National Library of Energy BETA

Sample records for transportation demand sector

  1. Residential Demand Sector Data, Commercial Demand Sector Data, Industrial Demand Sector Data - Annual Energy Outlook 2006

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing consumption and prices by sector and census division for 2006 - includes residential demand, commercial demand, and industrial demand

  2. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  3. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  4. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  5. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies ...

  6. Technologies for Climate Change Mitigation: Transport Sector...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector...

  7. Model Documentation Report: Commercial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  8. International Energy Outlook 2016-Transportation sector energy consumption

    Gasoline and Diesel Fuel Update (EIA)

    - Energy Information Administration 8. Transportation sector energy consumption Overview In the International Energy Outlook 2016 (IEO2016) Reference case, transportation sector delivered energy consumption increases at an annual average rate of 1.4%, from 104 quadrillion British thermal units (Btu) in 2012 to 155 quadrillion Btu in 2040. Transportation energy demand growth occurs almost entirely in regions outside of the Organization for Economic Cooperation and Development (non-OECD), with

  9. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  10. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program Utah Clean Cities Transportation Sector Petroleum Reduction ...

  11. Advanced Vehicle Electrification & Transportation Sector Electrification |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt071_vss_cesiel_2011_o.pdf More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

  12. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  13. Transportation Sector Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model.

  14. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    1998-01-01

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  15. Commercial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  16. China-Transportation Demand Management in Beijing: Mitigation...

    Open Energy Info (EERE)

    demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in...

  17. International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China

    U.S. Energy Information Administration (EIA) Indexed Site

    Jim Turnure, Director Office of Energy Consumption & Efficiency Analysis, EIA EIA Conference: Asian Energy Demand July 14, 2014 | Washington, DC International Transportation Energy Demand Determinants (ITEDD): Prototype Results for China Dawn of new global oil market paradigm? 2 Jim Turnure, EIA Conference July 14, 2014 * Conventional wisdom has centered around $100-120/barrel oil and 110-115 million b/d global liquid fuel demand in the long term (2030-2040) * Demand in non-OECD may push

  18. Fact #619: April 19, 2010 Transportation Sector Revenue by Industry

    Broader source: Energy.gov [DOE]

    According the latest Economic Census (2002), the trucking industry is the largest contributor of revenue in the transportation sector, contributing more than one-quarter of the sectors revenue. The...

  19. Transportation Demand Management (TDM) Encyclopedia | Open Energy...

    Open Energy Info (EERE)

    Implementation Resource Type: Guidemanual Website: www.vtpi.orgtdmtdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute1 "The Online TDM...

  20. Energy Outlook for the Transport Sector | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    energy intensity data and documentation that supports the information presented on this website. The files are in Microsoft® Excel® format (2007 and later versions). Package icon Entire Set File Economywide File Transportation Sector File Industrial Sector File Residential Buildings Sector File Commercial Buildings Sector File Electricity Sector More Documents & Publications Home Performance Contractor Pro Forma Residential Refrigerators-Freezers (Appendix A1) Refrigerators and

  1. Accounting for Co-benefits in Asia's Transportation Sector: Methods...

    Open Energy Info (EERE)

    Methods and Applications Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Accounting for Co-benefits in Asia's Transportation Sector: Methods and Applications...

  2. Land Transport Sector in Bangladesh: An Analysis Toward Motivating...

    Open Energy Info (EERE)

    Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction...

  3. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  4. Model documentation report: Residential sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This reference document provides a detailed description for energy analysts, other users, and the public. The NEMS Residential Sector Demand Module is currently used for mid-term forecasting purposes and energy policy analysis over the forecast horizon of 1993 through 2020. The model generates forecasts of energy demand for the residential sector by service, fuel, and Census Division. Policy impacts resulting from new technologies, market incentives, and regulatory changes can be estimated using the module. 26 refs., 6 figs., 5 tabs.

  5. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration NEMS Transportation Demand Model Documentation Report 2005 25 manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  6. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  7. Natural Gas Infrastructure Implications of Increased Demand from the Electric Sector

    Broader source: Energy.gov [DOE]

    This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use. To perform this analysis, the U.S. Department of Energy commissioned Deloitte MarketPoint to examine scenarios in its North American Integrated Model (NAIM), which simultaneously models the electric power and the natural gas sectors. This study concludes that, under scenarios in which natural gas demand from the electric power sector increases, the incremental increase in interstate natural gas pipeline expansion is modest, relative to historical capacity additions. Similarly, capital expenditures on new interstate pipelines in the scenarios considered here are projected to be significantly less than the capital expenditures associated with infrastructure expansion over the last 15 years.

  8. Global Climate Change and the Transportation Sector: An Update on Issues and Mitigation Options

    SciTech Connect (OSTI)

    Geffen, CA; Dooley, JJ; Kim, SH

    2003-08-24

    It is clear from numerous energy/economic modeling exercises that addressing the challenges posed by global climate change will eventually require the active participation of all industrial sectors and all consumers on the planet. Yet, these and similar modeling exercises indicate that large stationary CO2 point sources (e.g., refineries and fossil-fired electric power plants) are often the first targets considered for serious CO2 emissions mitigation. Without participation of all sectors of the global economy, however, the challenges of climate change mitigation will not be met. Because of its operating characteristics, price structure, dependence on virtually one energy source (oil), enormous installed infrastructure, and limited technology alternatives, at least in the near-term, the transportation sector will likely represent a particularly difficult challenge for CO2 emissions mitigation. Our research shows that climate change induced price signals (i.e., putting a price on carbon that is emitted to the atmosphere) are in the near term insufficient to drive fundamental shifts in demand for energy services or to transform the way these services are provided in the transportation sector. We believe that a technological revolution will be necessary to accomplish the significant reduction of greenhouse gas emissions from the transportation sector. This paper presents an update of ongoing research into a variety of technological options that exist for decarbonizing the transportation sector and the various tradeoffs among them.

  9. Transitioning the Transportation Sector: Exploring the Intersection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Hydrogen and Natural Gas for Transportation-Including a Hydrogen Perspective, Mark Smith, DOE Vehicle Technologies Office More Documents & Publications Vehicle Technologies ...

  10. Transportation Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    and historic yearly values for car prices at different production levels by applying an additive adjustment to the price of a gasoline-fueled vehicle. a) Car and Light Truck at...

  11. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  12. Agenda for Transitioning the Transportation Sector: Exploring...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... onal Laboratori natural gas and erent transport mental Science a e Public Affairs, s Manager, Ho scussion gen in direct co tion applicatio structure rollo ass of stations & uilt ...

  13. Coal supply/demand, 1980 to 2000. Task 3. Resource applications industrialization system data base. Final review draft. [USA; forecasting 1980 to 2000; sector and regional analysis

    SciTech Connect (OSTI)

    Fournier, W.M.; Hasson, V.

    1980-10-10

    This report is a compilation of data and forecasts resulting from an analysis of the coal market and the factors influencing supply and demand. The analyses performed for the forecasts were made on an end-use-sector basis. The sectors analyzed are electric utility, industry demand for steam coal, industry demand for metallurgical coal, residential/commercial, coal demand for synfuel production, and exports. The purpose is to provide coal production and consumption forecasts that can be used to perform detailed, railroad company-specific coal transportation analyses. To make the data applicable for the subsequent transportation analyses, the forecasts have been made for each end-use sector on a regional basis. The supply regions are: Appalachia, East Interior, West Interior and Gulf, Northern Great Plains, and Mountain. The demand regions are the same as the nine Census Bureau regions. Coal production and consumption in the United States are projected to increase dramatically in the next 20 years due to increasing requirements for energy and the unavailability of other sources of energy to supply a substantial portion of this increase. Coal comprises 85 percent of the US recoverable fossil energy reserves and could be mined to supply the increasing energy demands of the US. The NTPSC study found that the additional traffic demands by 1985 may be met by the railways by the way of improved signalization, shorter block sections, centralized traffic control, and other modernization methods without providing for heavy line capacity works. But by 2000 the incremental traffic on some of the major corridors was projected to increase very significantly and is likely to call for special line capacity works involving heavy investment.

  14. Development and Demonstration of the Open Automated Demand Response Standard for the Residential Sector

    SciTech Connect (OSTI)

    Herter, Karen; Rasin, Josh; Perry, Tim

    2009-11-30

    The goal of this study was to demonstrate a demand response system that can signal nearly every customer in all sectors through the integration of two widely available and non- proprietary communications technologies--Open Automated Demand Response (OpenADR) over lnternet protocol and Utility Messaging Channel (UMC) over FM radio. The outcomes of this project were as follows: (1) a software bridge to allow translation of pricing signals from OpenADR to UMC; and (2) a portable demonstration unit with an lnternet-connected notebook computer, a portfolio of DR-enabling technologies, and a model home. The demonstration unit provides visitors the opportunity to send electricity-pricing information over the lnternet (through OpenADR and UMC) and then watch as the model appliances and lighting respond to the signals. The integration of OpenADR and UMC completed and demonstrated in this study enables utilities to send hourly or sub-hourly electricity pricing information simultaneously to the residential, commercial and industrial sectors.

  15. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  16. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  17. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  18. U.S. Energy Information Administration (EIA) - Sector

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RenewableAlternative Nuclear Sector Residential Commercial Industrial Transportation Energy Demand Other Emissions Prices Macroeconomic International Efficiency Publication...

  19. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-01-01

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document that provides a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  20. Annual Energy Outlook 2015 Modeling updates in the Transportation sector

    U.S. Energy Information Administration (EIA) Indexed Site

    For AEO2015 Working Group July 30, 2014 | Washington, DC By Nicholas Chase, Trisha Hutchins, John Maples Office of Energy Consumption and Efficiency Analysis Modeling updates in the transportation sector Data updates 2 * Update historical fuel consumption data to latest state energy data (2011), annual national data from Monthly Energy Review (2012), and most recent Short-Term Energy Outlook * Update historical light-duty vehicle attribute data through 2013 (pending) * Update historical

  1. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect (OSTI)

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  2. Biofuels in the U.S. Transportation Sector (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Sustained high world oil prices and the passage of the Energy Policy Act 2005 (EPACT) have encouraged the use of agriculture-based ethanol and biodiesel in the transportation sector; however, both the continued growth of the biofuels industry and the long-term market potential for biofuels depend on the resolution of critical issues that influence the supply of and demand for biofuels. For each of the major biofuelscorn-based ethanol, cellulosic ethanol, and biodieselresolution of technical, economic, and regulatory issues remains critical to further development of biofuels in the United States.

  3. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  4. DOE/EIA-M066(2010) Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  5. DOE/EIA-M066(2009) Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  6. Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    Proceedings for the Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles workshop held September 9, 2014.

  7. Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    Broader source: Energy.gov [DOE]

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and by extrapolation, to nearly 30.2 billion tons in 2050, requiring ever-greater amounts of energy. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand; the possible trends and 2050 outlook for these factors, and their anticipated effect on freight demand and related energy use.After describing federal policy actions that could influence freight demand, the report then summarizes the available analytical models for forecasting freight demand, and identifies possible areas for future action.

  8. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  9. Reducing GHG emissions in the United States' transportation sector

    SciTech Connect (OSTI)

    Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

    2011-01-01

    Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

  10. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  11. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  12. Policies to Reduce Emissions from the Transportation Sector ...

    Open Energy Info (EERE)

    Highlights This guide provides information on policy choices that can drive sustainability. Notes References "Policies To Reduce Emissions From The Transportation...

  13. travel-demand-modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Modeler, Cambridge Systematics, Tallahassee, FL Abstract ... Travel demand ... Ahmed Mohideen Travel Demand Modeler Cambridge Systematics, Tallahassee, FL Transportation ...

  14. The Practice of Cost Benefit Analysis in the Transport Sector...

    Open Energy Info (EERE)

    the use of CBA for the social and economic evaluation of transport infrastructure in Mexico and is made from the point of view of the role of the Ministry of Finance's...

  15. Residential Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2002-5,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  16. Session 5: Renewable Energy in the Transportation and Power SectorsŽ

    U.S. Energy Information Administration (EIA) Indexed Site

    5: "Renewable Energy in the Transportation and Power Sectors" Mr. Michael Schaal: Well, let's get started and we'll have people come in as we move along. Welcome to the session which addresses the topic of renewable energy and the transportation and power sectors, a topic that is very much on the minds of the public at large, policymakers who are pondering the cost benefits and preferred outcomes of a variety of current and potential future laws and regulations, and also researchers

  17. High Penetration of Renewable Energy in the Transportation Sector: Scenarios, Barriers, and Enablers; Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, L.; Brown, A.; Heath, G.; Mai, T.; Ruth, M.; Melaina, M.; Simpkins, T.; Steward, D.; Warner, E.; Bertram, K.; Plotkin, S.; Patel, D.; Stephens, T.; Vyas, A.

    2012-06-01

    Transportation accounts for 71% of U.S. petroleum use and 33% of its greenhouse gases emissions. Pathways toward reduced greenhouse gas emissions and petroleum dependence in the transportation sector have been analyzed in considerable detail, but with some limitations. To add to this knowledge, the U.S. Department of Energy has launched a study focused on underexplored greenhouse-gas-abatement and oil-savings opportunities related to transportation. This Transportation Energy Futures study analyzes specific issues and associated key questions to strengthen the existing knowledge base and help cultivate partnerships among federal agencies, state and local governments, and industry.

  18. Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors

    SciTech Connect (OSTI)

    Lee, A.; Zinaman, O.; Logan, J.

    2012-12-01

    Use of both natural gas and renewable energy has grown significantly in recent years. Both forms of energy have been touted as key elements of a transition to a cleaner and more secure energy future, but much of the current discourse considers each in isolation or concentrates on the competitive impacts of one on the other. This paper attempts, instead, to explore potential synergies of natural gas and renewable energy in the U.S. electric power and transportation sectors.

  19. Reduction in tribological energy losses in the transportation and electric utilities sectors

    SciTech Connect (OSTI)

    Pinkus, O.; Wilcock, D.F.; Levinson, T.M.

    1985-09-01

    This report is part of a study of ways and means of advancing the national energy conservation effort, particularly with regard to oil, via progress in the technology of tribology. The report is confined to two economic sectors: transportation, where the scope embraces primarily the highway fleets, and electric utilities. Together these two sectors account for half of the US energy consumption. Goal of the study is to ascertain the energy sinks attributable to tribological components and processes and to recommend long-range research and development (R and D) programs aimed at reducing these losses. In addition to the obvious tribological machine components such as bearings, piston rings, transmissions and so on, the study also extends to processes which are linked to tribology indirectly such as wear of machine parts, coatings of blades, high temperature materials leading to higher cycle efficiencies, attenuation of vibration, and other cycle improvements.

  20. Corn Ethanol: The Surprisingly Effective Route for Natural Gas Consumption in the Transportation Sector

    SciTech Connect (OSTI)

    Szybist, James P.; Curran, Scott

    2015-05-01

    Proven reserves and production of natural gas (NG) in the United States have increased dramatically in the last decade, due largely to the commercialization of hydraulic fracturing. This has led to a plentiful supply of NG, resulting in a significantly lower cost on a gallon of gasoline-equivalent (GGE) basis. Additionally, NG is a domestic, non-petroleum source of energy that is less carbon-intensive than coal or petroleum products, and thus can lead to lower greenhouse gas emissions. Because of these factors, there is a desire to increase the use of NG in the transportation sector in the United States (U.S.). However, using NG directly in the transportation sector requires that several non-trivial challenges be overcome. One of these issues is the fueling infrastructure. There are currently only 1,375 NG fueling stations in the U.S. compared to 152,995 fueling stations for gasoline in 2014. Additionally, there are very few light-duty vehicles that can consume this fuel directly as dedicated or bi-fuel options. For example, in model year 2013Honda was the only OEM to offer a dedicated CNG sedan while a number of others offered CNG options as a preparation package for LD trucks and vans. In total, there were a total of 11 vehicle models in 2013 that could be purchased that could use natural gas directly. There are additional potential issues associated with NG vehicles as well. Compared to commercial refueling stations, the at-home refueling time for NG vehicles is substantial – a result of the small compressors used for home refilling. Additionally, the methane emissions from both refueling (leakage) and from tailpipe emissions (slip) from these vehicles can add to their GHG footprint, and while these emissions are not currently regulated it could be a barrier in the future, especially in scenarios with broad scale adoption of CNG vehicles. However, NG consumption already plays a large role in other sectors of the economy, including some that are important to the transportation sector. Examples include steam reforming of natural gas to provide hydrogen for hydrotreating unit operations within the refinery and production of urea for use as a reductant for diesel after treatment in selective catalytic reduction (SCR). This discussion focuses on the consumption of natural gas in the production pathway of conventional ethanol (non-cellulosic) from corn through fermentation. Though it is clear that NG would also play a significant role in the cellulosic production pathways, those cases are not considered in this analysis.

  1. Vehicle Technologies Office: Transitioning the Transportation Sector- Exploring the Intersection of H2 Fuel Cell and Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    The "Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles" workshop report by Sandia National Laboratory summarizes a workshop that discussed common opportunities and challenges in expanding the use of hydrogen (H2) and natural gas (CNG or LNG) as transportation fuels.

  2. Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Piette, Mary Ann [Director, Demand Response Research Center

    2011-06-08

    Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  3. Reducing Demand through Efficiency and Services: Impacts and Opportunities in Buildings Sector (Carbon Cycle 2.0)

    SciTech Connect (OSTI)

    Piette, Mary Ann

    2010-02-02

    Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  4. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2

    SciTech Connect (OSTI)

    1998-01-01

    The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

  5. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  6. DemandDirect | Open Energy Information

    Open Energy Info (EERE)

    DemandDirect Place: Woodbury, Connecticut Zip: 6798 Sector: Efficiency, Renewable Energy, Services Product: DemandDirect provides demand response, energy efficiency, load...

  7. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  8. Sector-specific issues and reporting methodologies supporting the General Guidelines for the voluntary reporting of greenhouse gases under Section 1605(b) of the Energy Policy Act of 1992. Volume 2: Part 4, Transportation sector; Part 5, Forestry sector; Part 6, Agricultural sector

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume, the second of two such volumes, contains sector-specific guidance in support of the General Guidelines for the voluntary reporting of greenhouse gas emissions and carbon sequestration. This voluntary reporting program was authorized by Congress in Section 1605(b) of the Energy Policy Act of 1992. The General Guidelines, bound separately from this volume, provide the overall rationale for the program, discuss in general how to analyze emissions and emission reduction/carbon sequestration projects, and address programmatic issues such as minimum reporting requirements, time parameters, international projects, confidentiality, and certification. Together, the General Guidelines and the guidance in these supporting documents will provide concepts and approaches needed to prepare the reporting forms. This second volume of sector-specific guidance covers the transportation sector, the forestry sector, and the agricultural sector.

  9. Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector

    Broader source: Energy.gov [DOE]

    Overview of lessons learned, integration, barriers, enablers, federal incentives, state programs, and benefits

  10. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect (OSTI)

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

  11. GIZ Sourcebook Module 5d: The CDM in the Transport Sector | Open...

    Open Energy Info (EERE)

    on CDM and the GHG market; CDM transport projects; core elements of a transport methodology; and case studies in CDM. LEDSGP green logo.png This tool is included in the...

  12. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  13. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    SciTech Connect (OSTI)

    Morrison, G.; Stephens, T.S.

    2011-10-11

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  14. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.

    2009-05-01

    Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

  15. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  17. Manufacturing Energy and Carbon Footprint - Sector: Transportation Equipment (NAICS 336), January 2014 (MECS 2010)

    Energy Savers [EERE]

    Transportation Equipment (NAICS 336) Process Energy Electricity and Steam Generation Losses Process Losses 10 Nonprocess Losses 541 68 Steam Distribution Losses 6 48 Nonprocess Energy 143 Electricity Generation Steam Generation 541 0 Prepared for the U.S. Department of Energy, Advanced Manufacturing Office by Energetics Incorporated 115 145 132 Generation and Transmission Losses Generation and Transmission Losses 0 266 259 234 41 275 398 0 32 0.0 23.1 23.1 3.0 16.6 11.9 31 7.9 31.0 2.6 Fuel

  18. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    1993-01-01

    The primary objective of this report is to provide estimates of volumes and development costs of known nonassociated gas reserves in selected, potentially important supplier nations, using a standard set of costing algorithms and conventions. Estimates of undeveloped nonassociated gas reserves and the cost of drilling development wells, production equipment, gas processing facilities, and pipeline construction are made at the individual field level. A discounted cash-flow model of production, investment, and expenses is used to estimate the present value cost of developing each field on a per-thousand-cubic-foot (Mcf) basis. These gas resource cost estimates for individual accumulations (that is, fields or groups of fields) then were aggregated into country-specific price-quantity curves. These curves represent the cost of developing and transporting natural gas to an export point suitable for tanker shipments or to a junction with a transmission line. The additional costs of LNG or methanol conversion are not included. A brief summary of the cost of conversion to methanol and transportation to the United States is contained in Appendix D: Implications of Gas Development Costs for Methanol Conversion.

  19. The coprocessing of fossil fuels and biomass for CO{sub 2} emission reduction in the transportation sector

    SciTech Connect (OSTI)

    Steinberg, M.; Dong, Yuanji; Borgwardt, R.H.

    1993-10-01

    Research is underway to evaluate the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. These products are valuable in the market either as fuel or as chemical commodities. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat energies (turbines and internal combustion engines) for both mobile and stationary single and combined cycle power plants. When considering CO{sub 2} emission control in the utilization of fossil fuels, the copressing of those fossil fuels with biomass (which may include, wood, municipal solid waste and sewage sludge) is a viable mitigation approach. By coprocessing both types of feedstock to produce methanol and carbon while sequestering all or part of the carbon, a significant net CO{sub 2} reduction is achieved if the methanol is substituted for petroleum fuels in the transportation sector. The Hydrocarb process has the potential, if the R&D objectives are achieved, to produce alternative transportation fuel from indigenous resources at lower cost than any other biomass conversion process. These comparisons suggest the resulting fuel can significantly displace gasoline at a competitive price while mitigating CO{sub 2} emissions and reducing ozone and other toxics in urban atmospheres.

  20. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  1. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

  2. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    1995-04-01

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  3. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  4. China's transportation energy consumption and CO2 emissions from a global perspective

    SciTech Connect (OSTI)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-07-01

    ABSTRACT Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO2) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products.

  5. Restructuring our Transportation Sector

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  6. Transportation Sector Module

    Gasoline and Diesel Fuel Update (EIA)

    cost changes due to production volume economies of scale and potential scientific, manufacturing, and design advances. Manufacturing advances can generally be thought of as...

  7. Residential Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

  8. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  9. Model Documentation Report: Industrial Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  10. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2006,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  11. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  12. Model Documentation Report: Residential Sector Demand Module...

    Gasoline and Diesel Fuel Update (EIA)

    The penetration rate for central air-conditioning is estimated by means of time series analysis of RECS survey data. Water Heating: Solar Water Heaters Market shares for solar...

  13. Table 11.2d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide )

    U.S. Energy Information Administration (EIA) Indexed Site

    d Carbon Dioxide Emissions From Energy Consumption: Transportation Sector, 1949-2011 (Million Metric Tons of Carbon Dioxide 1) Year Coal Natural Gas 3 Petroleum Retail Elec- tricity 7 Total 2 Biomass 2 Aviation Gasoline Distillate Fuel Oil 4 Jet Fuel LPG 5 Lubricants Motor Gasoline 6 Residual Fuel Oil Total Fuel Ethanol 8 Biodiesel Total 1949 161 NA 12 30 NA (s) 4 306 91 443 6 611 NA NA NA 1950 146 7 14 35 NA (s) 5 332 95 481 6 640 NA NA NA 1951 129 11 18 42 NA (s) 6 360 102 529 7 675 NA NA NA

  14. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  15. Report: Natural Gas Infrastructure Implications of Increased Demand from

    Energy Savers [EERE]

    the Electric Power Sector | Department of Energy Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector Report: Natural Gas Infrastructure Implications of Increased Demand from the Electric Power Sector This report examines the potential infrastructure needs of the U.S. interstate natural gas pipeline transmission system across a range of future natural gas demand scenarios that drive increased electric power sector natural gas use. To perform this

  16. Taiwan: An energy sector study

    SciTech Connect (OSTI)

    Johnson, T.; Fridley, D.; Kang, Wu

    1988-03-01

    A study on the economy of Taiwan, with special reference to the energy sector, revealed the following: Taiwan's rapid export-driven economic growth in the 1970s and 1980s has earned them the rank of ''Newly Industrialized Countries.'' Coal reserves measure less than 1 billion tons, and annual output has declined to below 2 million tons per year. Marginal amounts of crude are produced. Natural gas resources have been exploited both on- and offshore, through production amounts to little more than 1 billion cubic meters per year. Domestic hydrocarbon production is forecast to decline. Taiwan prssesses an estimated 5300 mW of exploitable hydropower capacity, of which 2564 mW had been installed by 1986. Taiwan has undertaken a massive program of nuclear power construction in response to the rapid rise in oil prices during the 1970s. Energy demand has risen an average of 9.0 percent per year since 1954, while real GNP has grown 8.6 percent per year. Sine 1980, oil has provided a lower share of total energy demand. Oil demand for transport has continued to grow rapidly. Declining production of domestic natural gas has led Taiwan to initiate LNG imports from Indonesia beginning in 1990. Coal has regained some of its earlier importance in Taiwan's energy structure. With declining domestic production, imports now provide nearly 90 percent of total coal demand. Taiwan is basically self-sufficient in refining capacity. Energy demand is expected to grow 5.4 percent per year through the yeat 2000. With declining output of domestic resources, energy dependency on imports will rise from its current 90 percent level. Government policy recognizes this external dependency and has directed it efforts at diversification of suppliers. 18 refs., 11 figs., 40 tabs.

  17. Drivers of Future Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Drivers of Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption

  18. Demand Response

    Energy Savers [EERE]

    Demand Response Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE

  19. Commercial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

  20. Energy Intensity Indicators: Transportation Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining ...

  1. Demand Response Energy Consulting LLC | Open Energy Information

    Open Energy Info (EERE)

    Response Energy Consulting LLC Jump to: navigation, search Name: Demand Response & Energy Consulting LLC Place: Delanson, New York Zip: NY 12053 Sector: Efficiency Product:...

  2. Sector 9

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 9 About Science and Research Beamlines Operations and Schedule Safety Search APS ... Search Argonne Home > Advanced Photon Source > Contacts Advisory Committee Beamlines...

  3. Large-Scale Utilization of Biomass Energy and Carbon Dioxide Capture and Storage in the Transport and Electricity Sectors under Stringent CO2 Concentration Limit Scenarios

    SciTech Connect (OSTI)

    Luckow, Patrick; Wise, Marshall A.; Dooley, James J.; Kim, Son H.

    2010-08-05

    This paper examines the potential role of large scale, dedicated commercial biomass energy systems under global climate policies designed to meet atmospheric concentrations of CO2 at 400ppm and 450ppm by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120-160 EJ/year of biomass energy is produced globally by midcentury and 200-250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions - especially the availability of carbon dioxide capture and storage (CCS) technologies - affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above 150$/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer-Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.

  4. Interim Data Changes in the Short-term Energy Outlook Data Systems Related to Electric Power Sector and Natural Gas Demand Data Revisions (Released in the STEO December 2002)

    Reports and Publications (EIA)

    2002-01-01

    Beginning with the December 2002 issue of the Energy Information Administration's Short-Term Energy Outlook (STEO), electricity generation and related fuel consumption totals will be presented on a basis that is consistent with the definitions and aggregates used in the 2001 edition of EIA's Annual Energy Review (AER). Particularly affected by these changes are the demand and balancing item totals for natural

  5. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment

    SheetsTransportation Fuel Supply content top

  6. Energy conservation and electricity sector liberalization: Case-studies on the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom

    SciTech Connect (OSTI)

    Slingerland, S.

    1998-07-01

    In this paper, the development of cogeneration, wind energy and demand-side management in the Netherlands, Denmark, Germany and the United Kingdom are compared. It is discussed to what extent these developments are determined by the liberalization process. Three key liberalization variables are identified: unbundling, privatization and introduction of competition. The analysis suggests that unbundling prior to introduction of full competition in generation is particularly successful in stimulating industrial cogeneration; simultaneous introduction of competition and unbundling mainly stimulates non-cogeneration gas-based capacity; and introduction of competition in itself is likely to impede the development of district-heating cogeneration. Furthermore, it is argued that development of wind energy and demand-side management are primarily dependent on the kind of support system set up by policy makers rather than on the liberalization process. Negative impacts of introduction of competition on integrated resource planning and commercial energy services could nevertheless be expected.

  7. Transportation Efficiency Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Transportation Efficiency Resources Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies ...

  8. Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications View Larger Map Main Address 1 Cyclotron Rd‎ University of California Berkeley Berkeley, CA 94720 The Laboratory is in Berkeley on the hillside directly above the campus of the University of California at Berkeley. Our address is 1 Cyclotron Road, Berkeley CA 94720. To make the Lab easily accessible, the

  9. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  10. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  11. Energy Intensity Indicators: Indicators for Major Sectors | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy for Major Sectors Energy Intensity Indicators: Indicators for Major Sectors This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors - transportation, industry, commercial, and residential, as well as the electric power sector. These sectors are shown in Figure 1. Please go to the menu below the figure to see a more detailed discussion of historical trends in the energy intensity indicator for a particular sector.

  12. Philippines' downstream sector poised for growth

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector.

  13. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% − 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  14. Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

  15. Fact #610: February 15, 2010 All Sectors' Petroleum Gap

    Broader source: Energy.gov [DOE]

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  16. Fact #561: March 9, 2009 All Sectors' Petroleum Gap

    Broader source: Energy.gov [DOE]

    Before 1989 the U.S. produced enough petroleum to meet the needs of the transportation sector, but was still short of meeting the petroleum needs of all the sectors, including industrial,...

  17. Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program

    SciTech Connect (OSTI)

    1995-08-01

    This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

  18. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  19. Buildings sector demand-side efficiency technology summaries

    SciTech Connect (OSTI)

    Koomey, J.G.; Johnson, F.X.; Schuman, J.

    1994-03-01

    This report provides descriptions of the following energy efficiency technologies: energy management systems; electronic fluorescent ballasts; compact fluorescent lamps; lighting controls; room air conditioners; high albedo materials, coatings and paints; solar domestic water heaters; heat pump water heaters; energy-efficient motors; adjustable-speed drives; energy-efficient refrigerators; daylight control glazing; insulating glazing; solar control glazing; switchable glazing; tree planting; and advanced insulation. For each technology, the report provides a description of performance characteristics, consumer utility, development status, technology standards, equipment cost, installation, maintenance, conservation programs, and environmental impacts.

  20. Industrial Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    factors are multiplicative for all fuels which have values greater than zero and are additive otherwise. ( ) ( ) ( ) ( ) ( ) ( ) - - - fg...

  1. Residential Sector Demand Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    Stoves Geothermal Heat Pump Natural Gas Heat Pump Variables: HSYSSHR 2001,eg,b,r Benchmarking Data from Short-Term Energy Outlook Definition: Household energy consumption by...

  2. Demand Response Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be usedmore » by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.« less

  3. Demand Response Analysis Tool

    SciTech Connect (OSTI)

    2012-03-01

    Demand Response Analysis Tool is a software developed at the Lawrence Berkeley National Laboratory. It is initially funded by Southern California Edison. Our goal in developing this tool is to provide an online, useable, with standardized methods, an analysis tool to evaluate demand and demand response performance of commercial and industrial facilities. The tool provides load variability and weather sensitivity analysis capabilities as well as development of various types of baselines. It can be used by researchers, real estate management firms, utilities, or any individuals who are interested in analyzing their demand and demand response capabilities.

  4. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  5. Residential Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in-home displays with controllable home area network capabilities and thermal storage devices for home heating. Goals and objectives: Reduce the City's NCP demand above...

  6. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you...

  7. Managing Increased Charging Demand

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Managing Increased Charging Demand Carrie Giles ICF International, Supporting the Workplace Charging Challenge Workplace Charging Challenge Do you already own an EV? Are you ...

  8. Residential and Transport Energy Use in India: Past Trend and Future Outlook

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

    2009-03-31

    The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

  9. End-Use Sector Flowchart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    End-Use Sector Flowchart End-Use Sector Flowchart This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors-transportation, industry, commercial and residential-identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector. PDF icon End-Use Sector Flowchart More Documents & Publications Barriers to Industrial Energy

  10. Demand Response Dispatch Tool

    SciTech Connect (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for both reliability and economic conditions.

  11. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand Dispatch-Intelligent Demand for a More Efficient Grid 10 August 2011 DOE/NETL- DE-FE0004001 U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Prepared by: National Energy Technology Laboratory Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal

  12. Chapter 2 - Energy Sectors and Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Chapter 2 - Energy Sectors and Systems Within and between the electricity, fuels, transportation, buildings, and manufacturing sectors, increasing interconnectedness and complexity are creating opportunities and challenges that can be approached from a systems perspective. Some of the most transformational opportunities exist at the systems level. They are enabled by the ability to understand, predict, and control very large

  13. Transportation Energy Futures Snapshot

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes. Coordinating a...

  14. EC-LEDS Transport | Open Energy Information

    Open Energy Info (EERE)

    Company Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis,...

  15. Heilongjiang Province Water Transportation Construction | Open...

    Open Energy Info (EERE)

    Construction Jump to: navigation, search Name: Heilongjiang Province Water Transportation Construction Place: Harbin, Heilongjiang Province, China Sector: Hydro Product: China...

  16. Transportation Equipment (2010 MECS) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment (2010 MECS) Transportation Equipment (2010 MECS) Manufacturing Energy and Carbon Footprint for Transportation Equipment Sector (NAICS 336) Energy use data source: 2010 EIA MECS (with adjustments) Footprint Last Revised: February 2014 View footprints for other sectors here. Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications MECS 2006 - Transportation Equipment Cement (2010 MECS) Glass and Glass Products (2010

  17. Electric energy sector in Argentina

    SciTech Connect (OSTI)

    Bastos, C.M.

    1994-06-01

    This article describes how the organization of the electric energy sector in Argentina has changed dramatically from a sector in which state-owned companies worked under a central planning to one in which private companies make their own decisions. The way that the electrical system used to work can be shown by these statements: demand growth estimated by central planning team; projects to be developed and the timetable determined by the same team; unit operations ruled by central dispatch, and under state-owned companies responsibility; integration with neighbor countries focused on physical projects, such as Salto Grande with Uruguay and Yacyreta with Paraguay. Today the electrical system works under these rules: the system has been vertically separated and the companies cannot be integrated; electric energy is considered as an ordinary wealth and the value that consumers give it is taken into account, (the distribution companies pay consumers a penalty for the energy that they cannot supply, the penalty is worth the economic damage consumers suffer due to its lack); producers have to compete for demand. They can sell in two ways: sell under private agreements or sell to the system. Both ways of selling compete with each other because the system buys giving priority to lower costs and, as a consequence, some of the producers do not sell at all.

  18. Demand Response Dispatch Tool

    Energy Science and Technology Software Center (OSTI)

    2012-08-31

    The Demand Response (DR) Dispatch Tool uses price profiles to dispatch demand response resources and create load modifying profiles. These annual profiles are used as inputs to production cost models and regional planning tools (e.g., PROMOD). The tool has been effectively implemented in transmission planning studies conducted by the Western Electricity Coordinating Council via its Transmission Expansion Planning and Policy Committee. The DR Dispatch Tool can properly model the dispatch of DR resources for bothmore » reliability and economic conditions.« less

  19. Refrigerated Warehouse Demand Response Strategy Guide

    SciTech Connect (OSTI)

    Scott, Doug; Castillo, Rafael; Larson, Kyle; Dobbs, Brian; Olsen, Daniel

    2015-11-01

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lighting reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.

  20. Demand Response | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in

  1. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  2. Demand Charges | Open Energy Information

    Open Energy Info (EERE)

    Demand Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967" Feedback Contact needs updating Image needs...

  3. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  4. Manufacturing Energy and Carbon Footprint - Sector: Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Facility HVAC 6.7 2.2 Machine Drive Losses 8.6 0.2 Fuel Type % of Total Waste Gas (byproduct fuel) LPG and NGL Waste OilsTars and Waste Materials (byproduct fuel) Other Fuels 1.4% ...

  5. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. National Action Plan on Demand Response, June 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Action Plan on Demand Response, June 2010 National Action Plan on Demand Response, June 2010 The Federal Energy Regulatory Commission (FERC) is required to develop the National Action Plan on Demand Response (National Action Plan) as outlined in section 529 of the Energy Independence and Security Act of 2007 (EISA), entitled "Electricity Sector Demand Response." This National Action Plan is designed to meet three objectives: Identify "requirements for technical assistance to

  8. Energy technologies and their impact on demand

    SciTech Connect (OSTI)

    Drucker, H.

    1995-06-01

    Despite the uncertainties, energy demand forecasts must be made to guide government policies and public and private-sector capital investment programs. Three principles can be identified in considering long-term energy prospects. First energy demand will continue to grow, driven by population growth, economic development, and the current low per capita energy consumption in developing countries. Second, energy technology advancements alone will not solve the problem. Energy-efficient technologies, renewable resource technologies, and advanced electric power technologies will all play a major role but will not be able to keep up with the growth in world energy demand. Third, environmental concerns will limit the energy technology choices. Increasing concern for environmental protection around the world will restrict primarily large, centralized energy supply facilities. The conclusion is that energy system diversity is the only solution. The energy system must be planned with consideration of both supply and demand technologies, must not rely on a single source of energy, must take advantage of all available technologies that are specially suited to unique local conditions, must be built with long-term perspectives, and must be able to adapt to change.

  9. Chemical Sector Analysis | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACChemical Sector Analysis content top Chemical Supply Chain Analysis Posted by Admin on Mar 1, 2012 in | Comments 0 comments Chemical Supply Chain Analysis NISAC has developed ...

  10. Applying electrical utility least-cost approach to transportation planning

    SciTech Connect (OSTI)

    McCoy, G.A.; Growdon, K.; Lagerberg, B.

    1994-09-01

    Members of the energy and environmental communities believe that parallels exist between electrical utility least-cost planning and transportation planning. In particular, the Washington State Energy Strategy Committee believes that an integrated and comprehensive transportation planning process should be developed to fairly evaluate the costs of both demand-side and supply-side transportation options, establish competition between different travel modes, and select the mix of options designed to meet system goals at the lowest cost to society. Comparisons between travel modes are also required under the Intermodal Surface Transportation Efficiency Act (ISTEA). ISTEA calls for the development of procedures to compare demand management against infrastructure investment solutions and requires the consideration of efficiency, socioeconomic and environmental factors in the evaluation process. Several of the techniques and approaches used in energy least-cost planning and utility peak demand management can be incorporated into a least-cost transportation planning methodology. The concepts of avoided plants, expressing avoidable costs in levelized nominal dollars to compare projects with different on-line dates and service lives, the supply curve, and the resource stack can be directly adapted from the energy sector.

  11. Fact #689: August 22, 2011 Energy Use by Sector and Source

    Office of Energy Efficiency and Renewable Energy (EERE)

    The transportation sector consumed 28% of U.S. energy in 2010, nearly all of it (93.5%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric utility...

  12. Fact #582: August 3, 2009 Energy Shares by Sector and Source

    Broader source: Energy.gov [DOE]

    The transportation sector consumed about 28% of U.S. energy in 2008, nearly all of it (95%) in petroleum use. The industrial sector used about 40% petroleum and 40% natural gas. The electric...

  13. Transportation | Open Energy Information

    Open Energy Info (EERE)

    Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu...

  14. Demand Response Quick Assessment Tool

    Energy Science and Technology Software Center (OSTI)

    2008-12-01

    DRQAT (Demand Response Quick Assessment Tool) is the tool for assessing demand response saving potentials for large commercial buildings. This tool is based on EnergyPlus simulations of prototypical buildings and HVAC equipment. The opportunities for demand reduction and cost savings with building demand responsive controls vary tremendously with building type and location. The assessment tools will predict the energy and demand savings, the economic savings, and the thermal comfor impact for various demand responsive strategies.more » Users of the tools will be asked to enter the basic building information such as types, square footage, building envelope, orientation, utility schedule, etc. The assessment tools will then use the prototypical simulation models to calculate the energy and demand reduction potential under certain demand responsive strategies, such as precooling, zonal temperature set up, and chilled water loop and air loop set points adjustment.« less

  15. Transport Policy Note-Bangladesh | Open Energy Information

    Open Energy Info (EERE)

    of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policiesdeployment programs, Background analysis Website http:...

  16. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of Biofuels and

  17. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  18. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-ow...

  19. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NorthWestern Energy LLC - (MT)","Investor-owned",597...

  20. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Washington" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Puget Sound Energy Inc","Investor-owned",20568948...

  1. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",567506...

  2. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"NextEra Energy Power Marketing","Investor-owned",19844...

  3. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"MidAmerican Energy Co","Investor-owned",20585461,570529...

  4. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Reliant Energy Retail Services","Investor-owned",38670...

  5. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",...

  6. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Westar Energy Inc","Investor-owned",9973395,3434301,4...

  7. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",41994756...

  8. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Indiana Inc","Investor-owned",28224148,9...

  9. Chapter 8 - Advancing Clean Transportation and Vehicle Systems...

    Office of Environmental Management (EM)

    Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway vehicles; rail; aircraft; and ships used for personal transport, movement of ...

  10. EPA State and Local Transportation Resources | Open Energy Information

    Open Energy Info (EERE)

    EPA State and Local Transportation Resources AgencyCompany Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Transportation Phase:...

  11. Private Sector Outreach and Partnerships

    Office of Energy Efficiency and Renewable Energy (EERE)

    ISER’s partnerships with the private sector are a strength which has enabled the division to respond to the needs of the sector and the nation.

  12. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  13. Sectoral trends in global energy use and greenhouse gasemissions

    SciTech Connect (OSTI)

    Price, Lynn; de la Rue du Can, Stephane; Sinton, Jonathan; Worrell, Ernst; Zhou, Nan; Sathaye, Jayant; Levine, Mark

    2006-07-24

    In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a new set of baseline greenhouse gas (GHG) emissions scenarios in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et al., 2000). The SRES team defined four narrative storylines (A1, A2, B1 and B2) describing the relationships between the forces driving GHG and aerosol emissions and their evolution during the 21st century. The SRES reports emissions for each of these storylines by type of GHG and by fuel type to 2100 globally and for four world regions (OECD countries as of 1990, countries undergoing economic reform, developing countries in Asia, rest of world). Specific assumptions about the quantification of scenario drivers, such as population and economic growth, technological change, resource availability, land-use changes, and local and regional environmental policies, are also provided. End-use sector-level results for buildings, industry, or transportation or information regarding adoption of particular technologies and policies are not provided in the SRES. The goal of this report is to provide more detailed information on the SRES scenarios at the end use level including historical time series data and a decomposition of energy consumption to understand the forecast implications in terms of end use efficiency to 2030. This report focuses on the A1 (A1B) and B2 marker scenarios since they represent distinctly contrasting futures. The A1 storyline describes a future of very rapid economic growth, low population growth, and the rapid introduction of new and more efficient technologies. Major underlying themes are convergence among regions, capacity building, and increased cultural and social interactions, with a substantial reduction in regional differences in per capita income. The B2 storyline describes a world with an emphasis on economic, social, and environmental sustainability, especially at the local and regional levels. It is a world with moderate population growth, intermediate levels of economic development, and less rapid and more diverse technological change (Nakicenovic et al., 2000). Data were obtained from the SRES modeling teams that provide more detail than that reported in the SRES. For the A1 marker scenario, the modeling team provided final energy demand and carbon dioxide (CO{sub 2}) emissions by fuel for industry, buildings, and transportation for nine world regions. Final energy use and CO{sub 2} emissions for three sectors (industry, transport, buildings) for the four SRES world regions were provided for the B2 marker scenario. This report describes the results of a disaggregation of the SRES projected energy use and energy-related CO{sub 2} emissions for the industrial, transport, and buildings sectors for 10 world regions (see Appendix 1) to 2030. An example of further disaggregation of the two SRES scenarios for the residential buildings sector in China is provided, illustrating how such aggregate scenarios can be interpreted at the end use level.

  14. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R; Ma, Ookie

    2013-11-01

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  15. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meetings and workshops convened to develop content for the Demand Response Technology Roadmap. The project team has developed this companion document in the interest of providing...

  16. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  17. Sustainable Transport Systems STS | Open Energy Information

    Open Energy Info (EERE)

    STS Jump to: navigation, search Name: Sustainable Transport Systems (STS) Place: Santa Cruz, California Zip: 95062 Sector: Carbon, Efficiency Product: California-based...

  18. LEDSGP/Transportation Toolkit | Open Energy Information

    Open Energy Info (EERE)

    the six key actions necessary to successfully implement a low emission development strategy for the transportation sector. Icon evaluate system.png Evaluate System LEDS icon...

  19. China, India demand cushions prices

    SciTech Connect (OSTI)

    Boyle, M.

    2006-11-15

    Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

  20. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E; Starke, Michael R

    2013-01-01

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  1. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  2. Tool - Transportation System Simulation (POLARIS) | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil demand - Petrodollar reinvestment - Purchasing power rise - Power sector constraints u Natural gas shortages for power generation mean balance of risks to any Middle East oil demand forecast are firmly to the upside, adding to summer upside seasonality u Lehman Brothers has pegged 3Q08 as the tightest quarter of the

  3. Honeywell Demonstrates Automated Demand Response Benefits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, ...

  4. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  5. MECS 2006 - Transportation Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Equipment MECS 2006 - Transportation Equipment Manufacturing Energy and Carbon Footprint for Transportation Equipment (NAICS 336) Sector with Total Energy Input, October 2012 (MECS 2006) All available footprints and supporting documents Manufacturing Energy and Carbon Footprint PDF icon Transportation Equipment More Documents & Publications Transportation Equipment

  6. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vessel Requirements for the U.S. Offshore Wind Sector Assessment of Vessel Requirements for the U.S. Offshore Wind Sector Report that investigates the anticipated demand for various vessel types associated with offshore wind development in the United States through 2030 and assesses related market barriers and mitigating policy options. PDF icon Assessment of Vessel Requirements for the U.S. Offshore Wind Sector PDF icon Assessment of Vessel Requirements for the U.S.

  7. Irrigation and the demand for electricity. Progress report

    SciTech Connect (OSTI)

    Maddigan, R. J.; Chern, W. S.; Gallagher, C. A.

    1980-03-01

    In order to anticipate the need for generating capacity, utility planners must estimate the future growth in electricity demand. The need for demand forecasts is no less important for the nation's Rural Electric Cooperatives (RECs) than it is for the investor-owned utilities. The RECs serve an historically agrarian region; therefore, the irrigation sector accounts for a significant portion of the western RECs' total demand. A model is developed of the RECs' demand for electricity used in irrigation. The model is a simultaneous equation system which focuses on both the short-run utilization of electricity in irrigation and the long-run determination of the number of irrigators using electricity. Irrigation demand is described by a set of equations in which the quantity of electricity demanded, the average electricity price, the number of irrigation customers, and the ratio of electricity to total energy used for irrigation are endogenous. The structural equations are estimated using pooled state-level data for the period 1961-1977. In light of the model's results, the impact of changes in relative energy prices on irrigation can be examined.

  8. Demand Response for Ancillary Services

    Broader source: Energy.gov [DOE]

    Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and implement a methodology to construct detailed temporal and spatial representations of demand response resources and to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to assess economic value of the realizable potential of demand response for ancillary services.

  9. Buildings Sector Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    July 22, 2013 AEO2014 Model Development For discussion purposes only Not for citation Overview Builldings Working Group Forrestal 2E-069 / July 22, 2013 2 * Residential projects - RECS update - Lighting model - Equipment, shell subsidies - ENERGY STAR benchmarking - Housing stock formation and decay * Commercial projects - Major end-use capacity factors - Hurdle rates - ENERGY STAR buildings * Both sectors - Consumer behavior workshop - Comparisons to STEO - AER  MER - Usual annual updates -

  10. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  11. The Role of Cellulosic Ethanol in Transportation

    SciTech Connect (OSTI)

    Robert M. Neilson, Jr.

    2007-10-01

    Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

  12. Process Intensification - Chemical Sector Focus

    Energy Savers [EERE]

    Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. ......... 5 5 2.1 Chemical Industry Focus ......

  13. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  14. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  15. U.S. Coal Supply and Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal > U.S. Coal Supply and Demand > U.S. Coal Supply and Demand U.S. Coal Supply and Demand 2010 Review (entire report also available in printer-friendly format ) Previous ...

  16. Study of Long-Term Transport Action Plan for ASEAN | Open Energy...

    Open Energy Info (EERE)

    Partner Nippon Foundation, Ministry of Planning, Ministry of Transport Sector Climate, Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Background...

  17. Behavioral Assumptions Underlying California Residential Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Behavioral Assumptions Underlying California Residential Sector Energy Efficiency Programs (2009 CIEE Report) Behavioral Assumptions Underlying California Residential Sector Energy ...

  18. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of Contents...

  19. Iron and Steel Sector (NAICS 3311 and 3312) Energy and GHG Combustion Emissions Profile, November 2012

    Energy Savers [EERE]

    99 2.6 IRON AND STEEL SECTOR (NAICS 3311, 3312) 2.6.1. Overview of the Iron and Steel Manufacturing Sector The iron and steel sector is an essential part of the U.S. manufacturing sector, providing the necessary raw material for the extensive industrial supply chain. U.S. infrastructure is heavily reliant on the U.S. iron and steel sector, as it provides the foundation for construction (bridges, buildings), transportation systems (railroads, cars, trucks), utility systems (municipal water

  20. Promising Technology: Demand Control Ventilation

    Broader source: Energy.gov [DOE]

    Demand control ventilation (DCV) measures carbon dioxide concentrations in return air or other strategies to measure occupancy, and accurately matches the ventilation requirement. This system reduces ventilation when spaces are vacant or at lower than peak occupancy. When ventilation is reduced, energy savings are accrued because it is not necessary to heat, cool, or dehumidify as much outside air.

  1. Demand Management Institute (DMI) | Open Energy Information

    Open Energy Info (EERE)

    Demand Management Institute (DMI) Jump to: navigation, search Name: Demand Management Institute (DMI) Address: 35 Walnut Street Place: Wellesley, Massachusetts Zip: 02481 Region:...

  2. Generating Demand for Multifamily Building Upgrades | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating...

  3. Marketing & Driving Demand: Social Media Tools & Strategies ...

    Office of Environmental Management (EM)

    Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text...

  4. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's ...

  5. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  6. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  7. Turkey energy and environmental review - Task 7 energy sector modeling : executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-02-28

    Turkey's demand for energy and electricity is increasing rapidly. Since 1990, energy consumption has increased at an annual average rate of 4.3%. As would be expected, the rapid expansion of energy production and consumption has brought with it a wide range of environmental issues at the local, regional and global levels. With respect to global environmental issues, Turkey's carbon dioxide (CO2) emissions have grown along with its energy consumption. Emissions in 2000 reached 211 million metric tons. With GDP projected to grow at over 6% per year over the next 25 years, both the energy sector and the pollution associated with it are expected to increase substantially. This is expected to occur even if assuming stricter controls on lignite and hard coal-fired power generation. All energy consuming sectors, that is, power, industrial, residential, and transportation, will contribute to this increased emissions burden. Turkish Government authorities charged with managing the fundamental problem of carrying on economic development while protecting the environment include the Ministry of Environment (MOE), the Ministry of Energy and Natural Resources (MENR), and the Ministry of Health, as well as the Turkish Electricity Generation & Transmission Company (TEAS). The World Bank, working with these agencies, is planning to assess the costs and benefits of various energy policy alternatives under an Energy and Environment Review (EER). Eight individual studies have been conducted under this activity to analyze certain key energy technology issues and use this analysis to fill in the gaps in data and technical information. This will allow the World Bank and Turkish authorities to better understand the trade-offs in costs and impacts associated with specific policy decisions. The purpose of Task 7-Energy Sector Modeling, is to integrate information obtained in other EER tasks and provide Turkey's policy makers with an integrated systems analysis of the various options for addressing the various energy and environmental concerns. The work presented in this report builds on earlier analyses presented at the COP 6 conference in Bonn.

  8. The alchemy of demand response: turning demand into supply

    SciTech Connect (OSTI)

    Rochlin, Cliff

    2009-11-15

    Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

  9. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  10. Berkeley Lab Transportation and Parking Demand Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    510-486-6647 JMDahlgard@lbl.gov Mat Vail Facilities 510-495-2849 MEVail@lbl.gov Doug Goodman OCFO 510-486-7632 DGoodman@lbl.gov Blair Horst Facilities 510-486-4902...

  11. Transportation Electrification Load Development For a Renewable Future Analysis

    SciTech Connect (OSTI)

    Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

    2010-09-30

    Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

  12. Addressing Energy Demand through Demand Response. International Experiences and Practices

    SciTech Connect (OSTI)

    Shen, Bo; Ghatikar, Girish; Ni, Chun Chun; Dudley, Junqiao; Martin, Phil; Wikler, Greg

    2012-06-01

    Demand response (DR) is a load management tool which provides a cost-effective alternative to traditional supply-side solutions to address the growing demand during times of peak electrical load. According to the US Department of Energy (DOE), demand response reflects “changes in electric usage by end-use customers from their normal consumption patterns in response to changes in the price of electricity over time, or to incentive payments designed to induce lower electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 1 The California Energy Commission (CEC) defines DR as “a reduction in customers’ electricity consumption over a given time interval relative to what would otherwise occur in response to a price signal, other financial incentives, or a reliability signal.” 2 This latter definition is perhaps most reflective of how DR is understood and implemented today in countries such as the US, Canada, and Australia where DR is primarily a dispatchable resource responding to signals from utilities, grid operators, and/or load aggregators (or DR providers).

  13. Sector Collaborative on Energy Efficiency

    SciTech Connect (OSTI)

    none,

    2008-06-01

    Helps stakeholders identify and act on cost-effective opportunities for expanding energy efficiency resources in the hospitality, retail, commercial real estate, grocery, and municipal sectors.

  14. Demand Response in the West: Lessons for States and Provinces

    SciTech Connect (OSTI)

    Douglas C. Larson; Matt Lowry; Sharon Irwin

    2004-06-29

    OAK-B135 This paper is submitted in fulfillment of DOE Grant No. DE-FG03-015F22369 on the experience of western states/provinces with demand response (DR) in the electricity sector. Demand-side resources are often overlooked as a viable option for meeting load growth and addressing the challenges posed by the region's aging transmission system. Western states should work together with utilities and grid operators to facilitate the further deployment of DR programs which can provide benefits in the form of decreased grid congestion, improved system reliability, market efficiency, price stabilization, hedging against volatile fuel prices and reduced environmental impacts of energy production. This report describes the various types of DR programs; provides a survey of DR programs currently in place in the West; considers the benefits, drawbacks and barriers to DR; and presents lessons learned and recommendations for states/provinces.

  15. Major models and data sources for residential and commercial sector energy conservation analysis. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    Major models and data sources are reviewed that can be used for energy-conservation analysis in the residential and commercial sectors to provide an introduction to the information that can or is available to DOE in order to further its efforts in analyzing and quantifying their policy and program requirements. Models and data sources examined in the residential sector are: ORNL Residential Energy Model; BECOM; NEPOOL; MATH/CHRDS; NIECS; Energy Consumption Data Base: Household Sector; Patterns of Energy Use by Electrical Appliances Data Base; Annual Housing Survey; 1970 Census of Housing; AIA Research Corporation Data Base; RECS; Solar Market Development Model; and ORNL Buildings Energy Use Data Book. Models and data sources examined in the commercial sector are: ORNL Commercial Sector Model of Energy Demand; BECOM; NEPOOL; Energy Consumption Data Base: Commercial Sector; F.W. Dodge Data Base; NFIB Energy Report for Small Businesses; ADL Commercial Sector Energy Use Data Base; AIA Research Corporation Data Base; Nonresidential Buildings Surveys of Energy Consumption; General Electric Co: Commercial Sector Data Base; The BOMA Commercial Sector Data Base; The Tishman-Syska and Hennessy Data Base; The NEMA Commercial Sector Data Base; ORNL Buildings Energy Use Data Book; and Solar Market Development Model. Purpose; basis for model structure; policy variables and parameters; level of regional, sectoral, and fuels detail; outputs; input requirements; sources of data; computer accessibility and requirements; and a bibliography are provided for each model and data source.

  16. The Role of Demand Resources In Regional Transmission Expansion Planning and Reliable Operations

    SciTech Connect (OSTI)

    Kirby, Brendan J

    2006-07-01

    Investigating the role of demand resources in regional transmission planning has provided mixed results. On one hand there are only a few projects where demand response has been used as an explicit alternative to transmission enhancement. On the other hand there is a fair amount of demand response in the form of energy efficiency, peak reduction, emergency load shedding, and (recently) demand providing ancillary services. All of this demand response reduces the need for transmission enhancements. Demand response capability is typically (but not always) factored into transmission planning as a reduction in the load which must be served. In that sense demand response is utilized as an alternative to transmission expansion. Much more demand response is used (involuntarily) as load shedding under extreme conditions to prevent cascading blackouts. The amount of additional transmission and generation that would be required to provide the current level of reliability if load shedding were not available is difficult to imagine and would be impractical to build. In a very real sense demand response solutions are equitably treated in every region - when proposed, demand response projects are evaluated against existing reliability and economic criteria. The regional councils, RTOs, and ISOs identify needs. Others propose transmission, generation, or responsive load based solutions. Few demand response projects get included in transmission enhancement plans because few are proposed. But this is only part of the story. Several factors are responsible for the current very low use of demand response as a transmission enhancement alternative. First, while the generation, transmission, and load business sectors each deal with essentially the same amount of electric power, generation and transmission companies are explicitly in the electric power business but electricity is not the primary business focus of most loads. This changes the institutional focus of each sector. Second, market and reliability rules have, understandably, been written around the capabilities and limitations of generators, the historic reliability resources. Responsive load limitations and capabilities are often not accommodated in markets or reliability criteria. Third, because of the institutional structure, demand response alternatives are treated as temporary solutions that can delay but not replace transmission enhancement. Financing has to be based on a three to five year project life as opposed to the twenty to fifty year life of transmission facilities. More can be done to integrate demand response options into transmission expansion planning. Given the societal benefits it may be appropriate for independent transmission planning organizations to take a more proactive role in drawing demand response alternatives into the resource mix. Existing demand response programs provide a technical basis to build from. Regulatory and market obstacles will have to be overcome if demand response alternatives are to be routinely considered in transmission expansion planning.

  17. Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nebraska Company Expands to Meet Demand for Hydrogen Fuel Nebraska Company Expands to Meet Demand for Hydrogen Fuel February 25, 2014 - 12:00am Addthis The Energy Department recently posted a blog about Hexagon Lincoln, a company that creates carbon fiber composite fuel tanks used to transport hydrogen across the country. Read Nebraska Company Expands to Meet Demand for Hydrogen Fuel to learn more about the company's expansion. Addthis Related Articles Hexagon Lincoln develops carbon

  18. Summary of Characteristics and Energy Efficiency Demand-side Management Programs in the Southeastern United States

    SciTech Connect (OSTI)

    Glatt, Sandy

    2010-04-01

    This report is the first in a series that seeks to characterize energy supply and industrial sector energy consumption, and summarize successful industrial demand-side management (DSM) programs within each of the eight North American Electric Reliability Corporation (NERC) regions.

  19. Electricity savings potentials in the residential sector of Bahrain

    SciTech Connect (OSTI)

    Akbari, H.; Morsy, M.G.; Al-Baharna, N.S.

    1996-08-01

    Electricity is the major fuel (over 99%) used in the residential, commercial, and industrial sectors in Bahrain. In 1992, the total annual electricity consumption in Bahrain was 3.45 terawatt-hours (TWh), of which 1.95 TWh (56%) was used in the residential sector, 0.89 TWh (26%) in the commercial sector, and 0.59 TWh (17%) in the industrial sector. Agricultural energy consumption was 0.02 TWh (less than 1%) of the total energy use. In Bahrain, most residences are air conditioned with window units. The air-conditioning electricity use is at least 50% of total annual residential use. The contribution of residential AC to the peak power consumption is even more significant, approaching 80% of residential peak power demand. Air-conditioning electricity use in the commercial sector is also significant, about 45% of the annual use and over 60% of peak power demand. This paper presents a cost/benefit analysis of energy-efficient technologies in the residential sector. Technologies studied include: energy-efficient air conditioners, insulating houses, improved infiltration, increasing thermostat settings, efficient refrigerators and freezers, efficient water heaters, efficient clothes washers, and compact fluorescent lights. We conservatively estimate a 32% savings in residential electricity use at an average cost of about 4 fils per kWh. (The subsidized cost of residential electricity is about 12 fils per kWh. 1000 fils = 1 Bahrain Dinar = US$ 2.67). We also discuss major policy options needed for implementation of energy-efficiency technologies.

  20. Geographic information system applications in coal transportation analysis

    SciTech Connect (OSTI)

    Elmes, G.

    1996-12-31

    Geographic information systems (GIS) offer great potential to the coal transportation industry for capitalizing on the growing availability of spatially-referenced data. As computer-based systems for the collection, storage, retrieval and analysis of spatial data, generating information products in a variety of formats, GIS have a great capability to improve the efficiency and effectiveness of coal transportation operations, planning, engineering, and facilities management. Currently GIS are used in the transportation industry at large to analyze, and display information about network infrastructure, fleet operations, property ownership, routing and scheduling, and utilities. Current coal transportation applications include consumer service inquiries, train and locomotive scheduling, and evaluation of network usage. The paper describes the significant potential uses of GIS in the coal transportation sector when integrated with optimization and decision support systems, scientific visualization, data forecasting, and strategic system planning approaches. Ultimately consumer demand and the drive for economic efficiency are likely to stimulate the integration and management of spatial information across the entire coal chain.

  1. Demand Response - Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's electricity delivery infrastructure to assure consumers a robust, reliable electric power system that meets their increasing demand for energy. OE's mission includes assisting states and regions in developing policies that decrease demand on existing energy infrastructure. Appropriate cost-effective demand response

  2. EERE National Lab Transportation and Fuels Initiatives and Capabilitie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Sector - Major Initiatives and Consortia * Co-Optima - Co-Optimization of ... highly durable electrocatalysts for fuel cells- driving down the cost of fuel cell ...

  3. International Association of Public Transport | Open Energy Informatio...

    Open Energy Info (EERE)

    search Name: International Association of Public Transport Address: Rue Sainte-Marie 6 (Quai des Charbonnages) Place: Brussels, Belgium Zip: B-1080 Sector: Vehicles Year...

  4. Technology Mapping of the Renewable Energy, Buildings and Transport...

    Open Energy Info (EERE)

    Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary LAUNCH TOOL Name:...

  5. India-Low Carbon Transport | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name UNEP-Low Carbon Transport in India AgencyCompany Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area...

  6. Transportation Fact of the Week - 2011 Archive | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Source August 22, 2011 688 All Sectors' Petroleum Gap August 15, 2011 687 The Transportation Petroleum Gap August 8, 2011 686 Emissions and Energy Use Model - GREET ...

  7. Fact #792: August 12, 2013 Energy Consumption by Sector and Energy Source, 1982 and 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the last 30 years, overall energy consumption has grown by about 22 quadrillion Btu. The share of energy consumption by the transportation sector has seen modest growth in that time – from about...

  8. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  9. Efforts to Harmonize Gas Pipeline Operations with the Demands of the Electricity Sector

    SciTech Connect (OSTI)

    Costello, Ken

    2006-12-15

    A possible future course of action is for pipelines to continue their efforts to provide new services with FERC approval. Over time, pipelines could satisfy power generators by giving them the flexibility and services they desire and for which they are willing to pay. Another possibility is that FERC will enact new rules governing regional electricity markets that would function similarly to nationwide business practices. (author)

  10. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  11. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  12. Infrastructure opportunities in South America: Energy sector. Export trade information

    SciTech Connect (OSTI)

    1995-06-01

    The report, conducted by CG/LA, Inc., was funded by the U.S. Trade and Development Agency. The report was assembled for the South American Infrastructure Conference held in New Orleans. It contains a regional overview of infrastructure activities in ten countries represented at the conference. Also covered are project listings in five sectors, including Energy, Transportation, Environment, Telecommunications, and Industry. The study covers TDA case studies as well as project financeability. The ten countries covered in the report include the following: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Paraguay, Peru, Uruguay, and Venezuela. This volume focuses on the Energy Sector in South America.

  13. Number of Customers by State by Sector, 1990-2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Number of Customers by State by Sector, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",281438,51017,1287,0,"NA",333742 2014,"AL","Total Electric Industry",2169790,360901,7236,0,"NA",2537927 2014,"AR","Total Electric

  14. Energy demand and population changes

    SciTech Connect (OSTI)

    Allen, E.L.; Edmonds, J.A.

    1980-12-01

    Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

  15. Issues in Energy Economics Led by Emerging Linkages between the Natural Gas and Power Sectors

    SciTech Connect (OSTI)

    Platt, Jeremy B.

    2007-09-15

    Fuel prices in 2006 continued at record levels, with uranium continuing upward unabated and coal, SO{sub 2} emission allowances, and natural gas all softening. This softening did not continue for natural gas, however, whose prices rose, fell and rose again, first following weather influences and, by the second quarter of 2007, continuing at high levels without any support from fundamentals. This article reviews these trends and describes the remarkable increases in fuel expenses for power generation. By the end of 2005, natural gas claimed 55% of annual power sector fuel expenses, even though it was used for only 19% of electric generation. Although natural gas is enormously important to the power sector, the sector also is an important driver of the natural gas market-growing to over 28% of the market even as total use has declined. The article proceeds to discuss globalization, natural gas price risk, and technology developments. Forces of globalization are poised to affect the energy markets in new ways-new in not being only about oil. Of particular interest in the growth of intermodal traffic and its a little-understood impacts on rail traffic patterns and transportation costs, and expected rapidly expanding LNG imports toward the end of the decade. Two aspects of natural gas price risk are discussed: how understanding the use of gas in the power sector helps define price ceilings and floors for natural gas, and how the recent increase in the natural gas production after years of record drilling could alter the supply-demand balance for the better. The article cautions, however, that escalation in natural gas finding and development costs is countering the more positive developments that emerged during 2006. Regarding technology, the exploitation of unconventional natural gas was one highlight. So too was the queuing up of coal-fired power plants for the post-2010 period, a phenomenon that has come under great pressure with many consequences including increased pressures in the natural gas market. The most significant illustration of these forces was the early 2007 suspension of development plans by a large power company, well before the Supreme Court's ruling on CO{sub 2} as a tailpipe pollutant and President Bush's call for global goals on CO{sub 2} emissions.

  16. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    none,

    2010-01-01

    Summarizes existing research and discusses current practices, opportunities, and barriers to coordinating energy efficiency and demand response programs.

  17. Assessing the Control Systems Capacity for Demand Response in California Industries

    SciTech Connect (OSTI)

    Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

    2012-01-18

    California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

  18. Property:DeploymentSector | Open Energy Information

    Open Energy Info (EERE)

    search Property Name DeploymentSector Property Type String Description Depolyment Sector as used in cleanenergysolutions.org Allows the following values: Commercial...

  19. Energy Sector Cybersecurity Framework Implementation Guidance

    Energy Savers [EERE]

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector ...

  20. Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector

    SciTech Connect (OSTI)

    Wu, K.; Pezeshki, S.

    1995-03-01

    This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

  1. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  2. Energy and water sector policy strategies for drought mitigation.

    SciTech Connect (OSTI)

    Kelic, Andjelka; Vugrin, Eric D.; Loose, Verne W.; Vargas, Vanessa N.

    2009-03-01

    Tensions between the energy and water sectors occur when demand for electric power is high and water supply levels are low. There are several regions of the country, such as the western and southwestern states, where the confluence of energy and water is always strained due to population growth. However, for much of the country, this tension occurs at particular times of year (e.g., summer) or when a region is suffering from drought conditions. This report discusses prior work on the interdependencies between energy and water. It identifies the types of power plants that are most likely to be susceptible to water shortages, the regions of the country where this is most likely to occur, and policy options that can be applied in both the energy and water sectors to address the issue. The policy options are designed to be applied in the near term, applicable to all areas of the country, and to ease the tension between the energy and water sectors by addressing peak power demand or decreased water supply.

  3. Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study

    SciTech Connect (OSTI)

    Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

    2013-01-02

    California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as conducting a more comprehensive survey of California growers.

  4. Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

    2008-05-15

    As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

  5. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt043tierickson2012o

  6. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  7. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  10. Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  12. Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  13. The Transportation Sector Model of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    adjustment due to scientific advances. LEARNCOSTMULTIPLIER 2 Cost adjustment due to manufacturing advances. LEARNCOSTMULTIPLIER 3 Cost adjustment due to design advances....

  14. Transportation Sector Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    steps have been taken for all vehicle classes, CAFE is calculated for each of the nine manufacturing groups. Each group is classified as either passing or failing the CAFE...

  15. Transportation Sector Module of the National Energy Modeling...

    Gasoline and Diesel Fuel Update (EIA)

    adjustment due to scientific advances. LEARNCOSTMULTIPLIER 2 Cost adjustment due to manufacturing advances. LEARNCOSTMULTIPLIER 3 Cost adjustment due to design advances....

  16. DOE/EIA-M070(2010) Transportation Sector

    Gasoline and Diesel Fuel Update (EIA)

    adjustment due to scientific advances. LEARNCOSTMULTIPLIER 2 Cost adjustment due to manufacturing advances. LEARNCOSTMULTIPLIER 3 Cost adjustment due to design advances....

  17. FY 2016 EERE Budget Webinar—Sustainable Transportation Sector

    Broader source: Energy.gov [DOE]

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) hosted a webinar series featuring our deputy assistant secretaries and the technology office directors as they dove deep into EERE’s fiscal year (FY) 2016 budget request

  18. Utah Clean Cities Transportation Sector Petroleum Reduction Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt043tierickson2011p

  19. Post-2012 Climate Instruments in the transport sector | Open...

    Open Energy Info (EERE)

    mitigation instruments under a post-2012 Climate Change Agreement. It analysis of how international funding mechanisms, particularly NAMAs, under the post-2012 climate...

  20. Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Energy use and CO2 emissions of China’s industrial sector from a global perspective

    SciTech Connect (OSTI)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick W.; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-07-10

    The industrial sector has accounted for more than 50% of China’s final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China’s per-capita demands of basic industrial goods, industrial energy demand and CO2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095.

  2. Market and energy demand analysis of a US maglev system

    SciTech Connect (OSTI)

    Vyas, A.D.; Rote, D.M.

    1993-06-01

    High-speed magnetically levitated (maglev) vehicles can provide an alternative mode of transportation for intercity travel, particularly for short- and medium-distance trips between 100 to 600 mi (160 and 960 km). The patterns of growth and the underlying factors affecting that growth In the year 2010 are evaluated to determine the magnitude of US Intercity travel that would become the basis for maglev demand. A methodology that is sensitive to the travelers` socioeconomic attributes was developed to Forecast intercity travel. Travel between 78 major metropolitan areas by air and highway modes is projected, and 12 high-density travel corridors are Identified and selected. The potential for a maglev system to substitute for part or that travel is calculated by using a model that estimates the extent of diversion from highway and air to maglev. Energy demand is estimated on the basis of energy usage during acceleration and cruise phases for each corridor and corridor connections.

  3. Market and energy demand analysis of a US maglev system

    SciTech Connect (OSTI)

    Vyas, A.D.; Rote, D.M.

    1993-01-01

    High-speed magnetically levitated (maglev) vehicles can provide an alternative mode of transportation for intercity travel, particularly for short- and medium-distance trips between 100 to 600 mi (160 and 960 km). The patterns of growth and the underlying factors affecting that growth In the year 2010 are evaluated to determine the magnitude of US Intercity travel that would become the basis for maglev demand. A methodology that is sensitive to the travelers' socioeconomic attributes was developed to Forecast intercity travel. Travel between 78 major metropolitan areas by air and highway modes is projected, and 12 high-density travel corridors are Identified and selected. The potential for a maglev system to substitute for part or that travel is calculated by using a model that estimates the extent of diversion from highway and air to maglev. Energy demand is estimated on the basis of energy usage during acceleration and cruise phases for each corridor and corridor connections.

  4. NCEP_Demand_Response_Draft_111208.indd

    Energy Savers [EERE]

    National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric

  5. Sector Profiles of Significant Large CHP Markets, March 2004

    Broader source: Energy.gov [DOE]

    Overview of market assessments of large CHP sector profiles of the chemicals, food, and pharmaceuticals sectors

  6. China’s rare earth supply chain: Illegal production, and response to new cerium demand

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen, Ruby Thuy; Imholte, D. Devin

    2016-03-29

    As the demand for personal electronic devices, wind turbines, and electric vehicles increases, the world becomes more dependent on rare earth elements. Given the volatile, Chinese-concentrated supply chain, global attempts have been made to diversify supply of these materials. However, the overall effect of supply diversification on the entire supply chain, including increasing low-value rare earth demand, is not fully understood. This paper is the first attempt to shed some light on China’s supply chain from both demand and supply perspectives, taking into account different Chinese policies such as mining quotas, separation quotas, export quotas, and resource taxes. We constructedmore » a simulation model using Powersim Studio that analyzes production (both legal and illegal), production costs, Chinese and rest-of-world demand, and market dynamics. We also simulated new demand of an automotive aluminum-cerium alloy in the U.S. market starting from 2018. Results showed that market share of the illegal sector has grown since 2007 to 2015, ranging between 22% and 25% of China’s rare earth supply, translating into 59–65% illegal heavy rare earths and 14–16% illegal light rare earths. There would be a shortage in certain light and heavy rare earths given three production quota scenarios and constant demand growth rate from 2015 to 2030. The new simulated Ce demand would require supply beyond that produced in China. Lastly, we illustrated revenue streams for different ore compositions in China in 2015.« less

  7. Demand Response in the ERCOT Markets

    SciTech Connect (OSTI)

    Patterson, Mark

    2011-10-25

    ERCOT grid serves 85% of Texas load over 40K+ miles transmission line. Demand response: voluntary load response, load resources, controllable load resources, and emergency interruptible load service.

  8. Reducing Logistics Footprints and Replenishment Demands: Nano...

    Office of Scientific and Technical Information (OSTI)

    Water Treatment Citation Details In-Document Search Title: Reducing Logistics Footprints and Replenishment Demands: Nano-engineered Silica Aerogels a Proven Method for Water ...

  9. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for ...

  10. Marketing & Driving Demand Collaborative - Social Media Tools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the Better Buildings webinar on January 6, 2011. PDF icon Marketing & Driving ...

  11. Fabricate-on-Demand Vacuum Insulating Glazings

    Broader source: Energy.gov [DOE]

    PPG is working to design a fabricate-on-demand process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulating glazings (VIGs).

  12. BPA, Energy Northwest launch demand response pilot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPA-Energy-Northwest-launch-demand-response-pilot Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand...

  13. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  14. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable...

  15. Demand Response (transactional control) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest ...

  16. Distributed Automated Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore ...

  17. Energy Efficiency, Demand Response, and Volttron

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY EFFICIENCY, DEMAND RESPONSE, AND VOLTTRON Presented by Justin Sipe SEEMINGLY SIMPLE STATEMENTS Utilities need more capacity to handle growth on the grid ...

  18. Geographically Based Hydrogen Consumer Demand and Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis Final Report M. Melendez and A. Milbrandt Technical Report NRELTP-540-40373 October 2006 NREL is operated...

  19. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  20. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate that by allowing uncontained growth in the number of motor vehicles and pursuing only incremental improvements in fuel economy, China may face severe consequences in terms of oil use and CO{sub 2} emissions. Many argue that China--and, in fact, the world--will not be able to accommodate such uncontained vehicle growth. The potential problems related to transportation energy use and CO{sub 2} emissions in China are, indeed, global problems; solving these problems will require international collaboration.

  1. Strategies for Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-06-20

    This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

  2. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  3. Hawaii demand-side management resource assessment. Final report, Reference Volume 4: The DBEDT DSM assessment model user`s manual

    SciTech Connect (OSTI)

    1995-04-01

    The DBEDT DSM Assessment Model (DSAM) is a spreadsheet model developed in Quattro Pro for Windows that is based on the integration of the DBEDT energy forecasting model, ENERGY 2020, with the output from the building energy use simulation model, DOE-2. DOE-2 provides DSM impact estimates for both energy and peak demand. The ``User`s Guide`` is designed to assist DBEDT staff in the operation of DSAM. Supporting information on model structure and data inputs are provided in Volumes 2 and 3 of the Final Report. DSAM is designed to provide DBEDT estimates of the potential DSM resource for each county in Hawaii by measure, program, sector, year, and levelized cost category. The results are provided for gas and electric and for both energy and peak demand. There are two main portions of DSAM, the residential sector and the commercial sector. The basic underlying logic for both sectors are the same. However, there are some modeling differences between the two sectors. The differences are primarily the result of (1) the more complex nature of the commercial sector, (2) memory limitations within Quattro Pro, and (3) the fact that the commercial sector portion of the model was written four months after the residential sector portion. The structure for both sectors essentially consists of a series of input spreadsheets, the portion of the model where the calculations are performed, and a series of output spreadsheets. The output spreadsheets contain both detailed and summary tables and graphs.

  4. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  5. From upstream to downstream: Megatrends and latest developments in Latin America`s hydrocarbons sector

    SciTech Connect (OSTI)

    Wu, Kang; Pezeshki, S.; McMahon, J.

    1995-08-01

    In recent years, Latin America`s hydrocarbons sector has been characterized by reorganization, revitalization, regional cooperation, environmental awakening, and steady expansion. The pattern of these changes, which appear to be the megatrends of the region`s hydrocarbons sector development, will continue during the rest of the 1990s. To further study the current situation and future prospects of Latin America`s hydrocarbons sector, we critically summarize in this short article the key issues in the region`s oil and gas development. These megatrends in Latin America`s hydrocarbons sector development will impact not only the future energy demand and supply in the region, but also global oil flows in the North American market and across the Pacific Ocean. Each country is individually discussed; pipelines to be constructed are discussed also.

  6. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.

  7. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  8. Multi-Sector General Permit (MSGP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSGP Multi-Sector General Permit (MSGP) The Multi-Sector General Permit authorizes the discharge of stormwater associated with industrial activity. What's New Documents submitted to EPRR in last 30 Days TBD What is the Multi-Sector General Permit? Storm water discharges from EPA specified industrial activities are regulated under the National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP). LANL regulated industrial activities include: Metal fabrication Power

  9. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Author Paul Brophy Conference World Geothermal Energy Summit; Jakarta, Indonesia; 20120706...

  10. SEP Special Projects Report: Buildings Sector

    SciTech Connect (OSTI)

    2009-01-18

    The buildings section of this Sharing Success document describes SEP special projects in the buildings sector including funding.

  11. Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales to Ultimate Customers (Megawatthours) by State by Sector by Provider, 1990-2014" "Year","State","Industry Sector Category","Residential","Commercial","Industrial","Transportation","Other","Total" 2014,"AK","Total Electric Industry",2043614,2761518,1359680,0,"NA",6164812 2014,"AL","Total Electric

  12. Electricity demand in a developing country. [Paraguay

    SciTech Connect (OSTI)

    Westley, G.D.

    1984-08-01

    This study analyzes the residential and commercial demand for electricity in ten regions in Paraguay for 1970-1977. Models that are both linear and nonlinear in the parameters are estimated. The nonlinear model takes advantage of prior information on the nature of the appliances being utilized and simultaneously deals with the demand discontinuities caused by appliance indivisibility. Three dynamic equations, including a novel cumulative adjustment model, all indicate rapid adjustment to desired appliance stock levels. Finally, the multiproduct surplus loss obtained from an estimated demand equation is used to measure the welfare cost of power outages. 15 references.

  13. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  14. FERC sees huge potential for demand response

    SciTech Connect (OSTI)

    2010-04-15

    The FERC study concludes that U.S. peak demand can be reduced by as much as 188 GW -- roughly 20 percent -- under the most aggressive scenario. More moderate -- and realistic -- scenarios produce smaller but still significant reductions in peak demand. The FERC report is quick to point out that these are estimates of the potential, not projections of what could actually be achieved. The main varieties of demand response programs include interruptible tariffs, direct load control (DLC), and a number of pricing schemes.

  15. Proceedings of the Chinese-American symposium on energy markets and the future of energy demand

    SciTech Connect (OSTI)

    Meyers, S.

    1988-11-01

    The Symposium was organized by the Energy Research Institute of the State Economic Commission of China, and the Lawrence Berkeley Laboratory and Johns Hopkins University from the United States. It was held at the Johns Hopkins University Nanjing Center in late June 1988. It was attended by about 15 Chinese and an equal number of US experts on various topics related to energy demand and supply. Each presenter is one of the best observers of the energy situation in their field. A Chinese and US speaker presented papers on each topic. In all, about 30 papers were presented over a period of two and one half days. Each paper was translated into English and Chinese. The Chinese papers provide an excellent overview of the emerging energy demand and supply situation in China and the obstacles the Chinese planners face in managing the expected increase in demand for energy. These are matched by papers that discuss the energy situation in the US and worldwide, and the implications of the changes in the world energy situation on both countries. The papers in Part 1 provide historical background and discuss future directions. The papers in Part 2 focus on the historical development of energy planning and policy in each country and the methodologies and tools used for projecting energy demand and supply. The papers in Part 3 examine the pattern of energy demand, the forces driving demand, and opportunities for energy conservation in each of the major sectors in China and the US. The papers in Part 4 deal with the outlook for global and Pacific region energy markets and the development of the oil and natural gas sector in China.

  16. Energy Efficiency and the Finance Sector | Open Energy Information

    Open Energy Info (EERE)

    and the Finance Sector Jump to: navigation, search Name Energy Efficiency and the Finance Sector AgencyCompany Organization United Nations Environment Programme Sector Energy...

  17. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment (Redirected from Nepal Sectoral Climate impacts Economic Assessment) Jump to: navigation, search Name Nepal Sectoral Climate...

  18. Next Update: December 2011 Net Internal Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) Net Internal Demand (MW) Capacity Resources (MW) Capacity Margin (percent) 2005 746,470 882,125 15.4 45,950 50,200 8.5 38,266 46,792 18.2 57,402 72,258 20.6 2006 760,108 906,155 16.1 43,824 53,171 17.6 41,754 49,792 16.1 59,727 70,607 15.4 2007 768,061 946,631 18.9 46,434

  19. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY

    Broader source: Energy.gov [DOE]

    As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy...

  20. Solar in Demand | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of the U.S. solar ...

  1. Demand Response and Energy Storage Integration Study

    Broader source: Energy.gov [DOE]

    This study is a multi-national laboratory effort to assess the potential value of demand response and energy storage to electricity systems with different penetration levels of variable renewable...

  2. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Majumdar, Arun

    2010-01-08

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  3. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands. 

  4. Measuring the capacity impacts of demand response

    SciTech Connect (OSTI)

    Earle, Robert; Kahn, Edward P.; Macan, Edo

    2009-07-15

    Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

  5. Market leadership by example: Government sector energy efficiency in developing countries

    SciTech Connect (OSTI)

    Van Wie McGrory, Laura; Harris, Jeffrey; Breceda, Miguel; Campbell, Stephanie; Sachu, Constantine; della Cava, Mirka; Gonzalez Martinez, Jose; Meyer, Sarah; Romo, Ana Margarita

    2002-05-20

    Government facilities and services are often the largest energy users and major purchasers of energy-using equipment within a country. In developing as well as industrial countries, government ''leadership by example'' can be a powerful force to shift the market toward energy efficiency, complementing other elements of a national energy efficiency strategy. Benefits from more efficient energy management in government facilities and operations include lower government energy bills, reduced greenhouse gas emissions, less demand on electric utility systems, and in many cases reduced dependence on imported oil. Even more significantly, the government sector's buying power and example to others can generate broader demand for energy-efficient products and services, creating entry markets for domestic suppliers and stimulating competition in providing high-efficiency products and services. Despite these benefits, with the exception of a few countries government sector actions have often lagged behind other energy efficiency policies. This is especially true in developing countries and transition economies - even though energy used by public agencies in these countries may represent at least as large a share of total energy use as the public sector in industrial economies. This paper summarizes work in progress to inventory current programs and policies for government sector energy efficiency in developing countries, and describes successful case studies from Mexico's implementation of energy management in the public sector. We show how these policies in Mexico, begun at the federal level, have more recently been extended to state and local agencies, and consider the applicability of this model to other developing countries.

  6. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  7. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  8. Solar energy research and development: federal and private sector roles

    SciTech Connect (OSTI)

    Not Available

    1982-09-01

    The Energy Research Advisory Board convened a Solar R and D Panel to determine the status of the solar industry and solar R and D in the United States and to recommend to DOE appropriate roles for the Federal and private sectors. The Panel's report acknowledges the new Administration policy reorienting the Federal role in energy development to long-term, high-risk, high-payoff R and D, and leaving commercialization to the private sector. The Panel's recommendations are further predicated on an assumption of continued, substantially reduced funding in the near-term. The Panel found that solar energy technologies have progressed significantly in the past 10 years and represent a group of highly promising energy options for the United States. However, it also found the solar industry to be in a precarious condition, fluctuating energy demand and prices, and uncertain Federal tax and regulatory policies. The Business Energy and Residential Tax Credits are essential to the near-term health of the solar industry. Commercialization has already begun for some solar technologies; for others, decreases in Federal funding will result in a slowdown or termination. The primary Federal roles in solar R and D should be in support of basic and applied research, high-risk, high-payoff technology development and other necessary research for which there are insufficient market incentives. The Federal Government should also move strongly to transfer technology to the private sector for near-commerical technologies. Large demonstration and commercialization projects cannot be justified for Federal funding under current economic conditions. These should be pursued by the private sector. The Panel examined seven technology areas and made specific findings and recommendations for each.

  9. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  10. Chapter 8 - Advancing Clean Transportation and Vehicle Systems and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Chapter 8 - Advancing Clean Transportation and Vehicle Systems and Technologies Transportation is a complex sector composed of light duty, medium duty, heavy duty, and non-highway vehicles; rail; aircraft; and ships used for personal transport, movement of goods, construction, agriculture, and mining as

  11. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    SciTech Connect (OSTI)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  12. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  13. Wireless Demand Response Controls for HVAC Systems

    SciTech Connect (OSTI)

    Federspiel, Clifford

    2009-06-30

    The objectives of this scoping study were to develop and test control software and wireless hardware that could enable closed-loop, zone-temperature-based demand response in buildings that have either pneumatic controls or legacy digital controls that cannot be used as part of a demand response automation system. We designed a SOAP client that is compatible with the Demand Response Automation Server (DRAS) being used by the IOUs in California for their CPP program, design the DR control software, investigated the use of cellular routers for connecting to the DRAS, and tested the wireless DR system with an emulator running a calibrated model of a working building. The results show that the wireless DR system can shed approximately 1.5 Watts per design CFM on the design day in a hot, inland climate in California while keeping temperatures within the limits of ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupancy.

  14. International Oil Supplies and Demands. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  15. International Oil Supplies and Demands. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  16. Centralized and Decentralized Control for Demand Response

    SciTech Connect (OSTI)

    Lu, Shuai; Samaan, Nader A.; Diao, Ruisheng; Elizondo, Marcelo A.; Jin, Chunlian; Mayhorn, Ebony T.; Zhang, Yu; Kirkham, Harold

    2011-04-29

    Demand response has been recognized as an essential element of the smart grid. Frequency response, regulation and contingency reserve functions performed traditionally by generation resources are now starting to involve demand side resources. Additional benefits from demand response include peak reduction and load shifting, which will defer new infrastructure investment and improve generator operation efficiency. Technical approaches designed to realize these functionalities can be categorized into centralized control and decentralized control, depending on where the response decision is made. This paper discusses these two control philosophies and compares their relative advantages and disadvantages in terms of delay time, predictability, complexity, and reliability. A distribution system model with detailed household loads and controls is built to demonstrate the characteristics of the two approaches. The conclusion is that the promptness and reliability of decentralized control should be combined with the predictability and simplicity of centralized control to achieve the best performance of the smart grid.

  17. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    SciTech Connect (OSTI)

    Fisk, William J.; Mendell, Mark J.; Davies, Molly; Eliseeva, Ekaterina; Faulkner, David; Hong, Tienzen; Sullivan, Douglas P.

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included: ? The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).? Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.? Currently-available optical people counting systems work well much of the time but have large counting errors in some situations. ? In meeting rooms, measurements of carbon dioxide at return-air grilles appear to be a better choice than wall-mounted sensors.? In California, demand controlled ventilation in general office spaces is projected to save significant energy and be cost effective only if typical VRs without demand controlled ventilation are very high relative to VRs in codes. Based on the research, several recommendations were developed for demand controlled ventilation specifications in the California Title 24 Building Energy Efficiency Standards.The research on classroom ventilation collected data over two years on California elementary school classrooms to investigate associations between VRs and student illness absence (IA). Major findings included: ? Median classroom VRs in all studied climate zones were below the California guideline, and 40percent lower in portable than permanent buildings.? Overall, one additional L/s per person of VR was associated with 1.6percent less IA. ? Increasing average VRs in California K-12 classrooms from the current average to the required level is estimated to decrease IA by 3.4percent, increasing State attendance-based funding to school districts by $33M, with $6.2 M in increased energy costs. Further VR increases would provide additional benefits.? Confirming these findings in intervention studies is recommended. ? Energy costs of heating/cooling unoccupied classrooms statewide are modest, but a large portion occurs in relatively few classrooms.

  18. Chapter 2: Energy Sectors and Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Energy Sectors and Systems September 2015 Quadrennial Technology Review 2 Energy Sectors and Systems Issues and RDD&D Opportunities Energy systems are becoming increasingly interconnected and complex. Integrated energy systems present both opportunities for performance improvement as well as risks to operability and security. The size and scope of these opportunities and risks are just beginning to be understood. This chapter addresses both the key issues of energy sectors and their

  19. Energy Analysis by Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use and trends by sector. Manufacturing Energy and Carbon Footprints Static Manufacturing Energy Sankey Diagrams Dynamic Manufacturing Energy Sankey Tool Energy & Environmental Profiles Bandwidth Studies Large Energy User Manufacturing Facilities by State MANUFACTURING ENERGY and carbon

  20. DOE Issues Energy Sector Cyber Organization NOI

    Energy Savers [EERE]

    Issues National Energy Sector Cyber Organization Notice of Intent February 11, 2010 The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) announced on Jan. 7 that it intends to issue a Funding Opportunity Announcement (FOA) for a National Energy Sector Cyber Organization, envisioned as a partnership between the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security

  1. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  2. Chinese Oil Demand: Steep Incline Ahead

    U.S. Energy Information Administration (EIA) Indexed Site

    Chinese Oil Demand: Steep Incline Ahead Malcolm Shealy Alacritas, Inc. April 7, 2008 Oil Demand: China, India, Japan, South Korea 0 2 4 6 8 1995 2000 2005 2010 Million Barrels/Day China South Korea Japan India IEA China Oil Forecast 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 16.3 mbd 12.7 mbd IEA China Oil Forecasts 0 2 4 6 8 10 12 14 16 18 2000 2005 2010 2015 2020 2025 2030 Million Barrels/Day WEO 2007 WEO 2006 WEO 2004 WEO 2002 Vehicle Sales in

  3. Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector

    SciTech Connect (OSTI)

    Cox, R.; Drennen, T.E.; Gilliom, L.; Harris, D.L.; Kunsman, D.M.; Skroch, M.J.

    1998-04-01

    The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications.

  4. Modeling Distributed Generation in the Buildings Sectors

    Reports and Publications (EIA)

    2013-01-01

    This report focuses on how the Energy Information Administrationmodels residential and commercial sector distributed generation, including combined heat and power, for the Annual Energy Outlook.

  5. Energy Sector Cybersecurity Framework Implementation Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In February 2014, the National Institute of Standards and Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the ...

  6. Property:Sector | Open Energy Information

    Open Energy Info (EERE)

    is a property of type Page. Subproperties This property has the following 1 subproperty: G Green Economy Toolbox Pages using the property "Sector" Showing 25 pages using this...

  7. Category:Public Sectors | Open Energy Information

    Open Energy Info (EERE)

    no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:PublicSectors&oldid272249" Feedback Contact needs updating Image needs updating...

  8. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework...

  9. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    in the Federal Register, inviting the public to comment on DOE's Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October...

  10. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    invites public comment on a draft of the Energy Sector Cybersecurity Framework Implementation Guidance. Comments must be received on or before October 14, 2014. The draft document...

  11. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by Robert Westby, National Renewable Energy Laboratory, at the Waste-to-Energy Using ...

  12. Tankless Demand Water Heater Basics | Department of Energy

    Energy Savers [EERE]

    Water Heating Tankless Demand Water Heater Basics Tankless Demand Water Heater Basics August 19, 2013 - 2:57pm Addthis Illustration of an electric demand water heater. At the ...

  13. Washington: Sustainability Training for Realtors in High Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability Training for Realtors in High Demand Washington: Sustainability Training for Realtors in High Demand March 6, 2014 - 5:50pm Addthis Demand has been high for a free ...

  14. Public Interest Energy Research (PIER) Program. Final Project Report. California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Hasanbeigi, Ali; Sathaye, Jayant

    2010-12-01

    This report on the California Energy Balance version 2 (CALEB v2) database documents the latest update and improvements to CALEB version 1 (CALEB v1) and provides a complete picture of how energy is supplied and consumed in the State of California. The CALEB research team at Lawrence Berkeley National Laboratory (LBNL) performed the research and analysis described in this report. CALEB manages highly disaggregated data on energy supply, transformation, and end-use consumption for about 40 different energy commodities, from 1990 to 2008. This report describes in detail California's energy use from supply through end-use consumption as well as the data sources used. The report also analyzes trends in energy demand for the "Manufacturing" and "Building" sectors. Decomposition analysis of energy consumption combined with measures of the activity driving that consumption quantifies the effects of factors that shape energy consumption trends. The study finds that a decrease in energy intensity has had a very significant impact on reducing energy demand over the past 20 years. The largest impact can be observed in the industry sector where energy demand would have had increased by 358 trillion British thermal units (TBtu) if subsectoral energy intensities had remained at 1997 levels. Instead, energy demand actually decreased by 70 TBtu. In the "Building" sector, combined results from the "Service" and "Residential" subsectors suggest that energy demand would have increased by 264 TBtu (121 TBtu in the "Services" sector and 143 TBtu in the "Residential" sector) during the same period, 1997 to 2008. However, energy demand increased at a lesser rate, by only 162 TBtu (92 TBtu in the "Services" sector and 70 TBtu in the "Residential" sector). These energy intensity reductions can be indicative of energyefficiency improvements during the past 10 years. The research presented in this report provides a basis for developing an energy-efficiency performance index to measure progress over time in the State of California.

  15. Identifying Opportunities and Impacts of Fuel Switching in the Industrial Sector

    SciTech Connect (OSTI)

    Jain, Ramesh C.; Jamison, Keith; Thomas, Daniel E.

    2006-08-01

    The underlying purpose of this white paper is to examine fuel switching opportunities in the U.S. industrial sector and make strategic recommendationsleading to application of the best available technologies and development of new technologiesthat will introduce fuel use flexibility as an economically feasible option for plant operators, as a means to condition local fuel demands and a hedge against the local rises in fuel prices.

  16. Energy in Europe and Central Asia: A sector strategy for the World Bank Group

    SciTech Connect (OSTI)

    1998-12-31

    Many countries in the Europe and Central Asia region have had an excess production capacity, lower quality supply, decreasing demand, and inefficient consumption in the energy sector since the late 1980s. This report outlines the four main objectives that form the World Bank Group`s strategy for reform: assisting governments to protect the public interest, supporting economic transition, facilitating private investments, and promoting regional initiatives to increase energy trade.

  17. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  18. Indianapolis Offers a Lesson on Driving Demand

    Broader source: Energy.gov [DOE]

    Successful program managers know that understanding the factors that drive homeowners to make upgrades is critical to the widespread adoption of energy efficiency. What better place to learn about driving demand for upgrades than in Indianapolis, America's most famous driving city?

  19. Fact #687: August 8, 2011 The Transportation Petroleum Gap

    Broader source: Energy.gov [DOE]

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2035,...

  20. Fact #609: February 8, 2010 The Transportation Petroleum Gap

    Broader source: Energy.gov [DOE]

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2035,...

  1. Fact #560: March 2, 2009 The Transportation Petroleum Gap

    Broader source: Energy.gov [DOE]

    In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2030,...

  2. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structuring Rebate and Incentive Programs for Sustainable Demand Structuring Rebate and ... Loan Rates and Demand Peer Exchange Call on Financing and Revenue: Bond Funding Marketing ...

  3. Structuring Rebate and Incentive Programs for Sustainable Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Structuring Rebate and Incentive Programs for Sustainable Demand Structuring Rebate and Incentive Programs for Sustainable Demand Better Buildings Neighborhood Program Peer...

  4. Using Mobile Applications to Generate Customer Demand | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Mobile Applications to Generate Customer Demand Using Mobile Applications to Generate Customer Demand Better Buildings Residential Network Peer Exchange Call Series: Using...

  5. Strategies for Marketing and Driving Demand for Commercial Financing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Marketing and Driving Demand for Commercial Financing Products Strategies for Marketing and Driving Demand for Commercial Financing Products Better Buildings Neighborhood Program ...

  6. Demand Response and Energy Storage Integration Study - Past Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response and Energy Storage Integration Study - Past Workshops Demand Response and Energy Storage Integration Study - Past Workshops The project was initiated and informed...

  7. Draft Chapter 3: Demand-Side Resources | Department of Energy

    Office of Environmental Management (EM)

    Demand-Side Resources Draft Chapter 3: Demand-Side Resources Utilities in many states have been implementing energy efficiency and load management programs (collectively called ...

  8. Agreement Template for Energy Conservation and Demand Side Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement ...

  9. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's energy ...

  10. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Energy Savers [EERE]

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's ...

  11. Tool Improves Electricity Demand Predictions to Make More Room...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tool Improves Electricity Demand Predictions to Make More Room for Renewables Tool Improves Electricity Demand Predictions to Make More Room for Renewables October 3, 2011 - ...

  12. Reducing Energy Demand in Buildings Through State Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in ... More Documents & Publications Technology Performance Exchange - 2013 BTO Peer Review ...

  13. Estimating Costs and Efficiency of Storage, Demand, and Heat...

    Office of Environmental Management (EM)

    Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters Estimating Costs and Efficiency of Storage, Demand, and Heat Pump Water Heaters A water heater's...

  14. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  15. SGDP Report Now Available: Interoperability of Demand Response...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response ...

  16. SGDP Report: Interoperability of Demand Response Resources Demonstrati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY ...

  17. FERC Presendation: Demand Response as Power System Resources...

    Office of Environmental Management (EM)

    FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy ...

  18. Implementation Proposal for the National Action Plan on Demand...

    Energy Savers [EERE]

    Implementation Proposal for the National Action Plan on DemandResponse - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to ...

  19. Sustainable Energy Resources for Consumers (SERC) - On-Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for ...

  20. High-Performance with Solar Electric Reduced Peak Demand: Premier...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Solar Electric Reduced Peak Demand: Premier Homes Rancho Cordoba, CA - Building America Top Innovation High-Performance with Solar Electric Reduced Peak Demand: Premier Homes ...

  1. Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis

    SciTech Connect (OSTI)

    1995-04-01

    This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

  2. Small Business Demand Response with Communicating Thermostats: SMUD's Summer Solutions Research Pilot

    SciTech Connect (OSTI)

    Herter, Karen; Wayland, Seth; Rasin, Josh

    2009-09-25

    This report documents a field study of 78 small commercial customers in the Sacramento Municipal Utility District service territory who volunteered for an integrated energy-efficiency/demand-response (EE-DR) program in the summer of 2008. The original objective for the pilot was to provide a better understanding of demand response issues in the small commercial sector. Early findings justified a focus on offering small businesses (1) help with the energy efficiency of their buildings in exchange for occasional load shed, and (2) a portfolio of options to meet the needs of a diverse customer sector. To meet these expressed needs, the research pilot provided on-site energy efficiency advice and offered participants several program options, including the choice of either a dynamic rate or monthly payment for air-conditioning setpoint control. An analysis of hourly load data indicates that the offices and retail stores in our sample provided significant demand response, while the restaurants did not. Thermostat data provides further evidence that restaurants attempted to precool and reduce AC service during event hours, but were unable to because their air-conditioning units were undersized. On a 100 F reference day, load impacts of all participants during events averaged 14%, while load impacts of office and retail buildings (excluding restaurants) reached 20%. Overall, pilot participants including restaurants had 2007-2008 summer energy savings of 20% and bill savings of 30%. About 80% of participants said that the program met or surpassed their expectations, and three-quarters said they would probably or definitely participate again without the $120 participation incentive. These results provide evidence that energy efficiency programs, dynamic rates and load control programs can be used concurrently and effectively in the small business sector, and that communicating thermostats are a reliable tool for providing air-conditioning load shed and enhancing the ability of customers on dynamic rates to respond to intermittent price events.

  3. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  4. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  5. Why is energy use rising in the freight sector?

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-12-31

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  6. Why is energy use rising in the freight sector

    SciTech Connect (OSTI)

    Mintz, M.; Vyas, A.D.

    1991-01-01

    Trends in transportation sector energy use and carbon dioxide emissions are analyzed with an emphasis on three freight modes -- rail, truck, and marine. A recent set of energy use projections is presented and freight mode energy characteristics are discussed. Transportation sector energy use, which nearly doubled between 1960 and 1985, is projected to grow more slowly during the period 1985{endash}2010. Most of the growth is projected to come from non-personal modes (freight and commercial air). Trends in freight mode energy intensities are discussed and a variety of factors behind these trends are analyzed. Rail and marine modes improved their energy intensities during sudden fuel price rises of the 1970s. Though there is room for further technological improvement, long power plant life cycles preclude rapid penetration of new technologies. Thus, energy intensities in these modes are more likely to improve through operational changes. Because of relatively stable fuel prices, the energy share of truck operating expenses is likely to remain low. Coupled with increasing labor costs, this portends only modest improvements in truck energy efficiency over the next two decades.

  7. Public goods and private interests: Understanding non-residential demand for green power

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Fowlie, Meredith; Holt, Edward A.

    2001-01-01

    This article presents the results of the first large-scale mail survey of non-residential green power customers in the United States. The survey explored the motivations, attitudes, and experiences of 464 business, non-profit, and public-sector customers that have voluntarily opted to purchase - and frequently pay a premium for - renewable electricity. Results of this study should be of value to marketers interested in targeting these customer segments, to policy makers interested in fostering and understanding non-residential demand for green power, and to academics pondering the motivations for firms to engage in such voluntary environmental initiatives.

  8. Review of Sector and Regional Trends in U.S. Electricity Markets. Focus on Natural Gas. Natural Gas and the Evolving U.S. Power Sector Monograph Series. Number 1 of 3

    SciTech Connect (OSTI)

    Logan, Jeffrey; Medlock, III, Kenneth B.; Boyd, William C.

    2015-10-15

    This study explores dynamics related to natural gas use at the national, sectoral, and regional levels, with an emphasis on the power sector. It relies on a data set from SNL Financial to analyze recent trends in the U.S. power sector at the regional level. The research aims to provide decision and policy makers with objective and credible information, data, and analysis that informs their discussions of a rapidly changing energy system landscape. This study also summarizes regional changes in natural gas demand within the power sector. The transition from coal to natural gas is occurring rapidly along the entire eastern portion of the country, but is relatively stagnant in the central and western regions. This uneven shift is occurring due to differences in fuel price costs, renewable energy targets, infrastructure constraints, historical approach to regulation, and other factors across states.

  9. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    TRANSIMS version 3.1 is an integrated set of analytical and simulation models and supporting databases. The system is designed to create a virtual metropolitan region with representation of each of the region’s individuals, their activities and the transportation infrastructure they use. TRANSIMS puts into practice a new, disaggregate approach to travel demand modeling using agent-based micro-simulation technology. TRANSIMS methodology creates a virtual metropolitan region with representation of the transportation infrastructure and the population, at themore » level of households and individual travelers. Trips a planned to satisfy the population’s activity pattems at the individual traveler level. TRANSIMS then simulates the movement of travelers and vehicles across the transportation network using multiple modes, including car, transit, bike and walk, on a second-by-second basis. Metropolitan planners must plan growth of their cities according to the stringent transportation system planning requirements of the Interniodal Surface Transportation Efficiency Act of 1991, the Clean Air Act Amendments of 1990 and other similar laws and regulations. These require each state and its metropotitan regions to work together to develop short and long term transportation improvement plans. The plans must (1) estimate the future transportation needs for travelers and goods movements, (2) evaluate ways to manage and reduce congestion, (3) examine the effectiveness of building new roads and transit systems, and (4) limit the environmental impact of the various strategies. The needed consistent and accurate transportation improvement plans require an analytical capability that properly accounts for travel demand, human behavior, traffic and transit operations, major investments, and environmental effects. Other existing planning tools use aggregated information and representative behavior to predict average response and average use of transportation facilities. They do not account for individual traveler response to the dynamic transportation environment. In contrast, TRANSIMS provides disaggregated information that more explicitly represents the complex nature of humans interacting with the transportation system. It first generates a synthetic population that represents individuals and their households in the metropolitan region in a statistically valid way. The demographic makeup and spatial distribution of this synthetic population is derived from census data so that it matches that of the region’s real population. From survey data, a model is built of household and individual activities that may occur at home, in the workplace, school or shopping centers, for example. Trip plans including departure times, travel modes, and specific routes are created for each individual to get to his or her daily activities. TRANSIMS then simulates the movement of millions of individuals, following their trip plans throughout the transportation network, including their use of vehicles such as cars or buses, on a second-by-second basis. The virtual travel in TRANSIMS mimics the traveling and driving behavior of real people in the metropolitan region. The interactions of individual vehicles produce realistic traffic dynamics from which analysts can judge to performance of the transportation sysime and estimate vehicle emissions. Los Alamos, in cooperation with the Department of Transportation, Federal HIghway Administration and the local Metropolitan Planning Offices, has done TRANSIMS micro-simulations of auto traffic patterns in these two urban areas and completed associated scenario-based studies.« less

  10. Demand for superpremium needle cokes on upswing

    SciTech Connect (OSTI)

    Acciarri, J.A.; Stockman, G.H. )

    1989-12-01

    The authors discuss how recent supply shortages of super-premium quality needle cokes, plus the expectation of increased shortfalls in the future, indicate that refiners should consider upgrading their operations to fill these demands. Calcined, super-premium needle cokes are currently selling for as much as $550/metric ton, fob producer, and increasing demand will continue the upward push of the past year. Needle coke, in its calcined form, is the major raw material in the manufacture of graphite electrodes. Used in steelmaking, graphite electrodes are the electrical conductors that supply the heat source, through arcing electrode column tips, to electric arc steel furnaces. Needle coke is commercially available in three grades - super premium, premium, and intermediate. Super premium is used to produce electrodes for the most severe electric arc furnace steelmaking applications, premium for electrodes destined to less severe operations, and intermediate for even less critical needs.

  11. What is a High Electric Demand Day?

    Broader source: Energy.gov [DOE]

    This presentation by T. McNevin of the New Jersey Bureau of Air Quality Planning was part of the July 2008 Webcast sponsored by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Weatherization and Intergovernmental Program Clean Energy and Air Quality Integration Initiative that was titled Role of Energy Efficiency and Renewable Energy in Improving Air Quality and Addressing Greenhouse Gas Reduction Goals on High Electric Demand Days.

  12. Retail Demand Response in Southwest Power Pool

    Energy Savers [EERE]

    LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was

  13. Price-responsive demand management for a smart grid world

    SciTech Connect (OSTI)

    Chao, Hung-po

    2010-01-15

    Price-responsive demand is essential for the success of a smart grid. However, existing demand-response programs run the risk of causing inefficient price formation. This problem can be solved if each retail customer could establish a contract-based baseline through demand subscription before joining a demand-response program. (author)

  14. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  15. Dams and Energy Sectors Interdependency Study

    Energy Savers [EERE]

    power generation, with a particular emphasis on the variability of weather patterns and competing demands for water which determine the water available for hydropower production. ...

  16. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    SciTech Connect (OSTI)

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  17. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; et al

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less

  18. Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison

    SciTech Connect (OSTI)

    McFarland, Jim; Zhou, Yuyu; Clarke, Leon E.; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy; Colley, Michelle; Patel, Pralit L.; Eom, Jiyong; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-10-09

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  19. Erratum to: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison

    SciTech Connect (OSTI)

    McFarland, Jim; Zhou, Yuyu; Clarke, Leon E.; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy; Colley, Michelle; Patel, Pralit L.; Eom, Jiyong; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-10-07

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  20. A hybrid inventory management system respondingto regular demand and surge demand

    SciTech Connect (OSTI)

    Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu

    2014-06-01

    This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a given policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.

  1. Assisting Mexico in Developing Energy Supply and Demand Projections...

    Open Energy Info (EERE)

    AgencyCompany Organization Argonne National Laboratory Sector Energy Topics GHG inventory, Background analysis Resource Type Softwaremodeling tools Website http:...

  2. Dramatic Demand Reduction In The Desert Southwest

    SciTech Connect (OSTI)

    Boehm, Robert; Hsieh, Sean; Lee, Joon; Baghzouz, Yahia; Cross, Andrew; Chatterjee, Sarah

    2015-07-06

    This report summarizes a project that was funded to the University of Nevada Las Vegas (UNLV), with subcontractors Pulte Homes and NV Energy. The project was motivated by the fact that locations in the Desert Southwest portion of the US demonstrate very high peak electrical demands, typically in the late afternoons in the summer. These high demands often require high priced power to supply the needs, and the large loads can cause grid supply problems. An approach was proposed through this contact that would reduce the peak electrical demands to an anticipated 65% of what code-built houses of the similar size would have. It was proposed to achieve energy reduction through four approaches applied to a development of 185 homes in northwest part of Las Vegas named Villa Trieste. First, the homes would all be highly energy efficient. Secondly, each house would have a PV array installed on it. Third, an advanced demand response technique would be developed to allow the resident to have some control over the energy used. Finally, some type of battery storage would be used in the project. Pulte Homes designed the houses. The company considered initial cost vs. long-term savings and chose options that had relatively short paybacks. HERS (Home Energy Rating Service) ratings for the homes are approximately 43 on this scale. On this scale, code-built homes rate at 100, zero energy homes rate a 0, and Energy Star homes are 85. In addition a 1.764 Wp (peak Watt) rated PV array was used on each house. This was made up of solar shakes that were in visual harmony with the roofing material used. A demand response tool was developed to control the amount of electricity used during times of peak demand. While demand response techniques have been used in the utility industry for some time, this particular approach is designed to allow the customer to decide the degree of participation in the response activity. The temperature change in the residence can be decided by the residents by adjusting settings. In a sense the customer can choose between greater comfort and greater money savings during demand response circumstances. Finally a battery application was to be considered. Initially it was thought that a large battery (probably a sodium-sulfur type) would be installed. However, after the contract was awarded, it was determined that a single, centrally-located battery system would not be appropriate for many reasons, including that with the build out plan there would not be any location to put it. The price had risen substantially since the budget for the project was put together. Also, that type of battery has to be kept hot all the time, but its use was only sought for summer operation. Hence, individual house batteries would be used, and these are discussed at the end of this report. Many aspects of the energy use for climate control in selected houses were monitored before residents moved in. This was done both to understand the magnitude of the energy flows but also to have data that could be compared to the computer simulations. The latter would be used to evaluate various aspects of our plan. It was found that good agreement existed between actual energy use and computed energy use. Hence, various studies were performed via simulations. Performance simulations showed the impact on peak energy usage between a code built house of same size and shape compared to the Villa Trieste homes with and without the PV arrays on the latter. Computations were also used to understand the effect of varying orientations of the houses in this typical housing development, including the effect of PV electrical generation. Energy conservation features of the Villa Trieste homes decreased the energy use during peak times (as well as all others), but the resulting decreased peak occurred at about the same time as the code-built houses. Consideration of the PV generation decreases the grid energy use further during daylight hours, but did not extend long enough many days to decrease the peak. Hence, a demand response approach, as planned, was needed. With participation of the residents in the demand response program developed does enable the houses to reduce the peak demand between 66% and 72%, depending on the built years. This was addressed fully in the latter part the study and is described in the latter part of this report.

  3. Demand Response - Policy: More Information | Department of Energy

    Energy Savers [EERE]

    Demand Response - Policy: More Information Demand Response - Policy: More Information OE's commitment to ensuring non-wires options to modernize the nation's electricity delivery system includes ongoing support of a number of national and regional activities in support of demand response. The New England Demand Response Initiative (NEDRI), OE's initial endeavor to assist states with non-wire solutions, was created to develop a comprehensive, coordinated set of demand response programs for the

  4. Annual Energy Outlook (AEO) 2006 - Supplemental Tables - All Tables

    SciTech Connect (OSTI)

    2009-01-18

    Tables describing regional energy consumption and prices by sector; residential, commercial, and industrial demand sector data; transportation demand sector; electricity and renewable fuel; and petroleum, natural gas, and coal data.

  5. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    SciTech Connect (OSTI)

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  6. Interest-free loans used by the Saudi government as a transfer mechanism of oil revenue to the private sector

    SciTech Connect (OSTI)

    Fozan, M.N.

    1986-01-01

    Prior to 1970 the Saudi Government faced severe socioeconomic problems two of which were: (1) the contribution of the private sector to the gross domestic product was low, and (2) the oil revenues were the main source of the national income. As the oil revenues rapidly increased between 1972 and 1981, the government used every means at its disposal to encourage the private sector. The goal was to diversify the sources of national income in order to decrease the dependency on oil revenues as the main source of national income. To achieve this the government has provided interest-free loans to the private sector which, along with the demand, increased the gross domestic fixed-capital formation of the private sector. This study theoretically explains the phenomenal expansion of the private sector. Three models were developed from the least to the most difficult. The main principle of the models is that the expansion of the private sector is stimulated because of the low cost of capital in Saudi Arabia. Since oil revenues (the main source of government expenditures) have decreased in recent years, questions have been raised concerning the ability of the private sector to support the economy. It is argued that the demand of national and international markets will increase in the future, thus allowing the private sector to expand further. Even though the cost of capital will increase, Saudi companies will be able to compete either nationally or internationally. In addition, the competitiveness of the Saudi capital market may increase which will, in turn, benefit the Saudi economy.

  7. Status of national CO{sub 2}-mitigation projects and initiatives in the Philippine energy sector

    SciTech Connect (OSTI)

    Tupas, C.T.

    1996-12-31

    The Philippines has a huge energy requirement for the next 30 years in order to achieve its economic growth target. Based on an expected annual GDP growth rate of 6.9 percent, the Philippines total energy requirement is estimated to increase at an average of 6.6 percent annually from 1996 to 2025. Gross energy demand shall increase from 219.0 million barrels of fuel oil equivalent (MMBFOE) in 1996 to 552.4 MMBFOE in 2010 and 1,392.6 MMBFOE by 2025. These energy demand levels shall be driven primarily by the substantial increase in fuel requirements for power generation whose share of total energy requirement is 28.3 percent in 1996, 48.0 percent in 2010 and 55.0 percent in 2025. With the expected increase in energy demand, there will necessarily be adverse impacts on the environment. Energy projects and their supporting systems - from fuel extraction and storage to distribution - can and will be major contributors not only to local but also to regional and global environmental pollution and degradation. International experiences and trends in greenhouse gas (GHG) emissions inventory have shown that the energy sector has always been the dominant source of carbon dioxide (CO{sub 2}) - the principal contributor to global climate change. The energy sector`s CO{sub 2} emissions come primarily from fossil fuels combustion. Since energy use is the dominant source of CO{sub 2} emissions, efforts should therefore be concentrated on designing a mitigation strategy in this sector.

  8. Guam Transportation Petroleum-Use Reduction Plan

    SciTech Connect (OSTI)

    Johnson, C.

    2013-04-01

    The island of Guam has set a goal to reduce petroleum use 20% by 2020. Because transportation is responsible for one-third of on-island petroleum use, the Guam Energy Task Force (GETF), a collaboration between the U.S. Department of Energy and numerous Guam-based agencies and organizations, devised a specific plan by which to meet the 20% goal within the transportation sector. This report lays out GETF's plan.

  9. Market Report for the Industrial Sector, 2009

    SciTech Connect (OSTI)

    Sastri, Bhima; Brueske, Sabine; de los Reyes, Pamela; Jamison, Keith; Justiniano, Mauricio; Margolis, Nancy; Monfort, Joe; Raghunathan, Anand; Sabouni, Ridah

    2009-07-01

    This report provides an overview of trends in industrial-sector energy use. It focuses on some of the largest and most energy-intensive industrial subsectors and several emerging technologies that could transform key segments of industry.

  10. Federal Sector Renewable Energy Project Implementation: "What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: "What's Working and Why" Implementation: What s Working and Why DOD-DOE Waste-to- Energy and Fuel Cell Workshop January 13, ...

  11. DOE Issues Energy Sector Cyber Organization NOI

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the federal government and energy sector stakeholders to protect the bulk power electric grid and aid the integration of smart grid technology to enhance the security of the grid. ...

  12. LNG demand, shipping will expand through 2010

    SciTech Connect (OSTI)

    True, W.R.

    1998-02-09

    The 1990s, especially the middle years, have witnessed a dramatic turnaround in the growth of liquefied-natural-gas demand which has tracked equally strong natural-gas demand growth. This trend was underscored late last year by several annual studies of world LNG demand and shipping. As 1998 began, however, economic turmoil in Asian financial markets has clouded near-term prospects for LNG in particular and all energy in general. But the extent of damage to energy markets is so far unclear. A study by US-based Institute of Gas Technology, Des Plaines, IL, reveals that LNG imports worldwide have climbed nearly 8%/year since 1980 and account for 25% of all natural gas traded internationally. In the mid-1970s, the share was only 5%. In 1996, the most recent year for which complete data are available, world LNG trade rose 7.7% to a record 92 billion cu m, outpacing the overall consumption for natural gas which increased 4.7% in 1996. By 2015, says the IGT study, natural-gas use would surpass coal as the world`s second most widely used fuel, after petroleum. Much of this growth will occur in the developing countries of Asia where gas use, before the current economic crisis began, was projected to grow 8%/year through 2015. Similar trends are reflected in another study of LNG trade released at year end 1997, this from Ocean Shipping Consultants Ltd., Surrey, U.K. The study was done too early, however, to consider the effects of the financial problems roiling Asia.

  13. Taxonomy for Modeling Demand Response Resources

    SciTech Connect (OSTI)

    Olsen, Daniel; Kiliccote, Sila; Sohn, Michael; Dunn, Laura; Piette, Mary, A

    2014-08-01

    Demand response resources are an important component of modern grid management strategies. Accurate characterizations of DR resources are needed to develop systems of optimally managed grid operations and to plan future investments in generation, transmission, and distribution. The DOE Demand Response and Energy Storage Integration Study (DRESIS) project researched the degree to which demand response (DR) and energy storage can provide grid flexibility and stability in the Western Interconnection. In this work, DR resources were integrated with traditional generators in grid forecasting tools, specifically a production cost model of the Western Interconnection. As part of this study, LBNL developed a modeling framework for characterizing resource availability and response attributes of DR resources consistent with the governing architecture of the simulation modeling platform. In this report, we identify and describe the following response attributes required to accurately characterize DR resources: allowable response frequency, maximum response duration, minimum time needed to achieve load changes, necessary pre- or re-charging of integrated energy storage, costs of enablement, magnitude of controlled resources, and alignment of availability. We describe a framework for modeling these response attributes, and apply this framework to characterize 13 DR resources including residential, commercial, and industrial end-uses. We group these end-uses into three broad categories based on their response capabilities, and define a taxonomy for classifying DR resources within these categories. The three categories of resources exhibit different capabilities and differ in value to the grid. Results from the production cost model of the Western Interconnection illustrate that minor differences in resource attributes can have significant impact on grid utilization of DR resources. The implications of these findings will be explored in future DR valuation studies.

  14. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  15. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  16. NREL: Energy Analysis: Electric Sector Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Sector Integration Integrating higher levels of renewable resources into the U.S. electricity system could pose challenges to the operability of the nation's grid. NREL's electric sector integration analysis work investigates the potential impacts of expanding renewable technology deployment on grid operations and infrastructure expansion including: Feasibility of higher levels of renewable electricity generation. Options for increasing electric system flexibility to accommodate higher

  17. Energy Sector Cybersecurity Framework Implementation Guidance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Cybersecurity Framework Implementation Guidance Energy Sector Cybersecurity Framework Implementation Guidance On January 8, 2015, the Energy Department released guidance to help the energy sector establish or align existing cybersecurity risk management programs to meet the objectives of the Cybersecurity Framework released by the National Institutes of Standards and Technology (NIST) in February 2014. The voluntary Cybersecurity Framework consists of standards, guidelines, and

  18. Table 3. Distribution of total U.S. greenhouse gas emissions by sector, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution of total U.S. greenhouse gas emissions by sector, 2009 " "Greenhouse Gas and Source","Sector" ,"Residential","Commercial","Industrial","Transportation","Total" "Carbon Dioxide" " Energy-Related",1172.297835,1012.323586,1417.683142,1757.250685,5359.555248 " Industrial Processes",,,87.282832,,87.282832 "Total CO2",1172.297835,1012.323586,1504.965974,1757.250685,5446.83808

  19. Table 3. Top Five Retailers of Electricity, with End Use Sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Five Retailers of Electricity, with End Use Sectors, 2014" "Alaska" "megawatthours" ,"Entity","Type of Provider","All Sectors","Residential","Commercial","Industrial","Transportation" 1,"Golden Valley Elec Assn Inc","Cooperative",1219363,276627,129773,812963,0 2,"Chugach Electric Assn Inc","Cooperative",1134527,513748,563581,57198,0 3,"Anchorage Municipal

  20. 2015 Energy Sector-Specific Plan | Department of Energy

    Energy Savers [EERE]

    Energy Sector-Specific Plan 2015 Energy Sector-Specific Plan The U.S. Department of Energy (DOE), as the Sector-Specific Agency for the Energy Sector, has worked closely with government and industry partners to develop the 2015 Energy Sector-Specific Plan (SSP). DOE conducted much of this work in collaboration with the Energy Sector Coordinating Councils (SCCs) and the Energy Government Coordinating Council (GCC). The Energy SCCs represent the interests of the Electricity and Oil and Natural Gas

  1. Roadmap to Secure Control Systems in the Energy Sector - January...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Secure Control Systems in the Energy Sector - January 2006 Roadmap to Secure Control Systems in the Energy Sector - January 2006 This document, the Roadmap to Secure...

  2. Template:Energy Generation Facilities by Sector | Open Energy...

    Open Energy Info (EERE)

    Energy Generation Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the...

  3. Manufacturing Energy and Carbon Footprint - Sector: Iron and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS 2006) Manufacturing Energy and Carbon Footprint - Sector: Iron and Steel (NAICS 3311, 3312), October 2012 (MECS ...

  4. LED Site Lighting in the Commercial Building Sector: Opportunities...

    Energy Savers [EERE]

    Site Lighting in the Commercial Building Sector: Opportunities, Challenges, and the CBEA Performance Specification LED Site Lighting in the Commercial Building Sector: ...

  5. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's ...

  6. Energy-Sector Stakeholders Attend the Department of Energy's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Sector Stakeholders Attend the Department of Energy's 2010 Cybersecurity for Energy Delivery Systems Peer Review Energy-Sector Stakeholders Attend the Department of Energy's 2010 ...

  7. List of Companies in Geothermal Sector | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Sector Jump to: navigation, search Companies in the Geothermal energy sector: Add a Company Download CSV (rows 1-212) Map of Geothermal energy companies Loading map......

  8. EIA Energy Efficiency-Residential Sector Energy Intensities,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Sector Energy Intensities RESIDENTIAL SECTOR ENERGY INTENSITIES: 1978-2005 Released Date: August 2004 Page Last Modified:June 2009 These tables provide estimates of...

  9. National and Sectoral GHG Mitigation Potential: A Comparison...

    Open Energy Info (EERE)

    and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National and Sectoral GHG Mitigation Potential: A...

  10. Climate Change: Risks and Opportunities for the Finance Sector...

    Open Energy Info (EERE)

    Finance Sector Online Course Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change: Risks and Opportunities for the Finance Sector Online Course Agency...

  11. OECD-Private Sector Engagement in Adaptation to Climate Change...

    Open Energy Info (EERE)

    Private Sector Engagement in Adaptation to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: OECD-Private Sector Engagement in Adaptation to Climate Change...

  12. Energy Critical Infrastructure and Key Resources Sector-Specific

    Energy Savers [EERE]

    Energy Critical Infrastructure and Key Resources Sector-Specific Plan as input to the National Infrastructure Protection Plan (Redacted) May 2007 Department of Energy Energy Sector ...

  13. Morocco-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Morocco-Low Carbon Development Planning in the Power Sector Name Morocco-Low Carbon...

  14. Nigeria-Low Carbon Development Planning in the Power Sector ...

    Open Energy Info (EERE)

    Low Carbon Development Planning in the Power Sector Jump to: navigation, search Logo: Nigeria-Low Carbon Development Planning in the Power Sector Name Nigeria-Low Carbon...

  15. South Africa-Danish Government Sector Programmes | Open Energy...

    Open Energy Info (EERE)

    Sector Programmes Jump to: navigation, search Name South Africa-Danish Government Sector Programmes AgencyCompany Organization Danish Government Partner Danish Ministry for...

  16. Overcoming Multifamily Sector Barriers in Austin, Texas | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overcoming Multifamily Sector Barriers in Austin, Texas Overcoming Multifamily Sector Barriers in Austin, Texas Presents techniques on overcoming the barriers of multifamily energy...

  17. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  18. Renewable Energy Cross Sectoral Assessments Terms of Reference...

    Open Energy Info (EERE)

    Renewable Energy Cross Sectoral Assessments Terms of Reference Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy Cross Sectoral Assessments Terms of...

  19. Workforce Training for the Electric Power Sector | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workforce Training for the Electric Power Sector Workforce Training for the Electric Power Sector PDF icon 04-08-2010SGWorkforceSelections.pdf More Documents & Publications ...

  20. List of Companies in Hydrogen Sector | Open Energy Information

    Open Energy Info (EERE)

    Companies in Hydrogen Sector Jump to: navigation, search Companies in the Hydrogen sector: Add a Company Download CSV (rows 1-196) Map of Hydrogen companies Loading map......

  1. Nepal-Sectoral Climate Impacts Economic Assessment | Open Energy...

    Open Energy Info (EERE)

    Nepal-Sectoral Climate Impacts Economic Assessment Jump to: navigation, search Name Nepal Sectoral Climate impacts Economic Assessment AgencyCompany Organization Climate and...

  2. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  3. Economic Rebalancing and Electricity Demand in China

    SciTech Connect (OSTI)

    He, Gang; Lin, Jiang; Yuan, Alexandria

    2015-11-01

    Understanding the relationship between economic growth and electricity use is essential for power systems planning. This need is particularly acute now in China, as the Chinese economy is going through a transition to a more consumption and service oriented economy. This study uses 20 years of provincial data on gross domestic product (GDP) and electricity consumption to examine the relationship between these two factors. We observe a plateauing effect of electricity consumption in the richest provinces, as the electricity demand saturates and the economy develops and moves to a more service-based economy. There is a wide range of forecasts for electricity use in 2030, ranging from 5,308 to 8,292 kWh per capita, using different estimating functions, as well as in existing studies. It is therefore critical to examine more carefully the relationship between electricity use and economic development, as China transitions to a new growth phase that is likely to be less energy and resource intensive. The results of this study suggest that policymakers and power system planners in China should seriously re-evaluate power demand projections and the need for new generation capacity to avoid over-investment that could lead to stranded generation assets.

  4. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  5. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

    2008-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  6. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  7. East Coast blizzard cuts into gasoline demand, but home electricity demand rises

    U.S. Energy Information Administration (EIA) Indexed Site

    East Coast blizzard cuts into gasoline demand, but home electricity demand rises U.S. monthly gasoline consumption declined in January, as the big winter storm that shut down many East Coast cities kept people in their homes and off the road. In its new monthly forecast, the U.S. Energy Information Administration said monthly gasoline consumption dropped 230,000 barrels per day in January compared to year-ago levels and that marked the first year-over-year decline in monthly gasoline use since

  8. Research in transportation: the shape of the future

    SciTech Connect (OSTI)

    Chenea, P.F.

    1981-01-01

    The individual mobility now enjoyed due to advancements in the transportation sector is being threatened by higher fuel costs and declining petroleum resources. Transportation research approaches must address these problems. Automotive engineers must redesign existing vehicles to make them smaller, lighter, and so more fuel efficient. Alternatives to the gasoline engine, such as gas turbine and stratified charge engines, must be commercialized.

  9. California: Geothermal Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Plant to Help Meet High Lithium Demand California: Geothermal Plant to Help Meet High Lithium Demand May 21, 2013 - 5:54pm Addthis Through funding provided by the...

  10. Tankless or Demand-Type Water Heaters | Department of Energy

    Energy Savers [EERE]

    or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also known as ...

  11. Demand Response: Lessons Learned with an Eye to the Future |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand Response: Lessons Learned with an Eye to the Future Demand Response: Lessons Learned with an Eye to the Future July 11, 2013 - 11:56am Addthis Patricia A. Hoffman Patricia...

  12. A National Forum on Demand Response: Results on What Remains...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Part of the July 2011 Implementation Proposal called for a "National Forum" on demand response to be conducted by DOE and FERC. Given the rapid development of the demand response ...

  13. California Geothermal Power Plant to Help Meet High Lithium Demand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Geothermal Power Plant to Help Meet High Lithium Demand California Geothermal Power Plant to Help Meet High Lithium Demand September 20, 2012 - 1:15pm Addthis Ever ...

  14. Tankless or Demand-Type Water Heaters | Department of Energy

    Office of Environmental Management (EM)

    Tankless or Demand-Type Water Heaters Tankless or Demand-Type Water Heaters Diagram of a tankless water heater. Diagram of a tankless water heater. Tankless water heaters, also...

  15. A Hierarchical Framework for Demand-Side Frequency Control (Conference...

    Office of Scientific and Technical Information (OSTI)

    A Hierarchical Framework for Demand-Side Frequency Control Citation Details In-Document Search Title: A Hierarchical Framework for Demand-Side Frequency Control With large-scale ...

  16. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  17. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J.

    1995-05-01

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  18. Sensor-based demand controlled ventilation

    SciTech Connect (OSTI)

    De Almeida, A.T.; Fisk, W.J.

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  19. Marketing & Driving Demand Collaborative - Social Media Tools & Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy & Driving Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the Better Buildings webinar on January 6, 2011. PDF icon Marketing & Driving Demand Collaborative More Documents & Publications Using Social Media for Long-Term Branding Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 (Text Version) Generating

  20. Using Partnerships to Drive Demand and Provide Services in Communities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partnerships to Drive Demand and Provide Services in Communities Using Partnerships to Drive Demand and Provide Services in Communities Better Buildings Neighborhood Program Multifamily and Low-Income Peer Exchange Call: Using Partnerships to Drive Demand and Provide Services in Communities, February 2, 2012. PDF icon Call Slides and Discussion Summary More Documents & Publications Strategies for Marketing and Driving Demand for Commercial Financing Products

  1. 2010 Assessment of Demand Response and Advanced Metering - Staff Report |

    Energy Savers [EERE]

    Department of Energy Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report 2010 Assessment of Demand Response and Advanced Metering - Staff Report. The Federal Energy Regulatory Commission's 2010 Demand Response and Advanced Metering Survey (2010 FERC Survey, covering calendar year 2009) indicates that advanced metering penetration (i.e., the fraction of all installed meters that are advanced meters) reached

  2. FERC Presendation: Demand Response as Power System Resources, October 29,

    Energy Savers [EERE]

    2010 | Department of Energy FERC Presendation: Demand Response as Power System Resources, October 29, 2010 FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Federal Energy Regulatory Commission (FERC) presentation on demand response as power system resources before the Electicity Advisory Committee, October 29, 2010 PDF icon Demand Response as Power System Resources More Documents & Publications Ancillary Service Revenue Potential for Geothermal Generators in

  3. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    SciTech Connect (OSTI)

    McNeil, MIchael; Letschert, Virginie; Shen, Bo; Sathaye, Jayant; de la Ru du Can, Stephane

    2011-01-12

    The global economy has grown rapidly over the past decade with a commensurate growth in the demand for electricity services that has increased a country's vulnerability to energy supply disruptions. Increasing need of reliable and affordable electricity supply is a challenge which is before every Asia Pacific Partnership (APP) country. Collaboration between APP members has been extremely fruitful in identifying potential efficiency upgrades and implementing clean technology in the supply side of the power sector as well established the beginnings of collaboration. However, significantly more effort needs to be focused on demand side potential in each country. Demand side management or DSM in this case is a policy measure that promotes energy efficiency as an alternative to increasing electricity supply. It uses financial or other incentives to slow demand growth on condition that the incremental cost needed is less than the cost of increasing supply. Such DSM measures provide an alternative to building power supply capacity The type of financial incentives comprise of rebates (subsidies), tax exemptions, reduced interest loans, etc. Other approaches include the utilization of a cap and trade scheme to foster energy efficiency projects by creating a market where savings are valued. Under this scheme, greenhouse gas (GHG) emissions associated with the production of electricity are capped and electricity retailers are required to meet the target partially or entirely through energy efficiency activities. Implementation of DSM projects is very much in the early stages in several of the APP countries or localized to a regional part of the country. The purpose of this project is to review the different types of DSM programs experienced by APP countries and to estimate the overall future potential for cost-effective demand-side efficiency improvements in buildings sectors in the 7 APP countries through the year 2030. Overall, the savings potential is estimated to be 1.7 thousand TWh or 21percent of the 2030 projected base case electricity demand. Electricity savings potential ranges from a high of 38percent in India to a low of 9percent in Korea for the two sectors. Lighting, fans, and TV sets and lighting and refrigeration are the largest contributors to residential and commercial electricity savings respectively. This work presents a first estimates of the savings potential of DSM programs in APP countries. While the resulting estimates are based on detailed end-use data, it is worth keeping in mind that more work is needed to overcome limitation in data at this time of the project.

  4. On the Road to Transportation Efficiency (Video)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    Reducing emissions and oil consumption are crucial worldwide goals. Reducing transportation emissions, in particular, is key to reducing overall emissions. Electric vehicles driving on electrified roadways could be a significant part of the solution. E-roadways offer a variety of benefits: reduce petroleum consumption (electricity is used instead of gasoline), decrease vehicular operating costs (from about 12 cents per mile to 4 cents per mile), and extend the operational range of electric vehicles. Plus, e-roadway power can come from renewable sources. This animation was sponsored by the Clean Transportation Sector Initiative, and interagency effort between the U.S. Department of Transportation and the U.S. Department of Energy.

  5. Live Webinar on Better Buildings Challenge: Public-Sector Update

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Better Buildings Challenge: Public-Sector Update."

  6. Transportation Statistics Annual Report 1997

    SciTech Connect (OSTI)

    Fenn, M.

    1997-01-01

    This document is the fourth Transportation Statistics Annual Report (TSAR) prepared by the Bureau of Transportation Statistics (BTS) for the President and Congress. As in previous years, it reports on the state of U.S. transportation system at two levels. First, in Part I, it provides a statistical and interpretive survey of the system—its physical characteristics, its economic attributes, aspects of its use and performance, and the scale and severity of unintended consequences of transportation, such as fatalities and injuries, oil import dependency, and environment impacts. Part I also explores the state of transportation statistics, and new needs of the rapidly changing world of transportation. Second, Part II of the report, as in prior years, explores in detail the performance of the U.S. transportation system from the perspective of desired social outcomes or strategic goals. This year, the performance aspect of transportation chosen for thematic treatment is “Mobility and Access,” which complements past TSAR theme sections on “The Economic Performance of Transportation” (1995) and “Transportation and the Environment” (1996). Mobility and access are at the heart of the transportation system’s performance from the user’s perspective. In what ways and to what extent does the geographic freedom provided by transportation enhance personal fulfillment of the nation’s residents and contribute to economic advancement of people and businesses? This broad question underlies many of the topics examined in Part II: What is the current level of personal mobility in the United States, and how does it vary by sex, age, income level, urban or rural location, and over time? What factors explain variations? Has transportation helped improve people’s access to work, shopping, recreational facilities, and medical services, and in what ways and in what locations? How have barriers, such as age, disabilities, or lack of an automobile, affected these accessibility patterns? How are commodity flows and transportation services responding to global competition, deregulation, economic restructuring, and new information technologies? How do U.S. patterns of personal mobility and freight movement compare with other advanced industrialized countries, formerly centrally planned economies, and major newly industrializing countries? Finally, how is the rapid adoption of new information technologies influencing the patterns of transportation demand and the supply of new transportation services? Indeed, how are information technologies affecting the nature and organization of transportation services used by individuals and firms?

  7. An integrated assessment of global and regional water demands for electricity generation to 2095

    SciTech Connect (OSTI)

    Davies, Evan; Kyle, G. Page; Edmonds, James A.

    2013-02-01

    Electric power plants currently account for approximately one-half of the global industrial water withdrawal. While continued expansion of the electric sector seems likely into the future, the consequent water demands are quite uncertain, and will depend on highly variable water intensities by electricity technologies, at present and in the future. Using GCAM, an integrated assessment model of energy, agriculture, and climate change, we first establish lower-bound, median, and upper-bound estimates for present-day electric sector water withdrawals and consumption by individual electric generation technologies in each of 14 geopolitical regions, and compare them with available estimates of regional industrial or electric sector water use. We then explore the evolution of global and regional electric sector water use over the next century, focusing on uncertainties related to withdrawal and consumption intensities for a variety of electric generation technologies, rates of change of power plant cooling system types, and rates of adoption of a suite of water-saving technologies. Results reveal that the water withdrawal intensity of electricity generation is likely to decrease in the near term with capital stock turnover, as wet towers replace once-through flow cooling systems and advanced electricity generation technologies replace conventional ones. An increase in consumptive use accompanies the decrease in water withdrawal rates; however, a suite of water conservation technologies currently under development could compensate for this increase in consumption. Finally, at a regional scale, water use characteristics vary significantly based on characteristics of the existing capital stock and the selection of electricity generation technologies into the future.

  8. Commercial Demand Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  9. Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors

    SciTech Connect (OSTI)

    Whitaker, M.; Heath, G.

    2010-05-01

    This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

  10. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    SciTech Connect (OSTI)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological response to an increase in energy demands from membrane transporters, required for cell division, growth, and migration. This work is supported by the NIH Physical Sciences in Oncology Center grant 1U54CA143970-03 and NIH R01 CA077575-10.

  11. Energy Department Awards $45 Million to Deploy Advanced Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy 45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that

  12. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  13. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beamtransport1 Simplified drawing of the beam...

  14. Measurement and evaluation techniques for automated demand response demonstration

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-08-01

    The recent electricity crisis in California and elsewhere has prompted new research to evaluate demand response strategies in large facilities. This paper describes an evaluation of fully automated demand response technologies (Auto-DR) in five large facilities. Auto-DR does not involve human intervention, but is initiated at a facility through receipt of an external communications signal. This paper summarizes the measurement and evaluation of the performance of demand response technologies and strategies in five large facilities. All the sites have data trending systems such as energy management and control systems (EMCS) and/or energy information systems (EIS). Additional sub-metering was applied where necessary to evaluate the facility's demand response performance. This paper reviews the control responses during the test period, and analyzes demand savings achieved at each site. Occupant comfort issues are investigated where data are available. This paper discusses methods to estimate demand savings and results from demand response strategies at five large facilities.

  15. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Home/Transportation Energy Robert Kolasinki Permalink Gallery Robert Kolasinski wins DOE Early Career Award Transportation Energy Robert Kolasinski wins DOE Early Career Award By Michael Padilla Robert Kolasinski (8366) has received a $2.5 million, five-year Early Career Research Program award from the Department of Energy's (DOE) Office of Science to support his work on how intense fusion plasmas interact with the interior surfaces of fusion reactors. Robert's research will develop the

  16. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Arkansas Inc","Investor-owned",21049257,8069917,6170936,6808318,86 2,"Southwestern Electric Power Co","Investor-owned",4018839,1121436,1354356,1543047,0 3,"Mississippi County Electric

  17. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of Colorado","Investor-owned",28671219,9008526,12886370,6712282,64041 2,"City of Colorado Springs - (CO)","Public",4477715,1425423,1097160,1955132,0 3,"Intermountain Rural Elec

  18. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",104431096,55224658,46172611,2942385,91442 2,"Duke Energy Florida, Inc","Investor-owned",37240099,19002681,14970106,3267312,0 3,"Tampa Electric

  19. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Georgia Power Co","Investor-Owned",83740365,27132065,32894391,23548775,165134 2,"Jackson Electric Member Corp - (GA)","Cooperative",5201199,3003210,1476773,721216,0 3,"Cobb Electric Membership

  20. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Hawaiian Electric Co Inc","Investor-owned",6781665,1611149,2270495,2900021,0 2,"Maui Electric Co Ltd","Investor-owned",1132056,381979,373947,376130,0 3,"Hawaii Electric Light Co

  1. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Commonwealth Edison Co","Investor-owned",18061768,9114941,7890441,1056386,0 2,"Constellation Energy Services, Inc.","Investor-owned",10686139,5208659,5477480,0,0 3,"Homefield

  2. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Entergy Louisiana LLC","Investor-owned",32904509,9047299,6757407,17099803,0 2,"Entergy Gulf States - LA LLC","Investor-owned",20822523,5368421,5529206,9924896,0 3,"Cleco Power

  3. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Baltimore Gas & Electric Co","Investor-owned",12270475,8927905,3147168,195402,0 2,"WGL Energy Services, Inc.","Investor-owned",7202209,1077458,6124751,0,0 3,"Potomac Electric Power

  4. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"DTE Electric Company","Investor-owned",41923906,14932840,16790364,10199382,1320 2,"Consumers Energy Co","Investor-owned",33253922,12593983,11045552,9614387,0 3,"Constellation Energy Services,

  5. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Public Service Co of NH","Investor-owned",3799020,2390026,1240068,168926,0 2,"Constellation Energy Services, Inc.","Investor-owned",1008956,3870,1005086,0,0 3,"Constellation NewEnergy,

  6. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Oklahoma Gas & Electric Co","Investor-owned",24307160,8652606,9472917,6181637,0 2,"Public Service Co of Oklahoma","Investor-owned",17947669,6320906,6389387,5237376,0 3,"Grand River Dam

  7. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owned",22374515,8155692,7985229,6233594,0 2,"Duke Energy Carolinas, LLC","Investor-owned",21202789,6633843,5727023,8841923,0 3,"South Carolina Public Service

  8. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned",2056587,714040,997932,344615,0 2,"NorthWestern Energy - (SD)","Investor-owned",1579926,582064,711070,286792,0 3,"Black Hills Power

  9. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-Owned",4281682,1551471,1572378,1157833,0 2,"Vermont Electric Cooperative, Inc","Cooperative",446870,222366,122807,101697,0 3,"City of Burlington Electric -

  10. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Virginia Electric & Power Co","Investor-owned",75562974,29406355,39038242,6916360,202017 2,"Appalachian Power Co","Investor-owned",15954286,6461192,4013267,5479827,0 3,"Rappahannock Electric

  11. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    West Virginia" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Appalachian Power Co","Investor-owned",14185260,5721741,3637041,4826478,0 2,"Monongahela Power Co","Investor-owned",11426122,3814821,2840690,4770611,0 3,"The Potomac Edison

  12. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Wisconsin Electric Power Co","Investor-owned",23909329,7778541,8832104,7298684,0 2,"Wisconsin Power & Light Co","Investor-owned",10646058,3533105,2424249,4688704,0 3,"Wisconsin Public Service

  13. Table 3. Top five retailers of electricity, with end use sectors, 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Florida Power & Light Co","Investor-owned",104431096,55224658,46172611,2942385,91442 2,"Georgia Power Co","Investor-owned",83740365,27132065,32894391,23548775,165134 3,"Southern California Edison

  14. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B.

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state`s progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  15. Incentives for demand-side management

    SciTech Connect (OSTI)

    Reid, M.W.; Brown, J.B. )

    1992-01-01

    This report is the first product of an ongoing project to monitor the efforts of states to remove regulatory barriers to, and provide financial incentives for, utility investment in demand-side management (DSM) resources. The project was commissioned by the National Association of Regulatory Utility Commissioners (NARUC) in response to growing interest among regulators for a comprehensive survey of developments in this area. Each state report beings with an overview of the state's progress toward removing regulatory barriers and providing incentives for DSM. Information is organized under five headings: status; IRP regulations and practice; current treatment of DSM, directions and trends; commission contact person. Where applicable, each overview is followed by one or more sections that report on specific incentive proposals or mechanisms within the state. Information on each proposal or mechanism is organized under eight headings. A notation on each page identifies the utility or other group associated with the proposal or mechanism. The eight headings are as follows: status; background; treatment of cost recovery; treatment of lost revenues/decoupling; treatment of profitability; other features; issues, and additional observations.

  16. Modeling diffusion of electrical appliances in the residential sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2009-11-22

    This paper presents a methodology for modeling residential appliance uptake as a function of root macroeconomic drivers. The analysis concentrates on four major energy end uses in the residential sector: refrigerators, washing machines, televisions and air conditioners. The model employs linear regression analysis to parameterize appliance ownership in terms of household income, urbanization and electrification rates according to a standard binary choice (logistic) function. The underlying household appliance ownership data are gathered from a variety of sources including energy consumption and more general standard of living surveys. These data span a wide range of countries, including many developing countries for which appliance ownership is currently low, but likely to grow significantly over the next decades as a result of economic development. The result is a 'global' parameterization of appliance ownership rates as a function of widely available macroeconomic variables for the four appliances studied, which provides a reliable basis for interpolation where data are not available, and forecasting of ownership rates on a global scale. The main value of this method is to form the foundation of bottom-up energy demand forecasts, project energy-related greenhouse gas emissions, and allow for the construction of detailed emissions mitigation scenarios.

  17. NREL: Transportation Research - Transportation News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation News The following news stories highlight transportation research at NREL. May 3, 2016 NREL Convenes Gathering of U.S.-China Electric Vehicle Battery Experts On April 25-26, NREL and Argonne National Laboratory (ANL) hosted the 11th United States (U.S.)-China Electric Vehicle and Battery Technology Information Exchange to share insights on battery technology advancements and identify opportunities to collaborate on electric vehicle battery research. The meeting represents the 11th

  18. Investigation of structural changes in residential electricity demand

    SciTech Connect (OSTI)

    Chern, W.S.; Bouis, H.E.

    1982-09-23

    The purpose of this study was to investigate the stability of aggregate national residential electricity demand coefficients over time. The hypothesis is maintained that the aggregate residential demand is the sum of various end-use demand components. Since the end-use composition changes over time, the demand relationship may change as well. Since the end-use composition differs among regions, the results obtained from this study can be used for making inferences about regional differences in electricity demand relationships. There are two additional sources for a possible structural change. One is that consumers may react differently to declining and rising prices, secondly, the impact of the 1973 oil embargo may have shifted demand preferences. The electricity demand model used for this study is presented. A moving regression method was employed to investigate changes in residential electricity demand over time. The statistical results show a strikingly consistent pattern of change for most of the structural variables. The most important finding of this study is that the estimated structure of residential electricity demand changes systematically over time as a result of changes in the characteristics (both durability and saturation level) of the stock of appliances. Furthermore, there is not strong evidence that the structural changes in demand occurred due to either the reversal of the declining trend of electricity prices or the impact of the 1973 oil embarge. (LCL)

  19. Opportunities for Automated Demand Response in California Agricultural Irrigation

    SciTech Connect (OSTI)

    Olsen, Daniel; Aghajanzadeh, Arian; McKane, Aimee

    2015-08-01

    Pumping water for agricultural irrigation represents a significant share of California’s annual electricity use and peak demand. It also represents a large source of potential flexibility, as farms possess a form of storage in their wetted soil. By carefully modifying their irrigation schedules, growers can participate in demand response without adverse effects on their crops. This report describes the potential for participation in demand response and automated demand response by agricultural irrigators in California, as well as barriers to widespread participation. The report first describes the magnitude, timing, location, purpose, and manner of energy use in California. Typical on-­farm controls are discussed, as well as common impediments to participation in demand response and automated demand response programs. Case studies of demand response programs in California and across the country are reviewed, and their results along with overall California demand estimates are used to estimate statewide demand response potential. Finally, recommendations are made for future research that can enhance the understanding of demand response potential in this industry.

  20. SEADS 3.0 Sectoral Energy/Employment Analysis and Data System

    SciTech Connect (OSTI)

    Roop, Joseph M.; Anderson, David A.; Schultz, Robert W.; Elliott, Douglas B.

    2007-12-17

    SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, is a revision and upgrading of SEADS--PC, a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments (Roop, et al., 1995). If a question can be formulated so that implications can be translated into changes in final demands for goods and services, then SEADS 3.0 provides a quick and easy tool to assess preliminary impacts. And SEADS 3.0 should be considered just that: a quick and easy way to get preliminary results. Often a thorough answer, even to such a simple question as, “What would be the effect on U. S. energy use and employment if the Federal Government doubled R&D expenditures?” requires a more sophisticated analytical framework than the input-output structure embedded in SEADS 3.0. This tool uses a static, input-output model to assess the impacts of changes in final demands on first industry output, then employment and energy use. The employment and energy impacts are derived by multiplying the industry outputs (derived from the changed final demands) by industry-specific energy and employment coefficients. The tool also allows for the specification of regional or state employment impacts, though this option is not available for energy impacts.

  1. Property:ProgramSector | Open Energy Information

    Open Energy Info (EERE)

    + AGI-32 + Energy + ANL Wind Power Forecasting and Electricity Markets + Energy + APEC-Alternative Transport Fuels: Implementation Guidelines + Energy + APFED-Good Practice...

  2. Using Mobile Applications to Generate Customer Demand | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mobile Applications to Generate Customer Demand Using Mobile Applications to Generate Customer Demand Better Buildings Residential Network Peer Exchange Call Series: Using Mobile Applications to Generate Customer Demand, Call Slides and Discussion Summary, March 12, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Better Buildings Network View | October 2014 Incorporating Behavior Change Efforts Into Energy Efficiency Programs Outreach to Multifamily

  3. Executive Order 13693 Training Now Available On Demand | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Executive Order 13693 Training Now Available On Demand Executive Order 13693 Training Now Available On Demand January 4, 2016 - 8:00am Addthis Executive Order (E.O.) 13693: Recent Developments, Implementation Updates, and Opportunities Training is now available on-demand. The seminar covers the major goals of E. O. 13693 and offers examples of technologies and concepts the U.S. Department of Energy and other federal agencies are using to meet these goals. Addthis Related Articles

  4. Monitoring SERC Technologies: On-Demand Tankless Water Heaters | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Weatherization Assistance Program » Pilot Projects » Monitoring SERC Technologies: On-Demand Tankless Water Heaters Monitoring SERC Technologies: On-Demand Tankless Water Heaters On Oct. 4, 2011, Ethan MacCormick, VP for Services to Energy Businesses at Performance Systems Development, presented a Webinar about On-Demand Tankless Water Heaters and how to properly monitor their installation. View the webinar presentation. More Information Some resources and tools mentioned in the

  5. Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless

    Energy Savers [EERE]

    Water Heaters | Department of Energy On-Demand Tankless Water Heaters Sustainable Energy Resources for Consumers (SERC) - On-Demand Tankless Water Heaters This presentation, aimed at Sustainable Energy Resources for Consumers (SERC) grantees, provides information on Monitoring Checklists for the installation of On-Demand Tankless Water Heaters. PDF icon serc_webinar_presentation_20111004.pdf More Documents & Publications Sustainable Energy Resources for Consumers (SERC) - Solar Hot

  6. Retail Demand Response in Southwest Power Pool | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retail Demand Response in Southwest Power Pool Retail Demand Response in Southwest Power Pool In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating

  7. SGDP Report Now Available: Interoperability of Demand Response Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration in NY (February 2015) | Department of Energy SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report Now Available: Interoperability of Demand Response Resources Demonstration in NY (February 2015) March 20, 2015 - 4:42pm Addthis The Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the

  8. SGDP Report: Interoperability of Demand Response Resources Demonstration in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NY (February 2015) | Department of Energy SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) SGDP Report: Interoperability of Demand Response Resources Demonstration in NY (February 2015) The Interoperability of Demand Response Resources Demonstration in NY was awarded to Con Edison in 2009 as part of DOE's Smart Grid Demonstration Project (SGDP) grants funded by the Recovery Act. The objective of the project was to develop and demonstrate

  9. Generating Demand for Multifamily Building Upgrades | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand for Multifamily Building Upgrades Generating Demand for Multifamily Building Upgrades Better Buildings Residential Network Peer Exchange Call Series: Generating Demand for Multifamily Building Upgrades, call slides and discussion summary, May 14, 2015. PDF icon Call Slides and Discussion Summary More Documents & Publications Strategies to Address Split Incentives in Multifamily Buildings Outreach to Multifamily Landlords and Tenants Trends in Multifamily Programs: What's Working and

  10. Honeywell Demonstrates Automated Demand Response Benefits for Utility,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial, and Industrial Customers | Department of Energy Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers September 22, 2014 - 5:59pm Addthis Honeywell's Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardware/software platform for automated demand response (ADR). This project stands

  11. Regulation Services with Demand Response - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Using grid frequency information, researchers have created algorithms that intelligently control power demand while meeting consumer objectives (i.e. target pricing). Technology Marketing Summary Grid Friendly(tm)

  12. Demand Response National Trends: Implications for the West? | Department of

    Energy Savers [EERE]

    Energy National Trends: Implications for the West? Demand Response National Trends: Implications for the West? Committee on Regional Electric Power Cooperation. San Francisco, CA. March 25, 2004 PDF icon Demand Response National Trends: Implications for the West? More Documents & Publications Demand Response in U.S. Electricity Markets: Empirical Evidence Technical Assistance to ISO's and Grid Operators For Loads Providing Ancillary Services To Enhance Grid Reliability Transmission

  13. Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000

    Gasoline and Diesel Fuel Update (EIA)

    Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o

  14. Agreement Template for Energy Conservation and Demand Side Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services | Department of Energy Agreement Template for Energy Conservation and Demand Side Management Services Agreement Template for Energy Conservation and Demand Side Management Services Template agreement between a federal agency and a utility company for the implementation of energy conservation measures and demand side management services. A detailed description of the template is also available below. PDF icon Download the template agreement. PDF icon Download the model agreement

  15. Energy Policy Act transportation rate study: Interim report on coal transportation

    SciTech Connect (OSTI)

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  16. Hydrogen Demand and Resource Analysis (HyDRA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    users to view, download, and analyze hydrogen demand, resource, and infrastructure ... HyDRA contains more than 100 datasets, including resource cost and availability, hydrogen ...

  17. Oil, gas tanker industry responding to demand, contract changes

    SciTech Connect (OSTI)

    True, W.R.

    1998-03-02

    Steady if slower growth in demand for crude oil and natural gas, low levels of scrapping, and a moderate newbuilding pace bode well for the world`s petroleum and natural-gas shipping industries. At year-end 1997, several studies of worldwide demand patterns and shipping fleets expressed short and medium-term optimism for seaborne oil and gas trade and fleet growth. The paper discusses steady demand and shifting patterns, the aging fleet, the slowing products traffic, the world`s fleet, gas carriers, LPG demand, and LPG vessels.

  18. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program Workforce Peer Exchange Call: Strategies for Aligning Program ...

  19. Strategies for Marketing and Driving Demand for Commercial Financing Products

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Financing and Commercial Peer Exchange Call: Strategies for Marketing and Driving Demand for Commercial Financing Products, Call Slides and Discussion Summary, February 2, 2012.

  20. Assessment of Energy Savings Potential from the Use of Demand...

    Office of Scientific and Technical Information (OSTI)

    Energy Savings Potential from the Use of Demand Controlled Ventilation in General Office Spaces in California Citation Details In-Document Search Title: Assessment of Energy ...