Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transportation Energy Databook: Edition 17  

SciTech Connect

The Transportation Energy Data Book: Edition 17 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C.

1997-08-01T23:59:59.000Z

2

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

1991b). Manufacturing Energy Consumption Survey: ConsumptionEnergy Databook Chapter IV, Energy Consumption Figure IV-12.Modes Chapter IV, Energy Consumption China Energy Databook

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

3

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Wang, 1995. Chapter VI, Energy Prices China Energy DatabookS 5S3Ss i Chapter VI, Energy Prices China Energy Databookabsent are data on energy prices, key elements in the

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

4

Buildings Energy Databook  

Buildings Energy Data Book (EERE)

2 BUILDINGS 2 BUILDINGS ENERGY DATABOOK U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY DOE's Office of Energy Efficiency and Renewable Energy Buildings Energy Databook The United States Department of Energy's Office of Energy Efficiency and Renewable Energy has developed this Buildings Energy Databook to provide a current and accurate set of comprehensive buildings-related data and to promote the use of such data for consistency throughout DOE programs. The Databook is considered an evolving document as it will be will be periodically updated and additional data will be incorporated. Users are requested to submit additional data (e.g., more current, widely accepted, and/or better documented data) and suggested changes to the contacts below. Please provide full source references along with all data.

5

China energy databook  

SciTech Connect

The response to the first edition of the China Energy Databook was overwhelmingly positive, and has encouraged us to issue this revised, updated, and expanded edition. It has been a natural counterpart to the Energy Analysis Program`s continuing program of collaborative research with the Energy Research Institute. No other current reference volume dedicated to China`s energy system contains a similar variety and quality of material. We have revised some of the categories and data that appeared in the old volume. The adjustment for energy consumption in the transportation sector, for instance, has been slightly changed to include some fuel use in the commercial sector, which was previously left out. As another example, natural gas consumption statistics in the first edition greatly overstated electric utility use; we have rectified that error. Some tables have changed as statistical collection and reporting practices change in China. Figures on gross output value by sector stop with 1992, and economic output in subsequent years is covered by various measures of value-added, such as national income and gross domestic product.

Sinton, J.E.; Fridley, D.G.; Levine, M.D. [eds.

1996-06-01T23:59:59.000Z

6

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

The Petroleum Resources of China. Washington D.C. , U.S.U.S. Department of Energy. A-4 China Energy Databook EnergyImproved Biomass Stoves in China: How Was It Done? E W C / E

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

7

NREL Renewable Energy Databook - 2008 | Open Energy Information  

Open Energy Info (EERE)

NREL Renewable Energy Databook - 2008 Jump to: navigation, search Tool Summary Name: NREL Renewable Energy Databook - 2008 AgencyCompany Organization: National Renewable Energy...

8

China energy databook  

Science Conference Proceedings (OSTI)

The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises` investment funds is directed towards providing housing and social services for workers and their families.

Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [Energy Research Inst., Beijing, BJ (China)

1992-12-31T23:59:59.000Z

9

China energy databook  

Science Conference Proceedings (OSTI)

The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industrics morc energy-efficient, preparing historical reviews of cncrgy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. Preparing this volume confronted us with a number of difficult issues. The most frustrating usually involved the different approaches to sectoral divisions taken in China and the US. For instance, fuel used by motor vehicles belonging to industrial enterprises is counted as industrial consumption in China; only fuel use by vehicles belonging to enterprises engaged primarily in transportation is countcd as transportation use. The estimated adjustment to count all fuel use by vehicles as transportation energy use is quite large, since a large fraction of motor vehicles belong to industrial enterprises. Similarly, Chinese industrial investment figures are skewed compared to those collected in the US because a large portion of enterprises' investment funds is directed towards providing housing and social services for workers and their families.

Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. (eds.) (Lawrence Berkeley Lab., CA (United States)); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi (eds.) (Energy Research Inst., Beijing, BJ (China))

1992-01-01T23:59:59.000Z

10

China energy databook  

SciTech Connect

The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China's State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People's Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. (eds.) (Lawrence Berkeley Lab., CA (United States)); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi (eds.) (Energy Research Inst., Beijing, BJ (China))

1992-11-01T23:59:59.000Z

11

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Electricity Non-hydro renewable China Energy Databook 7.0Gas Non-hydro renewable Electricity China Energy DatabookUSA Japan Non-hydro renewable India China India Japan USA

Fridley, Ed., David

2008-01-01T23:59:59.000Z

12

China energy databook. 1992 Edition  

Science Conference Proceedings (OSTI)

The Energy Analysis Program (EAP) at the Lawrence Berkeley Laboratory (LBL) first becamc involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute (ERI) of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues-we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US.

Sinton, J.E.; Levine, M.D.; Feng Liu; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [Energy Research Inst., Beijing, BJ (China)

1992-11-01T23:59:59.000Z

13

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

from physical energy intensity indicators (energy consumedin constructing energy intensity indicators than value-addedAll aggregate indicators of energy intensity within sectors

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

14

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

com- mercial energy source, petroleum began contribut- ing aFrom British Petroleum. Source: China Energy StatisticalSource: United Nations, 1994; World Energy Council, 1992; British Petroleum,

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

15

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

National Income (billion 1980 yuan) Energy Consumption (Primary Energy Consumption per Unit of National Income IV-24National Total Balance^ Total Primary Energy Consumption * (

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

16

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Renewable Energy Production Capacities, End of 1992 page CHAPTER 1 1 ENERGY INDUSTRY INVESTMENT Investment by State:

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

17

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

1993 National Renewable Energy Production Capacities, End of11-32. National Renewable Energy Production Capacities, End

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

18

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

segments of the energy supply industry) in the early 1980s,in all segments of the energy supply industry allocated to 'Generation and Supply Energy Industry Total Industry

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

19

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

GW) Year Hydro Fossil I960 Nuclear Total Source: Energy inYear Year Hydro I960 Fossil Nuclear Total Source: Energy inof Total Hydro Year I960 Source: Fossil Nuclear Energy in

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

20

China Energy Databook. Revision 4  

SciTech Connect

The Energy Analysis Program at LBL first became involved in Chinese energy issues through a joint China-US symposium on markets and energy demand held in Nanjing Nov. 1988. EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. It was decided to compile, assess, and organize Chinese energy data. Primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system; thus the primary criterion was to relate the data to the structure of energy supply and demand in the past and to indicate probable developments (eg, as indicated by patterns of investment). Caveats are included in forewords to both the 1992 and 1996 editions. A chapter on energy prices is included in the 1996 edition. 1993 energy consumption data are not included since there was a major disruption in energy statistical collection in China that year.

Sinton, J.E., Fridley, D.G., Levine, M.D., Yang, F. [eds.] [Lawrence Berkeley Lab., CA (United States). Energy and Environmental Div.; Zhenping, J., Xing, Z., Kejun, J., Xiaofeng, L. [eds.] [Energy Research Inst., Beijing, BJ (China)

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

editions. New Delhi: Tata Energy Research Institute. UnitedNations. 1994a. Energy Statistics Yearbook 1992. Sales no.Automotive Guide to the China Energy Databook, Distribution

Fridley, Ed., David

2008-01-01T23:59:59.000Z

22

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Total Primary Energy Supply, Guide to the China Energymonthly energy production statistics] Guide to the ChinaChina Energy Databook User Guide and Documentation Access

Fridley, Ed., David

2008-01-01T23:59:59.000Z

23

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

includes natural crude and shale oil. Source: China Energyincludes natural crude and shale oil. U Converted based onincludes natural crude and shale oil. Source: China Energy

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

24

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

International Conference on Coal and the Environment).Resources for Selected Countries China's Coal Resources byType of Coal, End of 1991 Energy Reserves for Selected

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

25

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

storage capacity. Source: Electric Power Industry in China,Water Resources and Electric Power, Ministry of Energy, et1949-1989), Volume X: Electric Power Industry in China. Hong

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

26

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

crude oil, fuel oil, and kerosene. Source: China Energynatural crude and shale oil. Source: China Energy AnnualAssumed to be crude oil. Source: Yang, 1988; Yang, 1991. IV-

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

27

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Efficiency in the Steel Industry with Emphasis on Developing1988). The U.S. Steel Industry: An Energy Perspective.the China Iron and Steel Industry Yearbook (1994). Zhongguo

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

28

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

2001. Zhongguo Qiche Gongye Nianjian (China Automotive Guideto the China Energy Databook, Distribution Version IndustryEditorial Board of the China Automotive Industry Yearbook.

Fridley, Ed., David

2008-01-01T23:59:59.000Z

29

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Export Natural Gas Export Import China Energy Databook 7.0Export TWh Natural Gas Export bm3 Import TWh Import bm3Liquid Natural Gas Exports (t) Imports Electricity Exports (

Fridley, Ed., David

2008-01-01T23:59:59.000Z

30

China energy databook. Revision 2, 1992 edition  

Science Conference Proceedings (OSTI)

The Energy Analysis Program at the Lawrence Berkeley Laboratory (LBL) first became involved in Chinese energy issues through a joint China-US symposium on markets and demand for energy held in Nanjing in November of 1988. Discovering common interests, EAP began to collaborate on projects with the Energy Research Institute of China`s State Planning Commission. In the course of this work it became clear that a major issue in the furtherance of our research was the acquisition of reliable data. In addition to other, more focused activities-evaluating programs of energy conservation undertaken in China and the prospects for making Chinese industries more energy-efficient, preparing historical reviews of energy supply and demand in the People`s Republic of China, sponsoring researchers from China to work with experts at LBL on such topics as energy efficiency standards for buildings, adaptation of US energy analysis software to Chinese conditions, and transportation issues, we decided to compile, assess, and organize Chinese energy data. We are hopeful that this volume will not only help us in our work, but help build a broader community of Chinese energy policy studies within the US. In order to select appropriate data from what was available we established several criteria. Our primary interest was to use the data to help understand the historical evolution and likely future of the Chinese energy system. A primary criterion was thus that the data relate to the structure of energy supply and demand in the past and indicate probable developments (e.g., as indicated by patterns of investment). Other standards were accuracy, consistency with other information, and completeness of coverage. This is not to say that all the data presented herein are accurate, consistent, and complete, but where discrepancies and omissions do occur we have tried to note them.

Sinton, J.E.; Levine, M.D.; Liu, Feng; Davis, W.B. [eds.] [Lawrence Berkeley Lab., CA (United States); Jiang Zhenping; Zhuang Xing; Jiang Kejun; Zhou Dadi [eds.] [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

1993-06-01T23:59:59.000Z

31

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Source (Total Primary Energy) Table 2A.3.1. Net Coal UsageSource (Total Primary Energy) Table 2A.3.1. Net Coal Usagetotal. Chapter 2, Energy Production China Energy Databook 7.0 Table 2A.3.1 Net Coal Usage

Fridley, Ed., David

2008-01-01T23:59:59.000Z

32

2004 Buildings Energy Databook -- Revised January 2005  

Buildings Energy Data Book (EERE)

January 2005 January 2005 D I S C L A I M E R This document was designed for the internal use of the United States Department of Energy. This document will be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

33

2000 BTS Core Databook  

Buildings Energy Data Book (EERE)

0 BTS CORE DATABOOK 0 BTS CORE DATABOOK 2000 BTS CORE DATABOOK OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY * U.S. DEPARTMENT OF ENERGY This version is dated: August 7, 2000 DISCLAIMER This document was designed for the internal use of the United States Department of Energy. This document was also designed to be occasionally updated and, therefore, this copy may not reflect the most current version. This document was prepared as account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

34

NREL: Power Technologies Energy Data Book - Calculators  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

35

NREL: Power Technologies Energy Data Book - Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

36

NREL: Power Technologies Energy Data Book - Wind Farm Area Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

37

NREL: Power Technologies Energy Data Book - Chapter 13. GIS Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

38

NREL: Power Technologies Energy Data Book - Chapter 11. Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

39

NREL: Power Technologies Energy Data Book - Chapter 12. Conversion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

40

NREL: Power Technologies Energy Data Book - Chapter 5. Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

NREL: Power Technologies Energy Data Book - Technology Cross...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

42

NREL: Power Technologies Energy Data Book - Chapter 3. Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

43

NREL: Power Technologies Energy Data Book - Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

44

NREL: Power Technologies Energy Data Book - Chapter 2. Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

45

NREL: Power Technologies Energy Data Book - Calculators: PV Area...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

46

NREL: Power Technologies Energy Data Book - Chapter 4. Forecasts...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

47

NREL: Power Technologies Energy Data Book - Chapter 6. Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

48

NREL: Power Technologies Energy Data Book - Chapter 9. Prices  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

49

NREL: Power Technologies Energy Data Book - Chapter 8. Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

50

NREL: Power Technologies Energy Data Book - Chapter 1. Introduction  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

51

NREL: Power Technologies Energy Data Book - Chapter 10. Economic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Databook Home More Search Options Search Site Map Featured Links Biomass Energy Data Book Buildings Energy Data Book Hydrogen Energy Data Book Transportation Energy Data Book...

52

China Energy Databook -- User Guide and Documentation, Version 7.0  

Science Conference Proceedings (OSTI)

Since 2001, China's energy consumption has grown more quickly than expected by Chinese or international observers. This edition of the China Energy Databook traces the growth of the energy system through 2006. As with version six, the Databook covers a wide range of energy-related information, including resources and reserves, production, consumption, investment, equipment, prices, trade, environment, economy, and demographic data. These data provide an extensive quantitative foundation for understanding China's growing energy system. In addition to providing updated data through 2006, version seven includes revised energy and GDP data back to the 1990s. In the 2005 China Energy Statistical Yearbook, China's National Bureau of Statistics (NBS) published revised energy production, consumption, and usage data covering the years 1998 to 2003. Most of these revisions related to coal production and consumption, though natural gas data were also adjusted. In order to accommodate underestimated service sector growth, the NBS also released revised GDP data in 2005. Beyond the inclusion of historical revisions in the seventh edition, no attempt has been made to rectify known or suspected issues in the official data. The purpose of this volume is to provide a common basis for understanding China's energy system. In order to broaden understanding of China's energy system, the Databook includes information from industry yearbooks, periodicals, and government websites in addition to data published by NBS. Rather than discarding discontinued data series, information that is no longer possible to update has been placed in C section tables and figures in each chapter. As with previous versions, the data are presented in digital database and tabular formats. The compilation of updated data is the result of tireless work by Lu Hongyou and Nina Zheng.

Fridley, Ed., David; Aden, Ed., Nathaniel; Lu, Ed., Hongyou; Zheng, Ed., Nina

2008-10-01T23:59:59.000Z

53

Power Technologies Energy Data Book  

DOE Data Explorer (OSTI)

The Web site also features energy-conversion calculators and features links to the Transportation Energy Data Book and Buildings Energy Data Book. [copied from http://www.nrel.gov/analysis/power_databook/chapter1.html

Aabakken, Jrn [Editor

54

2001 BTS Core Databook  

Buildings Energy Data Book (EERE)

1 BTS CORE 1 BTS CORE DATABOOK OFFICE OF ENERGY EFFICIENCY AND RENEWABLE ENERGY U.S. DEPARTMENT OF ENERGY This version is dated: November 30, 2001 REVISED data tables on the web site that have been changed since November 30, 2001 include tables: 5.6.7 5.6.8 5.6.9 5.10.8 5.10.9 5.10.10 5.10.11 5.10.12 5.10.13 5.10.14 5.10.15 5.10.16 5.10.17 5.10.18 NEW data tables on the web site that have been added since July 13, 2001 include tables: 5.6.14 5.9.7 5.9.8 5.9.9 REVISED data tables on the web site that have been changed since July 13, 2001 include tables: 4.1.1 4.1.2 4.1.4 4.1.5 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.9 4.3.1 4.3.2 4.3.3 4.3.4 4.5.1 4.5.2 4.5.3 5.1.2 5.3.1 5.8.1 5.10.1 6.2.4 7.1.8 7.3.3 These tables are not included in this version of the 2001 BTS Core Databook. DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER

55

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

displaying national industrial energy consumption by energyXinjiang National Electricity Energy consumption ConsumptionXinjiang National Total [1] Tottal energy consumption is

Fridley, Ed., David

2008-01-01T23:59:59.000Z

56

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Generation & Supply Energy Industry Subtotal Total IndustryGeneration & Supply Energy Industry Subtotal Energy Share ofWater Production & Supply Industry Total Chapter 4, Energy

Fridley, Ed., David

2008-01-01T23:59:59.000Z

57

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Beijing. China National Petroleum Corporation. 1988-1999,2004 and 2007. China Petroleum Industry Yearbook.Beijing: Petroleum Industry Press. China Transportation

Fridley, Ed., David

2008-01-01T23:59:59.000Z

58

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

7.0 Table 4B.3. (b) Energy Intensity Indicators by ProvinceTable 4B.3. (b) Energy Intensity Indicators by Province (Table 4B.3. (b) Energy Intensity Indicators by Province (

Fridley, Ed., David

2008-01-01T23:59:59.000Z

59

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

1980-1996 Chapter 6, Energy Prices Table 6B.1. Ex-Factory1990- 2006 Table 6B.7. Energy Price of Coal and Petroleum1986-88 Chapter 6, Energy Prices Figure 6-1. Ex-Factory

Fridley, Ed., David

2008-01-01T23:59:59.000Z

60

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

1981-1995 Chapter 4, Energy Consumption Table 4A.1.1.Primary Energy Consumption Table 4A.1.2.Primary Energy Consumption (Mtce) Table 4A.1.3. Primary

Fridley, Ed., David

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Table 2B.28. Renewable Energy Production Table 2B.29. WindTable 2B.28. Renewable Energy Production Table 2B.29. Wind7.0 Table 2B.28. Renewable Energy Production 1. 1990s.

Fridley, Ed., David

2008-01-01T23:59:59.000Z

62

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

3. Commercial and Non-Hydro Renewable Energy, Mtoe Country4. Commercial and Non-hydro Renewable Energy, Shares Country3. Commercial and Non-Hydro Renewable Energy, Mtoe Country

Fridley, Ed., David

2008-01-01T23:59:59.000Z

63

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

tonnes 2. Crude Oil Imports by Source, 2006 million tonnesby Province and Energy Source (Crude Oil) Table 2A.2.3.by Province and Energy Source (Crude Oil) Table 2A.2.3.

Fridley, Ed., David

2008-01-01T23:59:59.000Z

64

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

and Energy Source (Crude Oil) Table 2A.2.3. Commercial2006 Table 2B.9. China's Crude Oil Production by Oilfield,Technical Indicators of Crude Oil Production, 1970-2006

Fridley, Ed., David

2008-01-01T23:59:59.000Z

65

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Table 6B.7. Energy Price of Coal and Petroleum Products,March 1992 Table 6C.2. Coal Prices, Local Markets Table6C.3. Average Price of Coal in Various Cities Table 6C.4.

Fridley, Ed., David

2008-01-01T23:59:59.000Z

66

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

5] Exports Imports Electricity [4] Net Trade [5] ExportsPetroleum Electricity Mtce exports Note: Natural gas tradeand Trade by Energy Type 1. Mtoe Liquids Year Solids China Primary Electricity [

Fridley, Ed., David

2008-01-01T23:59:59.000Z

67

Biomass Databook ed4.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, TN 37932 For more information please contact: Stacy Davis (865) 946-1256...

68

China Energy Primer  

E-Print Network (OSTI)

2006) Unit: (%) Hydro Fossil Nuclear Source: China EnergyNuclear Hydro Fossil Fossil Source: China Energy Databook,TWh) Hydro Fossil Nuclear Annual Growth Source: China Energy

Ni, Chun Chun

2010-01-01T23:59:59.000Z

69

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

development, with solar water heaters and large plastic-Total Capacity . Technology Solar water heaters Solar heated

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

70

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

I.I Electricity f District Heating U Kerosene Town Naturalof Waste Gases District Heating Replacement of Small Thermalgas. Much- publicized district heating schemes have resulted

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

71

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

peat, and oil shale, Crude oil and natural gas liquids.peat, and oil shale, Crude oil and natural gas liquids.Natural gas extraction Crude oil refining Shale oil

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

72

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

on 1 July. * Either maximum demand or transformer capacity1 July. * Either maximum demand or transformer capacity is1 October. * Either maximum demand or transformer capacity

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

73

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

11-26. Principal Thermal Power Plants >600.MW, 1991 Name ofTable 11-26. Principal Thermal Power Plants >600 MW, 1991 (plants (Table III-5). Thermal power plants can be built more

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

74

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Natural Gas subtotal extraction refining Electric Power subtotal generationNatural Gas subtotal extraction refining Electric Power subtotal generationNatural Gas subtotal extraction refining Electric Power subtotal generation

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

75

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

1994 7. Average Wholesale Electricity Prices by Region 8.Retail Electricity Price by Sector, 1994 9. Electricityon coal, oil, and electricity prices show that much progress

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

76

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

metric ton) (b)7.5to 105 Biogas (thousand m3) ** 14 to 17esti- mates, the potential biogas resource is about 82 Mtce,crop wastes (see Table IV-21). Biogas digesters have been

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

77

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

industrial f preferential price fi Agricultural Basic Electricityindustrial f preferential price If Agricultural production Basic Electricityindustrial f preferential price fi Agricultural production Irrigation in poor counties Basic Electricity

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

78

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Crude oil refining Shale oil production Total of which:Crude oil refining Shale oil production Total of which:Production Changes Imports Exports I.I II.1 Hard coal, lignite, peat, and oil shale,

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

79

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

11. Anhui Grid Basic Electricity Rates, Effective 1993 12.Tangshan Grid Basic Electricity Rates, Effective 1993 13.Fujian Grid Basic Electricity Rates, Effective 1993 14.

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

80

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Electricity Rates, Effective 1993 I. Basic Prices Customer Type ResidentialElectricity Rates, Effective 1993 I. Basic Prices, Western Mongolia Grid Customer Type ResidentialElectricity Rates, Effective 1993 (continued) 3. Wholesale Prices, Western Mongolia Grid (yuan/kWh) Customer Type Residential

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

as % of Total Freight Oil and Gas Pipelines (Gt-km) Yearrely much more heavily on oil and gas. The contri- bution ofFuels * Natural Hydro- Oil Gas electricity Subtotal Percent

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

82

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Generation, 1990 6. Hydroelectricity Generation, 1990 7.5 15 to 30 Map II - 5. Hydroelectricity Generation, 1993 MMXfuels, uranium, and hydroelectricity only. COAL Estimated

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

83

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Administration (1987). The Petroleum Resources of China.Resource constraints in petroleum production potential, inby Sector, 1992 11. Petroleum Products Consumption by

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

84

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

coke produced i n industrial coke ovens. "Antique" coke isboilers Industrial boilers Kilns Producer ovens Motorovens Coke ovens and metallurgical furnaces Industrial kilns

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

85

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Power subtotal generation distribution steam & hot waterPower subtotal generation distribution steam & hot waterPower subtotal generation distribution steam & hot water

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

86

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

surcharges, and additional tarrifs depending on location andsurcharges, and additional tarrifs depending on location andsurcharges, and additional tarrifs depending on location and

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

87

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

coal, lignite, peat, and oil shale, Crude oil and naturalcoal, lignite, peat, and oil shale, Crude oil and naturalcoal, lignite, peat, and oil shale. Crude oil and natural

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

88

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

for 21% of total pipeline length (Table 11-31). Total oilreflected in average pipeline length; China's 79 crude oiland 21 other gas pipelines (total length 7,510 km and 195 km

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

89

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

GW) Includes only thermal power generation units over 6 M WFactors for Electric Power Generation, 1978-1994 ChinaNetworks, 1991 Thermal Power Generation and Capacity by

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

90

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

2. Coal Production, 1993 3. Crude Oil Production, 1993 4.from pri- vate mines. Crude oil includes natural crude andgasoline. * * Assumed to be crude oil. Source: Yang, 1988;

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

91

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Power Generation Power Distribution Steam and Hot WaterPower Generation Power Distribution Steam and Hot Watersubtotal generation distribution steam & hot water Total 1

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

92

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

a few demonstration wind farms with units of several tens ofset up. Total capacity of wind farms was 5 M W in 1992, andscale wind generators Wind farms (six farms) Wind pumps 120

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

93

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

VI-5. Average Retail Prices of Coal and Oil Products inMarkets 5. Average Retail Prices of Coal and Oil Products inVI-3. Average Retail Price of Coal in Various Cities yuan/

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

94

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

W conventional and 240 M W pumped storage capacity. Source:Geheyan Hubei Guangzhou Pumped Storage Guangdong Tiansheng-

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

95

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

GW) (GW) (GW) of total: Cogeneration Gas Turbines Diesel includes heat produced by cogeneration and dedicated heatWhile the capacity of cogeneration units has risen steadi-

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

96

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

EJ) Oilf (EJ) Natural Gas Hydro- electricity 1 Total (EJ) (Amount Oilfl Natural If Gas Hydro- electricity (TWh/year)Japan USA FSU World f H Hydro- electricity Uranium Unless

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

97

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Oil Production, 1993 4. Natural Gas Production, 1993 5.1989 Petroleum and Natural Gas Extraction Investment (FixedI960 Crude (EJ) Oilf (EJ) Natural Gas Hydro- electricity 1

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

98

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

the improve- ment of biomass combustion in rural householdsby inefficient combustion of traditional biomass fuels to

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

99

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Urban Rural 2. Electricity Consumption Shares Year Urban TWhSector Electricity Consumption, Selected Years, 1952-1993Sector Electricity Consumption, Selected Years, 1952-1993

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

100

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

m of gas per year. Some biomass gasifier projects have beenbiogas digesters Biomass gasifiers 300 thousand m 300 units

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

China Energy Databook - Rev. 4  

E-Print Network (OSTI)

Production by Province, 1990 9. Coke Production, 1949-199410. Coking Coal Used in Coke Production, 1980-1992 11.coal plus small amounts of coke and middlings. Coal is used

Sinton Editor, J.E.

2010-01-01T23:59:59.000Z

102

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

103

China Energy Primer  

E-Print Network (OSTI)

Percent of Gross Generation Source: China Energy Databook,Heat Rate Net Generation Efficiency Source: China Energyencourage more generation from different sources, the State

Ni, Chun Chun

2010-01-01T23:59:59.000Z

104

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY  

E-Print Network (OSTI)

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY ANALYSES FOR THE 2007 INTEGRATED ENERGY POLICY REPORT Jim Page, Malachi Weng-Gutierrez, and Gordon Schremp Fossil Fuels Office Fuels and Transportation....................................................................................................... 3 SUMMARY OF PROPOSED TRANSPORTATION ENERGY ANALYSES ............... 4 Background

105

Westminster Energy Environment Transport Forum | Open Energy...  

Open Energy Info (EERE)

Westminster Energy Environment Transport Forum Jump to: navigation, search Name Westminster Energy, Environment & Transport Forum Place United Kingdom Product String representation...

106

Transportation Energy-Efficiency Workshop  

U.S. Energy Information Administration (EIA)

Notes on the Energy Information Administration's summary session on Transportation Sector Energy-Efficiency Workshop on March 21, 1996

107

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

108

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

109

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

110

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Californias Energy Future - Transportation Energy Use inCalifornias Energy Future - Transportation Energy Use inCalifornias Energy Future - Transportation Energy Use in

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

111

China Energy Primer  

E-Print Network (OSTI)

Coal Electricity Diesel Oil Gasoline Source: China Energyoil exports Crude oil imports Source: China Energy Databook,and as an energy source for oil and gas companies own use.

Ni, Chun Chun

2010-01-01T23:59:59.000Z

112

China Energy Primer  

E-Print Network (OSTI)

10% Heating Supply Industry Source: China Energy Databook,Industry Residential consumption Others Thermal Power Heating Supply Source: China Energyindustry which has attracted tremendous attention from international society, has a greater impact on the countrys domestic energy supply,

Ni, Chun Chun

2010-01-01T23:59:59.000Z

113

Transportation technology energy options  

SciTech Connect

New transportation technologies and their potential contribution to the solution of the energy problem are discussed. DOE transportation technologies briefly discussed are: Stirling and gas-turbine engines; constant-speed accessory-drive system; heavy-duty diesel-truck bottoming cycle; continuously variable transmission; turbocompound diesel engine; gas-turbine bus; new hydrocarbons (broad-cut petroleum fuels); alcohol fuels; synthetic fuels; advanced fuels (hydrogen); electric and hybrid vehicles; marine-diesel bottoming cycle; coal/oil-slurry marine steam turbines; pipeline bottoming cycle; and medium-speed diesel alternative fuels.

Bernard, M.J. III

1979-01-01T23:59:59.000Z

114

Transportation Research | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation Analysis Vehicle Systems Energy Storage Propulsion Materials Lightweighting Materials Bioenergy...

115

Green-Energy Transportation  

E-Print Network (OSTI)

Battery technology is the key bottleneck in many cyberphysical systems (CPS). For green-energy CPS transportation applications, such as hybrid electrical vehicles (HEVs) and plug-in HEVs (PHEVs), the battery system design is mostly based on lithium-ion rechargeable electrochemical battery technology, which is bulky, expensive, unreliable, and is the primary roadblock for PHEV adoption and market penetration. For PHEVs, the battery system performance and lifetime reliability are further affected by various user-dependent effects. Battery system modeling and user study are thus essential for battery system design and optimization. This paper presents detailed investigation on battery system modeling and user study for emerging PHEVs. The proposed modeling solution can accurately characterize battery system run-time charge-cycle efficiency, and long-term cycle life. In particular, it models battery system capacity variation and fading due to fabrication and run-time aging effects. An embedded monitoring system is designed and deployed in a number of HEVs and PHEVs, which can monitor users driving behavior and battery usage at real time. Using the proposed modeling and monitoring solutions, we conduct user study to investigate battery system run-time usage, characterize user driving behavior, and study the impact of user driving patterns on battery system run-time charge-cycle efficiency, capacity variation and reliability, and life-cycle economy. This work is the first step in battery system design and optimization for emerging green-energy CPS transportation applications. 1.

Kun Li; Jie Wu; Yifei Jiang; Li Shang; Qin Lv; Robert Dick; Dragan Maksimovic; Kun Li; Jie Wu; Yifei Jiang; Li Shang; Qin Lv; Robert Dick; Dragan Maksimovic

2010-01-01T23:59:59.000Z

116

Sustainable Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation Sustainable Transportation Sustainable Transportation Bioenergy Read more Hydrogen and Fuel Cells Read more Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices, EERE advances the development of next-generation technologies to improve plug-in electric and other alternative-fuel vehicles, advanced combustion engine and vehicle efficiency, and produce low-carbon domestic transportation fuels. SUSTAINABLE TRANSPORTATION Vehicles Bioenergy Hydrogen & Fuel Cells Vehicles Bioenergy

117

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

118

Transportation Energy Futures  

E-Print Network (OSTI)

TRANSPORTATION ment of Oil Shale Technology. Washing- ton,interest and investments in oil shale, ethanol, coal liquidsbiomass materials, coal, oil shale, tar sands, natural gas,

Sperling, Daniel

1989-01-01T23:59:59.000Z

119

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the world’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nation’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

120

Energy Information Administration - Transportation Energy ...  

U.S. Energy Information Administration (EIA)

Survey forms used by the U.S. Department of Energy (DOE) to collect energy information (e.g., gasoline prices, oil and gas reserves, coal production, etc.).

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

California DREAMing: the design of residential demand responsive technology with people in mind  

E-Print Network (OSTI)

of the Typical Appliance Usage Buildings Energy Databook (of the Typical Appliance Usage Buildings Energy Databook (

Peffer, Therese E.

2009-01-01T23:59:59.000Z

122

Using Wireless Power Meters to Measure Energy Use of Miscellaneous and Electronic Devices in Buildings  

E-Print Network (OSTI)

References US DOE. 2009 Buildings Energy Databook. U.S.measurements. Energy and Buildings. Vol. 40. 2008. pp. RothSavings Potential in 2008 by Building Type. TIAX LLC, 2010.

Brown, Richard

2012-01-01T23:59:59.000Z

123

TRANSPORTATION ENERGY DATA BOOK: EDITION 21  

NLE Websites -- All DOE Office Websites (Extended Search)

6 (Edition 21 of ORNL-5198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 21 Stacy C. Davis Oak Ridge National Laboratory October 2001...

124

Energy Efficiency: Transportation and Buildings  

Science Conference Proceedings (OSTI)

We present a condensed version of the American Physical Society's 2008 analysis of energy efficiency in the transportation and buildings sectors in the United States with updated numbers. In addition to presenting technical findings

Michael S. Lubell; Burton Richter

2011-01-01T23:59:59.000Z

125

Transportation Energy Futures  

E-Print Network (OSTI)

solar or nuclear power(from fission or fusion reactors), andand nuclear energy (from breeder reactors or possibly fusion

Sperling, Daniel

1989-01-01T23:59:59.000Z

126

Transportable Energy Storage Systems Project  

Science Conference Proceedings (OSTI)

This project will define the requirements and specification for a transportable energy storage system and then screen various energy storage options and assess their capability to meet that specification. The application will be designed to meet peak electrical loads (3-4 hours of storage) on the electrical distribution system.

2009-10-23T23:59:59.000Z

127

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

128

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

Yang, Christopher

2011-01-01T23:59:59.000Z

129

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

130

China Energy Primer  

SciTech Connect

Based on extensive analysis of the 'China Energy Databook Version 7' (October 2008) this Primer for China's Energy Industry draws a broad picture of China's energy industry with the two goals of helping users read and interpret the data presented in the 'China Energy Databook' and understand the historical evolution of China's energy inustry. Primer provides comprehensive historical reviews of China's energy industry including its supply and demand, exports and imports, investments, environment, and most importantly, its complicated pricing system, a key element in the analysis of China's energy sector.

Ni, Chun Chun

2009-11-16T23:59:59.000Z

131

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

132

Electrofuels: Versatile Transportation Energy Solutions  

Science Conference Proceedings (OSTI)

Electrofuels Project: ARPA-Es Electrofuels Project is using microorganisms to create liquid transportation fuels in a new and different way that could be up to 10 times more energy efficient than current biofuel production methods. ARPA-E is the only U.S. government agency currently funding research on Electrofuels.

None

2010-07-01T23:59:59.000Z

133

Essays on Urban Transportation and Transportation Energy Policy  

E-Print Network (OSTI)

E?ects of Transportation Energy policy on Tra?c Crashes .of international data. Energy Policy, 33(17), 21832190. O?e?ciency standards. Energy Policy, 33(3), 407419. Blincoe,

Kim, Chun Kon

2008-01-01T23:59:59.000Z

134

Transportation Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Transportation Energy Data Book Transportation Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Energy Data Book Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Other, Transportation Topics: Potentials & Scenarios, Technology characterizations Resource Type: Dataset Website: cta.ornl.gov/data/ Country: United States Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Isospin Transport at Fermi Energies  

E-Print Network (OSTI)

In this paper we investigate isospin transport mechanisms in semi-peripheral collisions at Fermi energies. The effects of the formation of a low density region (neck) between the two reaction partners and of pre-equilibrium emission on the dynamics of isospin equilibration are carefully analyzed. We clearly identify two main contributions to the isospin transport: isospin diffusion due to the $N/Z$ ratio and isospin drift due to the density gradients. Both effects are sensitive to the symmetry part of the nuclear Equation of State (EOS), in particular to the value and slope around saturation density.

V. Baran; M. Colonna; M. Di Toro; M. Zielinska-Pfabe; H. H. Wolter

2005-06-28T23:59:59.000Z

136

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

on Transportation, Energy and Policy convened in 1988. Oilon Transportation, Energy and Policy has been held at theon Transportation, Energy and Policy in July 2009 was the

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

137

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

138

Nanocomposites for Energy Transport, Harvesting and Storage  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Nanocomposites: Nanocomposites for Energy Transport, Harvesting and Storage Sponsored by: The Minerals, Metals and Materials Society,...

139

Energy, Transportation Ministers from Asia-Pacific Nations Pledge...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific...

140

DOE Hydrogen Analysis Repository: Hawaii Transportation Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

future energy demand; analyze the possibility of satisfying a portion of the state's future transportation energy demand through alternative fuels; and recommend a program...

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Thermal Transport in Nanomaterials for Energy Applications  

Science Conference Proceedings (OSTI)

Symposium, Energy Nanomaterials. Presentation Title, Thermal Transport in Nanomaterials for Energy Applications. Author(s), Xinwei Wang. On-Site Speaker ...

142

Transportation Analysis | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

143

The Geography of Transport Systems-Maritime Transportation | Open Energy  

Open Energy Info (EERE)

The Geography of Transport Systems-Maritime Transportation The Geography of Transport Systems-Maritime Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Geography of Transport Systems-Maritime Transportation Agency/Company /Organization: Hofstra University Sector: Energy Focus Area: Transportation Topics: Technology characterizations Resource Type: Publications, Technical report Website: people.hofstra.edu/geotrans/eng/ch3en/conc3en/ch3c4en.html Cost: Free Language: English References: Maritime Transportation[1] "Maritime transportation, similar to land and air modes, operates on its own space, which is at the same time geographical by its physical attributes, strategic by its control and commercial by its usage. While geographical considerations tend to be constant in time, strategic and

144

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

145

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Transportation and Air Quality Transportation Energy Policy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Appliance Energy...

146

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

147

The Transportation Energy Data Book (TEDB)  

E-Print Network (OSTI)

Ridge National Laboratory for the U.S. Department of Energy's Office of Energy Efficiency and Renewable: cta.ornl.gov Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. DepartmentThe Transportation Energy Data Book (TEDB) The Transportation Energy Data Book (TEDB

148

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

149

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B.B. Blevins Executive Director DISCLAIMER This report was prepared by a California has developed longterm forecasts of transportation energy demand as well as projected ranges

150

Energy Transport in the Vaidya System  

E-Print Network (OSTI)

Energy transport mechanisms can be generated by imposing relations between null tetrad Ricci components. Several kinds of mass and density transport generated by these relations are studied for the generalized Vaidya system.

J. P. Krisch; E. N. Glass

2005-03-21T23:59:59.000Z

151

Tips: Transportation | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Tips: Transportation July 5, 2012 - 5:19pm Addthis Tips: Transportation In 2010, Americans traveled a total of 3 trillion miles -- the equivalent of 6.5 million...

152

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy...

153

Sector Transportation | Open Energy Information  

Open Energy Info (EERE)

Results 1- 20 Next (20 | 50 | 100 | 250 | 500) 2011 APTA Public Transportation Fact Book + A Municipal Official's Guide to Diesel Idling Reduction + APEC-Alternative Transport...

154

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

of future contributions from various emerging transportation fuels and technologies is unknown. PotentiallyCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B. B. Blevins Executive Director DISCLAIMER This report was prepared by a California

155

Transportation Energy Model of the World Energy Projection System ...  

U.S. Energy Information Administration (EIA)

The WEPS Transportation Energy Model is a structural accounting model for road, rail, air, domestic shipping, international shipping, and pipeline energy use.

156

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

157

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

158

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not...

159

Estimated United States Transportation Energy Use 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

160

Energy Perspectives: Industrial and transportation sectors ...  

U.S. Energy Information Administration (EIA)

Since 2008, energy use in the transportation, residential, and commercial sectors stayed relatively constant or fell slightly. Industrial consumption grew in 2010 and ...

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

162

Transportation Energy Data Book, Edition 18  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

163

Transportation Energy Data Book, Edition 19  

SciTech Connect

The Transportation Energy Data Book: Edition 19 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (http://www-cta.ornl.gov/data/tedb.htm).

Davis, S.C.

1999-09-01T23:59:59.000Z

164

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 Second Quarter Clean EnergyClean Transportation Jobs Report 2013 Second Quarter Clean EnergyClean Transportation Jobs Report Enivronmental Entrepreneurs (E2) Clean Energy...

165

Energy Policy Act Transportation Rate Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

ii Energy Information Administration/ Energy Policy Act Transportation Rate Study: Interim Report on Coal Transportation Contacts This report, Energy Policy Act ...

166

Transport Energy Use and Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

167

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

168

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

169

Proposed Energy Transport Corridors: West-wide energy corridor programmatic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Transport Corridors: West-wide energy corridor Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the environmental impacts from the proposed action and the range of reasonable alternatives. The proposed action calls for designating more than 6,000 miles of energy transport corridors across the West. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. More Documents & Publications

170

Effective Potential Energy Expression for Membrane Transport  

E-Print Network (OSTI)

All living cells transport molecules and ions across membranes, often against concentration gradients. This active transport requires continual energy expenditure and is clearly a nonequilibrium process for which standard equilibrium thermodynamics is not rigorously applicable. Here we derive a nonequilibrium effective potential that evaluates the per particle transport energy invested by the membrane. A novel method is used whereby a Hamiltonian function is constructed using particle concentrations as generalized coordinates. The associated generalized momenta are simply related to the individual particle energy from which we identify the effective potential. Examples are given and the formalism is compared with the equilibrium Gibb's free energy.

Robert W. Finkel

2007-02-11T23:59:59.000Z

171

Transportation Energy Futures | OpenEI  

Open Energy Info (EERE)

Energy Futures Energy Futures Dataset Summary Description The 2009 National Household Travel Survey (NHTS) provides information to assist transportation planners and policy makers who need comprehensive data on travel and transportation patterns in the United States. The 2009 NHTS updates information gathered in the 2001 NHTS and in prior Nationwide Personal Transportation Surveys (NPTS) conducted in 1969, 1977, 1983, 1990, and 1995. Source U.S. Department of Transportation, Federal Highway Administration Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords NHTS TEF transportation Transportation Energy Futures travel trip Data application/zip icon Travel Day Trip File (zip, 42.6 MiB) application/zip icon Household File (zip, 5 MiB) application/zip icon Person File (zip, 17.4 MiB)

172

Transportation energy data book: edition 16  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

1996-07-01T23:59:59.000Z

173

EC-LEDS Transport | Open Energy Information  

Open Energy Info (EERE)

EC-LEDS Transport EC-LEDS Transport Jump to: navigation, search Name EC-LEDS Transport Agency/Company /Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Country Global References Transportation Assessment Toolkit[1] "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the growth of greenhouse

174

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

175

TRANSPORTATION ENERGY DATA BOOK: EDITION 20  

NLE Websites -- All DOE Office Websites (Extended Search)

59 59 (Edition 20 of ORNL-5 198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 20 Stacy C. Davis Oak Ridge National Laboratory October 2000 Prepared for Office of Transportation Technologies U.S. Department of Energy Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 3783 l-6073 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-OOOR22725 Users of the Transportation Energy Data Book are encouraged to comment on errors, omissions, emphases, and organization of this report to one of the persons listed below. Requests for additional complementary copies of this report, additional data, or information on an existing table should be referred to Ms. Stacy Davis, Oak Ridge National Laboratory.

176

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

177

Transportation energy data book: Edition 12  

SciTech Connect

The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Morris, M.D.

1992-03-01T23:59:59.000Z

178

Transportation energy data book: Edition 13  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

179

Transportation energy data book: Edition 13  

SciTech Connect

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

180

NREL: Energy Analysis - Transportation Energy Futures Project  

NLE Websites -- All DOE Office Websites (Extended Search)

is also available and will be finalized once all reports are released. The Buildings Industry Transportation Electricity Scenarios (BITES) tool is an interactive framework...

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Crossroads: Transportation | Environmental Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

friendly highway transportation technologies that will enable America to use less petroleum. The long-term aim is to develop "leap frog" technologies that will provide...

182

Residential and Transport Energy Use in India: Past Trend and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential and Transport Energy Use in India: Past Trend and Future Outlook Title Residential and Transport Energy Use in India: Past Trend and Future Outlook Publication Type...

183

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

184

Energy for Cleaner Transportation Hydro-Quebec  

E-Print Network (OSTI)

Energy for Cleaner Transportation K. Zaghib Hydro-Quebec Varennes, Quebec, Canada J. Prakash a wide range of topics associated with power sources for hybrid electric cars. Major emphasis

Azad, Abdul-Majeed

185

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum...

186

Transportation energy data book: Edition 15  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1995-05-01T23:59:59.000Z

187

Transportation: Environment, energy and the economy  

DOE Green Energy (OSTI)

In the US, the transportation sector consumes over one quarter of the entire energy used, almost in its entirety as petroleum products, and in quantities greater than the total US domestic oil production. The transportation sector is responsible for a significant fraction of all emissions that either prevent US cities from achieving compliance with EPA air quality standards or have serious global change implications. Finally, the GDP (Gross Domestic Product) and employment due to the sector are low and incommensurate with the high fraction of energy that the transportation sector consumes. We examine below this situation in some detail and make recommendations for improvements.

Petrakis, L.

1993-01-11T23:59:59.000Z

188

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

189

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

190

Energy Information Administration - Transportation Energy Consumption...  

NLE Websites -- All DOE Office Websites (Extended Search)

energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply...

191

Storing and transporting energy - Energy Innovation Portal  

Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a ...

192

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

193

Transportation Energy Data Book: Edition 23  

SciTech Connect

The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2003-10-24T23:59:59.000Z

194

Transportation Energy Data Book: Edition 27  

SciTech Connect

The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2008-06-01T23:59:59.000Z

195

Transportation Energy Data Book: Edition 26  

SciTech Connect

The Transportation Energy Data Book: Edition 26 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2007-07-01T23:59:59.000Z

196

Transportation Energy Data Book: Edition 25  

SciTech Connect

The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2006-06-01T23:59:59.000Z

197

Transportation Energy Data Book: Edition 32  

SciTech Connect

The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL] [ORNL; Diegel, Susan W [ORNL] [ORNL; Boundy, Robert Gary [ORNL] [ORNL

2013-08-01T23:59:59.000Z

198

Transportation Energy Data Book: Edition 24  

SciTech Connect

The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2005-03-08T23:59:59.000Z

199

Transportation Energy Data Book: Edition 29  

SciTech Connect

The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2010-07-01T23:59:59.000Z

200

Transportation Energy Data Book: Edition 28  

DOE Green Energy (OSTI)

The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Transportation Energy Data Book: Edition 30  

SciTech Connect

The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2011-07-01T23:59:59.000Z

202

Transportation Energy Data Book: Edition 31  

SciTech Connect

The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2012-08-01T23:59:59.000Z

203

Transportation Energy Data Book: Edition 14  

Science Conference Proceedings (OSTI)

Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1994-05-01T23:59:59.000Z

204

Transportation Energy Data Book: Edition 21  

Science Conference Proceedings (OSTI)

The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2001-09-13T23:59:59.000Z

205

Transportation Energy Data Book (Edition 20)  

SciTech Connect

The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2000-10-09T23:59:59.000Z

206

Energy Policy Act Transportation Study: Interim Report on ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii Energy Policy Act Transportation Study: Interim Report on Natural Gas Flows and Rates Preface This report, ...

207

Conservation and renewable energy technologies for transportation  

DOE Green Energy (OSTI)

The Office of Transportation Technologies (OTT) is charged with long-term, high-risk, and potentially high-payoff research and development of promising transportation technologies that are unlikely to be undertaken by the private sector alone. OTT activities are designed to develop an advanced technology base within the US transportation industry for future manufacture of more energy-efficient, fuel-flexible, and environmentally sound transportation systems. OTT operations are focused on three areas: advanced automotive propulsion systems including gas turbines, low heat rejection diesel, and electric vehicle technologies; advanced materials development and tribology research; and research, development, demonstration, test, and evaluation (including field testing in fleet operations) of alternative fuels. Five papers describing the transportation technologies program have been indexed separately for inclusion on the data base.

Not Available

1990-11-01T23:59:59.000Z

208

TRANSPORTATION ENERGY DATA BOOK: EDITION 22  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 (Edition 22 of ORNL-5198) Center for Transportation Analysis Engineering Science & Technology Division TRANSPORTATION ENERGY DATA BOOK: EDITION 22 Stacy C. Davis Susan W. Diegel Oak Ridge National Laboratory September 2002 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by the Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6073 Managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the

209

Energy transport through rare collisions  

E-Print Network (OSTI)

We study a one-dimensional hamiltonian chain of masses perturbed by an energy conserving noise. The dynamics is such that, according to its hamiltonian part, particles move freely in cells and interact with their neighbors through collisions, made possible by a small overlap of size $\\epsilon > 0$ between near cells. The noise only randomly flips the velocity of the particles. If $\\epsilon \\rightarrow 0$, and if time is rescaled by a factor $1/{\\epsilon}$, we show that energy evolves autonomously according to a stochastic equation, which hydrodynamic limit is known in some cases. In particular, if only two different energies are present, the limiting process coincides with the simple symmetric exclusion process.

Franois Huveneers

2011-06-29T23:59:59.000Z

210

Energy and Transportation Science Division (ETSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

211

Energy and Transportation Science | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

research areas and facilities, ETSD research is advancing building and electricity systems integration, transformational energy-efficient manufacturing, and intelligent,...

212

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Meier AKMeier@lbl.gov (510) 486-4740 Links Transportation and Air Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

213

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Sustainable Transportation  

Energy.gov (U.S. Department of Energy (DOE))

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Sustainable Transportation, May 2013.

214

Audit of the Department of Energy's Transportation Accident Resistant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Accident Resistant Container Program, IG-0380 Audit of the Department of Energy's Transportation Accident Resistant Container Program, IG-0380 Audit of the...

215

Transportation Energy Data Book: Edition 31  

DOE Data Explorer (OSTI)

The Transportation Energy Data Book: Edition 31 is a statistical compendium designed for use as a reference reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. [Roltek, Inc.

216

Energy, Transportation Ministers from Asia-Pacific Nations Pledge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation September 13, 2011 - 7:44pm Addthis SAN FRANCISCO - Energy and transportation ministers from 21 economies in the Asia-Pacific region today agreed to continue progress on initiatives to make transportation in the region cleaner and more energy-efficient, U.S. Transportation Secretary Ray LaHood and U.S. Energy Secretary Steven Chu announced today. The announcement came during the first-ever joint Transportation and Energy Ministerial Conference held by the Asia-Pacific Economic Cooperation (APEC), the principal economic organization for the region. Secretaries

217

Molecular Weight & Energy Transport 7 September 2011  

E-Print Network (OSTI)

Molecular Weight & Energy Transport 7 September 2011 Goals · Review mean molecular weight · Practice working with diffusion Mean Molecular Weight 1. We will frequently use µ, µe, and µI (the mean molecular weight per particle, per free electron, and per ion, respectively). Let's practice computing

Militzer, Burkhard

218

Transportation Storage Interface | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Status...

219

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

220

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3: SCENARIOS FOR A LOW-CARBON TRANSPORTATION FUTURE PART 3 Part 3: Scenarios

California at Davis, University of

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3 CHAPTER 10: OPTIMIZING THE TRANSPORTATION CLIMATE MITIGATION WEDGE Chapter

California at Davis, University of

222

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

223

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Worldwide electricity consumption in 2020 is projected to be 76 percent higher than its 1997 level. Long-term growth in electricity consumption is expected to be strongest in the developing economies of Asia, followed by Central and South America. The projected growth rates for electricity consumption in the developing Asian nations are close to 5 percent per year over the International Energy Outlook 2000 (IEO2000) forecast period (Table 20), and the growth rate for Central and South America averages about 4.2 percent per year. As a result, the developing nations in the two regions

224

Estimating the Meridional Energy Transports in the Atmosphere and Ocean  

Science Conference Proceedings (OSTI)

The poleward energy transports in the atmosphereocean system are estimated for the annual mean and the four seasons based on satellite measurements of the net radiation balance at the top of the atmosphere, atmospheric transports of energy at ...

B. C. Carissimo; A. H. Oort; T. H. Vonder Haar

1985-01-01T23:59:59.000Z

225

Energy Efficiency Report:Chapter 5: Transportation Sector  

U.S. Energy Information Administration (EIA)

... e Green, David L. And Yuehui Fan, Transportation Energy Efficiency Trends, 1972-1992, Oak Ridge National Laboratory (December 1994) ...

226

Table 2.1e Transportation Sector Energy Consumption Estimates ...  

U.S. Energy Information Administration (EIA)

Table 2.1e Transportation Sector Energy Consumption Estimates, 1949-2011 (Trillion Btu) Year: Primary Consumption 1: Electricity

227

Mechanical and Thermal Energy Transport in Biological and ...  

Science Conference Proceedings (OSTI)

A series of studies will be presented, including energy transport in carbon ... performance for applications in thermal management and energy harvesting.

228

Few transportation fuels surpass the energy densities of ...  

U.S. Energy Information Administration (EIA)

Energy density and the cost, weight, and size of onboard energy storage are important characteristics of fuels for transportation. Fuels that require ...

229

UN Alcohol Energy Data: Consumption by transportation industry...  

Open Energy Info (EERE)

by transportation industry The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and...

230

Consumer Views on Transportation and Energy  

DOE Green Energy (OSTI)

This report has been assembled to provide the Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. An issue that still needs attention from EERE is the finding that the public tends to lack information about hybrid vehicles, hydrogen, and alternative fuels for passenger vehicles. Also, the public seems to want fuel-efficiency improvements and cleaner fuels, but is not very willing to pay for these benefits. The public also says that it supports initiatives to promote energy conservation over increased production and that it is willing to make changes such as driving less in an effort to reduce oil consumption.

Steiner, E.

2003-08-01T23:59:59.000Z

231

Transportation of Nuclear Materials | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

232

Texas Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Texas Department of Transportation Jump to: navigation, search Logo: Texas Department of Transportation Name Texas Department of Transportation Short Name TxDOT Place Austin, Texas...

233

VTPI-Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

VTPI-Transportation Statistics Jump to: navigation, search Name VTPI-Transportation Statistics AgencyCompany Organization Victoria Transportation Policy Institute Focus Area...

234

Innovation Center for Energy and Transportation ICET | Open Energy  

Open Energy Info (EERE)

Center for Energy and Transportation ICET Center for Energy and Transportation ICET Jump to: navigation, search Logo: Innovation Center for Energy and Transportation (ICET) Name Innovation Center for Energy and Transportation (ICET) Place Beijing, China Zip 100020 Sector Carbon Product Beijing-based independent non-profit organization to mitigate climate change through the promotion of clean, low carbon and energy efficient policies and technologies in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Developer American Public Transportation Association | Open Energy...  

Open Energy Info (EERE)

value "American Public Transportation Association" 2011 APTA Public Transportation Fact Book + Quantifying Greenhouse Gas Emissions from Transit + Property: Developer Value:...

236

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

237

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS CHAPTER 8: SCENARIOS FOR DEEP REDUCTIONS IN GREENHOUSE GAS EMISSIONS PART 3

California at Davis, University of

238

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

239

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

240

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

242

Energy Basics: Natural Gas as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Natural Gas as a Transportation Fuel Only about one tenth of one percent of all of the natural gas in the United States is currently used for transportation...

243

Transportation and Energy Use Data Files  

U.S. Energy Information Administration (EIA) Indexed Site

Data Files Data Files Transportation and Energy Use Data Files Data from the last two Residential Transportation Energy Consumption Surveys are available on-line. These data include fuel consumption and expenditures, vehicle-miles traveled, vehicle characteristics, and household characteristics from national samples of over 3,000 households. To protect respondent confidentiality, these data files do not contain any information which could be used to identify individual households. The lowest level of geographic detail provided is the Census Division (a grouping of 3 to 5 States.) 1994 RTECS Public Use Data 1991 RTECS Public Use Data 1994 RTECS Public Use Data The data from the 1994 RTECS is distributed in dBase and ASCII formats. The data in each set has been compressed using PKZIP. After downloading either the ASCII or dBase set, place the downloaded file in a separate directory and expand it using pkunzip. If you don't have pkunzip.exe, you can download that package here. PKUNZIP.EXE is in PKZ204g.exe. PKUNZIP.EXE is the only file you need, but the developers of the product have asked that the entire package be distributed and not the individual files. You can however find pkunzip.exe on several other Internet sites. If you download PKZ204g.exe to a separate directory, type PKZ204g and press ENTER.

244

Technology Mapping of the Renewable Energy, Buildings and Transport  

Open Energy Info (EERE)

Technology Mapping of the Renewable Energy, Buildings and Transport Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary Name: Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Energy Focus Area: Energy Efficiency, Renewable Energy, Buildings, Industry, Transportation Topics: Implementation, Market analysis, Policies/deployment programs, Pathways analysis Resource Type: Publications, Guide/manual Website: ictsd.org/downloads/2010/06/synthesis-re-transport-buildings.pdf Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Screenshot

245

Chapter 47 - Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Transportation Chapter 47 - Transportation 47.1TransportationAirCharterServices0.pdf More Documents & Publications AcqGuide47pt1.doc&0; TEC Working Group Topic Groups...

246

Access and Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAccessandTransportation&oldid647797" Category: NEPA Resources...

247

National Transportation Stakeholders Forum | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Stakeholders Forum National Transportation Stakeholders Forum Presentation by Ahmad Al-Daouk, Director of National Security Department NNSA Service Center National...

248

International Transport Forum | Open Energy Information  

Open Energy Info (EERE)

Forum Jump to: navigation, search Logo: International Transport Forum Name International Transport Forum Address 2 rue Andr Pascal, F-75775 Place Paris, France Website http:...

249

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Gases, Regulated Emissions, and Energy Use in Transportation Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/main Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET References: GREET Fleet Main Page[1] Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet)

250

INL Site Executable Plan for Energy and Transportation Fuels Management  

Science Conference Proceedings (OSTI)

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

251

Packaging and Transportation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Packaging and Transportation Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012 Annual Report. SUPPORTING PROGRAMS SAFE TRANSPORTATION OF RADIOLOGICAL SHIPMENTS Transportation Emergency Preparedness Program (TEPP) TEPP provides the tools for planning, training and exercises, and technical assistance to assist State and Tribal authorities in preparing for response

252

NREL: News - Transportation Energy Futures Study Reveals Potential...  

NLE Websites -- All DOE Office Websites (Extended Search)

generation, and other applications. Transportation Demand Opportunities to save energy and abate GHG emissions through community development and urban planning. Trip...

253

Pages that link to "Transportation" | Open Energy Information  

Open Energy Info (EERE)

( links) Israel-NREL Cooperation ( links) Transportation Energy Data Book ( links) OpenEI:Requested Pages ( links) User:TwongSandbox (...

254

Transportation Energy Futures Study: The Key Results and Conclusions...  

Open Energy Info (EERE)

study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In...

255

Energy Policy Act Transportation Study: Interim Report on Natural ...  

U.S. Energy Information Administration (EIA)

For your convenience the publication can be viewed or download by section or in its entirety. This report, "Energy Policy Act Transportation Study: Interim Report on ...

256

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

257

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

258

Rail transport. trends in energy efficiency  

Science Conference Proceedings (OSTI)

The increasing cost and insecure future supply of diesel fuel have led the U.S. railroad industry to continuously improve on its already efficient use of energy. Among such improvements that are planned or in progress are a fuel-efficient version of a mainline engine, which should save 13,200 gal/yr of fuel; and lightweight coal cars and freight-car trucks, which offer fuel-saving opportunities. The use of synthetic fuels such as methanol-from-coal or all-electric locomotive on a broad scale is unlikely within the next 20 yr, but an increased use of synthetic fuels in other large fuel-consuming transport modes, notably cars, would ease the rail industry's future diesel fuel supply problems. Other fuel-saving factors to consider, such as proper train-operating procedures and the use of the best routes; and the new design of rail cars are also discussed.

Eldridge, C.C.; Van Gorp, P.H.

1980-06-01T23:59:59.000Z

259

Global Energy Transports and the Influence of Clouds on Transport RequirementsA Satellite Analysis  

Science Conference Proceedings (OSTI)

This study examines the impact of differential net radiative heating on two-dimensional energy transports within the atmosphere-ocean system and the role of clouds on this process. Nimbus-7 earth radiation budget data show basic energy surpluses ...

Byung-Ju Sohn; Eric A. Smith

1992-07-01T23:59:59.000Z

260

Energy Unit lecture outline & graphics Fritz Stahr Tues 1/21/03 -Transportation of Energy & Energy of Transportation an intricate link  

E-Print Network (OSTI)

Energy Unit lecture outline & graphics ­ Fritz Stahr Tues 1/21/03 - Transportation of Energy & Energy of Transportation ­ an intricate link - history of settlement & industry largely due to transportation and energy supplies - initial towns on rivers or by sea where ships could service cargo as water

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY  

E-Print Network (OSTI)

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY Institute of Transportation and policies that could support their development are often contentious. The future of these fuels and vehicles associated with the transition to new fuels and vehicles, the UC Davis Institute of Transportation Studies

California at Davis, University of

262

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

263

Indonesia-GTZ Emissions Reductions in Urban Transport | Open Energy  

Open Energy Info (EERE)

Reductions in Urban Transport Reductions in Urban Transport Jump to: navigation, search Logo: Indonesia-GTZ Emissions Reductions in Urban Transport Name Indonesia-GTZ Emissions Reductions in Urban Transport Agency/Company /Organization GTZ Partner Ministry of Transportation Sector Energy Focus Area Transportation Topics Background analysis Website http://www.gtz.de/en/themen/um Program Start 2008 Program End 2012 Country Indonesia UN Region South-Eastern Asia References GTZ Transport & Climate Change Website[1] GTZ is working with Indonesia on this program with the following objective: "Indonesian cities increasingly plan and implement measures for a transport system that is energy efficient as well as environmentally and climate friendly." Background of the project is the absence of a national policy on

264

Carbonless Transportation and Energy Storage in Future Energy Systems  

SciTech Connect

By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

Lamont, A.D.; Berry, G.D.

2001-01-17T23:59:59.000Z

265

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

266

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

267

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

Freight Transportation Modal Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

268

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report  

Energy.gov (U.S. Department of Energy (DOE))

Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

269

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

270

Department of Energy Receives Highest Transportation Industry Safety Award  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Receives Highest Transportation Industry Receives Highest Transportation Industry Safety Award Department of Energy Receives Highest Transportation Industry Safety Award May 1, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's highest transportation safety awards, for helping local communities in emergency preparedness and response. TRANSCAER is a voluntary national organization that assists communities in emergency preparedness and response. "I'm very proud that The Department of Energy has raised the bar for community-based transportation emergency preparedness," Secretary of Energy Samuel W. Bodman said. "Safety is our number one priority, and we will

271

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

272

Sustainable Transport Systems STS | Open Energy Information  

Open Energy Info (EERE)

Transport Systems STS Transport Systems STS Jump to: navigation, search Name Sustainable Transport Systems (STS) Place Santa Cruz, California Zip 95062 Sector Carbon, Efficiency Product California-based company providing assistance to firms looking to cut their carbon footprint through advice about how they can improve efficiency. References Sustainable Transport Systems (STS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Transport Systems (STS) is a company located in Santa Cruz, California . References ↑ "Sustainable Transport Systems (STS)" Retrieved from "http://en.openei.org/w/index.php?title=Sustainable_Transport_Systems_STS&oldid=351924"

273

The World Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

The World Bank - Transport The World Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The World Bank - Transport Agency/Company /Organization: The World Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: go.worldbank.org/0SYYVJWB40 This website provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes international publications and toolkits classified by type of transport and/or region/country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

274

Transport Research Laboratory | Open Energy Information  

Open Energy Info (EERE)

Transport Research Laboratory Transport Research Laboratory Jump to: navigation, search Tool Summary Name: Transport Research Laboratory Agency/Company /Organization: Transport Research Laboratory Focus Area: Governance - Planning - Decision-Making Structure Topics: Potentials & Scenarios Resource Type: Website Website: www.trl.co.uk/ The UK's Transport Research Laboratory is an internationally recognised centre of excellence providing world-class research, consultancy, testing and certification for all aspects of transport. The website provides publications, news, software and many other products and services related to transport How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

275

TransportToolkit Prototype | Open Energy Information  

Open Energy Info (EERE)

TransportToolkit Prototype TransportToolkit Prototype Jump to: navigation, search Tool Summary Name: TransportToolkit Prototype Agency/Company /Organization: Nick Langle Complexity/Ease of Use: Not Available Cost: Free Related Tools Journal of Public Transportation Handbook for Handling, Storing, and Dispensing E85 Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks ... further results Find Another Tool FIND TRANSPORTATION TOOLS This is a test tool to set values needed for Exhibit search results When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these key phases of the process: Evaluate System - Assessing the current transportation situation Create Baseline - Developing a business-as-usual scenario

276

Victoria Transport Policy Institute | Open Energy Information  

Open Energy Info (EERE)

Transport Policy Institute Transport Policy Institute Jump to: navigation, search Name Victoria Transport Policy Institute Address 1250 Rudlin Street, Place Victoria, British Columbia Website http://www.vtpi.org/ References http://www.vtpi.org/ No information has been entered for this organization. Add Organization "The Victoria Transport Policy Institute is an independent research organization dedicated to developing innovative and practical solutions to transportation problems. We provide a variety of resources available free at this website to help improve transportation planning and policy analysis. We are funded primarily through consulting and project grants. Our research is among the most current available and has been widely applied." References Retrieved from "http://en.openei.org/w/index.php?title=Victoria_Transport_Policy_Institute&oldid=375887"

277

Energy and Environmental Policy Analysis - Center for Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy and Energy and Environmental Policy Analysis The Center for Transportation Analysis does specialty research and development in Energy and Environmental Policy Analysis. Transportation systems in the U.S. and around the world face the challenge of providing for increased mobility of people and goods while reducing impacts on the environment and finding sustainable sources of energy. Governmental policies, from investment in research to information, efficiency or emissions standards and fiscal measures, play a critical role in the effort to create a sustainable transportation system. The Transportation Energy and Environmental Policy program conducts research and policy analysis to support the development of efficient, effective and equitable policies to achieve a sustainable transportation system.

278

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

Post-2012 Climate Instruments in the transport sector Post-2012 Climate Instruments in the transport sector Jump to: navigation, search Name Post-2012 Climate Instruments in the transport sector Agency/Company /Organization Energy Research Centre of the Netherlands Partner Asian Development Bank Sector Energy Focus Area Transportation Topics Finance Resource Type Presentation Website http://www.slocat.net Program Start 2009 Program End 2010 UN Region South-Eastern Asia References Post-2012 Climate Instruments in the transport sector (CITS)[1] The post 2012 Climate Instruments in the transport sector (CITS) project implemented by the Asian Development Bank (ADB), in cooperation with the Inter-American Development Bank (IDB), is a first step to help ensure that the transport sector can benefit from the revised/new climate change

279

Essays on Urban Transportation and Transportation Energy Policy  

E-Print Network (OSTI)

before tax) on gasoline and motor oil, which is about 17% ofon motor gasoline and motor oil, which is about 17.4% of allmotor fuel raised a concern regarding energy security along with the unstable international oil

Kim, Chun Kon

2008-01-01T23:59:59.000Z

280

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP(Redirected from Transportation Toolkit) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation LEDS Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low emission transportation systems that support economic growth. This toolkit website helps users navigate a variety of resources in order to identify the most effective tools necessary to build and implement low

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low-emission transportation systems that support economic growth. This toolkit helps users navigate a variety of resources to identify the most effective tools to build and implement low emission development strategies (LEDS) for the transport sector. Learn more in the report on

282

Category:Transportation Toolkits | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Transportation Toolkits Jump to: navigation, search Add a new Transportation Toolkit Pages in category "Transportation Toolkits" The following 86 pages are in this category, out of 86 total. A A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 A Review of HOV Lane Performance and Policy Options in the United States - Final Report A Roadmap to Funding Infrastructure Development Adapting Urban Transport to Climate Change- Module 5f - Sustainable transport: a sourcebook for policy-makers in developing cities Africa's Transport Infrastructure Mainstreaming Maintenance and Management

283

Renewable Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Renewable Transportation Fuels Jump to: navigation, search TODO: Add description List of...

284

Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search The Department of Transportation is a federal agency in the United States. Retrieved from "http:en.openei.orgwindex.php?titleDepartmentofTranspo...

285

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and...

286

Transport Activity Measurement Toolkit (TAMT) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Transport Activity Measurement Toolkit (TAMT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Activity Measurement Toolkit (TAMT) Agency/Company /Organization: World Bank Sector: Energy Focus Area: Transportation Topics: GHG inventory, Low emission development planning Resource Type: Dataset, Maps, Software/modeling tools, Video, Training materials User Interface: Website, Desktop Application Website: code.google.com/p/tamt/ Cost: Free Transport Activity Measurement Toolkit (TAMT) Screenshot References: TAMT Presentation[1] TAMT Google Site Page[2] TAMT Demonstration Videos[3] "The World Bank Latin America and the Caribbean Region Sustainable Development Department Transport Cluster in conjunction with the World

287

Intelligent Transportation Systems Deployment Analysis System | Open Energy  

Open Energy Info (EERE)

Intelligent Transportation Systems Deployment Analysis System Intelligent Transportation Systems Deployment Analysis System Jump to: navigation, search Tool Summary Name: Intelligent Transportation Systems Deployment Analysis System Agency/Company /Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools Website: idas.camsys.com/ Country: United States Northern America References: http://idas.camsys.com/ The ITS Deployment Analysis System (IDAS) is software developed by the Federal Highway Administration that can be used in planning for Intelligent Transportation System (ITS) deployments. State, regional, and local planners can use IDAS to estimate the benefits and costs of ITS investments - which are either alternatives to or enhancements of traditional highway

288

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

289

Transportation Energy Futures Study: The Key Results and Conclusions  

Open Energy Info (EERE)

Transportation Energy Futures Study: The Key Results and Conclusions Transportation Energy Futures Study: The Key Results and Conclusions Webinar Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 1 May, 2013 - 11:38 This webinar will outline the key results and conclusions from EERE's Transportation Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be time for questions from attendees at the end of the webinar. Principal Deputy Assistant Secretary Mike Carr will introduce the study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy

290

Available Technologies: Solar Energy Storage, Transportation ...  

Researchers at Berkeley Lab have developed a system for converting solar energy to chemical energy and, subsequently, to thermal energy. The system includes a light ...

291

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

292

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 11:31am Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

293

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 4:31pm Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

294

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in the West to

295

UNEP-Low Carbon Transport in India | Open Energy Information  

Open Energy Info (EERE)

in India in India Jump to: navigation, search Name UNEP-Low Carbon Transport in India Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area Transportation Topics Low emission development planning Website http://www.unep.org/transport/ Program Start 2010 Program End 2013 Country India Southern Asia References Low Carbon Transport in India[1] UNEP-Low Carbon Transport in India Screenshot "India is currently the fourth largest greenhouse gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. The sector also provokes road congestion, local air pollution, noise and accidents, particularly in urban areas. Opportunities exist to make India's transport growth more sustainable by

296

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

APEC-Alternative Transport Fuels: Implementation Guidelines APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary Name: APEC-Alternative Transport Fuels: Implementation Guidelines Agency/Company /Organization: Asia-Pacific Economic Cooperation Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.egnret.ewg.apec.org/news/Alternative%20Transport%20Fuels%20Final%2 Cost: Free Language: English References: APEC-Alternative Transport Fuels: Implementation Guidelines[1] "Worldwide, there are at least 35 million vehicles already operating on some form of alternative transport fuel and many millions more that are fuelled by blends with conventional gasoline and diesel or powered by electricity. Many alternative fuel programs are being, or have been,

297

EPA State and Local Transportation Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » EPA State and Local Transportation Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EPA State and Local Transportation Resources Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/oms/stateresources/policy/pag_transp.htm Cost: Free References: Transportation-Related Documents[1] Provides a variety of resources discussing approaches to reducing transportation energy use. Overview This EPA website gathers together a number of guidance documents covering various approaches to reducing emissions and energy use in the

298

Department of Energy Office of Science Transportation Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy (DOE) Department of Energy (DOE) Office of Science (SC) Transportation Overview Jon W. Neuhoff, Director N B i k L b t New Brunswick Laboratory 1 DOE National Transportation Stakeholders Forum May 26, 2010 About the Office of Science The Office of Science (SC) with a budget of approximately $5 Billion...  Single largest supporter of basic research in the physical sciences in the U.S. (> 40% of the total funding) ( g)  Principal Federal funding agency for the Nation's research programs in high energy physics, nuclear physics, and fusion energy sciences  Manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science

299

Montana Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Montana Department of Transportation Name Montana Department of Transportation Address 2701 Prospect Avenue P.O. Box 201001 Place Helena, Montana Zip 59620 Website http://www.mdt.mt.gov/ Coordinates 46.589151°, -111.992175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.589151,"lon":-111.992175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Idaho Transportation Department | Open Energy Information  

Open Energy Info (EERE)

Idaho Transportation Department Idaho Transportation Department Jump to: navigation, search Logo: Idaho Transportation Department Name Idaho Transportation Department Address 3311 W. State St. PO Box 7129 Place Boise, Idaho Zip 83707-1129 Phone number 208-334-8000 Website http://itd.idaho.gov/ Coordinates 43.635205°, -116.230588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.635205,"lon":-116.230588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oregon Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Jump to: navigation, search Logo: Oregon Department of Transportation Name Oregon Department of Transportation Address 355 Capitol Street NE Place Salem, Oregon Zip 97301-3871 Year founded 1969 Phone number 888-275-6368 Website http://www.oregon.gov/ODOT/Pag Coordinates 44.940436°, -123.028211° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.940436,"lon":-123.028211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

303

Utah Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Utah Department of Transportation Name Utah Department of Transportation Address 4501 South 2700 West Place Salt Lake City, Utah Zip 84114 Phone number 801.965.4000 Website http://www.udot.utah.gov/main/ Coordinates 40.6724141°, -111.9579795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6724141,"lon":-111.9579795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Transportation Fuel Basics - Hydrogen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

305

Nevada Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Nevada Department of Transportation Nevada Department of Transportation Jump to: navigation, search Logo: Nevada Department of Transportation Name Nevada Department of Transportation Address 1263 S. Stewart St. Place Carson City, Nevada Zip 89712 Phone number 775-888-7000 Website http://www.nevadadot.com/defau Coordinates 39.157202°, -119.764694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.157202,"lon":-119.764694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

EIA - International Energy Outlook 2009-Transportation Sector...  

Gasoline and Diesel Fuel Update (EIA)

2009 Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 Figure 70. World Liquids Consumption by End-Use Sector, 2006-2030 Figure 71. OECD and...

307

Energy Basics: Propane as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Propane as a Transportation Fuel Photo of a man standing next to a propane fuel pump with a tank in the background....

308

Energy Basics: Hydrogen as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Hydrogen as a Transportation Fuel Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced...

309

Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program  

Science Conference Proceedings (OSTI)

This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

NONE

1995-08-01T23:59:59.000Z

310

The Biomass Energy Data Book Center for Transportation Analysis  

E-Print Network (OSTI)

The Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, policymakers and analysts need to be well-informed about current biomass energy production activity and the potential contribution biomass resources and technologies can make toward meeting the nation's energy

311

Tips: References | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

References References Tips: References April 11, 2012 - 9:03am Addthis Tips: References The following resources were used to develop the Energy Savers Guide: Tips on Saving Money and Energy at Home: Alternative Fuels and Advanced Vehicles Data Center American Council for an Energy-Efficient Economy Cool Roof Rating Council Database of State Incentives for Renewables & Efficiency (DSIRE) DOE Building America DOE Building Technologies Program DOE Building Technologies Program, 2010 Buildings Energy Databook DOE Energy Information Administration Residential Energy Consumption Survey DOE/EPA Fuel Economy Guide DOE Federal Energy Management Program DOE Office of Electricity Delivery and Energy Reliability ENERGY STAR® Green Roofs for Healthy Cities National Renewable Energy Laboratory

312

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Agency/Company /Organization: Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools Website: greet.es.anl.gov/ This full life-cycle model evaluates the energy and emission impacts of advanced vehicle technologies and new transportation fuels. The model allows users to evaluate various vehicle and fuel combinations. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

313

Figure 6. Transportation energy consumption by fuel, 1990-2040 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 6. Transportation energy consumption by fuel, 1990-2040 (quadrillion Btu) Motor Gasoline, no E85 Pipeline Other E85 Jet Fuel

314

New concepts in energy and mass transport within carbon nanotubes  

E-Print Network (OSTI)

The unique structure of carbon nanotubes (CNTs) contributes to their distinguished properties, making them useful in nanotechnology. CNTs have been explored for energy transport in next-generation, such as light-emitting ...

Choi, Wonjoon, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

315

World Energy Projection System Plus Model Documentation: Transportation Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) International Transportation model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Victoria Zaretskaya

2011-09-29T23:59:59.000Z

316

Sustainable Transportation Program | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

by the DOE Office of Energy Efficiency and Renewable Energy, specifically the Vehicle Technologies, Biomass, and Fuel Cell Technologies Programs. The Department of...

317

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

DOE Green Energy (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

318

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

319

Journal of Public Transportation | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Journal of Public Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Journal of Public Transportation Agency/Company /Organization: National Center for Transit Research Focus Area: Public Transit & Infrastructure Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.nctr.usf.edu/jpt/pdf/JPT13-1.pdf This document have like principal topics: Evaluating the Congestion Relief Impacts of Public Transport in Monetary Terms, The Operating Characteristics of Intercity Public Van Service in Lampung, Indonesia,

320

Colorado Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Name Colorado Department of Transportation Address 4201 E Arkansas Ave Place Denver, Colorado Zip 80222 Year founded 1917 Phone number 303-757-9011 Coordinates 39.6911535°, -104.9384066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6911535,"lon":-104.9384066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ECUT energy data reference series: Otto cycle engines in transportation  

SciTech Connect

Information that describes the use of the Otto cycle engines in transportation is summarized. The transportation modes discussed in this report include the following: automobiles, light trucks, heavy trucks, marine, recreational vehicles, motorcycles, buses, aircraft, and snowmobiles. These modes account for nearly 100% of the gasoline and LPG consumed in transportation engines. The information provided on each of these modes includes descriptions of the average energy conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles. Estimates are provided for the years 1980 and 2000.

Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

322

Research and development opportunities for improved transportation energy usage. (REDOTEUS)  

SciTech Connect

The document is a draft of the final report of the Transportation Energy Panel (TEP) prepared for the Office of Science and Technology. The report attempts to assess the relevant technology for improving the usage by the transportation sector of the energy resources of the nation. In pursuit of its study, TEP sponsored several workshops, briefings, and coordination meetings which had personnel from a variety of Federal, academic, and industrial organizations. Emphasis was given both to transportation demands and to relevant technology assessment. (GRA)

1972-07-14T23:59:59.000Z

323

National Transportation Stakeholders Forum (NTSF) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) The U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE communicates at a national level with states and tribes about the Department's shipments of radioactive waste and materials, as well as occasional high-visibility shipments that are nonradioactive. The purpose of the NTSF is to bring transparency, openness, and accountability to DOE's offsite transportation activities through collaboration with state and tribal governments. The NTSF meetings and webinars will be particularly relevant for personnel with responsibilities in packaging and transportation, emergency management, security, inspection and enforcement, and radiation protection. Send your

324

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

325

Molecular Ion Beam Transportation for Low Energy Ion Implantation  

SciTech Connect

A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A. [Institute for Theoretical and Experimental Physics, Moscow, 117218 (Russian Federation); Hershcovitch, A.; Johnson, B. M. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Oks, E. M. [High Current Electronics Institute Russian Academy of Sciences, Tomsk, 634055 (Russian Federation); Polozov, S. M. [Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409 (Russian Federation); Poole, H. J. [PVI, Oxnard, California 93031-5023 (United States)

2011-01-07T23:59:59.000Z

326

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $45 Million to Deploy Advanced Awards $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs and protect the environment in communities nationwide. "By partnering with universities, private industry and our national labs, the Energy Department is helping to build a strong 21st century

327

Consumer Views on Transportation and Energy (Second Edition)  

DOE Green Energy (OSTI)

This report has been assembled to provide the Office of Energy Efficiency and Renewable Energy (EERE) with an idea of how the American public views various transportation, energy, and environmental issues. The data presented in this report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation (ORC) for the National Renewable Energy Laboratory (NREL) that are commissioned and funded by EERE, Gallup polls, and other sources.

Kubik, M.

2005-04-01T23:59:59.000Z

328

Energy Efficiency Report: Chapter 5 Figures (Transportation)  

U.S. Energy Information Administration (EIA)

EIAs effort to take the lead to develop robust and reproducible energy-efficiency indicators and also measurements of greenhouse gas as related to energy use and ...

329

A method for evaluating transport energy consumption in suburban areas  

Science Conference Proceedings (OSTI)

Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

Marique, Anne-Francoise, E-mail: afmarique@ulg.ac.be; Reiter, Sigrid, E-mail: Sigrid.Reiter@ulg.ac.be

2012-02-15T23:59:59.000Z

330

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

331

Screening study on high temperature energy transport systems  

SciTech Connect

The purpose of the study described in this document is to identify the options for transporting thermal energy over long distances. The study deals specifically and exclusively with high temperature (> 400/sup 0/C(752/sup 0/F)) energy for industrial use. Energy transport is seen as a potential solution to: high unit cost of small coal and nuclear steam generators, and opposition to siting of coal or nuclear plants near populated areas. The study is of a preliminary nature but covers many options including steam, molten salts, organics, and chemical heat pipes. The development status and potential problems of these and other energy transport methods are discussed. Energy transport concepts are compared on a fundamental level based on physical properties and also are subjected to an economic study. The economic study indicated that the chemical heat pipe, under a specific set of circumstances, appeared to be the least expensive for distances greater than about 32 km (20 miles). However, if the temperature of the energy was lowered, the heat transfer salt (sodium nitrate/nitrite) system would apparently be a better economic choice for less than about 80 km (50 miles). None of the options studied appear to be more attractive than small coal-fired boilers when the transport distance is over about 64 km (40 miles). Several recommendations are made for refining the analysis.

Graves, R.L.

1980-10-01T23:59:59.000Z

332

California Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Place Sacramento, California Coordinates 38.5815719°, -121.4943996° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5815719,"lon":-121.4943996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles. Electric Power Researchs Early Market for Hybrid Electric Vehicles. TransportationTechnologies--Plug-in Hybrid Electric Vehicles. Committee on

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

334

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles. Electric Power ResearchMarket for Hybrid Electric Vehicles. Transportation ResearchProceedings of the Electric Vehicle Symposium 2009 (EVS24).

Yang, Christopher

2011-01-01T23:59:59.000Z

335

Energy Storage for Transportation Applications II  

Science Conference Proceedings (OSTI)

Oct 18, 2011... are proven to be critical for high specific energy and high specific power. ... batteries for use in secondary applications such as power backup...

336

Energy Conversion, Storage, and Transport Programs and ...  

Science Conference Proceedings (OSTI)

... The Society of Automotive Engineers International (SAE) has proposed a ... hydrogen storage material satisfies the Department of Energy (DoE) goal ...

2010-05-24T23:59:59.000Z

337

Rail Coal Transportation Rates - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... this $1 adder was determined based on research by the U.S. Department of Energy and was only incorporated into the GIS analysis below; ...

338

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

339

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

2013-03-01T23:59:59.000Z

340

Energy Savers in the Community: Green Transportation Rally | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Savers in the Community: Green Transportation Rally Savers in the Community: Green Transportation Rally Energy Savers in the Community: Green Transportation Rally September 22, 2009 - 12:31pm Addthis John Lippert This year marks the seventh year that I'm organizing a Green Transportation Rally in my city's Labor Day parade. I think it's a great way to educate the public, plus it's a lot of fun. I started out organizing a group of local residents who own hybrid-electric vehicles (HEVs). Each year my grandchildren and I lead the group on foot carrying a banner proclaiming "Green Transportation." I produce signs that we tape to the windows or attach to the doors and hoods with magnets. One neighbor produces her own huge cardboard sign that she attaches to the roof, proudly proclaiming that she achieves more than 50 mpg in her hybrid-averaged over nearly 100,000

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

Vehicles in Southern California, Energy Policy, 39 (2011)contract between the California Energy Commission (CEC) andBechtel Fund and the California Energy Commision for their

Yang, Christopher

2011-01-01T23:59:59.000Z

342

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

343

Transportation Energy Futures Series: Vehicle Technology Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

as well as the full series of reports, can be found at http:www.eere.energy.govanalysistransportationenergyfutures. Contract Nos. DC-A36-08GO28308 and DE-AC02-06CH11357 v...

344

Does energy follow urban form? : an examination of neighborhoods and transport energy use in Jinan, China  

E-Print Network (OSTI)

This thesis explores the impacts of neighborhood form and location on household transportation energy use in the context of Jinan, China. From a theoretical perspective, energy use is a derived outcome of activities, and ...

Jiang, Yang, M.C.P. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

345

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

346

Radioactive Material Transportation Requirements for the Department of Energy  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) created the National Transportation Program (NTP) whose goal is to ensure the availability of safe, efficient, and timely transportation of DOE materials. The Integration and Planning Group of the NTP, assisted by Global Technologies Incorporated (GTI), was tasked to identify requirements associated with the transport of DOE Environmental Management (EM) radiological waste/material. A systems engineering approach was used to identify source documents, extract requirements, perform a functional analysis, and set up a transportation requirements management database in RDD-100. Functions and requirements for transporting the following DOE radioactive waste/material are contained in the database: high level radioactive waste (HLW), low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW), nuclear materials (NM), spent nuclear fuel (SNF), and transuranic waste (TRU waste). The requirements will be used in the development of standard transportation protocols for DOE shipping. The protocols will then be combined into a DOE Transportation Program Management Guide, which will be used to standardize DOE transportation processes.

John, Mark Earl; Fawcett, Ricky Lee; Bolander, Thane Weston

2000-07-01T23:59:59.000Z

347

2013 US Department of Energy National Transportation Stakeholders Forum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 US Department of Energy National Transportation 3 US Department of Energy National Transportation Stakeholders Forum Hello Everyone, It's time to register for the 2013 U.S. Department of Energy National Transportation Stakeholders Forum being held in Buffalo, New York on May 14-16. Please access the entitled link to proceed directly to the official registration website. Once you have entered the site you will be able to register for the meeting, select activities (regional/working meetings, group breakout sessions, TRANSCOM training and the West Valley tour) to attend, view the draft agenda and make lodging reservations. While the event is over two months away, please register at your earliest opportunity as it will greatly

348

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

349

Transportation Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country

350

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

351

Andreas A. Malikopoulos Energy & Transportation Science Division,  

E-Print Network (OSTI)

. However, the high costs associated with their components, and in particular, with their energy storage here, we investigated the implications of motor/generator and battery size on fuel economy and GHG to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better

352

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

2050 target. Thus, total heavy truck energy usage even with9 shows total light-duty fuel energy usage is approximatelyof fuel usage (PEV: 87% combined: 77%). Total energy use for

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

353

Energy Balance Models Incorporating Transport of Thermal and Latent Energy  

Science Conference Proceedings (OSTI)

Standard latitudinally resolved energy balance models describe conservation of energy on a sphere subject to solar heating, cooling by infrared radiation and diffusive redistribution of energy according to a Fourier type heat flow with flux ...

Brian P. Flannery

1984-02-01T23:59:59.000Z

354

End use energy consumption data base: transportation sector  

SciTech Connect

The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

Hooker, J.N.; Rose, A.B.; Greene, D.L.

1980-02-01T23:59:59.000Z

355

Transport Policy Note-Bangladesh | Open Energy Information  

Open Energy Info (EERE)

Note-Bangladesh Note-Bangladesh Jump to: navigation, search Name Transport Policy Note-Bangladesh Agency/Company /Organization Government of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policies/deployment programs, Background analysis Website http://siteresources.worldbank Program Start 2009 Country Bangladesh UN Region South-Eastern Asia References Bangladesh-Transportation[1] Abstract "This policy note provides an overview of the main characteristics of the transport sector in Bangladesh and the challenges going forward. It also provides guidance to the Bank in its dialogue with the Government of Bangladesh on the strategic priorities in the sector and the areas where the Bank can provide the most support consistent with the overall strategic

356

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

357

A hybrid model for particle transport and electron energy distributions in positive column electrical discharges using equivalent species transport  

E-Print Network (OSTI)

A hybrid model for particle transport and electron energy distributions in positive column the fluid portion of the model. Transport coefficients, source functions, and energy distributions for all field has motivated a num- ber of investigations into its effect on the `electron energy distribution

Kushner, Mark

358

Decision Analysis Tool to Compare Energy Pathways for Transportation  

Science Conference Proceedings (OSTI)

With the goals of reducing greenhouse gas emissions, oil imports, and energy costs, a wide variety of automotive technologies are proposed to replace the traditional gasoline-powered internal combustion engine (g-ICE). A prototype model, Analytica Transportation Energy Analysis Model (ATEAM), has been developed using the Analytica decision modeling environment, visualizing the structure as a hierarchy of influence diagrams. The report summarized the FY2010 ATEAM accomplishments.

Bloyd, Cary N.; Stork, Kevin

2011-02-01T23:59:59.000Z

359

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

360

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

, not specifically aimed at biofuels, target the sweeping economy-wide changes needed to reduce the unwanted "leakage SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS CHAPTER 12: KEY MEASUREMENT UNCERTAINTIES FOR BIOFUEL POLICY Chapter 12: Key Measurement Uncertainties for Biofuel Policy Sonia Yeh, Mark A. Delucchi, Alissa Kendall

California at Davis, University of

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network (OSTI)

TRANSPORTATION ENERGY PATHWAYS CHAPTER 4: COMPARING FUEL ECONOMIES AND COSTS OF ADVANCED VS. CONVENTIONAL VEHICLES PART 2 Chapter 4: Comparing Fuel Economies and Costs of Advanced vs. Conventional Vehicles Andrew-electric vehicles, and electric-drive battery and fuel cell-powered vehicles. We present the results of our

California at Davis, University of

362

Center for Renewable Energy and Alternative Transportation Technologies (CREATT)  

SciTech Connect

The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

Mackin, Thomas

2012-06-30T23:59:59.000Z

363

Center for Renewable Energy and Alternative Transportation Technologies (CREATT)  

SciTech Connect

The Center for Renewable Energy and Alternative Transportation Technologies (CREATT) was established to advance the state of the art in knowledge and education on critical technologies that support a renewable energy future. Our research and education efforts have focused on alternative energy systems, energy storage systems, and research on battery and hybrid energy storage systems.This report details the Center's progress in the following specific areas: Development of a battery laboratory; Development of a demonstration system for compressed air energy storage; Development of electric propulsion test systems; Battery storage systems; Thermal management of battery packs; and Construction of a micro-grid to support real-world performance monitoring of a renewable energy system.

Mackin, Thomas

2012-06-30T23:59:59.000Z

364

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

and hydrogen as alternative fuels is in energy storage.hydrogen energy density and cost goals is not possible using current compressed hydrogen storageenergy density of electricity storage in batteries or hydrogen

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

365

Energy transport by acoustic modes of harmonic lattices  

E-Print Network (OSTI)

We study the large scale evolution of a scalar lattice excitation which satisfies a discrete wave-equation in three dimensions. We assume that the dispersion relation associated to the elastic coupling constants of the wave-equation is acoustic, i.e., it has a singularity of the type |k| near the vanishing wave vector, k=0. To derive equations that describe the macroscopic energy transport we introduce the Wigner transform and change variables so that the spatial and temporal scales are of the order of epsilon. In the continuum limit, which is achieved by sending the parameter epsilon to 0, the Wigner transform disintegrates into three different limit objects: the transform of the weak limit, the H-measure and the Wigner-measure. We demonstrate that these three limit objects satisfy a set of decoupled transport equations: a wave-equation for the weak limit of the rescaled initial data, a dispersive transport equation for the regular limiting Wigner measure, and a geometric optics transport equation for the H-measure limit of the initial data concentrating to k=0. A simple consequence of our result is the complete characterization of energy transport in harmonic lattices with acoustic dispersion relations.

Lisa Harris; Jani Lukkarinen; Stefan Teufel; Florian Theil

2006-11-21T23:59:59.000Z

366

Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study  

NLE Websites -- All DOE Office Websites (Extended Search)

Path Transportation Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good against today's technologies, but that's really not what people will be judging them against.....the best "reference vehicle" is one customers will be seeing on showroom floors, in that year.  Understand your model! -- Some of your "key results" may be coming

367

Macomb College Transportation and Energy Technology 126.09  

Science Conference Proceedings (OSTI)

The objectives for this project were to create the laboratory facilities to deliver recently created and amended curriculum in the areas of energy creation, storage, and delivery in the transportation and stationary power sectors. The project scope was to define the modules, courses and programs in the emerging energy sectors of the stationary power and transportation industries, and then to determine the best equipment to support instruction, and procure it and install it in the laboratories where courses will be taught. Macomb Community College had a curriculum development grant through the Department of Education that ran parallel to this one where the energy curriculum at the school was revised to better permit students to gain comprehensive education in a targeted area of the renewable energy realm, as well as enhance the breadth of jobs addressed by curriculum in the transportation sector. The curriculum development and experiment and equipment definition ran in parallel, and resulted in what we believe to be a cogent and comprehensive curriculum supported with great hands-on experiments in modern labs. The project has been completed, and this report will show how the equipment purchases under the Department of Energy Grant support the courses and programs developed and amended under the Department of Education Grant. Also completed is the tagging documentation and audit tracking process required by the DOE. All materials are tagged, and the documentation is complete as required.

None

2010-12-31T23:59:59.000Z

368

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

Science Conference Proceedings (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL

2012-01-01T23:59:59.000Z

369

Proposed Energy Transport Corridors: West-wide energy corridor...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Programmatic Environmental Impact Statement FACT SHEET: Designation of National Interest Electric Transmission Corridors,As Authorized by the Energy Policy Act of 2005...

370

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

Transport Co-benefits Calculator Transport Co-benefits Calculator Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Transport Co-benefits Calculator Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.iges.or.jp/en/archive/cp/activity20101108.html Cost: Free Related Tools Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool SimCLIM SEAGA Intermediate Level Handbook ... further results Characterizes co-benefits in terms of accidents, emissions, travel time, and vehicle operating costs. Approach A co-benefits approach capitalizes on synergies between current local

371

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Industry Power Coal Petroleum Source: NBS, China StatisticalIndustry Power Coal Petroleum Source: NBS, China StatisticalIndustry Power Coal Petroleum Source: NBS, China Statistical

Fridley, Ed., David

2008-01-01T23:59:59.000Z

372

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Solar technologies Solar water heaters Solar heated houses (Solar technologies Solar water heaters Solar heated houses (

Fridley, Ed., David

2008-01-01T23:59:59.000Z

373

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

peat, and oil shale. [2] Crude oil, natural gas liquids andpeat, and oil shale. [2] Crude oil, natural gas liquids andpeat, and oil shale. [2] Crude oil, natural gas liquids and

Fridley, Ed., David

2008-01-01T23:59:59.000Z

374

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Production and Distribution of electricity gas water Total [Production and Distribution of electricity gas water Total [Production and Distribution of electricity gas water Total [

Fridley, Ed., David

2008-01-01T23:59:59.000Z

375

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

35-110 kV >110 kV Maximum Demand (yuan/kW/month) Transformer1998. [1] Either maximum demand or transformer capacity is35-110 kV >110 kV Maximum Demand (yuan/kW/month) Transformer

Fridley, Ed., David

2008-01-01T23:59:59.000Z

376

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

?220kV Non-residential lighting usage lighting usage Commercial usage Non-usage Non-residential lighting usage Commercial usage Non-

Fridley, Ed., David

2008-01-01T23:59:59.000Z

377

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Natural Gas subtotal extraction refining Electric Power subtotal generationNatural Gas subtotal extraction refining Electric Power subtotal generationNatural Gas subtotal 13.17 extraction refining Electric Power subtotal generation

Fridley, Ed., David

2008-01-01T23:59:59.000Z

378

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Oil & Natural Gas Extraction Electricity Generation & SupplyRegion North Natural Gas Pipelines (km) Gas Supply (billionRegion North Natural Gas Pipelines (km) Gas Supply (billion

Fridley, Ed., David

2008-01-01T23:59:59.000Z

379

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Helongjiang Township Hydro Power Station (units) 6. RuralGeneration (GWh) Township Hydro Power Station (units) Ruralheat Small and micro-hydro power technologies Small hydro

Fridley, Ed., David

2008-01-01T23:59:59.000Z

380

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

6B.22. North China Electricity Price, July 2008 Table 6B.23.Central China Electricity Price, July 2008 Table 6B.24.East China Electricity Price, July 2008 Table 6B.25.

Fridley, Ed., David

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

technologies Agricultural household biogas digesters (6-10m ) Large-scale biogas digesters Biomass gasifiersAgricultural household biogas digesters Large and medium-

Fridley, Ed., David

2008-01-01T23:59:59.000Z

382

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

large-scale industrial" electricity prices. If nonindustriallarge-scale industrial" electricity prices. If nonindustriallarge-scale industrial" electricity prices. If nonindustrial

Fridley, Ed., David

2008-01-01T23:59:59.000Z

383

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

China Table 5B.7. Motor Vehicle Oil Consumption Table 5B.8.China Table 5B.7. Motor Vehicle Oil Consumption Table 5B.8.7.0 Table 5B.7. Motor Vehicle Oil Consumption 1. Oil

Fridley, Ed., David

2008-01-01T23:59:59.000Z

384

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Production [1] Hard coal, lignite, peat, and oil shale. [2]Production Changes Imports Exports Russian Federation World [1] Hard coal, lignite, peat, and oil shale. [Production India Russian Federation Japan World [1] Hard coal, lignite, peat, and oil shale. [

Fridley, Ed., David

2008-01-01T23:59:59.000Z

385

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Table 6C.9.1. Beijing Grid Electricity Rate Schedules Table6C.9.2. Tianjin Grid Electricity Rate Schedules TableNorth Hebei Grid Electricity Rate Schedules Table 6C.9.4.

Fridley, Ed., David

2008-01-01T23:59:59.000Z

386

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

km) Oil Pipelines (Gt-km) Oil and Gas Pipelines (Gt-km) YearCompany Southern North Oil & Gas Subsidiary Co. DaqingSubsidiary Company Southwest Oil & Gas Subsidiary Company

Fridley, Ed., David

2008-01-01T23:59:59.000Z

387

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

is coke produced in industrial coke ovens. This category isinefficient than industrial coke ovens. This category is noFrom Gas Fields (industrial use) Coke Oven Gas (industrial

Fridley, Ed., David

2008-01-01T23:59:59.000Z

388

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Year Total Hydro Turbines Steam Turbines Gas Turbines DieselGW Total Hydro Turbines Steam Turbines Gas Turbines DieselTotal Hydro Turbines Steam Turbines Gas Turbines of total:

Fridley, Ed., David

2008-01-01T23:59:59.000Z

389

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Indices of Oil Product Pipelines Length (km) Capacity (Mt/and 21 other gas pipelines (total length 7,510 km and 195 kmPipeline Bureau (not operating) Daqing Petrochemical Corporation Length (

Fridley, Ed., David

2008-01-01T23:59:59.000Z

390

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

for ammonia production Gas usage Retail Price (in areas withfor ammonia production Gas usage Summer Retail Price (inIndustry For Urban usage Qinghai Gas Field For Fertilizer

Fridley, Ed., David

2008-01-01T23:59:59.000Z

391

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Factors for Electric Power Generation, 1978- Table 2B.18.Table 2C.5. Thermal Power Generation and Capacity by Plant4B.4.1. Fuel Use for Power Generation and Heat Supply by

Fridley, Ed., David

2008-01-01T23:59:59.000Z

392

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

1994. Steam Coal Utilization Technology. Beijing. ChinaFazhan Baogao (World Coal Industry Development Report).Editorial Board of the China Coal Industry Yearbook. 1982-

Fridley, Ed., David

2008-01-01T23:59:59.000Z

393

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

subtotal generation distribution steam & hot water Total [2]Power subtotal generation distribution steam & hot water 2.subtotal generation distribution steam & hot water Coke,

Fridley, Ed., David

2008-01-01T23:59:59.000Z

394

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Production Table 2B.29. Wind Farms: Units and Capacity TableOil, 1980-2006 Figure 2B.11. Wind Farm Installed Capacity byProduction Table 2B.29. Wind Farms: Units and Capacity Table

Fridley, Ed., David

2008-01-01T23:59:59.000Z

395

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

coal, lignite, peat, and oil shale. [2] Crude oil, naturalcoal, lignite, peat, and oil shale. [2] Crude oil, naturalcoal, lignite, peat, and oil shale. [2] Crude oil, natural

Fridley, Ed., David

2008-01-01T23:59:59.000Z

396

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Other [1] Rural Industry Electricity Use [4] Extraction:and "large-scale industry" electricity prices. If non-and "large-scale industry" electricity prices. If non-

Fridley, Ed., David

2008-01-01T23:59:59.000Z

397

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Coal used for Power Generation Source: State Administrationin 2002 (power generation fuel source data are stored asWeihuliang Power Generation Company Source: Price Yearbook

Fridley, Ed., David

2008-01-01T23:59:59.000Z

398

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Fujian Hunan Hubei Hubei Guangzhou Pumped Storage Liuxitributary Guangzhou Pumped Storage Phase II Yantan ErtanXiaolangdi Tianhuangping Pumped Storage Three Gorges Project

Fridley, Ed., David

2008-01-01T23:59:59.000Z

399

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

pump. Dam Types: G = Gravity Dam; BA = Barrage; E = EarthB = Buttress Dam; AG = Arch=Gravity Dam R = Rockfill Dam.

Fridley, Ed., David

2008-01-01T23:59:59.000Z

400

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Xinhua, et al. 1999. Chinas Natural Gas Resources. Beijing:Base of Coal, Oil, and Natural Gas by Province, 2006 TableTable 1B.8. Undiscovered Natural Gas Resources by Region and

Fridley, Ed., David

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Sector In-Plant Electricity Consumption Year Overall Percentrate of electricity consumption over preceding year GrowthElectricity Generation and Consumption, 1980-2006 (TWh) Year

Fridley, Ed., David

2008-01-01T23:59:59.000Z

402

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

heaters Solar heated houses (passive) Greenhouses (plasticwater heaters Solar heated houses (passive) Solar cookers

Fridley, Ed., David

2008-01-01T23:59:59.000Z

403

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network (OSTI)

Mining Accidents Table 2B.6. Coke Production, 1949-20062B.7. Coking Coal Used in Coke Production, 1980-2006 TableConversion (Mtce) Table 4A.19.1. Coke Oven Gas End Use and

Fridley, Ed., David

2008-01-01T23:59:59.000Z

404

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

405

Transportation energy contingency plans for rural areas and small communities  

SciTech Connect

This study was undertaken to determine the most effective transportation fuel conservation measures which could be implemented by such areas during energy emergencies. The study involved a review of the transportation fuels contingency planning literature, state transportation energy contingency plans (with special emphasis on that for Missouri) and transportation studies recently conducted in rural Missouri, together with a survey by mail of local government officials, telephone interviews with rural residents and participation in two community-wide attitude surveys in the Meramec Region of Missouri. On the basis of the review of the literature and the results of the surveys, recommendations have been made on both the strategies that could be implemented to reduce gasoline consumption in rural areas and the institutional arrangements required for coping with a transportation fuels shortage. For small communities and rural areas of Missouri, it was specifically recommended that the multi-county regional planning commission should become the lead agency in implementing and coordinating fuel conservation measures in the event of a serious petroleum shortfall. Each regional planning commission would serve as a single focal point in communicating with the State Energy Office in behalf of its numerous county and city members. Furthermore, the existing statewide network of emergency preparedness officers should be utilized to inventory local fuel distribution services, monitor local service station operating practices and to serve motorists who might be stranded without fuel. Finally, the University of Missouri Cooperative Extension Service should offer educational programs covering topics as fuel conserving driving techniques, vehicle maintenance, trip planning, and ridesharing.

Dare, C.E.

1981-12-01T23:59:59.000Z

406

2011 APTA Public Transportation Fact Book | Open Energy Information  

Open Energy Info (EERE)

2011 APTA Public Transportation Fact Book 2011 APTA Public Transportation Fact Book Jump to: navigation, search Tool Summary Name: 2011 APTA Public Transportation Fact Book Agency/Company /Organization: American Public Transportation Association Sector: Energy Focus Area: Transportation Resource Type: Publications Website: www.apta.com/resources/statistics/Documents/FactBook/APTA_2011_Fact_Bo Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Alternative energy sources for non-highway transportation. Appendices  

DOE Green Energy (OSTI)

A planning study was made for DOE on alternate fuels for non-highway transportation (aircraft, rail, marine, and pipeline). The study provides DOE with a recommendation of what alternate fuels may be of interest to non-highway transportation users from now through 2025 and recommends R and D needed to allow non-petroleum derived fuels to be used in non-highway transportation. Volume III contains all of the references for the data used in the preliminary screening and is presented in 4 subvolumes. Volume IIIA covers the background information on the various prime movers used in the non-highway transportation area, the physical property data, the fuel-prime mover interaction and a review of some alternate energy forms. Volume IIIB covers the economics of producing, tranporting, and distributing the various fuels. Volume IIIC is concerned with the environment issues in production and use of the fuels, the energy efficiency in use and production, the fuel logistics considerations, and the overall ratings and selection of the fuels and prime movers for the detailed evaluation. Volume IIID covers the demand-related issues.

Not Available

1980-06-01T23:59:59.000Z

408

A low energy beam transport system for proton beam  

SciTech Connect

A low energy beam transport (LEBT) system has been built for a compact pulsed hadron source (CPHS) at Tsinghua University in China. The LEBT, consisting of two solenoids and three short-drift sections, transports a pulsed proton beam of 60 mA of energy of 50 keV to the entrance of a radio frequency quadrupole (RFQ). Measurement has shown a normalized RMS beam emittance less than 0.2 {pi} mm mrad at the end of the LEBT. Beam simulations were carried out to compare with the measurement and are in good agreement. Based on the successful CPHS LEBT development, a new LEBT for a China ADS projector has been designed. The features of the new design, including a beam chopper and beam simulations of the LEBT are presented and discussed along with CPHS LEBT development in this article.

Yang, Y. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Z. M.; Wu, Q.; Zhang, W. H.; Ma, H. Y.; Sun, L. T.; Zhang, X. Z.; Liu, Z. W.; He, Y.; Zhao, H. W.; Xie, D. Z. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

2013-03-15T23:59:59.000Z

409

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

410

Californias Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

2009 with Projections to 2030. US Department of Energy.duty VMT growth of nearly 64% from 2005 to 2030 and 92%from 1990 to 2030. These growth rates are consistent (on a

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

411

Solar Energy for Transportation Fuel (LBNL Science at the Theater)  

DOE Green Energy (OSTI)

Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

Lewis, Nate

2008-05-12T23:59:59.000Z

412

Integrated transport and renewable energy systems B. V. Mathiesen*  

E-Print Network (OSTI)

of the implementation of transport technologies, though, the various technologies ­ such as bioethanol, battery electric. Improved energy conversion technologies with high temperature fuel cells such as SOFCs (Solid oxide fuel,78 - bioethanol 0,00 0,00 0,00 21,27 - electricity 0,00 0,00 0,00 3,16 3,16 Railroad 3,82 -6 3,60 10 3,23 5,61 5

413

Transport and Fractionation in Periodic Potential-Energy Landscapes  

E-Print Network (OSTI)

Objects driven through periodically modulated potential-energy landscapes in two dimensions can become locked in to symmetry-selected directions that are independent of the driving force's orientation. We investigate this problem in the overdamped limit, and demonstrate that the crossover from free-flowing to locked-in transport can depend exponentially on an object's size, with this exceptional selectivity emerging from the periodicity of the environment.

Kosta Ladavac; Matthew Pelton; David G. Grier

2004-04-09T23:59:59.000Z

414

Opportunities for the Use of Renewable Energy in Road Transport | Open  

Open Energy Info (EERE)

Opportunities for the Use of Renewable Energy in Road Transport Opportunities for the Use of Renewable Energy in Road Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Opportunities for the Use of Renewable Energy in Road Transport Agency/Company /Organization: Renewable Energy Technology Deployment Sector: Energy Focus Area: Renewable Energy, Transportation Topics: Implementation, Policies/deployment programs Resource Type: Publications, Guide/manual Website: www.iea-retd.org/files/RETRANS_PolicyMakersReport_final.pdf Opportunities for the Use of Renewable Energy in Road Transport Screenshot References: Opportunities for the Use of Renewable Energy in Road Transport[1] "This report discusses the current state of the art of the use of options for using renewable energies in road transport, and explores possible

415

TRANSPORTATION ENERGY SURVEY DATA BOOK 1.1  

NLE Websites -- All DOE Office Websites (Extended Search)

SUB/02-4000008627/01 SUB/02-4000008627/01 TRANSPORTATION ENERGY SURVEY DATA BOOK 1.1 Tatyana Gurikova Macrosystems, Inc. Under Subcontract No. 4000008627 Stacy C. Davis Oak Ridge National Laboratory May 2002 Prepared for OAK RIDGE NATIONAL LABORATORY P.O. Box 2008 Oak Ridge, Tennessee 37831-6285 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 ii iii TABLE OF CONTENTS Page LIST OF FIGURES ..................................................................................................................... v LIST OF TABLES ....................................................................................................................... v FOREWORD ............................................................................................................................... ix

416

Recovery Act-Transportation Electrification | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act-Transportation Electrification Recovery Act-Transportation Electrification A report describing the transportation electrification project that will be funded under the FOA,...

417

Washington State Department of Transportation | Open Energy Informatio...  

Open Energy Info (EERE)

Department of Transportation Jump to: navigation, search Logo: Washington State Department of Transportation Name Washington State Department of Transportation Short Name WDOT...

418

Energy and transportation in Canada and the United States  

SciTech Connect

The transportation consumption of petroleum fuels in Canada and U.S. is analyzed, and the fuel savings, which could be realized through the use of more economical cars and through partial shift of automobile, air, and truck traffic to rail and urban transit, are evaluated. They amount to 32% of energy and oil used in transportation. Through partial electrification of intercity rail, and urban auto, transit, and truck traffic, the oil consumption could be reduced by a further 25%. The total saving of 57% in transportation corresponds to one-fifth of the total consumption of oil in Canada. The extra demand for electrical energy required for electric traction is evaluated; for electrification to be completed over a period of 20 years, the annual rate of growth of electrical energy production would have to increase by 1% p.a. (from 7% p.a. to 8% p.a.). In view of the increasing scarcity of oil, the railway share of traffic should be augmented, and modernization of North American rail is necessary to achieve this desirable change. Rail modernization is contingent on the density of traffic. The traffic density distribution on Canadian and U.S. railroads compares favorably with that on other electrified systems, and thus electrification of main lines in N. America appears practical. The required extra electrical generating capacity is a small fraction of the demand by other users. The rationalization of intercity passenger traffic in N. America is contingent on improvement of the quality of railway services. ... The major deficiencies of the current regulation of railways in Canada are indentified. It is suggested that replacement of the present legislation is a necessary first step toward modernization of railway transportation in Canada. (32 references) (auth, abstract modified)

Lukasiewicz, J.

1975-01-01T23:59:59.000Z

419

Covariability of Components of Poleward Atmospheric Energy Transports on Seasonal and Interannual Timescales  

Science Conference Proceedings (OSTI)

Vertically integrated atmospheric energy and heat budgets are presented with a focus on the zonal mean transports and divergences of dry static energy, latent energy, their sum (the moist static energy), and the total (which includes kinetic ...

Kevin E. Trenberth; David P. Stepaniak

2003-11-01T23:59:59.000Z

420

Transportation Energy Survey Data Book 1.1  

DOE Green Energy (OSTI)

The transportation sector is the major consumer of oil in the United States. In 2000, the transportation sector's share of U.S. oil consumption was 68 percent (U.S. DOE/EIA, 2001a, Table 2.5, p. 33, Table 1.4, p.7). As a result, the transportation sector is one of the major producers of greenhouse gases. In 2000, the transportation sector accounted for one-third (33 percent) of carbon emissions (U.S. DOE/EIA, 2000b, Table 5, p.28). In comparison, the industrial sector accounted for 32 percent and residential and commercial sector for 35 percent of carbon emissions in 2000. Carbon emissions, together with other gases, constitute greenhouse gases that are believed to cause global warming. Because that the transportation sector is a major oil consumer and producer of greenhouse gases, the work of the Analytic Team of the Office of Transportation Technologies (OTT) focuses on two main objectives: (1) reduction of U.S. oil dependence and (2) reduction of carbon emissions from vehicles. There are two major factors that contribute to the problem of U.S. oil dependence. First, compared to the rest of the world, the United States does not have a large oil reserve. The United States accounts for only 9 percent of oil production (U.S. DOE/EIA, 2001c, Table 4.1C). In comparison, the Organization for Petroleum Exporting Countries (OPEC) produces 42 percent of oil, and the Persian Gulf accounts for 28 percent. (U.S. DOE/EIA, 2001c, Table 1.1A). More than half (54 percent) of oil consumed in the United States is imported (U.S. DOE/EIA, 2001a, Table 1.8, p. 15). Second, it is estimated that the world is approaching the point at which half of the total resources of conventional oil believed to exist on earth will have been used up (Birky et. al., 2001, p. 2). Given that the United States is highly dependent on imported oil and that half of the world's conventional oil reserves will have been used up in the near future, the OTT's goal is to ensure an adequate supply of fuel for vehicles. There are three ways to achieve this goal: efficiency, substitution, or less travel. A reduction in oil usage will result in a reduction of carbon emissions. Successful transition to alternative types of fuel and advanced technology vehicles may depend on awareness of U.S. dependence on imported oil and the U.S. energy situation. Successful transition may also depend on knowledge of alternative types of fuels and advanced technologies. The ''Transportation Energy Survey Data Book 1.1'' examines the public's knowledge, beliefs and expectations of the energy situation in the United States and transportation energy-related issues. The data presented in the report have been drawn from multiple sources: surveys conducted by the Opinion Research Corporation International (ORCI) for National Renewable Energy Laboratory (NREL) that are commissioned and funded by OTT, Gallup polls, ABC News/Washington Post polls, NBC News/Wall Street Journal polls, polls conducted by the Ipsos-Reid Corporation, as well articles from The Washington Post (2001) and other sources. All surveys are telephone interviews conducted with randomly selected national samples of adults 18 years of age and older. Almost all surveys were conducted before the September 11, 2001 terrorist attacks, with the only exceptions being the November 2001 ORCI survey and the November 2001 survey conducted by the Ipsos-Reid Corporation.

Gurikova, T

2002-06-18T23:59:59.000Z

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Spheromak Energy Transport Studies via Neutral Beam Injection  

SciTech Connect

Results from the SSPX spheromak experiment provide strong motivation to add neutral beam injection (NBI) heating. Such auxiliary heating would significantly advance the capability to study the physics of energy transport and pressure limits for the spheromak. This LDRD project develops the physics basis for using NBI to heat spheromak plasmas in SSPX. The work encompasses three activities: (1) numerical simulation to make quantitative predictions of the effect of adding beams to SSPX, (2) using the SSPX spheromak and theory/modeling to develop potential target plasmas suitable for future application of neutral beam heating, and (3) developing diagnostics to provide the measurements needed for transport calculations. These activities are reported in several publications.

McLean, H S; Hill, D N; Wood, R D; Jayakumar, J; Pearlstein, L D

2008-02-11T23:59:59.000Z

422

Soft Photons from transport and hydrodynamics at FAIR energies  

E-Print Network (OSTI)

Direct photon spectra from uranium-uranium collisions at FAIR energies (E(lab) = 35 AGeV) are calculated within the hadronic Ultra-relativistic Quantum Molecular Dynamics transport model. In this microscopic model, one can optionally include a macroscopic intermediate hydrodynamic phase. The hot and dense stage of the collision is then modeled by a hydrodynamical calculation. Photon emission from transport-hydro hybrid calculations is examined for purely hadronic matter and matter that has a cross-over phase transition and a critical end point to deconfined and chirally restored matter at high temperatures. We find the photon spectra in both scenarios to be dominated by Bremsstrahlung. Comparing flow of photons in both cases suggests a way to distinguish these two scenarios.

Andreas Grimm; Bjrn Buchle

2012-11-11T23:59:59.000Z

423

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive...

424

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Print banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive...

425

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

E-Print Network (OSTI)

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Patel, Apoorva D

2011-01-01T23:59:59.000Z

426

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

E-Print Network (OSTI)

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Apoorva D. Patel

2011-04-07T23:59:59.000Z

427

Energy Transports by Ocean and Atmosphere Based on an Entropy Extremum Principle. Part 1: Zonal Averaged Transports  

Science Conference Proceedings (OSTI)

Required global energy transports determined from Nimbus-7 satellite net radiation measurements have been separated into atmospheric and oceanic components by applying a maximum entropy production principle to the atmospheric system. Strong ...

Byung-Ju Sohn; Eric A. Smith

1993-05-01T23:59:59.000Z

428

The Suppression of Energy Discretization Errors in Multigroup Transport Calculations  

SciTech Connect

The Objective of this project is to develop, implement, and test new deterministric methods to solve, as efficiently as possible, multigroup neutron transport problems having an extremely large number of groups. Our approach was to (i) use the standard CMFD method to "coarsen" the space-angle grid, yielding a multigroup diffusion equation, and (ii) use a new multigrid-in-space-and-energy technique to efficiently solve the multigroup diffusion problem. The overall strategy of (i) how to coarsen the spatial and energy grids, and (ii) how to navigate through the various grids, has the goal of minimizing the overall computational effort. This approach yields not only the fine-grid solution, but also coarse-group flux-weighted cross sections that can be used for other related problems.

Larsen, Edward

2013-06-17T23:59:59.000Z

429

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

430

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

431

Estimating Meridional Energy Transports by the Atmospheric and Oceanic General Circulations Using Boundary Fluxes  

Science Conference Proceedings (OSTI)

The annual-mean meridional energy transport in the atmosphereocean system (total transport) is estimated using 4-yr mean net radiative fluxes at the top of the atmosphere (TOA) calculated from the International Satellite Cloud Climatology ...

Y-C. Zhang; W. B. Rossow

1997-09-01T23:59:59.000Z

432

Hydrogen energy for tomorrow: Advanced hydrogen transport and storage technologies  

DOE Green Energy (OSTI)

The future use of hydrogen to generate electricity, heat homes and businesses, and fuel vehicles will require the creation of a distribution infrastructure of safe, and cost-effective transport and storage. Present storage methods are too expensive and will not meet the performance requirements of future applications. Transport technologies will need to be developed based on the production and storage systems that come into use as the hydrogen energy economy evolves. Different applications will require the development of different types of storage technologies. Utility electricity generation and home and office use will have storage fixed in one location--stationary storage--and size and weight will be less important than energy efficiency and costs of the system. Fueling a vehicle, however, will require hydrogen storage in an ``on-board`` system--mobile storage--with weight and size similar to the gasoline tank in today`s vehicle. Researchers are working to develop physical and solid-state storage systems that will meet these diverse future application demands. Physical storage systems and solid-state storage methods (metal hydrides, gas-on-solids adsorption, and glass microspheres) are described.

NONE

1995-08-01T23:59:59.000Z

433

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Sustainable Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dr. Kathleen Hogan, Deputy Assistant Secretary Dr. Kathleen Hogan, Deputy Assistant Secretary May 2, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Sustainable Transportation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation * Enhancing energy security by reducing our dependence on foreign oil and gas * Saving money by cutting energy costs for American

434

Rail Coal Transportation Rates - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

In this latest release of Coal Transportation Rates to the Electric ... This report covers railroad transportation rates from 2001-2010 and barge and truck ...

435

OpenEI/PageKeyword Transportation | Open Energy Information  

Open Energy Info (EERE)

Results 1- 20 Next (20 | 50 | 100 | 250 | 500) 2011 APTA Public Transportation Fact Book + A Municipal Official's Guide to Diesel Idling Reduction + APEC-Alternative Transport...

436

Department of Energy Office of Science Transportation Overview...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Overview More Documents & Publications Applying Risk Communication to the Transportation of Radioactive Materials Status and Future of TRANSCOM Waste Isolation...

437

Spent Fuel Transportation Risk Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spent Fuel Transportation Risk Assessment Spent Fuel Transportation Risk Assessment SFTRA Overview Contents Project and review teams Purpose and goals Basic methodology...

438

Event:LEDS GP Transportation Sector Network Training | Open Energy...  

Open Energy Info (EERE)

Training Jump to: navigation, search Calendar.png LEDS GP Transportation Sector Network Training in Latin America: on 20121015 Training on transportation issues to be held with...

439

Electricity as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity as a Transportation Fuel Electricity as a Transportation Fuel August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the...

440

RITA-Bureau of Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

RITA-Bureau of Transportation Statistics Jump to: navigation, search Name RITA-Bureau of Transportation Statistics AgencyCompany Organization United States Department of...

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

442

Energy Carrier Transport In Surface-Modified Carbon Nanotubes  

E-Print Network (OSTI)

Carbon nanotubes are made into films or bulks, their surface or junction morphology in the networks can be modified to obtain desired electrical transport properties by various surface modification methods. The methods include incorporation of organic molecules or inorganic nanoparticles, debundling of nanotubes by dispersing agents, and microwave irradiation. Because carbon nanotubes have unique carrier transport characteristics along a sheet of graphite in a cylindrical shape, the properties can be dramatically changed by the modification. This is ideal for developing high-performance materials for thermoelectric and photovoltaic energy conversion applications. In this research, decoration of various organic/inorganic nanomaterials on carbon nanotubes was employed to enhance their electrical conductivity, to improve thermoelectric power factor by modulating their electrical conductance and thermopower, or to obtain n-type converted carbon nanotube. The electrical conductivity of double-wall nanotubes (DWNTs) decorated with tetrafluoro-tetracyanoquinodimethane (F4TCNQ) was increased up to 5.9 10^5 S/m. The sheet resistances were measured to be 42 ?/sq at 75% of transmittance for HNO3/SOCl2-treated DWNT films, making their electrical conductivities 200~300% better than those of the pristine DWNT films. A series of experiments at different ion concentrations and reaction time periods were systematically performed in order to find optimum nanomaterial formation conditions and corresponding electronic transport changes for better thermoelectric power factor. For example, the thermoelectric power factors were improved by ~180% with F4TCNQ on DWNTs, ~200% with Cu on SWNTs, and ~140% with Fe on single-walled nanotubes (SWNTs). Also SWNTs was converted from p-type to n-type with a large thermopower (58 ?V/K) by using polyethyleneimine (PEI) without vacuum or controlled environment. This transport behavior is believed to be from charge interactions resulted from the difference between the work functions/reduction potentials of nanotubes and nanomaterials. In addition, different dispersing agents were utilized with DWNT and SWNTs to see a debundling effect in a film network. The highest electrical conductivity of ~1.7210^6 S/m was obtained from DWNT film which was fabricated with a nanotube solution dispersed by chlorosulfonic acid. Debundling of nanotubes in the film network has been demonstrated to be a critical parameter in order to get such high electrical property. In the last experiment, Au nanoparticle decoration on carbon nanotube bundle was performed and a measurement of themophysical properties has done before and after modifying carbon nanotube surface. Carbon nanotube bundle, herein, was bridged on microdevice to enable the measurement work. This study demonstrates a first step toward a breakthrough in order to extract the potential of carbon nanotubes regarding electron transport properties.

Ryu, Yeontack

2012-12-01T23:59:59.000Z

443

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

444

Comparative analysis of energy data bases for household residential and transportation energy use  

SciTech Connect

Survey data bases covering household residential and transportation energy use were reviewed from the perspective of energy policy analysts and data base users. Twenty-three surveys, taken from 1972 to 1985, collected information on household energy consumption and expenditures, energy-using capital stock, and conservation activities. Ten of the surveys covered residential energy use only, including that for space heating and cooling, cooking, water heating, and appliances. Six surveys covered energy use only for household travel in personal vehicles. Seven surveys included data on both of these household energy sectors. Complete energy use data for a household in one year can be estimated only for 1983, using two surveys (one residential and one transportation) taken in the same households. The last nine surveys of the 23 were recent (1983--1985). Review of those nine was based on published materials only. The large-scale surveys generally had less-comprehensive data, while the comprehensive surveys were based on small samples. The surveys were timely and useful for analyzing four types of energy policies: economic regulation, environmental regulation, federal energy production, and direct regulation of energy consumption or production. Future surveys of energy use, such as those of residential energy consumption, should try to link their energy-use questions to large surveys, such as the American Housing Survey, to allow more accurate analysis of comparative impacts of energy policies among population categories of interest (e.g., minority/majority, metropolitan/nonmetropolitan area, census regions, and income class). 78 refs., 9 figs., 29 tabs.

Teotia, A.; Klein, Y.; LaBelle, S.

1988-11-01T23:59:59.000Z

445

Ris Energy Report 5 New and emerging technologies for renewable energy 51 in the transport sector  

E-Print Network (OSTI)

With the prominent exception of biomass, renewable energy resources--solar, wind, ocean, hydro--and nu- clear power density, though, batteries are still at least an order of magnitude below hydrocarbons and advanced hydro the direct loading and unloading of electricity. Road transport Car manufacturers all over the world

446

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

447

Transportation  

Science Conference Proceedings (OSTI)

Transportation systems are an often overlooked critical infrastructure component. These systems comprise a widely diverse elements whose operation impact all aspects of society today. This chapter introduces the key transportation sectors and illustrates ...

Mark Hartong; Rajn Goel; Duminda Wijesekera

2012-01-01T23:59:59.000Z

448

USDOT-Transportation and Climate Change Clearinghouse | Open Energy  

Open Energy Info (EERE)

USDOT-Transportation and Climate Change Clearinghouse USDOT-Transportation and Climate Change Clearinghouse Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USDOT-Transportation and Climate Change Clearinghouse Agency/Company /Organization: United States Department of Transportation Sector: Climate Focus Area: Transportation Topics: GHG inventory, Market analysis Resource Type: Guide/manual, Publications, Software/modeling tools User Interface: Website Website: climate.dot.gov/methodologies/analysis-resources.html Cost: Free USDOT-Transportation and Climate Change Clearinghouse Screenshot References: USDOT-Transportation and Climate Change Clearinghouse[1] "Assessments of available models and analytical tools can be used to compare greenhouse gas measurement methods and analytical approaches. This

449

UN-Glossary for Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

UN-Glossary for Transportation Statistics UN-Glossary for Transportation Statistics Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UN-Glossary for Transportation Statistics Agency/Company /Organization: United Nations Focus Area: Transportation Resource Type: Dataset, Publications Website: www.internationaltransportforum.org/Pub/pdf/GloStat3e.pdf Cost: Free UN-Glossary for Transportation Statistics Screenshot References: UN-Glossary for Transportation Statistics[1] Logo: UN-Glossary for Transportation Statistics "The Glossary for Transport Statistics was published for the first time in 1994 with the purpose of assisting member countries during the collection of data on transport made by the UNECE, ECMT and Eurostat through the Common Questionnaire." References ↑ "UN-Glossary for Transportation Statistics"

450

The Department of Energy's Transportation Electrification Program, 0AS-RA-12-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Electrification Transportation Electrification Program OAS-RA-12-11 May 2012 Department of Energy Washington, DC 20585 May 10, 2012 MEMORANDUM FOR THE DEPUTY ASSISTANT SECRETARY FOR ENERGY EFFICIENCY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on "The Department of Energy's Transportation Electrification Program" INTRODUCTION The Department of Energy established the Transportation Electrification Program (Program) to demonstrate and evaluate the deployment of plug-in hybrid vehicles and their associated infrastructure needs. Funded by the American Recovery and Reinvestment Act of 2009, the Program provided about $400 million to 18 grant recipients-12 non-profit entities and 6 for-

451

Total instantaneous energy transport in polychromatic fluid gravity waves at finite depth  

Science Conference Proceedings (OSTI)

The total instantaneous energy transport can be found for polychromatic waves when using the deep water approximation. Expanding this theory to waves in waters of finite depth

J. Engstrm; J. Isberg; M. Eriksson; M. Leijon

2012-01-01T23:59:59.000Z

452

Planning for a Sustainable Nexus of Urban Land Use, Transport and Energy.  

E-Print Network (OSTI)

??Land use, transport, and energy systems create demands that are transferred to ecosystems. Urban sprawl is increasing, open space and farmland are disappearing and climate (more)

Belaieff, Antoine; Moy, Gloria

2007-01-01T23:59:59.000Z

453

Effects of energy constraints on transportation systems. [Twenty-six papers  

DOE Green Energy (OSTI)

Twenty-six papers are presented on a variety of topics including: energy and transportaton facts and figures; long-range planning under energy constraints; technology assessment of alternative fuels; energy efficiency of intercity passenger and freight movement; energy efficiency of intracity passenger movement; federal role; electrification of railroads; energy impact of the electric car in an urban enviroment; research needs and projects in progress--federal viewpoint; research needs in transportation energy conservation--data needs; and energy intensity of various transportation modes--an overview. A separate abstract was prepared for each of the papers for inclusion in Energy Research Abstracts (ERA) and in Energy Abstracts for Policy Analysis (EAPA).

Mittal, R. K. [ed.

1977-12-01T23:59:59.000Z

454

LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Contact Us LEDSGP/Transportation Toolkit/Contact Us < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Contact Us) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Contacts for the LEDS GP Transport Working Group The Transportation Toolkit is provided by the Transport Working Group as part of the Low Emission Development Strategies (LEDS) Global Partnership. If you have questions or comments about this toolkit, . Remote Expert Assistance on LEDS The LEDS Global Partnership provides timely, high-quality, no-fee technical assistance on transportation issues as part of the Remote Expert Assistance on LEDS (REAL) service. Experts from institutions around the world are available to provide objective advice, conduct reviews and brief

455

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Strategies/Avoid LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Avoid) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg Avoid trips taken and reduce travel demand by integrating land use planning, transport infrastructure planning, and transport demand

456

Transport Energy-Saving Emission Reduction Countermeasures under the Concept of Sustainable Development  

Science Conference Proceedings (OSTI)

This paper combined the actual situation of China's transport development, analyzed the environmental impact of transport sector and the domestic and international reflected to the advanced experience of traffic pollution. At the same time, I also proposed ... Keywords: Sustainable, Development, transport, Energy-saving, emission, reduction, Environment, Propose

Chengzhi Liu

2010-05-01T23:59:59.000Z

457

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network (OSTI)

Nuclear Energy, and Basic Energy Sciences, and will focus on solar electricity, fuels from sunlight, batteries and energy storage,

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

458

Energy study of railroad freight transportation. Volume 1. Executive summary  

SciTech Connect

The railroad industry plays a vital role in transporting goods, raw materials, and food necessary to the well being of the population and necessary to facilitate the operations of our industrial economy. Because of the vital part that the railroad industry plays in the economy and because of its ability to move goods with relatively small amounts of fuel, the US ERDA embarked on a study to determine the role of the Federal government in promoting conservation in the industry and in freight movements in general. Toward this final objective, the study compiled a description of the railroad industry, its structure, equipment, facilities, economics, and energy consumption; compiled a description of the regulation of the industry and considered ways in which the regulation has affected fuel consumption by the railroads; and analyzed candidates for fuel efficiency improvement and evaluated them on the basis of economics and the likelihood of their adoption by industry. A description of the industry, an analysis of energy consumption by the industry, a discussion of mechanisms for evaluating efficiency improvement proposals, a description and evaluation of conservation efficiency improvement proposals, a description and evaluation of conservation opportunities, and a discussion of recommended activities are included.

1979-08-01T23:59:59.000Z

459

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSPORTATION ENERGY FUTURES TRANSPORTATION ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is essential to our economy and quality of life, and currently accounts for 71% of the nation's total petroleum use and 33% of our total carbon emissions. Energy-efficient transportation strategies could reduce both oil consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an

460

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

Policies to Reduce Emissions from the Transportation Sector Policies to Reduce Emissions from the Transportation Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies to Reduce Emissions from the Transportation Sector Agency/Company /Organization: PEW Center Sector: Climate Focus Area: Transportation, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Other Website: www.pewclimate.org/DDCF-Briefs/Transportation Cost: Free References: Policies To Reduce Emissions From The Transportation Sector[1] Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Overview Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Outputs include: General Information

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transportation Assessment Toolkit/Home | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit/Home < Transportation Assessment Toolkit Jump to: navigation, search Home Transport Topics Ask an Expert Training Contact us What are the key actions necessary to implementing a transportation system LEDS? Action 1: Evaluate the existing transport system Action 2: Develop BAU scenario Action 3: Assess opportunities Avoid-Shift-Improve framework of strategies Action 4: Develop alternative scenarios Action 5: Prioritize and plan Action 6: Implement and monitor Transportation Assessment Toolkit Train licensed.png Transportation Assessment Toolkit Information licensed.png Transportation Assessment Toolkit Learning licensed.png

462

Hydrogen as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

as a Transportation Fuel Hydrogen as a Transportation Fuel August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from...

463

Propane as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

as a Transportation Fuel Propane as a Transportation Fuel July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane,...

464

FRV SI Transport Solar LP | Open Energy Information  

Open Energy Info (EERE)

FRV SI Transport Solar LP Jump to: navigation, search Name FRV SI Transport Solar LP Place Arizona Utility Id 56827 References EIA Form EIA-861 Final Data File for 2010 -...

465

Transportation Emergency Preparedness Program Plan, U.S. Department of Energy Region 6  

Science Conference Proceedings (OSTI)

The United States Department of Energy (DOE) Region 6 Transportation Emergency Preparedness Program Plan (TEPP Plan) operates within the framework of the DOE emergency management system for developing, coordinating, and directing emergency planning, preparedness, and readiness assurance activities for radiological transportation incidents. The DOE Region 6 TEPP Plan is a narrative description of the DOE Transportation Emergency Preparedness Program activities, training and technical assistance provided to states and tribes along DOE's transportation corridors in DOE Region 6.

Marsha Keister

2010-04-01T23:59:59.000Z

466

Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation  

Science Conference Proceedings (OSTI)

A detailed vertically integrated atmospheric heat and energy budget is presented along with estimated heat budgets at the surface and top-of-atmosphere for the subtropics. It is shown that the total energy transports are remarkably seamless in ...

Kevin E. Trenberth; David P. Stepaniak

2003-11-01T23:59:59.000Z

467

Energy use in the marine transportation industry: Task I, Industry Summary. Final report  

SciTech Connect

Task I, Industry Summary, defines the current marine transportation industry in terms of population, activities, and energy use. It identifies the various operating or service sectors of the marine transportation industry and determines the numbers and types of vessels, their operating characteristics, and energy consumption. The analysis includes all powered water-borne craft, with the exception of those owned or operated by a government organization and fixed offshore production platforms. The energy consumption analysis of the marine transportation industry concludes with 4 major findings: the marine transportation industry consumes 2.934 quads annually; energy consumption in the marine transportation sector represents 15% of the energy consumed for transportation services; the foreign trade sector consumes 80% of the estimated marine transportation energy requirements; and a minimum of 28% of the energy required by the marine transportation industry is purchased in the US. In each additional chapter (foreign trade, Great Lakes, coastal shipping, offshore, inland waterways, fishing sectors, and recreational boats) the subjects are described in terms of population, operating profiles, energy consumption, typical or generic vessels, costs, and cargo movements.

1977-09-01T23:59:59.000Z

468

ERTP: Energy-efficient and Reliable Transport Protocol for data streaming in Wireless Sensor Networks  

Science Conference Proceedings (OSTI)

Emerging data streaming applications in Wireless Sensor Networks require reliable and energy-efficient Transport Protocols. Our recent Wireless Sensor Network deployment in the Burdekin delta, Australia, for water monitoring [T. Le Dinh, W. Hu, P. Sikka, ... Keywords: Energy-efficiency, Reliability, Transport protocol, Wireless Sensor Network

Tuan Le; Wen Hu; Peter Corke; Sanjay Jha

2009-05-01T23:59:59.000Z

469

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Strategies) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low emissions transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand

470

Transportation Emergency Preparedness Program (TEPP) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Emergency Preparedness Program (TEPP) Transportation Emergency Preparedness Program (TEPP) Transportation Emergency Preparedness Program (TEPP) In an effort to address responder concerns, the Department retooled its approach to emergency responder preparedness and implemented the more simplified and responder-friendly Transportation Emergency Preparedness Program (TEPP). TEPP is a component of the overall comprehensive emergency management system established by DOE Order (DOE O) 151.1, Comprehensive Emergency Management System. TEPP integrates a basic approach to transportation emergency planning and preparedness activities under a single program with the goal to ensure DOE, its operating contractors, and state, tribal, and local emergency responders are prepared to respond promptly, efficiently, and effectively to accidents involving DOE

471

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

Actions Actions < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport sector, choosing from relevant resources to achieve a comprehensive action

472

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Tools for Low-Emission Development Strategies in Transportation Use one of the search methods below to find tools for building sustainable, low-emission development strategies (LEDS) for your country's transportation system. These resources focus on strategies to limit air pollutants and greenhouse gas emissions. Learn more in the report on LEDS for transportation. Search Method: Category Keyword Choose one or more items from the following categories. Key Actions Implement & Monitor Evaluate System Create Baseline Assess Opportunities Develop Alternatives Prioritize & plan Strategies Resource Types Topics Regions Powered by OpenEI

473

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Improve < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Improve) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and

474

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Tools < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Tools) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Tools for Low Emission Development Strategies in Transportation Use one of the search methods below to find tools for building sustainable, low emission development strategies (LEDS) for your country's transportation system. These resources focus on strategies to limit air pollutants and greenhouse gas emissions. Learn more in the report on LEDS for transportation. If you are aware of a relevant technical resource not

475

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Training) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are

476

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

477

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

478

Tips: References | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tips: References Tips: References Tips: References April 11, 2012 - 9:03am Addthis Tips: References The following resources were used to develop the Energy Savers Guide: Tips on Saving Money and Energy at Home: Alternative Fuels and Advanced Vehicles Data Center American Council for an Energy-Efficient Economy Cool Roof Rating Council Database of State Incentives for Renewables & Efficiency (DSIRE) DOE Building America DOE Building Technologies Program DOE Building Technologies Program, 2010 Buildings Energy Databook DOE Energy Information Administration Residential Energy Consumption Survey DOE/EPA Fuel Economy Guide DOE Federal Energy Management Program DOE Office of Electricity Delivery and Energy Reliability ENERGY STAR® Green Roofs for Healthy Cities National Renewable Energy Laboratory

479

Institute for Transportation & Development Policy | Open Energy Information  

Open Energy Info (EERE)

Institute for Transportation & Development Policy Institute for Transportation & Development Policy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Institute for Transportation & Development Policy Agency/Company /Organization: Institute for Transportation & Development Policy Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: www.itdp.org/ The Institute for Transportation and Development Policy (ITDP) works with cities worldwide to bring about sustainable transport solutions that cut greenhouse gas emissions, reduce poverty, and improve the quality of urban life. The ITDP website provides summaries of the organization's work in the areas of bus rapid transit, bike sharing, and others. How to Use This Tool This tool is most helpful when using these strategies:

480

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are links to relevant online training/learning sites. To suggest additional

Note: This page contains sample records for the topic "transportation energy databook" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Sourcebook on Sustainable Urban Transport | Open Energy Information  

Open Energy Info (EERE)

Sourcebook on Sustainable Urban Transport Sourcebook on Sustainable Urban Transport Jump to: navigation, search Tool Summary Name: The Sourcebook on Sustainable Urban Transport Agency/Company /Organization: GIZ Focus Area: Other Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.sutp.org/index.php?option=com_content&task=view&id=426&Itemid=189& The Sourcebook addresses the key areas of a sustainable transport policy framework for developing cities. It consists of more than twenty modules addressing the following themes: institutional and policy orientation; land use planning and demand management; transit, walking, and cycling; vehicles and fuels; environment and health; and social issues in transport. References Retrieved from "http://en.openei.org/w/index.php?title=The_Sourcebook_on_Sustainable_Urban_Transport&oldid=515034"

482

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Key Actions < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Key Actions) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a

483

Alternatives to Traditional Transportation Fuels 2009 | Open Energy  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels 2009 Alternatives to Traditional Transportation Fuels 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternatives to Traditional Transportation Fuels 2009 Focus Area: Propane Topics: Policy Impacts Website: www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.p Equivalent URI: cleanenergysolutions.org/content/alternatives-traditional-transportati Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use and the amount of alternative transportation fuels consumed in the United States in 2009. References Retrieved from "http://en.openei.org/w/index.php?title=Alternatives_to_Traditional_Transportation_Fuels_2009&oldid=514311

484

Transport-related impacts and instruments for sensitive areas | Open Energy  

Open Energy Info (EERE)

Transport-related impacts and instruments for sensitive areas Transport-related impacts and instruments for sensitive areas Jump to: navigation, search Tool Summary Name: Transport-related impacts and instruments for sensitive areas Agency/Company /Organization: European Commission Complexity/Ease of Use: Not Available Website: ec.europa.eu/environment/air/pdf/sat/4_annexes.pdf Transport Toolkit Region(s): Europe Related Tools Global Bus Rapid Transit (BRT) Database Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Transportation Energy Data Book ... further results Find Another Tool FIND TRANSPORTATION TOOLS This report is a study on transport-related impacts on environmentally sensitive areas, and possible measures and policy instruments to address them. When to Use This Tool While building a low emission strategy for your country's transportation

485

CCAP-Data and Capacity Needs for Transportation NAMAs | Open Energy  

Open Energy Info (EERE)

CCAP-Data and Capacity Needs for Transportation NAMAs CCAP-Data and Capacity Needs for Transportation NAMAs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CCAP-Data and Capacity Needs for Transportation NAMAs Agency/Company /Organization: Center for Clean Air Policy Sector: Climate, Energy Focus Area: Transportation Topics: Low emission development planning, -NAMA Website: www.ccap.org/docs/resources/973/Transport_NAMA_Capacity-Building.pdf Cost: Free Language: English CCAP-Data and Capacity Needs for Transportation NAMAs Screenshot References: CCAP-Data and Capacity Needs for Transportation NAMAs[1] Report 1: Data Availability "The current report is the first in a series exploring the issue of data and capacity needs to support effective implementation and evaluation of transportation NAMAs. The purpose of this research is to support the

486

Oxycombustion In Transport Oxy-Combustor - Energy Innovation ...  

Substantially pure oxygen is fed to the transport oxy-combustor under pressure to combust fossil fuels, generating steam for power generation.

487

Office of Secure Transportation Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Activities Our Mission To provide safe and secure ground and air transportation of nuclear weapons, nuclear weapons components, and special nuclear materials and conduct...

488

High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint  

SciTech Connect

Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

2012-06-01T23:59:59.000Z

489

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1  

Science Conference Proceedings (OSTI)

This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

NONE

1998-01-01T23:59:59.000Z

490

Addressing transportation energy and environmental impacts: technical and policy research directions  

DOE Green Energy (OSTI)

The Lawrence Livermore National Laboratory (LLNL) is establishing a local chapter of the University of California Energy Institute (UCEI). In order to most effectively contribute to the Institute, LLNL sponsored a workshop on energy and environmental issues in transportation. This workshop took place in Livermore on August 10 and brought together researchers from throughout the UC systems in order to establish a joint LLNL-UC research program in transportation, with a focus on energy and environmental impacts.

Weissenberger, S.; Pasternak, A.; Smith, J.R.; Wallman, H.

1995-08-01T23:59:59.000Z

491

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

492

LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information  

Open Energy Info (EERE)

Contact Us Contact Us < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Contacts for the LEDS GP Transport Working Group If you have questions or comments about the Transportation Toolkit, . Powered by OpenEI ledsgp.org is built on the same platform as the popular Wikipedia site. Like Wikipedia, it is a "wiki" or website developed collaboratively by a community of users. Thanks to our unique relationship with OpenEI.org, you can add or edit most content on ledsgp.org. For more information about this unique collaboration, contact us. View or edit this page on OpenEI.org. Retrieved from "http://en.openei.org/w/index.php?title=LEDSGP/Transportation_Toolkit/Contact_Us&oldid=690462

493

Property:TransportToolkit/Regions | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:TransportToolkit/Regions Jump to: navigation, search Property Name TransportToolkit/Regions Property Type String Description Transport Toolkit property to help filter pages Valid values are Africa & Middle East, Asia, Australia & North America, Europe, Latin America & Caribbean and Global Used in Form/Template Tool Allows Values Africa & Middle East;Asia;Australia & North America;Europe;Latin America & Caribbean;Global Pages using the property "TransportToolkit/Regions" Showing 6 pages using this property. A Africa's Transport Infrastructure Mainstreaming Maintenance and Management + Africa & Middle East + Assessment of the type of cycling infrastructure required to attract new cyclists + Australia & North America +

494

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Improve < LEDSGP‎ | Transportation Toolkit‎ | Strategies Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low emissions transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

495

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg

496

Energy Policy Act transportation rate study: Interim report on coal transportation  

SciTech Connect

The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

NONE

1995-10-01T23:59:59.000Z

497

Thermal Green's functions of the energy-momentum tensor and transport coefficients of the SU(3) Yang-Mills gas  

E-Print Network (OSTI)

Thermal Green's functions of the energy-momentum tensor and transport coefficients of the SU(3) Yang-Mills gas

Karsch, Frithjof

1987-01-01T23:59:59.000Z

498

Transportation Energy Futures: Key Opportunities and Tools for Decision Makers (Brochure)  

Science Conference Proceedings (OSTI)

The Transportation Energy Futures (TEF) project examines underexplored greenhouse gas-abatement and oil-savings opportunities by consolidating transportation energy knowledge, conducting advanced analysis, and exploring additional opportunities for sound strategic action. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal is to provide analysis to accompany DOE-EERE's long-term transportation energy planning by addressing high-priority questions, informing domestic decisions about transportation energy strategies, priorities, and investments. Research and analysis were conducted with an eye toward short-term actions that support long-term energy goals The project looks beyond technology to examine each key question in the context of the marketplace, consumer behavior, industry capabilities, and infrastructure. This updated fact sheet includes a new section on initial project findings.

Not Available

2012-12-01T23:59:59.000Z

499

Transportations Share of Global Energy Use and CO2 Emissions  

U.S. Energy Information Administration (EIA)

Annual Energy Outlook 2011 and an update on EIA activities NGA Center for Best Practices State Energy Working Group February 8, 2011 Richard Newell, Administrator

500

A new challenge for the energy efficiency evaluation community: energy savings and emissions reductions from urban transportation policies  

E-Print Network (OSTI)

A new challenge for the energy efficiency evaluation community: energy savings and emissions reductions from urban transportation policies Dr. Jean-Sébastien BROC, Pr. Bernard BOURGES, Ecole des Mines de Nantes, France Abstract The energy efficiency evaluation community has a large experience about

Paris-Sud XI, Université de