlook EIA Glossary International Energy Outlook 2004 Report #: DOE/EIA-0484(2004) Release date: April 2004 Next release date: July 2005 The International Energy Outlook 2004 (IEO2004) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2025. U.S.projections appearing in IEO2004 are consistent with those published in EIA's Annual Energy Outlook 2004 (AEO2004), which was prepared using the National Energy Modeling System (NEMS). Table of Contents Appendixes Highlights World Energy and Economic Outlook Outlook for Primary Energy Consumption Energy End Use Outlook for Carbon Dioxide Emissions World Economic Outlook Alternative Growth Case Trends in Energy Intensity

380

Microsoft PowerPoint - 03 Wyss Economic Outlook [Compatibility...  

Office of Environmental Management (EM)

03 Wyss Economic Outlook Compatibility Mode Microsoft PowerPoint - 03 Wyss Economic Outlook Compatibility Mode Microsoft PowerPoint - 03 Wyss Economic Outlook Compatibility...

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Instructions for using HSPD-12 Authenticated Outlook Web Access...  

Energy Savers (EERE)

Instructions for using HSPD-12 Authenticated Outlook Web Access (OWA) Instructions for using HSPD-12 Authenticated Outlook Web Access (OWA) Provides instructions for remote Outlook...

382

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

383

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

SciTech Connect

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2008/fiscal year 2009.

Not Available

2010-06-01T23:59:59.000Z

384

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A8. World nuclear energy consumption by region, Reference case, 2009-2040 (billion kilowatthours) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 894 899 932 978 1,032 1,054 1,030 1,066 0.6 United States a 799 807 820 885 912 908 875 903 0.4 Canada 86 86 99 81 99 117 118 118 1.0 Mexico/Chile 10 6 12 12 21 29 37 46 7.3 OECD Europe 840 867 892 929 1,045 1,065 1,077 1,073 0.7 OECD Asia 406 415 301 447 490 551 557 576 1.1 Japan 266 274 103 192 200 206 209 209 -0.9 South Korea 140 141 198 255 291 346 348 367 3.2 Australia/NewZealand 0 0 0 0 0 0 0 0 -- Total OECD 2,140 2,181 2,124 2,354 2,567 2,670 2,664 2,715 0.7 Non-OECD Non-OECD Europe and Eurasia 272 274 344 414 475 533 592 630 2.8 Russia

385

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A12. World carbon dioxide emissions from natural gas use by region, Reference case, 2009-2040 (million metric tons carbon dioxide) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 1,511 1,563 1,686 1,793 1,888 1,987 2,114 2,233 1.2 United States a 1,222 1,266 1,357 1,404 1,431 1,468 1,528 1,570 0.7 Canada 170 162 171 199 223 240 255 271 1.7 Mexico/Chile 119 135 158 190 234 279 331 392 3.6 OECD Europe 1,024 1,082 1,086 1,123 1,144 1,215 1,277 1,348 0.7 OECD Asia 347 377 408 438 478 505 539 561 1.3 Japan 205 215 242 257 276 288 293 293 1.0 South Korea 72 90 91 98 110 117 136 148 1.7 Australia/NewZealand 70 71 75 83 91 101 110 119 1.7 Total OECD 2,882 3,022 3,180 3,353 3,510

386

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights World energy consumption is projected to increase by 58 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2003 reference case forecast. In the International Energy Outlook 2003 (IEO2003) reference case, world energy consumption is projected to increase by 58 percent over a 24-year forecast horizon, from 2001 to 2025. Worldwide, total energy use is projected to grow from 404 quadrillion British thermal units (Btu) in 2001 to 640 quadrillion Btu in 2025 (Figure 2). As in past editions of this report, the IEO2003 reference case outlook continues to show robust growth in energy consumption among the developing nations of the world (Figure 3). The strongest growth is projected for developing Asia, where demand for energy is expected to more than double over the forecast period. An average annual growth rate of 3 percent is projected for energy use in developing Asia, accounting for nearly 40 percent of the total projected increment in world energy consumption and 69 percent of the increment for the developing world alone.

387

Life-cycle assessment of diesel, natural gas and hydrogen fuel cell bus transportation systems  

Science Journals Connector (OSTI)

The Sustainable Transport Energy Programme (STEP) is an initiative of the Government of Western Australia, to explore hydrogen fuel cell technology as an alternative to the existing diesel and natural gas public transit infrastructure in Perth. This project includes three buses manufactured by DaimlerChrysler with Ballard fuel cell power sources operating in regular service alongside the existing natural gas and diesel bus fleets. The life-cycle assessment (LCA) of the fuel cell bus trial in Perth determines the overall environmental footprint and energy demand by studying all phases of the complete transportation system, including the hydrogen infrastructure, bus manufacturing, operation, and end-of-life disposal. The \\{LCAs\\} of the existing diesel and natural gas transportation systems are developed in parallel. The findings show that the trial is competitive with the diesel and natural gas bus systems in terms of global warming potential and eutrophication. Emissions that contribute to acidification and photochemical ozone are greater for the fuel cell buses. Scenario analysis quantifies the improvements that can be expected in future generations of fuel cell vehicles and shows that a reduction of greater than 50% is achievable in the greenhouse gas, photochemical ozone creation and primary energy demand impact categories.

Jamie Ally; Trevor Pryor

2007-01-01T23:59:59.000Z

388

Assumptions to the Annual Energy Outlook 2000 - Errata  

Gasoline and Diesel Fuel Update (EIA)

Assumptions to the Annual Energy Outlook 2000 Assumptions to the Annual Energy Outlook 2000 as of 4/4/2000 1. On table 20 "the fractional fuel efficiency change for 4-Speed Automatic" should be .045 instead of .030. On table 20 "the fractional fuel efficiency change for 5-Speed Automatic" should be .065 instead of .045. (Change made on 3/6/2000) 2. Table 28 should be labeled: "Alternative-Fuel Vehicle Attribute Inputs for Compact Cars for Two Stage Logit Model". (Change made on 3/6/2000) 3. The capital costs in Table 29 should read 1998 dollars not 1988 dollars. (Change made on 3/6/2000) 4. Table 37 changed the label "Year Available" to "First Year Completed." Changed the second sentence of Footnote 1 to read "these estimates are costs of new projects

389

Criteria for selection of components for surrogates of natural gas and transportation fuels q  

E-Print Network (OSTI)

Criteria for selection of components for surrogates of natural gas and transportation fuels q reserved. Keywords: Kerosene reaction mechanism; Gasoline reaction mechanism; Natural gas reaction found in minor amounts in natural gas [4]. The widely studied heptane reaction set [5,6] is often used a

Utah, University of

390

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network (OSTI)

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

391

Cathode and electrolyte materials for solid oxide fuel cells and ion transport membranes  

DOE Patents (OSTI)

Novel cathode, electrolyte and oxygen separation materials are disclosed that operate at intermediate temperatures for use in solid oxide fuel cells and ion transport membranes based on oxides with perovskite related structures and an ordered arrangement of A site cations. The materials have significantly faster oxygen kinetics than in corresponding disordered perovskites.

Jacobson, Allan J; Wang, Shuangyan; Kim, Gun Tae

2014-01-28T23:59:59.000Z

392

DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

DOBEIA-0202(83/4Q) DOBEIA-0202(83/4Q) Short-Term Energy Outlook Quarterly Projections November 1983 Energy Information Administration Washington, D.C. t rt jrt .ort lort .lort lort lort lort <.ort ort Tt- .-m .erm -Term -Term Term Term Term Term Term Term Term Term Term Term Term Term Term Nrm ,iergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short Short Short Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short Short Short Short Short-

393

DOE/EIA-0202(84/2QH Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

2QH 2QH Short-Term Energy Outlook Quarterly Projections May 1984 Published: June 1984 Energy Information Administration Washington, D.C. t rt jrt .ort lort .iort .iort- iort- iort- '.ort- ort- .m .erm Term Term Term Term Term Term Term Term Term Term Term Term i-Term rTerm -Term xrm uergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Tern Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

394

DOE/EIA-0202(85/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Short-Term Energy Outlook Quarterly Projections January 1985 Published: February 1985 Energy Information Administration Washington, D.C. t rt jrt .ort lort lort lort nort lort *.ort ort Tt .m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term uergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short Short

395

DOE/EIA-0202(84/4Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

4Q) 4Q) Short-Term Energy Outlook Quarterly Projections October 1984 Published: November 1984 Energy Information Administration Washington, D.C. t rt jrt .ort lort iort lort iort lort \ort ort Tt .erm Term Term Term Term Term Term Term Term Term Term Term Term Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short- Short Short- Short- Short Short Short Short Short Short

396

DOE/EIA-0202(84/1Q) Short-Term Energy Outlook Quarterly Projections  

Gasoline and Diesel Fuel Update (EIA)

1Q) 1Q) Short-Term Energy Outlook Quarterly Projections February 1984 Published: March 1984 Energy Information Administration Washington, D.C. t rt jrt- .ort- iort- iort- .iort- iort- lort- Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term' Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

397

DOE/EIA-0202(85/2Q) Short-Term Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

2Q) 2Q) Short-Term Energy Outlook amm Quarterly Projections April 1985 Published: May 1985 Energy Information Administration Washington, D C t rt jrt .ort lort .iort iort iort lort '.ort ort .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term Short-Term

398

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

in PEM Fuel Cells: in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling bipolar plate channel dimensions J.H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, pp. 4595-4611 (2003) Relevant Barriers and Targets ƒ Improved Gas Diffusion Layer, Flow Fields, Membrane Electrode Assemblies Needed to Improve Water Management: * Flooding blocks reactant transport

399

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect

For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

1995-12-31T23:59:59.000Z

400

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Mesoscopic modeling of liquid water transport in polymer electrolyte fuel cells  

SciTech Connect

A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water leads to the coverage of the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blockage of the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL therefore playa major role in the mass transport loss and hence in the water management of a PEFC. In this article, we present the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation to study the profound influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer.

Mukherjee, Partha P [Los Alamos National Laboratory; Wang, Chao Yang [PENNSTATE UNIV.

2008-01-01T23:59:59.000Z

402

EIA - International Energy Outlook 2007-Energy Consumption by End-Use  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End Use Sector Energy Consumption by End Use Sector International Energy Outlook 2007 Figure 25. OECD and Non-OECD Transportation Sector Delivered Energy Consumption, 2004-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 26. OECD and Non-OECD Residential Sector Delivered Energy Consumption, 2004-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. Growth in OECD and Non-OECD Residential Sector Delivered Energy Consumption by Fuel, 2004 and 2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. OECD and Non-OECD Commercial Sector Delivered Energy Consumption, 2004-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

403

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

404

EIA - International Energy Outlook 2007 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2007 Chapter 1 - World Energy and Economic Outlook In the IEO2007 reference case, total world consumption of marketed energy is projected to increase by 57 percent from 2004 to 2030. The largest projected increase in energy demand is for the non-OECD region. Figure 8. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 9. World Marketed Energy Use; OECD and Non-OECD, 2004-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 10. Marketed Energy Use in the NON-OECD Economies by Region, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800.

405

International Energy Outlook - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

World Energy and Economic Outlook World Energy and Economic Outlook International Energy Outlook 2004 World Energy and Economic Outlook The IEO2004 projections indicate continued growth in world energy use, including large increases for the developing economies of Asia. Energy resources are thought to be adequate to support the growth expected through 2025. Figure 12. World Primary Energy Consumption, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800 Figure Data Figure 13. World Energy Consumption by Region, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data Figure 14. World Primary Energy Consumption by Energy Source, 1970-2025. Need help, call the National Energy Information Center at 202-586-8800. Figure Data

406

Fuel-Neutral Studies of PM Transportation Emissions  

SciTech Connect

New gasoline engine technologies such as Spark Ignition Direct Injection (SIDI), Gasoline Direct Injection Compression Ignition (GDICI), and Reaction Controlled Compression Ignition (RCCI) offer the possibility of dramatically increasing the fuel efficiency of future vehicles. One drawback to these advanced engines is that they have the potential to produce higher levels of exhaust particulates than current Port Fuel Injection (PFI) engines. Regulation of engine particulate emissions in Europe is moving from mass-based standards toward number-based standards. Due to growing health concerns surrounding nano-aerosols, it is likely that similar standards will eventually be applied in the United States. This would place more emphasis on the reliable removal of smaller particles, which make up the vast majority of the particulates generated on a number basis. While Diesel Particulate Filters (DPF) have become standard, different filter systems would likely be required for advanced gasoline vehicles, due to factors such as differing particulate properties and higher exhaust temperatures. High exhaust temperatures can limit the accumulation of a soot cake, which performs most of the actual filtration in a typical DPF system.

Stewart, Mark L.; Zelenyuk, Alla; Howden, Ken

2012-11-15T23:59:59.000Z

407

EIA - Annual Energy Outlook 2009 - chapter Tables  

Gasoline and Diesel Fuel Update (EIA)

Chapter Tables Chapter Tables Annual Energy Outlook 2009 with Projections to 2030 Chapter Tables Table 1. Estimated fuel economy for light-duty vehicles, based on proposed CAFE standards, 2010-2015 Table 2. State appliance efficiency standards and potential future actions Table 3. State renewable portfolio standards Table 4. Key analyses from "issues in Focus" in recent AEOs Table 5. Liquid fuels production in three cases, 2007 and 2030 Table 6. Assumptions used in comparing conventional and plug-in hybrid electric vehicles Table 7. Conventional vehicle and plug-in hybrid system component costs for mid-size vehicles at volume production Table 8. Technically recoverable resources of crude oil and natural gas in the Outer Continental Shelf, as of January 1, 2007

408

Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Background Background Since 1988, federal and state legislation has mandated the adoption of alternative transportation fuels, primarily because of environmental and energy security concerns. Recently, however, much of the alternative fuels activity has shifted. With the electoral revolution of 1992, Congress is rethinking environmental regulation and cutting federal appro- priations for alternative fueled vehi- cles (AFVs). The U.S. Enviromental Protection Agency (EPA) may delay implementation of stringent emission standards, and the U.S. Department of Energy (DOE) has delayed requirements for alternative fuel adoption that were set to go into effect on September 1, 1995. In the late 1980s and early 1990s, as federal and state legislation was being crafted across the country,

409

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network (OSTI)

ET AL. : FOSSIL FUEL CO 2 TRANSPORT IN CALIFORNIA health,fossil fuel combustion, with consequent impacts to human health [health. [ 45 ] Model predictions indicated that some areas within California had higher near-surface fossil fuel

2008-01-01T23:59:59.000Z

410

Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R. Ahluwalia, V. Novick and S. Ahmed  

E-Print Network (OSTI)

Reforming of Diesel Fuel for Transportation Applications J. P. Kopasz, S. Lottes, D-J. Liu, R · Produce fuel (H2-rich gas) for PEM and/or solid oxide fuel cells (SOFCs) · Reduce NOx emissions through

411

MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS  

SciTech Connect

The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions relevant to the experiments, and (3) to explore whether the corresponding predictions can explain the experimentally-observed behavior of the rise and dispersion of oil droplets in isotropic turbulence. A brief summary of results is presented in Section 4.

Joseph Katz and Omar Knio

2007-01-10T23:59:59.000Z

412

EIA - Annual Energy Outlook 2001  

Gasoline and Diesel Fuel Update (EIA)

Sector Sector U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

413

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

2002-04-30T23:59:59.000Z

414

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

8 8 Appendix F Table F14. Delivered energy consumption in India by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.9 1.1 1.0 1.0 1.0 1.0 0.9 -0.1 Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.1 0.2 0.2 0.2 0.2 0.2 0.3 2.4 Electricity 0.6 1.0 1.3 1.8 2.4 3.0 3.8 6.4 Total 1.7 2.2 2.6 3.0 3.6 4.2 5.0 3.7 Commercial Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.2 0.2 0.2 0.3 0.3 0.4 0.4 3.0 Electricity 0.2 0.4 0.6 0.8 1.0 1.3 1.6 6.5 Total 0.4 0.6 0.8 1.1 1.3 1.7 2.0 5.5 Industrial Liquids 3.2 3.4 4.0 4.5 4.9 5.1 5.1 1.6 Natural gas 1.2 1.3 1.5 1.8 2.0 2.1 2.2 2.0 Coal 4.1 4.4 5.1 5.7 6.2 6.3 6.1 1.4 Electricity 1.5 1.5 1.6 1.8 2.0 2.1 2.3 1.4 Total 11.3 11.9 13.7 15.3 16.7 17.5 17.6 1.5 Transportation Liquids 2.3 2.8 3.6 4.8 6.2 8.1

415

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Appendix F Table F8. Delivered energy consumption in South Korea by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Natural gas 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.9 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.2 0.2 0.3 0.3 0.3 0.4 0.4 2.3 Total 0.8 0.8 0.9 1.0 1.0 1.1 1.1 1.2 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -0.6 Natural gas 0.2 0.2 0.2 0.2 0.3 0.3 0.3 2.0 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.5 0.5 0.6 0.7 0.8 1.0 1.1 2.6 Total 0.8 0.9 1.0 1.1 1.2 1.4 1.5 2.1 Industrial Liquids 2.5 2.7 2.9 3.0 3.1 3.1 3.2 0.8 Natural gas 0.3 0.3 0.4 0.4 0.4 0.5 0.5 1.4 Coal 1.0 1.1 1.3 1.3 1.4 1.4 1.5 1.2 Electricity 0.8 0.9 1.0 1.0 1.1 1.1 1.1 1.1 Total 4.7 5.2 5.6 5.9 6.1 6.2 6.3 1.0 Transportation Liquids 1.8 1.8 1.9 1.9 2.0 2.0

416

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

2 2 Appendix F Table F18. Delivered energy consumption in Brazil by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.0 Natural gas 0.0 0.0 0.0 0.0 0.1 0.1 0.1 -- Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.4 0.5 0.6 0.7 0.8 0.9 1.1 3.1 Total 0.7 0.8 0.9 1.0 1.1 1.3 1.4 2.2 Commercial Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 0.4 0.5 0.6 0.8 0.9 1.1 1.4 3.9 Total 0.5 0.5 0.7 0.8 1.0 1.2 1.4 3.8 Industrial Liquids 2.0 2.2 2.3 2.3 2.6 2.9 3.3 1.6 Natural gas 0.6 0.7 0.8 0.9 1.0 1.1 1.3 2.4 Coal 0.4 0.4 0.5 0.5 0.6 0.8 0.9 2.5 Electricity 0.7 0.7 0.8 0.8 0.9 1.0 1.2 1.9 Total 6.4 6.5 7.0 7.5 8.3 9.3 10.6 1.7 Transportation Liquids 2.9 3.2 3.4 3.5 3.7 3.8 4.1 1.2

417

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

0 0 Appendix F Table F6. Delivered energy consumption in OECD Europe by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 2.1 1.8 1.8 1.8 1.7 1.7 1.6 -0.8 Natural gas 5.6 5.6 5.9 6.3 6.5 6.6 6.8 0.7 Coal 0.8 0.7 0.7 0.7 0.6 0.6 0.5 -1.3 Electricity 3.3 3.8 4.1 4.4 4.6 4.8 5.0 1.4 Total 11.7 11.9 12.5 13.1 13.5 13.7 13.9 0.6 Commercial Liquids 0.9 0.8 0.8 0.8 0.7 0.7 0.7 -1.0 Natural gas 2.2 2.2 2.4 2.6 2.7 2.8 2.9 0.9 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -1.0 Electricity 3.3 3.8 4.1 4.4 4.7 5.0 5.3 1.7 Total 6.5 6.9 7.4 7.8 8.3 8.6 9.0 1.1 Industrial Liquids 9.6 9.0 9.5 10.1 10.5 10.9 11.3 0.5 Natural gas 6.6 6.3 6.4 6.6 6.7 6.7 6.8 0.1 Coal 3.1 3.0 3.0 3.1 3.1 3.1 3.1 0.0 Electricity 4.4 4.2 4.3 4.4 4.5 4.5 4.6 0.2 Total 25.4 24.1 24.9 25.8 26.3 26.8 27.4 0.3 Transportation Liquids

418

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

6 6 Appendix F Table F12. Delivered energy consumption in Other Non-OECD Europe and Eurasia by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.1 0.2 0.1 0.1 0.1 0.1 0.1 -0.1 Natural gas 1.7 1.7 1.9 2.0 2.2 2.3 2.4 1.2 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -1.4 Electricity 0.5 0.5 0.6 0.7 0.8 0.8 1.0 2.4 Total 2.4 2.5 2.7 2.9 3.2 3.4 3.6 1.3 Commercial Liquids 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -0.3 Natural gas 0.5 0.5 0.6 0.7 0.7 0.8 0.9 1.8 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.0 -0.1 Electricity 0.3 0.3 0.3 0.4 0.5 0.6 0.7 3.4 Total 0.9 1.0 1.1 1.2 1.4 1.5 1.7 2.1 Industrial Liquids 1.4 1.7 1.6 1.5 1.7 1.8 2.0 1.2 Natural gas 2.7 2.6 2.8 3.0 3.2 3.5 3.7 1.1 Coal 1.5 1.5 1.6 1.8 1.9 2.1 2.3 1.4 Electricity 1.0 1.0 1.1 1.2 1.3 1.4 1.5 1.2 Total 6.7 6.9 7.1 7.5 8.2 8.9 9.6 1.2 Transportation

419

EIA - Annual Energy Outlook 2009  

Gasoline and Diesel Fuel Update (EIA)

& Analysis > AEO 2009 & Analysis > AEO 2009 Annual Energy Outlook 2009 The Early Release for next year's Annual Energy Outlook will be presented at the John Hopkins Kenney Auditorium on December 14th Updated Annual Energy Outlook 2009 Reference Case Service Report, April 2009 The Annual Energy Outlook 2009 (AEO2009) reference case was updated to reflect the provisions of the American Recovery and Reinvestment Act (ARRA) that were enacted in mid-February 2009. The reference case in the recently published AEO2009, which reflected laws and regulations in effect as of November 2008, does not include ARRA. The need to develop an updated reference case following the passage of ARRA also provided the Energy Information Administration (EIA) with an opportunity to update the

420

Annual Energy Outlook Evaluation, 2005  

Gasoline and Diesel Fuel Update (EIA)

Outlook Evaluation, 2005 1 Outlook Evaluation, 2005 1 Annual Energy Outlook Evaluation, 2005 * Then Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies used. The projections are business-as-usual trend projections, given known technology, technological and demographic trends, and current laws and regulations. Thus, they provide a policy-neutral reference case that can be used to analyze policy initiatives. EIA does not propose or advocate future legislative and regulatory changes. All laws are assumed to remain as currently enacted; however, the impacts of emerging regulatory changes,

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Short-Term Energy Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

Chart Gallery for February 2015 Short-Term Energy Outlook U.S. Energy Information Administration Independent Statistics & Analysis 0 20 40 60 80 100 120 140 160 180 200 220 Jan...

422

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

marketed energy consumption is projected to increase by 57 percent marketed energy consumption is projected to increase by 57 percent from 2004 to 2030. Total energy demand in the non-OECD countries increases by 95 percent, compared with an increase of 24 percent in the OECD countries. In the IEO2007 reference case-which reflects a scenario where current laws and policies remain unchanged throughout the projection period-world marketed energy consumption is projected to grow by 57 percent over the 2004 to 2030 period. Total world energy use rises from 447 quadrillion British thermal units (Btu) in 2004 to 559 quadrillion Btu in 2015 and then to 702 qua- drillion Btu in 2030 (Figure 1). Global energy demand grows despite the relatively high world oil and natural gas prices that are projected to persist into the mid-term outlook. The most rapid growth in energy demand from 2004 to 2030 is projected for nations outside

423

International Energy Outlook 2004  

Gasoline and Diesel Fuel Update (EIA)

4) 4) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 4 April 2004 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222),

424

International Energy Outlook 2007  

Gasoline and Diesel Fuel Update (EIA)

7) 7) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 7 May 2007 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti, Director, Office of

425

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

World Oil Markets World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million bar- rels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last year's outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period. To meet the projected increase in world oil demand in the IEO2006 reference case, total petroleum supply in 2030 will need to increase

426

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

Comparisons With Other Forecasts, and Performance of Past IEO Forecasts for 1990, 1995, and 2000 Forecast Comparisons Energy Consumption by Region Three organizations provide forecasts comparable with the projections in IEO2006, which extend to 2030 for the first time. The International Energy Agency (IEA) pro- vides "business as usual" projections to 2030 in its World Energy Outlook 2004; Petroleum Economics, Ltd. (PEL) publishes world energy projections to 2025; and Petro- leum Industry Research Associates (PIRA) provides projections to 2020. For comparison, 2002 is used as the base year for all the projections. Comparisons between IEO2006 and IEO2005 extend only to 2025, the last year of the IEO2005 projections. Regional breakouts vary among the different projec- tions, complicating the comparisons. For example, IEO2006, PIRA, and IEA

427

International Energy Outlook 1999  

Gasoline and Diesel Fuel Update (EIA)

contacts.gif (2957 bytes) contacts.gif (2957 bytes) The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting, or Arthur T. Andersen, Director, International, Economic, and Greenhouse Gases Division. Specific questions about the report should be referred to Linda E. Doman (202/586-1041) or the following analysts: Report Contact World Energy Consumption Linda E. Doman - 202/586-1041 linda.doman@eia.doe.gov World Oil Markets G. Daniel Butler - 202/586-9503 gbutler@eia.doe.gov Stacy MacIntyre - 202/586-9795- (Consumption) stacy.macintyre@eia.doe.gov Natural Gas Linda E. Doman - 202/586-1041

428

International Energy Outlook 2006  

Gasoline and Diesel Fuel Update (EIA)

6) 6) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 6 June 2006 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti (john.conti@eia.doe.gov,

429

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Natural Gas Natural gas is the fastest growing primary energy source in the IEO2003 forecast. Consumption of natural gas is projected to nearly double between 2001 and 2025, with the most robust growth in demand expected among the developing nations. Natural gas is expected to be the fastest growing component of world primary energy consumption in the International Energy Outlook 2003 (IEO2003) reference case. Consumption of natural gas worldwide is projected to increase by an average of 2.8 percent annually from 2001 to 2025, compared with projected annual growth rates of 1.8 percent for oil consumption and 1.5 percent for coal. Natural gas consumption in 2025, at 176 trillion cubic feet, is projected to be nearly double the 2001 total of 90 trillion cubic feet (Figure 40). The natural gas share of total energy consumption is projected to increase from 23 percent in 2001 to 28 percent in 2025.

430

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts Contacts The International Energy Outlook is prepared by the Office of Integrated Analysis and Forecasting (OIAF). General questions concerning the contents of the report should be referred to John Conti, Director, International, Economic and Greenhouse Gases Division (202/586-4430). Specific questions about the report should be referred to Linda E. Doman (202/586-1041 or linda.doman@eia.doe.gov) or the following analysts: Macroeconomic Assumptions Nasir Khilji (nasir.khilji@eia.doe.gov, 202/586-1294) World Oil Markets G. Daniel Butler (george.butler@eia.doe.gov, 202/586-9503) Natural Gas Phyllis Martin (phyllis.martin@eia.doe.gov, 202/586-9592) Justine Bardin (justine.baren@eia.doe.gov 202/586-3508) Coal Michael Mellish (michael.mellish@eia.doe.gov,

431

International Energy Outlook 1998  

Gasoline and Diesel Fuel Update (EIA)

Contacts Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director, Office of Integrated Analysis and Forecasting, or Arthur T. Andersen (202/586-1441), Director, International, Economic, and Greenhouse Gases Division. Specific questions about the report should be referred toLinda E. Doman (202/586-1041) or the following analysts: World Energy Consumption Arthur Andersen (art.andersen@eia.doe.gov, 202/586-1441) Linda E. Doman (linda.doman@eia.doe.gov, 202/586-1041) World Oil Markets G. Daniel Butler (george.butler@eia.doe.gov, 202/586-9503) Perry Lindstrom (perry.lindstrom@eia.doe.gov, 202/586-0934) Reformulated Gasoline

432

International Energy Outlook 2003  

Gasoline and Diesel Fuel Update (EIA)

3) 3) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 3 May 2003 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Energy Information Administration (EIA). General questions concerning the contents of the report should be referred to Mary J. Hutzler (202/586-2222), Director,

433

International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Highlights Highlights International Energy Outlook 2004 Highlights World energy consumption is projected to increase by 54 percent from 2001 to 2025. Much of the growth in worldwide energy use is expected in the developing world in the IEO2004 reference case forecast. Figure 2. World Marketed Energy Consumption, 1970-2025 (Quadrillion Btu). Having Problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 3. World Marketed Energy Consumption by Region, 1970-2025 (Quadrillion Btu). Having problems, call the National Energy Information Center at 202-586-8600. Figure Data Figure 4. Comparison of 2003 and 2004 World Oil Price Projections, 1970-2025 (2002 Dollars per Barrel). Figure Data Figure 5. World Marketed Energy Consumption by Energy Source, 1970-2025 (Quadrilliion Btu). Need help, call the National Energy Information Center at 202-596-8600.

434

International Energy Outlook 2008  

Gasoline and Diesel Fuel Update (EIA)

8) 8) I n t e r n a t i o n a l E n e r g y O u t l o o k 2 0 0 8 September 2008 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/ieo/index.html. Contacts The International Energy Outlook is prepared by the Ener- gy Information Administration (EIA). General questions concerning the contents of the report should be referred to John J. Conti, Director, Office

435

Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)  

SciTech Connect

While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

Not Available

2014-12-01T23:59:59.000Z

436

Effect of a sudden fuel shortage on freight transport in the United States: an overview  

SciTech Connect

A survey was made of the potential effects of a sudden reduction of fuel supplies on freight transport via truck, rail, water, and pipeline. After a brief discussion of the energy characteristics of each of these modes of transport, short-term strategies for making better use of fuel in a crisis are investigated. Short-term is taken to mean something on the order of six months, and a crisis is taken to be the result of something on the order of a 20% drop in available fuel. Although no succinct or well-established conclusions are drawn, the gist of the paper is that the potential for short-term conservation, without a serious disruption of service, exists but does not appear to be large. It is remarked that it is possible, through further study, to obtain a fairly accurate reckoning of the physical ability of the freight transport network to weather a fuel crisis, but that it is impossible to say in advance what freight carriers will in fact do with the network.

Hooker, J N

1980-01-01T23:59:59.000Z

437

A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation  

SciTech Connect

This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

2012-08-01T23:59:59.000Z

438

Water Footprint of U.S. Transportation Fuels  

Science Journals Connector (OSTI)

If energy use is split into two categories, stationary and transportation, it is clear from the breakdown in ref 14 that water already plays a major role in stationary energy production: thermoelectric power generation is responsible for approximately 49% of total freshwater withdrawals in the United States (see the Supporting Information (SI) Figure S1 for complete breakdown). ... These more GHG-intensive water supplies serve a variety of users: in California, 18% of total desalination capacity provides freshwater for power plants with closed-loop cooling systems, 23% serves industrial facilities, 1% goes to crop irrigation, 57% goes to municipal customers, and 1% goes to other users. ... Fthenakis, V.; Kim, H. C.Life-Cycle Uses of Water in U.S. Electricity Generation Renewable Sustainable Energy Rev. 2010, 14 ( 7) 2039 2048 ...

Corinne D. Scown; Arpad Horvath; Thomas E. McKone

2011-03-15T23:59:59.000Z

439

Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes  

SciTech Connect

Two mathematical models of gas-diffusion electrodes, one for liquid electrolytes and one for ion-exchange polymer electrolytes, are presented to investigate the effects of mass-transport limitations on the polarization characteristics of a reaction obeying Tafel kinetics. The focus is on low-temperature fuel-cell cathodes, and in particular, contrasting two limiting cases that may be encountered at high current densities: control by kinetics and dissolved oxygen mass transport vs. control by kinetics and ionic mass transport. It is shown that two distinct double Tafel slopes may arise from these two limiting cases. The former is first order, and the latter is half-order with respect to oxygen concentration. How the modeling results may be applied to diagnose the performance of fuel-cell cathodes is also presented. Since the ionic-mass-transport-limited case has generally been neglected in previous gas-diffusion electrode models, specific examples of fuel-cell cathode data from the literature which display the behavior predicted by the models in this case are given and briefly discussed.

Perry, M.L.; Newman, J.; Cairns, E.J. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.]|[Univ. of California, Berkeley, CA (United States). Dept. of Chemical Engineering

1998-01-01T23:59:59.000Z

440

EIA - 2009 International Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

International Energy Outlook 2009 The International Energy Outlook 2009 (IEO2009) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2030. U.S. projections appearing in IEO2009 are consistent with those published in EIA's Annual Energy Outlook 2009 (AEO2009), (March 2009). A revised, updated AEO2009 reference case projection was released on April 17, 2009. It reflects the impact of provisions in the American Recovery and Reinvestment Act of 2009 (ARRA2009), enacted in mid-February 2009, on U.S. energy markets. The revised AEO2009 reference case includes updates for the U.S. macroeconomic outlook, which has been changing at an unusually rapid rate in recent months. Throughout IEO2009, significant changes to the U.S. outlook relative to the published AEO2009 reference case are noted for the reader's reference. The complete revised AEO2009 reference case results for the United States can be viewed on the EIA web site: http://www.eia.gov/oiaf/aeo.

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-03-01T23:59:59.000Z

442

Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants  

SciTech Connect

Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

2006-04-30T23:59:59.000Z

443

Hydrogen as transport fuel in Iceland. The political, technological and commercial story of ECTOS  

Science Journals Connector (OSTI)

Through the political, the technological and the commercial story of the early phases of the ECTOS project and its background, the implementation of hydrogen as transport fuel in Iceland is analysed. The presence of large amounts of geothermal energy is the resource basis for the governmental plans for converting Iceland into a hydrogen economy. Strong political commitment has established the framework for this transition. The goal of replacing the import of fossil fuels by 2030??2040 has provided motivation and support for hydrogen R&D projects. The early public scepticism turned into general support when large multinational companies entered the scene.

Otto Andersen

2007-01-01T23:59:59.000Z

444

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

445

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

plants that only produce electricity. 3 Includes electricity generation from fuel cells. 4 Includes non-biogenic municipal waste. The U.S. Energy Information Administration...

446

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A11. Liquid fuels supply and disposition (million barrels per day, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A11. Liquid fuels supply and disposition (million barrels per day, unless otherwise noted) Supply and disposition Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Crude oil Domestic crude production 1 ................................... 5.47 5.67 7.47 6.79 6.30 6.26 6.13 0.3% Alaska ................................................................. 0.60 0.57 0.49 0.35 0.38 0.35 0.41 -1.1% Lower 48 states .................................................. 4.88 5.10 6.98 6.44 5.92 5.91 5.72 0.4%

447

Energy Information Administration/Short-Term Energy Outlook - April 2006  

Gasoline and Diesel Fuel Update (EIA)

6 6 1 April 2006 Short-Term Energy Outlook and Summer Fuels Outlook April 11, 2006 Release Contents Overview Global Petroleum Markets U.S. Petroleum Markets Motor Gasoline Diesel Fuel Natural Gas Markets Electricity Markets Coal Markets Overview Continued steady world oil demand growth, combined with only modest increases in world spare oil production capacity and the continuing risks of geopolitical instability, are expected to keep crude oil prices high through 2006. The price of West Texas Intermediate (WTI) crude oil is projected to average $65 per barrel in 2006 and $61 in 2007 (Figure 1. West Texas Intermediate Crude Oil Price). Retail regular gasoline prices are projected to average $2.50 per gallon in 2006 and $2.40 in

448

Energy Information Administration/Short-Term Energy Outlook - July 2005  

Gasoline and Diesel Fuel Update (EIA)

July 2005 July 2005 1 Short-Term Energy Outlook July 2005 2005 Summer Motor Fuels Outlook Update (Figure 1) Retail regular-grade gasoline prices moved up from about $2.12 per gallon at the beginning of June to $2.33 on July 11. Gasoline pump prices for the summer (April-September) are now projected to average $2.25 per gallon, 8 cents per gallon higher than last month's projection and about 35 cents per gallon above the year-ago level. Crude oil prices are expected to remain high enough to keep quarterly average gasoline prices above $2.20 per gallon through 2006. The projected average for retail diesel this summer is $2.33 per gallon, up about 56 cents per gallon from last summer. Nationally, annual average diesel fuel prices

449

Scaling the Water Percolation in PEM Fuel Cell Porous Transport Layers  

Science Journals Connector (OSTI)

A typical polymer electrolyte membrane fuel cell (PEMFC) consist of a series of non?wetting porous layers comprised between the bipolar plates: the porous transport anode and cathode layers with their catalyst layer and the proton exchange membrane. The cathode porous transport layer (PTL) also known as gas diffusion layer has the dual role of facilitating the access of the reactants to the catalyst layer while removing the generated water. Water percolation through the PTL will evolve on one of the drainage flow patterns (either capillary fingering or stable displacement) depending on the injection flow rate.

E. F. Medici; J. S. Allen

2010-01-01T23:59:59.000Z

450

Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code  

SciTech Connect

A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

2012-08-29T23:59:59.000Z

451

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

2001-04-30T23:59:59.000Z

452

ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS  

SciTech Connect

Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

2003-01-30T23:59:59.000Z

453

Cost Analysis of PEM Fuel Cell Systems for Transportation: September 30, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Subcontract Report Subcontract Report Cost Analysis of PEM Fuel Cell NREL/SR-560-39104 Systems for Transportation December 2005 September 30, 2005 E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang TIAX LLC Cambridge, Massachusetts NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Cost Analysis of PEM Fuel Cell Systems for Transportation September 30, 2005 E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang TIAX LLC Cambridge, Massachusetts NREL Technical Monitor: K. Wipke Prepared under Subcontract No. KACX-5-44452-01 Subcontract Report NREL/SR-560-39104 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy

454

Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Fast Pyrolysis to Biomass Fast Pyrolysis to Transportation Fuels Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University Daren E. Daugaard ConocoPhillips Company David D. Hsu National Renewable Energy Laboratory Technical Report NREL/TP-6A20-46586 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University

455

Atomistic Simulations of Mass and Thermal Transport in Oxide Nuclear Fuels  

SciTech Connect

In this talk we discuss simulations of the mass and thermal transport in oxide nuclear fuels. Redistribution of fission gases such as Xe is closely coupled to nuclear fuel performance. Most fission gases have low solubility in the fuel matrix, specifically the insolubility is most pronounced for large fission gas atoms such as Xe, and as a result there is a significant driving force for segregation of gas atoms to grain boundaries or dislocations and subsequently for nucleation of gas bubbles at these sinks. The first step of the fission gas redistribution is diffusion of individual gas atoms through the fuel matrix to existing sinks, which is governed by the activation energy for bulk diffusion. Fission gas bubbles are then formed by either separate nucleation events or by filling voids that were nucleated at a prior stage; in both cases their formation and latter growth is coupled to vacancy dynamics and thus linked to the production of vacancies via irradiation or thermal events. In order to better understand bulk Xe behavior (diffusion mechanisms) in UO{sub 2{+-}x} we first calculate the relevant activation energies using density functional theory (DFT) techniques. By analyzing a combination of Xe solution thermodynamics, migration barriers and the interaction of dissolved Xe atoms with U, we demonstrate that Xe diffusion predominantly occurs via a vacancy-mediated mechanism, though other alternatives may exist in high irradiation fields. Since Xe transport is closely related to diffusion of U vacancies, we have also studied the activation energy for this process. In order to explain the low value of 2.4 eV found for U migration from independent damage experiments (not thermal equilibrium) the presence of vacancy clusters must be included in the analysis. Next a continuum transport model for Xe and U is formulated based on the diffusion mechanisms established from DFT. After combining this model with descriptions of the interaction between Xe and grain boundaries derived from separate atomistic calculations, we simulate Xe redistribution for a few simple microstructures using finite element methods (FEM), as implemented in the MOOSE framework from Idaho National Laboratory. Thermal transport together with the power distribution determines the temperature distribution in the fuel rod and it is thus one of the most influential properties on nuclear fuel performance. The fuel thermal conductivity changes as function of time due to microstructure evolution (e.g. fission gas redistribution) and compositional changes. Using molecular dynamics simulations we have studied the impact of different types of grain boundaries and fission gas bubbles on UO{sub 2} thermal conductivity.

Andersson, Anders D. [Los Alamos National Laboratory; Uberuaga, Blas P. [Los Alamos National Laboratory; Du, Shiyu [Los Alamos National Laboratory; Liu, Xiang-Yang [Los Alamos National Laboratory; Nerikar, Pankaj [IBM; Stanek, Christopher R. [Los Alamos National Laboratory; Tonks, Michael [Idaho National Laboratory; Millet, Paul [Idaho National Laboratory; Biner, Bulent [Idaho National Laboratory

2012-06-04T23:59:59.000Z

456

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 High Oil Price case projections Table D4. World liquids consumption by region, High Oil Price case, 2009-2040 (million barrels per day) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 23.1 23.5 23.4 23.5 23.2 22.9 22.9 23.5 0.0 United States a 18.6 18.9 18.7 18.8 18.4 17.7 17.4 17.5 -0.3 Canada 2.2 2.2 2.2 2.1 2.1 2.1 2.2 2.4 0.2 Mexico/Chile 2.4 2.4 2.5 2.5 2.7 3.0 3.3 3.6 1.4 OECD Europe 15.0 14.8 13.2 13.1 13.1 13.2 13.3 13.4 -0.3 OECD Asia 7.7 7.7 8.0 7.7 7.6 7.6 7.6 7.4 -0.1 Japan 4.4 4.4 4.5 4.2 4.0 3.9 3.8 3.6 -0.7 South Korea 2.2 2.3 2.3 2.4 2.4 2.5 2.6 2.6 0.5 Australia/NewZealand 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 0.3 Total OECD 45.8 46.0 44.6 44.3 43.8 43.6 43.8 44.3 -0.1 Non-OECD Non-OECD Europe and Eurasia

457

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A6. World natural gas consumption by region, Reference case, 2009-2040 (trillion cubic feet) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 28.2 29.2 31.3 33.4 35.1 37.0 39.4 41.6 1.2 United States a 22.9 23.8 25.3 26.3 26.9 27.6 28.7 29.5 0.7 Canada 3.1 2.9 3.1 3.6 4.0 4.3 4.6 4.9 1.7 Mexico/Chile 2.2 2.5 2.9 3.5 4.3 5.1 6.1 7.2 3.6 OECD Europe 18.8 19.8 19.7 20.4 20.8 22.1 23.2 24.5 0.7 OECD Asia 6.1 6.7 7.2 7.8 8.5 9.0 9.5 9.9 1.3 Japan 3.7 3.8 4.3 4.6 4.9 5.1 5.2 5.2 1.0 South Korea 1.2 1.5 1.5 1.7 1.9 2.0 2.3 2.5 1.7 Australia/NewZealand 1.3 1.3 1.4 1.5 1.7 1.8 2.0 2.2 1.7 Total OECD 53.2 55.6 58.2 61.5 64.4 68.0 72.1 76.0 1.0 Non-OECD Non-OECD Europe and Eurasia 19.8 21.8

458

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A1. World total primary energy consumption by region, Reference case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 121.3 126.1 129.7 132.9 137.2 143.6 0.6 United States a 94.9 97.9 97.3 100.5 101.8 102.3 103.9 107.2 0.3 Canada 13.7 13.5 14.2 14.8 15.6 16.5 17.3 18.2 1.0 Mexico/Chile 8.4 8.8 9.9 10.9 12.3 14.1 16.0 18.2 2.5 OECD Europe 80.0 82.5 82.1 85.5 88.6 90.9 92.8 94.6 0.5 OECD Asia 37.7 39.6 40.6 43.0 44.3 45.4 46.1 46.4 0.5 Japan 21.0 22.1 21.7 22.5 23.0 23.0 22.9 22.2 0.0 South Korea 10.1 10.8 11.8 13.0 13.8 14.7 15.3 15.9 1.3 Australia/NewZealand 6.7 6.7 7.0 7.4 7.5 7.7 8.0 8.2 0.7 Total OECD 234.7 242.3 244.1 254.6 262.7

459

Liquefied natural gas as a transportation fuel for heavy-duty trucks: Volume I  

SciTech Connect

This document contains Volume 1 of a three-volume manual designed for use with a 2- to 3-day liquefied natural gas (LNG) training course. Transportation and off-road agricultural, mining, construction, and industrial applications are discussed. This volume provides a brief introduction to the physics and chemistry of LNG; an overview of several ongoing LNG projects, economic considerations, LNG fuel station technology, LNG vehicles, and a summary of federal government programs that encourage conversion to LNG.

NONE

1997-12-01T23:59:59.000Z

460

Minority and poor households: patterns of travel and transportation fuel use  

SciTech Connect

This report documents the travel behavior and transportation fuel use of minority and poor households in the US, using information from numerous national-level sources. The resulting data base reveals distinctive patterns of household vehicle availability and use, travel, and fuel use and enables us to relate observed differences between population groups to differences in their demographic characteristics and in the attributes of their household vehicles. When income and residence location are controlled, black (and to a lesser extent, Hispanic and poor) households have fewer vehicles regularly available than do comparable white or nonpoor households; moreover, these vehicles are older and larger and thus have significantly lower fuel economy. The net result is that average black, Hispanic, and poor households travel fewer miles per year but use more fuel than do average white and nonpoor households. Certain other findings - notably, that of significant racial differences in vehicle availability and use by low-income households - challenge the conventional wisdom that such racial variations arise solely because of differences in income and residence location. Results of the study suggest important differences - primarily in the yearly fluctuation of income - between black and white low-income households even when residence location is controlled. These variables are not captured by cross-sectional data sets (either the national surveys used in our analysis or the local data sets that are widely used for urban transportation planning).

Millar, M.; Morrison, R.; Vyas, A.

1986-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation fuels outlook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,

Delucchi, Mark

2003-01-01T23:59:59.000Z

462

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

463

LED Watch: The Outlook for LEDs  

Energy.gov (U.S. Department of Energy (DOE))

December 2014 LED Watch: The Outlook for LEDs James Brodrick, U.S. Department of Energy LD+A Magazine

464

International Energy Outlook 2006 - World Energy and Economic Outlook  

Gasoline and Diesel Fuel Update (EIA)

1: World Energy and Economic Outlook 1: World Energy and Economic Outlook The IEO2006 projections indicate continued growth in world energy use, despite world oil prices that are 35 percent higher in 2025 than projected in last year’s outlook. Energy resources are thought to be adequate to support the growth expected through 2030. Figure 7. World Marketed Energy Consumption, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 8. World Marketed Energy Use: OECD and Non-OECD, 1980-2030 (Quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Table 1. World Marketed Energy Consumption by Country Grouping, 2003-2030 (Quadrillion Btu) Printer friendly version Region 2003 2010 2015 2020 2025 2030 Average Annual Percent Change, 2003-2030

465

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | International Energy Outlook 2013 Kaya Identity factor projections Table J3. World gross domestic product (GDP) per capita by region expressed in purchasing power parity, Reference case, 2009-2040 (2005 dollars per person) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 32,959 33,559 36,264 39,848 43,145 46,824 51,175 56,306 1.7 United States a 41,478 42,130 45,224 49,521 53,259 57,343 62,044 67,452 1.6 Canada 34,582 35,285 37,485 40,040 41,910 43,909 46,715 50,028 1.2 Mexico/Chile 12,215 12,750 14,862 16,996 19,460 22,324 25,830 30,192 2.9 OECD Europe 25,770 26,269 27,363 29,924 32,694 35,369 38,368 41,753 1.6 OECD Asia 28,623 29,875 32,912 36,117 39,347 42,264 45,505 48,961 1.7 Japan 29,469 30,827 33,255

466

International Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections Table A14. World population by region, Reference case, 2009-2040 (millions) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 470 475 499 523 547 569 591 612 0.8 United States a 308 310 325 340 356 372 388 404 0.9 Canada 34 34 36 38 40 42 44 46 1.0 Mexico/Chile 129 131 138 144 150 155 159 162 0.7 OECD Europe 553 556 570 580 588 594 598 601 0.3 OECD Asia 202 203 204 205 204 203 201 199 -0.1 Japan 128 128 127 125 122 119 117 114 -0.4 South Korea 48 48 49 50 50 50 50 49 0.1 Australia/NewZealand 26 27 28 30 32 33 34 35 0.9 Total OECD 1,226 1,234 1,273 1,307 1,339 1,366 1,390 1,411 0.4 Non-OECD Non-OECD Europe and Eurasia 338 338 342 342 342 340 337 334 0.0 Russia 141 140 142 141 139 136 134 131 -0.2 Other 197

467

Annual Energy Outlook 2012  

Gasoline and Diesel Fuel Update (EIA)

O F = = | = = g u n e = O M N O O F = = | = = g u n e = O M N O w i t h P r o j e c t i o n s t o 2 0 3 5 A n n u a l E n e r g y Ou t l o o k 2 0 1 2 For further information . . . The Annual Energy Outlook 2012 was prepared by the U.S. Energy Information Administration (EIA), under the direction of John J. Conti (john.conti@eia.gov, 202/586-2222), Assistant Administrator of Energy Analysis; Paul D. Holtberg (paul.holtberg@eia. gov, 202/586-1284), Team Leader, Analysis Integration Team, Office of Integrated and International Energy Analysis; Joseph A. Beamon (joseph.beamon@eia.gov, 202/586-2025), Director, Office of Electricity, Coal, Nuclear, and Renewables Analysis; Sam A. Napolitano (sam.napolitano@eia.gov, 202/586-0687), Director, Office of Integrated and International Energy Analysis; A. Michael

468

CONTAINMENT ANALYSIS METHODOLOGY FOR TRANSPORT OF BREACHED CLAD ALUMINUM SPENT FUEL  

SciTech Connect

Aluminum-clad, aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to the Savannah River Site and placed in interim storage in a water basin. To enter the United States, a cask with loaded fuel must be certified to comply with the requirements in the Title 10 of the U.S. Code of Federal Regulations, Part 71. The requirements include demonstration of containment of the cask with its contents under normal and accident conditions. Many Al-SNF assemblies have suffered corrosion degradation in storage in poor quality water, and many of the fuel assemblies are 'failed' or have through-clad damage. A methodology was developed to evaluate containment of Al-SNF even with severe cladding breaches for transport in standard casks. The containment analysis methodology for Al-SNF is in accordance with the methodology provided in ANSI N14.5 and adopted by the U. S. Nuclear Regulatory Commission in NUREG/CR-6487 to meet the requirements of 10CFR71. The technical bases for the inputs and assumptions are specific to the attributes and characteristics of Al-SNF received from basin and dry storage systems and its subsequent performance under normal and postulated accident shipping conditions. The results of the calculations for a specific case of a cask loaded with breached fuel show that the fuel can be transported in standard shipping casks and maintained within the allowable release rates under normal and accident conditions. A sensitivity analysis has been conducted to evaluate the effects of modifying assumptions and to assess options for fuel at conditions that are not bounded by the present analysis. These options would include one or more of the following: reduce the fuel loading; increase fuel cooling time; reduce the degree of conservatism in the bounding assumptions; or measure the actual leak rate of the cask system. That is, containment analysis for alternative inputs at fuel-specific conditions and at cask-loading-specific conditions could be performed to demonstrate that release is within the allowable leak rates of the cask.

Vinson, D.

2010-07-11T23:59:59.000Z

469

GLOBAL BIOFUELS OUTLOOK MAELLE SOARES PINTO  

E-Print Network (OSTI)

GLOBAL BIOFUELS OUTLOOK 2010-2020 MAELLE SOARES PINTO DIRECTOR BIOFUELS EUROPE & AFRICA WORLD BIOFUELS MARKETS, ROTTERDAM MARCH 23, 2011 #12;Presentation Overview · Global Outlook ­ Biofuels Mandates in 2010 ­ Total Biofuels Supply and Demand ­ Regional Supply and Demand Outlook to 2020 ­ Biofuels

470

Probabilistic assessment of spent fuel shipping cask response to severe transportation accident conditions. Report summary  

SciTech Connect

The licensing of commercial nuclear spent shipping casks in the United States is regulated by 10CFR71. In order to be licensed, casks must be designed not to fail under hypothetical test conditions specified in Appendix B of this regulation. Questions have been raised about the suitability of these tests in simulating actual transportation accident conditions. Our study addresses the adequacy of current regulations by comparing real-world accident conditions with regulatory test specifications using more complete accident statistics and more sophisticated structural analyses than have been used in studies to date. Our objective is to evaluate the protection provided by current regulations against severe accident conditions for commercial spent nuclear fuel casks that are transported by truck or rail. The complete spectrum of truck and rail accidents will be reviewed in order to determine the frequency (or infrequency) of cask failures during transportation accidents. 3 references, 1 figure.

Fischer, L.E.; Kimura, C.Y.; Witte, M.C.

1985-01-01T23:59:59.000Z

471

INL Site FY 2010 Executable Plan for Energy and Transportation Fuels Management with the FY 2009 Annual Report  

SciTech Connect

It is the policy of the Department of Energy (DOE) that sustainable energy and