Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

2

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

California’s Energy Future - Transportation Energy Use inCalifornia’s Energy Future - Transportation Energy Use inCalifornia’s Energy Future - Transportation Energy Use in

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

3

Transportation Energy Futures  

E-Print Network (OSTI)

TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

Sperling, Daniel

1989-01-01T23:59:59.000Z

4

Transportation Energy Futures  

E-Print Network (OSTI)

solar or nuclear power(from fission or fusion reactors), andand nuclear energy (from breeder reactors or possibly fusion

Sperling, Daniel

1989-01-01T23:59:59.000Z

5

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

6

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

7

Transportation Energy Futures | OpenEI  

Open Energy Info (EERE)

Energy Futures Energy Futures Dataset Summary Description The 2009 National Household Travel Survey (NHTS) provides information to assist transportation planners and policy makers who need comprehensive data on travel and transportation patterns in the United States. The 2009 NHTS updates information gathered in the 2001 NHTS and in prior Nationwide Personal Transportation Surveys (NPTS) conducted in 1969, 1977, 1983, 1990, and 1995. Source U.S. Department of Transportation, Federal Highway Administration Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords NHTS TEF transportation Transportation Energy Futures travel trip Data application/zip icon Travel Day Trip File (zip, 42.6 MiB) application/zip icon Household File (zip, 5 MiB) application/zip icon Person File (zip, 17.4 MiB)

8

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

is also available and will be finalized once all reports are released. The Buildings Industry Transportation Electricity Scenarios (BITES) tool is an interactive framework...

9

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Freight Transportation Modal Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

10

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

Yang, Christopher

2011-01-01T23:59:59.000Z

11

Transportation Energy Futures Study: The Key Results and Conclusions  

Open Energy Info (EERE)

Transportation Energy Futures Study: The Key Results and Conclusions Transportation Energy Futures Study: The Key Results and Conclusions Webinar Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 1 May, 2013 - 11:38 This webinar will outline the key results and conclusions from EERE's Transportation Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be time for questions from attendees at the end of the webinar. Principal Deputy Assistant Secretary Mike Carr will introduce the study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy

12

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

13

Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Path Transportation Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good against today's technologies, but that's really not what people will be judging them against.....the best "reference vehicle" is one customers will be seeing on showroom floors, in that year.  Understand your model! -- Some of your "key results" may be coming

14

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

15

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

16

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

17

Transportation Energy Futures Series: Vehicle Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

as well as the full series of reports, can be found at http:www.eere.energy.govanalysistransportationenergyfutures. Contract Nos. DC-A36-08GO28308 and DE-AC02-06CH11357 v...

18

Carbonless Transportation and Energy Storage in Future Energy Systems  

SciTech Connect

By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

Lamont, A.D.; Berry, G.D.

2001-01-17T23:59:59.000Z

19

NREL: News - Transportation Energy Futures Study Reveals Potential...  

NLE Websites -- All DOE Office Websites (Extended Search)

generation, and other applications. Transportation Demand Opportunities to save energy and abate GHG emissions through community development and urban planning. Trip...

20

Transportation Energy Futures Study: The Key Results and Conclusions...  

Open Energy Info (EERE)

study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In...

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles. Electric Power ResearchMarket for Hybrid Electric Vehicles. Transportation ResearchProceedings of the Electric Vehicle Symposium 2009 (EVS24).

Yang, Christopher

2011-01-01T23:59:59.000Z

22

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles. Electric Power Researchs Early Market for Hybrid Electric Vehicles. TransportationTechnologies--Plug-in Hybrid Electric Vehicles. Committee on

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

23

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Vehicles in Southern California”, Energy Policy, 39 (2011)contract between the California Energy Commission (CEC) andBechtel Fund and the California Energy Commision for their

Yang, Christopher

2011-01-01T23:59:59.000Z

24

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

2050 target. Thus, total heavy truck energy usage even with9 shows total light-duty fuel energy usage is approximatelyof fuel usage (PEV: 87% combined: 77%). Total energy use for

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

25

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

and hydrogen as alternative fuels is in energy storage.hydrogen energy density and cost goals is not possible using current compressed hydrogen storageenergy density of electricity storage in batteries or hydrogen

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

26

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

27

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

2013-03-01T23:59:59.000Z

28

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

2009 with Projections to 2030. US Department of Energy.duty VMT growth of nearly 64% from 2005 to 2030 and 92%from 1990 to 2030. These growth rates are consistent (on a

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

29

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

30

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

31

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

DOE Green Energy (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

32

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

33

Environmental concerns influencing the future development of energy material transportation systems: the year 2000 study  

DOE Green Energy (OSTI)

This paper presents results of studies conducted to assess the potentially longer-range problems which could hinder the future development of safe and environmentally-acceptable energy material transportation systems. The purpose of this effort is to recommend appropriate action that contributes to the anticipatory management of possible future problems before they can have serious effects on the adequacy or acceptability of the system. Most significant future concerns in energy material transportation relate to potential institutional, legal, political and social problems. Environmental issues are involved in many of these concerns. Selected environmental concerns are discussed that may influence the future development of transportation systems for fossil and nuclear energy materials during the balance of this century. A distinction between potentially real and perceived concerns is made to emphasize basic differences in the recommended approach to solutions of the respective type of potential problem.

DeSteese, J. G.

1978-01-01T23:59:59.000Z

34

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels," UCB-Press plc THE TRANSPORTATION FUTURE? FUEL OF THE DANIELPurdue University, "Transportation Energy Futures; Paths of

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

35

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

36

Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)  

Science Conference Proceedings (OSTI)

The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

Not Available

2012-12-01T23:59:59.000Z

37

Scenarios for a Clean Energy Future Transportation 6.1  

E-Print Network (OSTI)

automotive manufacturers have announced commercial introductions of hybrid vehicles five to ten years sooner turnover of fleets, gasoline's dominance of light-duty vehicle fueling infrastructure, and low energy vehicles are included, as in the case here. Recent studies limited to a 10-year time horizon suggest

38

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPORTATION ENERGY FUTURES TRANSPORTATION ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is essential to our economy and quality of life, and currently accounts for 71% of the nation's total petroleum use and 33% of our total carbon emissions. Energy-efficient transportation strategies could reduce both oil consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an

39

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market  

DOE Green Energy (OSTI)

The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

2013-03-01T23:59:59.000Z

40

Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints  

SciTech Connect

Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Plotkin, S.; Stephens, T.; McManus, W.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: Energy Storage - A Vision of Our Transportation Future - The Next 30  

NLE Websites -- All DOE Office Websites (Extended Search)

A Vision of Our Transportation Future - The Next 30 Years A Vision of Our Transportation Future - The Next 30 Years In the next 30 years, the future of light-duty vehicle transportation includes several powertrains and several fuel choices, but advanced vehicle batteries will play the most significant role. This diagram shows how various powertrain and fuel choices evolve in the next 30 years. The chart/illustration is titled, 'Vision of Future Transportation.' The byline lists concept by Ahmad Pesaran and illustration by Dean Armstrong. The NREL publication number is NREL/GR-540-40698. It presents a roadmap of how the advancement of batteries and fuels can propel our transportation future. Paved roads are used to illustrate the history and impact of battery advancement on vehicle technologies. The road begins with the following in order: electric vehicles; HEVs: early adopters of HEVs; and consumers asking for plug for plug-in HEV capabilities. The road then splits. The road to the right lists the following in order: HEVs major consumer adoption, and then this road splits with fuel cell vehicles on one road and hybrid electric vehicles on the other. The road to the left lists the following in order: plug-in HEV early adopters; PHEVs: major consumer adoption; and then this road splits with battery electric vehicles heading left, and plug-in hybrid vehicles heading right. Internal combustion engines has its own straight road appearing below these roads. For fuel advancement, the following fuels are listed in a bar chart, with the bars becoming shorter as the list proceeds (shorter shows increased time for advancement): gasoline, natural gas, ethanol blends; diesel, biodiesel blends; B20, biodiesel; E85, cellulosic ethanol; electricity; and hydrogen.

42

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

SciTech Connect

The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

2009-03-31T23:59:59.000Z

43

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

DOE Green Energy (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

44

Economic Growth in Urban Regions: Implications for Future Transportation  

E-Print Network (OSTI)

Implications for Future Transportation Robert Cervero,implications for future transportation policy. The collapseimplications for future transportation policy. Smart

Cervero, Robert

2006-01-01T23:59:59.000Z

45

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

Sectoral Trends and Future Outlook”. January 2007. LBNL-India: Past Trend and Future Outlook Stephane de la Rue duSectoral Trends and Future Outlook (Zhou et al. , 2007)

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

46

Energy study of railroad freight transportation. Volume 4. Efficiency improvements and industry future  

DOE Green Energy (OSTI)

Railroad equipment and operating practices were largely developed in an era during which the price of fuel was a relatively minor part of the cost of railroad operations; however, fuel has now become a scarce and expensive resource. Although many opportunities exist for installing new equipment and operating practices that will result in fuel conservation, cost and market factors can promote or retard the rate at which changes are adopted, and only limited technology may be available for use in conservation applications. Conservation opportunities are identified and potential technological and operational improvements are described that can be introduced; the process of introducing new technology in the railroad industry is analyzed; the future of the railroad industry is assessed; and research and development that will contribute to the adoption of energy conservation equipment or processes in the industry are identified.

Not Available

1979-08-01T23:59:59.000Z

47

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

13 Figure 7. Average Energy Consumption per Capita per14 Figure 8. Lighting Energy Consumption per Capita and per16 Figure 11. 2020 Rural and Urban Energy Consumption

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

48

DOE Hydrogen Analysis Repository: Hawaii Transportation Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

future energy demand; analyze the possibility of satisfying a portion of the state's future transportation energy demand through alternative fuels; and recommend a program...

49

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

21% in 2005. Penetration of CNG is not visible here, becauseThe Indian Supreme Court mandated CNG as the fuel for publicto the transport sector for CNG and a further 5 cities have

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

50

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

Price, 2008 “Sectoral Trends in Global Energy Use and Greenhouse GasTrends in Global Energy Use and Greenhouse Gas Emissions (Price

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

51

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

52

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

gas oil nuclear Hydro Energy output Own Uses Transmissionenergy equivalence of electricity generated from hydro or

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

53

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

16 Figure 10. Residential Primary Energy Use in 2000 and3. Fuel Consumption in the Residential Sector in 2005 in10 Table 6. Residential Activity

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

54

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

of Energy Consuming Appliances per MPCE class (Rs) .. 1012 Figure 6. Projections of Rate of ApplianceDomestic Electrical Appliances in India”, 2003. Ernst &

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

55

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

GHG emissions of future transportation modes. These resultsVehicle Manufacturing Futures in Transportation Life-cycleVehicle Manufacturing Futures in Transportation Life-cycle

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

56

Residential and Transport Energy Use in India: Past Trend and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential and Transport Energy Use in India: Past Trend and Future Outlook Title Residential and Transport Energy Use in India: Past Trend and Future Outlook Publication Type...

57

Transportation Energy Futures  

E-Print Network (OSTI)

Ales- sio, G. J. 1983. Alcohol fuels from biomass. Environ.S. , Sullivan, L. S. 1984. Procs. , Int. Alcohol Fuel Symp.on Alcohol Fuel Tech. , Ottawa, Canada. pp. 2-373 to 93.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

58

Transportation Energy Futures  

E-Print Network (OSTI)

in oil shale, ethanol, coal liquids and gases, and tar sandsfrom coal and oil shale, domestic natural gas, and domesticcoal, oil shale, tar sands, natural gas, water, and

Sperling, Daniel

1989-01-01T23:59:59.000Z

59

Transportation Energy Futures  

E-Print Network (OSTI)

States, "identified" oil shale reserves, a category thatmeasurement provefi oil shale reserves of has ever been

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

60

Transportation Energy Futures  

E-Print Network (OSTI)

fiberglass-wrapped aluminum cylinders; CNG 15%thermalefficienc) advantage for CNG LGN:weight penalty for CNG.LNGoxides; NG,natural gas; CNG, compressed LNG, NG; liquefied

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Transportation Energy Futures  

E-Print Network (OSTI)

production also has potentially severe impacts, generating large quantities of solid waste (though less than oil shale) andshale plant has been built. Initially completedin 1984by UnionOil, it still has not reached full production

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

62

Transportation Energy Futures  

E-Print Network (OSTI)

production also has potentially severe impacts, generating large quantities of solid waste (though less than oil shale) and

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

63

Transportation Energy Futures  

E-Print Network (OSTI)

liquefied NG;RNG, remote NG;SNG, substitute NG;EV,electricbAssumes that natural gas and SNG not contain sulfur, whichsynthetic") natural gas (SNG)could be producedfrom coal

Sperling, Daniel

1989-01-01T23:59:59.000Z

64

Transportation Energy Futures  

E-Print Network (OSTI)

a combination of power plants using coal, natural gas, oil,natural gas Electric vehicles/current power /nix Gasoline and diesel/crude oil Electric vehicles/new coal plant

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

65

Transportation Energy Futures  

E-Print Network (OSTI)

d shale pyrolysis (liquids) Oil Sources:Adapted Refs. 71-74.gas. or crude oil), conversionof the primary,re- source tosources have warned occasionally of impending oil

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

66

Transportation Energy Futures  

E-Print Network (OSTI)

to those of compressed natural gas (CNG). simplicity, thispressurized tanks for compressed natural gas (CNG)storage,oxides; NG,natural gas; CNG, compressed LNG, NG; liquefied

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

67

Transportation Energy Futures  

E-Print Network (OSTI)

for compressed natural gas (CNG)storage, additional fueldensity storage performanceof adsorptents for natural gas,natural vs. gas vehicles: a comparisonof resource supply, performance, emissions, fuel storage,

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

68

Hydrogen & Our Energy Future  

Fuel Cell Technologies Publication and Product Library (EERE)

Hydrogen & Our Energy Future (40 pages) expands on DOE's series of one-page fact sheets to provide an in-depth look at hydrogen and fuel cell technologies. It provides additional information on the sc

69

SOLAR ENERGY AND OUR ELECTRICITY FUTURE  

E-Print Network (OSTI)

SOLAR ENERGY AND OUR ELECTRICITY FUTURE Sandia is a multiprogram laboratory operated by Sandia Solar Power (CSP) #12;Solar Energy Fun Facts More energy from sunlight strikes the Earth in one hour Solar energy is the only long-term option capable of meeting the energy (electricity and transportation

70

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

71

Hydrogen & Our Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Program Hydrogen Program www.hydrogen.energy.gov Hydrogen & Our Energy Future  | HydrOgEn & Our EnErgy FuturE U.S. Department of Energy Hydrogen Program www.hydrogen.energy.gov u.S. department of Energy |  www.hydrogen.energy.gov Hydrogen & Our Energy Future Contents Introduction ................................................... p.1 Hydrogen - An Overview ................................... p.3 Production ..................................................... p.5 Delivery ....................................................... p.15 Storage ........................................................ p.19 Application and Use ........................................ p.25 Safety, Codes and Standards ............................... p.33

72

Securing Our Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Energy Our Energy Securing Our Energy Future Future World Energy Demand Growing Dramatically 12 1400 1200 10 1000 2000 2050 2100 Population of Population of Industrialized Countries Industrialized Countries Wo W rl r d o ld Po P pu p la l ti t on o o u a i n Wo W rl r d E d ne n rg r y o l E e gy Co C ns n um u pt p io i n o s m t on Population (Billions) Energy Consumption (Qbtu / yr) 8 800 6 600 4 400 2 200 0 0 1900 1950 Year U.S. Electricity Generation by Fue U.S. Electricity Generation by Fuel Electric Generation by Fuel 1980 - 2030 (billion kilowatt-hours) 0 1000 2000 3000 4000 5000 6000 1980 1990 2000 2010 2020 2030 Renewables/Other Nuclear Natural Gas Petroleum Coal Source: EIA Annual Energy Outlook 2008 Why Do We Keep Coal in the Mix? Why Do We Keep Coal in the Mix? World Energy Reserves World Energy Reserves Source: Energy Information Administration/ International Reserves Data

73

IM Future | Open Energy Information  

Open Energy Info (EERE)

IM Future Jump to: navigation, search Name IM Future Place Spain Sector Services, Wind energy Product Spain-based firm that provides operation and maintenance services for wind...

74

Future Energy Yorkshire | Open Energy Information  

Open Energy Info (EERE)

Future Energy Yorkshire Jump to: navigation, search Name Future Energy Yorkshire Place Leeds, United Kingdom Zip LS11 5AE Sector Services Product Leeds-based, wholly owned...

75

ENERGY WHITE PAPER Our energy future -  

E-Print Network (OSTI)

ENERGY WHITE PAPER Our energy future - creating a low carbon economy and consumers. And we stand up for fair and open markets in the UK, Europe and the world. #12;Our energy future ENERGY WHITE PAPER Our energy future - creating a low carbon economy 1 Foreword

76

Future Energy Pty Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Pty Ltd Jump to: navigation, search Name Future Energy Pty Ltd Place Victoria, Australia Zip 3121 Sector Wind energy Product Victoria based community wind project developer....

77

Technology Analysis - Multi-Path Transportation Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses The Multi-Path Study began by defining the basic physical characteristics of future advanced midsize cars and midsize SUVs with drivetrain technologies ranging from advanced SI and CI (diesel) engine-based conventional drivetrains through hybrid drivetrains (including plug-ins), to fuel cell hybrids and plug-in hybrids, through pure-electric drivetrains. The study evaluates these vehicles’ fuel economy using Argonne’s PSAT simulation model, estimates their costs, and does detailed analyses of their cost-effectiveness, balancing first costs against fuel savings. The study uses a version of the National Energy Modeling System (developed by the Energy Information Administration in the U.S. Department of Energy) to evaluate several scenarios assuming different vehicle costs (one set based on a literature review, one based on DOE goals) and availability of purchase subsidies.

78

The Future of Transportation Finance: Gas Tax Plus and Beyond  

E-Print Network (OSTI)

The Future of Transportation Finance: Gas Tax Plus and Beyond The Future of Transportation Finance ON TRANSPORTATION POLICY AND TECHNOLOGY 2005 JAMES L. OBERSTAR FORUM ON TRANSPORTATION POLICY AND TECHNOLOGY #12;This report summarizes the fourth James L. Oberstar Forum on Transportation Policy and Technology. Over

Minnesota, University of

79

Biomass Energy in a Carbon Constrained Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy in a Carbon Constrained Future Biomass Energy in a Carbon Constrained Future Speaker(s): William Morrow Date: September 3, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eric Masanet Two areas of research will be presented: potential roles that domestically sourced biomass energy could play in achieving U.S. environmental and petroleum security goals, and possible pathways for achieving California's long-term greenhouse gas reduction goals. Biomass energy is viewed by many in the electricity and transportation fuel sectors as offering benefits such as greenhouse gas emissions reductions and petroleum fuel substitution. For this reason a large-scale biomass energy industry future is often anticipated although currently biomass energy provides only a small contribution to these sectors. Agriculture models, however,

80

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

of future contributions from various emerging transportation fuels and technologies is unknown. PotentiallyCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Transportation Models In the Policy-Making Process: Uses, Misuses, And Lessons For The Future  

E-Print Network (OSTI)

of alternative futures and how transportation decisions36 Panel 5: Future Innovations in TransportationForum Panel 5 Future Innovations in Transportation Analysis

Brinkman, Anthony; Goldman, Todd

1998-01-01T23:59:59.000Z

82

Statewide Transportation Planning in California: Past Experience and Lessons for the Future  

E-Print Network (OSTI)

brief glimpse of future transportation policy in the state.the choice of four future transportation policy directions.anticipate future travel and transportation needs and cast

Brown, Jeffrey

2000-01-01T23:59:59.000Z

83

Energy Options for the Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Options Options for the Future * John Sheffield, 1 Stephen Obenschain, 2,12 David Conover, 3 Rita Bajura, 4 David Greene, 5 Marilyn Brown, 6 Eldon Boes, 7 Kathyrn McCarthy, 8 David Christian, 9 Stephen Dean, 10 Gerald Kulcinski, 11 and P.L. Denholm 11 This paper summarizes the presentations and discussion at the Energy Options for the Future meeting held at the Naval Research Laboratory in March of 2004. The presentations covered the present status and future potential for coal, oil, natural gas, nuclear, wind, solar, geo- thermal, and biomass energy sources and the effect of measures for energy conservation. The longevity of current major energy sources, means for resolving or mitigating environmental issues, and the role to be played by yet to be deployed sources, like fusion, were major topics of presentation and discussion. KEY WORDS: Energy; fuels; nuclear; fusion; efficiency; renewables.

84

Prompt-Month Energy Futures  

Gasoline and Diesel Fuel Update (EIA)

Prompt-Month Energy Futures Prompt-Month Energy Futures Prices and trading activity shown are for prompt-month (see definition below) futures contracts for the energy commodities listed in the table below. Note that trading for prompt-month futures contracts ends on different dates at the end of the month for the various commodities; therefore, some commodity prices may reference delivery for the next month sooner than other commodity prices. Product Description Listed With Crude Oil ($/barrel) West Texas Intermediate (WTI) light sweet crude oil delivered to Cushing, Oklahoma More details | Contract specifications New York Mercantile Exchange (Nymex) Gasoline-RBOB ($/gallon) Reformulated gasoline blendstock for oxygenate blending (RBOB) gasoline delivered to New York Harbor More details | Contract specifications Nymex

85

Transportation Storage Interface | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Status...

86

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY  

E-Print Network (OSTI)

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY ANALYSES FOR THE 2007 INTEGRATED ENERGY POLICY REPORT Jim Page, Malachi Weng-Gutierrez, and Gordon Schremp Fossil Fuels Office Fuels and Transportation....................................................................................................... 3 SUMMARY OF PROPOSED TRANSPORTATION ENERGY ANALYSES ............... 4 Background

87

Transportation Electrification Load Development For a Renewable Future Analysis  

SciTech Connect

Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

2010-09-30T23:59:59.000Z

88

Options for Kentucky's Energy Future  

Science Conference Proceedings (OSTI)

Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

Larry Demick

2012-11-01T23:59:59.000Z

89

Westminster Energy Environment Transport Forum | Open Energy...  

Open Energy Info (EERE)

Westminster Energy Environment Transport Forum Jump to: navigation, search Name Westminster Energy, Environment & Transport Forum Place United Kingdom Product String representation...

90

The Future of Low Carbon Transportation Fuels  

E-Print Network (OSTI)

" Nuclear" Oil resources" Unconventional:" oil shale liquid, " oil sands" Coal resources" Transport! Elec

Kammen, Daniel M.

91

Transportation Energy-Efficiency Workshop  

U.S. Energy Information Administration (EIA)

Notes on the Energy Information Administration's summary session on Transportation Sector Energy-Efficiency Workshop on March 21, 1996

92

Toward an energy surety future.  

SciTech Connect

Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III (.; )

2005-10-01T23:59:59.000Z

93

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

94

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

95

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

96

Local energy conservation programs: past and future  

SciTech Connect

A review of local government energy programs examines specific programs adopted since 1975 which have been successful and identifies lessons from these experiences that will be helpful in the future. Successful programs have a positive effect on economic development and job creation, income equity, environmental and consumer goals, and political goals. The report focuses on three major areas of local programs: building codes, joint programs, and energy management. Other programs in the review are financing arrangements, retrofitting, transportation, etc. While direct benefits lack data for verification, the indirect benefits of aggressive local government programs have had significant value in establishing local programs at the laboratories for trying new ideas. Future local efforts need cooperation and support from the federal government. 56 references, 1 figure.

Lee, H.

1984-01-01T23:59:59.000Z

97

Investing in our Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in our Energy Future Investing in our Energy Future A report on the ways in which the recovery act is promoting a clean energy economy. Investing in our Energy Future...

98

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3: SCENARIOS FOR A LOW-CARBON TRANSPORTATION FUTURE PART 3 Part 3: Scenarios

California at Davis, University of

99

Moving Towards a More Secure Energy Future  

Nuclear Energy Wind Solar Energy Clean Coal BES related basic research activities. The President’s Advanced Energy Initiative Accelerating Future ...

100

Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Realizing a Clean Energy Future 2 Table of Contents Profound Energy System Transformation is Underway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A Clean Energy Future Has Arrived . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Renewable Industry Continues to Grow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Renewable Energy Technical Potential is Enormous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Comprehensive Studies Validate Opportunity for U .S . Renewables to Provide Clean Electricity and Transportation . . . . . . . . . . . . . . . . . . . 8 Realizing Clean Energy's Potential: Challenge and Opportunity . . . . . . . . . . . . . . . . . . . . . . . 9 Renewables and Natural

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Transportation technology energy options  

SciTech Connect

New transportation technologies and their potential contribution to the solution of the energy problem are discussed. DOE transportation technologies briefly discussed are: Stirling and gas-turbine engines; constant-speed accessory-drive system; heavy-duty diesel-truck bottoming cycle; continuously variable transmission; turbocompound diesel engine; gas-turbine bus; new hydrocarbons (broad-cut petroleum fuels); alcohol fuels; synthetic fuels; advanced fuels (hydrogen); electric and hybrid vehicles; marine-diesel bottoming cycle; coal/oil-slurry marine steam turbines; pipeline bottoming cycle; and medium-speed diesel alternative fuels.

Bernard, M.J. III

1979-01-01T23:59:59.000Z

102

Coal: Energy for the future  

SciTech Connect

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

1995-05-01T23:59:59.000Z

103

Concepts studies for future intracity air transportation systems  

E-Print Network (OSTI)

Summary: This report is concerned with describing the possible application of future air transportation systems within urban areas of the United States. The planning horizon extends to 1995 and the report focuses on the ...

Joint DOT-NASA Civil Aviation Research and Development Policy Study.; United States. National Aeronautics and Space Administration; Massachusetts Institute of Technology. Flight Transportation Laboratory

1970-01-01T23:59:59.000Z

104

Ris Energy Report 8 The intelligent energy system infrastructure for the future  

E-Print Network (OSTI)

Risø Energy Report 8 The intelligent energy system infrastructure for the future Reprint Petersen #12;Risø Energy Report 5 Renewable energy for power and transport Global energy policy today is dominated by three concerns: security of supply, climate change, and energy for development and poverty

105

Transportation Research | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation Analysis Vehicle Systems Energy Storage Propulsion Materials Lightweighting Materials Bioenergy...

106

Scenarios for a Sustainable Transportation Future  

E-Print Network (OSTI)

¡ To present some snapshots for diverse suites of options that can meet the target #12;Efficient Biofuels ¡ To determine the most important areas to target ¡ To see the results and tradeoffs resulting from specific, biofuels, efficiency (no alt fuels), transport demand and VMT reduction ¡ 80% Reduction (80in50) Scenarios

California at Davis, University of

107

Future Energy Assets LP | Open Energy Information  

Open Energy Info (EERE)

LP LP Jump to: navigation, search Name Future Energy Assets LP Place Austin, Texas Zip 78701 Product String representation "Future Energy A ... S and in China." is too long. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Driving Home to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy...

109

Hydrogen and OUr Energy Future  

DOE Green Energy (OSTI)

In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

Rick Tidball; Stu Knoke

2009-03-01T23:59:59.000Z

110

Catalyzing a cleaner Energy Future  

NLE Websites -- All DOE Office Websites (Extended Search)

11 11 Catalyzing a Cleaner Energy Future When asked about catalysts, most people probably remember a simple definition copied from the chalkboard in an early chemistry class: a substance that accelerates or modifies a chemical reaction without itself being affected. Or certain personalities may spring to mind; the term is routinely borrowed from chemistry to refer, in social and professional contexts, to a person or team whose energetic, efficient work quickly creates change in a given field. Or the first thought may be of the car in one's driveway and its catalytic converter, which chemically grabs some of the worst pollutants from exhaust and makes them harmless before they reach the tailpipe. In a way, continuing work by scientists at the Environmental Molecular

111

Future Urban Transport, Berkeley, 19-21 May 2008 International Comparative Study  

E-Print Network (OSTI)

Future Urban Transport, Berkeley, 19-21 May 2008 International Comparative Study of Mega Transport Director of OMEGA Centre University College London Conference on Future Urban Transport Berkeley Center for Future Urban Transport May 19-21, 2008 #12;Future Urban Transport, Berkeley, 19-21 May 2008 Overall

California at Berkeley, University of

112

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Geothermal Heat Pumps Why Cool Roofs? Chu at COP-16: Building a Sustainable Energy Future Secretary Chu and the 'Sputnik Moment' New Orleans and Energy Efficiency Cathy...

113

Green-Energy Transportation  

E-Print Network (OSTI)

Battery technology is the key bottleneck in many cyberphysical systems (CPS). For green-energy CPS transportation applications, such as hybrid electrical vehicles (HEVs) and plug-in HEVs (PHEVs), the battery system design is mostly based on lithium-ion rechargeable electrochemical battery technology, which is bulky, expensive, unreliable, and is the primary roadblock for PHEV adoption and market penetration. For PHEVs, the battery system performance and lifetime reliability are further affected by various user-dependent effects. Battery system modeling and user study are thus essential for battery system design and optimization. This paper presents detailed investigation on battery system modeling and user study for emerging PHEVs. The proposed modeling solution can accurately characterize battery system run-time charge-cycle efficiency, and long-term cycle life. In particular, it models battery system capacity variation and fading due to fabrication and run-time aging effects. An embedded monitoring system is designed and deployed in a number of HEVs and PHEVs, which can monitor users ’ driving behavior and battery usage at real time. Using the proposed modeling and monitoring solutions, we conduct user study to investigate battery system run-time usage, characterize user driving behavior, and study the impact of user driving patterns on battery system run-time charge-cycle efficiency, capacity variation and reliability, and life-cycle economy. This work is the first step in battery system design and optimization for emerging green-energy CPS transportation applications. 1.

Kun Li; Jie Wu; Yifei Jiang; Li Shang; Qin Lv; Robert Dick; Dragan Maksimovic; Kun Li; Jie Wu; Yifei Jiang; Li Shang; Qin Lv; Robert Dick; Dragan Maksimovic

2010-01-01T23:59:59.000Z

114

Sustainable Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation Sustainable Transportation Sustainable Transportation Bioenergy Read more Hydrogen and Fuel Cells Read more Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices, EERE advances the development of next-generation technologies to improve plug-in electric and other alternative-fuel vehicles, advanced combustion engine and vehicle efficiency, and produce low-carbon domestic transportation fuels. SUSTAINABLE TRANSPORTATION Vehicles Bioenergy Hydrogen & Fuel Cells Vehicles Bioenergy

115

Advanced Materials for Our Energy Future - TMS  

Science Conference Proceedings (OSTI)

May 21, 2010 ... TMS has joined forces with four other materials societies to develop “Advanced Materials for Our Energy Future,” a publication that underscores ...

116

National Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future  

E-Print Network (OSTI)

benchmark awarded by the U.S. Green Building Council ¡ Expected completion: Summer 2010 #12;NationalNational Renewable Energy Laboratory Innovation for Our Energy Future NREL's Campus of the Future research objectives for clean energy technologies ¡ Creating a sustainable energy future for not only our

117

The Foreseer Tool - Analysing Energy, Land and Water Resource Futures  

NLE Websites -- All DOE Office Websites (Extended Search)

The Foreseer Tool - Analysing Energy, Land and Water Resource Futures The Foreseer Tool - Analysing Energy, Land and Water Resource Futures through Sankey Diagrams Speaker(s): Bojana Bajzelj Grant Kopec Julian Allwood Liz Curmi Date: November 10, 2011 - 1:30pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner Larry Dale The BP funded Foreseer project at the University of Cambridge is creating a tool to visualise the influence of future demand and policy choices on the coupled physical requirements for energy, water and land resources in a region of interest. The basis of the tool is a set of linked physical descriptions of energy, water and land, plus the technologies that transform those resources into final services - e.g. housing, food, transport and goods. The tool has a modular structure, with the potential to incorporate specialised analyses or models to calculate future demand,

118

Renewable Energy Futures to 2050: Current Perspectives  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Futures to 2050: Current Perspectives Renewable Energy Futures to 2050: Current Perspectives Speaker(s): Eric Martinot Date: April 4, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ryan Wiser The future of renewable energy is fundamentally a choice, not a foregone conclusion given technology and economic trends. The new REN21 Renewables Global Futures Report illuminates that choice by showing the range of credible possibilities for the future of renewable energy. The report is not one scenario or viewpoint, but a synthesis of the contemporary thinking of many, as compiled from 170 interviews with leading experts from around the world, including CEOs and parliamentarians, and from 50 recently published energy scenarios by a range of organizations. Conservative projections show 15-20% global energy shares from renewables in the

119

Energy Implications of Alternative Water Futures  

E-Print Network (OSTI)

Energy Implications of Alternative Water Futures First Western Forum on Energy & Water water, energy, and GHG emissions. Water-related energy use is expected to rise. Conservation canWaterUse(MAF) Historical Use More Resource Intensive Less Resource Intensive Current Trends #12;Water and Energy Link

Keller, Arturo A.

120

www.kostic.niu.edu Global Energy and Future:Global Energy and Future  

E-Print Network (OSTI)

Most of BC history Population in millions Time in history www.kostic.niu.edu Earth Energy Balance1 www.kostic.niu.edu Global Energy and Future:Global Energy and Future: Importance of Energy Conservation andImportance of Energy Conservation and Renewable and Alternative Energy Resources

Kostic, Milivoje M.

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Coal: America's energy future. Volume I  

SciTech Connect

Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

NONE

2006-03-15T23:59:59.000Z

122

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY  

E-Print Network (OSTI)

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY Institute of Transportation and policies that could support their development are often contentious. The future of these fuels and vehicles associated with the transition to new fuels and vehicles, the UC Davis Institute of Transportation Studies

California at Davis, University of

123

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

124

Charting the Future of Energy Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a...

125

The Future of Atomic Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

the synthesis of plutonium produce energy in amounts comparable to that of the largest hydro- electric plants. The energy that is produced in the piles built until now, ,...

126

Conservation and renewable energy technologies for transportation  

DOE Green Energy (OSTI)

The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the US transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

Not Available

1990-11-01T23:59:59.000Z

127

25 x 25 America s Energy Future | Open Energy Information  

Open Energy Info (EERE)

25 America s Energy Future 25 America s Energy Future Jump to: navigation, search Name 25 x '25 America's Energy Future Place Maryland Zip 21093 Website http://www.25x25.org References 25 x '25 America's Energy Future[1] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. 25 x '25 America's Energy Future is a company located in Maryland . Maryland-based advocacy group lobbying to get 25 percent of American energy from renewable resources by the year 2025, at both the state and federal level. References ↑ "25 x '25 America's Energy Future" Retrieved from "http://en.openei.org/w/index.php?title=25_x_25_America_s_Energy_Future&oldid=353805" Categories: Policy Organizations Non-governmental Organizations Clean Energy Organizations

128

Masdar Abu Dhabi Future Energy Company | Open Energy Information  

Open Energy Info (EERE)

Masdar Abu Dhabi Future Energy Company Masdar Abu Dhabi Future Energy Company Jump to: navigation, search Name Masdar Abu Dhabi Future Energy Company Place Abu Dhabi, United Arab Emirates Sector Renewable Energy Product Abu Dhabi- based subsidiary created to manage the implementation of renewable and alternative energy initiatives. References Masdar Abu Dhabi Future Energy Company[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Masdar Abu Dhabi Future Energy Company is a company located in Abu Dhabi, United Arab Emirates . References ↑ "Masdar Abu Dhabi Future Energy Company" Retrieved from "http://en.openei.org/w/index.php?title=Masdar_Abu_Dhabi_Future_Energy_Company&oldid=348663

129

Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program  

Science Conference Proceedings (OSTI)

This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

NONE

1995-08-01T23:59:59.000Z

130

Scenarios for a Clean Energy Future ACKNOWLEDGMENTS  

E-Print Network (OSTI)

was provided by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE of Policy). Additional funding from the U.S. Environmental Protection Agency's Office of AtmosphericScenarios for a Clean Energy Future xxiii ACKNOWLEDGMENTS Primary funding for this report

131

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the world’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nation’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

132

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

by Alternative Energy Technology . 75Figure 25. Range in Alternative Energy EROEIs in Existingof Energy Output for Alternative Energy Development, 2010-

Zheng, Nina

2012-01-01T23:59:59.000Z

133

Transportation Energy Databook: Edition 17  

SciTech Connect

The Transportation Energy Data Book: Edition 17 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C.

1997-08-01T23:59:59.000Z

134

TRANSPORTATION CENTER--NORTHWESTERN UNIVERSITY Aviation Symposium: The Future for Aviation  

E-Print Network (OSTI)

TRANSPORTATION CENTER--NORTHWESTERN UNIVERSITY Aviation Symposium: The Future for Aviation April The Transportation Center has organized a special Aviation Symposium focusing on important aviation industry topics, Professor of Transportation at Northwestern University and former Director of the Transportation Center

Bustamante, FabiĂĄn E.

135

Energy sources for the future  

SciTech Connect

The symposium program was designed for college faculty members who are teaching or plan to teach energy courses at their educational institutions. Lectures were presented on socio-economic aspects of energy development, fusion reactors, solar energy, coal-fired power plants, nuclear power, radioactive waste disposal, and radiation hazards. A separate abstract was prepared for each of 16 of the 18 papers presented; two papers were processed earlier: Residential Energy Use Alternatives to the Year 2000, by Eric Hurst (EAPA 2:257; ERA 1:25978) and The Long-Term Prospects for Solar Energy, by W. G. Pollard (EAPA 3:1008). Fourteen of the papers are included in Energy Abstracts for Policy Analysis. (EAPA).

Duggan, J.L.; Cloutier, R.J. (eds.)

1977-04-01T23:59:59.000Z

136

Energy Information Administration - Transportation Energy ...  

U.S. Energy Information Administration (EIA)

Survey forms used by the U.S. Department of Energy (DOE) to collect energy information (e.g., gasoline prices, oil and gas reserves, coal production, etc.).

137

FIRST STEPS INTO AN ENERGY EFFECIENT FUTURE  

SciTech Connect

Red Lake Band of Chippewa Indians proposes to develop a more sustainable, affordable and autonomous energy future for Tribal Members. The Band will develop the capacity to conduct energy audits, to implement energy efficiency measures in tribal homes, and to build more energy efficient housing. This will be done by providing direct classroom and on the job training for Tribal members to conduct the energy audits and the installation of insulation.

BARRETT, JANE L.

2009-04-02T23:59:59.000Z

138

Building a Sustainable Energy Future  

E-Print Network (OSTI)

Board provides oversight for, and establishes the policies of, NSF within the framework of applicable national policies set forth by the President and the Congress. In this capacity, the Board identifies issues that are critical to NSF’s future, approves NSF’s strategic budget directions, approves annual budget submissions to the Office of Management and Budget, approves new programs and major awards, analyzes NSF’s budget to ensure progress and consistency along the strategic direction set for NSF, and ensures balance between initiatives and core programs. The Board also serves as an independent policy advisory body to the President

Barry C. Barish; Maxine Linde; Professor Physics; Emeritus Director; Camilla P. Benbow; Rodes Hart; Dean Education; Human Development

2009-01-01T23:59:59.000Z

139

Energy strategy for the future | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip to main content ENERGY STAR logo Skip directly to page content Facebook Twitter YouTube Our Blog Search Search Energy Efficient Products Energy Efficient Products ENERGY STAR...

140

Future of Inertial Fusion Energy  

Science Conference Proceedings (OSTI)

In the past 50 years, fusion R&D programs have made enormous technical progress. Projected billion-dollar scale research facilities are designed to approach net energy production. In this century, scientific and engineering progress must continue until the economics of fusion power plants improves sufficiently to win large scale private funding in competition with fission and non-nuclear energy systems. This economic advantage must be sustained: trillion dollar investments will be required to build enough fusion power plants to generate ten percent of the world's energy. For Inertial Fusion Energy, multi-billion dollar driver costs must be reduced by up to an order of magnitude, to a small fraction of the total cost of the power plant. Major cost reductions could be achieved via substantial improvements in target performance-both higher gain and reduced ignition energy. Large target performance improvements may be feasible through a combination of design innovations, e.g., ''fast ignition,'' propagation down density gradients, and compression of fusion fuel with a combination of driver and chemical energy. The assumptions that limit projected performance of fusion targets should be carefully examined. The National Ignition Facility will enable development and testing of revolutionary targets designed to make possible economically competitive fusion power plants.

Nuckolls, J H; Wood, L L

2002-09-04T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

energy use. China’s Sustainable Energy Future Summary next31 -ii- China’s Sustainable Energy Future Executive Summarystudy, entitled China’s Sustainable Energy Future: Scenarios

2004-01-01T23:59:59.000Z

142

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

.eia.doe.gov/emeu/aer/contents.html. Wash- ington, DC: U.S. Department of Energy, Energy Information Administration. Mermoud, A. (1996National Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy NREL is operated by Midwest

143

TRANSPORTATION ENERGY DATA BOOK: EDITION 21  

NLE Websites -- All DOE Office Websites (Extended Search)

6 (Edition 21 of ORNL-5198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 21 Stacy C. Davis Oak Ridge National Laboratory October 2001...

144

Energy Efficiency: Transportation and Buildings  

Science Conference Proceedings (OSTI)

We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings

Michael S. Lubell; Burton Richter

2011-01-01T23:59:59.000Z

145

Future Heating | Open Energy Information  

Open Energy Info (EERE)

Heating Heating Jump to: navigation, search Name Future Heating Place London, England, United Kingdom Sector Solar Product Designs and installs solar passive water heating systems. Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

NYMEX Coal Futures - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 NYMEX Coal Futures Near-Month Contract Final Settlement Price 2013 Data as of: December 13, 2013 | Release Date: December 16, 2013 | Next Release Date: December 30, 2013 U.S. coal exports, chiefly Central Appalachian bituminous, make up a significant percentage of the world export market and are a relevant factor in world coal prices. Because coal is a bulk commodity, transportation is an important aspect of its price and availability. In response to dramatic changes in both electric and coal industry practices, the New York Mercantile Exchange (NYMEX) after conferring with coal producers and consumers, sought and received regulatory approval to offer coal futures and options contracts. On July 12, 2001, NYMEX began trading Central Appalachian Coal futures under the QL symbol.

147

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

GoC/World Bank/GEF China Renewable Energy Scale-up Programleading investor in renewable energy, China also surpassedEric, 2011, “Renewable Energy in China. ” Available online:

Zheng, Nina

2012-01-01T23:59:59.000Z

148

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

technology in China. ” Energy 35: 4445-4450. Xinhua News,photovoltaic market in China. ” Energy Policy 39 (4): 2204-and X. Zhang, 2010, “Nuclear energy development in China: A

Zheng, Nina

2012-01-01T23:59:59.000Z

149

Future of Energy SecurityFuture of Energy Security Rajan Gupta  

E-Print Network (OSTI)

Future of Energy SecurityFuture of Energy Security Rajan Gupta Theoretical Division Los Alamos the darkness #12;A mind-boggling global infrastructure (~$15 trillion) provides energy/mobility to ~3.5 billion Hydro Nuclear #12;Fossil fuels and Environment In the 20th century we started to act on pollution

150

THE FUTURE OF GEOTHERMAL ENERGY  

DOE Green Energy (OSTI)

Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

J. L. Renner

2006-11-01T23:59:59.000Z

151

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance: ¡ TransmissionExpansionandRenewableEnergy Zone Planning ¡ IncreasingUseofExistingGrid. Wind Resource Assessment

152

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future 2008 SUSTAINABILITY REPORT and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. #12;1 NATIONAL RENEWABLE ENERGY LABORATORY The National Renewable Energy Laboratory (NREL) is the only federal laboratory dedicated

153

Driving Home to a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future Driving Home to a Clean Energy Future June 7, 2011 - 10:57am Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy Working here at the Department of Energy, I hear a lot about the latest efforts to design and build vehicles for a more energy-efficient future. The clean energy innovations in vehicle technologies that DOE and its partners are advancing will help American families save money at the pump-or even allow them to quit the gas pump altogether. Today, I want to highlight a few of the recent developments that will encourage drivers to be smarter consumers, help industry leaders make the cars and trucks we drive more energy efficient, and allow us to spend less of our hard-earned

154

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

energy through ground source heat pumps and conventionalrapid expansion of ground source heat pump installation from

Zheng, Nina

2012-01-01T23:59:59.000Z

155

U. S. Fusion Energy Future  

SciTech Connect

Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

2000-10-12T23:59:59.000Z

156

Future Communications Needs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs Future Communications Needs More Documents & Publications...

157

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

158

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Future of Biofuels The Future of Biofuels The Future of Biofuels Addthis Description Secretary Chu discusses why feedstock grasses such as miscanthus could be the future of biofuels. Speakers Secretary Steven Chu Duration 1:46 Topic Biofuels Bioenergy Credit Energy Department Video SECRETARY STEVEN CHU: This is a photograph of a perennial grass called miscanthus. It was grown without irrigation, without fertilizer. And in the autumn, you just shave it off. You use that to convert it to ethanol. The amount of ethanol in this particular plot of land outside the University of Illinois produces 15 times more ethanol than a similar plot of land if you grew corn, and the energy inputs are far less. So we need to develop methods in order to use these grassy, woody substances and also agricultural waste - wheat straw, rice straw, corn

159

A First Peek at Our Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A First Peek at Our Energy Future A First Peek at Our Energy Future A First Peek at Our Energy Future January 23, 2012 - 6:40pm Addthis Source: U.S. Energy Information Administration Source: U.S. Energy Information Administration Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this mean for me? EIA predicts a decline in U.S. reliance on imported oil, declining to 36% by 2035. On Monday, the Energy Information Administration (EIA) issued the Annual Energy Outlook 2012 Early Release. This preview report provides updated projections for U.S. energy markets through 2035, and is fascinating reading for anyone who is interested in the future of the U.S. energy economy. You can find the report's key findings here, and the complete report is available here.

160

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Global Sustainable Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Global Sustainable Energy Future A Global Sustainable Energy Future A Global Sustainable Energy Future April 19, 2013 - 10:56am Addthis World energy leaders at the ribbon cutting for the CEM Innovation Showcase Pavilion, from L to R: Dr. Farooq Abdullah, Indian Minister of New & Renewable Energy; South African Energy Minister Dipuo Peters; U.S. Energy Secretary Steven Chu; Deputy Chairman of Indian Planning Commission Montek Singh Ahluwalia. World energy leaders at the ribbon cutting for the CEM Innovation Showcase Pavilion, from L to R: Dr. Farooq Abdullah, Indian Minister of New & Renewable Energy; South African Energy Minister Dipuo Peters; U.S. Energy Secretary Steven Chu; Deputy Chairman of Indian Planning Commission Montek Singh Ahluwalia. David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for

162

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

energy technologies through 2030, particularly for solar, wind, biomass and nuclear power, China’s electricity generation mix

Zheng, Nina

2012-01-01T23:59:59.000Z

163

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

renewable energy such as solar and wind, policy support forWind Energy Development In spite of the recent boom of China’s wind industry following various supporting policiesWind Energy Development . 27 3.5.1 Grid Connection and Integration Challenges .. 28 3.5.2 Technical Challenges to Wind Development 28 3.5.3 Policy

Zheng, Nina

2012-01-01T23:59:59.000Z

164

Multi-building microgrids for a distributed energy future in...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-building microgrids for a distributed energy future in Portugal Title Multi-building microgrids for a distributed energy future in Portugal Publication Type Conference...

165

Current and future industrial energy service characterizations  

DOE Green Energy (OSTI)

Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

166

Scenarios for a Clean Energy Future AEO Annual Energy Outlook  

E-Print Network (OSTI)

. Department of Energy DOT U. S. Department of Transportation EERE Office of Energy Efficiency and Renewable Energy EIA Energy Information Administration EPA U.S. Environmental Protection Agency EPACT Energy Policy carbon dioxide CRADA cooperative research and development agreement CT combustion turbine DOE U.S

167

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

National Renewable Energy Laboratory Innovation for Our Energy Future Strengthening U.S. Leadership: NREL/TP-6A0-44261 NREL is a national laboratory of the U. S. Department of Energy, Office of Energy Strengthening U.S. Leadership NREL/TP-6A0-44261 of International Clean Energy December 2008 Cooperation

168

AgFuture Energy LLC AFE | Open Energy Information  

Open Energy Info (EERE)

a Pennsylvania-based advisory firm to commercialise energy research underway at the schools. References AgFuture Energy LLC (AFE)1 LinkedIn Connections CrunchBase Profile No...

169

Alternative Energy Development and China's Energy Future  

SciTech Connect

In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis used to evaluate the energy and emission impact of two pathways of alternative energy development. The results show that China can only meets its 2015 and 2020 targets for non-fossil penetration if it successfully achieves all of its capacity targets for 2020 with continued expansion through 2030. To achieve this level of alternative generation, significant amounts of raw materials including 235 Mt of concrete, 54 Mt of steel, 5 Mt of copper along with 3 billion tons of water and 64 thousand square kilometers of land are needed. China’s alternative energy supply will likely have relatively high average energy output to fossil fuel input ratio of 42 declining to 26 over time, but this ratio is largely skewed by nuclear and hydropower capacity. With successful alternative energy development, 32% of China’s electricity and 21% of its total primary energy will be supplied by alternative energy by 2030. Compared to the counterfactual baseline in which alternative energy development stumbles and China does not meet its capacity targets until 2030, alternative energy development can displace 175 Mtce of coal inputs per year and 2080 Mtce cumulatively from power generation by 2030. In carbon terms, this translates into 5520 Mt of displaced CO{sub 2} emissions over the twenty year period, with more than half coming from expanded nuclear and wind power generation. These results illustrate the critical role that alternative energy development can play alongside energy efficiency in reducing China’s energy-related carbon emissions.

Zheng, Nina; Fridley, David

2011-06-15T23:59:59.000Z

170

Ris Energy Report 4 Supply technologies in the future energy system 10 Supply technologies in the future energy system  

E-Print Network (OSTI)

Risø Energy Report 4 Supply technologies in the future energy system 10 Supply technologies of local and central production and close coupling between supply and end-use. Wind Global wind energy: Energy supply technologies #12;Risø Energy Report 4 Supply technologies in the future energy system4 used

171

Driving it home: choosing the right path for fueling North America's transportation future  

Science Conference Proceedings (OSTI)

North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

2007-06-15T23:59:59.000Z

172

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

173

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

of thermosiphon solar water heaters. ” Solar Energy 83: 39-2011e, “Shoddy solar water heaters threaten reputation. ”54 Outlook of Solar Water Heaters in the Residential

Zheng, Nina

2012-01-01T23:59:59.000Z

174

Alternative Energy Development and China's Energy Future  

E-Print Network (OSTI)

and cost- sharing arrangement mandated in the Renewable Energyenergy cost and greenhouse gas emission by plant in Guangxi." Renewable andrenewable energy utilization. The extremely high upfront investment costs

Zheng, Nina

2012-01-01T23:59:59.000Z

175

Critical Materials for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese and European Union officials, along with a number of industry stakeholders, met for a "Trilateral Conference on Critical Materials for a Clean Energy Future." I had the opportunity to give a keynote address and discuss the role of critical materials in clean energy technologies with a wide range of experts.

176

Critical Materials for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese and European Union officials, along with a number of industry stakeholders, met for a "Trilateral Conference on Critical Materials for a Clean Energy Future." I had the opportunity to give a keynote address and discuss the role of critical materials in clean energy technologies with a wide range of experts.

177

Transportation Electrification Load Development For A Renewable Future Analysis: Preprint  

DOE Green Energy (OSTI)

The transition to electricity as a transportation fuel will create a new load for electricity generation. A set of regional hourly load profiles for electrified vehicles was developed for the 2010 to 2050 timeframe. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market saturation scenarios of 30% and 50% of sales of PEVs consuming on average approx. 6 kWh per day were considered. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across four daily time slices under optimal control from the utility?s perspective. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios.

Markel, T.; Mai, T.; Kintner-Meyer, M.

2010-12-01T23:59:59.000Z

178

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

179

Winning the Biofuel Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Future Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a research team at our BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels: using a microbe to convert plant matter directly into isobutanol. Isobutanol can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This is part of a broad portfolio of work the Department is doing to reduce America's dependence on foreign oil and create new economic opportunities for rural America. This announcement is yet another sign of the rapid progress we are making in developing the next generation of biofuels that can help reduce our oil

180

Ris Energy Report 7 Future low carbon energy systems  

E-Print Network (OSTI)

Risø Energy Report 7 Future low carbon energy systems Reprint of summary and recommendations Risø-R-1651(EN) October 2008 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 7 Preface This Risø Energy Report, the seventh of a series that began in 2002, takes as its point

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Electrofuels: Versatile Transportation Energy Solutions  

Science Conference Proceedings (OSTI)

Electrofuels Project: ARPA-E’s Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

None

2010-07-01T23:59:59.000Z

182

Brainstorming Apps for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brainstorming Apps for a Clean Energy Future Brainstorming Apps for a Clean Energy Future Brainstorming Apps for a Clean Energy Future July 20, 2012 - 1:03pm Addthis Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Nick Sinai Senior Advisor to the U.S. Chief Technology Officer, White House Office of Science and Technology Policy Ian Kalin Director of the Energy Data Initiative How can I participate? You can contribute ideas for new products, applications, features, and services that leverage open data by e-mailing DataInnovation@hq.doe.gov. Building off the recent launch of the Energy Data Initiative, fifty technologists, entrepreneurs, and investors joined staff from the White House, Department of Energy, and the Environmental Protection Agency to

183

Essays on Urban Transportation and Transportation Energy Policy  

E-Print Network (OSTI)

E?ects of Transportation Energy policy on Tra?c Crashes .of international data. Energy Policy, 33(17), 2183–2190. O?e?ciency standards. Energy Policy, 33(3), 407–419. Blincoe,

Kim, Chun Kon

2008-01-01T23:59:59.000Z

184

Transportation Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Transportation Energy Data Book Transportation Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Energy Data Book Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Other, Transportation Topics: Potentials & Scenarios, Technology characterizations Resource Type: Dataset Website: cta.ornl.gov/data/ Country: United States Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Transportation Energy Futures (TEF) Data and Sources  

NLE Websites -- All DOE Office Websites (Extended Search)

search search keywordsclear search show bibliography show instructions ^(sprawl|density|population density|census|ppsm|metro area|single-family|weighted density|population center|populations?|mix|american housing survey|schools?|population-serving|density gradient|metropolitan|msas?|psas?|urban|blocks?)$ ^(co2|emissions?|rates?|transient|smooth|driving|gallons per mile|g/mile|average speed|speeds?|moves|miles per gallon|mpg)$ ^(vmt|vehicle miles traveled|census tract|census|ppsm|persons per square mile|density|dwelling units?|units?|2005|2035|cambridge|residential land)$ ^(vkt|vehicle-kilometers|per capita|africa|latin america|asia|canada|oceania|europe|middle east|u.s.|united states|los angeles|san francisco|australia|johannesburg|seoul|taipei|density|persons per hectare)$

186

OpenEI - Transportation Energy Futures  

Open Energy Info (EERE)

http:www.eia.govforecastsaeoindex.cfm
...

187

Isospin Transport at Fermi Energies  

E-Print Network (OSTI)

In this paper we investigate isospin transport mechanisms in semi-peripheral collisions at Fermi energies. The effects of the formation of a low density region (neck) between the two reaction partners and of pre-equilibrium emission on the dynamics of isospin equilibration are carefully analyzed. We clearly identify two main contributions to the isospin transport: isospin diffusion due to the $N/Z$ ratio and isospin drift due to the density gradients. Both effects are sensitive to the symmetry part of the nuclear Equation of State (EOS), in particular to the value and slope around saturation density.

V. Baran; M. Colonna; M. Di Toro; M. Zielinska-Pfabe; H. H. Wolter

2005-06-28T23:59:59.000Z

188

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

189

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

190

World energy: Building a sustainable future  

SciTech Connect

As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

Schipper, L.; Meyers, S.

1992-04-01T23:59:59.000Z

191

GRADUATE STUDENT RESEARCH PAPER COMPETITION Addressing the Future of Texas Transportation  

E-Print Network (OSTI)

GRADUATE STUDENT RESEARCH PAPER COMPETITION Addressing the Future of Texas Transportation The Texas or sustain the Texas transportation system in the near- and long-term future. Research topics are not limited A&M Transportation Institute (TTI) Strategic Solutions Center is sponsoring a graduate

192

Sitraer 7 (2008) LXIV-LXXIV TECHNOLOGY ROADMAP FOR THE FUTURE AIR TRANSPORT SYSTEM  

E-Print Network (OSTI)

Sitraer 7 (2008) LXIV- LXXIV LXIV TECHNOLOGY ROADMAP FOR THE FUTURE AIR TRANSPORT SYSTEM BEING and the operation of aircraft within a future air transportation system achieving these objectives. The conclusion Universität Berlin Department of Aeronautics and Astronautics Chair of Flight Guidance and Air Transportation

Berlin,Technische Universität

193

Rail transport. trends in energy efficiency  

Science Conference Proceedings (OSTI)

The increasing cost and insecure future supply of diesel fuel have led the U.S. railroad industry to continuously improve on its already efficient use of energy. Among such improvements that are planned or in progress are a fuel-efficient version of a mainline engine, which should save 13,200 gal/yr of fuel; and lightweight coal cars and freight-car trucks, which offer fuel-saving opportunities. The use of synthetic fuels such as methanol-from-coal or all-electric locomotive on a broad scale is unlikely within the next 20 yr, but an increased use of synthetic fuels in other large fuel-consuming transport modes, notably cars, would ease the rail industry's future diesel fuel supply problems. Other fuel-saving factors to consider, such as proper train-operating procedures and the use of the best routes; and the new design of rail cars are also discussed.

Eldridge, C.C.; Van Gorp, P.H.

1980-06-01T23:59:59.000Z

194

Transportation fuels and engines for optimum energy utilization: An assessment of energy consumption from resources through end use: Final report, Volume 1, August 1985 for the project, Technical assessment of future engines and alternative fuels  

DOE Green Energy (OSTI)

This study was initiated to investigate the potential for improving the resource utilization efficiency in the manufacture and end-use of fuels for transportation. While emphasis is placed on the development of fuels from coal and oil shale and on the engine technologies most suitable for those fuels, petroleum-derived fuels are considered as well. A necessary part of this study was to develop information about the energy efficiency of various steps of fuel processing, both with synthetic fuels and petroleum. The configurations of synthetic fuel processes and petroleum refineries are, of course, seemingly endless in number, so, in order to keep the study at a manageable and affordable scope, only a very limited number of synthetic fuel processes were investigated in detail and only major upgrading process operations were included.

Thomas, R.L.; Cornell, J.J.

1985-08-01T23:59:59.000Z

195

Status and Future of TRANSCOM | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Status Upcoming Changes Glimpse at Future Options DOE Commitments Status and Future of TRANSCOM More Documents & Publications Department of Energy Office of Science...

196

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

on Transportation, Energy and Policy convened in 1988. Oilon Transportation, Energy and Policy has been held at theon Transportation, Energy and Policy in July 2009 was the

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

197

Nanocomposites for Energy Transport, Harvesting and Storage  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Nanocomposites: Nanocomposites for Energy Transport, Harvesting and Storage Sponsored by: The Minerals, Metals and Materials Society, ...

198

Coal and nuclear power: Illinois' energy future  

SciTech Connect

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

Not Available

1982-01-01T23:59:59.000Z

199

Energy, Transportation Ministers from Asia-Pacific Nations Pledge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific...

200

Thermal Transport in Nanomaterials for Energy Applications  

Science Conference Proceedings (OSTI)

Symposium, Energy Nanomaterials. Presentation Title, Thermal Transport in Nanomaterials for Energy Applications. Author(s), Xinwei Wang. On-Site Speaker  ...

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Argonne OutLoud: "The Future of Transportation" | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

By - Any - Energy -Energy efficiency --Vehicles ---Automotive engineering ---Hybrid & electric vehicles -Energy sources -Energy usage --Energy storage ---Batteries --Smart Grid...

202

Integrated Graduate Education & Research Traineeships (IGERT): Transportation Technology & Policy Final Grant Report  

E-Print Network (OSTI)

who spoke on future transportation goals; John Wallace,of a hydrogen transportation future, and to engage theEnergy Fueling our Transportation Future Question and Answer

Mokhtarian, Patricia L; Tolentino, Joan S.

2005-01-01T23:59:59.000Z

203

Integrated Graduate Education & Research Traineeships: Transportation Technology & Policy Final Grant Report  

E-Print Network (OSTI)

who spoke on future transportation goals; John Wallace,of a hydrogen transportation future, and to engage theEnergy Fueling our Transportation Future Question and Answer

Mokhtarian, Patricia L; Tolentino, Joan

2005-01-01T23:59:59.000Z

204

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

205

Transportation Analysis | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

206

The Geography of Transport Systems-Maritime Transportation | Open Energy  

Open Energy Info (EERE)

The Geography of Transport Systems-Maritime Transportation The Geography of Transport Systems-Maritime Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Geography of Transport Systems-Maritime Transportation Agency/Company /Organization: Hofstra University Sector: Energy Focus Area: Transportation Topics: Technology characterizations Resource Type: Publications, Technical report Website: people.hofstra.edu/geotrans/eng/ch3en/conc3en/ch3c4en.html Cost: Free Language: English References: Maritime Transportation[1] "Maritime transportation, similar to land and air modes, operates on its own space, which is at the same time geographical by its physical attributes, strategic by its control and commercial by its usage. While geographical considerations tend to be constant in time, strategic and

207

Nuclear Energy - Hydrogen Production - Fuel Cell: A Road Towards Future China's Sustainable Energy Strategy  

Science Conference Proceedings (OSTI)

Sustainable development of Chinese economy in 21. century will mainly rely on self-supply of clean energy with indigenous natural resources. The burden of current coal-dominant energy mix and the environmental stress due to energy consumptions has led nuclear power to be an indispensable choice for further expanding electricity generation capacity in China and for reducing greenhouse effect gases emission. The application of nuclear energy in producing substitutive fuels for road transportation vehicles will also be of importance in future China's sustainable energy strategy. This paper illustrates the current status of China's energy supply and the energy demand required for establishing a harmonic and prosperous society in China. In fact China's energy market faces following three major challenges, namely (1) gaps between energy supply and demand; (2) low efficiency in energy utilization, and (3) severe environmental pollution. This study emphasizes that China should implement sustainable energy development policy and pay great attention to the construction of energy saving recycle economy. Based on current forecast, the nuclear energy development in China will encounter a high-speed track. The demand for crude oil will reach 400-450 million tons in 2020 in which Chinese indigenous production will remain 180 million tons. The increase of the expected crude oil will be about 150 million tons on the basis of 117 million tons of imported oil in 2004 with the time span of 15 years. This demand increase of crude oil certainly will influence China's energy supply security and to find the substitution will be a big challenge to Chinese energy industry. This study illustrates an analysis of the market demands to future hydrogen economy of China. Based on current status of technology development of HTGR in China, this study describes a road of hydrogen production with nuclear energy. The possible technology choices in relation to a number of types of nuclear reactors are compared and assessed. The analysis shows that only high temperature gas cooled reactor (HTGR) and sodium fast breed reactor might be available in China in 2020 for hydrogen production. Further development of very high temperature gas cooled reactor (VHTR) and gas-cooled fast reactor (GCFR) is necessary to ensure China's future capability of hydrogen production with nuclear energy as the primary energy. It is obvious that hydrogen production with high efficient nuclear energy will be a suitable strategic technology road, through which future clean vehicles burning hydrogen fuel cells will become dominant in future Chinese transportation industry and will play sound role in ensuring future energy security of China and the sustainable prosperity of Chinese people. (author)

Zhiwei Zhou [Tsinghua University, Beijing, 100084 (China)

2006-07-01T23:59:59.000Z

208

Investing in an Energy Efficient Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investing in an Energy Efficient Future Investing in an Energy Efficient Future Investing in an Energy Efficient Future The Building Technologies Office (BTO) budget advances the development and adoption of cost-effective, real-world technologies and strategies to improve the energy efficiency, quality, and comfort of residential and commercial buildings. The chart below highlights the budget allocated to each major BTO initiative by fiscal year. Bar graph depicting the annual budget allocated to BTP from FY 2009 to FY 2012. Budget is approximately $140 million in FY 2009, $219 million in FY2010, $207 million in FY 2011, and $219 million in FY 2012. Program Budget Requests FY13 Building Technologies Office Congressional Budget Request FY12 EERE Congressional Budget Request FY11 EERE Congressional Budget Request

209

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

210

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 4:31pm Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

211

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in the West to

212

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 11:31am Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

213

Armstrong Teasdale Future Energy Group | Open Energy Information  

Open Energy Info (EERE)

Teasdale Future Energy Group Teasdale Future Energy Group Jump to: navigation, search Logo: Armstrong Teasdale Future Energy Group Name Armstrong Teasdale Future Energy Group Address 7700 Forsyth Boulevard, Suite 1800 Place St. Louis, Missouri Zip 63105 Sector Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Renewable energy, Services, Solar, Vehicles, Wind energy Product Legal Services Year founded 1901 Number of employees 201-500 Phone number 314.621.5070 Website http://www.armstrongteasdale.c Coordinates 38.649567°, -90.334562° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.649567,"lon":-90.334562,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ?  

E-Print Network (OSTI)

J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ? Dr. Jef ­ Koninklijke Militaire School Kolloquium Universität Bochum 19 November 2012 #12;J.Ongena Our Energy Future Bochum, 18 November 2012 Why is more energy needed in the world ? Q: Why do we need to produce every year

Gerwert, Klaus

215

Securing America's Future Energy April 8, 2011 | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

America's Future Energy an e-mail with attachments of a New York Times article on oil prices. Securing America's Future Energy April 8, 2011 More Documents & Publications Response...

216

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

217

The Transportation Energy Data Book (TEDB)  

E-Print Network (OSTI)

Ridge National Laboratory for the U.S. Department of Energy's Office of Energy Efficiency and Renewable: cta.ornl.gov Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DepartmentThe Transportation Energy Data Book (TEDB) The Transportation Energy Data Book (TEDB

218

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B.B. Blevins Executive Director DISCLAIMER This report was prepared by a California has developed longterm forecasts of transportation energy demand as well as projected ranges

219

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Transportation and Air Quality Transportation Energy Policy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Appliance Energy...

220

Property:FuturePlans | Open Energy Information  

Open Energy Info (EERE)

FuturePlans FuturePlans Jump to: navigation, search Property Name FuturePlans Property Type Text Subproperties This property has the following 3 subproperties: C Coso Geothermal Area R Raft River Geothermal Area S Salt Wells Geothermal Area Pages using the property "FuturePlans" Showing 3 pages using this property. B Beowawe Hot Springs Geothermal Area + With the award of the $2 million USDOE ARRA grant and the industry match of $4 million, the 1.5 MW binary bottoming-cycle plant is on-line. Once the plant is fully operational it will provide nonproprietary data to the National Geothermal Data System (NGDS) and the Department of Energy Geothermal Technologies Program (DOE GTP) for a minimum of two years. C Chena Geothermal Area + In 2011, Chena Hot Springs was awarded a $900,000 grant from the Fairbanks North Star Borough (FNSB) for the development to help locate and develop high-temperature resources in the Borough. The total cost of the project that is not covered by the grant is $1.25 Million. (Frey, 2011) In the mid 2000's geochemical research indicated that there may be resources in the 200°F range. fP If such resources do exist, the plan will be to expand the capacity of Chena Power. This would allow for the expansion of the resort, and the potential to finally tie Chena into the local power grid. Tying into the grid would provide clean energy to Golden Valley Electric Association and FNSB residents. Chena currently has the required equipment for a 250 kW addition when additional heat is able to be recovered. (Frey, 2011) To help gain public support for geothermal power that utilizes low temperature resources, Chena Power has built a mobile 0.28 MW ORC (organic rankine cycle) system. Chena built the mobile ORC system with the help of United Technologies (UTC) to be an entirely mobile and self contained unit by mounting the ORC system on two 45 foot step deck trailers. The two trailers are placed side by side when operational. Chena Power is currently continuing to deploy the mobile unit state to state to extract energy from the waste water that is rejected from an oil well.

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Future Technologies to Enhance Geothermal Energy Recovery  

DOE Green Energy (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

222

The impacts of changing transport and precipitation on pollutant1 distributions in a future climate2  

E-Print Network (OSTI)

1 The impacts of changing transport and precipitation on pollutant1 distributions in a future pollutant transport and wet removal to a warming climate, we examine a13 simple carbon monoxide (CO with the GFDL chemistry-climate model (AM3) for15 present (1981-2000) and future (2081-2100) climates. In 2081

Chen, Gang

223

The impacts of changing transport and precipitation on pollutant distributions in a future climate  

E-Print Network (OSTI)

The impacts of changing transport and precipitation on pollutant distributions in a future climate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon­2000) and future (2081­2100) climates. In 2081­2100, projected reductions in lowertropospheric ventilation and wet

Chen, Gang

224

Getting to Know Nuclear Energy: The Past, Present & Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Know Nuclear Energy: The Past, Present & Future Argonne National Laboratory was founded on the peaceful uses of nuclear energy and has pioneered many of the technologies in use...

225

Powering the Future: New Energy Opportunities for Materials ...  

Science Conference Proceedings (OSTI)

Oct 26, 2009 ... Achieving a secure and sustainable energy future will require full utilization of ... by Steven Koonin, "Addressing America's Energy Challenges"

226

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

Sectoral Trends and Future Outlook Nan Zhou, Michael A.2001, International Energy Outlook 2001 , Report No. DOE/The International Energy Outlook 2006 (IEO2006) , Washington

2008-01-01T23:59:59.000Z

227

EIA's Testimony on The Nation's Energy Future: Role of Renewable Energy and Energy Efficiency  

Reports and Publications (EIA)

Statement of Mary J. Hutzler, Department of Energy, Energy Information Administration Before the House Committee on Science United States House of Representatives Hearing on The Nation's Energy Future: Role of Renewable Energy And Energy Efficiency

Information Center

2001-02-01T23:59:59.000Z

228

Energy Transport in the Vaidya System  

E-Print Network (OSTI)

Energy transport mechanisms can be generated by imposing relations between null tetrad Ricci components. Several kinds of mass and density transport generated by these relations are studied for the generalized Vaidya system.

J. P. Krisch; E. N. Glass

2005-03-21T23:59:59.000Z

229

Future World Energy Constraints and the Direction for Solutions  

SciTech Connect

This paper was originally written in response to the concern that rising levels of CO2 in the atmosphere caused by burning of fossil fuels will ultimately contribute to global warming. Now we are beginning to see evidence of coming problems in the supply of fuels for transportation. This paper describes the benefits of adequate energy supply and the problems of future energy supply. Partial solutions are suggested for immediate application as well as longer term solutions to address both of these concerns. To evaluate the situation and solutions we must understand: (1) how much primary energy is currently used world-wide and might be needed in 2100, (2) how important energy is to the welfare of people, (3) the forms of energy sources and end uses and (4) where new sources may come from. The major portion of world primary energy demand is provided by fossil fuels. This portion dropped from 93% in 1970 to 85% in 1995, mainly because of the increased use of nuclear energy. How ever, since the mid-1990s fossil fuels have maintained their 85% share of world energy supply. The importance of the relationship between per capita energy consumption and per capita income for the world is discussed. The limits of conservation, energy efficiency and renewable energies are examined. The contribution of renewable energies is compared to 41 different views of world energy demand in 2100. Without new technology for large scale storage of intermittent electricity from wind and solar the contribution of renewable energies is not likely to grow significantly beyond the current level of 7-8%. The paper offers conclusions and partial solutions that we can work on immediately. Examination of the forms of energy supplied by the sun, which is powered by nuclear fusion, and the way in which nuclear fission currently supplies energy to the world sets the research framework for longer term solutions. This framework points towards two possible longer term complementary res earch projects which take advantage of the concentrated energy and portability of nuclear fission: (1) to find ways of extending nuclear fission to smaller transportation and heating applications and (2) to develop nuclear fusion for manufacturing fissionable materials.

Lightfoot, H.D.

2004-09-12T23:59:59.000Z

230

WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY  

E-Print Network (OSTI)

E. (2011). The Cost of Wind Energy. Spanish Wind EnergyTERM TRENDS IN THE COST OF WIND ENERGY by as much as 270%LONG-TERM TRENDS IN THE COST OF WIND ENERGY In the future,

Wiser, Ryan

2013-01-01T23:59:59.000Z

231

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy...

232

Tips: Transportation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Tips: Transportation July 5, 2012 - 5:19pm Addthis Tips: Transportation In 2010, Americans traveled a total of 3 trillion miles -- the equivalent of 6.5 million...

233

Search for a bridge to the energy future: Proceedings  

DOE Green Energy (OSTI)

The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

Saluja, S.S. (ed.)

1986-01-01T23:59:59.000Z

234

Sector Transportation | Open Energy Information  

Open Energy Info (EERE)

Results 1- 20 Next (20 | 50 | 100 | 250 | 500) 2011 APTA Public Transportation Fact Book + A Municipal Official's Guide to Diesel Idling Reduction + APEC-Alternative Transport...

235

The role of plasma evolution and photon transport in optimizing future advanced lithography sources  

E-Print Network (OSTI)

The role of plasma evolution and photon transport in optimizing future advanced lithography sources and plasma, ioniza- tion, plasma radiation, and details of photon transport in these media. We studied, photons generation, and their transport and distribution. One of the most important processes

Harilal, S. S.

236

Transportation Energy Model of the World Energy Projection System ...  

U.S. Energy Information Administration (EIA)

The WEPS Transportation Energy Model is a structural accounting model for road, rail, air, domestic shipping, international shipping, and pipeline energy use.

237

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

238

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

239

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not...

240

Estimated United States Transportation Energy Use 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Perspectives: Industrial and transportation sectors ...  

U.S. Energy Information Administration (EIA)

Since 2008, energy use in the transportation, residential, and commercial sectors stayed relatively constant or fell slightly. Industrial consumption grew in 2010 and ...

242

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

243

Renewable: A key component of our global energy future  

DOE Green Energy (OSTI)

Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

Hartley, D.

1995-12-31T23:59:59.000Z

244

Department of Energy Office of Science Transportation Overview...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Overview More Documents & Publications Applying Risk Communication to the Transportation of Radioactive Materials Status and Future of TRANSCOM Waste Isolation...

245

Noncommercial Trading in the Energy Futures Market  

Reports and Publications (EIA)

How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

Information Center

1996-05-01T23:59:59.000Z

246

Germany's Future Energy Policy - Potential Scope and Areas of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany's Future Energy Policy - Potential Scope and Areas of Action for Rational Energy Use and Renewable Energies Speaker(s): Ole Langniss Date: June 24, 1996 - 12:00pm Location:...

247

Transportation Energy Data Book, Edition 18  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

248

Transportation Energy Data Book, Edition 19  

SciTech Connect

The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

Davis, S.C.

1999-09-01T23:59:59.000Z

249

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oven Cliff Joining the Obama Administration Energy Matters: Our Energy Independence EcoCAR Challenge: Finish Line EcoCAR Challenge Profile: Virginia Tech Energy 101: Energy...

250

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Second Quarter Clean EnergyClean Transportation Jobs Report 2013 Second Quarter Clean EnergyClean Transportation Jobs Report Enivronmental Entrepreneurs (E2) Clean Energy...

251

Energy Policy Act Transportation Rate Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

ii Energy Information Administration/ Energy Policy Act Transportation Rate Study: Interim Report on Coal Transportation Contacts This report, Energy Policy Act ...

252

Assessment of Future Vehicle Transportation Options and their Impact on the Electric Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Vehicle Transportation Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2010 New Analysis of Alternative Transportation Technologies 3 What's New? * Additional Alternative Transportation Vehicles - Compressed Air Vehicles (CAVs) * Use electricity from the grid to power air compressor that stores compressed air - Natural Gas Vehicles (NGVs) * Connection to grid is in competing demand for fuel * Still an internal combustion engine (ICE) - Hydrogen Vehicles * Use fuel cell technology, no connection to electricity grid 4 General Takeaways * CAVs - Unproven technology - Poor environmental performance - High cost * NGVs - Poor environmental performance - Lack of refueling infrastructure - Cheaper fuel cost than ICEs - No direct impact on electric power grid * Hydrogen - Unproven technology

253

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

transportation.com This white paper is intended to serve asthe results in this white paper, we encourage the reader toare the focus of this white paper but the methodology is

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

254

Transportation Network Modeling in Passenger Transportation  

E-Print Network (OSTI)

. Summary & Future work 2 #12;NETPLAN Energy and Transportation Integration model A modeling frameworkTransportation Network Modeling in NETPLAN Passenger Transportation Venkat Krishnan Eirini;Outline 1. Introduction to NETPLAN 2. Transportation modeling- A review Freight Passenger 3. Developed

Daniels, Thomas E.

255

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

256

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

257

Transport Energy Use and Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

258

Proposed Energy Transport Corridors: West-wide energy corridor programmatic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Transport Corridors: West-wide energy corridor Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the environmental impacts from the proposed action and the range of reasonable alternatives. The proposed action calls for designating more than 6,000 miles of energy transport corridors across the West. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. More Documents & Publications

259

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pledge? Conversation on the Future of the Wind Industry Science Lecture: Talking the Higgs Boson with Dr. Joseph Incandela Bill Gates and Deputy Secretary Poneman Discuss the...

260

Future scientific applications for high-energy lasers  

Science Conference Proceedings (OSTI)

This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

Lee, R.W. [comp.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effective Potential Energy Expression for Membrane Transport  

E-Print Network (OSTI)

All living cells transport molecules and ions across membranes, often against concentration gradients. This active transport requires continual energy expenditure and is clearly a nonequilibrium process for which standard equilibrium thermodynamics is not rigorously applicable. Here we derive a nonequilibrium effective potential that evaluates the per particle transport energy invested by the membrane. A novel method is used whereby a Hamiltonian function is constructed using particle concentrations as generalized coordinates. The associated generalized momenta are simply related to the individual particle energy from which we identify the effective potential. Examples are given and the formalism is compared with the equilibrium Gibb's free energy.

Robert W. Finkel

2007-02-11T23:59:59.000Z

262

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

contract between the California Energy Commission (CEC) andBechtel Fund and the California Energy Commision for theirstudy was funded by the California Energy Commission and the

2011-01-01T23:59:59.000Z

263

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

to solve the whole energy problem with any given electricitychanging solutions to the energy problem. Most funding forelectricity problem with renewable energy creates extremely

2011-01-01T23:59:59.000Z

264

Energy Efficiency -- Chapter 8: Future Directions  

U.S. Energy Information Administration (EIA)

First attempt to define and measure energy efficiency in the United ... of energy efficiency and on the development of energy-intensity indicators that ...

265

EC-LEDS Transport | Open Energy Information  

Open Energy Info (EERE)

EC-LEDS Transport EC-LEDS Transport Jump to: navigation, search Name EC-LEDS Transport Agency/Company /Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Country Global References Transportation Assessment Toolkit[1] "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the growth of greenhouse

266

Secretary Moniz Addresses Conference on the Caribbean's Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Addresses Conference on the Caribbean's Energy Secretary Moniz Addresses Conference on the Caribbean's Energy Future Secretary Moniz Addresses Conference on the Caribbean's Energy Future December 6, 2013 - 2:42pm Addthis Secretary Moniz Addresses Conference on the Caribbean’s Energy Future Secretary Moniz joined Inter-American Development Bank President Luis Alberto Moreno in welcoming a group of Caribbean ministers who convened to discuss the region's energy future, climate change, and the roles of energy efficiency, renewable energy and natural gas. Addthis Related Articles Secretary Chu's Remarks at the 2012 IAEA General Conference -- As Prepared for Delivery Energy Department Invests Over $7 Million to Deploy Tribal Clean Energy Projects Deputy Secretary Daniel Poneman's Remarks to the Washington Institute for

267

Secretary Moniz: Biofuels Important to America's Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington, D.C., Energy Secretary Ernest Moniz spoke about the importance of investing in clean, renewable energy like biofuels to combat the effects of climate change and reduce our dependence on foreign oil. Secretary Moniz highlighted the Energy Department's work to advance biofuels -- from supporting biorefineries to ARPA-E's investment in

268

Secretary Moniz: Biofuels Important to America's Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington, D.C., Energy Secretary Ernest Moniz spoke about the importance of investing in clean, renewable energy like biofuels to combat the effects of climate change and reduce our dependence on foreign oil. Secretary Moniz highlighted the Energy Department's work to advance biofuels -- from supporting biorefineries to ARPA-E's investment in

269

Transportation energy data book: edition 16  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

1996-07-01T23:59:59.000Z

270

Islands and Our Renewable Energy Future (Presentation)  

DOE Green Energy (OSTI)

Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

2012-05-01T23:59:59.000Z

271

System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint  

DOE Green Energy (OSTI)

From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

Duffy, M.; Sandor, D.

2008-06-01T23:59:59.000Z

272

System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint  

SciTech Connect

From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

Duffy, M.; Sandor, D.

2008-06-01T23:59:59.000Z

273

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

274

ONLINE LEARNING Managing energy for a sustainable future  

E-Print Network (OSTI)

ONLINE LEARNING Managing energy for a sustainable future The Energy Resource Management Certificate energy management. Pursuing sustainable energy management strategies can be a powerful tool for achieving energy efficiency, cost savings and risk reduction. Explore the entire range of issues involved

California at Davis, University of

275

Agent-based competitive simulation: exploring future retail energy markets  

Science Conference Proceedings (OSTI)

Future sustainable energy systems will need efficient, clean, low-cost, renewable energy sources, as well as market structures that motivate sustainable behaviors on the part of households and businesses. "Smart grid" components can help consumers manage ...

Carsten Block; John Collins; Wolfgang Ketter

2010-08-01T23:59:59.000Z

276

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

DOE Green Energy (OSTI)

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

277

TRANSPORTATION ENERGY DATA BOOK: EDITION 20  

NLE Websites -- All DOE Office Websites (Extended Search)

59 59 (Edition 20 of ORNL-5 198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 20 Stacy C. Davis Oak Ridge National Laboratory October 2000 Prepared for Office of Transportation Technologies U.S. Department of Energy Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 3783 l-6073 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-OOOR22725 Users of the Transportation Energy Data Book are encouraged to comment on errors, omissions, emphases, and organization of this report to one of the persons listed below. Requests for additional complementary copies of this report, additional data, or information on an existing table should be referred to Ms. Stacy Davis, Oak Ridge National Laboratory.

278

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

in total energy use. China’s Sustainable Energy Future31 -ii- China’s Sustainable Energy Future Executive SummaryC HINA ’ S E NERGY C HALLENGE China has ambitious goals for

2004-01-01T23:59:59.000Z

279

NREL: Energy Analysis - Renewable Electricity Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Electricity Futures Study Renewable Electricity Futures Study RE Futures Visualizations These visualizations are based on RE Futures modeling and represent the transformation of the U.S. electric system to a high renewable system from 2010 to 2050 and the hourly operation and transmission flow of that system in 2050. Transformation of the Electric Sector (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display the transformation of the electric sector in 2010 through 2050 Hourly Operation in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display hourly operation in 2010 through 2050 Power Flow in 2050 (Compare to Baseline Projections) Screen capture of a dynamic map that is animated to display power flow in 2010 through 2050

280

A Shared Path Toward a Sustainable Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shared Path Toward a Sustainable Energy Future Shared Path Toward a Sustainable Energy Future The DOE Office of Indian Energy's approach is, first and foremost, a collaborative one. Led by Director Tracey A. LeBeau (Cheyenne River Sioux), the office works with tribal nations, federal agencies, state governments, nongovernmental organizations, and the private sector to develop the considerable energy resources that exist on Indian lands. To guide the strategic planning and implementation of the department's tribal

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

282

Transportation energy data book: Edition 13  

SciTech Connect

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

283

Transportation energy data book: Edition 12  

SciTech Connect

The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Morris, M.D.

1992-03-01T23:59:59.000Z

284

Transportation energy data book: Edition 13  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

285

Future United States Energy Security Concerns  

E-Print Network (OSTI)

Without energy, the economy can neither function nor grow. However, for at least the next half-century, the U.S. will not have an inexhaustible supply of inexpensive, clean energy. Dependence on energy imports, vulnerability ...

Deutch, John M.

286

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

biomass, geothermal, hydro, and marine energy offshore. Asincluding pumped hydro, compressed air energy storage (Energy System Component Analysis Bin Wind Onshore, shallow offshore tur- bines Concentrated Solar Power (CSP) Solar Photovoltaic (PV) Geothermal Hydro and

2011-01-01T23:59:59.000Z

287

Energy Crossroads: Transportation | Environmental Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide...

288

Strengthening America's Energy Future through Education and Workforce  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strengthening America's Energy Future through Education and Strengthening America's Energy Future through Education and Workforce Development Strengthening America's Energy Future through Education and Workforce Development August 11, 2010 - 10:04am Addthis Dr. Kristina Johnson What does this mean for me? Of the current energy utility workforce, 40-60 percent could be eligible to retire by 2012. A shortage of training and skills is "a leading barrier to renewable energy and energy-efficiency growth." The Department has a record of supporting education and workforce development. To have a strong clean energy revolution we need to have a strong energy workforce. Maintaining our strong energy workforce is a priority motivator in the "Energy Education and Workforce Development Request for Information" (RFI) that was released late last week. Reports like this

289

A method for evaluating transport energy consumption in suburban areas  

Science Conference Proceedings (OSTI)

Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

2012-02-15T23:59:59.000Z

290

Securing America's Clean Energy Future (Brochure)  

SciTech Connect

This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

Not Available

2011-08-01T23:59:59.000Z

291

Securing America's Clean Energy Future (Fact Sheet)  

SciTech Connect

This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

Not Available

2011-08-01T23:59:59.000Z

292

Current Renewable Energy Technologies and Future Projections  

SciTech Connect

The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

Allison, Stephen W [ORNL; Lapsa, Melissa Voss [ORNL; Ward, Christina D [ORNL; Smith, Barton [ORNL; Grubb, Kimberly R [ORNL; Lee, Russell [ORNL

2007-05-01T23:59:59.000Z

293

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

294

Energy & the Industrial Revolution: Past, Present & Future | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy & the Industrial Revolution: Past, Present & Future Energy & the Industrial Revolution: Past, Present & Future Event Sponsor: Director's Special Colloquium Start Date: Nov 22 2013 - 10:00am Building/Room: Building 402/Auditorium Location: Argonne National Laboratory Speaker(s): Arun Majumdar Speaker(s) Title: Google As we work to develop clean, sustainable and innovative approaches to our nation's greatest energy challenges, Argonne researchers are constantly seeking new insights into the future of the global energy economy. The laboratory is pleased to welcome Director's Special Colloquium speaker Arun Majumdar, who will give a presentation on "Energy & the Industrial Revolution: Past, Present & Future." Dr. Majumdar, a recognized leader in energy innovation, drives energy initiatives at Google.org (the company's charitable arm) and advises the

295

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

296

FutureGen Project Launched | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Project Launched FutureGen Project Launched FutureGen Project Launched December 6, 2005 - 4:29pm Addthis Government, Industry Agree to Build Zero-Emissions Power Plant of the Future WASHINGTON, DC -- Secretary of Energy Samuel W. Bodman today announced that the Department of Energy has signed an agreement with the FutureGen Industrial Alliance to build FutureGen, a prototype of the fossil-fueled power plant of the future. The nearly $1 billion government-industry project will produce electricity and hydrogen with zero-emissions, including carbon dioxide, a greenhouse gas. The initiative is a response to President Bush's directive to develop a hydrogen economy by drawing upon the best scientific research to address the issue of global climate change. Today's announcement marks the official

297

Transportation energy data book: Edition 15  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1995-05-01T23:59:59.000Z

298

Energy for Cleaner Transportation Hydro-Quebec  

E-Print Network (OSTI)

Energy for Cleaner Transportation K. Zaghib Hydro-Quebec Varennes, Quebec, Canada J. Prakash a wide range of topics associated with power sources for hybrid electric cars. Major emphasis

Azad, Abdul-Majeed

299

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

300

Is Methanol the Transportation Fuel of the Future?  

E-Print Network (OSTI)

Fuels," SR88-11-02, Sacramento, CA(1988). 35. J. A. Alson,Energy Commission, Sacramento, CA(1982). 14. K. D. Smith, D.DevelopmentReport Sacramento, CA(1986). 19. California

Sperling, Daniel; DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Scenarios for a Clean Energy Future Industry 5.1  

E-Print Network (OSTI)

In this chapter we present scenarios for future industrial energy use, based on different assumptions for U.S. energy policies. We start with a reference scenario which is derived from the AEO99 (U.S. DOE, EIA, 1998a of primary energy, accounting for 37% of the primary energy consumed in the U.S. that year. The industrial

302

Leveraging Renewable Energy in Data Centers: Present and Future  

E-Print Network (OSTI)

Leveraging Renewable Energy in Data Centers: Present and Future Keynote Summary Ricardo Bianchini in powering data centers (at least par- tially) with renewable or "green" sources of energy, such as solar Keywords Renewable energy, energy-aware scheduling, data centers. 1. INTRODUCTION Data centers consume

Bianchini, Ricardo

303

Center for Renewable Energy and Alternative Transportation Technologies (CREATT)  

SciTech Connect

The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

Mackin, Thomas

2012-06-30T23:59:59.000Z

304

Center for Renewable Energy and Alternative Transportation Technologies (CREATT)  

SciTech Connect

The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

Mackin, Thomas

2012-06-30T23:59:59.000Z

305

Resources for the Future | Open Energy Information  

Open Energy Info (EERE)

Future Future Jump to: navigation, search Logo: Resources for the Future Name Resources for the Future Address 1616 P Street NW, Suite 600 Place Washington, DC Zip 20036 Region Northeast - NY NJ CT PA Area Number of employees 11-50 Phone number 202-328-5000 Website http://www.rff.org/Pages/defau Coordinates 38.909151°, -77.03757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.909151,"lon":-77.03757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

Transportation: Environment, energy and the economy  

DOE Green Energy (OSTI)

In the US, the transportation sector consumes over one quarter of the entire energy used, almost in its entirety as petroleum products, and in quantities greater than the total US domestic oil production. The transportation sector is responsible for a significant fraction of all emissions that either prevent US cities from achieving compliance with EPA air quality standards or have serious global change implications. Finally, the GDP (Gross Domestic Product) and employment due to the sector are low and incommensurate with the high fraction of energy that the transportation sector consumes. We examine below this situation in some detail and make recommendations for improvements.

Petrakis, L.

1993-01-11T23:59:59.000Z

307

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

308

Clean energy investments in an uncertain future  

E-Print Network (OSTI)

The energy sector faces a multitude of challenges related to climate change and energy security. These challenges will likely prompt considerable changes in the coming decades, including significant investment and new ...

Harrison, Jessica (Jessica Kit)

2005-01-01T23:59:59.000Z

309

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

of energy storage devices and smart-grid technology. • High-such as energy storage, or smart grid-connected controllableover a larger group. Smart-grid pilot studies and projects

2011-01-01T23:59:59.000Z

310

Energy Use in China: Sectoral Trends and Future Outlook  

SciTech Connect

This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

2007-10-04T23:59:59.000Z

311

Energy Use in China: Sectoral Trends and Future Outlook  

SciTech Connect

This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77 million in2020. * Residential appliance ownership will show signs of saturation inurban households. The increase in residential energy consumption will belargely driven by urbanization, since rural homes will continue to havelow consumption levels. In urban households, the size of appliances willincrease, but its effect will be moderated by efficiency improvements,partially driven by government standards. * Commercial energy increaseswill be driven both by increases in floor space and by increases inpenetration of major end uses such as heating and cooling. Theseincreases will be moderated somewhat, however, by technology changes,such as increased use of heat pumps. * China's Medium- and Long-TermDevelopment plan drafted by the central government and published in 2004calls for a quadrupling of GDP in the period from 2000-2020 with only adoubling in energy consumption during the same period. A bottom-upanalysis with likely efficiency improvements finds that energyconsumption will likely exceed the goal by 26.12 EJ, or 28 percent.Achievements of these goals will there fore require a more aggressivepolicy of encouraging energy efficiency.

Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

2007-10-04T23:59:59.000Z

312

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

ideas for energy storage, including pumped hydro, compressedNatural Gas Storage Combustion turbine Pumped hydro Wave,

2011-01-01T23:59:59.000Z

313

Internships Help Future Energy Leaders Gain Hands-On Experience |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Internships Help Future Energy Leaders Gain Hands-On Experience Internships Help Future Energy Leaders Gain Hands-On Experience Internships Help Future Energy Leaders Gain Hands-On Experience August 23, 2013 - 10:19am Addthis EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Back-To-School Stories: Learn how the Energy Department's Energy 101 Course Framework is helping colleges and universities offer energy-related classes. Interested in working at the National Labs? There's an internship

314

Biomass 2008: Fueling Our Future Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy Samuel Bodman Thank you and good afternoon. It's good to be with you. I want to thank John Mizroch for introducing me, and to congratulate him and all the folks at the Energy Department's biomass office for pulling together what appears to be a very successful event. Our national energy policy centers around one key idea: we must diversify our energy sources, our energy suppliers, and our energy supply routes. President Bush challenged us to move toward diversification at an aggressive rate when he announced his Advanced Energy Initiative or AEI. AEI provides for the development of energy alternatives to fossil fuels

315

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

316

Sustainable Energy Future in China's Building Sector  

E-Print Network (OSTI)

This article investigates the potentials of energy-saving and mitigation of green-house gas (GHG) emission offered by implementation of building energy efficiency policies in China. An overview of existing literature regarding long-term energy demand and CO2 emission forecast scenarios is presented, it is found that the building sector will account for about one third of energy demand in China by 2020 and would have significant environmental implications in terms of GHG and other pollutant gases emission. Energy consumption in buildings could be reduced by 100-300 million tons of oil equivalent (mtoe) in 2030 compared to the business-as-usual (BAU) scenario, which means that 600-700 million metric tons of carbon dioxide (CO2) emissions could be saved by implementing appropriate energy policies within an adapted institutional framework. The main energy saving potentials in buildings can be achieved by improving building's thermal performance and district heating system.

Li, J.

2007-01-01T23:59:59.000Z

317

Vision of the Future Grid | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid The GTT developed a draft vision (below) which describes a future electricity system and lists several key attributes of that system. In its current form, this vision incorporates comments made by stakeholders during meetings organized by the GTT. The vision will continue to evolve and be refined as the GTT engages with the broader stakeholder community. Vision of the Future Grid A seamless, cost-effective electricity system, from generation to end-use, capable of meeting all clean energy demands and capacity requirements, with: Significant scale-up of clean energy (renewables, natural gas, nuclear, clean fossil) Universal access to consumer participation and choice (including

318

Energy Information Administration - Transportation Energy Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply...

319

Storing and transporting energy - Energy Innovation Portal  

Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a ...

320

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Multi-path transportation futures study : vehicle characterization and scenario analyses.  

DOE Green Energy (OSTI)

Projecting the future role of advanced drivetrains and fuels in the light vehicle market is inherently difficult, given the uncertainty (and likely volatility) of future oil prices, inadequate understanding of likely consumer response to new technologies, the relative infancy of several important new technologies with inevitable future changes in their performance and costs, and the importance - and uncertainty - of future government marketplace interventions (e.g., new regulatory standards or vehicle purchase incentives). This Multi-Path Transportation Futures (MP) Study has attempted to improve our understanding of this future role by examining several scenarios of vehicle costs, fuel prices, government subsidies, and other key factors. These are projections, not forecasts, in that they try to answer a series of 'what if' questions without assigning probabilities to most of the basic assumptions.

Plotkin, S. E.; Singh, M. K.; Energy Systems; TA Engineering; ORNL

2009-12-03T23:59:59.000Z

322

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg The Weatherization Training program at Pennsylvania College A New Biofuels Technology Blooms in Iowa Faces of the Recovery Act: 1366 Technologies Home Energy...

323

Environmentally Sound Energy for America's Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of Intergovernmental Affairs Executive Director: Andrew D. Lundquist Contents Taking Stock Energy Challenges Facing the United States Striking Home The Impacts of High...

324

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

associated reductions in cost per kWh. Over time, largerpack costs for BEV sedan as a function of assumed per kWh

Yang, Christopher

2011-01-01T23:59:59.000Z

325

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Gorman, Steve. “As hybrid cars gobble rare metals, shortageHybrid vehicles grow to become the dominant type of new carcar buyers, and offering performance and convenience (including range and refueling) that is equivalent to or better than competing conventional, hybrid and

Yang, Christopher

2011-01-01T23:59:59.000Z

326

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Report UCD-ITS-RR-10-03. NRC. National Research Council.Academies Press. 2008. NRC. National Research Council.on a lifecycle cost basis (NRC 2008, NRC 2010, Bandivdekar

Yang, Christopher

2011-01-01T23:59:59.000Z

327

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

jet (HRJ) fuel and Fischer-Tropsch (FT) fuels, which are “running on hydrogen) Fischer-Tropsch Gallons of Gasoline

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

328

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

charging), and because battery costs will be high for largercost targets are met for battery costs, achieving long rangeproduced vehicles where battery costs are relatively low ($

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

329

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

increasing average battery capacity thus reducing averageOver time, larger capacity battery systems should becomeof battery life revolves around degradation of capacity by

Yang, Christopher

2011-01-01T23:59:59.000Z

330

Transportation Energy Data Book: Edition 29  

SciTech Connect

The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2010-07-01T23:59:59.000Z

331

Transportation Energy Data Book: Edition 32  

SciTech Connect

The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL] [ORNL; Diegel, Susan W [ORNL] [ORNL; Boundy, Robert Gary [ORNL] [ORNL

2013-08-01T23:59:59.000Z

332

Transportation Energy Data Book: Edition 24  

SciTech Connect

The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2005-03-08T23:59:59.000Z

333

Transportation Energy Data Book: Edition 23  

SciTech Connect

The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2003-10-24T23:59:59.000Z

334

Transportation Energy Data Book: Edition 27  

SciTech Connect

The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2008-06-01T23:59:59.000Z

335

Transportation Energy Data Book: Edition 26  

SciTech Connect

The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2007-07-01T23:59:59.000Z

336

Transportation Energy Data Book: Edition 25  

SciTech Connect

The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2006-06-01T23:59:59.000Z

337

Transportation Energy Data Book: Edition 28  

DOE Green Energy (OSTI)

The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2009-06-01T23:59:59.000Z

338

Transportation Energy Data Book: Edition 30  

SciTech Connect

The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2011-07-01T23:59:59.000Z

339

Transportation Energy Data Book: Edition 31  

SciTech Connect

The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2012-08-01T23:59:59.000Z

340

Securing a Clean Energy Future: A Governor's Guide to Clean Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Agencies You are here Home Securing a Clean Energy Future: A Governor's Guide to Clean Power Generation and Energy Efficiency Securing a Clean Energy Future: A Governor's Guide...

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Renewable Hydrogen: Technology Review and Policy Recommendations for State-Level Sustainable Energy Futures  

E-Print Network (OSTI)

for State-Level Sustainable Energy Futures Timothy E. Lipmanfor State-Level Sustainable Energy Futures Timothy E. Lipmana new role for sustainable energy strategies. The

Lipman, Timothy; Edwards, Jennifer Lynn; Brooks, Cameron

2006-01-01T23:59:59.000Z

342

Transportation Energy Data Book: Edition 21  

Science Conference Proceedings (OSTI)

The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2001-09-13T23:59:59.000Z

343

Transportation Energy Data Book: Edition 14  

Science Conference Proceedings (OSTI)

Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1994-05-01T23:59:59.000Z

344

Transportation Energy Data Book (Edition 20)  

SciTech Connect

The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2000-10-09T23:59:59.000Z

345

THE FUTURE OF NUCLEAR ENERGY IN THE UK  

E-Print Network (OSTI)

policy 52 New nuclear stations in the UK 57 The UK nuclear fuel cycle: historic, present and future 63 energy, nuclear research 86 and the fuel cycle The future of waste disposal 88 Public perception failures, can nuclear power stations be built to budget and time? Is public opinion sufficiently resilient

Birmingham, University of

346

Energy Policy Act Transportation Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates Preface This report, ...

347

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

Nuclear Power Gas-fired Hydro Power Coal-fired Ordinarynuclear power, non- China’s Sustainable Energy Future hydro

2004-01-01T23:59:59.000Z

348

China's sustainable energy future: Scenarios of energy and carbon emissions (Summary)  

E-Print Network (OSTI)

availability of supplies of natural gas, China’s Sustainable Energy Future including the West to East Gas Transmission

2004-01-01T23:59:59.000Z

349

BLUEPRINT FOR A SECURE ENERGY FUTURE March 30, 2011  

E-Print Network (OSTI)

Oil and Gas Development and Production Lead the World Towards Safer, Cleaner, and More Secure Energy at the Pump with More Efficient Cars and Trucks Cut Energy Bills with More Efficient Homes and Buildings V to secure our energy future." President Obama, March 30, 2011 Rising prices at the pump affect everybody

Lotko, William

350

Hydro, Solar, Wind The Future of Renewable Energy  

E-Print Network (OSTI)

Hydro, Solar, Wind The Future of Renewable Energy Joseph Flocco David Lath Department of Electrical. Hydropower Water has grown in previous years to become the most widely used form of renewable energy across years to come from Hydropower. It is considered to be a renewable energy source because it uses

Lavaei, Javad

351

Winning the Future with a Responsible Budget | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Winning the Future with a Responsible Budget Winning the Future with a Responsible Budget Winning the Future with a Responsible Budget February 11, 2011 - 2:24pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy As part of President Obama's commitment to winning the future, the Department of Energy will make critical investments in science, research and innovation that will create jobs, grow the economy, and position America to lead the global clean energy economy. Next week, the Administration will unveil its budget for FY 2012, which will include over $8 billion for research, development, and deployment investments in clean energy technology programs. But while we are making these investments, we are taking responsible steps to cut wasteful spending and reduce expenses. Fiscal responsibility demands shared sacrifice - it means cutting

352

Revolution Now: The Future Arrives for Four Clean Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolution Now: The Future Arrives for Four Clean Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The Future Arrives for Four Clean Energy Technologies This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market (e.g. electricity, cars and lighting), they are growing rapidly. The four key technologies this report focuses on are: Onshore wind power Polysilicon photovoltaic modules LED lighting Electric vehicles Editor's note: The original report has been updated to fix inaccuracies in some graph labels. Revolution Now -- The Future Arrives for Four Clean Energy Technologies.pdf

353

Revolution Now: The Future Arrives for Four Clean Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revolution Now: The Future Arrives for Four Clean Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The Future Arrives for Four Clean Energy Technologies This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market (e.g. electricity, cars and lighting), they are growing rapidly. The four key technologies this report focuses on are: Onshore wind power Polysilicon photovoltaic modules LED lighting Electric vehicles Editor's note: The original report has been updated to fix inaccuracies in some graph labels. Revolution Now -- The Future Arrives for Four Clean Energy Technologies.pdf

354

Energy Efficiency in China: Glorious History, Uncertain Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency in China: Glorious History, Uncertain Future Speaker(s): Mark Levine Date: March 3, 2005 - 12:00pm Location: Bldg. 90 From 1980 to 2000, China made remarkable...

355

Securing America's Future with Energy Efficient Buildings | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Securing America's Future with Energy Efficient Buildings Securing America's Future with Energy Efficient Buildings Securing America's Future with Energy Efficient Buildings What We Do We lead a vast network of research and industry partners to continually develop innovative, cost-effective energy saving solutions-better products, better new homes, better ways to improve older homes, and better buildings in which we work, shop, and lead our everyday lives. Why It Matters Energy efficiency is a low cost way to save money, support job growth, reduce pollution, and improve the competitiveness of our businesses. Our homes, offices, schools, hospitals, restaurants, and stores consume a lot of energy-and money. We spend more than $400 billion each year to power our homes and commercial buildings, consuming more than 70% of all

356

CP-1: the Past, Present & Future of Nuclear Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

CP-1: the Past, Present & Future of Nuclear Energy CP-1: the Past, Present & Future of Nuclear Energy Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share CP-1: the Past, Present & Future of Nuclear Energy Jan. 29, 2013 On January 25, 2013, a lunch program to commemorate the 70th anniversary of the world's first self-sustaining, controlled nuclear chain reaction was

357

Industrial Assessment Centers Train Future Energy-Savvy Engineers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced Manufacturing Office What does this project do? The Industrial Assessment Centers provide students with real-world experience performing energy audits for small- and medium-sized

358

California's Energy Future - The View to 2050  

E-Print Network (OSTI)

biofuels: 13.0 bgge/yr, with 20% GHG intensity of fossil fuels Getting to the 80% Target (biofuels etc. ) could meet the 2050 energy requirements and not exceed the emissions target.

2011-01-01T23:59:59.000Z

359

Analysis of future energy pathways for Vietnam .  

E-Print Network (OSTI)

??This research conducts an in-depth analysis of the long-term impacts of alternative energy options for Vietnam up to 2050, with a view to identify an… (more)

Do, Tien Minh

2050-01-01T23:59:59.000Z

360

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Faces of the Recovery Act: Sun Catalytix Investing in Clean, Safe Nuclear Energy Secretary Chu Speaks at the 2010 Washington Auto Show Faces of the Recovery Act: Johnson Controls...

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Future of Biofuels | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Jam at New York Energy Week Secretary Moniz Speaks at Solar Impulse Press Conference Secretary Moniz Speaks at Solar Impulse Press Conference Common Sense and The Next 30...

362

Fusion reactors as future energy sources  

SciTech Connect

From conference on energy policies and the international system; New, Delhi, India (4 Dec 1973). The need is now apparent for a global energy policy with the following characteristics: Compatibility with environmental and economic factors; large fuel resources, the recovery and exploration of which have minimal environmental impact and which do not introduce disturbing factors into the world political situation. Fusion power in this context is discussed, including assessments of its potential and of the problems yet to be solved in achieving its realization. The proposition is advanced that fusion should be considered as the ultimate source of energy, and that other sources of energy, including conventional nuclear power, should be considered as interim sources. (auth)

Post, R.F.; Ribe, F.L.

1973-01-01T23:59:59.000Z

363

TRANSPORTATION ENERGY DATA BOOK: EDITION 22  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 (Edition 22 of ORNL-5198) Center for Transportation Analysis Engineering Science & Technology Division TRANSPORTATION ENERGY DATA BOOK: EDITION 22 Stacy C. Davis Susan W. Diegel Oak Ridge National Laboratory September 2002 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by the Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6073 Managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the

364

Energy and Transportation Science | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

research areas and facilities, ETSD research is advancing building and electricity systems integration, transformational energy-efficient manufacturing, and intelligent,...

365

Energy and Transportation Science Division (ETSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

366

Energy transport through rare collisions  

E-Print Network (OSTI)

We study a one-dimensional hamiltonian chain of masses perturbed by an energy conserving noise. The dynamics is such that, according to its hamiltonian part, particles move freely in cells and interact with their neighbors through collisions, made possible by a small overlap of size $\\epsilon > 0$ between near cells. The noise only randomly flips the velocity of the particles. If $\\epsilon \\rightarrow 0$, and if time is rescaled by a factor $1/{\\epsilon}$, we show that energy evolves autonomously according to a stochastic equation, which hydrodynamic limit is known in some cases. In particular, if only two different energies are present, the limiting process coincides with the simple symmetric exclusion process.

François Huveneers

2011-06-29T23:59:59.000Z

367

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout – Sustainable Transportation  

Energy.gov (U.S. Department of Energy (DOE))

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout – Sustainable Transportation, May 2013.

368

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Meier AKMeier@lbl.gov (510) 486-4740 Links Transportation and Air Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

369

Flexible loads in future energy networks  

Science Conference Proceedings (OSTI)

We develop a vignette of an information-rich energy network with flexible and responsive electrical loads in the form of a domestic refrigerator augmented with a thermal storage system and a supply-following controller that responds to the availability ... Keywords: renewable, supply-following

Jay Taneja, Ken Lutz, David Culler

2013-01-01T23:59:59.000Z

370

Advanced Materials for Sustainable, Clean Energy Future  

DOE Green Energy (OSTI)

The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon “trading,” giving benefits to low “carbon footprint” industries, while making higher emitting industries purchase carbon “allowances”. There have been an increasing number of countries and states adopting the trade and cap systems.

Yang, Zhenguo

2009-04-01T23:59:59.000Z

371

Investing in Our Energy Future: The Story of General Compression |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Energy Future: The Story of General Compression Our Energy Future: The Story of General Compression Investing in Our Energy Future: The Story of General Compression February 29, 2012 - 9:23am Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does government funding mean to a small clean energy startup? In the case of many ARPA-E awardees and small businesses across the country, it means being able to secure the private capital necessary to bring their innovations to life. Just ask David Marcus, founder of General Compression, a Massachusetts company founded in 2006 that received a $750,000 award from ARPA-E to develop a technology that has the ability to store renewable energy for use at any location on the electric grid. "Investors were interested in the

372

Supercomputers, Semi Trucks and America's Clean Energy Future |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future Supercomputers, Semi Trucks and America's Clean Energy Future February 8, 2011 - 5:44pm Addthis BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

373

Michigan Town Committed to Sustainable Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Town Committed to Sustainable Future Michigan Town Committed to Sustainable Future Michigan Town Committed to Sustainable Future May 14, 2010 - 10:04am Addthis Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Stephen Graff Former Writer & editor for Energy Empowers, EERE Charlevoix, Mich., sits on a stretch of land between Lake Michigan and Lake Charlevoix along the Pine River. It's a scenic atmosphere that both summer vacationers and local residents have worked to protect, city manager Rob Straebel says. "The community here has been proactive in creating a sustainable future," he says. Citizens are taking steps to become a more environmentally-conscious

374

Particle Physics and America's Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Particle Physics and America's Future Particle Physics and America's Future Particle Physics and America's Future September 14, 2010 - 6:42pm Addthis Dennis Kovar Former Associate Director, High Energy Physics in the Energy Department's Office of Science. What does this mean for me? Particle physics innovates, develops, and drives critical technologies directly applicable to challenges confronting our nation on several fronts. A new report lays out the potential for future developments with transformative impacts for energy, the environment, medicine, industry, security and defense, and discovery science. These are extraordinary times for particle physics, remarkable not only for the scientific discoveries that could be in store, but also for the very real opportunities to address critical issues confronting our nation.

375

Michigan Town Committed to Sustainable Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Michigan Town Committed to Sustainable Future Michigan Town Committed to Sustainable Future Michigan Town Committed to Sustainable Future May 14, 2010 - 10:04am Addthis Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Charlevoix, MI is using Recovery Act funds for energy upgrades | Photo courtesy Charlevoix, Michigan, City Manager | Stephen Graff Former Writer & editor for Energy Empowers, EERE Charlevoix, Mich., sits on a stretch of land between Lake Michigan and Lake Charlevoix along the Pine River. It's a scenic atmosphere that both summer vacationers and local residents have worked to protect, city manager Rob Straebel says. "The community here has been proactive in creating a sustainable future," he says. Citizens are taking steps to become a more environmentally-conscious

376

Could Building Energy Codes Mandate Rooftop Solar in the Future?  

Science Conference Proceedings (OSTI)

This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

2012-08-01T23:59:59.000Z

377

The Future of Energy on Ea FFFFUUUUSSSSIIIIOOOONNNN  

E-Print Network (OSTI)

,000 barrels of oil o Multiple end uses - Electricity - Fissile fuel - Tritium production o Attractive,000,000 1,000,000,000,000 2015 NIF ITER #12;0 100 200 300 400 500 600 700 800 U.S. Fusion Budget History 70 History 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 Years 00 $inMillions #12;Secretary of Energy Bill

378

Energy-efficient automobiles for the future  

DOE Green Energy (OSTI)

The characteristics of energy-efficient vehicles determined by the degree of incorporation of advanced technology and on reactions of consumers to the vehicles using those technologies are emphasized. Critical technology design aspects, as well as important consumer preferences, have been identified. Nearly 300 vehicles were designed using a heuristic method to meet several different expectations of consumer preference for acceleration. Air-pollutant emission standards in the Clear Air Act Amendments of 1977 were assumed to have been met in all designs, even when fuel efficiency was projected to increase sharply. Weight reductions are still expected to play an important role in improving fuel economy. Stirling, and electric motors, was also expected to play a significant role in reducing automobile energy consumption. Use of alternative fuels for spark-ignition engines, as well as for the other engines, was projected. Large gains in overall energy efficiency were projected, with methanol fuels playing a significant role. Even with so many acceptable alternatives projected to be available to households for purchase, the spark-ignition engine always captured the largest share of the market. Steady improvement in that vehicle's design kept it attractive to households through the year 2000 under varying economic conditions.

LaBelle, S.J.; Hudson, C.L.

1983-08-01T23:59:59.000Z

379

Audit of the Department of Energy's Transportation Accident Resistant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Accident Resistant Container Program, IG-0380 Audit of the Department of Energy's Transportation Accident Resistant Container Program, IG-0380 Audit of the...

380

Transportation Energy Data Book: Edition 31  

DOE Data Explorer (OSTI)

The Transportation Energy Data Book: Edition 31 is a statistical compendium designed for use as a reference reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. [Roltek, Inc.

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

DOE Green Energy (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

382

Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options  

SciTech Connect

The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

Dixon, B.W.; Piet, S.J.

2004-10-03T23:59:59.000Z

383

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

384

Energy Department Selects Global Laser Enrichment for Future Operations at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Selects Global Laser Enrichment for Future Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global Laser Enrichment (GLE) for the sale of the depleted uranium hexafluoride inventory. The Department determined that GLE offered the greatest benefit to the government among those who responded to a Request for Offers (RFO) released earlier this year. Through the RFO review process, the Department also decided to enter into

385

Vehicle Education Efforts Fuel Our Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future Vehicle Education Efforts Fuel Our Future May 4, 2012 - 3:42pm Addthis In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. In addition to hosting the vehicles education exhibit at the White House, Energy Department employees participated in many activities as part of Take Our Daughters and Sons to Work Day - like the fitness presentation shown above. | Energy Department file photo. Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? Helping students gain hands-on experience with science and

386

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance and existing homes, and supports the U.S. Department of Energy's (DOE) goal to develop cost effective laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated

387

Energy, Transportation Ministers from Asia-Pacific Nations Pledge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation September 13, 2011 - 7:44pm Addthis SAN FRANCISCO - Energy and transportation ministers from 21 economies in the Asia-Pacific region today agreed to continue progress on initiatives to make transportation in the region cleaner and more energy-efficient, U.S. Transportation Secretary Ray LaHood and U.S. Energy Secretary Steven Chu announced today. The announcement came during the first-ever joint Transportation and Energy Ministerial Conference held by the Asia-Pacific Economic Cooperation (APEC), the principal economic organization for the region. Secretaries

388

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

389

Molecular Weight & Energy Transport 7 September 2011  

E-Print Network (OSTI)

Molecular Weight & Energy Transport 7 September 2011 Goals ¡ Review mean molecular weight ¡ Practice working with diffusion Mean Molecular Weight 1. We will frequently use ¾, ¾e, and ¾I (the mean molecular weight per particle, per free electron, and per ion, respectively). Let's practice computing

Militzer, Burkhard

390

Future Power Systems 21 - The Smart Customer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - The Smart Customer 1 - The Smart Customer Future Power Systems 21 - The Smart Customer Future Power Systems 21 - The Smart Customer: From Future Power Systems (FPS) articles 18 and 19 we can see that there are a number of different trading and tariff mechanisms which can be employed on the utility to customer interface to enable participation. From article 20 we see that there will be different pricing profiles on similar day types due to changes in availability of renewable generation. Future Power Systems 21 - The Smart Customer More Documents & Publications Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical

391

Diversity United, Building America's Future Today | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United, Building America's Future Today United, Building America's Future Today Diversity United, Building America's Future Today October 24, 2012 10:30AM EDT Department of Energy Forrestal Building, Small Auditorium Patti Solis Doyle has been honored by Hispanic Magazine with the "2007 Latinas of Excellence Award" for her accomplishments in the areas of government, politics, and civil leadership. She also received Siempre Mujer magazine's "Siempre Insprian Award," honoring remarkable Latinas whose achievements and contributions are helping shape the future of Hispanic women in this country. Hispanic Business Magazine recently counted her among America's 100 Most Influential Hispanics. Join us as Ms. Doyle provides her keynote remarks on shaping the future of Hispanics in the U.S.

392

Illinois Turning Landfill Trash into Future Cash | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Turning Landfill Trash into Future Cash Turning Landfill Trash into Future Cash Illinois Turning Landfill Trash into Future Cash September 28, 2010 - 5:35pm Addthis Illinois Turning Landfill Trash into Future Cash Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Will County, Illinois officials yesterday formally broke ground on a new $7 million project (that includes $1 million of Energy Efficiency Conservation Block Grant funds) to turn methane gas from the Prairie View Landfill into electricity in a partnership with Waste Management. Will County will receive revenue from the sale of the gas created from decomposing garbage which will be harnessed and converted to generate 4.8 megawatts of green electrical power and used to power up to 8,000 homes. The future revenue generated from the sale of the gas and the sale of the

393

A Safe, Secure Nuclear Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Safe, Secure Nuclear Future A Safe, Secure Nuclear Future A Safe, Secure Nuclear Future June 8, 2011 - 12:00pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy I am in Russia meeting with business, government and scientific leaders about opportunities for partnership between our two countries. One of the most important areas where we need to work together is on nuclear power and nuclear security. In a speech I delivered earlier today, I mentioned a letter that Albert Einstein wrote to President Roosevelt in 1939, at the dawn of the atomic era. Einstein's letter correctly predicted that nuclear power would become "a new and important source of energy in the immediate future." But he went on to alert the President to another possibility -- less certain, but much more ominous -- that Germany was seeking to create "extremely

394

FutureGen 2.0 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Âť Major Demonstrations Âť Clean Coal Âť Major Demonstrations Âť FutureGen 2.0 FutureGen 2.0 On August 5, 2010, U.S. Energy Secretary Steven Chu announced the awarding of $1 billion in Recovery Act funding to the FutureGen Alliance, Ameren Energy Resources, Babcock & Wilcox, and Air Liquide Process & Construction, Inc. to build FutureGen 2.0, a clean coal repowering program and carbon dioxide (CO2) storage network. The project partners will repower Ameren's 200 megawatt Unit 4 in Meredosia, Illinois with advanced oxy-combustion technology to capture approximately 1.3 million tonnes of CO2 each year - more than 90 percent of the plant's carbon emissions. Other emissions will be reduced to near zero levels. Oxy-combustion burns coal with a mixture of oxygen and CO2 instead of air

395

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

396

New Methane Hydrate Research: Investing in Our Energy Future | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Hydrate Research: Investing in Our Energy Future Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Jenny Hakun What Are Methane Hydrates? Methane hydrates are 3D ice-lattice structures with natural gas locked inside. The substance looks remarkably like white ice, but it does not behave like ice. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas.

397

Solar Generation Has a Bright Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Has a Bright Future Generation Has a Bright Future Solar Generation Has a Bright Future September 12, 2012 - 3:06pm Addthis Growth of Solar Power Electricity Generation in the United States, 1999-2013 | Chart provided by the U.S. Energy Information Administration Growth of Solar Power Electricity Generation in the United States, 1999-2013 | Chart provided by the U.S. Energy Information Administration Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs The amount of electricity the United States generates from solar power has started to grow rapidly and is projected to reach 18,000 megawatt hours per day in 2013. A growing solar industry presents a tremendous economic opportunity for the United States, and that is why the Energy Department's SunShot Initiative

398

Better Buildings Case Competition Helps Develop Future Clean Energy Leaders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Better Buildings Case Competition Helps Develop Future Clean Energy Better Buildings Case Competition Helps Develop Future Clean Energy Leaders Better Buildings Case Competition Helps Develop Future Clean Energy Leaders March 7, 2013 - 10:30am Addthis Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher Jones and Wesley Look. | Photo courtesy of Elena Alschuler. Pictured here are eight of the 10 members of MIT's team who competed in last year's Better Buildings Case Competition. From left to right: Neheet Trivedi, Michael Zallow, Patrick Flynn, Elena Alschuler, Kate Goldstein, Brendan McEwen, Nikhil Nadkarni and Nan Zhao. Not pictured: Christopher

399

CSSEF: Climate Science for a Sustainable Energy Future | Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

CSSEF: Climate Science for a Sustainable Energy Future CSSEF: Climate Science for a Sustainable Energy Future Simulation on Intrepid of Katrina-like hurricanes Simulation on Intrepid of Katrina-like hurricanes The Climate Science for a Sustainable Energy Future (CSSEF) project objectives are to: Accelerate incorporation of new knowledge, including process data and observations, into climate models; Develop new methods for rapid evaluation of improved models; and Develop novel approaches to exploit computing at the level of tens of petaflops in climate models. Success in this project will enable scientists to answer questions posed in the period after the publication of the IPCC 5th Assessment Report. The project comprises three components: data and testbeds, numerical methods and computational science, and uncertainty quantification. There are

400

Energy Flowchart Scenarios of Future U.S. Energy Use Incorporating Hydrogen Fueled Vehicles  

SciTech Connect

This project has adapted LLNL energy flowcharts of historical U.S. energy use drawn from the DOE Energy Information Administration (EIA) data to include scenarios involving hydrogen use. A flexible automated process for preparing and drawing these flowcharts has also been developed. These charts show the flows of energy between primary sectors of the economy so that a user can quickly understand the major implications of a proposed scenario. The software can rapidly generate a spectrum of U.S. energy use scenarios in the 2005-2050 timeframe, both with and without a transition to hydrogen-fueled transportation. These scenarios indicate that fueling 100% of the light duty fleet in 2050 (318 million 80 mpg-equivalent compressed hydrogen fuel cell vehicles) will require approximately 100 million tonnes (10.7 quads) of H2/year, reducing petroleum use by at least 7.3 million barrels of oil/day (15.5 quads/yr). Linear extrapolation of EIA's 2025 reference projection to 2050 indicates approximate U.S. primary energy use of 180 quads/yr (in 2050) relative to current use of 97 quads/yr (comprising 39 quads/yr of petroleum). Full deployment of 50% efficient electricity generation technologies for coal and nuclear power and improvements in gasoline lightduty vehicle fleet fuel economy to 50 mpg would reduce projected U.S. primary energy consumption to 143 quads/yr in 2050, comprising 58 quads/yr (27 million bbl/day) of petroleum. Full deployment of H2 automobiles by 2050 could further reduce U.S. petroleum dependence to 43 quads/yr. These projections indicate that substantial steps beyond a transition to H2 light-duty vehicles will be necessary to reduce future U.S. petroleum dependence (and related greenhouse gases) below present levels. A flowchart projecting future U.S. energy flows depicting a complete transition by 2050 to compressed hydrogen light-duty vehicles is attached on the following page (corresponding to scenario 7 in the Appendix). It indicates that producing 100 billion kilograms of hydrogen fuel annually (10.7 quads/yr) from a balanced blend of primary energy sources will likely require 16.2 quads of primary energy input, with an additional 0.96 Quads of electricity for hydrogen storage. These energy flows are comparable to or smaller than projected growth in individual primary energy sources over the 2005-2050 timeframe except perhaps the case of windpower.

Berry, G; Daily III, W

2004-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuels and energy for the future: The role of catalysis  

SciTech Connect

There are many reasons to decrease the dependency on oil and to increase the use of other energy sources than fossil fuels. The wish for energy security is balanced by a wish for sustainable growth. Catalysis plays an important role in creating new routes and flexibility in the network of energy sources, energy carriers, and energy conversion. The process technologies resemble those applied in the large scale manufacture of commodities. This is illustrated by examples from refinery fuels, synfuels, and hydrogen and the future role of fossil fuels is discussed.

Rostrup-Nielsen, J.R.; Nielsen, R. [Haldor Topsoe Research Labs., Lyngby (Denmark)

2004-07-01T23:59:59.000Z

402

Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Securing America's Securing America's Clean Energy Future The Office of Energy Efficiency and Renewable Energy (EERE) invests in clean energy technologies that strengthen the economy, reduce dependence on foreign oil, and protect the environment. EERE leverages partnerships with the private sector, state and local governments, DOE national laboratories, and universities to transform the nation's economic engine to one powered by clean energy. EERE Programs 2011 Budget (in $ millions) EERE operates with $1.8 billion budget (FY 2011) and is responsible for investing more than $16 billion from the Recovery Act. Deploying Renewable Energy at Speed and Scale Growing a Clean Energy Future Organic plant material, or biomass, is an abundant, renewable resource for biofuels, bioproducts, and biopower. Biomass

403

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

Science Conference Proceedings (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL

2012-01-01T23:59:59.000Z

404

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network (OSTI)

of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance on advancing the U.S. Department of Energy's goals. With no vested interest other than upholding NREL's mission energy. Data are frequently collected from the U.S. Geological Survey (USGS), U.S. De- partment

405

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3 CHAPTER 10: OPTIMIZING THE TRANSPORTATION CLIMATE MITIGATION WEDGE Chapter

California at Davis, University of

406

Spheromak Energy Transport Studies via Neutral Beam Injection  

SciTech Connect

Results from the SSPX spheromak experiment provide strong motivation to add neutral beam injection (NBI) heating. Such auxiliary heating would significantly advance the capability to study the physics of energy transport and pressure limits for the spheromak. This LDRD project develops the physics basis for using NBI to heat spheromak plasmas in SSPX. The work encompasses three activities: (1) numerical simulation to make quantitative predictions of the effect of adding beams to SSPX, (2) using the SSPX spheromak and theory/modeling to develop potential target plasmas suitable for future application of neutral beam heating, and (3) developing diagnostics to provide the measurements needed for transport calculations. These activities are reported in several publications.

McLean, H S; Hill, D N; Wood, R D; Jayakumar, J; Pearlstein, L D

2008-02-11T23:59:59.000Z

407

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

408

U.S. energy outlook and future energy impacts.  

E-Print Network (OSTI)

??Energy markets were not immune to the 2007 financial crisis. Growth in the Indian and Chinese economies is placing strains on global energy supplies that… (more)

Hamburger, Randolph John

2011-01-01T23:59:59.000Z

409

Department of Energy and FutureGen Alliance Discuss Next Steps...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 19, 2010 -...

410

Growth Rates of Global Energy Systems and Future Outlooks  

Science Conference Proceedings (OSTI)

The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

Hoeoek, Mikael, E-mail: Mikael.Hook@fysast.uu.se [Uppsala University, Department of Physics and Astronomy, Global Energy Systems (Sweden); Li, Junchen [China University of Petroleum-Beijing, School of Business Administration (China); Johansson, Kersti [Uppsala University, Department of Physics and Astronomy, Global Energy Systems (Sweden); Snowden, Simon [University of Liverpool, Management School (United Kingdom)

2012-03-15T23:59:59.000Z

411

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Worldwide electricity consumption in 2020 is projected to be 76 percent higher than its 1997 level. Long-term growth in electricity consumption is expected to be strongest in the developing economies of Asia, followed by Central and South America. The projected growth rates for electricity consumption in the developing Asian nations are close to 5 percent per year over the International Energy Outlook 2000 (IEO2000) forecast period (Table 20), and the growth rate for Central and South America averages about 4.2 percent per year. As a result, the developing nations in the two regions

412

Estimating the Meridional Energy Transports in the Atmosphere and Ocean  

Science Conference Proceedings (OSTI)

The poleward energy transports in the atmosphere–ocean system are estimated for the annual mean and the four seasons based on satellite measurements of the net radiation balance at the top of the atmosphere, atmospheric transports of energy at ...

B. C. Carissimo; A. H. Oort; T. H. Vonder Haar

1985-01-01T23:59:59.000Z

413

Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source  

Science Conference Proceedings (OSTI)

Introduction / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

J. Ongena; G. Van Oost

414

Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source  

Science Conference Proceedings (OSTI)

Introduction / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

J. Ongena; G. Van Oost

415

Multi-Building Microgrids for a Distributed Energy Future in Portugal  

E-Print Network (OSTI)

Gas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.Microgrids for a Distributed Energy Future in Portugal

Mendes, Goncalo

2013-01-01T23:59:59.000Z

416

Thermal Energy Storage (TES): Past, Present and Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Storage (TES): Past, Present and Future Thermal Energy Storage (TES): Past, Present and Future Speaker(s): Klaus Schiess Date: June 10, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Sila Kiliccote Thermal Energy Storage (TES) is a technology that stores "cooling" energy in a thermal storage mass. In the eighties and early nineties the utilities in California incentivised this technology to shift electrical on-peak power to off-peak. Thereafter, for various reasons TES became the most neglected permanent load shifting opportunity. It is only now with the challenges that the renewables provide that TES may have a come- back because it is basically the best and most economical AC battery available with a round trip efficiency of 100% or even better. This presentation gives some background to this development and shows the interdependence of

417

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

SciTech Connect

Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

Lee, A.; Zinaman, O.; Logan, J.

2012-12-01T23:59:59.000Z

418

Sensor Switch's Bright Manufacturing Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensor Switch's Bright Manufacturing Future Sensor Switch's Bright Manufacturing Future Sensor Switch's Bright Manufacturing Future June 16, 2010 - 12:01pm Addthis Lindsay Gsell It's a simple concept that's saving thousands of dollars in utility bills each year: when a room is empty, turn off the lights. This is the basic concept behind Sensor Switch, a Connecticut-based manufacturer of lighting control products. Sensor Switch's occupancy sensor devices turn off lights when spaces are vacant. They also make devices that dim or turn off lights when sufficient daylight is present. Both types of products provide cost effective energy savings in indoor spaces like office buildings and warehouses. "There's an increasing public demand to save energy, which directly impacts the demand for our products," said Ben Hahn, vice president. "A key part of

419

Brighter Future for Kentucky Manufacturing Plants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants Brighter Future for Kentucky Manufacturing Plants May 28, 2010 - 3:04pm Addthis Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Montaplast North America, Inc. is replacing almost 1,200 halide lights with high-efficiency fluorescent fixtures at its Frankfort, KY, facility. | Photo Courtesy of Montaplast | Stephen Graff Former Writer & editor for Energy Empowers, EERE Consider This: Saving $90,000 a year by curbing energy use is about equal to the salaries of three operators at a typical manufacturing plant in the Bluegrass State, according to wages listed from the U.S. Bureau of Labor

420

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy Efficiency Report:Chapter 5: Transportation Sector  

U.S. Energy Information Administration (EIA)

... e Green, David L. And Yuehui Fan, Transportation Energy Efficiency Trends, 1972-1992, Oak Ridge National Laboratory (December 1994) ...

422

Scenarios for a Clean Energy Future EXECUTIVE SUMMARY  

E-Print Network (OSTI)

individually for each sector (buildings, industry, transportation, and electric generation) and assessed-at-the-pump" auto insurance ­Renewable energy portfolio standards and production tax credits ­Electric industry for renewables, restrictions on emissions of particulate matter, and restructuring of the electricity industry

423

Renewable Energy in India: Status and future Potential  

E-Print Network (OSTI)

Centralised Grid Connected Cogeneration/Trigeneration Decentralised Distributed Generation Isolated Demand 61000 PHWR ~50 10GW Data Source Plg Comm IEPC, 2006 #1 Sustainability #12;#1 Sustainability Present;Energy End uses End-uses Cooking Transport Electricity HeatingCooling Cooling Motive Power Lighting

Banerjee, Rangan

424

Renewable energy provisioning for ICT services in a future internet  

Science Conference Proceedings (OSTI)

As one of the first worldwide initiatives provisioning ICT (Information and Communication Technologies) services entirely based on renewable energy such as solar, wind and hydroelectricity across Canada and around the world, the GreenStar Network (GSN) ... Keywords: Mantychore FP7, future internet, green ICT, green star network

Kim Khoa Nguyen; Mohamed Cheriet; Mathieu Lemay; Bill St. Arnaud; Victor Reijs; Andrew Mackarel; Pau Minoves; Alin Pastrama; Ward Van Heddeghem

2011-01-01T23:59:59.000Z

425

Suitable usage scenarios for trusted Elements of future energy production,  

E-Print Network (OSTI)

. Exactly what the Smart Grid architecture will look like at a national level is still not clear. While multiple smart meters to integrate with the HAN, we prefer to go with an open architecture for WinSmartGridConvergence for the Smart Grid - On the technology opportunities for Future Cyber-Physical Energy

426

Status and future directions of the ENERGY STAR program  

SciTech Connect

In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper provides a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development. First, we describe the products that are currently eligible for the ENERGY STAR label and the program mechanisms that EPA and DOE are using to promote these products. Second, we illustrate selected milestones achieved in some markets, and ways that EPA and DOE are responding to challenges or changes in certain markets. Third, we discuss the evolving ENERGY STAR brand strategy. Next, we explore ways in which ENERGY STAR interacts with and enhances other policies, such as appliance standards and regional market transformation collaboratives. We then discuss evaluation studies that EPA and DOE are undertaking to quantify the impact of the ENERGY STAR program. Finally, we discuss future areas of expansion for the ENERGY STAR program, including labeling of new products and integrated programs for commercial and existing residential buildings.

Brown, Richard E.; Webber, Carrie A.; Koomey, Jonathan G.

2000-06-19T23:59:59.000Z

427

Future Advanced Windows for Zero-Energy Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Advanced Windows for Zero-Energy Homes Future Advanced Windows for Zero-Energy Homes Title Future Advanced Windows for Zero-Energy Homes Publication Type Conference Paper LBNL Report Number LBNL-51913 Year of Publication 2002 Authors Apte, Joshua S., Dariush K. Arasteh, and Yu Joe Huang Conference Name ASHRAE Transactions Volume 109, pt 2 Date Published 06/2003 Conference Location Kansas City, MO Call Number LBNL-51913 Abstract Over the past 15 years, low-emissivity and other technological improvements have significantly improved the energy efficiency of windows sold in the United States. However, as interest increases in the concept of zero-energy homes-buildings that do not consume any nonrenewable or net energy from the utility grid-even today's highest-performance window products will not be sufficient. This simulation study compares today's typical residential windows, today's most efficient residential windows, and several options for advanced window technologies, including products with improved fixed or static properties and products with dynamic solar heat gain properties. Nine representative window products are examined in eight representative U.S. climates. Annual energy and peak demand impacts are investigated. We conclude that a new generation of window products is necessary for zero-energy homes if windows are not to be an energy drain on these homes. Windows with dynamic solar heat gain properties are found to offer significant potential in reducing energy use and peak demands in northern and central climates, while windows with very low (static) solar heat gain properties offer the most potential in southern climates.

428

USVI Energy Road Map: Charting the Course to a Clean Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USVI Energy Road Map: Charting the Course to a Clean Energy Future USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones. edinusvi_roadmap.pdf More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Integrating Renewable Energy into the Transmission and Distribution System

429

USVI Energy Road Map: Charting the Course to a Clean Energy Future  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

USVI Energy Road Map: Charting the Course to a Clean Energy Future USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones. edinusvi_roadmap.pdf More Documents & Publications U.S. Virgin Islands Energy Road Map: Analysis Integrating Renewable Energy into the Transmission and Distribution System

430

Walking the Walk to a Brighter Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Walking the Walk to a Brighter Energy Future Walking the Walk to a Brighter Energy Future Walking the Walk to a Brighter Energy Future September 13, 2011 - 12:33pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy There are all kinds of ways to get young people excited about saving energy. Recently, on the Energy Savers Blog, we've been pointing elementary and high school teachers and students to America's Home Energy Education Challenge. This nationwide initiative engages students at schools across the country to learn more about how energy works in their homes and communities; it also encourages them to work with their parents to take simple steps that can save them energy and money. But there are a number of other programs funded through the Department of Energy's (DOE) Office of

431

UN Alcohol Energy Data: Consumption by transportation industry...  

Open Energy Info (EERE)

by transportation industry The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

432

Few transportation fuels surpass the energy densities of ...  

U.S. Energy Information Administration (EIA)

Energy density and the cost, weight, and size of onboard energy storage are important characteristics of fuels for transportation. Fuels that require ...

433

Mechanical and Thermal Energy Transport in Biological and ...  

Science Conference Proceedings (OSTI)

A series of studies will be presented, including energy transport in carbon ... performance for applications in thermal management and energy harvesting.

434

Consumer Views on Transportation and Energy  

DOE Green Energy (OSTI)

This report has been assembled to provide the Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. An issue that still needs attention from EERE is the finding that the public tends to lack information about hybrid vehicles, hydrogen, and alternative fuels for passenger vehicles. Also, the public seems to want fuel-efficiency improvements and cleaner fuels, but is not very willing to pay for these benefits. The public also says that it supports initiatives to promote energy conservation over increased production and that it is willing to make changes such as driving less in an effort to reduce oil consumption.

Steiner, E.

2003-08-01T23:59:59.000Z

435

Transportation of Nuclear Materials | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

436

Texas Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name Texas Department of Transportation Short Name TxDOT Place Austin, Texas...

437

VTPI-Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

VTPI-Transportation Statistics Jump to: navigation, search Name VTPI-Transportation Statistics AgencyCompany Organization Victoria Transportation Policy Institute Focus Area...

438

Innovation Center for Energy and Transportation ICET | Open Energy  

Open Energy Info (EERE)

Center for Energy and Transportation ICET Center for Energy and Transportation ICET Jump to: navigation, search Logo: Innovation Center for Energy and Transportation (ICET) Name Innovation Center for Energy and Transportation (ICET) Place Beijing, China Zip 100020 Sector Carbon Product Beijing-based independent non-profit organization to mitigate climate change through the promotion of clean, low carbon and energy efficient policies and technologies in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Choices for A Brighter Future: Perspectives on Renewable Energy  

DOE Green Energy (OSTI)

The report discusses the perspectives on the evolving U.S. electricity future, the renewable electric technology portfolio, the regional outlook, and the opportunities to move forward. Renewables are at a critical juncture as the domestic electricity marketplace moves toward an era of increased choice and greater diversity. The cost and performance of these technologies have improved dramatically over the past decade, yet their market penetration has stalled as the power industry grapples with the implications of the emerging competitive marketplace. Renewable energy technologies already contribute to the global energy mix and are ready to make an even greater contribution in the future. However, the renewables industry faces critical market uncertainties, both domestically and internationally, as policy commitments to renewables at both the federal and state levels are being reshaped to match the emerging competitive marketplace. The energy decisions that we make, or fail to make, today will have long-lasting implications. We can act now to ensure that renewable energy will play a major role in meeting the challenges of the evolving energy future. We have the power to choose.

NREL

1999-09-30T23:59:59.000Z

440

AVESTAR Center for clean energy plant operators of the future  

Science Conference Proceedings (OSTI)

Clean energy plants in the modern grid era will increasingly exploit carbon capture, utilization, and storage (CCUS), fuel/product flexibility, and load following. Integrated power/process plants will require next generation of well-trained engineering and operations professionals. High-fidelity dynamic simulators are well suited for training, education, and R&D on clean energy plant operations. Combining Operator Training System (OTS) with 3D virtual Immersive Training System (ITS) enables simultaneous training of control room and plant field operators of the future. Strong collaboration between industry, academia, and government is required to address advanced R&D challenges. AVESTAR Center brings together simulation technology and world-class expertise focused on accelerating development of clean energy plants and operators of the future.

Zitney, S.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy technologies at Sandia National Laboratories: Past, Present, Future  

DOE Green Energy (OSTI)

We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

Not Available

1989-08-01T23:59:59.000Z

442

Open Data for a Clean, Secure Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Open Data for a Clean, Secure Energy Future Open Data for a Clean, Secure Energy Future Open Data for a Clean, Secure Energy Future July 12, 2012 - 2:35pm Addthis Notes from the May 25th Energy Data Jam in Stanford California | Credit: Openei.org Notes from the May 25th Energy Data Jam in Stanford California | Credit: Openei.org Todd Park U.S. Chief Technology Officer and Assistant to the President David Danielson David Danielson Assistant Secretary for Energy Efficiency and Renewable Energy Richard Kauffman Richard Kauffman Senior Advisor to the Secretary of Energy Ed. Note: Energy Department officials, including David Danielson and Patricia Hoffman, attended the second Energy Data Jam in New York City on Monday. The first Energy Data Jam was held at Stanford University in May. This entry is cross-posted from the White House Blog.

443

Bright Young Minds for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bright Young Minds for a Clean Energy Future Bright Young Minds for a Clean Energy Future Bright Young Minds for a Clean Energy Future August 16, 2011 - 12:11pm Addthis Bright Young Minds for a Clean Energy Future Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy How can I participate? Registration begins August 15 and ends on October 7, 2011. Students are encouraged to register with their teachers by September 30, 2011 to take advantage of the full energy savings period. It's that time again: Back to school season is officially here! Time for students to prepare for the new experiences and challenges that they will encounter throughout the upcoming school year. One such challenge-from the Energy Department in partnership with the National Science Teachers Association (NSTA)-aims to tap into the

444

Bright Young Minds for a Clean Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Young Minds for a Clean Energy Future Young Minds for a Clean Energy Future Bright Young Minds for a Clean Energy Future August 16, 2011 - 12:11pm Addthis Bright Young Minds for a Clean Energy Future Sarah Jane Maxted Special Assistant, Office of Energy Efficiency & Renewable Energy How can I participate? Registration begins August 15 and ends on October 7, 2011. Students are encouraged to register with their teachers by September 30, 2011 to take advantage of the full energy savings period. It's that time again: Back to school season is officially here! Time for students to prepare for the new experiences and challenges that they will encounter throughout the upcoming school year. One such challenge-from the Energy Department in partnership with the National Science Teachers Association (NSTA)-aims to tap into the

445

An advanced metering infrastructure for future energy networks  

E-Print Network (OSTI)

Abstract. We are moving towards a highly distributed serviceoriented energy infrastructure where providers and consumers heavily interact with interchangeable roles. Smart meters empower an advanced metering infrastructure which is able to react almost in real time, provide fine-grained energy production or consumption info and adapt its behavior proactively. We focus on the infrastructure itself, the role and architecture of smart meters as well as the security and business implications. Finally we discuss on research directions that need to be followed in order to effectively support the energy networks on the future.

Stamatis Karnouskos; Orestis Terzidis; Panagiotis Karnouskos; Frigoglass S. A. I. C; Kato Achaia

2007-01-01T23:59:59.000Z

446

A First Peek at Our Energy Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

feeds, or follow it on Twitter. Addthis Related Articles Natural Gas Production and U.S. Oil Imports Offshore Drilling Safety and Response Technologies The Department of Energy's...

447

Developer American Public Transportation Association | Open Energy...  

Open Energy Info (EERE)

value "American Public Transportation Association" 2011 APTA Public Transportation Fact Book + Quantifying Greenhouse Gas Emissions from Transit + Property: Developer Value:...

448

Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections  

SciTech Connect

The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

Ayres, R.U.; Ayres, L.W.

1980-03-01T23:59:59.000Z

449

Massachusetts is Winding the Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts is Winding the Future Massachusetts is Winding the Future Massachusetts is Winding the Future May 18, 2011 - 4:48pm Addthis Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? The facility will attract companies to design, manufacture and test their blades in the United States and strengthen America's place as a global leader in wind power technology. Chicago may be known as the Windy City, but as of today, Boston is home to the largest commercial wind blade test facility in the world. After a ribbon cutting ceremony this afternoon, the Wind Technology Testing

450

Massachusetts is Winding the Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is Winding the Future is Winding the Future Massachusetts is Winding the Future May 18, 2011 - 4:48pm Addthis Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Inside the world's largest wind turbine blade testing facility. | Photo Courtesy of Kate Samp (MassCEC) Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will the project do? The facility will attract companies to design, manufacture and test their blades in the United States and strengthen America's place as a global leader in wind power technology. Chicago may be known as the Windy City, but as of today, Boston is home to the largest commercial wind blade test facility in the world. After a ribbon cutting ceremony this afternoon, the Wind Technology Testing

451

Moving Toward a Peaceful Nuclear Future | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future Moving Toward a Peaceful Nuclear Future July 10, 2013 - 10:50am Addthis President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza President Barack Obama delivers his first major speech stating a commitment to seek the peace and security of a world without nuclear weapons in front of thousands in Prague, Czech Republic, April 5, 2009. | Official White House Photo by Pete Souza Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What roles do the labs play? PNNL projects are reinforcing the effectiveness of the International Monitoring System, which utilizes 337 facilities worldwide to monitor for

452

Scenarios for a Clean Energy Future Prepared by the Interlaboratory Working Group on Energy-Efficient and Clean Energy  

E-Print Network (OSTI)

This report, Scenarios for a Clean Energy Future, was commissioned by the U.S. Department of Energy's Office significant net economic impacts. Widespread use of these technologies would do much to cut U.S. greenhouseScenarios for a Clean Energy Future Prepared by the Interlaboratory Working Group on Energy

453

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks Âť Transportation Health Risks Âť Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

454

Alternative futures for the Department of Energy National Laboratories  

Science Conference Proceedings (OSTI)

This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

Not Available

1995-02-01T23:59:59.000Z

455

Status and Future Directions of the ENERGY STAR Program  

SciTech Connect

In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark) a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then, the EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper is based on our experience since 1993 in providing technical support to the ENERGY STAR program. We provide a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development.

Brown, Richard; Webber, Carrie; Koomey, Jonathan

2001-12-04T23:59:59.000Z

456

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

tegorical-exclusion-determination Download Transportation Storage Interface Regulation of Future Extended Storage and Transportation. http:energy.govemdownloads...

457

Wind Plant Cost of Energy: Past and Future (Presentation)  

SciTech Connect

This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

Hand, M.

2013-03-01T23:59:59.000Z

458

At home with agents: exploring attitudes towards future smart energy infrastructures  

Science Conference Proceedings (OSTI)

This paper considers how consumers might relate to future smart energy grids. We used animated sketches to convey the nature of a future energy infrastructure based on software agents. Users showed a considerable lack of trust in energy companies raising ...

Tom A. Rodden, Joel E. Fischer, Nadia Pantidi, Khaled Bachour, Stuart Moran

2013-08-01T23:59:59.000Z

459

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

460

Cellulosic Ethanol: Securing the Planet Future Energy Needs  

E-Print Network (OSTI)

Abstract: Bioenergy is fairly recognized as not only a necessity, but an inevitable path to secure the planet future energy needs. There is however a global consensus that the overall feasibility of bioenergy will require an integrated approach based on diversified feedstocks and conversion processes. As illustrated in the Brazilian experience, the thrust of any bioenergy program should be centered on the principles and criteria of sustainable production. In general the trends are towards exploiting low value cellulosic materials to obtain high-end value energy products. To this end, it is expected that scientific or technical innovation will come to play a critical role on the future prospects and potential of any bioenergy initiative.

Clifford Louime; Hannah Uckelmann

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy futures" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Statement on Future U.S.-Russia Nuclear Energy and Nonproliferation Collaboration Following Russian Delegation Visit to the United States Joint Statement on Future...

462

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 8: SCENARIOS FOR DEEP REDUCTIONS IN GREENHOUSE GAS EMISSIONS PART 3

California at Davis, University of

463

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network (OSTI)

ASSESSMENTS VI. ALTERNATIVE ENERGY FUTURES FOR CALIFORNIA--ENVIRONMENTAL IMPACTS OF ALTERNATIVE ENERGY TECHNOLOGIES FORVolume 5, Status of Alternative Energy Technologies, 1977

Authors, Various

2010-01-01T23:59:59.000Z

464

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

465

Assessment of Future Vehicle Transportation Options and Their Impact on the Electric Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Future Vehicle Future Vehicle Transportation Options and Their Impact on the Electric Grid January 10, 2011 DOE/NETL-2010/1466 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

466

Ris Energy Report 8 The intelligent energy system infrastructure for the future  

E-Print Network (OSTI)

Risø Energy Report 8 The intelligent energy system infrastructure for the future Risø-R-1695(EN) September 2009 Edited by Hans Larsen and Leif Sønderberg Petersen #12;Risø Energy Report 8 Edited by Hans Larsen and Leif Sønderberg Petersen, Risø National Laboratory for Sustainable Energy Technical University

467

Coal and nuclear power: Illinois' energy future  

SciTech Connect

This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

1982-01-01T23:59:59.000Z

468

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

469

Comparative analysis of energy data bases for household residential and transportation energy use  

SciTech Connect

Survey data bases covering household residential and transportation energy use were reviewed from the perspective of energy policy analysts and data base users. Twenty-three surveys, taken from 1972 to 1985, collected information on household energy consumption and expenditures, energy-using capital stock, and conservation activities. Ten of the surveys covered residential energy use only, including that for space heating and cooling, cooking, water heating, and appliances. Six surveys covered energy use only for household travel in personal vehicles. Seven surveys included data on both of these household energy sectors. Complete energy use data for a household in one year can be estimated only for 1983, using two surveys (one residential and one transportation) taken in the same households. The last nine surveys of the 23 were recent (1983--1985). Review of those nine was based on published materials only. The large-scale surveys generally had less-comprehensive data, while the comprehensive surveys were based on small samples. The surveys were timely and useful for analyzing four types of energy policies: economic regulation, environmental regulation, federal energy production, and direct regulation of energy consumption or production. Future surveys of energy use, such as those of residential energy consumption, should try to link their energy-use questions to large surveys, such as the American Housing Survey, to allow more accurate analysis of comparative impacts of energy policies among population categories of interest (e.g., minority/majority, metropolitan/nonmetropolitan area, census regions, and income class). 78 refs., 9 figs., 29 tabs.

Teotia, A.; Klein, Y.; LaBelle, S.

1988-11-01T23:59:59.000Z

470

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

471

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

472

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

473

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation...

474

Secretary Moniz Speaks on Future of Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Speaks on Future of Fossil Energy Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy July 30, 2013 - 1:17pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Yesterday, Energy Secretary Ernest Moniz toured the National Energy Technology Laboratory (NETL) West Virginia campus and spoke with employees about their work developing the cleaner and more efficient energy technology that's helping power the nation. He was also on hand to dedicate the Lab's newest supercomputer -- a unique tool made to support fossil energy research like chemical looping and carbon capture technologies. The Secretary's remarks to employees focused on the importance of these types of clean technologies being created at the lab as part of the Energy

475

The Future of Nuclear Energy: Facts and Fiction Chapter I: Nuclear Fission Energy Today  

E-Print Network (OSTI)

Nuclear fission energy is considered to be somewhere between the holy grail, required to solve all energy worries of the human industrialized civilization, and a fast path directly to hell. Discussions about future energy sources and the possible contribution from nuclear energy are often dominated by variations of fundamentalists and often irrational approaches. As a result, very little is known by the general public and even by decision makers about the contribution of nuclear energy today, about uranium supplies, uranium resources and current and future technological challenges and limitations. This analysis about nuclear energy and its contribution for tomorrow tries to shed light on the nuclear reality and its limitations in the near and long term future. The report, presented in four chapters, is based essentially on the data provided in the documents from the IAEA (International Atomic Energy Administration) and the NEA (the Nuclear Energy Agency from the OECD countries, the WNA (World Nuclear Associat...

Dittmar, Michael

2009-01-01T23:59:59.000Z

476

Secretary Moniz Speaks on Future of Fossil Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy July 30, 2013 - 1:17pm Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Yesterday, Energy Secretary Ernest Moniz toured the National Energy Technology Laboratory (NETL) West Virginia campus and spoke with employees about their work developing the cleaner and more efficient energy technology that's helping power the nation. He was also on hand to dedicate the Lab's newest supercomputer -- a unique tool made to support fossil energy research like chemical looping and carbon capture technologies. The Secretary's remarks to employees focused on the importance of these types of clean technologies being created at the lab as part of the Energy

477

Technology Mapping of the Renewable Energy, Buildings and Transport  

Open Energy Info (EERE)

Technology Mapping of the Renewable Energy, Buildings and Transport Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary Name: Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Energy Focus Area: Energy Efficiency, Renewable Energy, Buildings, Industry, Transportation Topics: Implementation, Market analysis, Policies/deployment programs, Pathways analysis Resource Type: Publications, Guide/manual Website: ictsd.org/downloads/2010/06/synthesis-re-transport-buildings.pdf Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Screenshot

478

Transportation and Energy Use Data Files  

U.S. Energy Information Administration (EIA) Indexed Site

Data Files Data Files Transportation and Energy Use Data Files Data from the last two Residential Transportation Energy Consumption Surveys are available on-line. These data include fuel consumption and expenditures, vehicle-miles traveled, vehicle characteristics, and household characteristics from national samples of over 3,000 households. To protect respondent confidentiality, these data files do not contain any information which could be used to identify individual households. The lowest level of geographic detail provided is the Census Division (a grouping of 3 to 5 States.) 1994 RTECS Public Use Data 1991 RTECS Public Use Data 1994 RTECS Public Use Data The data from the 1994 RTECS is distributed in dBase and ASCII formats. The data in each set has been compressed using PKZIP. After downloading either the ASCII or dBase set, place the downloaded file in a separate directory and expand it using pkunzip. If you don't have pkunzip.exe, you can download that package here. PKUNZIP.EXE is in PKZ204g.exe. PKUNZIP.EXE is the only file you need, but the developers of the product have asked that the entire package be distributed and not the individual files. You can however find pkunzip.exe on several other Internet sites. If you download PKZ204g.exe to a separate directory, type PKZ204g and press ENTER.

479

Water requirements for future energy production in California  

DOE Green Energy (OSTI)

This assessment estimates the impact of future national energy development on water resources. Energy development would include various types of electric power plants, production of synthetic fuels, coal and uranium mining, oil and gas extraction, and other conversion processes. The Energy Analysis Program at LBL has conducted this analysis for its assigned region, the states of California and Nevada. The objective of this study is to determine water requirements of energy technologies and their implications, with emphasis on emerging technologies for aggregated subareas (ASA) in California. The first phase of this study provides energy-supply projections and corresponding demands for water resources as perceived by regional and state groups responsible for or involved in energy planning in California and Nevada. The second phase of the study is designed to calculate the water requirements for the levels of energy development in California as specified by a Department of Energy scenario for the year 2000 and by utility projections as reported by the Federal Power Commission for 1985. The implications of these water requirements on competing water users are explored briefly. 24 references.

Sathaye, J.A.; Ritschard, R.L.

1977-05-01T23:59:59.000Z

480

Chapter 47 - Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Transportation Chapter 47 - Transportation 47.1TransportationAirCharterServices0.pdf More Documents & P