Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

2

NREL: Energy Analysis - Transportation Energy Futures Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pathways: An Examination of Timing and Investment Constraints Non-Light-Duty Vehicles Potential for Energy Efficiency Improvement Beyond the Light-Duty Sector Fuels Alternative...

3

Intelligent Transportation Systems Deployment Analysis System | Open Energy  

Open Energy Info (EERE)

Intelligent Transportation Systems Deployment Analysis System Intelligent Transportation Systems Deployment Analysis System Jump to: navigation, search Tool Summary Name: Intelligent Transportation Systems Deployment Analysis System Agency/Company /Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software/modeling tools Website: idas.camsys.com/ Country: United States Northern America References: http://idas.camsys.com/ The ITS Deployment Analysis System (IDAS) is software developed by the Federal Highway Administration that can be used in planning for Intelligent Transportation System (ITS) deployments. State, regional, and local planners can use IDAS to estimate the benefits and costs of ITS investments - which are either alternatives to or enhancements of traditional highway

4

Energy and Environmental Policy Analysis - Center for Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy and Energy and Environmental Policy Analysis The Center for Transportation Analysis does specialty research and development in Energy and Environmental Policy Analysis. Transportation systems in the U.S. and around the world face the challenge of providing for increased mobility of people and goods while reducing impacts on the environment and finding sustainable sources of energy. Governmental policies, from investment in research to information, efficiency or emissions standards and fiscal measures, play a critical role in the effort to create a sustainable transportation system. The Transportation Energy and Environmental Policy program conducts research and policy analysis to support the development of efficient, effective and equitable policies to achieve a sustainable transportation system.

5

The Biomass Energy Data Book Center for Transportation Analysis  

E-Print Network [OSTI]

The Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, policymakers and analysts need to be well-informed about current biomass energy production activity and the potential contribution biomass resources and technologies can make toward meeting the nation's energy

6

Decision Analysis Tool to Compare Energy Pathways for Transportation  

SciTech Connect (OSTI)

With the goals of reducing greenhouse gas emissions, oil imports, and energy costs, a wide variety of automotive technologies are proposed to replace the traditional gasoline-powered internal combustion engine (g-ICE). A prototype model, Analytica Transportation Energy Analysis Model (ATEAM), has been developed using the Analytica decision modeling environment, visualizing the structure as a hierarchy of influence diagrams. The report summarized the FY2010 ATEAM accomplishments.

Bloyd, Cary N.; Stork, Kevin

2011-02-01T23:59:59.000Z

7

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis  

Science Journals Connector (OSTI)

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis ... An energy balance, in broad outline, is presented for the production of a high-quality liquid transportation fuel from residual crop biomass. ... That is, 40% of the initial energy in the biomass will be found in the final liquid fuel after subtracting out external energy supplied for complete processing, including transportation as well as material losses. ...

J. Manganaro; B. Chen; J. Adeosun; S. Lakhapatri; D. Favetta; A. Lawal; R. Farrauto; L. Dorazio; D. J. Rosse

2011-04-20T23:59:59.000Z

8

Transportation Energy Data Book: Edition 32, from the Center for Transportation Analysis (CTA)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Transportation Energy Data Book: Edition 32 is a statistical compendium designed for use as a reference. The data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 on energy; Chapter 3 0n highway vehicles; Chapter 4 on light vehicles; Chapter 5 on heavy vehicles; Chapter 6 on alternative fuel vehicles; Chapter 7on fleet vehicles; Chapter 8 on household vehicles; and Chapter 9 on nonhighway modes; Chapter 10 on transportation and the economy; Chapter 11 on greenhouse gas emissions; and Chapter 12 on criteria pollutant emissions. The sources used represent the latest available data. There are also appendices which include detailed source information for various tables, measures of conversion, and the definition of Census divisions and regions.

Davis, Stacy C.; Diegel, Susan W.; Boundy, Robert G. (Roltek, Inc.)

9

Near-Field Nanopatterning and Associated Energy Transport Analysis with Thermoreflectance  

E-Print Network [OSTI]

Laser nano-patterning with near-field optical microscope (NSOM) and the associated energy transport analysis are achieved in this study. Based on combined experimental/theoretical analyses, it is found that laser nano-patterning with a NSOM...

Soni, Alok

2013-05-31T23:59:59.000Z

10

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors & Optical Diagnostics, Systems Analysis, Systems Engineering, Transportation Energy Sandia and industrial giant Caterpillar Inc. have signed their first...

11

Transportation Analysis, Modeling, and Simulation (TAMS) Application  

E-Print Network [OSTI]

Transportation Analysis, Modeling, and Simulation (TAMS) Application Center for Transportation Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Center for Transportation Analysis (CTA) TAMS application is a web-based tool that supports

12

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities, News, News & Events, Research & Capabilities, Systems Analysis, Transportation Energy By combining advanced theory and high-fidelity large eddy simulation,...

13

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science, News, News & Events, Research & Capabilities, Systems Analysis, Transportation Energy On May 19th, the DOE announced 7M for six projects (five in California +...

14

A probability current analysis of energy transport in open quantum systems  

E-Print Network [OSTI]

We introduce a probability current analysis of excitation energy transfer between states of an open quantum system. Expressing the energy transfer through currents of excitation probability between the states in a site representation enables us to gain key insights into the energy transfer dynamics. It allows to, i) identify the pathways of energy transport in large networks of sites and to quantify their relative weights, ii) quantify the respective contributions of unitary dynamics, dephasing, and relaxation/dissipation processes to the energy transfer, and iii) quantify the contribution of coherence to the energy transfer. Our analysis is general and can be applied to a broad range of open quantum system descriptions (with coupling to non-Markovian environments) in a straightforward manner.

Jan J. J. Roden; K. Birgitta Whaley

2015-01-24T23:59:59.000Z

15

Visualization and analysis of multiobjective solutions to the energy and transportation investment optimization problem  

E-Print Network [OSTI]

ABSTRACT Most U.S. energy usage is for electricity production and vehicle transportation, two, accelerated by public con- cern over global warming. The U.S. Energy Information Administration suggests and transportation accounted for almost 60% of US greenhouse emissions. Intentional and strategic energy system

16

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Energy Electric Car Challenge Sparks Students' STEM Interest On January 9, 2015, in Energy, Energy Storage, News, News & Events, Partnership, Transportation Energy...

17

International Energy Outlook 1999 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5350 bytes) transportation.gif (5350 bytes) Transportation energy use is projected to constitute more than half of the world’s oil consumption in 2020. Developing nations account for more than half the expected growth in transportation energy use in the IEO99 forecast. The International Energy Outlook 1999 (IEO99) presents a more detailed analysis than in previous years of the underlying factors conditioning long-term growth prospects for worldwide transportation energy demand. A nation’s transportation system is generally an excellent indicator of its level of economic development. In many countries, personal travel still means walking or bicycling, and freight movement often involves domesticated animals. High rates of growth from current levels in developing countries such as China and India still leave their populations

18

Transportation Energy Consumption Surveys  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption (RTECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses...

19

Transportation Energy Efficiency Trends, 1972--1992  

SciTech Connect (OSTI)

The US transportation sector, which remains 97% dependent on petroleum, used a record 22.8 quads of energy in 1993. Though growing much more slowly than the economy from 1975 to 1985, energy use for transportation is now growing at nearly the same rate as GDP. This report describes the analysis of trends in energy use and energy intensity in transportation into components due to, (1) growth in transportation activity, (2) changes in energy intensity, and (3) changes in the modal structure of transportation activities.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Fan, Y. [Oak Ridge Associated Universities, Inc., TN (United States)

1994-12-01T23:59:59.000Z

20

Storing and transporting energy  

DOE Patents [OSTI]

Among other things, hydrogen is released from water at a first location using energy from a first energy source; the released hydrogen is stored in a metal hydride slurry; and the metal hydride slurry is transported to a second location remote from the first location.

McClaine, Andrew W. (Lexington, MA); Brown, Kenneth (Reading, MA)

2010-09-07T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

22

Energy Information Administration - Transportation Energy Consumption...  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

23

Intelligent Transportation Systems - Center for Transportation Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intelligent Transportation Systems Intelligent Transportation Systems The Center for Transportation Analysis does specialty research and development in intelligent transportation systems. Intelligent Transportation Systems (ITS) are part of the national strategy for improving the operational safety, efficiency, and security of our nation's highways. Since the early 1990s, ITS has been the umbrella under which significant efforts have been conducted in research, development, testing, deployment and integration of advanced technologies to improve the measures of effectiveness of our national highway network. These measures include level of congestion, the number of accidents and fatalities, delay, throughput, access to transportation, and fuel efficiency. A transportation future that includes ITS will involve a significant improvement in these

24

Transportation energy demand: Model development and use  

Science Journals Connector (OSTI)

This paper describes work undertaken and sponsored by the Energy Commission to improve transportation energy demand forecasting and policy analysis for California. Two ... , the paper discusses some of the import...

Chris Kavalec

1998-06-01T23:59:59.000Z

25

NREL: Energy Analysis - Sustainability Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sustainability Analysis Sustainability Analysis The laboratory's Sustainability Analysis looks at the environmental, life-cycle, climate, and other impacts of renewable energy technologies. Our energy choices have global implications that affect greenhouse gas emissions, water resource distribution, mineral consumption, and equipment manufacturing and transportation. The school of thought is that renewable energy technologies are more sustainable than many current sources of energy. However, we need to verify that this is true before we miss some important opportunities. NREL's capabilities in this analysis area include: resource-use optimization techno-economic feasibility and cost analysis life cycle assessment environmental externalities analysis cobenefits analysis manufacturing cost analysis

26

NREL: Transportation Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

27

Sustainable Transportation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Sustainable Transportation Sustainable Transportation Sustainable Transportation Bioenergy Read more Hydrogen and Fuel Cells Read more Vehicles Read more The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. Through our Vehicle, Bioenergy, and Fuel Cell Technologies Offices, EERE advances the development of next-generation technologies to improve plug-in electric and other alternative-fuel vehicles, advanced combustion engine and vehicle efficiency, and produce low-carbon domestic transportation fuels. SUSTAINABLE TRANSPORTATION Vehicles Bioenergy Hydrogen & Fuel Cells Vehicles Bioenergy

28

EC-LEDS Transport | Open Energy Information  

Open Energy Info (EERE)

EC-LEDS Transport EC-LEDS Transport Jump to: navigation, search Name EC-LEDS Transport Agency/Company /Organization United States Department of State Partner National Renewable Energy Laboratory Sector Climate Focus Area Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, Finance, GHG inventory, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Program Start 2011 Country Global References Transportation Assessment Toolkit[1] "Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a U.S. Government initiative to support developing countries' efforts to pursue long-term, transformative development and accelerate sustainable, climate-resilient economic growth while slowing the growth of greenhouse

29

TRANSPORTATION ENERGY RESEARCH PIER Transportation Research  

E-Print Network [OSTI]

engine and an Eaton Fuller 10speed manual transmission as the study's representative baseline vehicle beginning in 2017 while providing net savings over the life of the vehicle. Also, fuel cost savings far.energy.ca.gov/research/ transportation/ January 2011 Heavy-Duty Vehicle Emissions and Fuel Consumption Improvement Illustration

30

International Energy Outlook 2001 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Use Transportation Energy Use picture of a printer Printer Friendly Version (PDF) Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for almost 57 percent of total world oil consumption by 2020. Transportation fuel use is expected to grow substantially over the next two decades, despite oil prices that hit 10-year highs in 2000. The relatively immature transportation sectors in much of the developing world are expected to expand rapidly as the economies of developing nations become more industrialized. In the reference case of the International Energy Outlook 2001 (IEO2001), energy use for transportation is projected to increase by 4.8 percent per year in the developing world, compared with

31

Neutron Transport and Nuclear Burnup Analysis for the Laser Inertial Confinement Fusion-Fission Energy (LIFE) Engine  

SciTech Connect (OSTI)

Lawrence Livermore National Laboratory is currently developing a hybrid fusion-fission nuclear energy system, called LIFE, to generate power and burn nuclear waste. We utilize inertial confinement fusion to drive a subcritical fission blanket surrounding the fusion chamber. It is composed of TRISO-based fuel cooled by the molten salt flibe. Low-yield (37.5 MJ) targets and a repetition rate of 13.3 Hz produce a 500 MW fusion source that is coupled to the subcritical blanket, which provides an additional gain of 4-8, depending on the fuel. In the present work, we describe the neutron transport and nuclear burnup analysis. We utilize standard analysis tools including, the Monte Carlo N-Particle (MCNP) transport code, ORIGEN2 and Monteburns to perform the nuclear design. These analyses focus primarily on a fuel composed of depleted uranium not requiring chemical reprocessing or enrichment. However, other fuels such as weapons grade plutonium and highly-enriched uranium are also under consideration. In addition, we have developed a methodology using {sup 6}Li as a burnable poison to replace the tritium burned in the fusion targets and to maintain constant power over the lifetime of the engine. The results from depleted uranium analyses suggest up to 99% burnup of actinides is attainable while maintaining full power at 2GW for more than five decades.

Kramer, K J; Latkowski, J F; Abbott, R P; Boyd, J K; Powers, J J; Seifried, J E

2008-10-24T23:59:59.000Z

32

TRANSPORTATION ENERGY DATA BOOK: EDITION 20  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

59 59 (Edition 20 of ORNL-5 198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 20 Stacy C. Davis Oak Ridge National Laboratory October 2000 Prepared for Office of Transportation Technologies U.S. Department of Energy Prepared by OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 3783 l-6073 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-OOOR22725 Users of the Transportation Energy Data Book are encouraged to comment on errors, omissions, emphases, and organization of this report to one of the persons listed below. Requests for additional complementary copies of this report, additional data, or information on an existing table should be referred to Ms. Stacy Davis, Oak Ridge National Laboratory.

33

Impact of energy supply infrastructure in life cycle analysis of hydrogen and electric systems applied to the Portuguese transportation sector  

Science Journals Connector (OSTI)

Hydrogen and electric vehicle technologies are being considered as possible solutions to mitigate environmental burdens and fossil fuel dependency. Life cycle analysis (LCA) of energy use and emissions has been used with alternative vehicle technologies to assess the Well-to-Wheel (WTW) fuel cycle or the Cradle-to-Grave (CTG) cycle of a vehicle's materials. Fuel infrastructures, however, have thus far been neglected. This study presents an approach to evaluate energy use and CO2 emissions associated with the construction, maintenance and decommissioning of energy supply infrastructures using the Portuguese transportation system as a case study. Five light-duty vehicle technologies are considered: conventional gasoline and diesel (ICE), pure electric (EV), fuel cell hybrid (FCHEV) and fuel cell plug-in hybrid (FC-PHEV). With regard to hydrogen supply, two pathways are analysed: centralised steam methane reforming (SMR) and on-site electrolysis conversion. Fast, normal and home options are considered for electric chargers. We conclude that energy supply infrastructures for FC vehicles are the most intensive with 0.030.53MJeq/MJ emitting 0.727.3g CO2eq/MJ of final fuel. While fossil fuel infrastructures may be considered negligible (presenting values below 2.5%), alternative technologies are not negligible when their overall LCA contribution is considered. EV and FCHEV using electrolysis report the highest infrastructure impact from emissions with approximately 8.4% and 8.3%, respectively. Overall contributions including uncertainty do not go beyond 12%.

Alexandre Lucas; Rui Costa Neto; Carla Alexandra Silva

2012-01-01T23:59:59.000Z

34

Energy and Transportation Science Division (ETSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

35

Transportation Energy and Alternatives  

E-Print Network [OSTI]

Station in Indonesia Hydrogen refueling in Munich, Germany "You will never see widespread use of the fuel fuels" Potentially used for Transportation · Biogas (primarily for onsite electrical generation) LFG

Handy, Susan L.

36

TRANSPORTATION ENERGY DATA BOOK: EDITION 22  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 (Edition 22 of ORNL-5198) Center for Transportation Analysis Engineering Science & Technology Division TRANSPORTATION ENERGY DATA BOOK: EDITION 22 Stacy C. Davis Susan W. Diegel Oak Ridge National Laboratory September 2002 Prepared for the Office of Planning, Budget Formulation and Analysis Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by the Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6073 Managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the

37

Energy transport in the solar transition layer  

Science Journals Connector (OSTI)

...research-article Research Article Energy transport in the solar transition layer J...emission measure in the solar transition layer, which...the heat transport. solar transition layer|differential emission measure|energy transport|ion-acoustic...

2001-01-01T23:59:59.000Z

38

Transportation Energy Data Book: Edition 25  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 25 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy; Chapter 3 - highway vehicles; Chapter 4 - light vehicles; Chapter 5 - heavy vehicles; Chapter 6 - alternative fuel vehicles; Chapter 7 - fleet vehicles; Chapter 8 - household vehicles; and Chapter 9- nonhighway modes; Chapter 10 - transportation and the economy; Chapter 11 - greenhouse gas emissions; and Chapter 12 - criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

2006-06-01T23:59:59.000Z

39

Transportation Energy Data Book: Edition 27  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 27 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2008-06-01T23:59:59.000Z

40

Transportation Energy Pathways LDRD.  

SciTech Connect (OSTI)

This report presents a system dynamics based model of the supply-demand interactions between the USlight-duty vehicle (LDV) fleet, its fuels, and the corresponding primary energy sources through the year2050. An important capability of our model is the ability to conduct parametric analyses. Others have reliedupon scenario-based analysis, where one discrete set of values is assigned to the input variables and used togenerate one possible realization of the future. While these scenarios can be illustrative of dominant trendsand tradeoffs under certain circumstances, changes in input values or assumptions can have a significantimpact on results, especially when output metrics are associated with projections far into the future. Thistype of uncertainty can be addressed by using a parametric study to examine a range of values for the inputvariables, offering a richer source of data to an analyst.The parametric analysis featured here focuses on a trade space exploration, with emphasis on factors thatinfluence the adoption rates of electric vehicles (EVs), the reduction of GHG emissions, and the reduction ofpetroleum consumption within the US LDV fleet. The underlying model emphasizes competition between13 different types of powertrains, including conventional internal combustion engine (ICE) vehicles, flex-fuel vehicles (FFVs), conventional hybrids(HEVs), plug-in hybrids (PHEVs), and battery electric vehicles(BEVs).We find that many factors contribute to the adoption rates of EVs. These include the pace of technologicaldevelopment for the electric powertrain, battery performance, as well as the efficiency improvements inconventional vehicles. Policy initiatives can also have a dramatic impact on the degree of EV adoption. Theconsumer effective payback period, in particular, can significantly increase the market penetration rates ifextended towards the vehicle lifetime.Widespread EV adoption can have noticeable impact on petroleum consumption and greenhouse gas(GHG) emission by the LDV fleet. However, EVs alone cannot drive compliance with the most aggressiveGHG emission reduction targets, even as the current electricity source mix shifts away from coal and towardsnatural gas. Since ICEs will comprise the majority of the LDV fleet for up to forty years, conventional vehicleefficiency improvements have the greatest potential for reductions in LDV GHG emissions over this time.These findings seem robust even if global oil prices rise to two to three times current projections. Thus,investment in improving the internal combustion engine might be the cheapest, lowest risk avenue towardsmeeting ambitious GHG emission and petroleum consumption reduction targets out to 2050.3 AcknowledgmentThe authors would like to thank Dr. Andrew Lutz, Dr. Benjamin Wu, Prof. Joan Ogden and Dr. ChristopherYang for their suggestions over the course of this project. This work was funded by the Laboratory DirectedResearch and Development program at Sandia National Laboratories.4

Barter, Garrett; Reichmuth, David; Westbrook, Jessica; Malczynski, Leonard A. [Sandia National Laboratories, Albuquerque, NM] [Sandia National Laboratories, Albuquerque, NM; Yoshimura, Ann S.; Peterson, Meghan; West, Todd H.; Manley, Dawn Kataoka; Guzman, Katherine Dunphy; Edwards, Donna M.; Hines, Valerie Ann-Peters

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

42

Technology Mapping of the Renewable Energy, Buildings and Transport  

Open Energy Info (EERE)

Technology Mapping of the Renewable Energy, Buildings and Transport Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Jump to: navigation, search Tool Summary Name: Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Agency/Company /Organization: International Centre for Trade and Sustainable Development Sector: Energy Focus Area: Energy Efficiency, Renewable Energy, Buildings, Industry, Transportation Topics: Implementation, Market analysis, Policies/deployment programs, Pathways analysis Resource Type: Publications, Guide/manual Website: ictsd.org/downloads/2010/06/synthesis-re-transport-buildings.pdf Technology Mapping of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects Screenshot

43

Energy Information Administration - Transportation Energy Consumption by  

U.S. Energy Information Administration (EIA) Indexed Site

Energy Consumption Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the surveys can be divided into two broad groups: supply surveys, directed to the suppliers and marketers of specific energy sources, that measure the quantities of specific fuels produced for and/or supplied to the market; and consumption surveys, which gather information on the types of energy used by consumer groups along with the consumer characteristics that are associated with energy use. In the transportation sector, EIA's core consumption survey was the Residential Transportation Energy Consumption Survey. RTECS belongs to the consumption group because it collects information directly from the consumer, the household. For roughly a decade, EIA fielded the RTECS--data were first collected in 1983. This survey, fielded for the last time in 1994, was a triennial survey of energy use and expenditures, vehicle miles-traveled (VMT), and vehicle characteristics for household vehicles. For the 1994 survey, a national sample of more than 3,000 households that own or use some 5,500 vehicles provided data.

44

Clean Cities & Transportation Tools | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

& Transportation Tools Clean Cities & Transportation Tools U.S. Department of Energy (DOE) Technical Assistance Project (TAP) for state and local officials Webinar presentation on...

45

Sustainable Transportation Energy Pathways Research  

E-Print Network [OSTI]

Modeling Vehicle Technology Evaluation Energy, Environmental & Economic Cost Analysis Scenarios · Fuel cell electric Climate change, Air quality, Energy security A comprehensive energy strategy should · Electricity · Low-carbon liquid fuels (coal / NG with sequestration) #12;POTENTIAL FOR VEHICLE ENERGY

Handy, Susan L.

46

Transportation Energy Data Book | Open Energy Information  

Open Energy Info (EERE)

Transportation Energy Data Book Transportation Energy Data Book Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Energy Data Book Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Other, Transportation Topics: Potentials & Scenarios, Technology characterizations Resource Type: Dataset Website: cta.ornl.gov/data/ Country: United States Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Transportation Security | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Security Transportation Security Transportation Security More Documents & Publications Overview for Newcomers West Valley Demonstration Project Low-Level Waste...

48

Analysis of Transportation and Logistics Challenges Affecting...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results Analysis of Transportation and Logistics Challenges Affecting...

49

OVERVIEW OF PROPOSED TRANSPORTATION ENERGY  

E-Print Network [OSTI]

.......................................................................................................................4 PROPOSED CALIFORNIA TRANSPORTATION FUEL PRICE FORECASTS......... 6 Summary....................................................................................................6 Petroleum Transportation Fuel Price Forecast Assumptions .............................................................6 California Transportation Fuel Price Forecasts

50

The Geography of Transport Systems-Maritime Transportation | Open Energy  

Open Energy Info (EERE)

The Geography of Transport Systems-Maritime Transportation The Geography of Transport Systems-Maritime Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Geography of Transport Systems-Maritime Transportation Agency/Company /Organization: Hofstra University Sector: Energy Focus Area: Transportation Topics: Technology characterizations Resource Type: Publications, Technical report Website: people.hofstra.edu/geotrans/eng/ch3en/conc3en/ch3c4en.html Cost: Free Language: English References: Maritime Transportation[1] "Maritime transportation, similar to land and air modes, operates on its own space, which is at the same time geographical by its physical attributes, strategic by its control and commercial by its usage. While geographical considerations tend to be constant in time, strategic and

51

Energy Analysis | Department of Energy  

Energy Savers [EERE]

decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy Systems Analysis, and Portfolio Impacts Analysis. The Energy...

52

NREL: Energy Analysis - Vehicles and Fuels Research Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exhaust emissions, and more. Transportation Data and Statistics Tools Alternative Fuels Data Center EERE Energy Analysis Publications Fuel Economy Guide Future U.S. Highway...

53

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

54

Indonesia-GTZ Emissions Reductions in Urban Transport | Open Energy  

Open Energy Info (EERE)

Reductions in Urban Transport Reductions in Urban Transport Jump to: navigation, search Logo: Indonesia-GTZ Emissions Reductions in Urban Transport Name Indonesia-GTZ Emissions Reductions in Urban Transport Agency/Company /Organization GTZ Partner Ministry of Transportation Sector Energy Focus Area Transportation Topics Background analysis Website http://www.gtz.de/en/themen/um Program Start 2008 Program End 2012 Country Indonesia UN Region South-Eastern Asia References GTZ Transport & Climate Change Website[1] GTZ is working with Indonesia on this program with the following objective: "Indonesian cities increasingly plan and implement measures for a transport system that is energy efficient as well as environmentally and climate friendly." Background of the project is the absence of a national policy on

55

NREL: Energy Analysis - Market Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Analysis The laboratory's market analysis helps increase the use of renewable energy (RE) and energy efficiency (EE) technologies in the marketplace by providing strategic...

56

ENERGY TRANSPORT IN STOCHASTICALLY PERTURBED LATTICE DYNAMICS  

E-Print Network [OSTI]

of the energy when initially deposited close to the origin. If #12; = 0, the energy spreading is ballisticENERGY TRANSPORT IN STOCHASTICALLY PERTURBED LATTICE DYNAMICS GIADA BASILE, STEFANO OLLA according to a linear transport equation describing inelastic collisions. For an energy and momentum

Recanati, Catherine

57

Energy use by biological protein transport pathways  

E-Print Network [OSTI]

residing within energy-conserving membranes use transmembrane ion gradients to drive substrate transport receptors impart specificity to a targeting route, and transport across or into the membrane is typicallyEnergy use by biological protein transport pathways Nathan N. Alder1 and Steven M. Theg2 1

Economou, Tassos

58

Analysis of pedestal plasma transport  

Science Journals Connector (OSTI)

An H-mode edge pedestal plasma transport benchmarking exercise was undertaken for a single DIII-D pedestal. Transport modelling codes used include 1.5D interpretive (ONETWO, GTEDGE), 1.5D predictive (ASTRA) and 2D ones (SOLPS, UEDGE). The particular DIII-D discharge considered is 98889, which has a typical low density pedestal. Profiles for the edge plasma are obtained from Thomson and charge-exchange recombination data averaged over the last 20% of the average 33.53?ms repetition time between type I edge localized modes. The modelled density of recycled neutrals is largest in the divertor X-point region and causes the edge plasma source rate to vary by a factor ~102 on the separatrix. Modelled poloidal variations in the densities and temperatures on flux surfaces are small on all flux surfaces up to within about 2.6?mm (?N > 0.99) of the mid-plane separatrix. For the assumed Fick's-diffusion-type laws, the radial heat and density fluxes vary poloidally by factors of 23 in the pedestal region; they are largest on the outboard mid-plane where flux surfaces are compressed and local radial gradients are largest. Convective heat flows are found to be small fractions of the electron (10%) and ion (25%) heat flows in this pedestal. Appropriately averaging the transport fluxes yields interpretive 1.5D effective diffusivities that are smallest near the mid-point of the pedestal. Their 'transport barrier' minima are about 0.3 (electron heat), 0.15 (ion heat) and 0.035 (density) m2?s?1. Electron heat transport is found to be best characterized by electron-temperature-gradient-induced transport at the pedestal top and paleoclassical transport throughout the pedestal. The effective ion heat diffusivity in the pedestal has a different profile from the neoclassical prediction and may be smaller than it. The very small effective density diffusivity may be the result of an inward pinch flow nearly balancing a diffusive outward radial density flux. The inward ion pinch velocity and density diffusion coefficient are determined by a new interpretive analysis technique that uses information from the force balance (momentum conservation) equations; the paleoclassical transport model provides a plausible explanation of these new results. Finally, the measurements and additional modelling needed to facilitate better pedestal plasma transport modelling are discussed.

J.D. Callen; R.J. Groebner; T.H. Osborne; J.M. Canik; L.W. Owen.; A.Y. Pankin; T. Rafiq; T.D. Rognlien; W.M. Stacey

2010-01-01T23:59:59.000Z

59

Department of Energy Office of Science Transportation Overview...  

Office of Environmental Management (EM)

Department of Energy Office of Science Transportation Overview Department of Energy Office of Science Transportation Overview Overview of the Office of Science for Transportation....

60

Energy Engineering and Systems Analysis - Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Engineering and Systems Analysis U.S. Department of Energy Energy Engineering and Systems Analysis U.S. Department of Energy Search Argonne ... Search Decision and Information Sciences Energy Systems FutureGrid Infrastructure Assurance Center Intelligence Analysis National Security Nuclear Engineering Transportation Research and Analysis Computing Center Transportation Technology R&D Center EESA Intranet Image of battery development team standing by an electric vehicle in Argonne's Ev-Smart Grid Interoperability Center Features eesa success stories ebr-2 Argonne's Major Nuclear Energy Milestones Argonne's Nuclear Energy Exhibit Argonne's Nuclear Energy Exhibit Argonne's Glassblowing Studio Glassblowing Studio Reactor Advanced Burner Test Reactor Preconceptual Design Argonne Experts Guide Argonne Experts Guide

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Energy Outlook for the Transport Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Outlook for Energy: A View to 2030 The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Algae Biofuels Technology...

62

Measuring Transport Protocol Potential for Energy Efficiency  

E-Print Network [OSTI]

Measuring Transport Protocol Potential for Energy Efficiency S. Kontogiannis, L. Mamatas, I. Psaras, Greece {skontog, emamatas, ipsaras, vtsaousi}@ee.duth.gr Abstract. We investigate the energy-saving potential of transport pro- tocols. We focus on the system-related aspect of energy. Do we have to damage

Tsaoussidis, Vassilis

63

Transportation in Community Strategic Energy Plans  

Broader source: Energy.gov [DOE]

This presentation features Caley Johnson, a fuel and vehicle market analyst with the National Renewable Energy Laboratory. Johnson provides an overview of how and why to incorporate transportation...

64

Estimated United States Transportation Energy Use 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

65

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

66

NREL Biorefinery Analysis Process Models | Open Energy Information  

Open Energy Info (EERE)

NREL Biorefinery Analysis Process Models AgencyCompany Organization: National Renewable Energy Laboratory Website: www.nrel.govextranetbiorefineryaspenmodels Transport...

67

Thermal Energy Transport in Nanostructured Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

68

Publications - Center for Transportation Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Publications Publications are by year in alphabetical order by lead author. If you need additional assistance, please contact Debbie Bain. Note: Many publications prior to 1999 are not available electronically and can be obtained by contacting the author. CTA Publications are listed by Year [2013] [2012] [2011] [2010] [2009] [2008] [2007] [2006] [2005] [2004] [2003] [2002] [2001] [2000] [1999] [1998] [1997] [1996] [1995] 2013 Publications Malikopoulos, A.A., "Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction,"ASME Journal of Energy Resources Technology, Vol. 135, No. 4, 2013, pp. 041201-041209. Malikopoulos, A.A. and Aguilar, J.P., "An Optimization Framework for Driver Feedback Systems,"IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 2, 2013, pp. 955-964.

69

Energy Market Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Market Analysis Energy Market Analysis Energy Market Analysis synthesizes all analysis efforts in the analysis spectrum. Scenario analyses, in the context of market...

70

Transportation activity analysis using smartphones  

E-Print Network [OSTI]

Transportation activity surveys investigate when, where and how people travel in urban areas to provide information necessary for urban transportation planning. In Singapore, the Land Transport Authority (LTA) carries out ...

Xiao, Yu

71

Energy Analysis  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Students use graphs of historical data and research historical and societal events to determine and analyze energy trends in the United States over the past 50 years.

72

Transportation Energy Data Book, Edition 18  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

73

EIA - International Energy Outlook 2009-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2009 Chapter 7 - Transportation Sector Energy Consumption In the IEO2009 reference case, transportation energy use in the non-OECD countries increases by an average of 2.7 percent per year from 2006 to 2030, as compared with an average of 0.3 percent per year for the OECD countries. Figure 69. OECD and Non-OECD Transportation Sector Liquids Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure data Over the next 25 years, world demand for liquids fuels is projected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2009 reference case, the transportation share of

74

EIA - International Energy Outlook 2008-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Chapter 6 - Transportation Sector Energy Consumption In the IEO2008 reference case, transportation energy use in the non-OECD countries increases by an average of 3.0 percent per year from 2005 to 2030, as compared with an average of 0.7 percent per year for the OECD countries. Over the next 25 years, world demand for liquids fuels and other petroleum is expected to increase more rapidly in the transportation sector than in any other end-use sector. In the IEO2008 reference case, the transportation share of total liquids consumption increases from 52 percent in 2005 to 58 percent in 2030. Much of the growth in transportation energy use is projected for the non-OECD nations, where many rapidly expanding economies

75

NREL: Energy Analysis: Geospatial Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enlarge image Highlights of Recent Studies U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis This study summarizes the achievable energy generation, or technical...

76

Proposed Energy Transport Corridors: West-wide energy corridor programmatic  

Broader source: Energy.gov (indexed) [DOE]

Energy Transport Corridors: West-wide energy corridor Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Map of the area covered by a programmatic environmental impact statement (PEIS), "Designation of Energy Corridors on Federal Land in the 11 Western States" (DOE/EIS-0386) to address the environmental impacts from the proposed action and the range of reasonable alternatives. The proposed action calls for designating more than 6,000 miles of energy transport corridors across the West. Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. More Documents & Publications

77

Transport Energy Use and Population Density  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

78

Transportation Energy Futures | OpenEI  

Open Energy Info (EERE)

Energy Futures Energy Futures Dataset Summary Description The 2009 National Household Travel Survey (NHTS) provides information to assist transportation planners and policy makers who need comprehensive data on travel and transportation patterns in the United States. The 2009 NHTS updates information gathered in the 2001 NHTS and in prior Nationwide Personal Transportation Surveys (NPTS) conducted in 1969, 1977, 1983, 1990, and 1995. Source U.S. Department of Transportation, Federal Highway Administration Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords NHTS TEF transportation Transportation Energy Futures travel trip Data application/zip icon Travel Day Trip File (zip, 42.6 MiB) application/zip icon Household File (zip, 5 MiB) application/zip icon Person File (zip, 17.4 MiB)

79

Transportation energy data book: edition 16  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

1996-07-01T23:59:59.000Z

80

Transportation Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

a large share of petroleum use, carbon dioxide (a primary greenhouse gas) emissions, and air pollution, advances in fuel cell power systems for transportation could substantially...

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EIA - International Energy Outlook 2007-Transportation Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Sector Energy Consumption Transportation Sector Energy Consumption International Energy Outlook 2008 Figure 66. OECD and Non-OECD Transportation Sector Liquids Consumption, 2005-2030 Figure 25 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 67. Change in World Liquids Consumption for Transportation, 2005 to 2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 68. Average Annual Growth in OECD and Non-OECD Gros Domestic Product and Transportation Sector Delivered Energy Use, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 69. Motor Vehicle Ownership in OECD Countries, 2005, 2015, and 2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800.

82

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) Model Agency/Company /Organization: Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools Website: greet.es.anl.gov/ This full life-cycle model evaluates the energy and emission impacts of advanced vehicle technologies and new transportation fuels. The model allows users to evaluate various vehicle and fuel combinations. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

83

Market Analysis - Center for Transportation Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Market Analysis Market Analysis Annual market reports; market data resource center; supply chain, financial, and life cycle analyses; pilot studies for renewables and efficiency at scale. Primary Contact: David Greene Previous and Ongoing Analyses : Market Analysis for Energy Technologies and Fuels Greene, D.L., Leiby, P.N., Bowman, D. (2007). "Integrated Analysis of Market Transformation Scenarios with HyTrans" ORNL/TM-2007/094, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June. (David Greene, Paul Leiby) Impact of advanced vehicle technologies (e.g. PHEV, EV and FCV) on petroleum use and carbon emissions depends on many technological, behavior, market and policy factors. A consumer choice model with 1458 market segments for the period 2005-2050 has been developed to investigate the

84

Energy cost of galactoside transport to Escherichia coli.  

Science Journals Connector (OSTI)

...research-article Research Article Energy cost of galactoside transport to Escherichia...facilitated diffusion system. Energy cost of galactoside transport to Escherichia...No. 3 Printed in U.S.A. Energy Cost of Galactoside Transport to Escherichia...

D R Purdy; A L Koch

1976-09-01T23:59:59.000Z

85

TRANSPORTATION SYSTEMS AND THE BUILT ENVIRONMENT:1 A LIFE-CYCLE ENERGY CASE STUDY AND ANALYSIS2  

E-Print Network [OSTI]

BACKGROUND2 3 As the second largest energy consumer and greenhouse gas (GHG) emitter (behind China, U.S.4 in reducing U.S.13 GHG emissions over time, while improving the nation's energy security and moderating a14 environment can be used to influence travel demand, but very few studies consider the22 relative energy

Kockelman, Kara M.

86

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

87

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

88

The World Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

The World Bank - Transport The World Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The World Bank - Transport Agency/Company /Organization: The World Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: go.worldbank.org/0SYYVJWB40 This website provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes international publications and toolkits classified by type of transport and/or region/country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

89

Victoria Transport Policy Institute | Open Energy Information  

Open Energy Info (EERE)

Transport Policy Institute Transport Policy Institute Jump to: navigation, search Name Victoria Transport Policy Institute Address 1250 Rudlin Street, Place Victoria, British Columbia Website http://www.vtpi.org/ References http://www.vtpi.org/ No information has been entered for this organization. Add Organization "The Victoria Transport Policy Institute is an independent research organization dedicated to developing innovative and practical solutions to transportation problems. We provide a variety of resources available free at this website to help improve transportation planning and policy analysis. We are funded primarily through consulting and project grants. Our research is among the most current available and has been widely applied." References Retrieved from "http://en.openei.org/w/index.php?title=Victoria_Transport_Policy_Institute&oldid=375887"

90

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

91

GIZ Sourcebook Module 5h: Urban Transport and Energy Efficiency...  

Open Energy Info (EERE)

h: Urban Transport and Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ Sourcebook Module 5h: Urban Transport and Energy Efficiency AgencyCompany...

92

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Office of Environmental Management (EM)

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

93

SciTech Connect: Transportation Energy Futures Series: Projected...  

Office of Scientific and Technical Information (OSTI)

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures...

94

Transportation energy data book: Edition 15  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1995-05-01T23:59:59.000Z

95

Exergy analysis of the use of geothermal energy and carbon capture, transportation and storage in underground aquifers :.  

E-Print Network [OSTI]

??At the moment global climate change is one of the most prominent environmental and energy issues of our life time. Currently CO2 levels in the (more)

De Mooij, J.W.C.

2010-01-01T23:59:59.000Z

96

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based...

97

Urban Transportation Emission Calculator | Open Energy Information  

Open Energy Info (EERE)

Urban Transportation Emission Calculator Urban Transportation Emission Calculator Jump to: navigation, search Tool Summary Name: Urban Transportation Emission Calculator Agency/Company /Organization: Transport Canada Sector: Energy Focus Area: Transportation Topics: GHG inventory Resource Type: Software/modeling tools User Interface: Website Website: wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng Cost: Free References: http://wwwapps.tc.gc.ca/Prog/2/UTEC-CETU/Menu.aspx?lang=eng The Urban Transportation Emissions Calculator (UTEC) is a user-friendly tool for estimating annual emissions from personal, commercial, and public transit vehicles. It estimates greenhouse gas (GHG) and criteria air contaminant (CAC) emissions from the operation of vehicles. It also estimates upstream GHG emissions from the production, refining and

98

Energy Analysis by Sector | Department of Energy  

Office of Environmental Management (EM)

Energy Analysis by Sector Energy Analysis by Sector Manufacturers often rely on energy-intensive technologies and processes. AMO conducts a range of analyses to explore energy use...

99

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

100

Alternative Fuels Data Center: State Agency Energy Plan Transportation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Agency Energy State Agency Energy Plan Transportation Requirements to someone by E-mail Share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Facebook Tweet about Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Twitter Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Google Bookmark Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Delicious Rank Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on Digg Find More places to share Alternative Fuels Data Center: State Agency Energy Plan Transportation Requirements on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency...  

Energy Savers [EERE]

Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies,...

102

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Norway International Council on Clean Transportation University of British Columbia University of Maine UC Davis Energy

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

103

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY  

E-Print Network [OSTI]

NextSTEPS (Sustainable Transportation Energy Pathways) PROGRAM SUMMARY Institute of Transportation in January 2011, building on the many advances of our Sustainable Transportation Energy Pathways (STEPS Analyze sustainability issues including land use change effects, water use, resource constraints

California at Davis, University of

104

Transportation Energy Data Book: Edition 29  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2010-07-01T23:59:59.000Z

105

Transportation Energy Data Book: Edition 32  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL] [ORNL; Diegel, Susan W [ORNL] [ORNL; Boundy, Robert Gary [ORNL] [ORNL

2013-08-01T23:59:59.000Z

106

Transportation Energy Data Book: Edition 28  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 28 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with U.S Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program and the Hydrogen, Fuel Cells, and Infrastructure Technologies Program. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; and Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2009-06-01T23:59:59.000Z

107

Transportation Energy Data Book: Edition 31  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 31 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2012-08-01T23:59:59.000Z

108

Transportation Energy Data Book: Edition 30  

SciTech Connect (OSTI)

The Transportation Energy Data Book: Edition 30 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2011-07-01T23:59:59.000Z

109

Transportation Energy Data Book: Edition 14  

SciTech Connect (OSTI)

Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1994-05-01T23:59:59.000Z

110

Executive Order 13423: Strengthening Federal Environmental, Energy, and Transportation Management  

Office of Energy Efficiency and Renewable Energy (EERE)

Full text of Executive Order 13423: Strengthening Federal Environmental, Energy, and Transportation Management.

111

Improving the Practice of Cost Benefit Analysis in Transport...  

Open Energy Info (EERE)

Improving the Practice of Cost Benefit Analysis in Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Improving the Practice of Cost Benefit Analysis in Transport...

112

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unique Solutions] Unique Solutions] [Working With Us] [Contacting Us] [News Center] [Search] [Home] [navigation panel] Materials Transportation Testing & Analysis Our Mission Our Contacts Write to Us Package Development Risk Assessment RADTRAN GIS Mapping Structural Analysis Thermal Analysis Structural Testing Thermal Testing MIDAS Data Aquisition System Concepts Materials Characterization Regulatory Development Certification Support RMIR Data Base Scientific Visualization Mobile Instrumentation Data Acquisition System (MIDAS) Doug Ammerman, (505) 845-8158 The Mobile Instrumentation Data Acquisition System (MIDAS), developed by Sandia National Laboratories for the U.S. Department of Energy, provides on-site data acquisition of containers that transport radioactive materials during impact, puncture, fire, and immersion tests.

113

Isotope Program Transportation | Department of Energy  

Office of Environmental Management (EM)

Isotope Program Transportation Isotope Program Transportation Isotope Program Transportation More Documents & Publications Nuclear Fuel Storage and Transportation Planning Project...

114

Nuclear Transportation Management Services | Department of Energy  

Office of Environmental Management (EM)

Nuclear Transportation Management Services Nuclear Transportation Management Services Nuclear Transportation Management Services More Documents & Publications Transportation and...

115

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

116

Sandia National Laboratories: Transportation Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Internship Opportunities - Apply by January 10, 2014 On December 4, 2013, in CRF, Energy, Facilities, Job Listing, News, News & Events, Office of Science, Research &...

117

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Sustainable Transportation  

Office of Energy Efficiency and Renewable Energy (EERE)

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout Sustainable Transportation, May 2013.

118

Energy transport through rare collisions  

E-Print Network [OSTI]

We study a one-dimensional hamiltonian chain of masses perturbed by an energy conserving noise. The dynamics is such that, according to its hamiltonian part, particles move freely in cells and interact with their neighbors through collisions, made possible by a small overlap of size $\\epsilon > 0$ between near cells. The noise only randomly flips the velocity of the particles. If $\\epsilon \\rightarrow 0$, and if time is rescaled by a factor $1/{\\epsilon}$, we show that energy evolves autonomously according to a stochastic equation, which hydrodynamic limit is known in some cases. In particular, if only two different energies are present, the limiting process coincides with the simple symmetric exclusion process.

Franois Huveneers

2011-07-14T23:59:59.000Z

119

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network [OSTI]

for the information in this report; nor does any party represent that the uses of this information will not infringe of transportation fuel and crude oil import requirements to establish the quantitative baseline to support its fuels, integration of energy use and land use planning, and transportation fuel infrastructure

120

ECE 465: Realistic Sustainable Energy -Energy use in transportation,  

E-Print Network [OSTI]

- Wave and tidal power generation possibilities - Role of heat pipes in modern HVAC systems - RecyclingECE 465: Realistic Sustainable Energy - Energy use in transportation, HVAC and electric generation is detailed in units of kW-Hr - Alternative Energy sources for fuels and electric generation are covered

Schumacher, Russ

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Built Environment Energy Analysis Tool Overview (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C.

2013-04-01T23:59:59.000Z

122

NREL: Energy Analysis - Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staff Staff National Renewable Energy Laboratory (NREL) analysts have capabilities that span a wide range of renewable energy technologies. This site will help you learn more about the crosscutting analysis capabilities, energy-modeling background, and technology expertise of analysts in our Strategic Energy Analysis Center (SEAC). Strategic Planning and Direction Center Director (acting): Doug Arent Business Development: Dan Bilello Synthesis and Integration: Debra Sandor Lead Administrative Assistant: Melissa Hudman Project Management Support: Dani Salyer Data Analysis and Visualization The following staff are SEAC's experts in analysis relating to geospatial analytics and integrated resource assessment; our energy efficiency and renewable energy data warehouse; and advanced visualization.

123

Energy demand and economic consequences of transport policy  

Science Journals Connector (OSTI)

Transport sector is a major consumer of energy. Concern of energy scarcity and price fluctuations enhanced significance of ... sector in national planning. This paper analyses energy demand for transport services...

J. B. Alam; Z. Wadud; J. B. Alam

2013-09-01T23:59:59.000Z

124

The Energy Efficiency Potential of Global Transport to 2050 ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to 2050 The Energy Efficiency Potential of Global Transport to 2050 Broad view of sustainability of global transportation deer11greene.pdf More Documents & Publications...

125

Zhenhong Lin - Research Staff - Center for Transportation Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zhenhong Lin Zhenhong Lin Zhenhong Lin Zhenhong Lin Ph.D., Civil and Environmental Engineering (T) 865.946.1308 (F) 865.946.1541 linz@ornl.gov Specialty Research Areas: Energy and Environmental Policy Analysis Modeling, Optimization and Simulation Data, Statistical Analysis and Information Tools Vehicle Technologies and Infrastructure Current or Recent Work: Modeling Transportation Energy Transitions Demand Analysis for Plug-in Hybrid Electric Vehicles Optimization of Refueling Station Locations China Motorization Journal Articles: Lin, Zhenhong, J. Dong, C. Liu, and D. Greene (2012). "PHEV Energy Use Estimation: Validating the Gamma Distribution for Representing the Random Daily Driving Distance," Transportation Research Record, (Accepted). Lin, Zhenhong (2012). "Optimizing and Diversifying the Electric Range of

126

Table E6. Transportation Sector Energy Price Estimates, 2012  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

E6. Transportation Sector Energy Price Estimates, 2012 (Dollars per Million Btu) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation...

127

Energy, Transportation Ministers from Asia-Pacific Nations Pledge  

Broader source: Energy.gov (indexed) [DOE]

Energy, Transportation Ministers from Asia-Pacific Nations Pledge Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation Energy, Transportation Ministers from Asia-Pacific Nations Pledge Cooperation on Cleaner, More Energy-Efficient Transportation September 13, 2011 - 7:44pm Addthis SAN FRANCISCO - Energy and transportation ministers from 21 economies in the Asia-Pacific region today agreed to continue progress on initiatives to make transportation in the region cleaner and more energy-efficient, U.S. Transportation Secretary Ray LaHood and U.S. Energy Secretary Steven Chu announced today. The announcement came during the first-ever joint Transportation and Energy Ministerial Conference held by the Asia-Pacific Economic Cooperation (APEC), the principal economic organization for the region. Secretaries

128

NREL: Energy Analysis - John Lewis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

John Lewis John Lewis Photo of John Lewis. John Lewis is a member of the Data Analysis and Visualization Group in the Strategic Energy Analysis Center. Senior Scientist On staff since 2010 Phone number: 303-275-3021 E-mail: john.lewis@nrel.gov Areas of expertise Data analysis and visualization Energy informatics Project management Client interfacing Hydrogen and fuel cells Primary research interests Data science Information visualization Energy systems integration Smart grid technologies and deployment Transportation Education and background training Ph.D. in chemical engineering, California Institute of Technology, Pasadena, CA, 1996 M.S. in chemical engineering, California Institute of Technology, Pasadena, CA, 1993 B.S. in chemical engineering, Texas A&M University, College Station,

129

Transport Policy Note-Bangladesh | Open Energy Information  

Open Energy Info (EERE)

Note-Bangladesh Note-Bangladesh Jump to: navigation, search Name Transport Policy Note-Bangladesh Agency/Company /Organization Government of Bangladesh Sector Energy Focus Area Transportation Topics Implementation, GHG inventory, Policies/deployment programs, Background analysis Website http://siteresources.worldbank Program Start 2009 Country Bangladesh UN Region South-Eastern Asia References Bangladesh-Transportation[1] Abstract "This policy note provides an overview of the main characteristics of the transport sector in Bangladesh and the challenges going forward. It also provides guidance to the Bank in its dialogue with the Government of Bangladesh on the strategic priorities in the sector and the areas where the Bank can provide the most support consistent with the overall strategic

130

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

131

Advances in Transportation Technologies | Department of Energy  

Office of Environmental Management (EM)

Advances in Transportation Technologies Advances in Transportation Technologies Advances in Transportation Technologies More Documents & Publications TEC Working Group Topic Groups...

132

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

133

Energy Information Administration--Energy and Greenhouse Gas Analysis  

U.S. Energy Information Administration (EIA) Indexed Site

and Greenhouse Gas Analysis and Greenhouse Gas Analysis Energy and Greenhouse Gas Analysis Posted Date: October 1999 Page Last Modified: August 2007 This section contains analysis covering all sectors of the United States and issues related to the energy use, energy efficiency, and carbon emission indicators. New analysis will be added to the web site as they become available. All Sectors / Residential / Commercial / Manufacturing / Transportation All Sectors United States Energy Usage and Efficiency: Measuring Changes Over Time, increasing emphasis has been placed on energy efficiency as a vital component of the United States' energy strategy. This was evident with the passing of the Energy Policy Act of 1992 (EPACT) [1]. EPACT promotes energy-efficiency programs such as building energy-efficiency standards,

134

Parametric study on maximum transportable distance and cost for thermal energy transportation using various coolants  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as district heating, desalination, hydrogen production and other process heat applications, etc. The process heat industry/facilities will be located outside the nuclear island due to safety measures. This thermal energy from the reactor has to be transported a fair distance. In this study, analytical analysis was conducted to identify the maximum distance that thermal energy could be transported using various coolants such as molten-salts, helium and water by varying the pipe diameter and mass flow rate. The cost required to transport each coolant was also analyzed. The coolants analyzed are molten salts (such as: KClMgCl2, LiF-NaF-KF (FLiNaK) and KF-ZrF4), helium and water. Fluoride salts are superior because of better heat transport characteristics but chloride salts are most economical for higher temperature transportation purposes. For lower temperature water is a possible alternative when compared with He, because low pressure He requires higher pumping power which makes the process very inefficient and economically not viable for both low and high temperature application.

Su-Jong Yoon; Piyush Sabharwall

2014-07-01T23:59:59.000Z

135

VIM continuous energy Monte Carlo transport code  

SciTech Connect (OSTI)

VIM is a continuous energy neutron and photon transport code. VIM solves the steady-state neutron or photon transport problem in any detailed three-dimensional geometry using either continuous energy-dependent ENDF nuclear data or multigroup cross sections. Neutron transport is carried out in a criticality mode, or in a fixed source mode (optionally incorporating subcritical multiplication). Photon transport is simulated in the fixed source mode. The geometry options are infinite medium, combinatorial geometry, and hexagonal or rectangular lattices of combinatorial geometry unit cells, and rectangular lattices of cells of assembled plates. Boundary conditions include vacuum, specular and white reflection, and periodic boundaries for reactor cell calculations. VIM was developed primarily as a reactor criticality code. Its tally and edit features are very easy to use, and automatically provide fission, fission production, absorption, capture, elastic scattering, inelastic scattering, and (n,2n) reaction rates for each edit region, edit energy group, and isotope, as well as the corresponding macroscopic information, including group scalar fluxes. Microscopic and macroscopic cross sections, including microscopic P{sub N} group-to-group cross sections are also easily produced.

Blomquist, R.N. [Argonne National Lab., IL (United States)

1995-12-31T23:59:59.000Z

136

Wind energy analysis system .  

E-Print Network [OSTI]

??One of the most important steps to be taken before a site is to be selected for the extraction of wind energy is the analysis (more)

Koegelenberg, Johan

2014-01-01T23:59:59.000Z

137

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS PART 4: POLICY AND SUSTAINABLE TRANSPORTATION Part 4: Policy and Sustainable Transportation We have explored and compared advanced vehicle and fuel pathways and imagined

California at Davis, University of

138

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3 CHAPTER 10: OPTIMIZING THE TRANSPORTATION CLIMATE MITIGATION WEDGE Chapter

California at Davis, University of

139

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;Institute of Transportation Studies University of California, Davis One TRANSPORTATION ENERGY PATHWAYS PART 3: SCENARIOS FOR A LOW-CARBON TRANSPORTATION FUTURE PART 3 Part 3: Scenarios

California at Davis, University of

140

NREL: Energy Analysis - About the Strategic Energy Analysis Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Analysis Printable Version About the Strategic Energy Analysis Center (SEAC) Examples of NREL Analysis Impacts Resource Assessment Electric Sector Integration Jobs and...

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transportation Fuel Basics - Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

142

Burbank Transportation Management Organization: Impact Analysis  

SciTech Connect (OSTI)

The Burbank Transportation Management Organization (BTMO), a private, membership-based, nonprofit organization dedicated to traffic reduction and air quality improvement, contracted with the National Renewable Energy Laboratory (NREL), a U.S. Department of Energy-owned, contractor-operated national laboratory, to analyze its member programs and their benefits and effects. This report uses trip data collected by the BTMO, and defines and implements a methodology for quantifying non-traffic benefits such as gasoline savings, productivity, and pollution reduction.

Brown, E.; Aabakken, J.

2006-11-01T23:59:59.000Z

143

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Electricity consumption nearly doubles in the IEO2000 projections. Developing nations in Asia and in Central and South America are expected to lead the increase in world electricity use. Worldwide electricity consumption in 2020 is projected to be 76 percent higher than its 1997 level. Long-term growth in electricity consumption is expected to be strongest in the developing economies of Asia, followed by Central and South America. The projected growth rates for electricity consumption in the developing Asian nations are close to 5 percent per year over the International Energy Outlook 2000 (IEO2000) forecast period (Table 20), and the growth rate for Central and South America averages about 4.2 percent per year. As a result, the developing nations in the two regions

144

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

carbon content of transport fuels by 2020, measured as lifecycle greenhouse gas emissions per unit of energy.

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

145

Energy Analysis Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis > Product List Analysis > Product List HeaderLine Energy Analysis Publications Products BRIEFS: Showing Results 1 to 5 of 23 Role of Alternative Energy Sources: Nuclear Technology Assessment Brief (Aug 2012) Role of Alternative Energy Sources: Hydropower Technology Assessment Brief (Aug 2012) Role of Alternative Energy Sources: Geothermal Technology Assessment Brief (Aug 2012) Role of Alternative Energy Sources: Solar Thermal Technology Assessment Brief (Aug 2012) Role of Alternative Energy Sources: Wind Technology Assessment Brief (Aug 2012) View All MODELS/TOOLS: Showing Results 1 to 5 of 23 Power Plant Flexible Model (Nov 2013) NETL Upstream Dashboard Tool (Aug 2012) Power Systems Life Cycle Analysis Tool (Power LCAT) (Jun 2012) Life Cycle Greenhouse Gas Analysis of Advanced Jet Propulsion Fuels: Fischer-Tropsch Based SPK-1 Case Study - Model (Dec 2011)

146

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

147

Molecular Structure and Free Energy Landscape for Electron Transport...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome MtrF. Molecular Structure and Free Energy Landscape for Electron Transport in the Deca-Heme Cytochrome...

148

Harmony Search Algorithm for Transport Energy Demand Modeling  

Science Journals Connector (OSTI)

The transport sector is one of the major consumers of energy production throughout the world. Thus, the estimation of medium and long-term energy consumption based on socio-economic and transport related indic...

Halim Ceylan; Huseyin Ceylan

2009-01-01T23:59:59.000Z

149

NREL: Energy Analysis - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bookmark and Share Bookmark and Share News The Energy Analysis at NREL newsletter highlights the lab's analysts and analysis activities in renewable energy and energy efficiency technologies are having an impact on U.S. energy goals. The newsletter features recent publications and websites, updates to our models and tools, and staff activities. You can subscribe to receive the newsletter monthly by email. December 2013 NREL Analysis: Making an Impact A graphic showing the cover design for the Realizing a Clean Energy Future brochure. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, profound energy system transformation is underway. A combination of forces

150

NREL: Innovation Impact - Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems...

151

Energy Department Awards $45 Million to Deploy Advanced Transportation...  

Energy Savers [EERE]

is helping to build a strong 21st century transportation sector that cuts harmful pollution, creates jobs and leads to a more sustainable energy future," said Energy...

152

Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Path Transportation Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good against today's technologies, but that's really not what people will be judging them against.....the best "reference vehicle" is one customers will be seeing on showroom floors, in that year.  Understand your model! -- Some of your "key results" may be coming

153

Innovation Center for Energy and Transportation ICET | Open Energy  

Open Energy Info (EERE)

Center for Energy and Transportation ICET Center for Energy and Transportation ICET Jump to: navigation, search Logo: Innovation Center for Energy and Transportation (ICET) Name Innovation Center for Energy and Transportation (ICET) Place Beijing, China Zip 100020 Sector Carbon Product Beijing-based independent non-profit organization to mitigate climate change through the promotion of clean, low carbon and energy efficient policies and technologies in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Transportation of Nuclear Materials | Department of Energy  

Energy Savers [EERE]

Transportation of Nuclear Materials Transportation of Nuclear Materials GC-52 provides legal advice to DOE on legal and regulatory requirements and standards for transportation of...

155

VTPI-Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

Area: Transportation Resource Type: Dataset Website: www.vtpi.orgtdmtdm80.htm Cost: Free VTPI-Transportation Statistics Screenshot References: VTPI-Transportation Statistics1...

156

Climate Change - Center for Transportation Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Climate Change Climate Change Primary Contact: David Greene Previous and Ongoing Analyses : Carbon Impacts of Transportation Technologies and Systems Climate Change 2007 (IPCC AR4): Mitigation of Climate Change. Chapter 5: Transport and its infrastructure (David Greene, co-lead author) "Facing the Challenges of Oil Dependence and Climate Change: What Will It Take?" Testimony to the U.S. House of Representatives Committee on Appropriations Subcommittee on Energy and Water Development. Rayburn House Office Building, Room 2362B, February 14, 2008 (David Greene) "Is Cap-and-Trade a Sufficient Carbon Policy for Transportation?" Testimony to the U.S. Senate Committee on Environment and Public Works Legislative Hearing on America's Climate Security Act of 2007. Dirksen

157

Andreas Malikopoulos - Research Staff - Center for Transportation Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andreas Malikopoulos Andreas Malikopoulos Ph.D., Mechanical Engineering (T) 865.946.1529 (F) 865.946.1568 andreas@ornl.gov Specialty Research Areas: Analysis, Optimization and Control of Stochastic Systems Decision Making in Large-Scale Systems Nonlinear Optimization and Convex Analysis Learning in Complex Systems Current or Recent Work: Connected Vehicles Intelligent Transportation Vehicle Systems Optimization and Control Energy and Sustainable Systems Significant Publications: Malikopoulos, A.A. and Aguilar, J.P., "An Optimization Framework for Driver Feedback Systems," IEEE Transactions on Intelligent Transportation Systems, Vol. 14, No. 2, 2013, pp. 995-964. Malikopoulos, A.A., "Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction," ASME

158

Technologies for Climate Change Mitigation: Transport Sector | Open Energy  

Open Energy Info (EERE)

Technologies for Climate Change Mitigation: Transport Sector Technologies for Climate Change Mitigation: Transport Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technologies for Climate Change Mitigation: Transport Sector Agency/Company /Organization: Global Environment Facility, United Nations Environment Programme Sector: Energy, Climate Focus Area: Transportation Topics: Low emission development planning Resource Type: Guide/manual Website: tech-action.org/Guidebooks/TNAhandbook_Transport.pdf Cost: Free Technologies for Climate Change Mitigation: Transport Sector Screenshot References: Technologies for Climate Change Mitigation: Transport Sector[1] "The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries

159

USDOT-Transportation and Climate Change Clearinghouse | Open Energy  

Open Energy Info (EERE)

USDOT-Transportation and Climate Change Clearinghouse USDOT-Transportation and Climate Change Clearinghouse Jump to: navigation, search Tool Summary LAUNCH TOOL Name: USDOT-Transportation and Climate Change Clearinghouse Agency/Company /Organization: United States Department of Transportation Sector: Climate Focus Area: Transportation Topics: GHG inventory, Market analysis Resource Type: Guide/manual, Publications, Software/modeling tools User Interface: Website Website: climate.dot.gov/methodologies/analysis-resources.html Cost: Free USDOT-Transportation and Climate Change Clearinghouse Screenshot References: USDOT-Transportation and Climate Change Clearinghouse[1] "Assessments of available models and analytical tools can be used to compare greenhouse gas measurement methods and analytical approaches. This

160

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Benefit/Cost Analysis for Transportation Infrastructure: A Practitioner's  

E-Print Network [OSTI]

Benefit/Cost Analysis for Transportation Infrastructure: A Practitioner's Workshop May 17, 2010 an introduction to benefit/cost analysis for transportation infra- structure. There is growing emphasis on the use of benefit/cost analysis for evaluating transportation projects funded by discretionary federal

162

Land Transport Sector in Bangladesh: An Analysis Toward Motivating...  

Open Energy Info (EERE)

Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG...

163

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

164

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

165

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

166

Alternative and Transitional Energy Sources for Urban Transportation  

Science Journals Connector (OSTI)

In urban areas, the transportation sector is one of the principal sources of substantial energy consumption. Although public modes of transportation have ... cities still prefer owning and using their private cars

Linna Li; Becky P. Y. Loo

2014-03-01T23:59:59.000Z

167

NREL: Energy Analysis - Scott Jenne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Geothermal Energy Analyst On staff since 2011 Phone number: 303-384-7248 E-mail:...

168

NREL: Energy Analysis - Jenny Heeter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Policy analysis Utility regulation and analysis Primary research interests Voluntary green power market Renewable energy certificate markets and pricing Solar renewable energy...

169

Transportation and Energy Use Data Files  

U.S. Energy Information Administration (EIA) Indexed Site

Data Files Data Files Transportation and Energy Use Data Files Data from the last two Residential Transportation Energy Consumption Surveys are available on-line. These data include fuel consumption and expenditures, vehicle-miles traveled, vehicle characteristics, and household characteristics from national samples of over 3,000 households. To protect respondent confidentiality, these data files do not contain any information which could be used to identify individual households. The lowest level of geographic detail provided is the Census Division (a grouping of 3 to 5 States.) 1994 RTECS Public Use Data 1991 RTECS Public Use Data 1994 RTECS Public Use Data The data from the 1994 RTECS is distributed in dBase and ASCII formats. The data in each set has been compressed using PKZIP. After downloading either the ASCII or dBase set, place the downloaded file in a separate directory and expand it using pkunzip. If you don't have pkunzip.exe, you can download that package here. PKUNZIP.EXE is in PKZ204g.exe. PKUNZIP.EXE is the only file you need, but the developers of the product have asked that the entire package be distributed and not the individual files. You can however find pkunzip.exe on several other Internet sites. If you download PKZ204g.exe to a separate directory, type PKZ204g and press ENTER.

170

Chapter 47 - Transportation | Department of Energy  

Office of Environmental Management (EM)

7 - Transportation Chapter 47 - Transportation 47.1TransportationAirCharterServices0.pdf More Documents & Publications AcqGuide47pt1.doc&0; TEC Working Group Topic Groups...

171

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

172

GIZ Transport & Mobility Compass | Open Energy Information  

Open Energy Info (EERE)

Region(s): Global Related Tools Promoting Clean Cars: Case Study of Stockholm and Sweden Technology Roadmap: Biofuels for Transport Navigating Transport NAMAs ... further results...

173

Arizona Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Arizona Department of Transportation Name: Arizona Department of Transportation Abbreviation: ADOT Address: 7330 N Shannon Rd Place: Tuscon, Arizona Zip: 85741 Phone Number: (520)...

174

Clean Transportation Education Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Transportation Education Project Clean Transportation Education Project 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

175

Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation is a federal agency in the United States. Retrieved from "http:en.openei.orgwindex.php?titleDepartmentofTransportation&oldid335946"...

176

Texas Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Texas Department of Transportation Name: Texas Department of Transportation Abbreviation: TxDOT Place: Austin, Texas Zip: 78701 Number of Employees: 10,000+ Website: http:...

177

Restructuring our Transportation Sector | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Restructuring our Transportation Sector Restructuring our Transportation Sector 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting,...

178

Transport NAMA Database | Open Energy Information  

Open Energy Info (EERE)

AgencyCompany Organization: Ecofys Website: www.transport-namadatabase.orgindex.phpMainPage Transport Toolkit Region(s): Latin America & Caribbean, Africa & Middle East,...

179

Sandia National Laboratories: energy for transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for transportation Sandia, SRI International Sign Pact to Advance Hydrogen and Natural Gas Research for Transportation On August 28, 2013, in Center for Infrastructure Research and...

180

Green Growth and Transport | Open Energy Information  

Open Energy Info (EERE)

Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Growth and Transport AgencyCompany Organization: ITF ComplexityEase of Use: Not Available Website:...

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Chemistry and Transport - Combustion Energy Frontier Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry and Transport Chemistry and Transport The overall goal of the flame chemistry working group is to obtain fundamental combustion and emission properties of low and high...

182

The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation  

Open Energy Info (EERE)

Gases, Regulated Emissions, and Energy Use in Transportation Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary Name: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet) Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Greenhouse Gas, Transportation Phase: Determine Baseline, Evaluate Options Topics: Baseline projection, GHG inventory Resource Type: Software/modeling tools User Interface: Spreadsheet Website: greet.es.anl.gov/main Cost: Free OpenEI Keyword(s): EERE tool, The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model, GREET References: GREET Fleet Main Page[1] Logo: The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET Fleet)

183

INL Site Executable Plan for Energy and Transportation Fuels Management  

SciTech Connect (OSTI)

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2008-11-01T23:59:59.000Z

184

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Lee, Henry. 2009. Oil Security and the TransportationCanadian Oil Sands: Energy Security and Climate Change.is closely tied to oil security. Any discussion of oil

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

185

Integration of renewable energy into the transport and electricity sectors through V2G  

E-Print Network [OSTI]

Keywords: V2G Vehicle to grid Energy system analysis Sustainable energy systems Electric vehicle EV for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind energy systems allows integration of much higher levels of wind electricity without excess electric

Firestone, Jeremy

186

Packaging and Transportation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Packaging and Transportation Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012 Annual Report. SUPPORTING PROGRAMS SAFE TRANSPORTATION OF RADIOLOGICAL SHIPMENTS Transportation Emergency Preparedness Program (TEPP) TEPP provides the tools for planning, training and exercises, and technical assistance to assist State and Tribal authorities in preparing for response

187

Sandia National Laboratories: Sandia Transportation-Energy Research...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

limateECEnergyComputational Modeling & SimulationSandia Transportation-Energy Research Project Funded as a Part of DOE's "EV Everywhere" Funding Program Sandia...

188

Fact #636: August 16, 2010 Transportation Energy Use by Mode...  

Energy Savers [EERE]

by Mode, 2008 Bar graph showing the transportation energy use by mode (buses, rail, pipeline, water, air, mediumheavy trucks, and light vehicles) for 2008. For more detailed...

189

Technology Mapping of the Renewable Energy, Buildings and Transport...  

Open Energy Info (EERE)

of the Renewable Energy, Buildings and Transport Sectors: Policy Drivers and International Trade Aspects AgencyCompany Organization: International Centre for Trade and...

190

Energy Transport by Classical Waves through Multilayers of Diffusing Slabs  

Science Journals Connector (OSTI)

We describe the effect of interfaces on classical wave propagation through diffusing layered media. A series resistor model for wave energy transport is introduced and we derive a...

Gerritsen, Sijmen; Bauer, Gerrit E

191

Transportation Fuel Basics - Propane | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

192

Transportation Fuel Basics - Electricity | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

193

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

consumption), and fuel carbon intensity. We can estimate transportation GHG emissions by plugging these four of the total human population (P) and transport intensity (T). The amount of carbon emitted per mile of transport is a product of energy intensity (E) and carbon intensity (C). By working out this equation

California at Davis, University of

194

Asymptotic analysis of extreme electrochemical transport  

E-Print Network [OSTI]

In the study of electrochemical transport processes, experimental exploration currently outpaces theoretical understanding of new phenomena. Classical electrochemical transport theory is not equipped to explain the behavior ...

Chu, Kevin Taylor

2005-01-01T23:59:59.000Z

195

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

196

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

197

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

198

Hydrogen Energy Storage for Grid and Transportation Services Workshop  

Broader source: Energy.gov [DOE]

View presentations from the U.S. Department of Energy (DOE) and Industry Canada Hydrogen Energy Storage for Grid and Transportation Services Workshop, held on May 1415, 2014, in Sacramento, California.

199

Triplet Energy Transport in Platinum-Acetylide Light Harvesting Arrays  

Science Journals Connector (OSTI)

Light harvesting and triplet energy transport is investigated in chromophore-functionalized polystyrene polymers featuring light harvesting and energy acceptor chromophores (traps) at varying loading. The series of precision polymers was constructed via ...

Zhuo Chen; Hsien-Yi Hsu; Mert Arca; Kirk S. Schanze

2014-10-22T23:59:59.000Z

200

2013 Second Quarter Clean Energy/Clean Transportation Jobs Report  

Broader source: Energy.gov [DOE]

Enivronmental Entrepreneurs (E2) Clean Energy/Clean Transportation Jobs Report tracks clean energy job announcements from companies, elected officials, the media and other sources, to show how how...

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Demand and Emission from Transport Sector in China  

Science Journals Connector (OSTI)

This paper aims to present a comprehensive overview of the current status and future trends of energy demand and emissions from transportation sector in China. ... a brief review of the national profile of energy

Yin Huang; Mengjun Wang

2013-01-01T23:59:59.000Z

202

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect (OSTI)

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

203

Department of Energy Receives Highest Transportation Industry Safety Award  

Broader source: Energy.gov (indexed) [DOE]

Receives Highest Transportation Industry Receives Highest Transportation Industry Safety Award Department of Energy Receives Highest Transportation Industry Safety Award May 1, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today received the Transportation Community Awareness and Emergency Response (TRANSCAER) Chairman's Award, one of industry's highest transportation safety awards, for helping local communities in emergency preparedness and response. TRANSCAER is a voluntary national organization that assists communities in emergency preparedness and response. "I'm very proud that The Department of Energy has raised the bar for community-based transportation emergency preparedness," Secretary of Energy Samuel W. Bodman said. "Safety is our number one priority, and we will

204

Folk Quantification of Transportation Energy: An initial investigation of perceptions of automobile energy use  

E-Print Network [OSTI]

energy use for both residential and transportation activities, informants used dollars to provide a common unit of measurement.

Silvis, Julia; Leighty, Wayne; Karner, Alex

2007-01-01T23:59:59.000Z

205

Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG  

Open Energy Info (EERE)

Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Jump to: navigation, search Name Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies Agency/Company /Organization Hiroshima University Focus Area Transportation Topics Co-benefits assessment, GHG inventory, Pathways analysis Resource Type Publications Website http://ir.lib.hiroshima-u.ac.j Program Start 2010 Country Bangladesh UN Region South-Eastern Asia References Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "Land Transport Sector in Bangladesh: An Analysis Toward Motivating GHG Emission Reduction Strategies"

206

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Freight Transportation Modal Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

207

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect (OSTI)

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

208

Energy Analysis Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Analysis Life Cycle Analysis Energy Analysis Publications NEW RELEASES Perspective on the U.S. Coal Industry Perspective on the U.S. Coal Industry [PPSX - 3.09MB] (Dec 2013) Novel CO2 Utilization Concepts: Working Paper Novel CO2 Utilization Concepts: Working Paper [ZIP - 4MB] (Nov 2013) Contact: Gavin Pickenpaugh Contact: Robert James This presentation provides an overview of the coal industry, focusing on the United States, but within a global context.... Read More Working Report on CO2 Utilization Concepts, detailing screening and detailed studies of concepts using CO2 for product g... Read More Power Plant Flexible Model Power Plant Flexible Model [2.04 - PDF] (Nov 2013) LCA XIII: The Carbon Footprint of Carbon Dioxide LCA XIII: The Carbon Footprint of Carbon Dioxide

209

TransportToolkit Prototype | Open Energy Information  

Open Energy Info (EERE)

TransportToolkit Prototype TransportToolkit Prototype Jump to: navigation, search Tool Summary Name: TransportToolkit Prototype Agency/Company /Organization: Nick Langle Complexity/Ease of Use: Not Available Cost: Free Related Tools Journal of Public Transportation Handbook for Handling, Storing, and Dispensing E85 Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks ... further results Find Another Tool FIND TRANSPORTATION TOOLS This is a test tool to set values needed for Exhibit search results When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these key phases of the process: Evaluate System - Assessing the current transportation situation Create Baseline - Developing a business-as-usual scenario

210

Sustainable Transport Systems STS | Open Energy Information  

Open Energy Info (EERE)

Transport Systems STS Transport Systems STS Jump to: navigation, search Name Sustainable Transport Systems (STS) Place Santa Cruz, California Zip 95062 Sector Carbon, Efficiency Product California-based company providing assistance to firms looking to cut their carbon footprint through advice about how they can improve efficiency. References Sustainable Transport Systems (STS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Transport Systems (STS) is a company located in Santa Cruz, California . References ↑ "Sustainable Transport Systems (STS)" Retrieved from "http://en.openei.org/w/index.php?title=Sustainable_Transport_Systems_STS&oldid=351924"

211

Transport Research Laboratory | Open Energy Information  

Open Energy Info (EERE)

Transport Research Laboratory Transport Research Laboratory Jump to: navigation, search Tool Summary Name: Transport Research Laboratory Agency/Company /Organization: Transport Research Laboratory Focus Area: Governance - Planning - Decision-Making Structure Topics: Potentials & Scenarios Resource Type: Website Website: www.trl.co.uk/ The UK's Transport Research Laboratory is an internationally recognised centre of excellence providing world-class research, consultancy, testing and certification for all aspects of transport. The website provides publications, news, software and many other products and services related to transport How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

212

The Practice of Cost Benefit Analysis in the Transport Sector...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon The Practice of Cost Benefit Analysis in the Transport Sector a Mexican Perspective Jump to: navigation,...

213

Energy Analysis and Public Policy  

Science Journals Connector (OSTI)

...losses for the dry steam system was 14.2 percent, and for the wet steam system was 10 percent...policy analysis tools. Section 5 of the...geothermal power system for 30 years. All...Transport of materials Steam transport (24...

Martha W. Gilliland

1975-09-26T23:59:59.000Z

214

Post-2012 Climate Instruments in the transport sector | Open Energy  

Open Energy Info (EERE)

Post-2012 Climate Instruments in the transport sector Post-2012 Climate Instruments in the transport sector Jump to: navigation, search Name Post-2012 Climate Instruments in the transport sector Agency/Company /Organization Energy Research Centre of the Netherlands Partner Asian Development Bank Sector Energy Focus Area Transportation Topics Finance Resource Type Presentation Website http://www.slocat.net Program Start 2009 Program End 2010 UN Region South-Eastern Asia References Post-2012 Climate Instruments in the transport sector (CITS)[1] The post 2012 Climate Instruments in the transport sector (CITS) project implemented by the Asian Development Bank (ADB), in cooperation with the Inter-American Development Bank (IDB), is a first step to help ensure that the transport sector can benefit from the revised/new climate change

215

NREL: Energy Analysis - Wesley Cole  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and integration Design and analysis of sustainable energy systems Impacts of the natural gas supply chain on renewable energy technologies Education and background training Ph.D....

216

NREL: Energy Analysis - Parthiv Kurup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. CSP Cost Analyst and Engineer On staff since January 5, 2015 Phone number: 303-275-4013...

217

NREL: Energy Analysis - Aaron Levine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Levine Photo of Aaron Levine Aaron Levine is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Legal and Regulatory...

218

Vulnerability Analysis of Complex Networks from Transportation Networks to  

E-Print Network [OSTI]

, Satellites, Telephone Exchanges Fiber Optic Cables Radio Links Voice, Data, Video Energy Pumping Stations Grid Transportation, Communication, and Energy Networks #12;Components of Common Physical Networks, Plants Pipelines, Transmission Lines Water, Gas, Oil, Electricity #12;US Railroad Freight Flows #12

Nagurney, Anna

219

Vehicle Technologies Office: Data and Analysis for Transportation Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) in conjunction with the national laboratories conducts a wide range of statistical research on energy use, economics, and trends in transportation.

220

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP(Redirected from Transportation Toolkit) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation LEDS Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low emission transportation systems that support economic growth. This toolkit website helps users navigate a variety of resources in order to identify the most effective tools necessary to build and implement low

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

LEDSGP/Transportation Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit < LEDSGP Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Developing Strategies for Clean, Efficient Transportation The Transportation Toolkit supports development planners, technical experts, and decision makers at national and local levels to plan and implement low-emission transportation systems that support economic growth. This toolkit helps users navigate a variety of resources to identify the most effective tools to build and implement low emission development strategies (LEDS) for the transport sector. Learn more in the report on

222

Category:Transportation Toolkits | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Transportation Toolkits Jump to: navigation, search Add a new Transportation Toolkit Pages in category "Transportation Toolkits" The following 86 pages are in this category, out of 86 total. A A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 A Review of HOV Lane Performance and Policy Options in the United States - Final Report A Roadmap to Funding Infrastructure Development Adapting Urban Transport to Climate Change- Module 5f - Sustainable transport: a sourcebook for policy-makers in developing cities Africa's Transport Infrastructure Mainstreaming Maintenance and Management

223

Transport Activity Measurement Toolkit (TAMT) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Transport Activity Measurement Toolkit (TAMT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transport Activity Measurement Toolkit (TAMT) Agency/Company /Organization: World Bank Sector: Energy Focus Area: Transportation Topics: GHG inventory, Low emission development planning Resource Type: Dataset, Maps, Software/modeling tools, Video, Training materials User Interface: Website, Desktop Application Website: code.google.com/p/tamt/ Cost: Free Transport Activity Measurement Toolkit (TAMT) Screenshot References: TAMT Presentation[1] TAMT Google Site Page[2] TAMT Demonstration Videos[3] "The World Bank Latin America and the Caribbean Region Sustainable Development Department Transport Cluster in conjunction with the World

224

Hazardous Waste Transporter Permits (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) Hazardous Waste Transporter Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide

225

Transportation Policies and Programs | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Policies and Programs State and local governments can support reduced petroleum use by implementing policies and programs that promote the use of alternative fuel...

226

Navigating Transport NAMAs | Open Energy Information  

Open Energy Info (EERE)

in Transport Feebates: A Legislative Option to Encourage Continuous Improvements to Automobile Efficiency London Congestion Pricing: Implications for Other Cities ... further...

227

Financing Sustainable Urban Transport | Open Energy Information  

Open Energy Info (EERE)

for a successful sustainable transport agenda in a city. The great importance of political will and the considerable input needed from the local and national governments when...

228

National Transportation Stakeholders Forum | Department of Energy  

Office of Environmental Management (EM)

Stakeholders Forum National Transportation Stakeholders Forum Presentation by Ahmad Al-Daouk, Director of National Security Department NNSA Service Center National...

229

Caltrans Transportation Permits Manual | Open Energy Information  

Open Energy Info (EERE)

Permits Manual Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Caltrans Transportation Permits ManualLegal Abstract...

230

Transportation Energy Futures Study: The Key Results and Conclusions  

Open Energy Info (EERE)

Transportation Energy Futures Study: The Key Results and Conclusions Transportation Energy Futures Study: The Key Results and Conclusions Webinar Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(1992) Super contributor 1 May, 2013 - 11:38 This webinar will outline the key results and conclusions from EERE's Transportation Energy Futures study, which highlights underexplored opportunities to reduce petroleum use and greenhouse gas emissions from the U.S. transportation sector. There will be time for questions from attendees at the end of the webinar. Principal Deputy Assistant Secretary Mike Carr will introduce the study and provide context on EERE's transportation energy strategy. In his role with EERE, Mike provides leadership direction on cross-cutting activities in EERE's portfolio. In particular, he is using his experience in policy

231

ECUT energy data reference series: lightweight materials for ground transportation  

SciTech Connect (OSTI)

This report summarizes information that describes the use of lightweight materials in automobiles. The information on this mode of transportation represents the largest potential energy savings for substitution of lightweight materials in the transportation sector. Included are data on energy conversion efficiency of the engine and its relationship to vehicle weight, the capital stock, the amount of energy used, and the service activity level as measured in ton-miles.

Abarcar, R.B.; Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

232

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

233

NREL: Energy Analysis - Kelly Eurek  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kelly Eurek Photo of Kelly Eurek Kelly Eurek is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Energy Analyst On staff since August...

234

International Clean Energy Analysis | Open Energy Information  

Open Energy Info (EERE)

International Clean Energy Analysis International Clean Energy Analysis Jump to: navigation, search About ICEA UNIDO small.png NREL small.png The International Clean Energy Analysis (ICEA) gateway promotes increased access to clean energy analysis tools, databases, methods and other technical resources which can be applied in developing countries. This wiki-based dynamic platform allows you to add to the inventory of clean energy organizations, tools, programs and data included on the site. We encourage you to expand the inventory of resources by clicking on "add" below the International Initiatives map. The gateway is organized by Information Toolkits which provide tools and resources to help answer a number of clean energy questions. The International Initiatives map also provides country-specific information on clean energy programs, tools and organizations. Click here to learn more about the ICEA gateway project.

235

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties  

E-Print Network [OSTI]

FRONTIERS ARTICLE Fundamentals of energy transport, energy conversion, and thermal properties, thermoelectrics, and photovoltaics. However, energy transport and conversion, at the organic­inorganic interface and as an energy conversion technology. Aviram and Ratner's revolutionary suggestion that molecules could behave

Malen, Jonathan A.

236

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RMIR (Radioactive Materials Incident Report) Database Transportation RMIR (Radioactive Materials Incident Report) Database Transportation Accident and Incident Experience,1971-1999 Access Hazardous Materials Information System (HMIS) the primary source of national data for the Federal, state, and local governmental agencies responsible for the safety of hazardous materials transportation. Rail Transport Highway Transport Air Transport The Radioactive Material Incident Report (RMIR) Database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories (SNL) to support its research and development activities for the U.S. Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the U.S. from 1971 through 1999. These data were drawn from the U.S.

237

UNEP-Low Carbon Transport in India | Open Energy Information  

Open Energy Info (EERE)

in India in India Jump to: navigation, search Name UNEP-Low Carbon Transport in India Agency/Company /Organization United Nations Environment Programme (UNEP) Sector Climate, Energy Focus Area Transportation Topics Low emission development planning Website http://www.unep.org/transport/ Program Start 2010 Program End 2013 Country India Southern Asia References Low Carbon Transport in India[1] UNEP-Low Carbon Transport in India Screenshot "India is currently the fourth largest greenhouse gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. The sector also provokes road congestion, local air pollution, noise and accidents, particularly in urban areas. Opportunities exist to make India's transport growth more sustainable by

238

APEC-Alternative Transport Fuels: Implementation Guidelines | Open Energy  

Open Energy Info (EERE)

APEC-Alternative Transport Fuels: Implementation Guidelines APEC-Alternative Transport Fuels: Implementation Guidelines Jump to: navigation, search Tool Summary Name: APEC-Alternative Transport Fuels: Implementation Guidelines Agency/Company /Organization: Asia-Pacific Economic Cooperation Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.egnret.ewg.apec.org/news/Alternative%20Transport%20Fuels%20Final%2 Cost: Free Language: English References: APEC-Alternative Transport Fuels: Implementation Guidelines[1] "Worldwide, there are at least 35 million vehicles already operating on some form of alternative transport fuel and many millions more that are fuelled by blends with conventional gasoline and diesel or powered by electricity. Many alternative fuel programs are being, or have been,

239

EPA State and Local Transportation Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » EPA State and Local Transportation Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: EPA State and Local Transportation Resources Agency/Company /Organization: United States Environmental Protection Agency Sector: Climate, Energy Focus Area: Transportation Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Website Website: www.epa.gov/oms/stateresources/policy/pag_transp.htm Cost: Free References: Transportation-Related Documents[1] Provides a variety of resources discussing approaches to reducing transportation energy use. Overview This EPA website gathers together a number of guidance documents covering various approaches to reducing emissions and energy use in the

240

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 11:31am Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States November 8, 2007 - 4:31pm Addthis WASHINGTON, DC - The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in

242

Agencies Publish Draft Environmental Impact Statement on Energy Transport  

Broader source: Energy.gov (indexed) [DOE]

Draft Environmental Impact Statement on Energy Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 Agencies Publish Draft Environmental Impact Statement on Energy Transport Corridor Designations in 11 Western States, November 8, 2007 The Department of the Interior's Bureau of Land Management (BLM), and the U.S. Departments of Energy, Agriculture, Commerce and Defense today released for public review and comment a Draft Programmatic Environmental Impact Statement (Draft PEIS) proposing designation of energy transport corridors on Federal lands in 11 Western States in accordance with Section 368 of the Energy Policy Act of 2005. The proposed energy corridors would facilitate future siting of oil, gas, and hydrogen pipelines and electricity transmission and distribution on Federal lands in the West to

243

NREL: Energy Analysis Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Examples of NREL Analysis Impacts Examples of NREL Analysis Impacts Resource Assessment Electric Sector Integration Jobs and Economic Competitiveness Geospatial Analysis Life Cycle Assessment Harmonization Analysis of Project Finance Analysis at NREL aims to increase the understanding of the current and future interactions and roles of energy policies, markets, resources, technologies, environmental impacts, and infrastructure. NREL analysis, data, and tools inform decisions as energy-efficient and renewable energy technologies advance from concept to commercial application. Learn more about NREL's analysis by downloading Realizing a Clean Energy Future: Highlights of NREL Analysis . Featured Analysis Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure) Status and Trends in the Green Power Market (2012 Data)

244

Transportation energy strategy: Project {number_sign}5 of the Hawaii Energy Strategy Development Program  

SciTech Connect (OSTI)

This study was prepared for the State Department of Business, Economic Development and Tourism (DBEDT) as part of the Hawaii Energy Strategy program. Authority and responsibility for energy planning activities, such as the Hawaii Energy Strategy, rests with the State Energy Resources Coordinator, who is the Director of DBEDT. Hawaii Energy Strategy Study No. 5, Transportation Energy Strategy Development, was prepared to: collect and synthesize information on the present and future use of energy in Hawaii`s transportation sector, examine the potential of energy conservation to affect future energy demand; analyze the possibility of satisfying a portion of the state`s future transportation energy demand through alternative fuels; and recommend a program targeting energy use in the state`s transportation sector to help achieve state goals. The analyses and conclusions of this report should be assessed in relation to the other Hawaii Energy Strategy Studies in developing a comprehensive state energy program. 56 figs., 87 tabs.

NONE

1995-08-01T23:59:59.000Z

245

Department of Energy Office of Science Transportation Overview  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy (DOE) Department of Energy (DOE) Office of Science (SC) Transportation Overview Jon W. Neuhoff, Director N B i k L b t New Brunswick Laboratory 1 DOE National Transportation Stakeholders Forum May 26, 2010 About the Office of Science The Office of Science (SC) with a budget of approximately $5 Billion...  Single largest supporter of basic research in the physical sciences in the U.S. (> 40% of the total funding) ( g)  Principal Federal funding agency for the Nation's research programs in high energy physics, nuclear physics, and fusion energy sciences  Manages fundamental research programs in basic energy sciences, biological and environmental sciences, and computational science

246

NREL: Energy Analysis - Life Cycle Assessments of Energy Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Life Cycle Assessments of Energy Technologies Life Cycle Assessments of Energy Technologies Learn about how NREL research analysts are evaluating various LCA studies in the Life Cycle Analysis Harmonization Project. NREL is a leader in the field of life cycle assessment (LCA) of energy technologies, both renewable and conventional. Life cycle assessment is a standardized technique that tracks all material, energy, and pollutant flows of a system-from raw material extraction, manufacturing, transport, and construction to operation and end-of-life disposal. Life cycle assessment can help determine environmental burdens from "cradle to grave" and facilitate comparisons of energy technologies. Life cycle assessments provide a well-established and comprehensive framework to compare renewable energy technologies with fossil-based and

247

Montana Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Montana Department of Transportation Name Montana Department of Transportation Address 2701 Prospect Avenue P.O. Box 201001 Place Helena, Montana Zip 59620 Website http://www.mdt.mt.gov/ Coordinates 46.589151°, -111.992175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.589151,"lon":-111.992175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

248

Idaho Transportation Department | Open Energy Information  

Open Energy Info (EERE)

Idaho Transportation Department Idaho Transportation Department Jump to: navigation, search Logo: Idaho Transportation Department Name Idaho Transportation Department Address 3311 W. State St. PO Box 7129 Place Boise, Idaho Zip 83707-1129 Phone number 208-334-8000 Website http://itd.idaho.gov/ Coordinates 43.635205°, -116.230588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.635205,"lon":-116.230588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Oregon Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Jump to: navigation, search Logo: Oregon Department of Transportation Name Oregon Department of Transportation Address 355 Capitol Street NE Place Salem, Oregon Zip 97301-3871 Year founded 1969 Phone number 888-275-6368 Website http://www.oregon.gov/ODOT/Pag Coordinates 44.940436°, -123.028211° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.940436,"lon":-123.028211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Transportation Fuel Basics - Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

251

Utah Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Logo: Utah Department of Transportation Name Utah Department of Transportation Address 4501 South 2700 West Place Salt Lake City, Utah Zip 84114 Phone number 801.965.4000 Website http://www.udot.utah.gov/main/ Coordinates 40.6724141°, -111.9579795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6724141,"lon":-111.9579795,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Integration for Seamless Transport | Open Energy Information  

Open Energy Info (EERE)

the reasons for the relative failure of integrated transport polices with particular reference to experience in the UK. LEDSGP green logo.png This tool is included in the...

253

Thermal Energy Transport in the Solar Wind  

Science Journals Connector (OSTI)

This paper is intended to summarize the present status of measurements of heat flux in the solar wind and to provide a comparison of these measurements with the theory for collision-dominated heat transport in...

Michael D. Montgomery

1972-01-01T23:59:59.000Z

254

Transportation Fuel Basics - Hydrogen | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen Transportation Fuel Basics - Hydrogen August 19, 2013 - 5:45pm Addthis Hydrogen (H2) is a potentially emissions-free alternative fuel that can be produced from domestic resources. Although not widely used today as a transportation fuel, government and industry research and development are working toward the goal of clean, economical, and safe hydrogen production and hydrogen-powered fuel cell vehicles. Hydrogen is the simplest and most abundant element in the universe. However, it is rarely found alone in nature. Hydrogen is locked up in enormous quantities in water (H2O), hydrocarbons (such as methane, CH4), and other organic matter. Efficiently producing hydrogen from these compounds is one of the challenges of using hydrogen as a fuel. Currently,

255

Nevada Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Nevada Department of Transportation Nevada Department of Transportation Jump to: navigation, search Logo: Nevada Department of Transportation Name Nevada Department of Transportation Address 1263 S. Stewart St. Place Carson City, Nevada Zip 89712 Phone number 775-888-7000 Website http://www.nevadadot.com/defau Coordinates 39.157202°, -119.764694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.157202,"lon":-119.764694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

DOE Hydrogen Analysis Repository: Carbon Dioxide Compression, Transport,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Compression, Transport, and Storage Carbon Dioxide Compression, Transport, and Storage Project Summary Full Title: Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity Project ID: 195 Principal Investigator: David McCollum Brief Description: This project addresses several components of carbon capture and storage (CCS) costs, provides technical models for determining the engineering and infrastructure requirements of CCS, and describes some correlations for estimating CO2 density and viscosity. Keywords: Pipeline, transportation, greenhouse gases (GHG), costs, technoeconomic analysis Purpose Estimate costs of carbon dioxide capture, compression, transport, storage, etc., and provide some technical models for determining the engineering and

257

Impact of Transportation on Cost, Energy and Particulate Emissions for Recycled Concrete Aggregate.  

E-Print Network [OSTI]

??IMPACT OF TRANSPORTATION ON COST, ENERGY AND PARTICULATE EMISSIONS FOR RECYCLED CONCRETE AGGREGATE Transportation distances can have a huge impact on cost, energy, and particulate (more)

Hameed, Mohamed

2009-01-01T23:59:59.000Z

258

Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE)  

Office of Energy Efficiency and Renewable Energy (EERE)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

259

Recent Trends in Emerging Transportation Fuels and Energy Consumption  

Science Journals Connector (OSTI)

Several recent trends indicate current developments in energy and transportation fuels. World trade in biofuels is developing in ethanol, wood chips, and vegetable oil / biodiesel with some countries being exp...

B. G. Bunting

2012-01-01T23:59:59.000Z

260

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the U.S. Department of Energy by National Renewable Energy Laboratory, Golden, CO. DOEGO-102013-3710. 101 pp. vi REPORT CONTRIBUTORS AND ROLES National Renewable Energy...

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sandia National Laboratories: Transportation Energy Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF is...

262

Technology Roadmap - Biofuels for Transport | Open Energy Information  

Open Energy Info (EERE)

Technology Roadmap - Biofuels for Transport Technology Roadmap - Biofuels for Transport Jump to: navigation, search Tool Summary Name: Technology Roadmap - Biofuels for Transport Agency/Company /Organization: International Energy Agency Focus Area: Fuels & Efficiency Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf This roadmap identifies technology goals and defines key actions that stakeholders must undertake to expand biofuel production and use sustainably. It provides additional focus and urgency to international discussions about the importance of biofuels to a low CO2 future. References Retrieved from "http://en.openei.org/w/index.php?title=Technology_Roadmap_-_Biofuels_for_Transport&oldid=515032"

263

ECUT energy data reference series: Otto cycle engines in transportation  

SciTech Connect (OSTI)

Information that describes the use of the Otto cycle engines in transportation is summarized. The transportation modes discussed in this report include the following: automobiles, light trucks, heavy trucks, marine, recreational vehicles, motorcycles, buses, aircraft, and snowmobiles. These modes account for nearly 100% of the gasoline and LPG consumed in transportation engines. The information provided on each of these modes includes descriptions of the average energy conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles. Estimates are provided for the years 1980 and 2000.

Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

264

Transportation Cost and Benefit Analysis Congestion Costs Victoria Transport Policy Institute (www.vtpi.org)  

E-Print Network [OSTI]

Transportation Cost and Benefit Analysis ­ Congestion Costs Victoria Transport Policy Institute (www.vtpi.org) Page 5.5-1 5.5 Congestion This chapter examines traffic congestion costs, that is, delay that affect congestion, various estimates of congestion costs, and the benefits of congestion reductions

O'Donnell, Tom

265

Transportation Secure Data Center: Real-World Data for Environmental and Air Quality Analysis (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Emissions and air pollution modeling, Vehicle energy and power analysis, Climate change impact studies, Alternative fuel station planning, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

Not Available

2013-01-01T23:59:59.000Z

266

Energy Analysis and Environmental Impacts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric power lines and climate change model Electric power lines and climate change model Energy Analysis and Environmental Impacts Energy Analysis and Environmental Impacts application/pdf icon eaei-org-chart-11-2013.pdf The Energy Analysis and Environmental Impacts Department analyzes U.S. and global energy consumption and the associated social, economic, and environmental impacts, including human health, greenhouse gas emissions, and global climate change. Researchers conduct R&D and provide technical assistance to governments on: Lifecycle analysis of products and industries; How energy use affects health in the indoor environment; Energy markets and utility policy; Renewable energy policy and economics; Energy efficiency standards and codes; International energy and environmental impacts in the developed and

267

Journal of Public Transportation | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Journal of Public Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Journal of Public Transportation Agency/Company /Organization: National Center for Transit Research Focus Area: Public Transit & Infrastructure Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.nctr.usf.edu/jpt/pdf/JPT13-1.pdf This document have like principal topics: Evaluating the Congestion Relief Impacts of Public Transport in Monetary Terms, The Operating Characteristics of Intercity Public Van Service in Lampung, Indonesia,

268

Colorado Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Department of Transportation Department of Transportation Name Colorado Department of Transportation Address 4201 E Arkansas Ave Place Denver, Colorado Zip 80222 Year founded 1917 Phone number 303-757-9011 Coordinates 39.6911535°, -104.9384066° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6911535,"lon":-104.9384066,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

National Transportation Stakeholders Forum (NTSF) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) National Transportation Stakeholders Forum (NTSF) The U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE communicates at a national level with states and tribes about the Department's shipments of radioactive waste and materials, as well as occasional high-visibility shipments that are nonradioactive. The purpose of the NTSF is to bring transparency, openness, and accountability to DOE's offsite transportation activities through collaboration with state and tribal governments. The NTSF meetings and webinars will be particularly relevant for personnel with responsibilities in packaging and transportation, emergency management, security, inspection and enforcement, and radiation protection. Send your

270

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

271

Molecular Ion Beam Transportation for Low Energy Ion Implantation  

SciTech Connect (OSTI)

A joint research and development of steady state intense boron ion sources for 100's of electron-volt ion implanters has been in progress for the past five years. Current density limitation associated with extracting and transporting low energy ion beams result in lower beam currents that in turn adversely affects the process throughput. The transport channel with electrostatic lenses for decaborane (B{sub 10}H{sub 14}) and carborane (C{sub 2}B{sub 10}H{sub 12}) ion beams transportation was developed and investigated. The significant increase of ion beam intensity at the beam transport channel output is demonstrated. The transport channel simulation, construction and experimental results of ion beam transportation are presented.

Kulevoy, T. V.; Kropachev, G. N.; Seleznev, D. N.; Yakushin, P. E.; Kuibeda, R. P.; Kozlov, A. V.; Koshelev, V. A. [Institute for Theoretical and Experimental Physics, Moscow, 117218 (Russian Federation); Hershcovitch, A.; Johnson, B. M. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gushenets, V. I.; Oks, E. M. [High Current Electronics Institute Russian Academy of Sciences, Tomsk, 634055 (Russian Federation); Polozov, S. M. [Moscow Engineering Physics Institute, Kashirskoe sh. 31, Moscow, 115409 (Russian Federation); Poole, H. J. [PVI, Oxnard, California 93031-5023 (United States)

2011-01-07T23:59:59.000Z

272

Hybrid method of deterministic and probabilistic approaches for continuous energy neutron transport problem  

SciTech Connect (OSTI)

This paper presents a new hybrid method of continuous energy Monte Carlo (MC) and multi-group Method of Characteristics (MOC). For a continuous energy neutron transport analysis, the hybrid method employs a continuous energy MC for resonance energy range to treat the resonances accurately and a multi-group MOC for high and low energy ranges for efficiency. Numerical test with a model problem confirms that the hybrid method can produce consistent results with the reference continuous energy MC-only calculation as well as multi-group MOC-only calculation. (authors)

Lee, H.; Lee, D. [Ulsan National Institute of Science and Technology UNIST, gil 50, Eonyang-eup, Ulju-gun, Ulsan, 689-798 (Korea, Republic of)

2013-07-01T23:59:59.000Z

273

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Broader source: Energy.gov (indexed) [DOE]

Awards $45 Million to Deploy Advanced Awards $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs and protect the environment in communities nationwide. "By partnering with universities, private industry and our national labs, the Energy Department is helping to build a strong 21st century

274

Energy for Cleaner Transportation Hydro-Quebec  

E-Print Network [OSTI]

W. Yu, X. Yang, P. Wang, and L. Meng 19 Rotating Rate Dependency of Methanol Oxidation on a Smooth and Methanol Transport in Direct Methanol Proton Exchange Membrane Fuel Cells M. Lefebvre and D. Olmeijer 35 solution-based room temperature reduction technique whereby nanoscale iron powder is produced. This new

Azad, Abdul-Majeed

275

Energy efficiency achievements in China?s industrial and transport sectors: How do they rate?  

Science Journals Connector (OSTI)

Abstract China is experiencing intensified industrialisation and motorisation. In the world?s largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors? performances reflect the effectiveness of China?s energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector?s demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels. Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China?s near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and \\{GHGs\\} by 3435 per cent.

Libo Wu; Hong Huo

2014-01-01T23:59:59.000Z

276

NREL: Energy Analysis: Analysis of Project Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Project Finance Analysis of Project Finance NREL analysis helps potential renewable energy developers and investors gain insights into the complex world of project finance. Renewable energy project finance is complex, requiring knowledge of federal tax credits, state-level incentives, renewable attribute markets, renewable technology installation and operation costs, and many other site-specific considerations. NREL conducts research, performs analysis, and produces reports and analysis tools on: Project-level finance (terms, structures, and innovations) Renewable energy financial policies such as feed-in tariffs, clean renewable energy bonds, and power purchase agreements State-of-the-market for renewable technologies High renewable penetration scenarios A map showing the dollar (millions) amount of Federal Section 1603 awards.

277

Payback Analysis of Energy Proposals  

E-Print Network [OSTI]

that the energy inflation rate often exceeds the inflation rate of the general economy, this paper develops a technique for including these parameters into payback analysis of energy investments. Included in the development of this method are examples of its...

Blevins, L. D.; Estes, C. B.

1980-01-01T23:59:59.000Z

278

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

279

Transport Analysis of Radial Electric Field in Helical Plasmas  

E-Print Network [OSTI]

condition for the neoclassical particle ux. The generation of the electric #12;eld in helical systems could in generating the radial electric #12;eld [8, 9]. We have used the transport model for anomalous di#11;usivitiesTransport Analysis of Radial Electric Field in Helical Plasmas S. Toda and K. Itoh National

280

Singular Vector Analysis for Atmospheric Chemical Transport Models  

E-Print Network [OSTI]

are presented for a simulation of atmospheric pollution in East Asia in March 2001. The singular valuesSingular Vector Analysis for Atmospheric Chemical Transport Models Wenyuan Liao and Adrian Sandu for atmospheric chemical transport models. The distinguishing feature of these models is the presence of stiff

Sandu, Adrian

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Orr, Director, Global Climate and Energy Project, StanfordDirector, Global Climate and Energy Project, Stanford

Yang, Christopher

2011-01-01T23:59:59.000Z

282

Environmental emissions and socioeconomic considerations in the production, storage, and transportation of biomass energy feedstocks  

SciTech Connect (OSTI)

An analysis was conducted to identify major sources and approximate levels of emissions to land, air, and water, that may result, in the year 2010, from supplying biofuel conversion facilities with energy crops. Land, fuel, and chemicals are all used in the establishment, maintenance, harvest, handling and transport of energy crops. The operations involved create soil erosion and compaction, particulate releases, air emissions from fuel use and chemical applications, and runoff or leachate. The analysis considered five different energy facility locations (each in a different major crop growing region) and three classes of energy crops -- woody crops, perennial herbaceous grasses, and an annual herbaceous crop (sorghum). All projections had to be based on reasonable assumptions regarding probable species used, type of land used, equipment requirements, chemical input requirements, and transportation fuel types. Emissions were summarized by location and class of energy crop.

Perlack, R.D.; Ranney, J.W.; Wright, L.L.

1992-07-01T23:59:59.000Z

283

E-Print Network 3.0 - advanced energy transport Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Center Transportation Improving efficiency by cutting energy use, improving quality... The Energy Efficiency and Renewable Energy Program develops sustainable energy...

284

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

285

EnergyPlus Run Time Analysis  

E-Print Network [OSTI]

Tree LawrenceBerkeleyNationalLaboratory Page37 California EnergyEnergy Commission EnergyPlus Run Time Analysis Plant Supply Calling Tree (Energy Commission EnergyPlus Run Time Analysis Appendix A EnergyPlus Call Tree

Hong, Tianzhen

2009-01-01T23:59:59.000Z

286

Energy analysis program. 1994 annual report  

SciTech Connect (OSTI)

This report provides an energy analysis overview. The following topics are described: building energy analysis; urban and energy environmental issues; appliance energy efficiency standards; utility planning and policy; energy efficiency, economics, and policy issues; and international energy and environmental issues.

Levine, M.D.

1995-04-01T23:59:59.000Z

287

NREL: Energy Analysis - Jennie Jorgenson  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and dispatch modeling Integrating concentrating solar power, energy storage, and demand response into power grid models Quantitativestatistical analysis and modeling Primary...

288

NREL: Energy Analysis - Jim Leyshon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jim Leyshon is a member of the Data Analysis and Visualization Group in the Strategic Energy Analysis Center. Web ContentDesign On staff since 1995 Phone number: 303-384-7317...

289

NREL: Energy Analysis - Dylan Hettinger  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Data Analysis and Visualization Group in the Strategic Energy Analysis Center. GIS Programmer Analyst On staff since 2010 Phone number: 303-275-3750 E-mail:...

290

NREL: Energy Analysis - Nick Grue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis and Visualization Group in the Strategic Energy Analysis Center. Scientist II - GIS On staff since June 2014 Phone number: 303-384-7278 E-mail: nick.grue@nrel.gov Areas of...

291

NREL: Energy Analysis - Jenny Melius  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Data Analysis and Visualization Group in the Strategic Energy Analysis Center. GIS Scientist II On staff since May 2011 Phone number: 303-275-4661 E-mail:...

292

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

293

California Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Place Sacramento, California Coordinates 38.5815719°, -121.4943996° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5815719,"lon":-121.4943996,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

interest is technical and economic assessment of new energy technologies, especially in the areas in transportation and stationary power production. She has served on California state committees on hydrogen and on California's greenhouse gas regulation AB 32, the U.S. Department of Energy Hydrogen Technical Advisory

California at Davis, University of

295

H{sup -} beam transport experiments in a solenoid low energy beam transport  

SciTech Connect (OSTI)

The Front End Test Stand (FETS) is located at Rutherford Appleton Laboratory and aims for a high current, fast chopped 3 MeV H{sup -} ion beam suitable for future high power proton accelerators like ISIS upgrade. The main components of the front end are the Penning ion source, a low energy beam transport line, an radio-frequency quadrupole (RFQ) and a medium energy beam transport (MEBT) providing also a chopper section and rebuncher. FETS is in the stage of commissioning its low energy beam transport (LEBT) line consisting of three solenoids. The LEBT has to transport an H{sup -} high current beam (up to 60 mA) at 65 keV. This is the injection energy of the beam into the RFQ. The main diagnostics are slit-slit emittance scanners for each transversal plane. For optimizing the matching to the RFQ, experiments have been performed with a variety of solenoid settings to better understand the actual beam transport. Occasionally, source parameters such as extractor slit width and beam energy were varied as well. The paper also discusses simulations based on these measurements.

Gabor, C. [ASTeC Intense Beams Group, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Back, J. J. [High Energy Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P. [ISIS Pulsed Spallation Neutron Source, Rutherford Appleton Laboratory, Chilton, Didcot - Oxfordshire OX11 0QX (United Kingdom); Izaola, Z. [ESS Bilbao, Accelerator Physics Group, Edificio Cosimet Paseo Landabarri, 2, 1 Planta. 48940 Leioa (Spain)

2012-02-15T23:59:59.000Z

296

NREL: Energy Analysis - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Links Related Links Here you'll find links to other programs, organizations, and information resources concerning other analysis capabilities, energy-modeling, and technology expertise related to renewable energy. International Applications NREL's International Program in its effort to promote the use of renewable energy as a tool for sustainable development, applies world-class expertise in technology development and deployment, economic analysis, resource assessment, project design and implementation, and policy formulation. Assisting State and Local Governments Using renewable energy and being energy efficient is smart. Not only does it protect the environment, it benefits the economy. Many mayors, governors, city/county commissioners, state legislators, state energy

297

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

commodity and energy prices, and alternative advancedany alternative fuel system, gravimetric energy density (MJ/and hydrogen as alternative fuels is in energy storage. The

Yang, Christopher

2011-01-01T23:59:59.000Z

298

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

travel demand, reducing energy intensity and reducing carbonVehicles Vehicle Energy Intensity (E) MPGGE 1990 CA Fleetthe improvements in energy intensity that could be achieved

Yang, Christopher

2011-01-01T23:59:59.000Z

299

Enhancing Transportation Energy Security through Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Initiative - NPBF The FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The Pathway to Energy Security...

300

Energy Savers in the Community: Green Transportation Rally | Department of  

Broader source: Energy.gov (indexed) [DOE]

Savers in the Community: Green Transportation Rally Savers in the Community: Green Transportation Rally Energy Savers in the Community: Green Transportation Rally September 22, 2009 - 12:31pm Addthis John Lippert This year marks the seventh year that I'm organizing a Green Transportation Rally in my city's Labor Day parade. I think it's a great way to educate the public, plus it's a lot of fun. I started out organizing a group of local residents who own hybrid-electric vehicles (HEVs). Each year my grandchildren and I lead the group on foot carrying a banner proclaiming "Green Transportation." I produce signs that we tape to the windows or attach to the doors and hoods with magnets. One neighbor produces her own huge cardboard sign that she attaches to the roof, proudly proclaiming that she achieves more than 50 mpg in her hybrid-averaged over nearly 100,000

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

On-Line Tools - Center for Transportation Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On-Line Tools On-Line Tools Fuel Economy Website - This interactive website allows consumers to factor fuel efficiency into their car buying decisions by allowing side by side fuel economy comparisons of new model year vehicles. This site also contains information on advanced techonolgy vehicles, the environment, and a well organized links section, making it a gateway for those interested in researching vehicles on the web. Contact: Bo Saulsbury. Transportation Energy Data Book: Edition 32 - Designed as a desk-top reference, the data book includes statistics and other information that characterize transportation activity and/or influence transportation energy use. The Transportation Energy Data Book: Edition 32 is available in pdf format by clicking on the above link and is also available in hard copy. To

302

Vulnerability Analysis Considerations for the Transportation of Special Nuclear Material  

SciTech Connect (OSTI)

The vulnerability analysis methodology developed for fixed nuclear material sites has proven to be extremely effective in assessing associated transportation issues. The basic methods and techniques used are directly applicable to conducting a transportation vulnerability analysis. The purpose of this paper is to illustrate that the same physical protection elements (detection, delay, and response) are present, although the response force plays a dominant role in preventing the theft or sabotage of material. Transportation systems are continuously exposed to the general public whereas the fixed site location by its very nature restricts general public access.

Nicholson, Lary G.; Purvis, James W.

1999-07-21T23:59:59.000Z

303

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions  

E-Print Network [OSTI]

5. Energy Production and Transport 5.1 Energy Release from Nuclear Reactions As mentioned when we looked at energy generation, it is now known that most of the energy radiated by stars must be released by nuclear reactions. In this section we will consider why it is that energy can be released by nuclear

Peletier, Reynier

304

Decision Models for Bulk Energy Transportation  

E-Print Network [OSTI]

(ISU - Randy Larabee) · City of Ames (Ames - Merlin Hove) · MidAmerican Energy (Des Moines - Alan O of emission allowances? 5. What data can be made available to us? 6. Would you be interested in employing one in a description/depiction, a clear articulation of the "other flows" in the US energy system: · Information

Tesfatsion, Leigh

305

International Clean Energy Analysis | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » International Clean Energy Analysis (Redirected from International Clean Energy Analysis) Jump to: navigation, search About ICEA UNIDO small.png NREL small.png The International Clean Energy Analysis (ICEA) gateway promotes increased access to clean energy analysis tools, databases, methods and other technical resources which can be applied in developing countries. This wiki-based dynamic platform allows you to add to the inventory of clean energy organizations, tools, programs and data included on the site. We encourage you to expand the inventory of resources by clicking on "add" below the International Initiatives map. The gateway is organized by Information Toolkits which provide tools and resources to help answer a number of clean energy questions. The International Initiatives map also provides country-specific information on clean energy programs, tools and organizations. Click here to learn more about the ICEA gateway project.

306

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

307

EIS-0309-SA-02: Supplement Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

09-SA-02: Supplement Analysis 09-SA-02: Supplement Analysis EIS-0309-SA-02: Supplement Analysis Air and Ocean Transport of Enriched Uranium between Foreign Nations and the United States The United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration (NNSA) has prepared this Supplement Analysis (SA) for the air and ocean transport of enriched uranium between foreign nations and the United States pursuant to the National Environmental Policy Act (NEPA). It evaluates the environmental impacts associated with transport of enriched uranium from foreign countries to the NNSA Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee (the Proposed Action). Supplement Analysis for the Air and Ocean Transport of Enriched Uranium between Foreign Nations and the United States (August 2006)

308

EIS-0309-SA-02: Supplement Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

309-SA-02: Supplement Analysis 309-SA-02: Supplement Analysis EIS-0309-SA-02: Supplement Analysis Air and Ocean Transport of Enriched Uranium between Foreign Nations and the United States The United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration (NNSA) has prepared this Supplement Analysis (SA) for the air and ocean transport of enriched uranium between foreign nations and the United States pursuant to the National Environmental Policy Act (NEPA). It evaluates the environmental impacts associated with transport of enriched uranium from foreign countries to the NNSA Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee (the Proposed Action). Supplement Analysis for the Air and Ocean Transport of Enriched Uranium between Foreign Nations and the United States (August 2006)

309

2013 US Department of Energy National Transportation Stakeholders Forum  

Broader source: Energy.gov (indexed) [DOE]

3 US Department of Energy National Transportation 3 US Department of Energy National Transportation Stakeholders Forum Hello Everyone, It's time to register for the 2013 U.S. Department of Energy National Transportation Stakeholders Forum being held in Buffalo, New York on May 14-16. Please access the entitled link to proceed directly to the official registration website. Once you have entered the site you will be able to register for the meeting, select activities (regional/working meetings, group breakout sessions, TRANSCOM training and the West Valley tour) to attend, view the draft agenda and make lodging reservations. While the event is over two months away, please register at your earliest opportunity as it will greatly

310

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

311

The relative cost of biomass energy transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori

2007-01-01T23:59:59.000Z

312

The Relative Cost of Biomass Energy Transport  

Science Journals Connector (OSTI)

Logistics cost, the cost of moving feedstock or products, is a key component of the overall cost of recovering energy from biomass. In this study, we calculate for ... , rail, ship, and pipeline for three biomass

Erin Searcy; Peter Flynn; Emad Ghafoori

2007-01-01T23:59:59.000Z

313

Transportation Energy Futures: Project Overview and Findings (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. Energy-efficient transportation strategies and renewable fuels have the potential to simultaneously reduce petroleum consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy's (DOE) Transportation Energy Futures (TEF) project examines how a combination of multiple strategies could achieve deep reductions in petroleum use and GHG emissions. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities related to energy efficiency

314

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

315

NREL: Energy Analysis - Financial Policy Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Financial Policy Analysis Financial Policy Analysis NREL's financial policy analysis team examines the effects that policy has on renewable energy project financing and development. They look at how policies such as feed-in tariffs, clean renewable energy bonds, and power purchase agreements can shape the pace and structure of financing. For more on NREL's analysis of these policies, access the information below. Key Analyses for 2010 Cover of the A Policymaker's Guide to Feed-in Tariff Policy Design report. Feed-in Tariff Policy Design SEAC analysts Karlynn Cory and Claire Kreycik, along with Toby Couture of E3 Analytics and Emily Williams of the U.S. Department of State, recently published the report "A Policymaker's Guide to Feed-in Tariff Policy Design." Feed-in tariffs (FITs) are the most widely used renewable energy

316

Transportation Routing Analysis Geographic Information System...  

Broader source: Energy.gov (indexed) [DOE]

Analysis Geographic Information System (TRAGIS) to Spent Fuel Routing Analysis P. E. Johnson R.R. Rawl Oak Ridge National Laboratory TRAGIS is being used by OCRWM to identify...

317

Transportation Assessment Toolkit | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit Jump to: navigation, search Stage 3 LEDS Home Introduction to Framework Assess current country plans, policies, practices, and capacities Develop_BAU Stage 4: Prioritizing and Planning for Actions Begin execution of implementation plans 1.0. Organizing the LEDS Process 1.1. Institutional Structure for LEDS 1.2. Workplan to Develop the LEDS 1.3. Roles and responsibilities to develop LEDS 2.1. Assess current country plans, policies, practices, and capacities 2.2. Compile lessons learned and good practices from ongoing and previous sustainable development efforts in the country

318

Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Fast Pyrolysis to Biomass Fast Pyrolysis to Transportation Fuels Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University Daren E. Daugaard ConocoPhillips Company David D. Hsu National Renewable Energy Laboratory Technical Report NREL/TP-6A20-46586 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University

319

NREL: Energy Analysis - Jaquelin Cochran  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jaquelin Cochran Jaquelin Cochran Photo of Jaquelin Cochran Jaquelin Cochran is a member of the Market and Policy Impact Analysis Group in the Strategic Energy Analysis Center. Senior Energy Analyst - Supervisor On staff since June 2009 Phone number: 303-275-3766 E-mail: jaquelin.cochran@nrel.gov Areas of expertise Grid integration of renewable energy, demand response Natural gas and renewable energy International energy efficiency Energy and development Primary research interests Policy and market analyses in support of grid integration Low emissions development strategies Education and background training Ph.D. in energy and resources group, University of California, Berkeley, 2007 M.A. in energy and resources group, University of California, Berkeley, 2001 B.A. in public policy/physics, Pomona College, 1995

320

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

energy use and emissions in 2050. The ultimate marketmarket introduction of FCVs and associated refueling infrastructure. Vehicle EnergyEnergy Use in California Studying these factors will also help determine the rate of adoption and also maximum market

Yang, Christopher

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NREL: Energy Analysis - Solar Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Technology Analysis Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate PV system configurations and applications. R&D goals, which are supported by solar technology analysis, include: Investigating the steps needed to improve the impact of PV technologies in the marketplace through technical R&D, market analyses, and value and policy analyses

322

Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Report Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan National Renewable Energy Laboratory National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov The Joint Institute for Strategic Energy Analysis 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.jisea.org Technical Report NREL/TP-6A50-56324 December 2012 Contract No. DE-AC36-08GO28308 Opportunities for Synergy Between Natural Gas and Renewable Energy in the Electric Power and Transportation Sectors April Lee, Owen Zinaman, and Jeffrey Logan

323

Resonance energy transport in an oscillator chain  

E-Print Network [OSTI]

We investigate energy transfer and localization in a linear time-invariant oscillator chain weakly coupled to a forced nonlinear actuator. Two types of perturbation are studied: (1) harmonic forcing with a constant frequency is applied to the actuator (the Duffing oscillator) with slowly changing parameters; (2) harmonic forcing with a slowly increasing frequency is applied to the nonlinear actuator with constant parameters. In both cases, stiffness of linear oscillators as well as linear coupling remains constant, and the system is initially engaged in resonance. The parameters of the systems and forcing are chosen to guarantee autoresonance (AR) with gradually increasing energy in the nonlinear actuator. As this paper demonstrates, forcing with constant frequency generates oscillations with growing energy in the linear chain but in the system excited by forcing with slowly time-dependent frequency energy remains localized on the nonlinear actuator whilst the response of the linear chain is bounded. This means that the systems that seem to be almost identical exhibit different dynamical behavior caused by their different resonance properties. Numerical examples a good agreement between exact (numerical) solutions and their asymptotic approximations found by the multiple time scales method.

Agnessa Kovaleva

2015-01-03T23:59:59.000Z

324

GCEP Energy Assessment Analysis  

E-Print Network [OSTI]

The solar energy flux reaching the Earths surface represents a few thousand times the current use of primary energy by humans. The potential of this resource is enormous and makes solar energy a crucial component of a renewable energy portfolio aimed at reducing the global emissions of greenhouse gasses into the atmosphere. Nevertheless, the current use of this energy resource represents less than 1 % of the total electricity production from renewable sources. Even though the deployment of photovoltaic systems has been increasing steadily for the last 20 years, solar technologies still suffer from some drawbacks that make them poorly competitive on an energy market dominated by fossil fuels: high capital cost, modest conversion efficiency, and intermittency. From a scientific and technical viewpoint, the development of new technologies with higher conversion efficiencies and low production costs is a key requirement for enabling the deployment of solar energy at a large scale. This report summarizes the state of the research in some mature and emerging solar technologies with high potential for largescale energy production, and identifies fundamental research topics that are crucial for

unknown authors

325

Californias Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

Yang, Christopher

2011-01-01T23:59:59.000Z

326

Fundamentals of Energy Transport in Nanofluids  

SciTech Connect (OSTI)

We performed computational simulations and theoretical analysis to investigate the underlying origins of large thermal conductivity enhancements observed in nanofluids (colloidal suspensions of solid nanoparticles and/or nanofibers in thermal fluids) and to identify strategies towards tailoring nanofluids for better thermal performance.

Pawel Keblinski

2007-02-25T23:59:59.000Z

327

NREL: Transportation Research - Systems Analysis and Integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cell vehicles, and other alternative fuel vehicles. Using a suite of simulation and analysis tools, NREL conducts technical analyses of promising vehicle technologies to find...

328

NREL: Energy Analysis - Kermit Witherbee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kermit Witherbee Kermit Witherbee Photo of Kermit Witherbee Kermit Witherbee is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Geothermal Energy Geologist/Analyst On staff since January 2011 Phone number: 303-275-3882 E-mail: kermit.witherbee@nrel.gov Areas of expertise Renewable and nonrenewable energy resource assessments Land use planning and NEPA Development and implementation of minerals and energy policy Geothermal leasing and permitting Minerals exploration and development Primary research interests Policy implications for geothermal resources development Geothermal resource assessments Geothermal exploration and development Education and background training Continuing Education at CSM and UC Boulder Borehole geophysics

329

NREL: Energy Analysis - Jordan Macknick  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jordan Macknick Jordan Macknick Photo of Jordan Macknick Jordan Macknick is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Energy and Environmental Analyst On staff since September 2009 Phone number: 303-275-3828 E-mail: jordan.macknick@nrel.gov Areas of expertise Renewable energy technological characterizations Database development Policy analysis Primary research interests Interface of energy and water in policy planning Environmental impacts of renewable energy technologies Renewable energy deployment in developing countries Education and background training M.E.Sc. in transboundary natural resource policy, Yale School of Forestry and Environmental Studies, New Haven, CT, 2009 B.A. in mathematics and environmental studies, Hamline University,

330

Building Energy Monitoring and Analysis  

SciTech Connect (OSTI)

This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

331

Special Topics on Energy Use in Household Transportation  

U.S. Energy Information Administration (EIA) Indexed Site

Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home Page Welcome to the Energy Information Administration's Residential Transportation Energy Consumption Home Page. If you need assistance in viewing this page, please call (202) 586-8800 Home > Transportation Home Page > Special Topics Special Topics Change in Method for Estimating Fuel Economy for the 1988 and subsequent RTECS (Released 09/12/2000) Can Household Members Accurately Report How Many Miles Their Vehicles Are Driven? (Released 08/03/2000) Calculate your Regional Gasoline Costs of Driving using the “Transportation Calculator” updated for new model years! Choose your car or SUV and see the gasoline part of the cost of driving in various parts of the country using EIA's current weekly prices. This application uses DOE/EPA's Fuel Economy Guide to set the MPG, but you can change it to compare your estimate of your car's mpg to the average of everyone else who takes the test. (Released 04/11/2000; Updated Yearly for Fuel Economies and Weekly for Fuel Prices)

332

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers  

E-Print Network [OSTI]

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan://creativecommons.org/licenses/by-nc-nd/3.0/>. For information on commercial licensing, contact copyright@ucdavis.edu. #12;171 SUSTAINABLE that has been done so far comparing the sustainability of different fuel/vehicle pathways along these lines

California at Davis, University of

333

LOW ENERGY ELECTRON TRANSPORT BY RECONNECTED MAGNETIC FIELDS AROUND MARS  

E-Print Network [OSTI]

presents a significant ionospheric obstacle to the solar wind. Moreover, the presence of strong crustalLOW ENERGY ELECTRON TRANSPORT BY RECONNECTED MAGNETIC FIELDS AROUND MARS A DISSERTATION SUBMITTED;Abstract The solar wind interaction with Mars has been studied extensively through satellite observations

334

Integrated transport and renewable energy systems B. V. Mathiesen*  

E-Print Network [OSTI]

, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning2 emissions, electricity and heating have traditionally been in focus. As more and more countries have been successful within electricity and heating where political focus has produced actions

335

Center for Transportation Analysis 2360 Cherahala Boulevard  

E-Print Network [OSTI]

Environment Safety Security Vehicle Technologies O ur critical infrastructure--roads, bridges, transit Department of Energy: Infrastructure for Oil Resiliency. Army Corps of Engineers: developed the Ohio River. Department of Homeland Security: transit security and infrastructure investments; barge communications

336

NREL: Energy Analysis - Venkat Kirshnan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Available online 8 January 2015 T. Das, V. Krishnan, Y. Gu, and J. McCalley, Compressed Air Energy Storage: State Space Modeling and Performance Analysis, Proceedings of the 2011...

337

NREL: Energy Analysis - Michael Gleason  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Visualization Group in the Strategic Energy Analysis Center. Scientist III - GIS On staff since April 2014 Phone number: 303-275-4109 E-mail: Michael.Gleason@nrel.gov...

338

Energy transport by acoustic modes of harmonic lattices  

E-Print Network [OSTI]

We study the large scale evolution of a scalar lattice excitation which satisfies a discrete wave-equation in three dimensions. We assume that the dispersion relation associated to the elastic coupling constants of the wave-equation is acoustic, i.e., it has a singularity of the type |k| near the vanishing wave vector, k=0. To derive equations that describe the macroscopic energy transport we introduce the Wigner transform and change variables so that the spatial and temporal scales are of the order of epsilon. In the continuum limit, which is achieved by sending the parameter epsilon to 0, the Wigner transform disintegrates into three different limit objects: the transform of the weak limit, the H-measure and the Wigner-measure. We demonstrate that these three limit objects satisfy a set of decoupled transport equations: a wave-equation for the weak limit of the rescaled initial data, a dispersive transport equation for the regular limiting Wigner measure, and a geometric optics transport equation for the H-measure limit of the initial data concentrating to k=0. A simple consequence of our result is the complete characterization of energy transport in harmonic lattices with acoustic dispersion relations.

Lisa Harris; Jani Lukkarinen; Stefan Teufel; Florian Theil

2006-11-21T23:59:59.000Z

339

Scenario Evaluation, Regionalization & Analysis (SERA) | Open Energy  

Open Energy Info (EERE)

Scenario Evaluation, Regionalization & Analysis (SERA) Scenario Evaluation, Regionalization & Analysis (SERA) Jump to: navigation, search Tool Summary Name: Scenario Evaluation, Regionalization & Analysis (SERA) Agency/Company /Organization: National Renewable Energy Laboratory Scenario Evaluation, Regionalization & Analysis (SERA) Screenshot Logo: Scenario Evaluation, Regionalization & Analysis (SERA) SERA (Scenario Evaluation, Regionalization & Analysis) is a geospatially and temporally oriented infrastructure analysis model that determines the optimal production and delivery scenarios for hydrogen, given resource availability and technology cost. Given annual H2 demands on a city-by-city basis, forecasts of feedstock costs, and a catalog of available hydrogen production and transportation technologies, the model generates

340

Strategic Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

NREL complements its scientific research with high-quality, credible, technology-neutral, objective analysis that informs policy and investment decisions as renewable energy and energy efficiency technologies move from innovation through integration. This sheet highlights NREL's analytical capabilities and achievements.

Not Available

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Analysis Doug Ammerman, (505) 845-8158 Structural analysis utilizes computer design and analysis tools to provide package designers and certifiers with the most accurate method of determining package response to transportation environments. Computer analysis is an application of known engineering principles that take advantage of high-power computing capabilities in solving the response of computer models to various environments with complex mathematical calculations. It can be used for package certification by generating a computer model of a test object (package) and subjecting it to an accident environment to understand its response. A computer model must be constructed with the same weights, dimensions, hardnesses, specific heat, conduction, etc. as an

342

Energy transport between two pure-dephasing reservoirs  

E-Print Network [OSTI]

A pure-dephasing reservoir acting on an individual quantum system induces loss of coherence without energy exchange. When acting on composite quantum systems, dephasing reservoirs can lead to a radically different behavior. Transport of energy between two pure-dephasing markovian reservoirs is predicted in this work. They are connected through a chain of coupled sites. The baths are kept in thermal equilibrium at distinct temperatures. Quantum coherence between sites is generated in the steady-state regime and results in the underlying mechanism sustaining the effect. A quantum model for the reservoirs is a necessary condition for the existence of stationary energy transport. A microscopic derivation of the non-unitary system-bath interaction is employed, valid in the ultrastrong inter-site coupling regime. The model assumes that each site-reservoir coupling is local.

T. Werlang; D. Valente

2014-08-21T23:59:59.000Z

343

NREL Job Task Analysis: Energy Auditor | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Auditor NREL Job Task Analysis: Energy Auditor A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization...

344

Building Energy Optimization Analysis Method (BEopt) - Building...  

Energy Savers [EERE]

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

345

NANA Strategic Energy Plan & Energy Options Analysis  

SciTech Connect (OSTI)

NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authoritys state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine. Biomass Feasibility analysis in the upper Kobuk; Run of the river hydroelectric development for the Upper Kobuk; Solar photovoltaic (PV) power demonstration projects for Noatak, Ambler, Selawik, Kiana, and Noorvik; Heat Recovery for several communities; In September 2008, the NRC team participated at the Alaska Rural Energy Conference in Girdwood, Alaska In November 2008, the NRC team gave a presentation on the NANA regional energy plans at a DOE Tribal Energy Program conference in Denver, Colorado. In January 2009, the final SEP report was submitted to NRC.

Jay Hermanson; Brian Yanity

2008-12-31T23:59:59.000Z

346

Transportation Center Seminar... Life-Cycle Analysis of Transportation Fuels and Vehicle  

E-Print Network [OSTI]

with life-cycle analysis (LCA). In fact, LCA of transportation fuels and vehicle systems has a history of more than 30 years. Over this period, LCA methodologies have evolved and critical data have become readily available. This is especially true in the past ten years when LCA has been applied extensively

Bustamante, Fabián E.

347

Energy confinement and thermal transport characteristics of net current free plasmas in the Large Helical Device  

Science Journals Connector (OSTI)

The energy confinement and thermal transport characteristics of net current free plasmas in regimes with much smaller gyroradii and collisionality than previously studied have been investigated in the Large Helical Device (LHD). The inward shifted configuration, which is superior from the point of view of neoclassical transport theory, has revealed a systematic confinement improvement over the standard configuration. Energy confinement times are improved over the International Stellarator Scaling 95 by a factor of 1.6 0.2 for an inward shifted configuration. This enhancement is primarily due to the broad temperature profile with a high edge value. A simple dimensional analysis involving LHD and other medium sized heliotrons yields a strongly gyro-Bohm dependence (?E? ? ?*-3.8) of energy confinement times. It should be noted that this result is attributed to a comprehensive treatment of LHD for systematic confinement enhancement and that the medium sized heliotrons have narrow temperature profiles. The core stored energy still indicates a dependence of ?E? ? ?*-2.6 when data only from LHD are processed. The local heat transport analysis of discharges dimensionally similar except for ?* suggests that the heat conduction coefficient lies between Bohm and gyro-Bohm in the core and changes towards strong gyro-Bohm in the peripheral region. Since the inward shifted configuration has a geometrical feature suppressing neoclassical transport, confinement improvement can be maintained in the collisionless regime where ripple transport is important. The stiffness of the pressure profile coincides with enhanced transport in the peaked density profile obtained by pellet injection.

H. Yamada; K.Y. Watanabe; K. Yamazaki; S. Murakami; S. Sakakibara; K. Narihara; K. Tanaka; M. Osakabe; K. Ida; N. Ashikawa; P.C. De Vries; M. Emoto; H. Funaba; M. Goto; H. Idei; K. Ikeda; S. Inagaki; N. Inoue; M. Isobe; S. Kado; O. Kaneko; K. Kawahata; K. Khlopenkov; T. Kobuchi; A. Komori; S. Kubo; R. Kumazawa; Y. Liang; S. Masuzaki; T. Minami; J. Miyazawa; T. Morisaki; S. Morita; S. Muto; T. Mutoh; Y. Nagayama; N. Nakajima; Y. Nakamura; H. Nakanishi; K. Nishimura; N. Noda; T. Notake; S. Ohdachi; N. Ohyabu; Y. Oka; T. Ozaki; R.O. Pavlichenko; B.J. Peterson; G. Rewoldt; A. Sagara; K. Saito; R. Sakamoto; H. Sasao; M. Sasao; K. Sato; M. Sato; T. Seki; T. Shimozuma; M. Shoji; H. Sugama; H. Suzuki; M. Takechi; Y. Takeiri; N. Tamura; K. Toi; T. Tokuzawa; Y. Torii; K. Tsumori; I. Yamada; S. Yamaguchi; S. Yamamoto; M. Yokoyama; Y. Yoshimura; T. Watari; K. Itoh; K. Matsuoka; K. Ohkubo; I. Ohtake; S. Satoh; T. Satow; S. Sudo; S. Tanahashi; T. Uda; Y. Hamada; O. Motojima; M. Fujiwara

2001-01-01T23:59:59.000Z

348

Iodine transport analysis in the ESBWR.  

SciTech Connect (OSTI)

A simplified ESBWR MELCOR model was developed to track the transport of iodine released from damaged reactor fuel in a hypothesized core damage accident. To account for the effects of iodine pool chemistry, radiolysis of air and cable insulation, and surface coatings (i.e., paint) the iodine pool model in MELCOR was activated. Modifications were made to MELCOR to add sodium pentaborate as a buffer in the iodine pool chemistry model. An issue of specific interest was whether iodine vapor removed from the drywell vapor space by the PCCS heat exchangers would be sequestered in water pools or if it would be rereleased as vapor back into the drywell. As iodine vapor is not included in the deposition models for diffusiophoresis or thermophoresis in current version of MELCOR, a parametric study was conducted to evaluate the impact of a range of iodine removal coefficients in the PCCS heat exchangers. The study found that higher removal coefficients resulted in a lower mass of iodine vapor in the drywell vapor space.

Kalinich, Donald A.; Gauntt, Randall O.; Young, Michael Francis; Longmire, Pamela

2009-03-01T23:59:59.000Z

349

NREL: Energy Analysis - Sadie Cox  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sadie Cox Sadie Cox Photo of Sadie Cox Sadie Cox is member of the Market and Policy Impact Analysis Group in the Strategic Energy Analysis Center. International Energy Analyst On staff since April 2009 Phone number: 303-384-7391 E-mail: sadie.cox@nrel.gov Areas of expertise International market analysis Low emissions development planning International coordination to support climate programs Primary research interests Energy and development Renewable energy markets in Africa Microfinance in West African countries Ecological innovation Education and background training M.A. in global finance, trade and economic integration, University of Denver, 2009 B.A. in economics and international affairs, University of Colorado - Boulder, 2005 Prior work experience Graduate Assistant, Josef Korbel School of International Studies,

350

NREL: Energy Analysis - Thomas Jenkin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Jenkin Thomas Jenkin Photo of Thomas Jenkin. Thomas Jenkin is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Senior Energy Analyst On staff since August 2004 Phone number: 202-488-2219 E-mail: thomas.jenkin@nrel.gov Areas of expertise Valuation and risk management Market structure and operation of natural gas and power markets Economic analysis of storage technologies Research and development (R&D) Primary research interests R&D and commercialization of energy technologies Risk and uncertainty The value of storage Economic and market analysis of renewable energy technologies Education and background training MPPM, Yale School of Management D.Phil. in physics, University of Oxford B.Sc. in physics, University of Bristol Teaching experience

351

NREL: Energy Analysis - Anelia Milbrandt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anelia Milbrandt Anelia Milbrandt Photo of Anelia Milbrandt. Anelia Milbrandt is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. She is also a member of the NREL International Studies Team. Senior Energy Resources Analyst On staff since 2003 Phone number: 303-275-4633 Email: anelia.milbrandt@nrel.gov Areas of expertise Biomass resource assessment Geospatial modeling and analysis Integrated resource, infrastructure, and market analysis Primary research interests Sustainable biomass resource development Global natural resources and population dynamics Renewable energy programs in developing countries Education and background training M.S. in geography, University of Sofia, Bulgaria, 1999 Prior work experience GIS Specialist, MN State Legislature, 2001 - 2003

352

Impact analysis of a flexible air transportation system  

E-Print Network [OSTI]

-OR), School of Architecture, Civil and Envi- ronmental Engineering (ENAC), Ecole Polytechnique F´ed´erale de)1 . Consequently, sustainability of current transportation systems is threat- ened by increased energy consumption, re- sulting in frequent congestion and delays. The trade-off between the sustainability

Bierlaire, Michel

353

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect (OSTI)

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

354

NETL: Energy Analysis - Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis Analysis Instructions Using the Database In this search form you can search using the following tools: Title and Synopsis/Keywords Author Program/Technology Publication Type Publication Date Title and Synopsis/Keywords Enter as many keywords as needed but remember that all keywords would have to be included within the Title/Synopsis to receive a return. Select the KEYWORD SEARCH checkbox if you want it to return on any word. For greater returns, limit the amount of keywords entered per search. Use the plus sign (+) to search for a multi-word phrase. For example, to find the phrase "2010 Coal Database", enter "2010+Coal+Database". This will return results that contain matches on this three word phrase. Author It is best to search on an author's last name since first name might be stored as initials or an abbreviation such as Tom or Thomas.

355

Transport Co-benefits Calculator | Open Energy Information  

Open Energy Info (EERE)

Transport Co-benefits Calculator Transport Co-benefits Calculator Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Transport Co-benefits Calculator Agency/Company /Organization: Institute for Global Environmental Strategies Sector: Climate, Energy Complexity/Ease of Use: Moderate Website: www.iges.or.jp/en/archive/cp/activity20101108.html Cost: Free Related Tools Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool SimCLIM SEAGA Intermediate Level Handbook ... further results Characterizes co-benefits in terms of accidents, emissions, travel time, and vehicle operating costs. Approach A co-benefits approach capitalizes on synergies between current local

356

DOE/EIS-0026-SA-06: Supplement Analysis for the Transportation of Transuranic Waste in TRUPACT-III Containers (9/25/07)  

Broader source: Energy.gov (indexed) [DOE]

6 6 Supplement Analysis for the Transportation of Transuranic Waste in TRUPACT-III Containers September 2007 U.S. Department of Energy Carlsbad Field Office Supplement Analysis for the Transportation of Transuranic Waste in TRUPACT-III Containers ii This page intentionally blank Supplement Analysis for the Transportation of Transuranic Waste in TRUPACT-III Containers iii TABLE OF CONTENTS Section Page 1.0 INTRODUCTION...........................................................................................................1 2.0 PURPOSE AND NEED FOR ACTION...........................................................................1 3.0 PROPOSED ACTION.....................................................................................................1

357

Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions  

SciTech Connect (OSTI)

Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

358

Energy, Industry, and Transport in South-Central Africas History  

E-Print Network [OSTI]

Energy must be seen in interaction with transportation and industry in order for its role in South-Central Africa to be fully understood. All threeenergy, industry, and transportationare themselves always socialized and ...

Mavhunga, Clapperton Chakanets

2014-01-01T23:59:59.000Z

359

Cost Analysis of Fuel Cell Systems for Transportation  

E-Print Network [OSTI]

Cost Analysis of Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge Presentation 3 A fuel cell vehicle would contain the PEMFC system modeled in this project along with additional

360

2011 APTA Public Transportation Fact Book | Open Energy Information  

Open Energy Info (EERE)

2011 APTA Public Transportation Fact Book 2011 APTA Public Transportation Fact Book Jump to: navigation, search Tool Summary Name: 2011 APTA Public Transportation Fact Book Agency/Company /Organization: American Public Transportation Association Sector: Energy Focus Area: Transportation Resource Type: Publications Website: www.apta.com/resources/statistics/Documents/FactBook/APTA_2011_Fact_Bo Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Technology Analysis - Multi-Path Transportation Futures Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses Multi-Path Transportation Futures Study: Vehicle Characterization and Scenario Analyses The Multi-Path Study began by defining the basic physical characteristics of future advanced midsize cars and midsize SUVs with drivetrain technologies ranging from advanced SI and CI (diesel) engine-based conventional drivetrains through hybrid drivetrains (including plug-ins), to fuel cell hybrids and plug-in hybrids, through pure-electric drivetrains. The study evaluates these vehicles’ fuel economy using Argonne’s PSAT simulation model, estimates their costs, and does detailed analyses of their cost-effectiveness, balancing first costs against fuel savings. The study uses a version of the National Energy Modeling System (developed by the Energy Information Administration in the U.S. Department of Energy) to evaluate several scenarios assuming different vehicle costs (one set based on a literature review, one based on DOE goals) and availability of purchase subsidies.

362

Energy stability bounds on convective heat transport: Numerical study  

SciTech Connect (OSTI)

The concept of nonlinear energy stability has recently been extended to deduce bounds on energy dissipation and transport in incompressible flows, even for turbulent flows. In this approach an effective stability condition on {open_quotes}background{close_quotes} flow or temperature profiles is derived, which when satisfied ensures that the profile produces a rigorous upper estimate to the bulk dissipation. Optimization of the test background profiles in search of the lowest upper bounds leads to nonlinear Euler-Lagrange equations for the extremal profile. In this paper, in the context of convective heat transport in the Boussinesq equations, we describe numerical solutions of the Euler-Lagrange equations for the optimal background temperature and present the numerical computation of the implied bounds. {copyright} {ital 1997} {ital The American Physical Society}

Doering, C.R. [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109 (United States)] [Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109 (United States); Hyman, J.M. [Theoretical Division and Center for Nonlinear Studies, MS-B284, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Theoretical Division and Center for Nonlinear Studies, MS-B284, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

1997-06-01T23:59:59.000Z

363

Baseline projections of transportation energy consumption by mode: 1981 update  

SciTech Connect (OSTI)

A comprehensive set of activity and energy-demand projections for each of the major transportation modes and submodes is presented. Projections are developed for a business-as-usual scenario, which provides a benchmark for assessing the effects of potential conservation strategies. This baseline scenario assumes a continuation of present trends, including fuel-efficiency improvements likely to result from current efforts of vehicle manufacturers. Because of anticipated changes in fuel efficiency, fuel price, modal shifts, and a lower-than-historic rate of economic growth, projected growth rates in transportation activity and energy consumption depart from historic patterns. The text discusses the factors responsible for this departure, documents the assumptions and methodologies used to develop the modal projections, and compares the projections with other efforts.

Millar, M; Bunch, J; Vyas, A; Kaplan, M; Knorr, R; Mendiratta, V; Saricks, C

1982-04-01T23:59:59.000Z

364

2005 Tour de Sol: The Sustainable Energy and Transportation Festival and Competition  

SciTech Connect (OSTI)

This report gives a summary of the 2005Tour de Sol: The Sustainable Energy and Transportation Festival and Competition. It lists our objectives, what we did, and an analysis of how we met our objectives. An 80-page report with a list of verified print, radio and TV media coverage, and copies of selected news clips and web media coverage is available at the NESEA office for review.

Nancy Hazard

2005-05-07T23:59:59.000Z

365

NREL: Energy Analysis - Garvin Heath  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Garvin Heath Garvin Heath Photo of Garvin Heath Garvin Heath is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Senior Scientist On staff since January 2008 Phone number: 303-384-7460 E-mail: garvin.heath@nrel.gov Areas of expertise Life cycle assessment Sustainability analysis Air quality modeling Exposure assessment Primary research interests Health and environmental impacts of energy technologies, including externalities Life cycle assessment Sustainability Education and background training Ph.D. in energy and resources, UC Berkeley, 2006 M.S. in environmental engineering (air quality), UC Berkeley, 2003 Prior work experience Senior Scientist, Integral Consulting Inc., Broomfield CO (2006-2007) Environmental Engineer, U.S. EPA, Washington DC (1994-1999)

366

Solar Energy for Transportation Fuel (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.

Lewis, Nate

2011-04-28T23:59:59.000Z

367

NREL Market Analysis | Open Energy Information  

Open Energy Info (EERE)

NREL Market Analysis NREL Market Analysis Jump to: navigation, search Tool Summary Name: NREL Market analysis Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Topics: Market analysis Website: www.nrel.gov/analysis/market_analysis.html NREL Market analysis Screenshot References: NREL Market analysis[1] Summary "The laboratory's market analysis helps increase the use of renewable energy (RE) and energy efficiency (EE) technologies in the marketplace by providing strategic information to stakeholders interested in rapidly changing electricity markets. Our high-quality and objective crosscutting assessments and analysis support informed decision making. Primary focuses include:" Energy Technology/Program Cost, Performance, and Market Data

368

NREL: Energy Analysis - Janine Freeman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Janine Freeman Janine Freeman Photo of Janine Freeman Janine Freeman is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Energy System Modeling Engineer On staff since March 2013 Phone number: 303-275-4694 E-mail: janine.freeman@nrel.gov Areas of expertise Solar instrumentation PV energy production modeling Solar resource estimates Vertical axis wind turbine analysis/wind tunnel experimentation PVsyst CAD modeling Campbell Scientific LoggerNet Matlab Primary research interests Wind and solar power improvements Education and background training M.S. in mechanical engineering, Rensselaer Polytechnic Institute (RPI), Troy NY, 2010 B.S. in mechanical engineering, Rensselaer Polytechnic Institute (RPI), Troy NY, 2009 Prior work experience AWS Truepower, Albany NY, Solar Services Engineer (2011-2012)

369

NREL: Energy Analysis - Trieu Mai  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trieu Mai Trieu Mai Photo of Trieu Mai Trieu Mai is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Energy Engineer - Electricity Section Supervisor On staff since 2009 Phone number: 303-384-7566 E-mail: trieu.mai@nrel.gov Areas of expertise Electric sector capacity expansion modeling High penetration renewable scenario analysis Linear programming Primary research interests Implications of large-scale deployment of renewable energy Integration of renewable technologies into the power system Education and background training Ph.D. in theoretical physics, University of California, Santa Cruz, CA, 2007 M.S. in physics, University of California, Santa Cruz, CA, 2004 B.S. in physics, University of California, Davis, CA, 2002 Prior work experience

370

Opportunities for the Use of Renewable Energy in Road Transport | Open  

Open Energy Info (EERE)

Opportunities for the Use of Renewable Energy in Road Transport Opportunities for the Use of Renewable Energy in Road Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Opportunities for the Use of Renewable Energy in Road Transport Agency/Company /Organization: Renewable Energy Technology Deployment Sector: Energy Focus Area: Renewable Energy, Transportation Topics: Implementation, Policies/deployment programs Resource Type: Publications, Guide/manual Website: www.iea-retd.org/files/RETRANS_PolicyMakersReport_final.pdf Opportunities for the Use of Renewable Energy in Road Transport Screenshot References: Opportunities for the Use of Renewable Energy in Road Transport[1] "This report discusses the current state of the art of the use of options for using renewable energies in road transport, and explores possible

371

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Chapter 2 Climate and Transportation Solutions Chapter 3:Gas Emissions in the Transportation Sector by John Conti,Chase, and John Maples Transportation is the single largest

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

372

TRANSPORTATION ENERGY SURVEY DATA BOOK 1.1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SUB/02-4000008627/01 SUB/02-4000008627/01 TRANSPORTATION ENERGY SURVEY DATA BOOK 1.1 Tatyana Gurikova Macrosystems, Inc. Under Subcontract No. 4000008627 Stacy C. Davis Oak Ridge National Laboratory May 2002 Prepared for OAK RIDGE NATIONAL LABORATORY P.O. Box 2008 Oak Ridge, Tennessee 37831-6285 managed by UT-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 ii iii TABLE OF CONTENTS Page LIST OF FIGURES ..................................................................................................................... v LIST OF TABLES ....................................................................................................................... v FOREWORD ............................................................................................................................... ix

373

Thermodynamic Analysis for Energy Conservation  

E-Print Network [OSTI]

THERMODYNAMIC ANALYSIS FOR ENERGY CONSERVATION William F. Kenney Exxon Chemical Company Florham Park, New Jersey , ,,~ This paper describes a methodology for per forming a thermodynamic analysis of a process, and it demonstrates how... fired. In a cracking furnace it can reduce lost work in combustion and in the convec tion section at the cost of more surface area in the convection section, reduced steam make, and slightly higher radiative temperature differences. Preheating air...

Kenney, W. F.

1981-01-01T23:59:59.000Z

374

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing Testing Carlos Lopez, (505) 845-9545 Packages transporting the larger "Type B" quantities of radioactive materials must be qualified and certified under Title 10, Code of Federal Regulations, Part 71, or under the equivalent international standard ST-1 issued by the International Atomic Energy Agency. The principal thermal qualification test is the 30 minute pool fire. As part of the National Transportation Program, the Transportation Risk & Packaging Program at Sandia can plan and conduct these tests for DOE and other package suppliers. Test Plans, QA plans and other necessary test documents can be prepared for customer and regulatory approval. Tests may be conducted with a variety of available facilities at Sandia, including large pools, an indoor fire facility, and a radiant heat test

375

Grid Renewable Energy-Economic and Financial Analysis | Open Energy  

Open Energy Info (EERE)

Economic and Financial Analysis Economic and Financial Analysis Jump to: navigation, search Tool Summary Name: Grid Renewable Energy-Economic and Financial Analysis Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Market analysis Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Grid Renewable Energy-Economic and Financial Analysis[1] Resources South Africa: Renewable Energy Market Transformation (REMT) Project, Draft Report, Economic and Financial Analysis Due Diligence Estimating Air Pollution Emissions from Fossil Fuel Use in the Electricity Sector in Mexico, North American Commission for Environmental Cooperation New Energy for America, The Apollo Jobs Report: Good Jobs & Energy

376

Cost Analysis of PEM Fuel Cell Systems for Transportation: September 30, 2005  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Subcontract Report Subcontract Report Cost Analysis of PEM Fuel Cell NREL/SR-560-39104 Systems for Transportation December 2005 September 30, 2005 E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang TIAX LLC Cambridge, Massachusetts NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Cost Analysis of PEM Fuel Cell Systems for Transportation September 30, 2005 E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang TIAX LLC Cambridge, Massachusetts NREL Technical Monitor: K. Wipke Prepared under Subcontract No. KACX-5-44452-01 Subcontract Report NREL/SR-560-39104 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy

377

EM Office of Packaging and Transportation | Department of Energy  

Office of Environmental Management (EM)

EM Office of Packaging and Transportation EM Office of Packaging and Transportation EM Office of Packaging and Transportation More Documents & Publications 2009 TEPP Annual Report...

378

Transportation Plan Ad Hoc Working Group | Department of Energy  

Office of Environmental Management (EM)

Transportation Plan Ad Hoc Working Group Transportation Plan Ad Hoc Working Group Transportation Plan Ad Hoc Working Group More Documents & Publications Nuclear Fuel Storage and...

379

International Council on Clean Transportation | Open Energy Informatio...  

Open Energy Info (EERE)

Name: International Council on Clean Transportation AgencyCompany Organization: International Council on Clean Transportation Website: www.theicct.org Transport Toolkit...

380

Economic analysis of electric energy storage.  

E-Print Network [OSTI]

??This thesis presents a cost analysis of grid-connected electric energy storage. Various battery energy storage technologies are considered in the analysis. Life-cycle cost analysis is (more)

Poonpun, Piyasak

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy analysis of human ecosystems in an Appalachian coal county  

SciTech Connect (OSTI)

Preliminary results from a energy analysis of the coal fuel cycle in an Appalachian coal county has provided systematic assessment of hidden energy subsidies in extraction, transport, processing, and combustion. Current results indicate a major loss due to depletion of the coal resource base by use of inefficient mining techniqus. Although of smaller magnitude, reductions in work force and community productivity from occupational accidents and disease and road maintenance requirements for transport also appear to be significant. Further assessment is needed to verify assumptions and characterize additional data bases.

Watson, A.P.

1980-01-01T23:59:59.000Z

382

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

Emissions Impact of a Bus Rapid Transport Project in Mexicoemissions from the main classes of transport emitters in the Mexico

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

383

Energy Engineering and Systems Analysis  

E-Print Network [OSTI]

Energy Engineering and Systems Analysis What is Defense in Depth? Defense in Depth material under the extreme conditions inside the reactor core. The secondary barrier is the reactor vessel to ensure reliability. Nevertheless, in the event of a component failure, Defense in Depth requires

Kemner, Ken

384

Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak  

DOE R&D Accomplishments [OSTI]

Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

1993-03-00T23:59:59.000Z

385

Geographic information system applications in coal transportation analysis  

SciTech Connect (OSTI)

Geographic information systems (GIS) offer great potential to the coal transportation industry for capitalizing on the growing availability of spatially-referenced data. As computer-based systems for the collection, storage, retrieval and analysis of spatial data, generating information products in a variety of formats, GIS have a great capability to improve the efficiency and effectiveness of coal transportation operations, planning, engineering, and facilities management. Currently GIS are used in the transportation industry at large to analyze, and display information about network infrastructure, fleet operations, property ownership, routing and scheduling, and utilities. Current coal transportation applications include consumer service inquiries, train and locomotive scheduling, and evaluation of network usage. The paper describes the significant potential uses of GIS in the coal transportation sector when integrated with optimization and decision support systems, scientific visualization, data forecasting, and strategic system planning approaches. Ultimately consumer demand and the drive for economic efficiency are likely to stimulate the integration and management of spatial information across the entire coal chain.

Elmes, G. [West Virginia Univ., Morgantown, WV (United States)

1996-12-31T23:59:59.000Z

386

NREL: Energy Analysis - Nate Blair  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nate Blair Nate Blair Photo of Nate Blair. Nate Blair is the group manager of the Energy Forecasting and Modeling in the Strategic Energy Analysis Center. Group Manager On staff since September 2002 Phone number: 303-384-7426 E-mail: nate.blair@nrel.gov Areas of expertise Linear programming with General Algebraic Modeling System (GAMS) Building and system simulation tools, especially the TRaNsient SYstem Simulation Program (TRNSYS) EES Concentrating solar power system modeling Experimental solar water-heating experience Primary research interests Macroeconomic energy-impact analysis Wind-power market modeling Transient power system modeling Building performance measurement Education and background training M.B.A., 2002, University of Wisconsin-Madison School of Business M.S. in mechanical engineering, 1993, University of

387

NREL: Energy Analysis - Katherine Young  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Katherine Young, P.E. Katherine Young, P.E. Photo of Katherine Young Katherine Young is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Geothermal Energy Engineer On staff since June 2008 Phone number: 303-384-7402 E-mail: katherine.young@nrel.gov Areas of expertise Geothermal planning and opportunities Database planning and development Primary research interests Geothermal and hydroelectric energy opportunities U.S. DOE Geothermal Program Information Education and background training Continuing Education at University of Colorado in Boulder and Denver Groundwater modeling Quantitative methods in water resource engineering Water resource engineering and management Independent study in groundwater hydrology M.S. in geochemistry and isotope geology, 2002, University of

388

Transportation Policy Analysis and Systems Planning Fall 2009/2010  

E-Print Network [OSTI]

, the information sources Reading: Basic background on Transportation in the US: http://www.bts.gov/publications/bts_special_report/2007_10_03/pdf/entire.pdf Energy Flow Diagram: http://www.eia.doe.gov/emeu/aer/pdf/pages/sec1_3.pdfv History of US DOT Homework 1: The Last Drop Class Notes: Week 1 Week 2 Tue Sep 29 7:00-8:25 Current

Singh, Jaswinder Pal

389

Materials Transportation Testing & Analysis at Sandia National Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Risk & Packaging Contacts Transportation Risk & Packaging Contacts Ken Sorenson Program Manager (505) 844-0074 kbsoren@sandia.gov David Miller Operations Manager (505) 284-2574 drmille@sandia.gov Administrative Assistant Pat Tode (505) 845-8339, 845-7800 pprippl@sandia.gov Financial Analyst Laurel Taylor (505) 845-8598 ljtaylo@sandia.gov Risk Assessment Ruth Weiner (505) 284-8406 rfweine@sandia.gov Jeremy Sprung (505) 844-0314 jlsprun@sandia.gov Doug Osborn (505) 284-6416 dosborn@sandia.gov RADTRAN Ruth Weiner (505) 284-8406 rfweine@sandia.gov GIS Mapping Doug Osborn (505) 284-6416 dosborn@sandia.gov Structural Analysis Doug Ammerman (505) 845-8158 djammer@sandia.gov Bob Kalan (505) 844-0244 rjkalan@sandia.gov Jeff Smith (505) 845-0299 jasmith@sandia.gov Thermal Analysis Carlos Lopez

390

SEU43 fuel bundle shielding analysis during spent fuel transport  

SciTech Connect (OSTI)

The basic task accomplished by the shielding calculations in a nuclear safety analysis consist in radiation doses calculation, in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. The paper investigates the effects induced by fuel bundle geometry modifications on the CANDU SEU spent fuel shielding analysis during transport. For this study, different CANDU-SEU43 fuel bundle projects, developed in INR Pitesti, have been considered. The spent fuel characteristics will be obtained by means of ORIGEN-S code. In order to estimate the corresponding radiation doses for different measuring points the Monte Carlo MORSE-SGC code will be used. Both codes are included in ORNL's SCALE 5 programs package. A comparison between the considered SEU43 fuel bundle projects will be also provided, with CANDU standard fuel bundle taken as reference. (authors)

Margeanu, C. A.; Ilie, P.; Olteanu, G. [Inst. for Nuclear Research Pitesti, No. 1 Campului Street, Mioveni 115400, Arges County (Romania)

2006-07-01T23:59:59.000Z

391

Solar energy in the context of energy use, energy transportation and energy storage  

Science Journals Connector (OSTI)

...Roberto Amendolia and Can Li Solar energy in the context of energy use...cost of systems for storing energy. Appendix A. Solar farm data...co.jp/en/challenge/energy/megasolar/ ). Data for most...denver-meetings-conventions/green-meetings/colorado-convention-center...

2013-01-01T23:59:59.000Z

392

Transportation Routing Analysis Geographic Information System (TRAGIS) User's Manual  

SciTech Connect (OSTI)

The Transportation Routing Analysis Geographic Information System (TRAGIS) model is used to calculate highway, rail, or waterway routes within the United States. TRAGIS is a client-server application with the user interface and map data files residing on the user's personal computer and the routing engine and network data files on a network server. The user's manual provides documentation on installation and the use of the many features of the model.

Johnson, PE

2003-09-18T23:59:59.000Z

393

Study of Long-Term Transport Action Plan for ASEAN | Open Energy  

Open Energy Info (EERE)

Long-Term Transport Action Plan for ASEAN Long-Term Transport Action Plan for ASEAN Jump to: navigation, search Name Study of Long-Term Transport Action Plan for ASEAN Agency/Company /Organization Association of Southeast Asian Nations (ASEAN), Institution for Transport Policy Studies (ITPS), Clean Air Asia, Transport Research Laboratory (TRL), Mizuho Information & Research Institute (MHIR) Partner Nippon Foundation, Ministry of Planning, Ministry of Transport Sector Climate, Land Focus Area Greenhouse Gas, People and Policy, Transportation Topics Background analysis, Baseline projection, Co-benefits assessment, - Environmental and Biodiversity, GHG inventory, Low emission development planning, -LEDS, Pathways analysis, Policies/deployment programs Website http://cleanairinitiative.org/

394

Energy deposition in t in films calculated using ellectron transport theory Theodore Biewer and Peter Rez  

E-Print Network [OSTI]

Energy deposition in t in films calculated using ellectron transport theory Theodore Biewer damage which can be related to the energy deposited in the specimen. We derive an expression for the energy deposition using the electron transport equation and give results for beam energies of l-10 k

Biewer, Theodore

395

1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle  

E-Print Network [OSTI]

1 1. INTRODUCTION High-energy fusion-product (fp) transport (e.g., alpha particle transport in D-T plasmas) is a central issue in fusion reactor de- velopment. Important effects dependent on fp transport-7 are concerned with fp wall bombardment and focus on two types of charged, high-energy fp losses from

Hively, Lee M.

396

Energy Systems Division Ed Daniels, Division Director University of Chicago Review Energy Engineering and Systems Analysis November 18, 2010  

Broader source: Energy.gov (indexed) [DOE]

Technology Technology Research and Development Don Hillebrand, Energy Systems Division Director Secretary of Energy Advisory Board Meeting Energy Engineering and Systems Analysis April 2012 Argonne's Transportation Research Is Focused on DOE's Energy Resources Goal  Improving energy productivity across all sectors, including transportation, is a goal in the Energy Security Theme of the DOE Strategic Plan.  A strategy to meet that goal is to develop technologies that enable cars and trucks to be fuel efficient, while remaining cost and performance competitive. 2 Market Snapshot - Auto Sales have Recovered Efficiency reduces oil use and CO2 emissions

397

Consumption & Efficiency - Analysis & Projections - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports All Sectors Change category... All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Filter by: All Data Analysis Projections Today in Energy - Commercial Consumption & Efficiency Short, timely articles with graphs about recent commercial consumption and

398

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

SciTech Connect (OSTI)

Recently it has been discovered - contrary to expectations of physicists as well as biologists - that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Patel, Apoorva D. [Centre for High Energy Physics and Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012 (India)

2011-09-23T23:59:59.000Z

399

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

E-Print Network [OSTI]

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Apoorva D. Patel

2011-04-07T23:59:59.000Z

400

Efficient Energy Transport in Photosynthesis: Roles of Coherence and Entanglement  

E-Print Network [OSTI]

Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.

Patel, Apoorva D

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Strategic Energy Analysis (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Planning & Analysis NREL Planning & Analysis Dr. Robin Newmark Strategic Energy Analysis Center World Renewable Energy Forum May 16, 2012 Denver, Colorado NREL/PR-6A20-54950 Strategic Energy Analysis Innovation for Our Energy Future National Renewable Energy Laboratory RE Resource Mapping Innovation for Our Energy Future National Renewable Energy Laboratory RE Resource Mapping Innovation for Our Energy Future National Renewable Energy Laboratory RE Resource Mapping Innovation for Our Energy Future National Renewable Energy Laboratory RE Resource Mapping Innovation for Our Energy Future National Renewable Energy Laboratory Resource Solar PV/CSP) Wind Geothermal Water Power Biopower Theoretical Potential 206,000 GW (PV) 11,100GW (CSP) 8,000 GW (onshore)

402

Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach  

SciTech Connect (OSTI)

Transportation mobility in India has increased significantly in the past decades. From 1970 to 2000, motorized mobility (passenger-km) has risen by 888%, compared with an 88% population growth (Singh,2006). This contributed to many energy and environmental issues, and an energy strategy incorporates efficiency improvement and other measures needs to be designed. Unfortunately, existing energy data do not provide information on driving forces behind energy use and sometime show large inconsistencies. Many previous studies address only a single transportation mode such as passenger road travel; did not include comprehensive data collection or analysis has yet been done, or lack detail on energy demand by each mode and fuel mix. The current study will fill a considerable gap in current efforts, develop a data base on all transport modes including passenger air and water, and freight in order to facilitate the development of energy scenarios and assess significance of technology potential in a global climate change model. An extensive literature review and data collection has been done to establish the database with breakdown of mobility, intensity, distance, and fuel mix of all transportation modes. Energy consumption was estimated and compared with aggregated transport consumption reported in IEA India transportation energy data. Different scenarios were estimated based on different assumptions on freight road mobility. Based on the bottom-up analysis, we estimated that the energy consumption from 1990 to 2000 increased at an annual growth rate of 7% for the mid-range road freight growth case and 12% for the high road freight growth case corresponding to the scenarios in mobility, while the IEA data only shows a 1.7% growth rate in those years.

Zhou, Nan; McNeil, Michael A.

2009-05-01T23:59:59.000Z

403

Solar energy in the context of energy use, energy transportation and energy storage  

Science Journals Connector (OSTI)

...average primary energy consumption per unit area, which for...as a national unit of energy storage. (Dinorwig...4], and area measurements using Google maps...Average powers per unit area are sometimes...meteorology and Solar Energy (eosweb.larc...

2013-01-01T23:59:59.000Z

404

NREL: Energy Analysis - Michael Woodhouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Woodhouse Woodhouse Photo of Michael Woodhouse Michael Woodhouse is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Solar PV Technologies and Economics Analyst On staff since 2008 Phone number: 303-384-7623 E-mail: Michael.Woodhouse@nrel.gov Areas of expertise Fundamental science of photovoltaics (PV) and solar hydrogen technologies Economics of PV - From manufacturing to levelized cost of energy (LCOE) Primary research interests Manufacturing costs, systems-level installation costs and LCOE estimates for PV technologies Capital costs and LCOE estimates for other power generating technologies, including other renewables and also the traditional sources Serve as Associate Editor for The Journal of Renewable and

405

NREL: Energy Analysis - Andrew Weekley  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andrew Weekley Andrew Weekley Andrew Weekley is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Software Engineer On staff since January 2013 Phone number: 303-275-3680 E-mail: andrew.weekley@nrel.gov Areas of expertise MATLAB Expert systems Scientific data analysis Primary research interests Time series segmentation and classification Image segmentation and classification Machine intelligent algorithms Education and background training B.A. in physics and mathematics, University of Colorado, Boulder, 1990 Prior work experience Software Engineer, National Center for Atmospheric Research (NCAR), Boulder, CO, (1997-2012) Member Technical Staff, Raytheon (formerly Hughes), Aurora, Co, (1990-1997) Selected publications Weekley, R.A.; Goodrich, R. K.; and Cornman, L. B. (2010). "An Algorithm

406

NREL: Energy Analysis - Chad Augustine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chad Augustine Chad Augustine Photo of Chad Augustine Chad Augustine is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Geothermal Energy Engineer/Analyst On staff since March 2009 Phone number: 303-384-7382 E-mail: chad.augustine@nrel.gov Areas of expertise Techno-economic modeling of Enhanced Geothermal Systems (EGS) Geothermal resource assessment High pressure, high temperature reaction systems Primary research interests EGS demonstration and deployment Advanced drilling systems research Thermodynamics and process modeling of binary power plant systems Education and background training Ph.D. in chemical engineering, Massachusetts Institute of Technology, Cambridge, MA M.S. in chemical engineering Practice, Massachusetts Institute of

407

EIA - Forecasts and Analysis of Energy Data  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by End-Use Sector Energy Consumption by End-Use Sector In the IEO2005 projections, end-use energy consumption in the residential, commercial, industrial, and transportation sectors varies widely among regions and from country to country. One way of looking at the future of world energy markets is to consider trends in energy consumption at the end-use sector level. With the exception of the transportation sector, which is almost universally dominated by petroleum products at present, the mix of energy use in the residential, commercial, and industrial sectors can vary widely from country to country, depending on a combination of regional factors, such as the availability of energy resources, the level of economic development, and political, social, and demographic factors. This chapter outlines the International Energy Outlook 2005 (IEO2005) forecast for regional energy consumption by end-use sector.

408

RETScreen International Clean Energy Project Analysis Tool | Open Energy  

Open Energy Info (EERE)

RETScreen International Clean Energy Project Analysis Tool RETScreen International Clean Energy Project Analysis Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: RETScreen International Clean Energy Project Analysis Tool Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: www.retscreen.net/ang/home.php Equivalent URI: cleanenergysolutions.org/content/retscreen-international-clean-energy- Language: String representation "English,Arabic, ... Urdu,Vietnamese" is too long. Policies: Deployment Programs DeploymentPrograms: Training & Education The RETScreen International Clean Energy Project Analysis Software is a unique decision-support tool. The software, provided free-of-charge, can be used worldwide to evaluate the energy production and savings, costs,

409

Play Fairway Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Play Fairway Analysis Play Fairway Analysis Geothermal energy today has expanded its horizons beyond traditional, surface-identified hydrothermal resources to include blind...

410

NREL: Energy Analysis - Melissa Hudman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Melissa Hudman Melissa Hudman Photo of Melissa Hudman. Melissa Hudman is the lead administrative assistant for the Strategic Energy Analysis Center. Administrative Assistant On staff since July 2011 Phone number: 303-384-7985 E-mail: melissa.hudman@nrel.gov Areas of expertise Media relations Project coordination Primary research interests Renewable fuels and vehicles Residential energy efficiency Prior work experience Advertising Coordinator, Colorado Serenity Magazine (2008) Substitute Teacher, Jeffco School District (2007) Media Relations Specialist, Business Wire (2006) Client Service Representative, Business Wire (2004) Education and background training B.A. in advertising. Texas Tech University, Lubbock, TX. 2004. Selected publications and websites R.E.A.C.T.: Renewable Energy Activities - Choices for Tomorrow; Teacher's

411

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

412

Transport, energy and greenhouse gases: perspectives on demand limitation. Guest editorial  

Science Journals Connector (OSTI)

The current economic recession results in reduced industrial output and energy consumption, and thus reduces freight transport activity ... , but everything indicates that growth in transport demand should re-sta...

Charles Raux; Martin E. H. Lee-Gosselin

2010-05-01T23:59:59.000Z

413

Analysis of the Impact of Fuel Cell Vehicles on Energy Systems...  

Open Energy Info (EERE)

of the Impact of Fuel Cell Vehicles on Energy Systems in the Transportation Sector in Japan Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Analysis of the Impact of...

414

Advanced Reactors Thermal Energy Transport for Process Industries  

SciTech Connect (OSTI)

The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

2014-07-01T23:59:59.000Z

415

Sensitivity Analysis of Ozone Formation and Transport for a Central  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensitivity Analysis of Ozone Formation and Transport for a Central Sensitivity Analysis of Ozone Formation and Transport for a Central California Air Pollution Episode Title Sensitivity Analysis of Ozone Formation and Transport for a Central California Air Pollution Episode Publication Type Journal Article Year of Publication 2008 Authors Jin, Ling, Shaheen R. Tonse, Daniel S. Cohan, Xianglei Mao, Robert A. Harley, and Nancy J. Brown Journal Environmental Science & Technology Volume 42 Start Page 3683 Issue 10 Pagination 3683-3689 Date Published 05/2008 Abstract We developed a first- and second-order sensitivity analysis approach with the decoupled direct method to examine spatial and temporal variations of ozone-limiting reagents and the importance of local vs upwind emission sources in the San Joaquin Valley of central California for a 5 day ozone episode (Jul 29th to Aug 3rd, 2000). Despite considerable spatial variations, nitrogen oxides (NOx) emission reductions are overall more effective than volatile organic compound (VOC) control for attaining the 8 h ozone standard in this region for this episode, in contrast to the VOC control that works better for attaining the prior 1 h ozone standard. Interbasin source contributions of NOx emissions are limited to the northern part of the SJV, while anthropogenic VOC (AVOC) emissions, especially those emitted at night, influence ozone formation in the SJV further downwind. Among model input parameters studied here, uncertainties in emissions of NOx and AVOC, and the rate coefficient of the OH + NO2 termination reaction, have the greatest effect on first-order ozone responses to changes in NOx emissions. Uncertainties in biogenic VOC emissions only have a modest effect because they are generally not collocated with anthropogenic sources in this region.

416

Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout … Sustainable Transportation  

Broader source: Energy.gov (indexed) [DOE]

Dr. Kathleen Hogan, Deputy Assistant Secretary Dr. Kathleen Hogan, Deputy Assistant Secretary May 2, 2013 Office of Energy Efficiency and Renewable Energy Fiscal Year 2014 Budget Rollout - Sustainable Transportation 2 EERE's National Mission To create American leadership in the global transition to a clean energy economy 1) High-Impact Research, Development, and Demonstration to Make Clean Energy as Affordable and Convenient as Traditional Forms of Energy 2) Breaking Down Barriers to Market Entry 3 Why Clean Energy Matters To America * Winning the most important global economic development race of the 21 st century * Creating jobs through American innovation * Enhancing energy security by reducing our dependence on foreign oil and gas * Saving money by cutting energy costs for American

417

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

SciTech Connect (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

418

A Path to More Sustainable Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Path to More Sustainable Transportation A Path to More Sustainable Transportation 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: U.S. Environmental...

419

RITA-Bureau of Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

RITA-Bureau of Transportation Statistics Jump to: navigation, search Tool Summary LAUNCH TOOL Name: RITA-Bureau of Transportation Statistics AgencyCompany Organization: United...

420

Production Costs of Alternative Transportation Fuels | Open Energy...  

Open Energy Info (EERE)

Production Costs of Alternative Transportation Fuels Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Production Costs of Alternative Transportation Fuels AgencyCompany...

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sustainable Transport and Climate Change | Open Energy Information  

Open Energy Info (EERE)

Sustainable Transport and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Day 1, Module 1: Sustainable Transport and Climate Change AgencyCompany...

422

RETScreen Clean Energy Project Analysis Software | Open Energy Information  

Open Energy Info (EERE)

RETScreen Clean Energy Project Analysis Software RETScreen Clean Energy Project Analysis Software Jump to: navigation, search Tool Summary Name: RETScreen Clean Energy Project Analysis Software Agency/Company /Organization: Natural Resources Canada Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, Buildings, Energy Efficiency, - Central Plant, Geothermal, Greenhouse Gas, Ground Source Heat Pumps, Hydrogen, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, - Solar Ventilation Preheat, Water Power, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Finance, Market analysis, Pathways analysis, Policies/deployment programs, Resource assessment Resource Type: Software/modeling tools, Workshop User Interface: Desktop Application, Spreadsheet

423

Transportation | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation Analysis Vehicle Systems Energy Storage Propulsion Materials Lightweight Materials Bioenergy Fuel Cell Technologies Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Transportation SHARE Transportation Research ORNL researcher Jim Szybist uses a variable valve-train engine to evaluate different types of fuels, including ethanol blends, and their effects on the combustion process in an internal combustion engine. Oak Ridge National Laboratory brings together science and technology experts from across scientific disciplines to partner with government and industry in addressing transportation challenges. Research objectives are

424

NREL: Energy Analysis - Daniel Steinberg  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensing Primary research interests Interrelationship between energy efficiency, demand response, and renewable energy Environmental and energy market impacts of energy and...

425

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

Local Population of Geothermal Energy Development in theof indigenous renewable and geothermal energy re- sources inocean thermal energy gradients, and geothermal energy. Some

Authors, Various

2013-01-01T23:59:59.000Z

426

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network [OSTI]

APRIL 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M. KLYMAK2. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes important

427

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves  

E-Print Network [OSTI]

SEPTEMBER 2006 MOUM ET. AL. 1 Energy Transport by Nonlinear Internal Waves J. N. MOUM1 , J. M of coastline. The energy transported by these waves includes a nonlinear advection term uE that is negligible in linear internal waves. Unlike linear internal waves, the pressure-velocity energy flux up includes

428

AN ADAPTIVE MIXED SCHEME FOR ENERGY-TRANSPORT SIMULATIONS OF FIELD-EFFECT TRANSISTORS  

E-Print Network [OSTI]

AN ADAPTIVE MIXED SCHEME FOR ENERGY-TRANSPORT SIMULATIONS OF FIELD-EFFECT TRANSISTORS #3; STEFAN HOLST, ANSGAR J  UNGEL y AND PAOLA PIETRA z Abstract. Energy-transport models are used in semiconductor and energy of the electrons, coupled to the Poisson equation for the electrostatic potential. The movement

Pietra, Paola

429

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors  

E-Print Network [OSTI]

A Mixed Finite-Element Discretization of the Energy-Transport Model for Semiconductors Stefan Holst #12;tting mixed #12;nite-element method is used to discretize the stationary energy. Energy-transport models describe the ow of electrons through a semi- conductor device, in uenced by di

Pietra, Paola

430

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

431

Energy Unit lecture outline & graphics Fritz Stahr Tues 1/21/03 -Transportation of Energy & Energy of Transportation an intricate link  

E-Print Network [OSTI]

- rail transport developed because steam engine (developed 1769) created way to take significant energy mobile ­ initially wood burning, but supplies and safety created shift to coal (now old engines left typically burn oil) - oil generated road system after perfection of internal combustion engine ~1930's

432

Analysis of emitter material transport in thermionic converter  

SciTech Connect (OSTI)

Output power and efficiency of a thermionic converter depend on temperatures, cesiated work functions, and emissivities of electrodes as well as the interelectrode gap size. Operation lifetime of a thermionic converter is directly related to the values as well as the stability of these parameters, which can be seriously altered by the transport of emitter material to the collector during operation. Loss rate of tungsten, a preferred emitter material, by sublimation at typical operating temperatures is small (about 3{times}10{sup 7} atom/cm{sup 2}sec at 2000 K). The loss rate, however, can be several orders of magnitude higher in the presence of gaseous contaminants. Accelerated transport of emitter material to collector surface changes the effective emissivity and work functions of the electrodes, resulting in performance degradation. A phenomenological model was developed to simulate emitter material transport to the collector in the presence of oxygen, water vapor, and carbon oxide contaminants. The model accounts for interaction of these contaminants with both emitter and collector. Model results were in agreement with experimental data and theoretical results of other investigators. An analysis was performed to determine steady-state chemical composition of deposited material onto the collector surface in the presence of H{sub 2}O, O{sub 2}, and H{sub 2} gaseous contaminants. {copyright} {ital 1996 American Institute of Physics.}

Paramonov, D.V.; El-Genk, M.S. [Institute for Space and Nuclear Power Studies, Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

1996-03-01T23:59:59.000Z

433

UN-Glossary for Transportation Statistics | Open Energy Information  

Open Energy Info (EERE)

UN-Glossary for Transportation Statistics UN-Glossary for Transportation Statistics Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UN-Glossary for Transportation Statistics Agency/Company /Organization: United Nations Focus Area: Transportation Resource Type: Dataset, Publications Website: www.internationaltransportforum.org/Pub/pdf/GloStat3e.pdf Cost: Free UN-Glossary for Transportation Statistics Screenshot References: UN-Glossary for Transportation Statistics[1] Logo: UN-Glossary for Transportation Statistics "The Glossary for Transport Statistics was published for the first time in 1994 with the purpose of assisting member countries during the collection of data on transport made by the UNECE, ECMT and Eurostat through the Common Questionnaire." References ↑ "UN-Glossary for Transportation Statistics"

434

The Department of Energy's Transportation Electrification Program, 0AS-RA-12-11  

Broader source: Energy.gov (indexed) [DOE]

Transportation Electrification Transportation Electrification Program OAS-RA-12-11 May 2012 Department of Energy Washington, DC 20585 May 10, 2012 MEMORANDUM FOR THE DEPUTY ASSISTANT SECRETARY FOR ENERGY EFFICIENCY FROM: Joanne Hill, Director Central Audits Division Office of Inspector General SUBJECT: INFORMATION: Special Report on "The Department of Energy's Transportation Electrification Program" INTRODUCTION The Department of Energy established the Transportation Electrification Program (Program) to demonstrate and evaluate the deployment of plug-in hybrid vehicles and their associated infrastructure needs. Funded by the American Recovery and Reinvestment Act of 2009, the Program provided about $400 million to 18 grant recipients-12 non-profit entities and 6 for-

435

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy  

Science Journals Connector (OSTI)

Ammonium Bicarbonate Transport in Anion Exchange Membranes for Salinity Gradient Energy ... Current status of ion exchange membranes for power generation from salinity gradients ...

Geoffrey M. Geise; Michael A. Hickner; Bruce E. Logan

2013-08-22T23:59:59.000Z

436

Computational modelling of transport phenomena in high energy materials processing application: large eddy simulation and parallelisation  

Science Journals Connector (OSTI)

A comprehensive three-dimensional numerical model is presented in order to address the coupled turbulent momentum, heat and species transport during molten metal-pool convection in association with continuous evolution of solid-liquid interface typically encountered in high energy materials processing applications. The turbulent aspect is handled by a large eddy simulation (LES) model and the phase changing phenomena is taken care of by a modified enthalpy-porosity technique. The proposed finite volume based LES model is subsequently parallelised for effective computational economy. To demonstrate the effectiveness of the present model, a systematic analysis is subsequently carried out to simulate a typical high power laser surface alloying process, where the effects of turbulent transport can actually be realised.

Dipankar Chatterjee

2011-01-01T23:59:59.000Z

437

Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the  

Open Energy Info (EERE)

Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Transportation Sector in Japan Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Analysis of the Impact of Fuel Cell Vehicles on Energy Systems in the Transportation Sector in Japan Agency/Company /Organization: Tohoku University Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Policy Impacts, Policy Impacts Website: www.iaee.org/documents/Aberdeen/a02nakata.pdf Equivalent URI: cleanenergysolutions.org/content/analysis-impact-fuel-cell-vehicles-en Language: English Policies: Financial Incentives This report examines the recent advances in fuel cell vehicles. The report then evaluates the impact of such vehicles on energy systems in the transportation sector in Japan and effectiveness of government subsidies in

438

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

439

Energy Technology Systems Analysis Program (MARKAL) | Open Energy  

Open Energy Info (EERE)

Energy Technology Systems Analysis Program (MARKAL) Energy Technology Systems Analysis Program (MARKAL) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Technology Systems Analysis Program (MARKAL) Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Co-benefits assessment, Pathways analysis, Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.etsap.org/index.asp Country: Belgium, Canada, Denmark, Finland, France, Germany, Greece, Italy, Japan, South Korea, Netherlands, Norway, Sweden, United States, United Kingdom, Switzerland, Albania, Australia, Austria, Bosnia and Herzegovina, Brazil, Bulgaria, Colombia, Croatia, India, Indonesia, Kazakhstan, Malaysia, New Zealand, China, Philippines, Poland, Portugal, South Africa, Romania, Serbia, Spain, Taiwan, Thailand, Vietnam

440

Validation Analysis of the Shoal Groundwater Flow and Transport Model  

SciTech Connect (OSTI)

Environmental restoration at the Shoal underground nuclear test is following a process prescribed by a Federal Facility Agreement and Consent Order (FFACO) between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Characterization of the site included two stages of well drilling and testing in 1996 and 1999, and development and revision of numerical models of groundwater flow and radionuclide transport. Agreement on a contaminant boundary for the site and a corrective action plan was reached in 2006. Later that same year, three wells were installed for the purposes of model validation and site monitoring. The FFACO prescribes a five-year proof-of-concept period for demonstrating that the site groundwater model is capable of producing meaningful results with an acceptable level of uncertainty. The corrective action plan specifies a rigorous seven step validation process. The accepted groundwater model is evaluated using that process in light of the newly acquired data. The conceptual model of ground water flow for the Project Shoal Area considers groundwater flow through the fractured granite aquifer comprising the Sand Springs Range. Water enters the system by the infiltration of precipitation directly on the surface of the mountain range. Groundwater leaves the granite aquifer by flowing into alluvial deposits in the adjacent basins of Fourmile Flat and Fairview Valley. A groundwater divide is interpreted as coinciding with the western portion of the Sand Springs Range, west of the underground nuclear test, preventing flow from the test into Fourmile Flat. A very low conductivity shear zone east of the nuclear test roughly parallels the divide. The presence of these lateral boundaries, coupled with a regional discharge area to the northeast, is interpreted in the model as causing groundwater from the site to flow in a northeastward direction into Fairview Valley. Steady-state flow conditions are assumed given the absence of groundwater withdrawal activities in the area. The conceptual and numerical models were developed based upon regional hydrogeologic investigations conducted in the 1960s, site characterization investigations (including ten wells and various geophysical and geologic studies) at Shoal itself prior to and immediately after the test, and two site characterization campaigns in the 1990s for environmental restoration purposes (including eight wells and a year-long tracer test). The new wells are denoted MV-1, MV-2, and MV-3, and are located to the northnortheast of the nuclear test. The groundwater model was generally lacking data in the north-northeastern area; only HC-1 and the abandoned PM-2 wells existed in this area. The wells provide data on fracture orientation and frequency, water levels, hydraulic conductivity, and water chemistry for comparison with the groundwater model. A total of 12 real-number validation targets were available for the validation analysis, including five values of hydraulic head, three hydraulic conductivity measurements, three hydraulic gradient values, and one angle value for the lateral gradient in radians. In addition, the fracture dip and orientation data provide comparisons to the distributions used in the model and radiochemistry is available for comparison to model output. Goodness-of-fit analysis indicates that some of the model realizations correspond well with the newly acquired conductivity, head, and gradient data, while others do not. Other tests indicated that additional model realizations may be needed to test if the model input distributions need refinement to improve model performance. This approach (generating additional realizations) was not followed because it was realized that there was a temporal component to the data disconnect: the new head measurements are on the high side of the model distributions, but the heads at the original calibration locations themselves have also increased over time. This indicates that the steady-state assumption of the groundwater model is in error. To test the robustness of the model d

A. Hassan; J. Chapman

2008-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Office of Energy Policy and Systems Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Office of Energy Policy and Systems Analysis Office of Energy Policy and Systems Analysis Revolution Now For four key clean energy technologies, the clean energy future has already arrived. Read more U.S. Energy Sector Vulnerabilities Report A Department of Energy report examines current and potential future impacts of these climate trends on the U.S. energy sector. Read more eGallon eGallon provides a quick and simple metric to allow electric vehicle (EV) drivers to see how much they can save on fuel. Read more EPSA Leadership Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis More about Melanie A. Kenderdine Jonathan Pershing Principal Deputy Director of the Office of Energy Policy and Systems Analysis More about Jonathan Pershing Mike Carr Senior Advisor and EERE Principal Deputy Assistant Secretary

442

Transportation Systems Planning and Analysis v0 Fall 2013/2014  

E-Print Network [OSTI]

in the US National Transportation Statistics: Travel Monitoring Highway Statistics Publication Archive://www.bts.gov/publications/national_transportation_statistics/2013/pdf/entire.pdf Energy Flow Diagram: Total Energy_wRejected 2011 ClassicView Energy Outlook: http this link!) Readings: ; Motor Fuel data and the Highway Trust Fund; State Gasoline Taxes Wed Sep 18 Personal

Singh, Jaswinder Pal

443

Transportation Systems Planning and Analysis v0 Fall 2014/2015  

E-Print Network [OSTI]

Background & Data Reference: MoreMyCity ;LincolnTravelDemandModel SCAG_Mo in the US National Transportation Statistics: Travel Monitoring Highway Statistics Publication Archive://www.bts.gov/publications/national_transportation_statistics/2013/pdf/entire.pdf Energy Flow Diagram: Total Energy_wRejected 2011 ClassicView Energy Outlook: http

Singh, Jaswinder Pal

444

Energy and Environmental Issues, 1991. Transportation research record  

SciTech Connect (OSTI)

Partial Contents: Mitigation of Traffic Mortality of Endangered Brown Pelicans on Coastal Bridges; Cooperation Between State Highway and Environmental Agencies in Dealing With Hazardous Waste in the Right-of-Way; Comparison of Intersection Air Quality Models' Ability to Simulate Carbon Monoxide Concentrations in an Urban Area; Model Calculation of Environment-Friendly Traffic Flows in Urban Networks; Sensitivity Analysis for Land Use, Transportation, and Air Quality; Special Events and Carbon Monoxide Violations: TSM, Crowd Control, Economics, and Solutions to Adverse Air Quality Impacts; Mode Split at Large Special Events and Effects on Air Quality; Internal Consistency and Stability of Measurements of Community Reaction to Noise; Impact and Potential Use of Attitude and Other Modifying Variables in Reducing Community Reaction to Noise; Techniques for Aesthetic Design of Freeway Noise Barriers; Effects of Road Surface Texture on Traffic and Vehicle Noise; Electrokinetic Soil Processing in Waste Remediation and Treatment: Synthesis of Available Data; Site Remediation by In Situ Vitrification.

Not Available

1991-01-01T23:59:59.000Z

445

LEDSGP/Transportation Toolkit/Contact Us | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Contact Us LEDSGP/Transportation Toolkit/Contact Us < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Contact Us) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Contacts for the LEDS GP Transport Working Group The Transportation Toolkit is provided by the Transport Working Group as part of the Low Emission Development Strategies (LEDS) Global Partnership. If you have questions or comments about this toolkit, . Remote Expert Assistance on LEDS The LEDS Global Partnership provides timely, high-quality, no-fee technical assistance on transportation issues as part of the Remote Expert Assistance on LEDS (REAL) service. Experts from institutions around the world are available to provide objective advice, conduct reviews and brief

446

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Strategies/Avoid LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Avoid) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg Avoid trips taken and reduce travel demand by integrating land use planning, transport infrastructure planning, and transport demand

447

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure), U.S. Department of Energy (DOE)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRANSPORTATION ENERGY FUTURES TRANSPORTATION ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is essential to our economy and quality of life, and currently accounts for 71% of the nation's total petroleum use and 33% of our total carbon emissions. Energy-efficient transportation strategies could reduce both oil consumption and greenhouse gas (GHG) emissions. The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective is to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an

448

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

Local Population of Geothermal Energy Development in theof coal, nuclear and geothermal energy sources. Overall, thewith new or expanded geothermal energy development. Fig. 1.

Authors, Various

2013-01-01T23:59:59.000Z

449

Containment analysis of the 9975 transportation package with multiple barriers  

SciTech Connect (OSTI)

A containment analysis has been performed for the scenario of non-routine transfer of a damaged 9975 package containing plutonium metal from K-area monitored storage to F-area on the Savannah River Site. A multiple barrier system with each barrier having a defined leakage rate of less than 1{times}10{sup {minus}3} cm{sup 3}/sec of air at Standard Temperature and Pressure was analyzed to determine the number of barriers needed to transport the package under normal transportation conditions to meet transportation requirements for containment. The barrier system was analyzed parametrically to achieve a composite system that met the federal requirements for the maximum permissible release rate given in Title 10 of the Code of Federal Regulations, Part 71. The multiple barrier system acts to retard the release of radioactivity. That is, a build-up in the radioactivity release rate occurs with time. For example, a system with three barriers (e.g., sealed plastic barrier) with a total free volume of 4,500 cm{sup 3} could be transported for a total time of up to approximately 10 days with a release rate within the permissible rate. Additional number of barriers, or volume of the barriers, or both, would extend to this period of time. For example, a system with seven barriers with a total free volume of 4,500 cm{sup 3} could be transported for up to 100 days. Plastic bags are one type of barrier used in movement of radioactive materials and capable of achieving a leak rate of 1{times}10{sup {minus}3} cm{sup 3}/sec of air at STP. Low-density polyethylene bags can withstand high temperature (up to 180 degrees C); a barrier thickness of 10 mils should be suitable for the barrier system. Additional requirements for barriers are listed in Section 4.2 of this report. Container testing per ANSI N14.5 is required to demonstrate leak rates for the individual barriers of less than 1{times}10{sup {minus}3} cm{sup 3}/sec.

Vinson, D.W.

2000-01-20T23:59:59.000Z

450

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

451

Scripted Building Energy Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

Macumber, D.

2012-10-01T23:59:59.000Z

452

Energy Use Analysis for the Federal Energy Management Program  

E-Print Network [OSTI]

and support to users, preparation of guidelines and procedures for energy savings initiatives, and publication of a manual to guide identification and analysis of energy conservation measures. This paper describes the current status and planned progress...

Mazzucchi, R. P.; Devine, K. D.

1988-01-01T23:59:59.000Z

453

Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

2001-11-09T23:59:59.000Z

454

Policies to Reduce Emissions from the Transportation Sector | Open Energy  

Open Energy Info (EERE)

Policies to Reduce Emissions from the Transportation Sector Policies to Reduce Emissions from the Transportation Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Policies to Reduce Emissions from the Transportation Sector Agency/Company /Organization: PEW Center Sector: Climate Focus Area: Transportation, People and Policy Phase: Evaluate Options, Develop Goals, Prepare a Plan Resource Type: Guide/manual User Interface: Other Website: www.pewclimate.org/DDCF-Briefs/Transportation Cost: Free References: Policies To Reduce Emissions From The Transportation Sector[1] Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Overview Provide an overview of policy tools available to reduce GHG emissions from the transportation sector. Outputs include: General Information

455

Transportation Assessment Toolkit/Home | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Transportation Assessment Toolkit/Home < Transportation Assessment Toolkit Jump to: navigation, search Home Transport Topics Ask an Expert Training Contact us What are the key actions necessary to implementing a transportation system LEDS? Action 1: Evaluate the existing transport system Action 2: Develop BAU scenario Action 3: Assess opportunities Avoid-Shift-Improve framework of strategies Action 4: Develop alternative scenarios Action 5: Prioritize and plan Action 6: Implement and monitor Transportation Assessment Toolkit Train licensed.png Transportation Assessment Toolkit Information licensed.png Transportation Assessment Toolkit Learning licensed.png

456

Seamless Poleward Atmospheric Energy Transports and Implications for the Hadley Circulation  

Science Journals Connector (OSTI)

A detailed vertically integrated atmospheric heat and energy budget is presented along with estimated heat budgets at the surface and top-of-atmosphere for the subtropics. It is shown that the total energy transports are remarkably seamless in ...

Kevin E. Trenberth; David P. Stepaniak

2003-11-01T23:59:59.000Z

457

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect (OSTI)

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

458

Transportation Secure Data Center: Real-World Data for Transportation Planning and Land Use Analysis (Fact Sheet)  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) and the U.S. Department of Transportation (DOT) have launched the free, web-based Transportation Secure Data Center (TSDC). The TSDC (www.nrel.gov/tsdc) preserves respondent anonymity while making vital transportation data available to a broad group of users through secure, online access. The TSDC database provides free-of-charge web-based access to valuable transportation data that can be used for: Transit planning, Travel demand modeling, Homeland Security evacuation planning, Alternative fuel station planning, and Validating transportation data from other sources. The TSDC's two levels of access make composite data available with simple online registration, and allow researchers to use detailed spatial data after completing a straight forward application process.

Not Available

2013-01-01T23:59:59.000Z

459

Manufacturing Energy Consumption Survey (MECS) - Analysis & Projections -  

Gasoline and Diesel Fuel Update (EIA)

Manufacturing Energy Consumption Survey (MECS) Manufacturing Energy Consumption Survey (MECS) Glossary › FAQS › Overview Data 2010 2006 2002 1998 1994 1991 Archive Analysis & Projections MECS Industry Analysis Briefs Steel Industry Analysis The steel industry is critical to the U.S. economy. Steel is the material of choice for many elements of construction, transportation, manufacturing, and a variety of consumer products. It is the backbone of bridges, skyscrapers, railroads, automobiles, and appliances. Most grades of steel used today - particularly high-strength steels that are lighter and more versatile - were not available a decade ago. Chemical Industry Analysis The chemical industries are a cornerstone of the U.S. economy, converting raw materials such as oil, natural gas, air, water, metals, and minerals

460

On the energy transported by exact plane gravitational-wave solutions  

E-Print Network [OSTI]

The energy and momentum transported by exact plane gravitational-wave solutions of Einstein equations are computed using the teleparallel equivalent formulation of Einstein's theory. It is shown that these waves transport neither energy nor momentum. A comparison with the usual linear plane gravitational-waves solution of the linearized Einstein equation is presented.

Yuri N. Obukhov; J. G. Pereira; Guillermo F. Rubilar

2009-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Energy Department Joins Agriculture and Navy in the Fight for Clean Energy Transportation  

Office of Energy Efficiency and Renewable Energy (EERE)

Earlier this month, on September 19, 2014, Energy Department (DOE) Deputy Secretary Daniel Poneman joined Secretary Tom Vilsack of the Department of Agriculture (USDA), and Secretary Ray Mabus of the Department of Navy (Navy) to announce three projects that will produce renewable jet and diesel for the military. DOE, USDA, and Navy are working with private industry to produce advanced drop-in biofuels that can be used by the Department of Defense and the private transportation sector.

462

NREL: Energy Analysis - Philipp Beiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulatory policy Data analysis and statistical modeling Primary research interests Electricity markets Utility business models for distributed generation Regulatory analysis...

463

A comparative financial analysis of the automobile and public transportation in London  

E-Print Network [OSTI]

Automobile systems and public transportation are often organized separately within government structure inhibiting a comparative analysis between the two modes. Further complicating the comparison is that in public ...

Kothari, Tejus Jitendra

2007-01-01T23:59:59.000Z

464

NREL: Energy Analysis - Geothermal Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by...

465

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Strategies) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low emissions transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand

466

Transportation Emergency Preparedness Program (TEPP) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transportation Emergency Preparedness Program (TEPP) Transportation Emergency Preparedness Program (TEPP) Transportation Emergency Preparedness Program (TEPP) In an effort to address responder concerns, the Department retooled its approach to emergency responder preparedness and implemented the more simplified and responder-friendly Transportation Emergency Preparedness Program (TEPP). TEPP is a component of the overall comprehensive emergency management system established by DOE Order (DOE O) 151.1, Comprehensive Emergency Management System. TEPP integrates a basic approach to transportation emergency planning and preparedness activities under a single program with the goal to ensure DOE, its operating contractors, and state, tribal, and local emergency responders are prepared to respond promptly, efficiently, and effectively to accidents involving DOE

467

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

Actions Actions < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low-emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a way that complements existing climate and development goals in other sectors. Planners, researchers, and decision-makers should customize this LEDS implementation framework for the specific conditions of their transport sector, choosing from relevant resources to achieve a comprehensive action

468

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Improve < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Improve) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and

469

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

Tools Tools < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Tools for Low-Emission Development Strategies in Transportation Use one of the search methods below to find tools for building sustainable, low-emission development strategies (LEDS) for your country's transportation system. These resources focus on strategies to limit air pollutants and greenhouse gas emissions. Learn more in the report on LEDS for transportation. Search Method: Category Keyword Choose one or more items from the following categories. Key Actions Implement & Monitor Evaluate System Create Baseline Assess Opportunities Develop Alternatives Prioritize & plan Strategies Resource Types Topics Regions Powered by OpenEI

470

Energy Conversion Advanced Heat Transport Loop and Power Cycle  

SciTech Connect (OSTI)

The Department of Energy and the Idaho National Laboratory are developing a Next Generation Nuclear Plant (NGNP) to serve as a demonstration of state-of-the-art nuclear technology. The purpose of the demonstration is two fold 1) efficient low cost energy generation and 2) hydrogen production. Although a next generation plant could be developed as a single-purpose facility, early designs are expected to be dual-purpose. While hydrogen production and advanced energy cycles are still in its early stages of development, research towards coupling a high temperature reactor, electrical generation and hydrogen production is under way. Many aspects of the NGNP must be researched and developed in order to make recommendations on the final design of the plant. Parameters such as working conditions, cycle components, working fluids, and power conversion unit configurations must be understood. Three configurations of the power conversion unit were demonstrated in this study. A three-shaft design with 3 turbines and 4 compressors, a combined cycle with a Brayton top cycle and a Rankine bottoming cycle, and a reheated cycle with 3 stages of reheat were investigated. An intermediate heat transport loop for transporting process heat to a High Temperature Steam Electrolysis (HTSE) hydrogen production plant was used. Helium, CO2, and an 80% nitrogen, 20% helium mixture (by weight) were studied to determine the best working fluid in terms cycle efficiency and development cost. In each of these configurations the relative component size were estimated for the different working fluids. The relative size of the turbomachinery was measured by comparing the power input/output of the component. For heat exchangers the volume was computed and compared. Parametric studies away from the baseline values of the three-shaft and combined cycles were performed to determine the effect of varying conditions in the cycle. This gives some insight into the sensitivity of these cycles to various operating conditions as well as trade offs between efficiency and capital cost. Prametric studies were carried out on reactor outlet temperature, mass flow, pressure, and turbine cooling. Recommendations on the optimal working fluid for each configuration were made. A steady state model comparison was made with a Closed Brayton Cycle (CBC) power conversion system developed at Sandia National Laboratory (SNL). A preliminary model of the CBC was developed in HYSYS for comparison. Temperature and pressure ratio curves for the Capstone turbine and compressor developed at SNL were implemented into the HYSYS model. A comparison between the HYSYS model and SNL loop demonstrated power output predicted by HYSYS was much larger than that in the experiment. This was due to a lack of a model for the electrical alternator which was used to measure the power from the SNL loop. Further comparisons of the HYSYS model and the CBC data are recommended. Engineering analyses were performed for several configurations of the intermediate heat transport loop that transfers heat from the nuclear reactor to the hydrogen production plant. The analyses evaluated parallel and concentric piping arrangements and two different working fluids, including helium and a liquid salt. The thermal-hydraulic analyses determined the size and insulation requirements for the hot and cold leg pipes in the different configurations. Economic analyses were performed to estimate the cost of the va

Oh, C. H.

2006-08-01T23:59:59.000Z

471

ENERGY STAR Healthcare Energy Savings Financial Analysis Calculators |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Healthcare Energy Savings Financial Analysis Healthcare Energy Savings Financial Analysis Calculators Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

472

The fluctuation energy balance in non-suspended fluid-mediated particle transport  

E-Print Network [OSTI]

Here we compare two extreme regimes of non-suspended fluid-mediated particle transport, transport in light and heavy fluids ("saltation" and "bedload", respectively), regarding their particle fluctuation energy balance. From direct numerical simulations, we surprisingly find that the ratio between collisional and fluid drag dissipation of fluctuation energy is significantly larger in saltation than in bedload, even though the contribution of interparticle collisions to transport of momentum and energy is much smaller in saltation due to the low concentration of particles in the transport layer. We conclude that the much higher frequency of high-energy particle-bed impacts ("splash") in saltation is the cause for this counter-intuitive behavior. Moreover, from a comparison of these simulations to Particle Tracking Velocimetry measurements which we performed in a wind tunnel under steady transport of fine and coarse sand, we find that turbulent fluctuations of the flow produce particle fluctuation energy at an ...

Phtz, Thomas; Ho, Tuan-Duc; Valance, Alexandre; Kok, Jasper F

2015-01-01T23:59:59.000Z

473

LEDSGP/Transportation Toolkit/Tools | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Tools < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Tools) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Tools for Low Emission Development Strategies in Transportation Use one of the search methods below to find tools for building sustainable, low emission development strategies (LEDS) for your country's transportation system. These resources focus on strategies to limit air pollutants and greenhouse gas emissions. Learn more in the report on LEDS for transportation. If you are aware of a relevant technical resource not

474

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Training) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are

475

Table 21. Total Transportation Energy Consumption, Projected vs. Actual  

Gasoline and Diesel Fuel Update (EIA)

Transportation Energy Consumption, Projected vs. Actual Transportation Energy Consumption, Projected vs. Actual (quadrillion Btu) 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 AEO 1982 18.6 18.2 17.7 17.3 17.0 16.9 AEO 1983 19.8 20.1 20.4 20.4 20.5 20.5 20.7 AEO 1984 19.2 19.0 19.0 19.0 19.1 19.2 20.1 AEO 1985 20.0 19.8 20.0 20.0 20.0 20.1 20.3 AEO 1986 20.5 20.8 20.8 20.6 20.7 20.3 21.0 AEO 1987 21.3 21.5 21.6 21.7 21.8 22.0 22.0 22.0 21.9 22.3 AEO 1989* 21.8 22.2 22.4 22.4 22.5 22.5 22.5 22.5 22.6 22.7 22.8 23.0 23.2 AEO 1990 22.0 22.4 23.2 24.3 25.5 AEO 1991 22.1 21.6 21.9 22.1 22.3 22.5 22.8 23.1 23.4 23.8 24.1 24.5 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 AEO 1992 21.7 22.0 22.5 22.9 23.2 23.4 23.6 23.9 24.1 24.4 24.8 25.1 25.4 25.7 26.0 26.3 26.6 26.9 27.1 AEO 1993 22.5 22.8 23.4 23.9 24.3 24.7 25.1 25.4 25.7 26.1 26.5 26.8 27.2 27.6 27.9 28.1 28.4 28.7 AEO 1994 23.6

476

Table 20. Total Delivered Transportation Energy Consumption, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

Total Delivered Transportation Energy Consumption, Projected vs. Actual Total Delivered Transportation Energy Consumption, Projected vs. Actual Projected (quadrillion Btu) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 AEO 1994 23.6 24.1 24.5 24.7 25.1 25.4 25.7 26.2 26.5 26.9 27.2 27.6 27.9 28.3 28.6 28.9 29.2 29.5 AEO 1995 23.3 24.0 24.2 24.7 25.1 25.5 25.9 26.2 26.5 26.9 27.3 27.7 28.0 28.3 28.5 28.7 28.9 AEO 1996 23.9 24.1 24.5 24.8 25.3 25.7 26.0 26.4 26.7 27.1 27.5 27.8 28.1 28.4 28.6 28.9 29.1 AEO 1997 24.7 25.3 25.9 26.4 27.0 27.5 28.0 28.5 28.9 29.4 29.8 30.3 30.6 30.9 31.1 31.3 AEO 1998 25.3 25.9 26.7 27.1 27.7 28.3 28.8 29.4 30.0 30.6 31.2 31.7 32.3 32.8 33.1 AEO 1999 25.4 26.0 27.0 27.6 28.2 28.8 29.4 30.0 30.6 31.2 31.7 32.2 32.8 33.1 AEO 2000 26.2 26.8 27.4 28.0 28.5 29.1 29.7 30.3 30.9 31.4 31.9 32.5 32.9

477

NREL: Energy Analysis - Wind Technology Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind and Hydropower Technology Analysis Wind and Hydropower Technology Analysis Wind and hydropower analysis supports advanced technologies that convert more of the nation's wind into electricity. Grid Operational Impact Analysis The wind program will address the variable, normally uncontrollable nature of wind power plant output, and the additional needs that its operation imposes on the overall grid. At present, the generation and transmission operational impacts that occur due to wind variability are not well quantified. This research will include efforts to quantify and fairly allocate impacts in both an engineering and cost sense. Methods of analysis are at an early stage of development. Without realistic analysis and cost allocation, utilities tend to overestimate imposed operational costs,

478

Issues in International Energy Consumption Analysis: Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Usage in India's Housing Sector SERIES: Issues in International Energy Consumption Analysis Electricity Usage in India's Housing Sector Release date: November 7, 2014...

479

Hydrogen for Energy Storage Analysis Overview (Presentation)  

SciTech Connect (OSTI)

Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

Steward, D. M.; Ramsden, T.; Harrison, K.

2010-06-01T23:59:59.000Z

480

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

energy efficiency. Intelligent Buildings, 3:43-46, 2011. InM. Bhandari. Comparison of Building Energy Use Data betweenand China, Energy and Buildings, 2013. Under reviewed. 5. T.

Hong, Tianzhen

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transportation analysis energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NREL: Energy Analysis - Ella Zhou  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

expertise Power system modeling Integrating water and cooling system, energy storage, and demand response into grid simulation and optimization models International energy policy...

482

Quantitative determination of energy enhanced interlayer transport in pulsed laser deposition of SrTiO3  

Science Journals Connector (OSTI)

We show that the analysis of single-shot surface x-ray diffraction transients in terms of time-dependent coverages allows quantitative determination of interlayer transport in pulsed-laser deposition of SrTiO3. The fast interlayer transport during and immediately after the arrival of the laser plume and before crystallization represents the dominant mechanism for redistribution of the deposited material that is completed on a ?s-range or faster time scale. Following crystallization interlayer transport is more than four orders of magnitude slower because it is driven only by sluggish thermally activated processes, which represent a small fraction of total interlayer transport that decreases with increasing laser repetition rate. The analysis of growth kinetics shows that it is fast interlayer transport driven by hyperthermal energy species and not thermal annealing that governs layer completion that determines the growth mode and the formation of atomically sharp interfaces in pulsed-laser deposition of epitaxial oxide films and similar energy-enhanced growth processes.

Gyula Eres; J. Z. Tischler; C. M. Rouleau; P. Zschack; H. M. Christen; B. C. Larson

2011-11-28T23:59:59.000Z

483

Analysis Activities at National Renewable Energy Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Margaret K. Mann Hydrogen Analysis Task Leader Charter * NREL's mission: NREL develops renewable energy and energy efficiency technologies and practices, advances related science and engineering, and transfers knowledge and innovations to address the nation's energy and environmental goals. * The NREL Hydrogen Analysis Group provides leadership in hydrogen production, delivery, transition, and market analysis, to increase the efficiency of hydrogen research and implementation. * The NREL Hydrogen Analysis Group has received the majority of its funding from the DOE Hydrogen Program (now HFCIT), with some funding coming from PBA and OFCVT

484

Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy  

E-Print Network [OSTI]

from 15 years of alternative fuels experience19882003. Learned from 15 Years of Alternative Fuels Experience: 1988-Challenges for Alternative Fuel Vehicle and Transportation

Sperling, Daniel; Cannon, James S.

2010-01-01T23:59:59.000Z

485

Measurement of energy-saving effect by intermodal freight transport in Thailand  

Science Journals Connector (OSTI)

In Thailand, transport sector is the largest energy consuming sector (38%). Road haulage of freight transport accounts for approximately 92% of total domestic freight movements. Accordingly, it is one of the largest contributors to adverse environmental impacts. This study presents one option to reduce energy consumption through modal shift from trailer to intermodal transport involving railway and waterway. It focuses on freight movements between Bangkok and Hat Yai in Thailand. Energy savings are measured by multi-objective optimisation model using decision variables consisting of three mode options: trailer only, intermodal-rail and intermodal-waterway. In addition to energy consumption, the objective function also includes time and charge of shipment factor.

Shinya Hanaoka; Taqsim Husnain; Tomoya Kawasaki; Pichet Kunadhamraks

2011-01-01T23:59:59.000Z

486

Transport-related impacts and instruments for sensitive areas | Open Energy  

Open Energy Info (EERE)

Transport-related impacts and instruments for sensitive areas Transport-related impacts and instruments for sensitive areas Jump to: navigation, search Tool Summary Name: Transport-related impacts and instruments for sensitive areas Agency/Company /Organization: European Commission Complexity/Ease of Use: Not Available Website: ec.europa.eu/environment/air/pdf/sat/4_annexes.pdf Transport Toolkit Region(s): Europe Related Tools Global Bus Rapid Transit (BRT) Database Electric Vehicle Charging Infrastructure Deployment Guidelines: British Columbia Transportation Energy Data Book ... further results Find Another Tool FIND TRANSPORTATION TOOLS This report is a study on transport-related impacts on environmentally sensitive areas, and possible measures and policy instruments to address them. When to Use This Tool While building a low emission strategy for your country's transportation

487

CCAP-Data and Capacity Needs for Transportation NAMAs | Open Energy  

Open Energy Info (EERE)

CCAP-Data and Capacity Needs for Transportation NAMAs CCAP-Data and Capacity Needs for Transportation NAMAs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CCAP-Data and Capacity Needs for Transportation NAMAs Agency/Company /Organization: Center for Clean Air Policy Sector: Climate, Energy Focus Area: Transportation Topics: Low emission development planning, -NAMA Website: www.ccap.org/docs/resources/973/Transport_NAMA_Capacity-Building.pdf Cost: Free Language: English CCAP-Data and Capacity Needs for Transportation NAMAs Screenshot References: CCAP-Data and Capacity Needs for Transportation NAMAs[1] Report 1: Data Availability "The current report is the first in a series exploring the issue of data and capacity needs to support effective implementation and evaluation of transportation NAMAs. The purpose of this research is to support the

488

Oil prices and transport sector returns: an international analysis  

Science Journals Connector (OSTI)

This study examines the role of oil prices in explaining transport sector equity returns ... study are strongly supportive of some role for oil prices in determining the transport sector returns for ... asymmet...

Mohan Nandha; Robert Brooks

2009-11-01T23:59:59.000Z

489

Quantitative analysis of alternative transportation under environmental constraints  

E-Print Network [OSTI]

This thesis focuses on the transportation sector and its role in emissions of carbon dioxide (CO2) and conventional pollutant emissions. Specifically, it analyzes the potential for hydrogen based transportation, introducing ...

Sandoval Lpez, Reynaldo

2006-01-01T23:59:59.000Z

490

Institute for Transportation & Development Policy | Open Energy Information  

Open Energy Info (EERE)

Institute for Transportation & Development Policy Institute for Transportation & Development Policy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Institute for Transportation & Development Policy Agency/Company /Organization: Institute for Transportation & Development Policy Focus Area: Multi-sector Impact Evaluation Topics: Best Practices Website: www.itdp.org/ The Institute for Transportation and Development Policy (ITDP) works with cities worldwide to bring about sustainable transport solutions that cut greenhouse gas emissions, reduce poverty, and improve the quality of urban life. The ITDP website provides summaries of the organization's work in the areas of bus rapid transit, bike sharing, and others. How to Use This Tool This tool is most helpful when using these strategies:

491

LEDSGP/Transportation Toolkit/Training | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Training < LEDSGP‎ | Transportation Toolkit Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Training for Low Emission Development Strategies in Transportation The LEDS GP Transport Working Group provides technical training and resources in the form of webinars, e-learning, live/recorded presentation videos, presentation files, and other knowledge exchange formats relevant to low emission development strategies in the transport sector. Below are links to relevant online training/learning sites. To suggest additional

492

The Sourcebook on Sustainable Urban Transport | Open Energy Information  

Open Energy Info (EERE)

Sourcebook on Sustainable Urban Transport Sourcebook on Sustainable Urban Transport Jump to: navigation, search Tool Summary Name: The Sourcebook on Sustainable Urban Transport Agency/Company /Organization: GIZ Focus Area: Other Topics: Policy Impacts Resource Type: Reports, Journal Articles, & Tools Website: www.sutp.org/index.php?option=com_content&task=view&id=426&Itemid=189& The Sourcebook addresses the key areas of a sustainable transport policy framework for developing cities. It consists of more than twenty modules addressing the following themes: institutional and policy orientation; land use planning and demand management; transit, walking, and cycling; vehicles and fuels; environment and health; and social issues in transport. References Retrieved from "http://en.openei.org/w/index.php?title=The_Sourcebook_on_Sustainable_Urban_Transport&oldid=515034"

493

LEDSGP/Transportation Toolkit/Key Actions | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Key Actions < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Key Actions) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Key Actions for Low-Emission Development in Transportation Although no single approach or fixed process exists for low emission development strategies (LEDS), the following key actions are necessary steps for implementing LEDS in the transportation sector. Undertaking these actions requires flexibility to adapt to dynamic societal conditions in a

494