National Library of Energy BETA

Sample records for transportation energy futures

  1. Transportation Energy Futures Snapshot

    Broader source: Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  2. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  3. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  4. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  5. Transportation Energy Futures Series: Alternative Fuel Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel ... A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  6. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  7. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  8. Transportation Energy Futures Study Reveals Potential for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Transportation Energy Futures (TEF) study, ... gas (GHG) emissions in the transportation sector. "Transportation is ... related to energy efficiency and renewable ...

  9. NREL: Energy Analysis - Transportation Energy Futures Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the energy and carbon implications of altering the current U.S. energy profile. Users can explore a TEF scenario output in BITES using inputs based on study findings, or ...

  10. Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good

  11. Transportation Energy Futures Series: Projected Biomass Utilization for

    Office of Scientific and Technical Information (OSTI)

    Fuels and Power in a Mature Market (Technical Report) | SciTech Connect Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this

  12. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  13. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  14. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. ... LIGNOCELLULOSIC; ETHANOL; BUTANOL; BIODIESEL; Energy Analysis; Bioenergy; ...

  15. Transportation Energy Futures: Project Overview and Findings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... a national shift to cleaner production sources under this scenario. 10 Because the costs ... Although the potential energy benefits are significant, studies have identified the ...

  16. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  17. Energy efficiency in passenger transportation: What the future may hold

    SciTech Connect (OSTI)

    Plotkin, S.

    1996-12-31

    This presentation very briefly projects future impacts of energy efficiency in passenger transportation. Continuing expansion of the U.S. transportation sector, with a corresponding increased dependency on imported oil, is noted. Freight trucks and air fleets are targeted as having the greatest potential for increased energy efficiency. The light duty vehicle is identified as the only technology option for major efficiency increases. 4 figs., 11 tabs.

  18. Carbonless Transportation and Energy Storage in Future Energy Systems

    SciTech Connect (OSTI)

    Lamont, A.D.; Berry, G.D.

    2001-01-17

    By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

  19. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  20. Joint DOE/NRCan Study of North American Transportation Energy Futures: Phase 2 Results

    SciTech Connect (OSTI)

    None

    2009-01-18

    Joint DOE/NRCan Study of North American Transportation Energy Futures: Discussion of the Study, Presentation of Phase 2 Results - April 30, 2003

  1. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  2. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  3. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  4. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  5. Multi-Path Transportation Futures Study- Lessons for the Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010.

  6. Transportation Energy Futures Study: The Key Results and Conclusions...

    Open Energy Info (EERE)

    activities related to renewable energy and energy efficiency technologies. Austin Brown, Ph.D., is a senior analyst in the Washington, D.C. office of the National Renewable...

  7. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIGHT-DUTY VEHICLES Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints TRANSPORTATION ENERGY FUTURES SERIES: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract

  8. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

  11. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy for the Future

  12. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  13. Transportation Energy Futures- Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  14. TRANSPORTATION ENERGY FUTURES - Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions

    SciTech Connect (OSTI)

    Anya Breitenbach

    2013-03-15

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use.

  15. Future of Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Transportation In the coming decades, transportation in the U.S. is expected to change radically in response to environmental constraints, fluctuating oil availability and economic factors. Future Decision-Makers The transportation systems that emerge in the 21 st century will be defined largely by the choices, skills and imaginations of today's youth. Future Workforce As scientists and engineers, they will develop new vehicle and fuel technologies. As citizens, they will make decisions

  16. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy admin 2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  17. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  18. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion ...

  19. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Transportation Energy Futures Series. Projected Biomass Utilization for Fuels and Power in a Mature Market

    SciTech Connect (OSTI)

    Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman, D.; Simpkins, T.; Argo, A.

    2013-03-01

    The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this report identifies how biomass is projected to be most economically used in the long term and the implications for greenhouse gas (GHG) emissions and petroleum use. In order to better understand competition for biomass between these markets and the potential for biofuel as a market-scale alternative to petroleum-based fuels, this report presents results of a micro-economic analysis conducted using the Biomass Allocation and Supply Equilibrium (BASE) modeling tool. The findings indicate that biofuels can outcompete biopower for feedstocks in mature markets if research and development targets are met. The BASE tool was developed for this project to analyze the impact of multiple biomass demand areas on mature energy markets. The model includes domestic supply curves for lignocellulosic biomass resources, corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. Transportation Energy Futures Series. Vehicle Technology Deployment Pathways. An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, Steve; Stephens, Thomas; McManus, Walter

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  2. Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints

    SciTech Connect (OSTI)

    Plotkin, S.; Stephens, T.; McManus, W.

    2013-03-01

    Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  3. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy CRF_climatechange Permalink Gallery Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change CRF, Global Climate & Energy, News, News & Events, Transportation Energy Understanding Hazardous Combustion Byproducts Reduces Factors Impacting Climate Change By Micheal Padilla Researchers at Sandia's Combustion Research Facility are developing the understanding necessary to build cleaner combustion technologies that will in turn

  4. Fuel cells for future transportation: The Department of Energy OTT/OUT partnership

    SciTech Connect (OSTI)

    Patil, P.G.; Milliken, J.; Gronich, S.; Rossmeissl, N.; Ohi, J.

    1997-12-31

    The DOE Office of Transportation Technologies (OTT) is currently engaged in the development and integration R and D activities which will make it possible to reduce oil imports, and move toward a sustainable transportation future. Within OTT, the Office of Advanced Automotive Technologies is supporting development of highly efficient, low or zero emission fuel cell power systems as an alternative to internal combustion engines. The objectives of the program are: By 2000, develop and validate fuel cell stack system technologies that are greater than 51% energy efficient at 40 kW (maximum net power); more than 100 times cleaner than EPA Tier II emissions; and capable of operating on gasoline, methanol, ethanol, natural gas, and hydrogen gas or liquid. By 2004, develop and validate fuel cell power system technologies that meet vehicle requirements in terms of: cost--competitive with internal combustion engines; and performance, range, safety and reliability. The research, development, and validation of fuel cell technology is integrally linked to the Energy Policy Act (EPACT) and other major US policy objectives, such as the Partnership for a New Generation of Vehicles (PNGV). Established in 1993, PNGV is a research and development initiative involving seven Federal agencies and the three US automobile manufacturers to strengthen US competitiveness. The PNGV will develop technologies for vehicles with a fuel efficiency of 80 miles per gallon, while maintaining such attributes as size, performance, safety, and cost. To help address the critical issue of fuel and fuel infrastructure development for advanced vehicles, the DOE Office of Utility Technologies (OUT) has directed the Hydrogen Program to provide national leadership in the research, development, and validation of advanced technologies to produce, store, and use hydrogen. An objective of the Program is to work in partnership with industry to advance hydrogen systems to the point where they are cost effective and

  5. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  6. First-Ever Sustainable Transportation Summit to Talk Future of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, Energy, and Mobility | Department of Energy First-Ever Sustainable Transportation Summit to Talk Future of Transportation, Energy, and Mobility First-Ever Sustainable Transportation Summit to Talk Future of Transportation, Energy, and Mobility June 30, 2016 - 9:45am Addthis Reuben Sarkar Reuben Sarkar Deputy Assistant Secretary for Transportation How can I participate? The inaugural Sustainable Transportation Summit will take place on July 11-12, 2016 at the Walter E.

  7. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  8. Growing America's Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to

  9. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  10. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  11. Growing America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing America's Energy Future Growing America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensuring American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in

  12. Examining Future Global Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Examining Future Global Transportation Energy Demand For EIA Energy Conference July 11, 2016 | Washington, DC By John Maples Outline * Model overview - Passenger travel - Freight travel - Energy consumption for 16 regions: * USA, Canada, Mexico/Chile, OECD Europe, Japan, S. Korea, Australia/New Zealand * Russia, Non-OECD Europe/Eurasia, China, India, Non-OECD Asia, Middle East, Africa, Brazil, Other South/Central * IEO2016 Reference case transportation projections * Preliminary scenario results

  13. Transportation Energy Futures Series. Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, Thomas

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation. View all reports on the TEF Web page, http://www.eere.energy.gov/analysis/transportationenergyfutures/index.html.

  14. Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Stephens, T.

    2013-03-01

    Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  15. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy for the future Energy for the Future Harnessing the energy of the sun and stars to meet the Earth's energy needs has been a scientific and engineering challenge for decades. A self-sustaining fusion burn has been achieved for brief periods under experimental conditions, but the amount of energy that went into creating it was greater than the amount of energy it generated. What's needed next, for fusion energy to supply a continuous stream of electricity, is energy gain. The National

  16. GDF Future Energies | Open Energy Information

    Open Energy Info (EERE)

    Future Energies Jump to: navigation, search Name: GDF Future Energies Place: France Product: Clean energy subsidiary of Gaz de France. References: GDF Future Energies1 This...

  17. Energy futures-2

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants.

  18. Argonne OutLoud: The Future of Transportation (June 20, 2013) | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory The Future of Transportation (June 20, 2013) Share Topic Energy Energy efficiency Vehicles Don Hillebrand

  19. Transportation Fuels: The Future is Today (6 Activities) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Transportation Fuels: The Future is Today (6 Activities) Transportation Fuels: The Future is Today (6 Activities) Below is information about the student activity/lesson plan from your search. Grades 5-8, 9-12 Subject Hydrogen and Fuel Cells, Bioenergy, Vehicles Summary This teacher guide provides extensive background information on transportation fuels to help your students learn about conventional and alternative transportation fuels by evaluating their advantages and disadvantages.

  20. 2016 Sustainable Transportation Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit 2016 Sustainable Transportation Summit Hosted by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), the first ever Sustainable Transportation Summit will bring together transportation and mobility leaders to discuss the technology, policy, and market innovations that hold the potential to shape the transportation system of the future. Sustainable Transportation, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy. When: July

  1. Growing America's Energy Future Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing America's Energy Future Factsheet Growing America's Energy Future Factsheet The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. overview_factsheet.pdf (133.31 KB) More Documents & Publications Growing America's Energy Future Webinar: Bioproducts in the Federal Bioeconomy Portfolio Webinar Conversion Factsheet

  2. Future Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Future Energy Solutions Place: Didcot, United Kingdom Zip: OX11 0QR Product: Future Energy Solutions is a sustainable energy...

  3. Future Energy Assets LP | Open Energy Information

    Open Energy Info (EERE)

    Assets LP Jump to: navigation, search Name: Future Energy Assets LP Place: Austin, Texas Zip: 78701 Product: String representation "Future Energy A ... S and in China." is too...

  4. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  5. Transportation Energy Consortiums

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consortiums - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  6. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  7. Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Analysis - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  8. Sandia Energy Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c-liquids-create-more-sustainable-processesfeed 0 DOE Joint BioEnergy Institute Joins Elite '100500 Club' http:energy.sandia.govdoe-joint-bioenergy-institute-joins-elite-1005...

  9. Westminster Energy Environment Transport Forum | Open Energy...

    Open Energy Info (EERE)

    Westminster Energy Environment Transport Forum Jump to: navigation, search Name: Westminster Energy, Environment & Transport Forum Place: United Kingdom Product: String...

  10. Growing Americas Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensur- ing American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in decreasing green- house gas emissions,

  11. Future Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pty Ltd Jump to: navigation, search Name: Future Energy Pty Ltd Place: Victoria, Australia Zip: 3121 Sector: Wind energy Product: Victoria based community wind project developer....

  12. David Friedman: On the Future of Transportation and the LA Auto Show |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy David Friedman: On the Future of Transportation and the LA Auto Show David Friedman: On the Future of Transportation and the LA Auto Show Addthis Description David Friedman, Principal Deputy Assistant Secretary in the Energy Department's Office of Energy Efficiency & Renewable Energy (EERE), visited the L.A. Auto Show in November 2015. In this video interview, he shared his thoughts about transportation's future, the exciting technologies being introduced to the

  13. Energy and Transportation Departments Commit to Supporting Cities of the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future | Department of Energy and Transportation Departments Commit to Supporting Cities of the Future Energy and Transportation Departments Commit to Supporting Cities of the Future May 2, 2016 - 11:10am Addthis The Department of Energy's SMART (Systems and Modeling for Accelerated Research in Transportation) Mobility consortium was established to better understand the energy and climate change impacts that arise from future mobility systems. The Department of Energy's SMART (Systems and

  14. Energy for our Future

    Energy Savers [EERE]

    ... gallons of diesel per year "Stronger Together for the Next 100 Years" Looking into The Future... (Traditional Athabascan Solar Array?) "Stronger Together for the Next 100 Years"

  15. Transportation | Open Energy Information

    Open Energy Info (EERE)

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  16. Ethanol Pathways in the 2050 North American Transportation Futures Study

    SciTech Connect (OSTI)

    2009-01-18

    A paper discussing the various ethanol pathways in the 2050 North American Transportation Futures Study

  17. NREL Launches Interactive Tool for Developing a Cleaner Energy Future -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Launches Interactive Tool for Developing a Cleaner Energy Future January 9, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has created an energy analysis tool to help individuals and educators experiment with future energy use scenarios. The interactive Buildings, Industry, Transportation, Electricity, and Transportation Scenarios (BITES) allows users to explore how changes in energy demand and supply can impact carbon dioxide

  18. The future of nuclear energy

    SciTech Connect (OSTI)

    Cugnon, J.

    2005-06-14

    Various aspects of the World energy problem indicate that nuclear energy will still be needed in the future. Conditions for a continued valuable use are discussed. Special attention is focused on the nuclear waste problem.

  19. Storing and transporting energy

    DOE Patents [OSTI]

    McClaine, Andrew W.; Brown, Kenneth

    2010-09-07

    Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

  20. Transportation Energy Data Book | Open Energy Information

    Open Energy Info (EERE)

    for use as a desk-top reference, the Transportation Energy Data Book provides statistics and information characterizing transportation activity and energy use. The book...

  1. Bioenergy: America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy: America's Energy Future Bioenergy: America's Energy Future Addthis Description Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. Text Version Below is the text version for the Bioenergy:

  2. Energy Information Administration - Transportation Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

  3. Future Energy Yorkshire | Open Energy Information

    Open Energy Info (EERE)

    Yorkshire Jump to: navigation, search Name: Future Energy Yorkshire Place: Leeds, United Kingdom Zip: LS11 5AE Sector: Services Product: Leeds-based, wholly owned subsidiary of...

  4. Future Energy Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Enterprises Jump to: navigation, search Name: Future Energy Enterprises Place: Wilmette, IL Website: futureenergyenterprises.biz References: Partnership for Advanced Residential...

  5. Transportation Data Programs:Transportation Energy Data Book...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data ...

  6. Problems of future energy systems

    SciTech Connect (OSTI)

    Kaya, Y.

    1981-04-01

    The purpose of this paper is to describe some of the key issues in the present energy system and to discuss possible future visions of the system. The first part of this paper deals with the progress in energy conservation since the oil embargo in 1973. Assuming the prospect that the petroleum supply will peak within this century and then will go down, and that the limit of energy conservation of the present energy systems will be achieved during the same period, the possible and desirable image is discussed of the future energy system. 5 refs.

  7. The future of energy gases

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  8. Assessment of Future Vehicle Transportation Options and their...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Vehicle Transportation Options and Their Impact on ... What's New? * Additional Alternative Transportation Vehicles ... is in competing demand for fuel * Still an internal ...

  9. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rush Robinett Energy &Infrastructure Future Group Sandia National Laboratories rdrobin@sandia.gov Energy & Infrastructure Future Overview 2 Sandia's Core Purpose "Helping our Nation Secure a Peaceful and Free World through Technology" * National Security Laboratory * Broad mission in developing science and technology applications to meet our rapidly changing, complex national security challenges * Safety, security and reliability of our nation's nuclear weapon stockpile 3

  10. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...

    Energy Savers [EERE]

    Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable ...

  11. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  12. Energy structures and environmental futures

    SciTech Connect (OSTI)

    Haugland, T.; Bergesen, H.O.; Roland, K.

    1998-11-01

    Energy is not only a basis for modern society, but also a product of it. This book is a study of the close and ever-changing relationship between the energy sector and the society that surrounds it. At the end of the twentieth century this relationship faces two fundamental challenges: First, the national confinement of modern energy systems is undermined by technological progress, making long-distance trade increasingly attractive, and by the broad trend towards economic internationalization in general and political integration in Europe in particular. Second, the risk of climate change may lead governments and publics to demand a profound restructuring of the entire energy sector. The purpose is to analyze how these two fundamental challenges, and the connection between them, can affect future energy developments in Europe. The analysis must be rooted in a firm understanding of the past. The first part of the book is therefore devoted to a systematic description and analysis of the energy sector in Europe as it has developed over the past twenty-five years, by major subsectors and with examples from the most important countries. Part 1 discusses trends and policies related to energy demand, energy sector developments in oil, coal, natural gas, and electricity, achievements and challenges in the environment, and the role of international policy bodies. Part 2 forecasts future developments in 1995--2020, by discussing the following: Paths for future developments; National rebound scenario; Liberalization and trade; Liberalization versus national rebound; and Environmental futures.

  13. Accelerating Materials Development for a Clean Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Materials Development for a Clean Energy Future Accelerating Materials Development for a Clean Energy Future February 24, 2016 - 2:30pm Addthis Accelerating Materials Development for a Clean Energy Future Reuben Sarkar Reuben Sarkar Deputy Assistant Secretary for Transportation Megan Brewster Senior Policy Advisor for Advanced Manufacturing at the White House Office of Science and Technology Policy Lloyd Whitman Assistant Director for Nanotechnology and Advanced Materials at the

  14. Drivers of Future Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Drivers of Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption

  15. Transportation Energy Futures Series: Freight Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,...

  16. Transportation Energy Futures Series: Freight Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may make slow steaming a permanent feature of marine operations by integrating slower-design speeds into the construction of new vessels (Maersk Line 2011). - Freight Demand...

  17. Energy Intensity Indicators: Transportation Energy Consumption

    Broader source: Energy.gov [DOE]

    This section contains an overview of the aggregate transportation sector, combining both passenger and freight segments of this sector. The specific energy intensity indicators for passenger and freight can be obtained from the links, passenger transportation, or freight transportation. For further detail within the transportation sector, download the appropriate Trend Data worksheet containing detailed data and graphics for specific transportation modes.

  18. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Energy Future: Bioenergy Technologies Office Successes of 2014 Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 The Bioenergy Technologies ...

  19. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  20. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  1. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  2. Transportation energy use in Mexico

    SciTech Connect (OSTI)

    Sheinbaum, C.; Meyers, S.; Sathaye, J.

    1994-07-01

    This report presents data on passenger travel and freight transport and analysis of the consequent energy use in Mexico during the 1970--1971 period. We describe changes in modal shares for passenger travel and freight transport, and analyze trends in the energy intensity of different modes. We look in more detail at transportation patterns, energy use, and the related environmental problems in the Mexico City Metropolitan Area, and also discuss policies that have been implemented there to reduce emissions from vehicles.

  3. The Future of Public Transport - In Pursuit of Zero Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Public Transport - In Pursuit of Zero Emissions H. E. Christian Peeples AC Transit * Serving 1.5 million people in 13 cities * 67 million passengers * 650 buses * 2,190 employees * $309 million budget * 105 lines (27 transbay) 2 Getting Started with Hydrogen * Under Development Since November 1999 * Member of California Fuel Cell Partnership * Member of Fuel Cell and Hydrogen Energy Assn * Member of The Climate Registry 3 1 st Generation Bus * >267,000 Miles * >700,000

  4. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  5. The Future of Public Transport - In Pursuit of Zero Emissions | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy The Future of Public Transport - In Pursuit of Zero Emissions The Future of Public Transport - In Pursuit of Zero Emissions Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011. webinaraug16_peeples.pdf (3.01 MB) More Documents & Publications Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit

  6. Sustainable Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Sustainable Transportation Bioenergy Bioenergy Read more Hydrogen and Fuel Cells Hydrogen and Fuel Cells Read more Vehicles Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices,

  7. Investing in our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investing in our Energy Future Investing in our Energy Future A report on the ways in which the recovery act is promoting a clean energy economy. PDF icon Investing in our Energy ...

  8. David Friedman: On the Future of Transportation and the L.A. Auto Show |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy David Friedman: On the Future of Transportation and the L.A. Auto Show David Friedman: On the Future of Transportation and the L.A. Auto Show January 6, 2016 - 8:45am Addthis A conversation with David Friedman, Principal Deputy Assistant Secretary, Office of Energy Efficiency & Renewable Energy on his visit to the L.A. Auto Show in November 2015 Drew Bittner Writer/Editor, Office of Energy Efficiency and Renewable Energy David Friedman, Principal Deputy Assistant

  9. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  10. Proposed Energy Transport Corridors: West-wide energy corridor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor ...

  11. Transportation Energy Consumption Surveys

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Hydropower Biofuels: Ethanol & Biodiesel Wind Geothermal Solar Energy in Brief How much U.S. electricity is generated from renewable energy?...

  12. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for the Transport Sector Energy Outlook for the Transport Sector Energy Outlook for the Transport Sector PDF icon deer10karsner.pdf More Documents & Publications The ...

  13. Transportation Energy Pathways LDRD.

    SciTech Connect (OSTI)

    Barter, Garrett; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A.; Yoshimura, Ann S.; Peterson, Meghan; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

    2012-09-01

    This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas

  14. Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable ... Arctic Climate Measurements Global Climate Models Software Sustainable Subsurface ...

  15. FutureWorld Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: FutureWorld Energy Inc Place: Florida Zip: 33701 Product: Florida-based marine energy project developer. References: FutureWorld Energy Inc1 This article is a...

  16. A Global Sustainable Energy Future | Department of Energy

    Office of Environmental Management (EM)

    A Global Sustainable Energy Future A Global Sustainable Energy Future April 19, 2013 - 10:56am Addthis World energy leaders at the ribbon cutting for the CEM Innovation Showcase ...

  17. WATER POWER FOR A CLEAN ENERGY FUTURE

    Office of Environmental Management (EM)

    WATER POWER FOR A CLEAN ENERGY FUTURE March 2016 WATER POWER PROGRAM WATER POWER PROGRAM Building a Clean Energy Economy Leading the world in clean energy is critical to ...

  18. Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Use Future Use Facility or infrastructure reuse could avoid costs associated with demolition and disposal. Facility or infrastructure reuse could avoid costs associated with demolition and disposal. PPPO works with GDP communities as they identify their future use vision. PPPO works with GDP communities as they identify their future use vision. Facility or infrastructure reuse could avoid costs associated with demolition and disposal. PPPO works with GDP communities as they identify their

  19. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  20. Efficient Mobility Summit: Transportation and the Future of Dynamic Mobility Systems

    SciTech Connect (OSTI)

    2015-12-01

    On October 27, 2015, The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) brought together local and national thought leaders to discuss the convergence of connectivity, vehicle automation, and transportation infrastructure investments at the Future Energy Efficient Mobility Workshop. The half-day workshop was held in conjunction with the Colorado Department of Transportation's (CDOT) Transportation Matters Summit and featured four panel sessions that showcased perspectives on efficient mobility from federal and state agencies, automakers and their suppliers, transportation data providers, and freight companies. This summary provides highlights from the meeting's exchanges of ideas and existing applications. Transportation's (CDOT) Transportation Matters Summit and featured four panel sessions that showcased perspectives on efficient mobility from federal and state agencies, automakers and their suppliers, transportation data providers, and freight companies. This summary provides highlights from the meeting's exchanges of ideas and existing applications.

  1. Innovation Center for Energy and Transportation ICET | Open Energy...

    Open Energy Info (EERE)

    Innovation Center for Energy and Transportation ICET Jump to: navigation, search Logo: Innovation Center for Energy and Transportation (ICET) Name: Innovation Center for Energy and...

  2. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy (EERE) | Department of Energy Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy. 51111.pdf (656.28 KB) More Documents & Publications Office of the Biomass Program Educational Opportunities

  3. Clean Cities Now, Vol. 20, No. 1, Summer 2016 - Tackling Transportation: Clean Cities and NPS Team Up to Steer National Parks Toward a Sustainable Future (Newsletter), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    National Parks Initiative Celebrates 5 Years ampCNG Champions a Cow-Powered, Renewable Natural Gas Fleet Yellowstone-Teton Coordinator Establishes Climate-Friendly Initiatives New Haven Intern Promotes Health Across the Region Tackling Transportation: Clean Cities and NPS Team Up to Steer National Parks Toward a Sustainable Future VOL. 20, NO. 1 | SUMMER 2016 INSIDE CLEAN CITIES NOW In This Issue Workplace charging takes off at Louisiana university thanks to coalition's teamwork, p. 17 Texas

  4. Isotope Program Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isotope Program Transportation Isotope Program Transportation Isotope Program Transportation (894.11 KB) More Documents & Publications Nuclear Fuel Storage and Transportation Planning Project Overview Section 180(c) Ad Hoc Working Group DOE Office of Nuclear Energy

  5. 25 x 25 America s Energy Future | Open Energy Information

    Open Energy Info (EERE)

    x 25 America s Energy Future Jump to: navigation, search Name: 25 x '25 America's Energy Future Place: Maryland Zip: 21093 Website: www.25x25.org References: 25 x '25 America's...

  6. "The Future of Geothermal Energy" and Its Challenges | Open Energy...

    Open Energy Info (EERE)

    "The Future of Geothermal Energy" and Its Challenges Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: "The Future of Geothermal Energy" and Its...

  7. Coal: America's energy future. Volume I

    SciTech Connect (OSTI)

    2006-03-15

    Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

  8. Masdar Abu Dhabi Future Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Abu Dhabi- based subsidiary created to manage the implementation of renewable and alternative energy initiatives. References: Masdar Abu Dhabi Future Energy Company1 This...

  9. Future Energy Zone Private Ltd FEZ | Open Energy Information

    Open Energy Info (EERE)

    Zone Private Ltd FEZ Jump to: navigation, search Name: Future Energy Zone Private Ltd (FEZ) Place: Chennai, Tamil Nadu, India Sector: Renewable Energy Product: Focused on building...

  10. Energy Department Charting New Future for Wastewater Treatment

    Broader source: Energy.gov [DOE]

    It will cost about $600 billion over the next 20 years to continue reliably transporting and treating wastewater, according to the Environmental Protection Agency (EPA). Find out how the Department of Energy collaborated with the National Science Foundation and EPA to explore a smarter future for water treatment.

  11. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. Accomplishments Report: Water Power for a Clean Energy Future (9.59 MB) More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on

  12. The Future of Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Geothermal Energy The Future of Geothermal Energy The Future of Geothermal Energy report is an evaluation of geothermal energy as a major supplier of energy in the United States. An 18-member assessment panel with broad experience and expertise was formed to conduct the study beginning in September 2005. The work evaluated three major areas of Enhanced Geothermal Systems (EGS): Magnitude and distribution of the EGS resource Status and remaining requirements of EGS technology needed

  13. A Renewable Energy Future: Innovation and Beyond | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Renewable Energy Future: Innovation and Beyond A Renewable Energy Future: Innovation and Beyond This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is

  14. Multi-Path Transportation Futures Study. Results from Phase 1

    SciTech Connect (OSTI)

    Phil Patterson, Phil; Singh, Margaret; Plotkin, Steve; Moore, Jim

    2007-03-09

    Presentation reporting Phase 1 results, 3/9/2007. Projecting the future role of advanced drivetrains and fuels in the light vehicle market is inherently difficult, given the uncertainty (and likely volatility) of future oil prices, inadequate understanding of likely consumer response to new technologies, the relative infancy of several important new technologies with inevitable future changes in their performance and costs, and the importance — and uncertainty — of future government marketplace interventions (e.g., new regulatory standards or vehicle purchase incentives). The Multi-Path Transportation Futures (MP) Study has attempted to improve our understanding of this future role by examining several scenarios of vehicle costs, fuel prices, government subsidies, and other key factors. These are projections, not forecasts, in that they try to answer a series of “what if” questions without assigning probabilities to most of the basic assumptions.

  15. NREL: Transportation Research - Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power electronics controller, and heat exchangers. Blowout shows the image of an individual battery pack. NREL research is pointing the way toward affordable, high-performing, long-lasting batteries for the next generation of electric-drive vehicles. Researcher holding cables and standing in front of an open equipment chamber.

  16. Electrofuels: Versatile Transportation Energy Solutions

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: ARPA-E’s Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

  17. IM Future | Open Energy Information

    Open Energy Info (EERE)

    Sector: Services, Wind energy Product: Spain-based firm that provides operation and maintenance services for wind farms owned by Babcock & Brown Wind Partners and FCC. References:...

  18. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  19. Toward an efficient energy future

    SciTech Connect (OSTI)

    English, M.R.; Bohm, R.A.; Clinard, L.A.

    1983-01-01

    This is the last in the 3-part International Energy Symposia Series sponsored by the 1982 World's Fair, Knoxville, TN. The first two Symposia's Proceedings were released in October, 1981, and May, 1982, respectively, appearing under the titles (1) World Energy Production and Productivity, and (2) Improving World Energy Production and Productivity - both earlier volumes are also available from Ballinger Publishing Co. Symposium III was designed to conclude the Series' work by moving from technical, economic, social, and environmental considerations to government policy issues; the emphasis was on ministerial/cabinet-level participants who could represent their nations' energy strategies. A separate abstract was prepared for each of 17 of the 21 chapters, eliminating the following: (1) Symposium III Participants' Comments; (2) Draft Communique; (3) Selected Comments; and (4) Closing Remarks by Walter N. Lambert, Executive Vice President, The 1982 World's Fair.

  20. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to

  1. Transportation Storage Interface | Department of Energy

    Office of Environmental Management (EM)

    Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface (891.2 KB) More Documents & Publications Gap Analysis to Support Extended Storage of Used Nuclear Fuel Status Update: Extended Storage and Transportation Waste Confidence Activities Related to Storage of Spent Nuclear Fuel

  2. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect (OSTI)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  3. NREL: Speeches - Nation's Energy Future at Risk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future at Risk, National Lab Director Says For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Washington, D.C., July 27, 1999 — America must invest in its energy future now, Richard Truly, director of the U.S. Department of Energy's National Renewable Energy Laboratory said today. Otherwise, he said, the nation could face supply shortages and fall behind foreign competitors. Truly, speaking at the National Press Club's Newsmakers program, said that U.S.

  4. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint Transportation Equipment (125.57 KB) More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  5. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  6. Geothermal Energy in Hawaii: Present and Future | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy in Hawaii: Present and Future Abstract Discussed the development of...

  7. Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation modes—truck, rail, water, air, and pipeline—each serve a distinct share of the freight transportation market. A variety of factors influence the modes chosen by shippers, carriers, and others involved in freight supply chains. Analytical methods can be used to project future modal shares, and federal policy actions could influence future freight mode choices. This report considers how these topics have been addressed in existing literature and offers insights on federal policy decisions with the potential to prompt mode choices that reduce energy use and greenhouse gas emissions.

  8. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  9. EC-LEDS Transport | Open Energy Information

    Open Energy Info (EERE)

    Company Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis,...

  10. Transportation in Community Strategic Energy Plans | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Community Strategic Energy Plans Transportation in Community Strategic Energy Plans This presentation features Caley Johnson, a fuel and vehicle market analyst with the National ...

  11. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  12. Building a Better Future Through Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Better Future Through Clean Energy Building a Better Future Through Clean Energy April 22, 2015 - 10:56am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Matty Greene Matty Greene Former Videographer How can I participate? Follow us on Twitter and Energy.gov all week long for more #EarthWeek coverage! Friday, April 22 is Earth Day, a celebration of environmental protection throughout the nation and across the globe. The Energy Department is committed to

  13. Critical Materials for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese

  14. Hydrogen Energy Storage: Grid and Transportation Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure / 1 02 Hydrogen Energy Storage: Grid and Transportation Services NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. February 2015 Hydrogen Energy Storage: Grid and Transportation Services Proceedings of an Expert Workshop Convened by the U.S. Department of Energy and Industry Canada, Hosted by the National Renewable Energy Laboratory and the California Air Resources

  15. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  16. Transportation Data Programs:Transportation Energy Data Book,Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Market Report, and VT Fact of the Week | Department of Energy Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting van009_davis_2013_p.pdf (3.39 MB) More Documents &

  17. Energy Use for Transportation - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration For Transportation Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse

  18. Water Power For a Clean Energy Future Cover Photo | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a Clean Energy Future Cover Photo Water Power For a Clean Energy Future Cover Photo Image icon Water Power For a Clean Energy Future Cover.JPG More Documents & Publications ...

  19. Enterprise SRS Future Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Initiatives Enterprise SRS Future Initiatives SRS has a sound heritage based on innovation and expertise with a willingness to take on complex challenges to improve and enhance the security of our nation. The expertise and technical capabilities of SRNL, combined with the SRS infrastructure, facilities, and safety culture, make SRS a prime location for the deployment of innovative solutions to address the nation's most pressing issues in clean energy, national security and environmental

  20. Future high energy colliders symposium. Summary report

    SciTech Connect (OSTI)

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  1. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible

  2. Winning the Biofuel Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a research team at our BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels: using a microbe to convert plant matter directly into isobutanol. Isobutanol can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This is part of a broad portfolio

  3. Transportation Energy Futures Series: Projected Biomass Utilization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of agricultural products. Goals for biopower policies include displacement of coal for environmental concerns and GHG reduction. In the past two decades, the U.S. Department of...

  4. Transportation Energy Futures (TEF) Data and Sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ...d|cd|cg|gasoline|diesel|ft|fischer tropsch|lng|liquified|po|pyrolysis|distillate|renewable...d|cd|cg|gasoline|diesel|ft|fischer tropsch|lng|liquified|po|pyrolysis|distillate|renewable...

  5. Thorium Energy Futures (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Thorium Energy Futures Citation Details In-Document Search Title: Thorium Energy Futures The potential for thorium as an alternative or supplement to uranium in fission ...

  6. 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic ...

  7. The Road to a Sustainable Energy Future | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium The Road to a Sustainable Energy Future Professor Emily Carter, Department ... Science on Saturday, January 31, 2015, "The Road to a Sustainable Energy Future", Prof. ...

  8. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  9. Sustainable Transportation Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Day Sustainable Transportation Day June 22, 2015 11:00AM to 5:00PM EDT U.S. Department of Energy 1000 Independence Ave., SW Washington, D.C. 20585 Join us for Sustainable Transportation Day, an afternoon on the grounds of the Forrestal Building in Washington D.C., with U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewabel Energy's (EERE's) Bioenergy Technologies Office, Fuel Cell Technologies Office, and Vehicle Technologies Office. Mingle with

  10. Badger Transport | Open Energy Information

    Open Energy Info (EERE)

    Transport Jump to: navigation, search Name: Badger Transport Place: Clintonville, Wisconsin Zip: 54929 Product: Heavy haul and specialty trucking company active in the US Midwest....

  11. Brainstorming Apps for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brainstorming Apps for a Clean Energy Future Brainstorming Apps for a Clean Energy Future July 20, 2012 - 1:03pm Addthis Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Nick Sinai U.S. Deputy Chief Technology Officer, White House Office of Science and Technology Policy Ian Kalin Director of the Energy Data Initiative How can I participate? You can contribute ideas for new products,

  12. Sustainable Transportation Summit | Department of Energy

    Energy Savers [EERE]

    Sustainable Transportation Summit Sustainable Transportation Summit July 11, 2016 12:00PM EDT to July 12, 2016 12:00PM EDT On July 11-12, the U.S. Department of Energy's Office of ...

  13. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  14. Multi-path transportation futures study: Results from Phase 1

    SciTech Connect (OSTI)

    Patterson, Phil; Singh, Margaret; Plotkin, Steve; Moore, Jim

    2007-03-09

    This PowerPoint briefing provides documentation and details for Phase 1 of the Multi-Path Transportation Futures Study, which compares alternative ways to make significant reductions in oil use and carbon emissions from U.S. light vehicles to 2050. Phase I, completed in 2006, was a scoping study, aimed at identifying key analytic issues and constructing a study design. The Phase 1 analysis included an evaluation of several pathways and scenarios; however, these analyses were limited in number and scope and were designed to be preliminary.

  15. Sustainable Transportation Success Stories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation Success Stories Sustainable Transportation Success Stories Sustainable Transportation Success Stories The Office of Energy Efficiency and Renewable Energy's (EERE) successes in converting tax dollars into sustainable transportation solutions are important steps in the drive toward cleaner vehicles for all purposes. Learn how EERE's investments in bioenergy, hydrogen and fuel cell research, and vehicle technologies are putting electric drive vehicles on the road and

  16. Transportation Electrification Load Development For A Renewable Future Analysis: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Mai, T.; Kintner-Meyer, M.

    2010-12-01

    The transition to electricity as a transportation fuel will create a new load for electricity generation. A set of regional hourly load profiles for electrified vehicles was developed for the 2010 to 2050 timeframe. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market saturation scenarios of 30% and 50% of sales of PEVs consuming on average approx. 6 kWh per day were considered. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across four daily time slices under optimal control from the utility?s perspective. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios.

  17. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  18. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  19. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy ...

  20. Driving it home: choosing the right path for fueling North America's transportation future

    SciTech Connect (OSTI)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

  1. COLLOQUIUM: Energy Return on Investment for Future Energy Sources |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab October 26, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Energy Return on Investment for Future Energy Sources Dr. Charles Neumeyer Princeton Plasma Physics Laboratory Colloquium Committee: The Princeton Plasma Physics Laboratory 2016-2017 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin,

  2. Design Principles of Coherent Photosynthetic Energy Transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Principles of Coherent Photosynthetic Energy Transport: Insights from Two Dimensional Electronic Spectroscopy November 10, 2009 at 3pm36-428 Greg Engel Department of ...

  3. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  4. DOE - Fossil Energy: Coal Mining and Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mining Fossil Energy Study Guides Coal Mining and Transportation Coal Miners - One type of mining, called "longwall mining", uses a rotating blade to shear coal away from the ...

  5. Department of Energy Receives Highest Transportation Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's ...

  6. Future Communications Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs PDF icon Future Communications Needs More Documents & ...

  7. Department of Energy Office of Science Transportation Overview...

    Office of Environmental Management (EM)

    Energy Office of Science Transportation Overview Department of Energy Office of Science Transportation Overview Overview of the Office of Science for Transportation. PDF icon ...

  8. The Energy Efficiency Potential of Global Transport to 2050 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Efficiency Potential of Global Transport to 2050 The Energy Efficiency Potential of Global Transport to 2050 Broad view of sustainability of global transportation PDF ...

  9. International Energy Outlook 2016-Transportation sector energy consumption

    Gasoline and Diesel Fuel Update (EIA)

    - Energy Information Administration 8. Transportation sector energy consumption print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption increases at an annual average rate of 1.4%, from 104 quadrillion British thermal units (Btu) in 2012 to 155 quadrillion Btu in 2040. Transportation energy demand growth occurs almost entirely in regions outside of the Organization for Economic Cooperation and Development

  10. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  11. Transportation Energy Data Book, Edition 18

    SciTech Connect (OSTI)

    Davis, Stacy C.

    1998-09-01

    The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

  12. Transportation Energy Data Book, Edition 19

    SciTech Connect (OSTI)

    Davis, S.C.

    1999-09-01

    The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

  13. Energy Department Selects Global Laser Enrichment for Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm ...

  14. Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste Shipment Indiana Department of Homeland...

  15. Proposed Energy Transport Corridors: West-wide energy corridor programmatic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS, Draft Corridors - September 2007. | Department of Energy Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the

  16. Hydrogen Energy Storage for Grid and Transportation Services...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen Energy Storage for Grid and Transportation Services Workshop The U.S. Department of Energy (DOE) and...

  17. 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Feedstocks | Department of Energy Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks This infographic was created by students from Franklin High School in Franklin, MA

  18. Creating the Future of Solar Energy, Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creating the Future of Solar Energy, Today Creating the Future of Solar Energy, Today November 4, 2014 - 11:14am Addthis SunShot Catalyst team holds a “jamathon” on September 24th with WeWork, an incubator with offices in D.C. providing support services and work space to its small business members. | Photo Courtesy: SunShot Initiative SunShot Catalyst team holds a "jamathon" on September 24th with WeWork, an incubator with offices in D.C. providing support services and work

  19. Transportation energy data book: edition 16

    SciTech Connect (OSTI)

    Davis, S.C.; McFarlin, D.N.

    1996-07-01

    The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

  20. Impact of Wireless Power Transfer in Transportation: Future Transportation Enabler, or Near Term Distraction

    SciTech Connect (OSTI)

    Onar, Omer C; Jones, Perry T

    2014-01-01

    While the total liquid fuels consumed in the U.S. for transportation of goods and people is expected to hold steady, or decline slightly over the next few decades, the world wide consumption is projected to increase of over 30% according to the Annual Energy Outlook 2014 [1]. The balance of energy consumption for transportation between petroleum fuels and electric energy, and the related greenhouse gas (GHG) emissions produced consuming either, is of particular interest to government administrations, vehicle OEMs, and energy suppliers. The market adoption of plug-in electric vehicles (PEVs) appears to be inhibited by many factors relating to the energy storage system (ESS) and charging infrastructure. Wireless power transfer (WPT) technologies have been identified as a key enabling technology to increase the acceptance of EVs. Oak Ridge National Laboratory (ORNL) has been involved in many research areas related to understanding the impacts, opportunities, challenges and costs related to various deployments of WPT technology for transportation use. Though the initial outlook for WPT deployment looks promising, many other emerging technologies have met unfavorable market launches due to unforeseen technology limitations, sometimes due to the complex system in which the new technology was placed. This paper will summarize research and development (R&D) performed at ORNL in the area of Wireless Power Transfer (WPT). ORNL s advanced transportation technology R&D activities provide a unique set of experienced researchers to assist in the creation of a transportation system level view. These activities range from fundamental technology development at the component level to subsystem controls and interactions to applicable system level analysis of impending market and industry responses and beyond.

  1. Powering the Future - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 28, 2013, Videos Powering the Future powering_the_future_video Deputy Director of Development and Demonstration Jeff Chamberlain discusses the future of energy storage with CBS News in this video.

  2. The Complex Systems Landscape of Future Urban Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to design efficient technologies for reducing both consumer costs and greenhouse gas emissions by maximizing transportation assets with the larger transportation ecosystem. ...

  3. New Methane Hydrate Research: Investing in Our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ...

  4. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens ... Enhanced Oil Recovery Affects the Future Energy Mix Trevor Kirsten 2012.11.19 One of the ...

  5. Secretary Moniz Speaks on Future of Fossil Energy | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moniz Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy July 30, 2013 - 1:17pm Addthis April Saylor April Saylor Former Digital Outreach ...

  6. Chu at COP-16: Building a Sustainable Energy Future | Department...

    Office of Environmental Management (EM)

    at COP-16: Building a Sustainable Energy Future Chu at COP-16: Building a Sustainable Energy Future December 7, 2010 - 11:16pm Addthis John Schueler John Schueler Former New Media ...

  7. Harvesting Solar Energy for the Future | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Harvesting Solar Energy for the Future Harvesting Solar Energy for the Future In this video, we detail the vision and goals of PARC's research in a broader context.

  8. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  9. Transportation energy data book: Edition 13

    SciTech Connect (OSTI)

    Davis, S.C.; Strang, S.G.

    1993-03-01

    The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  10. Transportation energy data book: Edition 12

    SciTech Connect (OSTI)

    Davis, S.C.; Morris, M.D.

    1992-03-01

    The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

  11. Energy, Transportation Ministers from Asia-Pacific Nations Pledge

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooperation on Cleaner, More Energy-Efficient Transportation | Department of Energy Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation September 13, 2011 - 7:44pm Addthis SAN FRANCISCO - Energy and transportation ministers from 21 economies in the Asia-Pacific region today agreed to continue

  12. The Role Of IC Engines In Future Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of IC Engines In Future Energy Use The Role Of IC Engines In Future Energy Use Reviews future market trends and forecasts, and future engine challenges and research focus PDF icon ...

  13. Secretary Moniz: Biofuels Important to America's Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington,

  14. DOE/Sandia Tribal Energy Internship Program: Immersion of Future...

    Broader source: Energy.gov (indexed) [DOE]

    DOE SANDIA TRIBAL ENERGY - INTERNSHIP PROGRAM Immersion of future leaders into ... Energy Resources in Tribal Communities" "It was really nice when an ...

  15. Take Action Now: Empower a Secure Energy Future 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future 2 handout.

  16. Take Action Now: Empower a Secure Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future campaign handout.

  17. Departmental Energy, Renewable Energy and Transportation Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-02-27

    The order defines requirements and responsibilities for managing the Department's energy, building and fleets.

  18. Sustainable Transportation Summit | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    On July 11-12, the U.S. Department of Energy will host the first-ever Sustainable ... The Sustainable Transportation Summit seeks to engage a diverse stakeholder community ...

  19. Transportation energy data book: Edition 15

    SciTech Connect (OSTI)

    Davis, S.C.

    1995-05-01

    The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  20. NREL: Energy Analysis - Renewable Electricity Futures Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Futures Study RE Futures Scenario Viewer A screenshot of the main map on the RE Futures Scenario Viewer Explore the RE Futures scenarios at a state-level and download the data. RE Futures Visualizations These visualizations are based on RE Futures modeling and represent the transformation of the U.S. electric system to a high renewable system from 2010 to 2050 and the hourly operation and transmission flow of that system in 2050. Transformation of the Electric Sector

  1. Transportation energy trends and issues through 2030

    SciTech Connect (OSTI)

    DeCicco, J.M.

    1996-12-31

    Controlling transportation energy use looms as a serious challenge for the United States in the 21st century. Demand for transportation services is steadily growing, driven by increasing population, economic activity, and incomes. Few forces presently constrain growth in travel by the energy-intensive modes of automobile, truck, and air transportation. In contrast to other sectors of the economy, transportation energy efficiency improvements are nearly stagnant. Efficiency increases are now absent in highway modes; aircraft efficiency is improving, but not enough to offset rising air travel. Transportation is also the most oil-dependent sector of the economy as well as the country`s most rapidly growing source of greenhouse gas emissions. A conservative forecast indicates US transportation energy consumption rising from 23 Quads in 1990 to roughly 36 Quads by 2030; less conservative assumptions push the total to 43 Quads by 2030. Yet opportunities exist for efficiency improvements to counter a substantial portion of this growth. The most promising options are technological, with potential long-term efficiency improvements of threefold for light vehicles, twofold for aircraft, and 65 percent for heavy trucks. Combined with system efficiency changes to help limit growth of the energy-intensive modes, transportation energy use might be cut to 19 Quads by 2030. Pursuing cost-effective strategies to move the system toward such reduced energy intensiveness would be clearly valuable for the economy and environment. This paper examines these trends and options, and offers suggestions for policies that could lead to reductions in transportation energy use and its associated problems such as greenhouse gas emissions and oil dependence risks. 24 refs., 6 figs., 3 tabs.

  2. Search for a bridge to the energy future: Proceedings

    SciTech Connect (OSTI)

    Saluja, S.S.

    1986-01-01

    The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

  3. Energy, helium, and the future: II

    SciTech Connect (OSTI)

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  4. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    . In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  5. H{sup -} beam transport experiments in a solenoid low energy beam transport

    SciTech Connect (OSTI)

    Gabor, C.; Back, J. J.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Izaola, Z.

    2012-02-15

    The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

  6. Multi-Path Transportation Futures Study - Lessons for the Transportati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Alternative Transportation Technologies: Hydrogen, Biofuels, ... Act (GPRA) Analysis Environmental Assessment of Plug-In Hybrid Electric Vehicles ...

  7. GIZ Sourcebook Module 5h: Urban Transport and Energy Efficiency...

    Open Energy Info (EERE)

    h: Urban Transport and Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ Sourcebook Module 5h: Urban Transport and Energy Efficiency AgencyCompany...

  8. Improving energy efficiency in the transportation sector

    SciTech Connect (OSTI)

    Plotkin, S.E.

    1994-12-31

    A primary characteristic of transportation in the United States is its high per capita energy consumption. The average US citizen consumes nearly five times as much energy for transportation as the average Japanese and nearly three times as much as the average citizen of France, Britain, or West Germany. The energy efficiency of US transportation has improved substantially over the past two decades (both absolutely and in comparison to Europe), and US travel volume has grown more slowly than in most of the developed world. However, the United States still consumes more than one-third of the world`s transport energy. Also, 96 percent of US transport energy is in the form of oil products. This is more oil than the United States produces, despite its position as one of the world`s largest oil producers. With current problems and expectation of continued growth in travel and energy use, Congress has increasingly turned to transportation energy conservation - in the form of improvements in the technical efficiency of travel, increases in load factors, reductions in travel demand, shifting to alternative fuels, and shifts to more efficient travel modes - as an important policy goal. For example, the Clean Air Amendments of 1990 incorporate transportation demand management as a critical tool in reducing urban air pollution. Legislation proposed in the 102d Congress sought rigorous new automobile and light truck fuel economy standards. With continued increases in U.S. oil imports, urban traffic congestion, and greenhouse gas emissions, and the failure of many urban areas to meet air quality standards, strong congressional interest in new energy conservation initiates is likely to continue.

  9. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect (OSTI)

    Marique, Anne-Francoise Reiter, Sigrid

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by

  10. Transportation Energy Data Book: Edition 29

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2010-07-01

    The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  11. Transportation Energy Data Book: Edition 28

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2009-06-01

    The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  12. Transportation Energy Data Book: Edition 26

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W

    2007-07-01

    The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  13. Transportation Energy Data Book: Edition 25

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W

    2006-06-01

    The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  14. Transportation Energy Data Book: Edition 27

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2008-06-01

    The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  15. Transportation Energy Data Book: Edition 24

    SciTech Connect (OSTI)

    Davis, S.C.

    2005-03-08

    The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  16. Transportation Energy Data Book: Edition 23

    SciTech Connect (OSTI)

    Davis, S.C.

    2003-10-24

    The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  17. Transportation Energy Data Book: Edition 31

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2012-08-01

    The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  18. Transportation Energy Data Book: Edition 32

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2013-08-01

    The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  19. Transportation Energy Data Book: Edition 34

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Boundy, Robert Gary

    2015-08-01

    The Transportation Energy Data Book: Edition 34 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  20. Transportation Energy Data Book. Edition 33

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E.; Boundy, Robert Gary

    2014-07-01

    The Transportation Energy Data Book: Edition 33 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  1. Transportation Energy Data Book: Edition 30

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2011-07-01

    The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

  2. Renewable: A key component of our global energy future

    SciTech Connect (OSTI)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  3. Center for Renewable Energy and Alternative Transportation Technologies (CREATT)

    SciTech Connect (OSTI)

    Mackin, Thomas

    2012-06-30

    The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

  4. Transportation Energy Data Book: Edition 21

    SciTech Connect (OSTI)

    Davis, S.C.

    2001-09-13

    The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  5. Transportation Energy Data Book (Edition 20)

    SciTech Connect (OSTI)

    Davis, S.C.

    2000-10-09

    The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

  6. Transportation Energy Data Book: Edition 14

    SciTech Connect (OSTI)

    Davis, S.C.

    1994-05-01

    Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

  7. Noncommercial Trading in the Energy Futures Market

    Reports and Publications (EIA)

    1996-01-01

    How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

  8. Capturing the Sun, Creating a Clean Energy Future (Brochure)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Capturing the Sun, Creating a Clean ...

  9. Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Future Bioeconomy Growing the Future Bioeconomy Breakout Session IA-Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Growing the Future Bioeconomy Joel Velasco, Senior Vice President, Amyris, Inc velasco_biomass_2014 (3.29 MB) More Documents & Publications Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Sustainable Alternative Jet Fuels

  10. What Sustainable Road Transport Future? Trends and Policy Options...

    Open Energy Info (EERE)

    from the LEDS Global Partnership. When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these...