National Library of Energy BETA

Sample records for transport packaging tests

  1. Normal conditions of transport thermal analysis and testing of a Type B drum package

    SciTech Connect (OSTI)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-11-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed.

  2. Radioisotope Thermoelectric Generator Transportation System licensed hardware second certification test series and package shock mount system test

    SciTech Connect (OSTI)

    Ferrell, P.C.; Moody, D.A.

    1996-03-01

    This paper presents a summary of two separate drop test activities that were performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of {ital Title} 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, {open_quote}{open_quote}Part 71{close_quote}{close_quote} (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the U.S. Department of Energy{close_quote}s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, {ital Transit} {ital Drop} {ital Procedure} (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G{close_quote}s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G{close_quote}s was not exceeded in any test from a free drop height of 457 mm (18 in.). {copyright} {ital 1996 American Institute of Physics.}

  3. WASTE PACKAGE TRANSPORTER DESIGN

    SciTech Connect (OSTI)

    D.C. Weddle; R. Novotny; J. Cron

    1998-09-23

    The purpose of this Design Analysis is to develop preliminary design of the waste package transporter used for waste package (WP) transport and related functions in the subsurface repository. This analysis refines the conceptual design that was started in Phase I of the Viability Assessment. This analysis supports the development of a reliable emplacement concept and a retrieval concept for license application design. The scope of this analysis includes the following activities: (1) Assess features of the transporter design and evaluate alternative design solutions for mechanical components. (2) Develop mechanical equipment details for the transporter. (3) Prepare a preliminary structural evaluation for the transporter. (4) Identify and recommend the equipment design for waste package transport and related functions. (5) Investigate transport equipment interface tolerances. This analysis supports the development of the waste package transporter for the transport, emplacement, and retrieval of packaged radioactive waste forms in the subsurface repository. Once the waste containers are closed and accepted, the packaged radioactive waste forms are termed waste packages (WP). This terminology was finalized as this analysis neared completion; therefore, the term disposal container is used in several references (i.e., the System Description Document (SDD)) (Ref. 5.6). In this analysis and the applicable reference documents, the term ''disposal container'' is synonymous with ''waste package''.

  4. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  5. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  6. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  7. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Supersedes DOE O 460.1B.

  8. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  9. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  10. Hazardous Materials Packaging and Transportation Safety - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Ashok Kapoor Functional areas: Hazardous Materials, Packaging and Transportation, Safety and Security, Work...

  11. Lessons learned during Type A Packaging testing

    SciTech Connect (OSTI)

    O`Brien, J.H.; Kelly, D.L.

    1995-11-01

    For the past 6 years, the US Department of Energy (DOE) Office of Facility Safety Analysis (EH-32) has contracted Westinghouse Hanford Company (WHC) to conduct compliance testing on DOE Type A packagings. The packagings are tested for compliance with the U.S. Department of Transportation (DOT) Specification 7A, general packaging, Type A requirements. The DOE has shared the Type A packaging information throughout the nuclear materials transportation community. During testing, there have been recurring areas of packaging design that resulted in testing delays and/or initial failure. The lessons learned during the testing are considered a valuable resource. DOE requested that WHC share this resource. By sharing what is and can be encountered during packaging testing, individuals will hopefully avoid past mistakes.

  12. DOE-Idaho's Packaging and Transportation Perspective

    Office of Environmental Management (EM)

    Idaho's Packaging and T t ti P ti Transportation Perspective Richard Provencher Manager DOE Idaho Operations Office DOE Idaho Operations Office Presented to the DOE National Transportation Stakeholders Forum Stakeholders Forum May 12, 2011 DOE's Idaho site ships and receives a wide variety of radioactive materials 2 Engineering Test Reactor vessel excavated, transported across the site and disposed 3 Navy SNF moved from wet to dry storage storage 4 5 Left: Contact-handled TRU shipments Right: A

  13. Regulatory fire test requirements for plutonium air transport packages : JP-4 or JP-5 vs. JP-8 aviation fuel.

    SciTech Connect (OSTI)

    Figueroa, Victor G.; Lopez, Carlos; Nicolette, Vernon F.

    2010-10-01

    For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to get than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.

  14. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-18

    Establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration, materials transportation and packaging and ensures the safe, secure, efficient packaging and transportation of materials, both hazardous and non-hazardous.

  15. Packaging and Transportation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaging and Transportation Packaging and Transportation Packaging and Transportation Radiological shipments are accomplished safely. Annually, about 400 million hazardous materials shipments occur in the United States by rail, air, sea, and land. Of these shipments, about three million are radiological shipments. Since Fiscal Year (FY) 2004, EM has completed over 150,000 shipments of radioactive material/waste. Please click here to see Office of Packaging and Transportation Fiscal Year 2012

  16. EM Office of Packaging and Transportation | Department of Energy

    Office of Environmental Management (EM)

    Office of Packaging and Transportation EM Office of Packaging and Transportation PDF icon EM Office of Packaging and Transportation More Documents & Publications 2009 TEPP Annual...

  17. Packaging and Transportation News | Department of Energy

    Energy Savers [EERE]

    Packaging and Transportation News Packaging and Transportation News January 14, 2016 Ron Hafner with Lawrence Livermore National Laboratory lectures for a course in San Ramon, Calif. on packaging and transporting radioactive material. EM, University of Nevada, Reno Team on "Packaging University" A burgeoning relationship between EM and the University of Nevada, Reno (UNR) is giving new depth and breadth to a program that trains students and nuclear industry professionals in packing and

  18. NREL: Transportation Research - Power Electronics Packaging Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Packaging Reliability A photo of a piece of power electronics testing equipment. NREL power electronics packaging reliability research investigates the performance and reliability of emerging interconnection, interface, and packaging materials. Findings help improve reliability and durability of emerging technologies. Photo by Dennis Schroeder, NREL Power electronics packaging around a semiconductor switching device determines the electrical, thermal, and mechanical properties of a power

  19. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  20. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-12-22

    The Order establishes requirements and responsibilities for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), materials transportation and packaging to ensure the safe, secure, efficient packaging and transportation of materials, both hazardous and nonhazardous. Cancels DOE O 460.2 and DOE O 460.2 Chg 1

  1. DOT-7A packaging test procedure

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-01-23

    This test procedure documents the steps involved with performance testing of Department of Transportation Specification 7A (DOT-7A) Type A packages. It includes description of the performance tests, the personnel involved, appropriate safety considerations, and the procedures to be followed while performing the tests. Westinghouse Hanford Company (WHC) is conducting the evaluation and testing discussed herein for the Department of Energy-Headquarters, Division of Quality Verification and Transportation Safety (EH-321). Please note that this report is not in WHC format. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes.

  2. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect (OSTI)

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  3. Underground Test Area Subproject Phase I Data Analysis Task. Volume V - Transport Parameter and Source Term Data Documentation Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume V of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the transport parameter and source term data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  4. DOE-Idaho's Packaging and Transportation Perspective | Department...

    Office of Environmental Management (EM)

    DOE-Idaho's Packaging and Transportation Perspective DOE-Idaho's Packaging and Transportation Perspective Presented by Richard Provencher, Manager for the DOE Idaho Operations...

  5. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels DOE 1540.1A, DOE 1540.2, DOE 1540.3A.

  6. Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26

    Establishes Department of Energy (DOE) policies and requirements to supplement applicable laws, rules, regulations, and other DOE Orders for materials transportation and packaging operations. Cancels: DOE 1540.1A, DOE 1540.2, and DOE 1540.3A.

  7. US Department of Transportation specification packages evaluation

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R.

    1992-01-01

    Specification packages are broad families of package designs and approved by the Department of Transportation (DOT) for transport of certain classes of radioactive materials, with each specification containing a number of designs of various sizes. Many of the individual package designs are not supported by reasonably current safety analyses. The Nuclear Regulatory Commission (NRC) asked Oak Ridge National Laboratory (ORNL) staff to collect all related information, perform analyses, and identify alternative actions that will enable NRC and DOT to make informed decisions on whether to retain, withdraw, or modify the existing regulatory permission for the use of specification packages to transport radioactive and fissile materials. This paper presents the background, issues, and progress made in this activity.

  8. US Department of Transportation specification packages evaluation

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R.

    1992-03-01

    Specification packages are broad families of package designs and approved by the Department of Transportation (DOT) for transport of certain classes of radioactive materials, with each specification containing a number of designs of various sizes. Many of the individual package designs are not supported by reasonably current safety analyses. The Nuclear Regulatory Commission (NRC) asked Oak Ridge National Laboratory (ORNL) staff to collect all related information, perform analyses, and identify alternative actions that will enable NRC and DOT to make informed decisions on whether to retain, withdraw, or modify the existing regulatory permission for the use of specification packages to transport radioactive and fissile materials. This paper presents the background, issues, and progress made in this activity.

  9. An evaluation of Department of Transportation specification packages

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R.

    1992-01-01

    Specification packages are broad families of package designs developed and authorized by the US Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC) for transport of certain Type B and fissile radioactive materials, with each specification containing a number of designs of various sizes. The specification package designs have remained essentially unchanged in a changing regulatory environment. Changes to package designs or authorized contents under the DOT system can be accomplished by rule making action, but there has been little updating of the designs over the years. Many of the individual package designs are no longer supported by reasonably current safety analyses. Since the publication of these specifications, there have been changes in regulatory requirements and improvements in methods of testing and analysis. Additionally, contemplated revisions to the DOT and NRC regulations to bring design requirements into accord with IAEA Safety Series No. 6, 1985 Edition would eliminate fissile classes and require resistance to a crush test for small Type B packages meeting certain criteria. The NRC has requested that the Oak Ridge National Laboratory (ORNL) staff review the safety documentation of the specification packages to determine the possible need for further testing and analysis, modifications to the designs, and, perhaps, elimination of any designs for which there is insufficient demonstration of compliance with current and proposed requirements. This paper will present a summary of the technical data and information concerning the use of the packages that has been received to date.

  10. An evaluation of Department of Transportation specification packages

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R.

    1992-11-01

    Specification packages are broad families of package designs developed and authorized by the US Department of Transportation (DOT) and the Nuclear Regulatory Commission (NRC) for transport of certain Type B and fissile radioactive materials, with each specification containing a number of designs of various sizes. The specification package designs have remained essentially unchanged in a changing regulatory environment. Changes to package designs or authorized contents under the DOT system can be accomplished by rule making action, but there has been little updating of the designs over the years. Many of the individual package designs are no longer supported by reasonably current safety analyses. Since the publication of these specifications, there have been changes in regulatory requirements and improvements in methods of testing and analysis. Additionally, contemplated revisions to the DOT and NRC regulations to bring design requirements into accord with IAEA Safety Series No. 6, 1985 Edition would eliminate fissile classes and require resistance to a crush test for small Type B packages meeting certain criteria. The NRC has requested that the Oak Ridge National Laboratory (ORNL) staff review the safety documentation of the specification packages to determine the possible need for further testing and analysis, modifications to the designs, and, perhaps, elimination of any designs for which there is insufficient demonstration of compliance with current and proposed requirements. This paper will present a summary of the technical data and information concerning the use of the packages that has been received to date.

  11. Research and Development Program for transportation packagings at Sandia National Laboratories

    SciTech Connect (OSTI)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-02-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support.

  12. EARLY TESTS OF DRUM TYPE PACKAGINGS - THE LEWALLEN REPORT

    SciTech Connect (OSTI)

    Smith, A.

    2010-07-29

    The need for robust packagings for radioactive materials (RAM) was recognized from the earliest days of the nuclear industry. The U.S. Department of Energy (DOE) Rocky Flats Plant developed a packaging for shipment of Pu in the early 1960's, which became the U.S. Department of Transportation (DOT) 6M specification package. The design concepts were employed in other early packagings. Extensive tests of these at Savannah River Laboratory (now Savannah River National Laboratory) were performed in 1969 and 1970. The results of these tests were reported in 'Drum and Board-Type Insulation Overpacks of Shipping Packages for Radioactive Materials', by E. E. Lewallen. The Lewallen Report was foundational to design of subsequent drum type RAM packaging. This paper summarizes this important early study of drum type packagings. The Lewallen Report demonstrated the ability packagings employing drum and insulation board overpacks and engineered containment vessels to meet the Type B package requirements. Because of the results of the Lewallen Report, package designers showed high concern for thermal protection of 'Celotex'. Subsequent packages addressed this by following strategies like those recommended by Lewallen and by internal metal shields and supplemental, encapsulated insulation disks, as in 9975. The guidance provide by the Lewallen Report was employed in design of a large number of drum size packagings over the following three decades. With the increased public concern over transportation of radioactive materials and recognition of the need for larger margins of safety, more sophisticated and complex packages have been developed and have replaced the simple packagings developed under the Lewallen Report paradigm.

  13. Communication Is Key to Packaging and Transportation Safety and Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Communication Is Key to Packaging and Transportation Safety and Compliance Communication Is Key to Packaging and Transportation Safety and Compliance Presentation made by Steve O'Connor for the NTSF annual meeting held from May 14-16, 2013 in Buffalo, NY PDF icon Communication Is Key to Packaging and Transportation Safety and Compliance More Documents & Publications Overview for Newcomers Overview for Newcomers Transportation Security

  14. Base Technology for Radioactive Material Transportation Packaging Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-07-08

    To establish Department of Energy (DOE) policies and responsibilities for coordinating and planning base technology for radioactive material transportation packaging systems.

  15. Packaging and Transportation for Offsite Shipment of Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1.1C Second Draft, Packaging and Transportation for Offsite Shipment of Materials of National Security Interests by Matthew Weber Functional areas: Defense Nuclear Facility Safety...

  16. Packaging and Transportation for Offsite Shipment of Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Materials of National Security Interests by Matthew Weber Functional areas: Defense Nuclear Facility Safety and Health Requirement, Packaging and Transportation, Security,...

  17. Design guide for testing type-B packaging

    SciTech Connect (OSTI)

    Stumpfl, E.

    1996-12-31

    The U.S. Department of Energy-Albuquerque Operations Office (DOE-ALO), Office of National Defense Programs (ONDP) is responsible for evaluating and certifying type-B radioactive material packaging. This packaging is used for nuclear components and special assemblies associated with the nuclear explosive and weapon safety program under the direction and supervision of ONDP. This evaluation and certification process is conducted according to the U.S. Department of Transportation Specification Authorized Type B packages in the Code of Federal Regulations, Title 49, Part 178, Sec. 178.416 (49 CFR 178.416). This section states that each type-B package must be designed and constructed to meet the requirements in 10 CFR 71. Water spray tests and immersion tests [0.9 m (3 ft) and 15 m (50 ft)] are used in part to ensure that these requirements are satisfied.

  18. Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

    SciTech Connect (OSTI)

    Ammerman, D.J.

    1997-06-01

    Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

  19. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  20. Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION SAFETY...

    Office of Environmental Management (EM)

    60.1C, PACKAGING AND TRANSPORTATION SAFETY, DOE O 460.2A, DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT Order Module--DOE O 460.1C, PACKAGING AND TRANSPORTATION...

  1. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60.1D, Hazardous Materials Packaging and Transportation Safety by Website Administrator The Order establishes safety requirements for the proper packaging and transportation of...

  2. CRAD, NNSA- Packaging and Transportation (P&T)

    Broader source: Energy.gov [DOE]

    CRAD for Packaging and Transportation (P&T). Criteria Review and Approach Documents (CRADs) that can be used to conduct a well-organized and thorough assessment of elements of safety and health programs.

  3. Office of Packaging and Transportation Fiscal Year 2012 Annual Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Packaging and Transportation Fiscal Year 2012 Annual Report Office of Packaging and Transportation Fiscal Year 2012 Annual Report The Office of Environmental Management (EM) was established to mitigate the risks and hazards posed by the legacy of nuclear weapons production and research. The most ambitious and far ranging of these missions is dealing with the environmental legacy of the Cold War. Many problems posed by its operations are unique, and include the

  4. Safety analysis report for packaging (onsite) sample pig transport system

    SciTech Connect (OSTI)

    MCCOY, J.C.

    1999-03-16

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  5. Packaging and Transportation Support at LANL CTMA 2012

    SciTech Connect (OSTI)

    Salazar, Nick

    2012-06-08

    Operations Support Packaging and Transportation (OS-PT) supports LANL in various functions. Some highlights of the past year have been with the work relating to environmental remediation, type B packaging, non-DOT compliant transfers, and special permit training. The TA-21 remediation project was part of the ARRA funding that LANL received. The $212 million in funding was used to demolish 24 buildings at TA-21, excavate the lab's oldest waste disposal site, and install 16 groundwater monitoring wells. The project was completed ahead of schedule and under budget. More than 300 tons of metal was recycled and all the soil excavated from MDA-B was replaced with clean fill. OS-PT supported this projected by transporting more than 7 million pounds of waste to TA-54 Area G with an addendum to their TSD. Because of the public access on the transfer route, Los Alamos County restricted the transfer to happen from 2:00 AM to 4:00 AM. OS-PT conducted 8 transfers in support of this project. Some concerns included the contaminated trailers at receipt facilities when transferring filled Super Sacks. Future Super Sacks were over packed into new IP-2 Super Sacks before shipping. OS-PT is also supporting the remediation of TA-54 Area G. LANL has an agreement with the State of New Mexico to remove all TRU waste currently stored above ground from at Area G. OS-PT supports this initiative with transfers of TRU waste under LANL's TSD and support of TRU shipments to WIPP. Another project supported by our organization is gas cylinder/dewar recycling and remediation. We are focusing on reducing risk associated with unneeded gasses at LANL. To minimized excessive ordering, to save money and time, and to minimize hazards OS-PT is supporting a gas recycling program. This program will allow programmatic organization across LANL to share unused/unneeded gasses. Instead of old dewars being disposed of, OS-PT has began identifying these dewars and sending them for refurbishment. To date, this effort has saved LANL $450K and estimated saving for future efforts will be more than $1.5 million. Some Projects that are happening here at LANL are offsite source recovery, weapon component transfers, and isotope science production. There are specific packages that help support these projects for the shipment of related materials. OS-PT provides support to these packages to ensure they are and will be available to continue this support. The Areva 435-B Overpack will help the Offsite Source Recovery Project recover high activity gamma sources from various locations across the globe. The Safety Analysis for Packaging is scheduled for initial completion June of 2012. The DPP-1 package is designed to replace the Model FL, which was designed by Rocky Flats and began service in 1990. LANL has collaborated on package design with LLNL, Pantex, Y-12, and KCP. LANL is supporting LLNL on component fixture development. Testing to 10 CFR 71 is to be completed in the Fall of 2012 and scheduled for NA-174 approval in 2014. The SAFESHIELD package helps supports LANL's Isotope production projects. This package can transfer highly irradiated materials from LANL's accelerator to material processing facilities. LANL worked to renew the SAFESHEILD's Certification for 5 more years.

  6. Programmatic and technical requirements for the FMDP fresh MOX fuel transport package

    SciTech Connect (OSTI)

    Ludwig, S. B.; Michelhaugh, R. D.; Pope, R. B.; Shappert, L. B.; Singletary, B. H.; Chae, S. M.; Parks, C. V.; Broadhead, B. L.; Schmid, S. P.; Cowart, C. G.

    1997-12-01

    This document is intended to guide the designers of the package to all pertinent regulatory and other design requirements to help ensure the safe and efficient transport of the weapons-grade (WG) fresh MOX fuel under the Fissile Materials Disposition Program. To accomplish the disposition mission using MOX fuel, the unirradiated MOX fuel must be transported from the MOX fabrication facility to one or more commercial reactors. Because the unirradiated fuel contains large quantities of plutonium and is not sufficient radioactive to create a self-protecting barrier to deter the material from theft, DOE intends to use its fleet of safe secure trailers (SSTs) to provide the necessary safeguards and security for the material in transit. In addition to these requirements, transport of radioactive materials must comply with regulations of the Department of Transportation and the Nuclear Regulatory Commission (NRC). In particular, NRC requires that the packages must meet strict performance requirements. The requirements for shipment of MOX fuel (i.e., radioactive fissile materials) specify that the package design is certified by NRC to ensure the materials contained in the packages are not released and remain subcritical after undergoing a series of hypothetical accident condition tests. Packages that pass these tests are certified by NRC as a Type B fissile (BF) package. This document specifies the programmatic and technical design requirements a package must satisfy to transport the fresh MOX fuel assemblies.

  7. ISSUES ASSOCIATED WITH SAFE PACKAGING AND TRANSPORT OF NANOPARTICLES

    SciTech Connect (OSTI)

    Gupta, N.; Smith, A.

    2011-02-14

    Nanoparticles have long been recognized a hazardous substances by personnel working in the field. They are not, however, listed as a separate, distinct category of dangerous goods at present. As dangerous goods or hazardous substances, they require packaging and transportation practices which parallel the established practices for hazardous materials transport. Pending establishment of a distinct category for such materials by the Department of Transportation, existing consensus or industrial protocols must be followed. Action by DOT to establish appropriate packaging and transport requirements is recommended.

  8. Test plan/procedure for the shock limiting device of the radioisotope thermoelectric generator package mounting subsystem 145. Revision 1

    SciTech Connect (OSTI)

    Satoh, J.A.

    1995-05-25

    This document defines the procedure to be used in the 18 inch drop test to be used for design verification of the RTG Transportation System Package Mounting.

  9. DEVELOPMENT OF THE HS99 AIR TRANSPORT TYPE A FISSILE PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2012-07-10

    An air-transport Type A Fissile radioactive shipping package for the transport of special form uranium sources has been developed by the Savannah River National Laboratory (SRNL) for the Department of Homeland Security. The Package model number is HS99 for Homeland Security Model 99. This paper presents the major design features of the HS99 and highlights engineered materials necessary for meeting the design requirements for this light-weight Type AF packaging. A discussion is provided demonstrating how the HS99 complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper summarizes the results of structural testing to specified in 10 CFR 71 for Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and proposed future missions for this packaging are also addressed.

  10. DOE Order Self Study Modules - DOE O 460.1C Packaging and Transportation Safety and DOE O 460.2A Departmental Materials Transportation and Packaging Management

    Office of Environmental Management (EM)

    60.1C PACKAGING AND TRANSPORTATION SAFETY DOE O 460.2A DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT DOE O 460.1C and 460.2A Familiar Level June 2011 1 DOE O 460.1C PACKAGING AND TRANSPORTATION SAFETY DOE O 460.2A DEPARTMENTAL MATERIALS TRANSPORTATION AND PACKAGING MANAGEMENT FAMILIAR LEVEL _________________________________________________________________________ OBJECTIVES Given the familiar level of this module and the resources, you will be able to perform the following: 1.

  11. TRANSPORT LOCOMOTIVE AND WASTE PACKAGE TRANSPORTER ITS STANDARDS IDENTIFICATION STUDY

    SciTech Connect (OSTI)

    K.D. Draper

    2005-03-31

    To date, the project has established important to safety (ITS) performance requirements for structures, systems and components (SSCs) based on identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Basis for License Application'' (NSDB) (BSC 2005). Further, SSCs credited with performing safe functions are classified as ITS. In turn, performance confirmation for these SSCs is sought through the use of consensus code and standards. The purpose of this study is to identify applicable codes and standards for the waste package (WP) transporter and transport locomotive ITS SSCs. Further, this study will form the basis for selection and the extent of applicability of each code and standard. This study is based on the design development completed for License Application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and that final selection will not be determined until further design development has occurred. Therefore, for completeness, throughout this study alternative designs currently under consideration will be discussed. Further, the results of this study will be subject to evaluation as part of a follow-on gap analysis study. Based on the results of this study the gap analysis will evaluate each code and standard to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied a ''gap'' is highlighted. Thereafter, the study will identify supplemental requirements to augment the code or standard to meet performance requirements. Further, the gap analysis will identify non-standard areas of the design that will be subject to a Development Plan. Non-standard components and non-standard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, performance confirmation can not be readily sought through use of consensus standards.

  12. Packaging and Transportation of Additional Neptunium Oxide

    SciTech Connect (OSTI)

    Watkins, R.; Jordan, J.; Hensel, S.

    2010-05-05

    The Savannah River Site's HB-Line Facility completed a second neptunium oxide production campaign in which nine (9) additional cans of neptunium oxide were produced and shipped to the Idaho National Laboratory and Oak Ridge National Laboratory in the 9975 shipping container. These additional cans were from a different feed solution than the first fifty (50) cans of neptunium oxide that were previously produced and shipped via a Letter of Amendment to the 9975 Safety Analysis Report for Packaging (SARP) content table. This paper will address the challenges associated with demonstrating the neptunium oxide produced from the additional feed solution was equivalent to the original neptunium oxide and within the content description of the Letter of Amendment.

  13. Assessment of Quality Assurance Measures for Radioactive Material Transport Packages not Requiring Competent Authority Design Approval - 13282

    SciTech Connect (OSTI)

    Komann, Steffen; Groeke, Carsten; Droste, Bernhard

    2013-07-01

    The majority of transports of radioactive materials are carried out in packages which don't need a package design approval by a competent authority. Low-active radioactive materials are transported in such packages e.g. in the medical and pharmaceutical industry and in the nuclear industry as well. Decommissioning of NPP's leads to a strong demand for packages to transport low and middle active radioactive waste. According to IAEA regulations the 'non-competent authority approved package types' are the Excepted Packages and the Industrial Packages of Type IP-1, IP-2 and IP-3 and packages of Type A. For these types of packages an assessment by the competent authority is required for the quality assurance measures for the design, manufacture, testing, documentation, use, maintenance and inspection (IAEA SSR 6, Chap. 306). In general a compliance audit of the manufacturer of the packaging is required during this assessment procedure. Their regulatory level in the IAEA regulations is not comparable with the 'regulatory density' for packages requiring competent authority package design approval. Practices in different countries lead to different approaches within the assessment of the quality assurance measures in the management system as well as in the quality assurance program of a special package design. To use the package or packaging in a safe manner and in compliance with the regulations a management system for each phase of the life of the package or packaging is necessary. The relevant IAEA-SSR6 chap. 801 requires documentary verification by the consignor concerning package compliance with the requirements. (authors)

  14. BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS

    SciTech Connect (OSTI)

    Loftin, B.; Abramczyk, G.; Koenig, R.

    2012-06-06

    Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

  15. ANNUAL MAINTENANCE AND LEAK TESTING FOR THE 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Trapp, D.

    2014-08-25

    The purpose of this document is to provide step-by-step instructions for the annual helium leak test certification and maintenance of the 9975 Shipping Package.

  16. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect (OSTI)

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  17. A 2D Radiation Transport Package with Mimetic Diffusion for ExaFlag...

    Office of Scientific and Technical Information (OSTI)

    A 2D Radiation Transport Package with Mimetic Diffusion for ExaFlag Citation Details In-Document Search Title: A 2D Radiation Transport Package with Mimetic Diffusion for ExaFlag...

  18. LEVERAGING AGING MATERIALS DATA TO SUPPORT EXTENSION OF TRANSPORTATION SHIPPING PACKAGES SERVICE LIFE

    SciTech Connect (OSTI)

    Dunn, K.; Bellamy, S.; Daugherty, W.; Sindelar, R.; Skidmore, E.

    2013-08-18

    Nuclear material inventories are increasingly being transferred to interim storage locations where they may reside for extended periods of time. Use of a shipping package to store nuclear materials after the transfer has become more common for a variety of reasons. Shipping packages are robust and have a qualified pedigree for performance in normal operation and accident conditions but are only certified over an approved transportation window. The continued use of shipping packages to contain nuclear material during interim storage will result in reduced overall costs and reduced exposure to workers. However, the shipping package materials of construction must maintain integrity as specified by the safety basis of the storage facility throughout the storage period, which is typically well beyond the certified transportation window. In many ways, the certification processes required for interim storage of nuclear materials in shipping packages is similar to life extension programs required for dry cask storage systems for commercial nuclear fuels. The storage of spent nuclear fuel in dry cask storage systems is federally-regulated, and over 1500 individual dry casks have been in successful service up to 20 years in the US. The uncertainty in final disposition will likely require extended storage of this fuel well beyond initial license periods and perhaps multiple re-licenses may be needed. Thus, both the shipping packages and the dry cask storage systems require materials integrity assessments and assurance of continued satisfactory materials performance over times not considered in the original evaluation processes. Test programs for the shipping packages have been established to obtain aging data on materials of construction to demonstrate continued system integrity. The collective data may be coupled with similar data for the dry cask storage systems and used to support extending the service life of shipping packages in both transportation and storage.

  19. Regulatory compliance in the design of packages used to transport radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.

    1993-06-01

    Shipments of radioactive materials within the regulatory jurisdiction of the US Department of Energy (DOE) must meet the package design requirements contained in Title 10 of the Code of Federal Regulations, Part 71, and DOE Order 5480.3. These regulations do not provide design criteria requirements, but only detail the approval standards, structural performance criteria, and package integrity requirements that must be met during transport. The DOE recommended design criterion for high-level Category I radioactive packagings is Section III, Division 1, of the ASME Boiler and Pressure Vessel Code. However, alternative design criteria may be used if all the design requirements are satisfied. The purpose of this paper is to review alternatives to the Code criteria and discuss their applicability to the design of containment vessels in packages for high-level radioactive materials. Issues such as design qualification by physical testing, the use of scale models, and problems encountered using a non-ASME design approach are addressed.

  20. Radioisotope Thermoelectric Generator Transporation System licensed hardware second certification test series and package shock mount system test

    SciTech Connect (OSTI)

    Ferrell, P.C.; Moody, D.A.

    1995-10-01

    This paper presents a summary of two separate drop test a e performed in support of the Radioisotope Thermoelectric Generator (RTG) Transportation System (RTGTS). The first portion of this paper presents the second series of drop testing required to demonstrate that the RTG package design meets the requirements of Title 10, Code of Federal Regulations, ``Part 71`` (10 CFR 71). Results of the first test series, performed in July 1994, demonstrated that some design changes were necessary. The package design was modified to improve test performance and the design changes were incorporated into the Safety Analysis Report for Packaging (SARP). The second full-size certification test article (CTA-2) incorporated the modified design and was tested at the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. With the successful completion of the test series, and pending DOE Office of Facility Safety Analysis approval of the SARP, a certificate of compliance will be issued for the RTG package allowing its use. The second portion of this paper presents the design and testing of the RTG Package Mount System. The RTG package mount was designed to protect the RTG from excessive vibration during transport, provide shock protection during on/off loading, and provide a mechanism for moving the RTG package with a forklift. Military Standard (MIL-STD) 810E, Transit Drop Procedure (DOE 1989), was used to verify that the shock limiting system limited accelerations in excess of 15 G`s at frequencies below 150 Hz. Results of the package mount drop tests indicate that an impact force of 15 G`s was not exceeded in any test from a free drop height of 457 mm (18 in.).

  1. Hail Impact Testing on Crystalline Si Modules with Flexible Packaging |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hail Impact Testing on Crystalline Si Modules with Flexible Packaging Hail Impact Testing on Crystalline Si Modules with Flexible Packaging Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps2_westpak_brown.pdf More Documents & Publications Test Procedure for UV Weathering Resistance of Backsheet The Acceleration of Degradation by HAST and Air-HAST in c-Si PV Modules Improved Reliability of PV Modules with

  2. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    SciTech Connect (OSTI)

    Polley, G.M. [Perma-Fix Environmental Services, 575 Oak Ridge Turnpike, Oak Ridge, TN 37830 (United States)

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ?102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged in inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ?15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ?15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ?102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing facility. If any of these issues were not adequately resolved prior to the start of the outage, costly delays would result and the re-start of the power plant could be impacted. The main focus of this project was to find successful methods for keeping this material out of the landfills and preserving the natural resources. In addition, this operation provided a significant cost savings to the public utility by minimizing landfill disposal. The onsite portion of the project has been completed without impact to the overall outage schedule. By the date of presentation, the majority of the waste from the condenser replacement project will have been processed and recycled. The goals for this project included helping Energy Northwest maintain the outage schedule, package and characterize waste compliantly, perform transportation activities in compliance with 49CFR (Ref-1), and minimize the waste disposal volume. During this condenser replacement project, over three millions pounds of waste was generated, packaged, characterized and transported without injury or incident. It is anticipated that 95% of the waste generated during this project will not require landfill disposal. All of the waste is scheduled to be processed, decontaminated and recycled by June of 2012. (authors)

  3. TEST & EVALUATION REPORT FOR THE HEDGEHOG-II PACKAGING SYSTEMS DOT-7A TYPE A CONTAINER

    SciTech Connect (OSTI)

    KELLY, D.L.

    2003-12-29

    This report documents the US. Department of Transportation Specification 7A (DOT-7A) Type A compliance test and evaluation results for the Hedgehog-II packaging systems. The approved Hedgehog-II packaging configurations provide primary and secondary containment. The approved packaging configurations described within this report are designed to ship Type A quantities of radioactive materials, normal form. Contents may be in solid or liquid form. Liquids transported in the approved 1 L glass bottle assembly shall have a specific gravity of less than or equal to 1.6. Liquids transported in all other approved configurations shall have a specific gravity of less than or equal to 2.0. The solid contents, including packaging, are limited in weight to the gross weight of the as-tested liquids and bottles. The approved Hedgehog-II packaging configurations described in this report may be transported by air, and have been evaluated as meeting the applicable International Air Transport Association/International Civil Aviation Organization (IATA/ICAO) Dangerous Goods Regulations in addition to the DOT requirements.

  4. CRUSH TESTING OF 9977 GENERAL PURPOSE FISSILE PACKAGINGS

    SciTech Connect (OSTI)

    Smith, A.

    2010-07-28

    The 9977 General Purpose Fissile Package (GPFP) was designed in response to the adoption of the crush test requirement in the US regulations for packages for radioactive materials (10 CFR 71). This presentation on crush testing of the 9977 GPFP Reviews origins of Crush Test Requirements and implementation of crush test requirements in 10 CFR 71. SANDIA testing performed to support the rule making is reviewed. The differences in practice, on the part of the US Department of Energy from those required by the NRC for commercial purposes, are explained. The design features incorporated into the 9977 GPFP to enable it to withstand the crush test and the crush tests performed on the 9977 are described. Lessons learned from crush testing of GPFP packagings are given.

  5. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    SciTech Connect (OSTI)

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  6. ISSUANCE 2015-06-08: Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

  7. Second Draft - DOE O 461.1C, Packaging and Transportation for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Second Draft - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interests by Patricia Greeson The Order establishes requirements...

  8. Test and evaluation document for DOT Specification 7A Type A Packaging. Revision 3

    SciTech Connect (OSTI)

    1996-01-30

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). The program is currently administered by the DOE, Office of Facility Safety Analysis, DOE/EH-32, at DOE-Headquarters (DOE-HQ) in Germantown, Maryland. This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program.

  9. Test Plan for Lockheed Idaho Technologies Company (LITCO), ARROW-PAK Packaging, Docket 95-40-7A, Type A Container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-10-23

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance testing to be followed for qualification of the Lockheed Idaho Technologies Company, ARROW-PAK, for use as a Type A Packaging. The packaging configuration being tested is intended for transportation of radioactive solids, Form No. 1, Form No. 2, and Form No. 3.

  10. Test and evaluation document for DOT Specification 7A type A packaging. Volume 1

    SciTech Connect (OSTI)

    Kelly, D L

    1997-08-04

    The US Department of Energy (DOE) has been conducting, through several of its operating contractors, an evaluation and testing program to qualify Type A radioactive material packagings per US Department of Transportation (DOT) Specification 7A (DOT-7A) of the Code of Federal Regulations (CFR), Title 49, Part 178 (49 CFR 178). This document summarizes the evaluation and testing performed for all of the packagings successfully qualified in this program. This document supersedes DOE Evaluation Document for DOT-7A Type A Packaging (Edling 1987), originally issued in 1987 by Monsanto Research Corporation Mound Laboratory (MLM), Miamisburg, Ohio, for the Department of Energy, Security Evaluation Program (I)P-4. Mound Laboratory issued four revisions to the document between November 1988 and December 1989. In September 1989, the program was transferred to Westinghouse Hanford Company (Westinghouse Hanford) in Richland, Washington. One additional revision was issued in March 1990 by Westinghouse Hanford. This revision reflects the earlier material and incorporates a number of changes. Evaluation and testing activities on 1208 three DOT-7A Program Dockets resulted in the qualification of three new packaging configurations, which are incorporated herein and summarized. This document presents approximately 300 different packagings that have been determined to meet the requirements for a DOT-7A, type A packaging per 49 CFR 178.350.

  11. Safety Evaluation for Packaging for onsite Transfer of plutonium recycle test reactor ion exchange columns

    SciTech Connect (OSTI)

    Smith, R.J.

    1995-09-11

    The purpose of this Safety Evaluation for Packaging (SEP) is to authorize the use of three U.S. Department of Transportation (DOT) 7A, Type A metal boxes (Capital Industries Part No. S 0600-0600-1080- 0104) to package 12 Plutonium Recycle Test Reactor (PRTR) ion exchange columns as low-level waste (LLW). The packages will be transferred from the 309 Building in the 300 Area to low level waste burial in the 200 West Area. Revision 1 of WHC-SD-TP-SEP-035 (per ECN No. 621467) documents that the boxes containing ion exchange columns and grout will maintain the payload under normal conditions of transport if transferred without the box lids

  12. DRAFT - DOE O 460.1D, Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  13. Used Fuel Testing Transportation Model

    SciTech Connect (OSTI)

    Ross, Steven B.; Best, Ralph E.; Maheras, Steven J.; Jensen, Philip J.; England, Jeffery L.; LeDuc, Dan

    2014-09-24

    This report identifies shipping packages/casks that might be used by the Used Nuclear Fuel Disposition Campaign Program (UFDC) to ship fuel rods and pieces of fuel rods taken from high-burnup used nuclear fuel (UNF) assemblies to and between research facilities for purposes of evaluation and testing. Also identified are the actions that would need to be taken, if any, to obtain U.S. Nuclear Regulatory (NRC) or other regulatory authority approval to use each of the packages and/or shipping casks for this purpose.

  14. Responses of Conventional Ring Closures of Drum Type Packages to Regulatory Drop Tests with Application to the 9974/9975 Package

    SciTech Connect (OSTI)

    Blanton, P.S.

    2002-05-31

    DOT, DOE and NRC Type A and Type B radioactive material (RAM) transport packages routinely use industrial or military specification drums with conventional clamp ring closures as an overpack. Considerable testing has been performed on these type packages over the past 30 years. Observations from test data have resulted in various design changes and recommendations to the standard drum specification and use, enhancing the reliability of the overpack. Recently, performance capability of the 9975 conventional clamp ring closure design was questioned by the Regulatory Authority. This paper highlights the observations of recent 9974 and 9975 package testing that led to redesign of the 9975, replacing the standard clamp ring closure with a bolted ring closure. In the course of this review and redesign effort, 18 package designs and approximately 100 Hypothetical Accident Condition (HAC) drops of various size and weight drum packages were evaluated. A trend was observed with respect to overpack lid failures for packages utilizing conventional ring closure. Based on this trend, a limit on the ratio of the content weight to total package weight was identified, beyond which clamp ring closure failure may be expected.

  15. THERMAL TESTING OF 9977 GENERAL PURPOSE FISSILE PACKAGE USING A POOL FIRE

    SciTech Connect (OSTI)

    Smith, A; Cecil May, C; Lawrence Gelder, L; Glenn Abramczyk, G

    2007-02-15

    The 9977/9978 General Purpose Fissile Package (GPFP), has been designed as a cost-effective, user-friendly replacement for the DOT 6M Specification Package for transporting Plutonium and Uranium metals and oxides. To ensure the capability of the 9977 GPFP to withstand the regulatory crush test, urethane foam was chosen for the impact absorbing overpack. As part of the package development it was necessary to confirm that the urethane foam overpack would provide the required protection for the containment vessel during the thermal test portion of the Hypothetical Accident Conditions Sequential Tests. Development tests of early prototypes were performed, using a furnace. Based on the results of the development tests, detailed design enhancements were incorporated into the final design. Examples of the definitive 9977 design configuration were subjected to an all-engulfing pool fire test, as part of the HAC Sequential Tests, to support the application for certification. Testing has confirmed the package's ability to withstand the HAC thermal tests.

  16. Retractable pin dual in-line package test clip

    DOE Patents [OSTI]

    Bandzuch, Gregory S.; Kosslow, William J.

    1996-01-01

    This invention is a Dual In-Line Package (DIP) test clip for use when troubleshooting circuits containing DIP integrated circuits. This test clip is a significant improvement over existing DIP test clips in that it has retractable pins which will permit troubleshooting without risk of accidentally shorting adjacent pins together when moving probes to different pins on energized circuits or when the probe is accidentally bumped while taking measurements.

  17. penORNL: a parallel monte carlo photon and electron transport package using PENELOPE

    SciTech Connect (OSTI)

    Bekar, Kursat B.; Miller, Thomas Martin; Patton, Bruce W.; Weber, Charles F.

    2015-01-01

    The parallel Monte Carlo photon and electron transport code package penORNL was developed at Oak Ridge National Laboratory to enable advanced scanning electron microscope (SEM) simulations on high performance computing systems. This paper discusses the implementations, capabilities and parallel performance of the new code package. penORNL uses PENELOPE for its physics calculations and provides all available PENELOPE features to the users, as well as some new features including source definitions specifically developed for SEM simulations, a pulse-height tally capability for detailed simulations of gamma and x-ray detectors, and a modified interaction forcing mechanism to enable accurate energy deposition calculations. The parallel performance of penORNL was extensively tested with several model problems, and very good linear parallel scaling was observed with up to 512 processors. penORNL, along with its new features, will be available for SEM simulations upon completion of the new pulse-height tally implementation.

  18. Accident Conditions versus Regulatory Test for NRC-Approved UF6 Packages

    SciTech Connect (OSTI)

    MILLS, G. SCOTT; AMMERMAN, DOUGLAS J.; LOPEZ, CARLOS

    2003-01-01

    The Nuclear Regulatory Commission (NRC) approves new package designs for shipping fissile quantities of UF{sub 6}. Currently there are three packages approved by the NRC for domestic shipments of fissile quantities of UF{sub 6}: NCI-21PF-1; UX-30; and ESP30X. For approval by the NRC, packages must be subjected to a sequence of physical tests to simulate transportation accident conditions as described in 10 CFR Part 71. The primary objective of this project was to relate the conditions experienced by these packages in the tests described in 10 CFR Part 71 to conditions potentially encountered in actual accidents and to estimate the probabilities of such accidents. Comparison of the effects of actual accident conditions to 10 CFR Part 71 tests was achieved by means of computer modeling of structural effects on the packages due to impacts with actual surfaces, and thermal effects resulting from test and other fire scenarios. In addition, the likelihood of encountering bodies of water or sufficient rainfall to cause complete or partial immersion during transport over representative truck routes was assessed. Modeled effects, and their associated probabilities, were combined with existing event-tree data, plus accident rates and other characteristics gathered from representative routes, to derive generalized probabilities of encountering accident conditions comparable to the 10 CFR Part 71 conditions. This analysis suggests that the regulatory conditions are unlikely to be exceeded in real accidents, i.e. the likelihood of UF{sub 6} being dispersed as a result of accident impact or fire is small. Moreover, given that an accident has occurred, exposure to water by fire-fighting, heavy rain or submersion in a body of water is even less probable by factors ranging from 0.5 to 8E-6.

  19. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    SciTech Connect (OSTI)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.

  20. Certification review of the DC-1 packaging for transport of HEU oxide

    SciTech Connect (OSTI)

    Primeau, S.J.; Thomas, G.R.

    1995-11-01

    The DC-1, a packaging for the transport of up to 19.7 kg of high-enriched uranium oxide, has been submitted for Department of Energy (DOE) Headquarters certification. The technical review for regulatory compliance is discussed from the reviewer`s standpoint, with emphasis on three notable aspects of the packaging design: (1) The packaging is the first submitted for DOE certification under the provisions of 10 CFR 71.55(c). (2) The containment vessels were fabricated in accordance with Section 8 of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code; however, additional inspection requirements were imposed at the time of fabrication. Compliance with the requirements of Section 3 of the ASME Code is discussed. (3) A temporary adapter plate is installed between the lid and body of each containment vessel to facilitate periodic leak testing of the containment boundaries. This procedure is compared against the recommendations in the American National Standards Institute (ANSI) N14.5 Standard.

  1. Packaging and Transporting of Nuclear Explosives, Nuclear Components and Special Assemblies

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1979-09-09

    The order establishes Department of Energy (DOE) policy and assigns responsibilities and authorities for the packaging and transporting of nuclear explosives, nuclear components, and special assemblies. Cancels ERDA directive 0561, dated 9-15-75

  2. Implementation Guide for Use with DOE O 460.2 Departmental Materials Transportation and Packaging Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-11-15

    The purpose of this guide is to assist those responsible for transporting and packaging Department materials, and to provide an understanding of Department policies on activities which supplement regulatory requirements. Does not cancel/supersede other directives.

  3. Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste

    SciTech Connect (OSTI)

    Kapoor, A.; Gordon, S.; Goldston, W.

    2013-07-08

    This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

  4. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  5. Packaging and Transfer or Transportation of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-09-29

    To establish requirements and responsibilities for the Transportation Safeguards System (TSS) packaging and transportation and onsite transfer of nuclear explosives, nuclear components, Naval nuclear fuel elements, Category I and Category II special nuclear materials, special assemblies, and other materials of national security interest. Cancels: DOE 5610.12 and DOE 5610.14.

  6. Implementation Guide for Use with DOE O 460.1A, Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-06-05

    This Guide provides information concerning the use of current principles and practices, including regulatory guidance from the U. S. Department of Transportation and the U. S. Nuclear Regulatory Commission, where available, to establish and implement effective packaging and transportation safety programs. Does not cancel/supersede other directives.

  7. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect (OSTI)

    Satoh, J.A.

    1994-11-09

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  8. Unstructured-Mesh Deterministic Radiation Transport. Single Physics Package Code.

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    UMT is an LLNL ASC proxy application (mini-app) that performs three-dimensional, non-linear, radiation transport calculations using deterministic methods.

  9. An issue paper on the use of hydrogen getters in transportation packaging

    SciTech Connect (OSTI)

    NIGREY,PAUL J.

    2000-02-01

    The accumulation of hydrogen is usually an undesirable occurrence because buildup in sealed systems pose explosion hazards under certain conditions. Hydrogen scavengers, or getters, can avert these problems by removing hydrogen from such environments. This paper provides a review of a number of reversible and irreversible getters that potentially could be used to reduce the buildup of hydrogen gas in containers for the transport of radioactive materials. In addition to describing getters that have already been used for such purposes, novel getters that might find application in future transport packages are also discussed. This paper also discusses getter material poisoning, the use of getters in packaging, the effects of radiation on getters, the compatibility of getters with packaging, design considerations, regulatory precedents, and makes general recommendations for the materials that have the greatest applicability in transport packaging. At this time, the Pacific Northwest National Laboratory composite getter, DEB [1,4-(phenylethylene)benzene] or similar polymer-based getters, and a manganese dioxide-based getter appear to be attractive candidates that should be further evaluated. These getters potentially can help prevent pressurization from radiolytic reactions in transportation packaging.

  10. THERMAL TESTING OF PROTOTYPE GENERAL PURPOSE FISSILE PACKAGES USING A FURNACE

    SciTech Connect (OSTI)

    Smith, A; Lawrence Gelder, L; Paul Blanton, P

    2007-02-16

    The 9977/9978 General Purpose Fissile Package (GPFP) was designed by SRNL to replace the DOT 6M Specification Package and ship Plutonium and Uranium metals and oxides. Urethane foam was used for the overpack to ensure the package would withstand the 10CFR71.73(c)(2) crush test, which is a severe test for drum-type packages. In addition, it was necessary to confirm that the urethane foam configuration provided adequate thermal protection for the containment vessel during the subsequent 10CFR71.73(c)(4) thermal test. Development tests were performed on early prototype test specimens of different diameter overpacks and a range of urethane foam densities. The thermal test was performed using an industrial furnace. Test results were used to optimize the selection of package diameter and foam density, and provided the basis for design enhancements incorporated into the final package design.

  11. DRAFT - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest.

  12. Application of the ASME code in designing containment vessels for packages used to transport radioactive materials

    SciTech Connect (OSTI)

    Raske, D.T.; Wang, Z.

    1992-07-01

    The primary concern governing the design of shipping packages containing radioactive materials is public safety during transport. When these shipments are within the regulatory jurisdiction of the US Department of Energy, the recommended design criterion for the primary containment vessel is either Section III or Section VIII, Division 1, of the ASME Boiler and Pressure Vessel Code, depending on the activity of the contents. The objective of this paper is to discuss the design of a prototypic containment vessel representative of a packaging for the transport of high-level radioactive material.

  13. Pressure Build-Up During the Fire Test in Type B(U) Packages Containing Water - 13280

    SciTech Connect (OSTI)

    Feldkamp, Martin; Nehrig, Marko; Bletzer, Claus; Wille, Frank

    2013-07-01

    The safety assessment of packages for the transport of radioactive materials with content containing liquids requires special consideration. The main focus is on water as supplementary liquid content in Type B(U) packages. A typical content of a Type B(U) package is ion exchange resin, waste of a nuclear power plant, which is not dried, normally only drained. Besides the saturated ion exchange resin, a small amount of free water can be included in these contents. Compared to the safety assessment of packages with dry content, attention must be paid to some more specific issues. An overview of these issues is provided. The physical and chemical compatibility of the content itself and the content compatibility with the packages materials must be demonstrated for the assessment. Regarding the mechanical resistance the package has to withstand the forces resulting from the freezing liquid. The most interesting point, however, is the pressure build-up inside the package due to vaporization. This could for example be caused by radiolysis of the liquid and must be taken into account for the storage period. If the package is stressed by the total inner pressure, this pressure leads to mechanical loads to the package body, the lid and the lid bolts. Thus, the pressure is the driving force on the gasket system regarding the activity release and a possible loss of tightness. The total pressure in any calculation is the sum of partial pressures of different gases which can be caused by different effects. The pressure build-up inside the package caused by the regulatory thermal test (30 min at 800 deg. C), as part of the cumulative test scenario under accident conditions of transport is discussed primarily. To determine the pressure, the temperature distribution in the content must be calculated for the whole period from beginning of the thermal test until cooling-down. In this case, while calculating the temperature distribution, conduction and radiation as well as evaporation and condensation during the associated process of transport have to be considered. This paper discusses limiting amounts of water inside the cask which could lead to unacceptable pressure and takes into account saturated steam as well as overheated steam. However, the difficulties of assessing casks containing wet content will be discussed. From the authority assessment point of view, drying of the content could be an effective way to avoid the above described pressure build-up and the associated difficulties for the safety assessment. (authors)

  14. 2014-03-06 Issuance: Test Procedures for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps; Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice of proposed rulemaking regarding test procedures for packaged terminal air conditioners and packaged terminal heat pumps, as issued by the Deputy Assistant Secretary on March 6, 2014.

  15. Development of a fresh MOX fuel transport package for disposition of weapons plutonium

    SciTech Connect (OSTI)

    Ludwig, S.B.; Pope, R.B.; Shappert, L.B.; Michelhaugh, R.D.; Chae, S.M.

    1998-11-01

    The US Department of Energy announced its Record of Decision on January 14, 1997, to embark on a dual-track approach for disposition of surplus weapons-usable plutonium using immobilization in glass or ceramics and burning plutonium as mixed-oxide (MOX) fuel in reactors. In support of the MOX fuel alternative, Oak Ridge National Laboratory initiated development of conceptual designs for a new package for transporting fresh (unirradiated) MOX fuel assemblies between the MOX fabrication facility and existing commercial light-water reactors in the US. This paper summarizes progress made in development of new MOX transport package conceptual designs. The development effort has included documentation of programmatic and technical requirements for the new package and development and analysis of conceptual designs that satisfy these requirements.

  16. Experimental tests of paleoclassical transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tests of paleoclassical transport This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 Nucl. Fusion 47 1449 (http://iopscience.iop.org/0029-5515/47/11/006) Download details: IP Address: 128.104.166.214 The article was downloaded on 13/10/2010 at 22:10 Please note that terms and conditions apply. View the table of contents for this issue, or go to the journal homepage for more Home Search Collections Journals About Contact us My IOPscience IOP

  17. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-20

    The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Supersedes DOE O 461.1A.

  18. DRFM: A new package for the evaluation of gas-phase transport properties

    SciTech Connect (OSTI)

    Paul, P.H.

    1997-11-01

    This report describes a complete and modernized procedure to evaluate pure species, binary and mixture transport properties of gases in the low density limit. This includes a description of the relationships used to calculate these quantities and the means used to obtain the necessary input data. The purpose of this work is to rectify certain limitations of previous transport packages, specifically: to employ collision integrals suitable for high temperatures, to modernize the mixture formula, and to modernize the input data base. This report includes a set of input parameters for: the species involved in H{sub 2}-, CO - air combustion, the noble gases, methane and the oxides of nitrogen.

  19. Test and evaluation report for Lockheed Idaho Technologies Company, arrow-pak packaging, docket 95-40-7A, type A container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1996-03-14

    This report incorporates the U.S. Department of Energy, Office of Facility Safety Analysis (DOE/EH-32) approval letter for packaging use. This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Arrow-Pak packaging. The Arrow-Pak packaging system consists of Marlex M-8000 Driscopipe, manufactured by Phillips-Driscopipe, Inc., and is sealed with two dome-shaped end caps manufactured from the same materials. The patented sealing process involves the use of electrical energy to heat opposing faces of the pipe and end caps, and hydraulic rams to press the heated surfaces together. This fusion process produces a homogeneous bonding of the end cap to the pipe. The packaging may be used with or without the two internal plywood spacers. This packaging configuration described in this report is designed to ship Type A quantities of solid radioactive materials.

  20. 2014-02-07 Issuance: Test Procedure for Commercial Packaged Boilers; Request for Information

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register request for information regarding test procedures for commercial packaged boilers, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  1. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    SciTech Connect (OSTI)

    Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging not exceed the regulatory limits prescribed by 10 CFR 71 for non-exclusive shipments. The mass of each radioisotope presented in this paper is limited by the radiation dose rate on the external surface of the package, which per the regulatory limit should not exceed 200 mrem/hr. The results presented are a compendium of allowable masses of a variety of different isotopes (with varying impurity levels of beryllium in some of the actinide isotopes) that, when loaded in an unshielded packaging, do not result in an external dose rate on the surface of the package that exceeds 190 mrem/hr (190 mrem/hr was chosen to provide 5% conservatism relative to the regulatory limit). These mass limits define the term 'Small Gram Quantity' (SGQ) contents in the context of radioactive material transportation packages. The term SGQ is isotope-specific and pertains to contents in radioactive material transportation packages that do not require shielding and still satisfy the external dose rate requirements. Since these calculated mass limits are for contents without shielding, they are conservative for packaging materials that provide some limited shielding or if the contents are placed into a shielded package. The isotopes presented in this paper were chosen as the isotopes that Department of Energy (DOE) sites most likely need to ship. Other more rarely shipped isotopes, along with industrial and medical isotopes, are planned to be included in subsequent extensions of this work.

  2. Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-09-25

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  3. Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2016-01-05

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  4. DEVELOPMENT OF BURN TEST SPECIFICATIONS FOR FIRE PROTECTION MATERIALS IN RAM PACKAGES

    SciTech Connect (OSTI)

    Gupta, N.

    2010-03-03

    The regulations in 10 CFR 71 require that the radioactive material (RAM) packages must be able to withstand specific fire conditions given in 10 CFR 71.73 during Hypothetical Accident Conditions (HAC). This requirement is normally satisfied by extensive testing of full scale test specimens under required test conditions. Since fire test planning and execution is expensive and only provides a single snapshot into a package performance, every effort is made to minimize testing and supplement tests with results from computational thermal models. However, the accuracy of such thermal models depends heavily on the thermal properties of the fire insulating materials that are rarely available at the regulatory fire temperatures. To the best of authors knowledge no test standards exist that could be used to test the insulating materials and derive their thermal properties for the RAM package design. This paper presents a review of the existing industry fire testing standards and proposes testing methods that could serve as a standardized specification for testing fire insulating materials for use in RAM packages.

  5. Developing an Instrumentation Package for in-Water Testing of Marine Hydrokinetic Energy Devices: Preprint

    SciTech Connect (OSTI)

    Nelson, E.

    2010-08-01

    The ocean-energy industry is still in its infancy and device developers have provided their own equipment and procedures for testing. Currently, no testing standards exist for ocean energy devices in the United States. Furthermore, as prototype devices move from the test tank to in-water testing, the logistical challenges and costs grow exponentially. Development of a common instrumentation package that can be moved from device to device is one means of reducing testing costs and providing normalized data to the industry as a whole. As a first step, the U.S. National Renewable Energy Laboratory (NREL) has initiated an effort to develop an instrumentation package to provide a tool to allow common measurements across various ocean energy devices. The effort is summarized in this paper. First, we present the current status of ocean energy devices. We then review the experiences of the wind industry in its development of the instrumentation package and discuss how they can be applied in the ocean environment. Next, the challenges that will be addressed in the development of the ocean instrumentation package are discussed. For example, the instrument package must be highly adaptable to fit a large array of devices but still conduct common measurements. Finally, some possible system configurations are outlined followed by input from the industry regarding its measurement needs, lessons learned from prior testing, and other ideas.

  6. 9978 AND 9975 TYPE B PACKAGING INTERNAL DATA COLLECTION FEASIBILITY TESTING

    SciTech Connect (OSTI)

    Fogle, R.

    2012-05-07

    The objective of this report is to document the findings from a series of proof-of-concept tests performed by Savannah River National Laboratory (SRNL) R and D Engineering, for the DOE Packaging Certification Program to determine if a viable radio link could be established from within the stainless steel confines of several drum-style DOE certified Type B radioactive materials packagings. Two in-hand, off-the-shelf radio systems were tested. The first system was a Wi-Fi Librestream Onsight{trademark} camera with a Fortress ES820 Access Point and the second was the On-Ramp Wireless Ultra-Link Processing{trademark} (ULP) radio system. These radio systems were tested within the Model 9975 and 9978 Type B packagings at the SRNL. This report documents the test methods and results. A path forward will also be recommended.

  7. DOT specification packages evaluation

    SciTech Connect (OSTI)

    Ratledge, J.E.; Rawl, R.R. )

    1991-01-01

    During the late 1960s and early 1970s, the Department of Transportation (DOT) specification package system was implemented to serve as a useful and equivalent alternative to the Nuclear Regulatory Commission (NRC) and the Bureau of Explosives approval systems for Type B and fissile radioactive material package designs. When a package design was used by a large number of organizations, the package design was added to the DOT regulations as a specification package authorized for use by any shipper. In the mid-1970s, the NRC revised its package design certification system to the one in use today. This paper reports that, while the NRC and DOT transportation regulations have evolved over the years, the DOT specification package designs have remained largely unchanged. Questions have been raised as to whether these designs meet the current and proposed regulations. In order to enable the NRC and DOT to develop a regulatory analysis that will support appropriate action regarding the specification packages, a study is being performed to compile all available design, testing, and analysis information on these packages.

  8. ISSUANCE 2016-02-22: Energy Conservation Program for Certain Commercial and Industrial Equipment: Test Procedures for Commercial Packaged Boilers, Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Certain Commercial and Industrial Equipment: Test Procedures for Commercial Packaged Boilers

  9. Hanford low-level waste process chemistry testing data package

    SciTech Connect (OSTI)

    Smith, H.D.; Tracey, E.M.; Darab, J.G.; Smith, P.A.

    1996-03-01

    Recently, the Tri-Party Agreement (TPA) among the State of Washington Department of Ecology, U.S. Department of Energy (DOE) and the US Environmental Protection Agency (EPA) for the cleanup of the Hanford Site was renegotiated. The revised agreement specifies vitrification as the encapsulation technology for low level waste (LLW). A demonstration, testing, and evaluation program underway at Westinghouse Hanford Company to identify the best overall melter-system technology available for vitrification of Hanford Site LLW to meet the TPA milestones. Phase I is a {open_quotes}proof of principle{close_quotes} test to demonstrate that a melter system can process a simulated highly alkaline, high nitrate/nitrite content aqueous LLW feed into a glass product of consistent quality. Seven melter vendors were selected for the Phase I evaluation: joule-heated melters from GTS Duratek, Incorporated (GDI); Envitco, Incorporated (EVI); Penberthy Electomelt, Incorporated (PEI); and Vectra Technologies, Incorporated (VTI); a gas-fired cyclone burner from Babcock & Wilcox (BCW); a plasma torch-fired, cupola furnace from Westinghouse Science and Technology Center (WSTC); and an electric arc furnace with top-entering vertical carbon electrodes from the U.S. Bureau of Mines (USBM).

  10. HMPT: Hazardous Waste Transportation Live 27928, Test 27929 ...

    Office of Scientific and Technical Information (OSTI)

    HMPT: Hazardous Waste Transportation Live 27928, Test 27929 Citation Details In-Document Search Title: HMPT: Hazardous Waste Transportation Live 27928, Test 27929 HMPT: Hazardous ...

  11. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. Citation Details In-Document Search Title: Normal Conditions of Transport Truck Test of a Surrogate Fuel...

  12. Safety evaluation for packaging (onsite) for concrete-shielded RHTRU waste drum for the 327 postirradiation testing laboratory

    SciTech Connect (OSTI)

    Adkins, H.E.

    1996-10-29

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete- Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per WHC-CM-2-14, Hazardous Material Packaging and Shipping. The drum will be used for transport of 327 Building legacy waste from the 300 Area to the Transuranic Waste Storage and Assay Facility in the 200 West Area and on to a Solid Waste Storage Facility, also in the 200 Area.

  13. NREL: Transportation Research - Truck Stop Electrification Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Truck Stop Electrification Testing Photo of series of truck stop electrification pedestals near highway with heavy-duty truck parked in the background. NREL is monitoring the use of truck stop electrification sites across the nation. Photo courtesy of Shorepower Technologies NREL's fleet test and evaluation team is evaluating and documenting the use of 50 truck stop electrification (TSE) sites along the busiest transportation corridors in the United States. Truck drivers typically idle their

  14. PATRAM '92: 10th international symposium on the packaging and transportation of radioactive materials [Papers presented by Sandia National Laboratories

    SciTech Connect (OSTI)

    1992-01-01

    This document provides the papers presented by Sandia Laboratories at PATRAM '92, the tenth International symposium on the Packaging and Transportation of Radioactive Materials held September 13--18, 1992 in Yokohama City, Japan. Individual papers have been cataloged separately. (FL)

  15. Notice of Intent to Revise Department of Energy Order 460.1C, Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-15

    The purpose of this memorandum is to provide justification for the proposed revision of Department of Energy (DOE} Order (O} 460.lC, Packaging and Transportation Safety as part of the quadrennial review and recertification required by DOE O 251.lC, Departmental Directives Program.

  16. Feature test report for the Small Debris Collection and Packaging System

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1995-03-17

    The Spent Nuclear Fuel Equipment Engineering group performed feature testing of the Small Debris Collection and Packaging System (SDCPS) in the 305 Cold Test Facility from January 30, 1995, to February 1, 1995. Feature testing of the Small Debris Collection and Packaging System (SDCPS) was performed for the following reasons: To assess the feasibility of using ``drop-out`` vessels to collect small debris (<2.5 cm) in MK-II fuel canisters while transferring sludge to the Weasel Pit. To evaluate system performance under conditions similar to those in the K-Basins (e.g. submerged under 4.9 meters of water and operated with long handled tools) while using a surrogate sludge mixed with debris. To determine if canister weight could be used to predict the volume of sludge and/or debris contained within the canisters during system operation.

  17. Design and testing of Spec 7A containers for packaging radioactive wastes

    SciTech Connect (OSTI)

    Roberts, R.S.; Perkins, C.L.

    1982-11-19

    For a variety of reasons, the containers that have or currently are being used for packaging radioactive waste have drawbacks which has motivated LLNL to investigate, design and destructively test different Type A containers. The result of this work is manifested in the TX-4, which is comparatively lightweight, increases the net payload, and the simplicity of the design and ease in handling have proved to be timesaving. The TX-4 is readily available, relatively inexpensive and practical to use. It easily meets Type A packaging specifications with a gross payload of 7000 pounds. Although no tests were performed at a higher weight, we feel that the TX-4 could pass the tests at higher gross weights if the need arises. 20 figures.

  18. Transport Test Problems for Hybrid Methods Development

    SciTech Connect (OSTI)

    Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

    2011-12-28

    This report presents 9 test problems to guide testing and development of hybrid calculations for the ADVANTG code at ORNL. These test cases can be used for comparing different types of radiation transport calculations, as well as for guiding the development of variance reduction methods. Cases are drawn primarily from existing or previous calculations with a preference for cases which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22.

  19. Carbon Capture, Transport and Storage Regulatory Test Exercise...

    Open Energy Info (EERE)

    Capture, Transport and Storage Regulatory Test Exercise: Output Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Capture, Transport and Storage Regulatory...

  20. New tests for characterizing the durability of a ceramic catalytic converter package

    SciTech Connect (OSTI)

    Reddy, K.P.; Helfinstine, J.D.; Gulati, S.T.

    1996-09-01

    New test methods were developed to characterize the high temperature durability of intumescent mats that are used to mount ceramic catalyst supports in stainless steel cans. The key attribute of these tests is the use of an electric resistance heating method to maintain a temperature gradient through the thickness of the mat when a cyclic or constant shear stress is applied to the mat interface. These tests are simple to perform and do not require expensive equipment or highly skilled operators. Using these new test methods, the durability of ceramic preconverters mounted with 4,070 gm/m{sup 2} intumescent mat was studied. The results of these tests indicate that a preconverter package with 4070 gm/m{sup 2} intumescent mat can perform satisfactorily in the close-coupled application where temperatures exceed 900 C. The mat performance can be quantified in terms of applied stress and test temperature by utilizing the experimental methods described in the present study.

  1. PERFORMANCE TESTING OF SPRING ENERGIZED C-RINGS FOR USE IN RADIOACTIVE MATERIAL PACKAGINGS CONTAINING TRITIUM

    SciTech Connect (OSTI)

    Blanton, P; Kurt Eberl, K

    2007-10-23

    This paper describes the sealing performance testing and results of silver-plated inconel Spring Energized C-Rings used for tritium containment in radioactive shipping packagings. The test methodology used follows requirements of the American Society of Mechanical Engineers (ASME) summarized in ASME Pressure Vessel Code (B&PVC), Section V, Article 10, Appendix IX (Helium Mass Spectrometer Test - Hood Technique) and recommendations by the American National Standards Institute (ANSI) described in ANSI N14.5-1997. The tests parameters bound the predicted structural and thermal responses from conditions defined in the Code of Federal Regulations 10 CFR 71. The testing includes an evaluation of the effects of pressure, temperature, flange deflection, surface roughness, permeation, closure torque, torque sequencing and re-use on performance of metal C-Ring seals.

  2. Development of Onsite Transportation Safety Documents for Nevada Test Site

    SciTech Connect (OSTI)

    Frank Hand, Willard Thomas, Frank Sciacca, Manny Negrete, Susan Kelley

    2008-05-08

    Department of Energy (DOE) Orders require each DOE site to develop onsite transportation safety documents (OTSDs). The Nevada Test Site approach divided all onsite transfers into two groups with each group covered by a standalone OTSD identified as Non-Nuclear and Nuclear. The Non-Nuclear transfers involve all radioactive hazardous material in less than Hazard Category (HC)-3 quantities and all chemically hazardous materials. The Nuclear transfers involve all radioactive material equal to or greater than HC-3 quantities and radioactive material mated with high explosives regardless of quantity. Both OTSDs comply with DOE O 460.1B requirements. The Nuclear OTSD also complies with DOE O 461.1A requirements and includes a DOE-STD-3009 approach to hazard analysis (HA) and accident analysis as needed. All Nuclear OTSD proposed transfers were determined to be non-equivalent and a methodology was developed to determine if “equivalent safety” to a fully compliant Department of Transportation (DOT) transfer was achieved. For each HA scenario, three hypothetical transfers were evaluated: a DOT-compliant, uncontrolled, and controlled transfer. Equivalent safety is demonstrated when the risk level for each controlled transfer is equal to or less than the corresponding DOT-compliant transfer risk level. In this comparison the typical DOE-STD-3009 risk matrix was modified to reflect transportation requirements. Design basis conditions (DBCs) were developed for each non-equivalent transfer. Initial DBCs were based solely upon the amount of material present. Route-, transfer-, and site-specific conditions were evaluated and the initial DBCs revised as needed. Final DBCs were evaluated for each transfer’s packaging and its contents.

  3. Evaluation and compilation of DOE waste package test data: Biannual report, August 1987--January 1988

    SciTech Connect (OSTI)

    Interrante, C.; Escalante, E.; Fraker, A.; Ondik, H.; Plante, E.; Ricker, R.; Ruspi, J.

    1988-08-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Since enactment of the Budget Reconciliation Act for Fiscal Year 1988, the Yucca Mountain, Nevada, site (in which tuff is the geologic medium) is the only site that will be characterized for use as high-level nuclear waste repository. During the reporting period of August 1987 to January 1988, five reviews were completed for tuff, and these were grouped into the categories: ferrous alloys, copper, groundwater chemistry, and glass. Two issues are identified for the Yucca Mountain site: the approach used to calculate corrosion rates for ferrous alloys, and crevice corrosion was observed in a copper-nickel alloy. Plutonium can form pseudo-colloids that may facilitate transport. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) and activities of the DOE Materials Characterization Center (MCC) for the 6-month reporting period are also included. 27 refs., 3 figs.

  4. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-04-30

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SARP charges the WIPP management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document provides the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  5. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-03-04

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT Shipping Package, and directly related components. This document complies with the minimum requirements as specified in TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event there is a conflict between this document and the SARP or C of C, the SARP and/or C of C shall govern. C of Cs state: ''each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application.'' They further state: ''each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application.'' Chapter 9.0 of the SAR P charges the WIPP Management and Operation (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 CFR 71.11. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. This document details the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize these operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  6. Safety evaluation for packaging (onsite) for the concrete-shielded RH TRU drum for the 327 Postirradiation Testing Laboratory

    SciTech Connect (OSTI)

    Smith, R.J.

    1998-03-31

    This safety evaluation for packaging authorizes onsite transport of Type B quantities of radioactive material in the Concrete Shielded Remote-Handled Transuranic Waste (RH TRU) Drum per HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments. The drum will be used for transport of 327 Building legacy waste from the 300 Area to a solid waste storage facility on the Hanford Site.

  7. Evaluation and compilation of DOE waste package test data: Biannual report, February 1987--July 1987

    SciTech Connect (OSTI)

    Interrante, C.; Escalante, E.; Fraker, A.; Hall, D.; Harrison, S.; Liggett, W.; Linzer, M.; Ricker, R.; Ruspi, J.; Shull, R.

    1988-05-01

    The waste package is a proposed engineering barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon steels, stainless steels, and copper. The current level of understanding of several canister materials is questioned for the candidate repository in tuff. Three issues are addressed, the possibility of the stress-induced failure of Zircaloy, the possible corrosion of copper and copper alloys, and the lack of site-specific characterization data. Discussions are given on problems concerning localized corrosion and environmentally assisted cracking of AISI 1020 steel at elevated temperatures (150{degree}C). For the proposed salt site, the importance of the duration of corrosion tests and some of the conditions that may preclude prompt initiation of needed long-term testing are two issues that are discussed. 31 refs., 5 figs.

  8. Over-the-road shock and vibration testing of the radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Becker, D.L.

    1997-05-01

    Radioisotope Thermoelectric Generators (RTG) convert heat generated by radioactive decay into electricity through the use of thermocouples. The RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance, which make them particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71 (10 CFR 71). To meet these regulations, a RTG Transportation System (RTGTS) that fully complies with 10 CFR 71 has been developed, which protects RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock, vibration, and heat). To ensure the protection of RTGs from shock and vibration loadings during transport, extensive over-the-road testing was conducted on the RTG`S to obtain real-time recordings of accelerations of the air-ride suspension system trailer floor, packaging, and support structure. This paper provides an overview of the RTG`S, a discussion of the shock and vibration testing, and a comparison of the test results to the specified shock response spectra and power spectral density acceleration criteria.

  9. A class of ejecta transport test problems

    SciTech Connect (OSTI)

    Hammerberg, James E; Buttler, William T; Oro, David M; Rousculp, Christopher L; Morris, Christopher; Mariam, Fesseha G

    2011-01-31

    Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function ofparticulate masses and velocities, f{sub 0}(m, v;t). Some of the properties of this source distribution function have been determined from extensive Taylor and supported wave experiments on shock loaded Sn interfaces of varying surface and subsurface morphology. Such experiments measure the mass moment of f{sub o} under vacuum conditions assuming weak particle-particle interaction and, usually, fully inelastic capture by piezo-electric diagnostic probes. Recently, planar Sn experiments in He, Ar, and Kr gas atmospheres have been carried out to provide transport data both for machined surfaces and for coated surfaces. A hydro code model of ejecta transport usually specifies a criterion for the instantaneous temporal appearance of ejecta with source distribution f{sub 0}(m, v;t{sub 0}). Under the further assumption of separability, f{sub 0}(m,v;t{sub 0}) = f{sub 1}(m)f{sub 2}(v), the motion of particles under the influence of gas dynamic forces is calculated. For the situation of non-interacting particulates, interacting with a gas via drag forces, with the assumption of separability and simplified approximations to the Reynolds number dependence of the drag coefficient, the dynamical equation for the time evolution of the distribution function, f(r,v,m;t), can be resolved as a one-dimensional integral which can be compared to a direct hydro simulation as a test problem. Such solutions can also be used for preliminary analysis of experimental data. We report solutions for several shape dependent drag coefficients and analyze the results of recent planar dsh experiments in Ar and Xe.

  10. Second Draft - DOE O 461.1C, Packaging and Transportation for Offsite Shipment of Materials of National Security Interests

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements and responsibilities for ensuring the safety of packaging and transportation for offsite shipments of Materials of National Security Interest. DOE Order 461.1C received a significant number of major and suggested comments the first time it was reviewed in RevCom. As a result of the number of comments received, the OPI have a second RevCom review. This revision of DOE O 461.1C incorporates changes which resulted from the comment resolution process of the initial draft.

  11. Transportable Emissions Testing Laboratory for Alternative Vehicles Emissions Testing

    SciTech Connect (OSTI)

    Clark, Nigel

    2012-01-31

    The overall objective of this project was to perform research to quantify and improve the energy efficiency and the exhaust emissions reduction from advanced technology vehicles using clean, renewable and alternative fuels. Advanced vehicle and alternative fuel fleets were to be identified, and selected vehicles characterized for emissions and efficiency. Target vehicles were to include transit buses, school buses, vocational trucks, delivery trucks, and tractor-trailers. Gaseous species measured were to include carbon monoxide, carbon dioxide, oxides of nitrogen, hydrocarbons, and particulate matter. An objective was to characterize particulate matter more deeply than by mass. Accurate characterization of efficiency and emissions was to be accomplished using a state-of-the-art portable emissions measurement system and an accompanying chassis dynamometer available at West Virginia University. These two units, combined, are termed the Transportable Laboratory. An objective was to load the vehicles in a real-world fashion, using coast down data to establish rolling resistance and wind drag, and to apply the coast down data to the dynamometer control. Test schedules created from actual vehicle operation were to be employed, and a specific objective of the research was to assess the effect of choosing a test schedule which the subject vehicle either cannot follow or can substantially outperform. In addition the vehicle loading objective was to be met better with an improved flywheel system.

  12. RH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-11-07

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions or equivalent approved instructions. Following these instructions assures that operations meet the requirements of the SARP.

  13. RH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-12

    The purpose of this program guidance document is to provide the technical requirements for use, operation, inspection, and maintenance of the RH-TRU 72-B Waste Shipping Package (also known as the "RH-TRU 72-B cask") and directly related components. This document complies with the requirements as specified in the RH-TRU 72-B Safety Analysis Report for Packaging (SARP), and Nuclear Regulatory Commission (NRC) Certificate of Compliance (C of C) 9212. If there is a conflict between this document and the SARP and/or C of C, the C of C shall govern. The C of C states: "...each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." It further states: "...each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP tasks the Waste Isolation Pilot Plant (WIPP) Management and Operating (M&O) Contractor with assuring the packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8, "Deliberate Misconduct." Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, "Packaging and Transportation of Radioactive Material," certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21, "Reporting of Defects and Noncompliance," regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document details the instructions to be followed to operate, maintain, and test the RH-TRU 72-B packaging. This Program Guidance standardizes instructions for all users. Users shall follow these instructions or equivalent approved instructions. Following these instructions assures that operations meet the requirements of the SARP.

  14. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2009-06-01

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document provides the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  15. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-09-11

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the pplication." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required. In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted. This document provides the instructions to be followed to operate, maintain, and test the TRUPACT-II and HalfPACT packaging. The intent of these instructions is to standardize operations. All users will follow these instructions or equivalent instructions that assure operations are safe and meet the requirements of the SARPs.

  16. Normal Conditions of Transport Truck Test of a Surrogate Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly. McConnell, Paul E.; Wauneka, Robert; Saltzstein, Sylvia J.; Sorenson, Ken B. Abstract not provided. Sandia...

  17. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-02-28

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.

  18. Sixth Status Report: Testing of Aged Softwood Fiberboard Material for the 9975 Shipping Package

    SciTech Connect (OSTI)

    Daugherty, W.

    2015-03-31

    Samples have been prepared from several 9975 lower fiberboard subassemblies fabricated from softwood fiberboard. Physical, mechanical and thermal properties have been measured following varying periods of conditioning in each of several environments. These tests have been conducted in the same manner as previous testing on cane fiberboard samples. Overall, similar aging trends are observed for softwood and cane fiberboard samples, with a few differences. Some softwood fiberboard properties tend to degrade faster in some environments, while some cane fiberboard properties degrade faster in the two most aggressive environments. As a result, it is premature to assume both materials will age at the same rates, and the preliminary aging models developed for cane fiberboard might not apply to softwood fiberboard. However, it is expected that both cane and softwood fiberboard assemblies will perform satisfactorily in conforming packages stored in a typical KAC storage environment for up to 15 years. Samples from an additional 3 softwood fiberboard assemblies have begun aging during the past year to provide information on the variability of softwood fiberboard behavior. Aging and testing of softwood fiberboard will continue and additional data will be collected to support development of an aging model specific to softwood fiberboard.

  19. Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.

    SciTech Connect (OSTI)

    Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

    2014-09-01

    The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

  20. Underground Test Area Subproject Phase I Data Analysis Task. Volume II - Potentiometric Data Document Package

    SciTech Connect (OSTI)

    1996-12-01

    Volume II of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the potentiometric data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  1. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect (OSTI)

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  2. Safety analysis report for packaging: the ORNL DOT specification 6M - special form package

    SciTech Connect (OSTI)

    Schaich, R.W.

    1982-07-01

    The ORNL DOT Specification 6M - Special Form Package was fabricated at the Oak Ridge Nation al Laboratory (ORNL) for the transport of Type B solid non-fissile radioactive materials in special form. The package was evaluated on the basis of tests performed by the Dow Chemical Company, Rocky Flats Division, on the DOT-6M container and special form tests performed on a variety of stainless steel capsules at ORNL by Operations Division personnel. The results of these evaluations demonstrate that the package is in compliance with the applicable regulations for the transport of Type B quantities in special form of non-fissile radioactive materials.

  3. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  4. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-04-25

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package TransporterModel II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant| (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations(CFR) §71.8. Any time a user suspects or has indications that the conditions ofapproval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted.

  5. CH Packaging Program Guidance

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-12-13

    The purpose of this document is to provide the technical requirements for preparation for use, operation, inspection, and maintenance of a Transuranic Package Transporter Model II (TRUPACT-II), a HalfPACT shipping package, and directly related components. This document complies with the minimum requirements as specified in the TRUPACT-II Safety Analysis Report for Packaging (SARP), HalfPACT SARP, and U.S. Nuclear Regulatory Commission (NRC) Certificates of Compliance (C of C) 9218 and 9279, respectively. In the event of a conflict between this document and the SARP or C of C, the C of C shall govern. The C of Cs state: "each package must be prepared for shipment and operated in accordance with the procedures described in Chapter 7.0, Operating Procedures, of the application." They further state: "each package must be tested and maintained in accordance with the procedures described in Chapter 8.0, Acceptance Tests and Maintenance Program of the Application." Chapter 9.0 of the SARP charges the U.S. Department of Energy (DOE) or the Waste Isolation Pilot Plant (WIPP) management and operating (M&O) contractor with assuring packaging is used in accordance with the requirements of the C of C. Because the packaging is NRC-approved, users need to be familiar with Title 10 Code of Federal Regulations (CFR) §71.8. Any time a user suspects or has indications that the conditions of approval in the C of C were not met, the Carlsbad Field Office (CBFO) shall be notified immediately. The CBFO will evaluate the issue and notify the NRC if required.In accordance with 10 CFR Part 71, certificate holders, packaging users, and contractors or subcontractors who use, design, fabricate, test, maintain, or modify the packaging shall post copies of (1) 10 CFR Part 21 regulations, (2) Section 206 of the Energy Reorganization Act of 1974, and (3) NRC Form 3, Notice to Employees. These documents must be posted in a conspicuous location where the activities subject to these regulations are conducted.

  6. NREL: Transportation Research - Truck Platooning Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Truck Platooning Testing Photo of two tractor trailer trucks driving in close proximity. NREL conducted track testing of platooned tractors with 53-ft trailers at the 8.5-mile Uvalde track in San Antonio, Texas. Photo courtesy of Peloton NREL's fleet test and evaluation team assesses the fuel savings potential of semiautomated truck platooning of line-haul sleeper cabs with modern aerodynamics. Platooning reduces aerodynamic drag by grouping vehicles together and safely decreasing the distance

  7. Transport Test Problems for Radiation Detection Scenarios

    SciTech Connect (OSTI)

    Shaver, Mark W.; Miller, Erin A.; Wittman, Richard S.; McDonald, Benjamin S.

    2012-09-30

    This is the final report and deliverable for the project. It is a list of the details of the test cases for radiation detection scenarios.

  8. Notice of Intent to Revise Department of Energy Order 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-15

    The purpose of this memorandum is to provide justification for the proposed revision of DOE O 461.1B, Packaging and Transportation for Offsite Shipment of Materials of National Security Interest, dated 12-16-2010, as part of the the quadrennial review and recertification as required by DOE O 251.1C, Departmental Directives Program.

  9. NREL: Transportation Research - Fleet Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Test and Evaluation Photo of medium-duty truck with the words plug-in all electric vehicle on its side. NREL evaluates the real-world performance of advanced medium- and heavy-duty fleet vehicles-such as this all-electric truck-compared to conventional vehicles. Photo courtesy of Smith Electric Vehicles Photo of heavy-duty truck in a laboratory setting with tubes and chains connecting the vehicle to scientific equipment. As part of its vehicle performance evaluations, NREL uses the

  10. DROP TESTS RESULTS OF REVISED CLOSURE BOLT CONFIGURATION OF THE STANDARD WASTE BOX, STANDARD LARGE BOX 2, AND TEN DRUM OVERPACK PACKAGINGS

    SciTech Connect (OSTI)

    May, C.; Opperman, E.; Mckeel, C.

    2010-04-15

    The Transuranic (TRU) Disposition Project at Savannah River Site will require numerous transfers of radioactive materials within the site boundaries for sorting and repackaging. The three DOT Type A shipping packagings planned for this work have numerous bolts for securing the lids to the body of the packagings. In an effort to reduce operator time to open and close the packages during onsite transfers, thus reducing personnel exposure and costs, an evaluation was performed to analyze the effects of reducing the number of bolts required to secure the lid to the packaging body. The evaluation showed the reduction to one-third of the original number of bolts had no effect on the packagings capability to sustain vibratory loads, shipping loads, internal pressure loads, and the loads resulting from a 4-ft drop. However, the loads caused by the 4-ft drop are difficult to estimate and the study recommended each of the packages be dropped to show the actual effects on the package closure. Even with reduced bolting, the packagings were still required to meet the 49 CFR 178.350 performance criteria for Type A packaging. This paper discusses the effects and results of the drop testing of the three packagings.

  11. Intra-site Secure Transport Vehicle test and evaluation

    SciTech Connect (OSTI)

    Scott, S.

    1995-07-01

    In the past many DOE and DoD facilities involved in handling nuclear material realized a need to enhance the safely and security for movement of sensitive materials within their facility, or ``intra-site``. There have been prior efforts to improve on-site transportation; however, there remains a requirement for enhanced on-site transportation at a number of facilities. The requirements for on-site transportation are driven by security, safety, and operational concerns. The Intra-site Secure Transport Vehicle (ISTV) was designed to address these concerns specifically for DOE site applications with a standardized vehicle design. This paper briefly reviews the ISTV design features providing significant enhancement of onsite transportation safety and security, and also describes the test and evaluation activities either complete of underway to validate the vehicle design and operation.

  12. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

  13. 2014-03-31 Issuance: Test Procedure for Commercial Packaged Boilers; Request for Information, Reopening of the Comment Period

    Broader source: Energy.gov [DOE]

    This document is a pre-publication Federal Register notice reopening the comment period for the request for information regarding the commercial packaged boiler test procedure rulemaking, as issued by the Deputy Assistant Secretary for Energy Efficiency on March 31, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  14. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  15. THERMAL UPGRADING OF 9977 RADIOACTIVE MATERIAL (RAM) TYPE B PACKAGE

    SciTech Connect (OSTI)

    Gupta, N.; Abramczyk, G.

    2012-03-26

    The 9977 package is a radioactive material package that was originally certified to ship Heat Sources and RTG contents up to 19 watts and it is now being reviewed to significantly expand its contents in support of additional DOE missions. Thermal upgrading will be accomplished by employing stacked 3013 containers, a 3013 aluminum spacer and an external aluminum sleeve for enhanced heat transfer. The 7th Addendum to the original 9977 package Safety Basis Report describing these modifications is under review for the DOE certification. The analyses described in this paper show that this well-designed and conservatively analyzed package can be upgraded to carry contents with decay heat up to 38 watts with some simple design modifications. The Model 9977 package has been designed as a replacement for the Department of Transportation (DOT) Fissile Specification 6M package. The 9977 package is a very versatile Type B package which is certified to transport and store a wide spectrum of radioactive materials. The package was analyzed quite conservatively to increase its usefulness and store different payload configurations. Its versatility is evident from several daughter packages such as the 9978 and H1700, and several addendums where the payloads have been modified to suit the Shipper's needs without additional testing.

  16. Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling – Approach and Example

    Broader source: Energy.gov [DOE]

    Nevada National Security Site Underground Test Area (UGTA) Flow and Transport Modeling – Approach and Example

  17. An analysis of the qualification criteria for small radioactive material shipping packages

    SciTech Connect (OSTI)

    McClure, J.D.

    1983-05-01

    The RAM package design certification process has two important elements, testing and acceptance. These terms sound very similar but they have specific meanings. Qualification testing in the context of this study is the imposition of simulated accident test conditions upon the candidate package design. (Normal transportation environments may also be included.) Following qualification testing, the acceptance criteria provide the performance levels which, if demonstrated, indicate the ability of the RAM package to sustain the severity of the qualification testing sequence and yet maintain specified levels of package integrity. This study has used Severities of Transportation Accidents as a data base to examine the regulatory test criteria which are required to be met by small packages containing Type B quantities of radioactive material (RAM). The basic findings indicate that the present regulatory test standards provide significantly higher levels of protection for the surface transportation modes (truck, rail) than for RAM packages shipped by aircraft. It should also be noted that various risk assessment studies have shown that the risk to the public due to severe transport accidents by surface and air transport modes is very low. A key element in this study was the quantification of the severity of the transportation accident environment and the severity of the present qualification test standards (called qualification test standards in this document) so that a direct comparison could be made between them to assess the effectiveness of the existing qualification test standards. The manner in which this was accomplished is described.

  18. New_Package Example Package

    Energy Science and Technology Software Center (OSTI)

    2004-04-01

    A package created as a tool for developers wishing to Autotool (incorporate the Autotools configure and build processes into) a new or existing package. The package being Autotool?ed can be a Trilinos package, but New_Package is also more generally applicable. There is no useful functioning code in New_Package, The Autotools source files are extensively commented. The package has been used to assist developers in getting Trilinos packages converted to the Autotools configure and build processesmore »in a short time.« less

  19. FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Jordan, J.

    2010-06-02

    The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.

  20. Final evaluation & test report for the standard waste box (docket 01-53-7A) type A packaging

    SciTech Connect (OSTI)

    KELLY, D L

    2001-10-15

    This report documents the U.S. Department of Transportation Specification 7A Type A compliance test and evaluation results of the Standard Waste Box. Testing and evaluation activities documented herein are on behalf of the U.S. Department of Energy-Headquarters, Office of Safety, Health and Security (EM-5), Germantown, Maryland. Duratek Federal Services, Inc., Northwest Operations performed an evaluation of the changes as documented herein under Docket 01-53-7A.

  1. Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly |

    Energy Savers [EERE]

    Department of Energy Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly Normal Conditions of Transport Truck Test of a Surrogate Fuel Assembly This report describes a test of an instrumented surrogate PWR fuel assembly on a truck trailer conducted to simulate normal conditions of truck transport. The purpose of the test was to measure strains and accelerations on a Zircaloy-4 fuel rod during the transport of the assembly on the truck. This test complements tests conducted

  2. Packaged die heater

    DOE Patents [OSTI]

    Spielberger, Richard; Ohme, Bruce Walker; Jensen, Ronald J.

    2011-06-21

    A heater for heating packaged die for burn-in and heat testing is described. The heater may be a ceramic-type heater with a metal filament. The heater may be incorporated into the integrated circuit package as an additional ceramic layer of the package, or may be an external heater placed in contact with the package to heat the die. Many different types of integrated circuit packages may be accommodated. The method provides increased energy efficiency for heating the die while reducing temperature stresses on testing equipment. The method allows the use of multiple heaters to heat die to different temperatures. Faulty die may be heated to weaken die attach material to facilitate removal of the die. The heater filament or a separate temperature thermistor located in the package may be used to accurately measure die temperature.

  3. DEVELOPMENT OF THE H1700 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Abramczyk, G.; Loftin, B.; Mann, P.

    2009-06-05

    The H1700 Package is based on the DOE-EM Certified 9977 Packaging. The H1700 will be certified by the Packaging Certification Division of the National Nuclear Security Administration for the shipment of plutonium by air by the United Stated Military both within the United States and internationally. The H1700 is designed to ship radioactive contents in assemblies of Radioisotope Thermoelectric Generators (RTGs) or arrangements of nested food-pack cans. The RTG containers are designed and tested to remain leaktight during transport, handling, and storage; however, their ability to remain leaktight during transport in the H1700 is not credited. This paper discusses the design and special operation of the H1700.

  4. FABRICATION AND DEPLOYMENT OF THE 9979 TYPE AF RADIOACTIVE WASTE PACKAGING FOR THE DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2013-10-10

    This paper summarizes the development, testing, and certification of the 9979 Type A Fissile Packaging that replaces the UN1A2 Specification Shipping Package eliminated from Department of Transportation (DOT) 49 CFR 173. The DOT Specification Package was used for many decades by the U.S. nuclear industry as a fissile waste container until its removal as an authorized container by DOT. This paper will discuss stream lining procurement of high volume radioactive material packaging manufacturing, such as the 9979, to minimize packaging production costs without sacrificing Quality Assurance. The authorized content envelope (combustible and non-combustible) as well as planned content envelope expansion will be discussed.

  5. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

  6. Testing in support of transportation of residues in the pipe overpack container

    SciTech Connect (OSTI)

    Ammerman, D.J.; Bobbe, J.G.; Arviso, M.; Bronowski, D.R.

    1997-04-01

    The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plants call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. The tests described here were performed to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II. Using a more robust container will assure the fissile materials in each container can not be mixed with the fissile material from the other containers and will provide criticality control. This will allow an increase in the payload of the TRUPACT-II from 325 fissile gram equivalents to 2,800 fissile gram equivalents.

  7. June 2012 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    SciTech Connect (OSTI)

    2013-03-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 26-27, 2012, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the "Corrective Action Decision Document/Corrective Action Plan" completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  8. May 2011 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    SciTech Connect (OSTI)

    None

    2011-11-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on May 10-11, 2011, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the "Corrective Action Decision Document/Corrective Action Plan" completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  9. May 2010 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)

    SciTech Connect (OSTI)

    None

    2011-02-01

    The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 7-9, 2010, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

  10. DOT-7A Type A packaging design guide

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-01-23

    The purpose of this Design Guide is to provide instruction for designing a U.S. Department of Transportation Specification 7A (DOT-7A) Type A packaging. Another purpose for this Design Guide is to support the evaluation and testing activities that are performed on new designs by a U.S. Department of Energy (DOE) test facility. This evaluation and testing program is called the DOT-7A Program. When an applicant has determined that a DOT-7A packaging is needed and not commercially available, a design may be created according to this document. The design should include a packaging drawing, specifications, analysis report, operating instructions, and a Packaging Qualification Checklist; all of which should be forwarded to a DOE/HQ approved test facility for evaluation and testing. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes.

  11. Underground Test Area Subproject Phase I Data Analysis Task. Volume III - Groundwater Recharge and Discharge Data Documentation Package

    SciTech Connect (OSTI)

    1996-10-01

    Volume III of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the data covering groundwater recharge and discharge. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  12. Final evaluation & test report for the standard waste box (docket 01-53-7A) type A packaging

    SciTech Connect (OSTI)

    KELLY, D.L.

    2001-08-15

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test and evaluation results of the Standard Waste Box (SWB). Testing and evaluation activities documented herein are on behalf of the U.S. Department of Energy-Headquarters (DOE-HQ), Office of Safety, Health and Security (EM-5), Germantown, Maryland. Dwatek Federal Services, Inc., Northwest Operations (DFSNW) performed an evaluation of the changes as documented herein under Docket 01-53-7A.

  13. Transportation Organization and Functions

    Broader source: Energy.gov [DOE]

    Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

  14. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    SciTech Connect (OSTI)

    Ward, Anderson L.; Gee, Glendon W.

    2000-06-23

    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

  15. K Basin sludge packaging design criteria (PDC) and safety analysis report for packaging (SARP) approval plan

    SciTech Connect (OSTI)

    Brisbin, S.A.

    1996-03-06

    This document delineates the plan for preparation, review, and approval of the Packaging Design Crieteria for the K Basin Sludge Transportation System and the Associated on-site Safety Analysis Report for Packaging. The transportation system addressed in the subject documents will be used to transport sludge from the K Basins using bulk packaging.

  16. Vadose zone transport field study: Detailed test plan for simulated leak tests

    SciTech Connect (OSTI)

    AL Ward; GW Gee

    2000-06-23

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

  17. Documentation and verification required for type A packaging use

    SciTech Connect (OSTI)

    O`Brien, J.H.

    1997-07-30

    This document furnishes knowledge and methods for verifying compliance with the U.S. Department of Transportation (DOT) packaging requirements for shipping Type A quantities of radioactive material. The primary emphasis is on the requirements identified in 49 CFR 173.415(a), which states, ``Each offeror of a Specification 7A package must maintain on file for at least one year after the shipment, and shall provide to DOT on request, complete documentation of tests and an engineering evaluation of comparative data showing that the construction methods, packaging design, and materials of construction comply with that specification.`` This guidance document uses a checklist to show compliance.

  18. User Packages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Packages User Packages There is more than one way for users to manage installation of Python packages on their own. Users of the Anaconda distribution may create their own environments as described here. Users of the NERSC-built modules can use virtualenv, pip, or compile and install Python packages directly. Using "pip" on Edison and Cori There is an issue with the pip command on the Cray systems because of an SSL certificate verification problem. One symptom is that you create

  19. Regulatory compliance guide for DOT-7A type A packaging design

    SciTech Connect (OSTI)

    Kelly, D.L.

    1996-06-04

    The purpose of this guide is to provide instruction for assuring that the regulatory design requirements for a DOT-7A Type A packaging are met. This guide also supports the testing and evaluation activities that are performed on new packaging designs by a DOE-approved test facility through the DOE`s DOT-7A Test Program. This Guide was updated to incorporate regulatory changes implemented by HM-169A (49 CFR, `Transportation`).

  20. Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site

    SciTech Connect (OSTI)

    Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

    2010-12-03

    We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement provides confidence in the results of the predictive model. The comparison to Cheshire HST model predictions (Pawloski et al, 2001) is somewhat ambiguous due to the low concentration resolution of the particle transport model.

  1. DOE-EM-45 PACKAGING OPERATIONS AND MAINTENANCE COURSE

    SciTech Connect (OSTI)

    Watkins, R.; England, J.

    2010-05-28

    Savannah River National Laboratory - Savannah River Packaging Technology (SRNL-SRPT) delivered the inaugural offering of the Packaging Operations and Maintenance Course for DOE-EM-45's Packaging Certification Program (PCP) at the University of South Carolina Aiken on September 1 and 2, 2009. Twenty-nine students registered, attended, and completed this training. The DOE-EM-45 Packaging Certification Program (PCP) sponsored the presentation of a new training course, Packaging Maintenance and Operations, on September 1-2, 2009 at the University of South Carolina Aiken (USC-Aiken) campus in Aiken, SC. The premier offering of the course was developed and presented by the Savannah River National Laboratory, and attended by twenty-nine students across the DOE, NNSA and private industry. This training informed package users of the requirements associated with handling shipping containers at a facility (user) level and provided a basic overview of the requirements typically outlined in Safety Analysis Report for Packaging (SARP) Chapters 1, 7, and 8. The course taught packaging personnel about the regulatory nature of SARPs to help reduce associated and often costly packaging errors. Some of the topics covered were package contents, loading, unloading, storage, torque requirements, maintaining records, how to handle abnormal conditions, lessons learned, leakage testing (including demonstration), and replacement parts. The target audience for this course was facility operations personnel, facility maintenance personnel, and field quality assurance personnel who are directly involved in the handling of shipping containers. The training also aimed at writers of SARP Chapters 1, 7, and 8, package designers, and anyone else involved in radioactive material packaging and transportation safety. Student feedback and critiques of the training were very positive. SRNL will offer the course again at USC Aiken in September 2010.

  2. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect (OSTI)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also quantified during selected studies. A laboratory was established at WVU to provide for studies which supported and augmented the Translab research, and to provide for development of superior emissions measurement systems. This laboratory research focused on engine control and fuel sulfur issues. In recent years, as engine and aftertreatment technologies advanced, emissions levels were reduced such that they were at or below the Translab detectable limits, and in the same time frame the US Environmental Protection Agency required improved measurement methodologies for engine emissions certification. To remain current and relevant, the researchers designed a new Translab analytic system, housed in a container which can be transported on a semi-trailer. The new system's dilution tunnel flow was designed to use a subsonic venturi with closed loop control of blower speed, and the secondary dilution and particulate matter filter capture were designed to follow new EPA engine certification procedures. A further contribution of the program has been the development of techniques for creating heavy-duty vehicle test schedules, and the creation of schedules to mimic a variety of truck and bus vocations.

  3. Review of SAR for Packaging Report | Department of Energy

    Energy Savers [EERE]

    Review of SAR for Packaging Report Review of SAR for Packaging Report This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. PDF icon Review of SAR for Packaging Report More Documents & Publications FAQS Qualification Card - NNSA Package Certification Engineer DOE-STD-1026-2009 FAQS Reference Guide - NNSA Package Certification Engineer

  4. User's manual for ONEDANT: a code package for one-dimensional, diffusion-accelerated, neutral-particle transport

    SciTech Connect (OSTI)

    O'Dell, R.D.; Brinkley, F.W. Jr.; Marr, D.R.

    1982-02-01

    ONEDANT is designed for the CDC-7600, but the program has been implemented and run on the IBM-370/190 and CRAY-I computers. ONEDANT solves the one-dimensional multigroup transport equation in plane, cylindrical, spherical, and two-angle plane geometries. Both regular and adjoint, inhomogeneous and homogeneous (k/sub eff/ and eigenvalue search) problems subject to vacuum, reflective, periodic, white, albedo, or inhomogeneous boundary flux conditions are solved. General anisotropic scattering is allowed and anisotropic inhomogeneous sources are permitted. ONEDANT numerically solves the one-dimensional, multigroup form of the neutral-particle, steady-state form of the Boltzmann transport equation. The discrete-ordinates approximation is used for treating the angular variation of the particle distribution and the diamond-difference scheme is used for phase space discretization. Negative fluxes are eliminated by a local set-to-zero-and-correct algorithm. A standard inner (within-group) iteration, outer (energy-group-dependent source) iteration technique is used. Both inner and outer iterations are accelerated using the diffusion synthetic acceleration method. (WHK)

  5. DEVELOPMENT AND USE OF A BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2010-09-30

    A shipping package for transporting tritium has been developed for use by the National Nuclear Safety Administration as a replacement for the DOE Model UC-609, a tritium package developed and used by the DOE and NRC since the early 1970s. This paper presents the major design features and highlights the improvements made over its predecessor by incorporating new engineered materials and implementing improved testing, handling, and maintenance capabilities, while improving manufacturability. A discussion will be provided demonstrating how the BTSP complies with the regulatory safety requirements of the Nuclear Regulatory Commission. The paper further summarizes the results of testing to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Conditions events. Planned and possible future missions for this packaging will be addressed.

  6. WIPP Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across tribal lands. Transportation Centralized Procurement Program - The Centralized Procurement Program provides a common method to procure standard items used in the packaging and handling of transuranic wasted destined for WIPP. Transuranic Waste Transportation Routes - A map showing transuranic waste generator sites and

  7. DEVELOPMENT OF A NEW TYPE A(F)RADIOACTIVE MATERIAL PACKAGING FOR THE DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    In a coordinated effort, the Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) proposed the elimination of the Specification Packaging from 49 CFR 173.[1] In accordance with the Federal Register, issued on October 1, 2004, new fabrication of Specification Packages would no longer be authorized. In accordance with the NRC final rulemaking published January 26, 2004, Specification Packagings are mandated by law to be removed from service no later than October 1, 2008. This coordinated effort and resulting rulemaking initiated a planned phase out of Specification Type B and Type A fissile (F) material transportation packages within the Department of Energy (DOE) and its subcontractors. One of the Specification Packages affected by this regulatory change is the UN1A2 Specification Package, per DOT 49 CFR 173.417(a)(6). To maintain continuing shipments of DOE materials currently transported in UN1A2 Specification Package after the existing authorization expires, a replacement Type A(F) material packaging design is under development by the Savannah River National Laboratory. This paper presents a summary of the prototype design effort and testing of the new Type A(F) Package development for the DOE. This paper discusses the progress made in the development of a Type A Fissile Packaging to replace the expiring 49 CFR UN1A2 Specification Fissile Package. The Specification Package was mostly a single-use waste disposal container. The design requirements and authorized radioactive material contents of the UN1A2 Specification Package were defined in 49 CFR. A UN1A2 Specification Package was authorized to ship up to 350 grams of U-235 in any enrichment and in any non-pyrophoric form. The design was specified as a 55-gallon 1A2 drum overpack with a body constructed from 18 gauge steel with a 16 gauge drum lid. Drum closure was specified as a standard 12-gauge ring closure. The inner product container size was not specified but was listed as any container that met Specification 7A requirements per 49 CFR 178.350. Specification 7A containers were required to withstand Type A packaging tests required by 49CFR173.465 with compliance demonstrated through testing, analysis or similarity to other containers. The maximum weight of the 7A product container, the radioactive content, and any internal packaging was limited to 200 lbs. The total gross weight for the UN1A2 Specification Package was limited to 350 lbs. No additional restrictions were applied. Authorization for use did not require the UN1A2 Specification Package to be tested to the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) required for performance based, Type A(F) packages certified by the NRC or DOE. The Type A(F) Packaging design discussed in this paper is required to be in compliance with the regulatory safety requirements defined in Code of Federal Regulations (CFR) 10 CFR 71.41 through 71.47 and 10 CFR71.71. Sub-criticality of content must be maintained under the Hypothetical Accident Conditions specified under 10 CFR71.73. These federal regulations, and other applicable DOE Orders and Guides, govern design requirements for a Type A(F) package. Type A(F) packages with less than an A2 quantity of radioactive material are not required to have a leak testable boundary. With this exception a Type A(F) package design is subject to the same test requirements set forth for the design of a performance based Type B packaging.

  8. LAC Regional Platform Workshop Participant Package | Open Energy...

    Open Energy Info (EERE)

    Announcement Agenda Participant Package Accommodations Location & Transportation Insurance & Visas Participants Presentations Outcomes Report Links Contact Us General...

  9. Technical Review Report for the Model 9978-96 Package Safety Analysis Report for Packaging (S-SARP-G-00002, Revision 1, March 2009)

    SciTech Connect (OSTI)

    West, M

    2009-03-06

    This Technical Review Report (TRR) documents the review, performed by Lawrence Livermore National Laboratory (LLNL) Staff, at the request of the Department of Energy (DOE), on the 'Safety Analysis Report for Packaging (SARP), Model 9978 B(M)F-96', Revision 1, March 2009 (S-SARP-G-00002). The Model 9978 Package complies with 10 CFR 71, and with 'Regulations for the Safe Transport of Radioactive Material-1996 Edition (As Amended, 2000)-Safety Requirements', International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1. The Model 9978 Packaging is designed, analyzed, fabricated, and tested in accordance with Section III of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME B&PVC). The review presented in this TRR was performed using the methods outlined in Revision 3 of the DOE's 'Packaging Review Guide (PRG) for Reviewing Safety Analysis Reports for Packages'. The format of the SARP follows that specified in Revision 2 of the Nuclear Regulatory Commission's Regulatory Guide 7.9, i.e., 'Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material'. Although the two documents are similar in their content, they are not identical. Formatting differences have been noted in this TRR, where appropriate. The Model 9978 Packaging is a single containment package, using a 5-inch containment vessel (5CV). It uses a nominal 35-gallon drum package design. In comparison, the Model 9977 Packaging uses a 6-inch containment vessel (6CV). The Model 9977 and Model 9978 Packagings were developed concurrently, and they were referred to as the General Purpose Fissile Material Package, Version 1 (GPFP). Both packagings use General Plastics FR-3716 polyurethane foam as insulation and as impact limiters. The 5CV is used as the Primary Containment Vessel (PCV) in the Model 9975-96 Packaging. The Model 9975-96 Packaging also has the 6CV as its Secondary Containment Vessel (SCV). In comparison, the Model 9975 Packagings use Celotex{trademark} for insulation and as impact limiters. To provide a historical perspective, it is noted that the Model 9975-96 Packaging is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. Earlier package designs, i.e., the Model 9965, the Model 9966, the Model 9967, and the Model 9968 Packagings, were originally designed and certified in the early 1980s. In the 1990s, updated package designs that incorporated design features consistent with the then-newer safety requirements were proposed. The updated package designs at the time were the Model 9972, the Model 9973, the Model 9974, and the Model 9975 Packagings, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under the Office of Safety Management and Operations. The Model 9978 Package has six Content Envelopes: C.1 ({sup 238}Pu Heat Sources), C.2 ( Pu/U Metals), C.3 (Pu/U Oxides, Reserved), C.4 (U Metal or Alloy), C.5 (U Compounds), and C.6 (Samples and Sources). Per 10 CFR 71.59 (Code of Federal Regulations), the value of N is 50 for the Model 9978 Package leading to a Criticality Safety Index (CSI) of 1.0. The Transport Index (TI), based on dose rate, is calculated to be a maximum of 4.1.

  10. DEVELOPMENT OF THE BULK TRITIUM SHIPPING PACKAGING

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2008-09-14

    A new radioactive shipping packaging for transporting bulk quantities of tritium, the Bulk Tritium Shipping Package (BTSP), has been designed for the Department of Energy (DOE) as a replacement for a package designed in the early 1970s. This paper summarizes significant design features and describes how the design satisfies the regulatory safety requirements of the Code of Federal Regulations and the International Atomic Energy Agency. The BTSP design incorporates many improvements over its predecessor by implementing improved testing, handling, and maintenance capabilities, while improving manufacturability and incorporating new engineered materials. This paper also discusses the results from testing of the BTSP to 10 CFR 71 Normal Conditions of Transport and Hypothetical Accident Condition events. The programmatic need of the Department of Energy (DOE) to ship bulk quantities of tritium has been satisfied since the late 1970s by the UC-609 shipping package. The current Certificate of Conformance for the UC-609, USA/9932/B(U) (DOE), will expire in late 2011. Since the UC-609 was not designed to meet current regulatory requirements, it will not be recertified and thereby necessitates a replacement Type B shipping package for continued DOE tritium shipments in the future. A replacement tritium packaging called the Bulk Tritium Shipping Package (BTSP) is currently being designed and tested by Savannah River National Laboratory (SRNL). The BTSP consists of two primary assemblies, an outer Drum Assembly and an inner Containment Vessel Assembly (CV), both designed to mitigate damage and to protect the tritium contents from leaking during the regulatory Hypothetical Accident Condition (HAC) events and during Normal Conditions of Transport (NCT). During transport, the CV rests on a silicone pad within the Drum Liner and is covered with a thermal insulating disk within the insulated Drum Assembly. The BTSP packaging weighs approximately 500 lbs without contents and is 50-1/2 inches high by 24-1/2 inches in outside diameter. With contents the gross weight of the BTSP is 650 lbs. The BTSP is designed for the safe shipment of 150 grams of tritium in a solid or gaseous state. To comply with the federal regulations that govern Type B shipping packages, the BTSP is designed so that it will not lose tritium at a rate greater than the limits stated in 10CFR 71.51 of 10{sup -6} A2 per hour for the 'Normal Conditions of Transport' (NCT) and an A2 in 1 week under 'Hypothetical Accident Conditions' (HAC). Additionally, since the BTSP design incorporates a valve as part of the tritium containment boundary, secondary containment features are incorporated in the CV Lid to protect against gas leakage past the valve as required by 10CFR71.43(e). This secondary containment boundary is designed to provide the same level of containment as the primary containment boundary when subjected to the HAC and NCT criteria.

  11. Evaluation and compilation of DOE [Department of Energy] waste package test data; Biannual report, February 1988--July 1988

    SciTech Connect (OSTI)

    Interrante, C.; Escalante, E.; Fraker, A.; Plante, E.

    1989-10-01

    This report summarizes evaluations by the National Institute of Standards and Technology (NIST) of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW) for the six month period February 1988 through July 1988. Activities for the DOE Materials Characterization Center are reviewed for the period January 1988 through June 1988. A summary is given of the Yucca Mountain, Nevada disposal site activities. Short discussions relating to the reviewed publications are given and complete reviews and evaluations are included. 20 refs., 1 fig., 1 tab.

  12. NREL: Transportation Research - Fleet Test and Evaluation Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fleet Test and Evaluation Publications NREL publishes technical reports, fact sheets, and other documents about its fleet test and evaluation activities: Hybrid electric vehicle publications Electric and plug-in hybrid electric vehicle publications Alternative fuel vehicle publications Hydraulic hybrid vehicle publications Truck platooning publications Truck stop electrification publications For more documents about energy-saving technologies for medium- and heavy-duty vehicles, search the NREL

  13. Testing of the structural evaluation test unit

    SciTech Connect (OSTI)

    Ammerman, D.J.; Bobbe, J.G.

    1995-12-31

    In the evaluation of the safety of radioactive material transportation it is important to consider the response of Type B packages to environments more severe than that prescribed by the hypothetical accident sequence in Title 10 Part 71 of the Code of Federal Regulations (NRC 1995). The impact event in this sequence is a 9-meter drop onto an essentially unyielding target, resulting in an impact velocity of 13.4 m/s. The behavior of 9 packages when subjected to impacts more severe than this is not well known. It is the purpose of this program to evaluate the structural response of a test package to these environments. Several types of structural response are considered. Of primary importance is the behavior of the package containment boundary, including the bolted closure and 0-rings. Other areas of concern are loss of shielding capability due to lead slump and the deceleration loading of package contents, that may cause damage to them. This type of information is essential for conducting accurate risk assessments on the transportation of radioactive materials. Currently very conservative estimates of the loss of package protection are used in these assessments. This paper will summarize the results of a regulatory impact test and three extra-regulatory impact tests on a sample package.

  14. Test Plan for Westinghouse Hanford Company`s Hedgehog Shielded Container, Docket 94-39-7A, Type A Container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-02-27

    This report documents the US Department of Transportation Specification 7A Type A (DOT-7A) compliance testing to be followed for qualification of the Westinghouse Hanford Company`s Hedgehog Shielded Container for use as a Type A packaging. The packaging configurations being tested are intended for liquids and solids, and for air transportation.

  15. NREL: Transportation Research - Alternative Fuel Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alternative Fuel Fleet Vehicle Testing Photo of medium- and heavy-duty United Parcel Service vehicles. NREL evaluates the performance of alternative fuels in fleet vehicles in real-world delivery, transit, and freight service. Photo by Dennis Schroeder, NREL In partnership with industry, NREL evaluates the in-use performance of alternative fuels in delivery, transit, and freight vehicles. Although biodiesel is the most commonly used alternative fuel in medium- and heavy-duty diesel vehicles,

  16. NREL: Transportation Research - Hybrid Electric Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to achieve a combination of emissions, fuel economy, and range benefits. Such vehicles use less petroleum-based fuel and capture energy created during braking and idling. This collected energy is used to propel the vehicle during normal drive cycles. The batteries supply additional power for acceleration and hill

  17. NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during braking. This energy drives a pump, which transfers hydraulic fluid from a low-pressure reservoir to a high-pressure accumulator. When the vehicle accelerates, fluid in the high-pressure accumulator moves to the lower-pressure reservoir, which drives a motor and provides extra torque. This process can improve the

  18. MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING

    SciTech Connect (OSTI)

    Abramczyk, G; Paul Blanton, P; Kurt Eberl, K

    2006-05-18

    This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71 (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.

  19. High Efficiency Integrated Package

    SciTech Connect (OSTI)

    Ibbetson, James

    2013-09-15

    Solid-state lighting based on LEDs has emerged as a superior alternative to inefficient conventional lighting, particularly incandescent. LED lighting can lead to 80 percent energy savings; can last 50,000 hours – 2-50 times longer than most bulbs; and contains no toxic lead or mercury. However, to enable mass adoption, particularly at the consumer level, the cost of LED luminaires must be reduced by an order of magnitude while achieving superior efficiency, light quality and lifetime. To become viable, energy-efficient replacement solutions must deliver system efficacies of ? 100 lumens per watt (LPW) with excellent color rendering (CRI > 85) at a cost that enables payback cycles of two years or less for commercial applications. This development will enable significant site energy savings as it targets commercial and retail lighting applications that are most sensitive to the lifetime operating costs with their extended operating hours per day. If costs are reduced substantially, dramatic energy savings can be realized by replacing incandescent lighting in the residential market as well. In light of these challenges, Cree proposed to develop a multi-chip integrated LED package with an output of > 1000 lumens of warm white light operating at an efficacy of at least 128 LPW with a CRI > 85. This product will serve as the light engine for replacement lamps and luminaires. At the end of the proposed program, this integrated package was to be used in a proof-of-concept lamp prototype to demonstrate the component’s viability in a common form factor. During this project Cree SBTC developed an efficient, compact warm-white LED package with an integrated remote color down-converter. Via a combination of intensive optical, electrical, and thermal optimization, a package design was obtained that met nearly all project goals. This package emitted 1295 lm under instant-on, room-temperature testing conditions, with an efficacy of 128.4 lm/W at a color temperature of ~2873K and 83 CRI. As such, the package’s performance exceeds DOE’s warm-white phosphor LED efficacy target for 2013. At the end of the program, we assembled an A19 sized demonstration bulb housing the integrated package which met Energy Star intensity variation requirements. With further development to reduce overall component cost, we anticipate that an integrated remote converter package such as developed during this program will find application in compact, high-efficacy LED-based lamps, particularly those requiring omnidirectional emission.

  20. Field Testing and Demonstration of the Smart Monitoring and Diagnostic System (SMDS) for Packaged Air-Conditioners and Heat Pumps

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Brambley, Michael R.; Huang, Yunzhi; Lutes, Robert G.; Gilbride, Spencer P.

    2015-05-29

    This documents results of a project focused on testing and demonstrating both the hardware and software versions of the smart monitoring and diagnostic system (SMDS) under field conditions.

  1. DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center

    SciTech Connect (OSTI)

    Farnsworth, R.K.; Mishima, J.

    1988-12-01

    A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

  2. In-Package Chemistry Abstraction

    SciTech Connect (OSTI)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.

  3. Lessons Learned in the Design and Use of IP1 / IP2 Flexible Packaging - 13621

    SciTech Connect (OSTI)

    Sanchez, Mike; Reeves, Wendall; Smart, Bill

    2013-07-01

    For many years in the USA, Low Level Radioactive Waste (LLW), contaminated soils and construction debris, have been transported, interim stored, and disposed of, using IP1 / IP2 metal containers. The performance of these containers has been more than adequate, with few safety occurrences. The containers are used under the regulatory oversight of the US Department of Transportation (DOT), 49 Code of Federal Regulations (CFR). In the late 90's the introduction of flexible packaging for the transport, storage, and disposal of low level contaminated soils and construction debris was introduced. The development of flexible packaging came out of a need for a more cost effective package, for the large volumes of waste generated by the decommissioning of many of the US Department of Energy (DOE) legacy sites across the US. Flexible packaging had to be designed to handle a wide array of waste streams, including soil, gravel, construction debris, and fine particulate dust migration. The design also had to meet all of the IP1 requirements under 49CFR 173.410, and be robust enough to pass the IP2 testing 49 CFR 173.465 required for many LLW shipments. Tens of thousands of flexible packages have been safely deployed and used across the US nuclear industry as well as for hazardous non-radioactive applications, with no recorded release of radioactive materials. To ensure that flexible packages are designed properly, the manufacturer must use lessons learned over the years, and the tests performed to provide evidence that these packages are suitable for transporting low level radioactive wastes. The design and testing of flexible packaging for LLW, VLLW and other hazardous waste streams must be as strict and stringent as the design and testing of metal containers. The design should take into consideration the materials being loaded into the package, and should incorporate the right materials, and manufacturing methods, to provide a quality, safe product. Flexible packaging can be shown to meet the criteria for safe and fit for purpose packaging, by meeting the US DOT regulations, and the IAEA Standards for IP-1 and IP-2 including leak tightness. (authors)

  4. Single Packaged Vertical Units | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Single Packaged Vertical Units Single Packaged Vertical Units The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards. File Single Packaged Vertical Units -- v2.0 More Documents

  5. The terminator "toy" chemistry test: A simple tool to assess errors in transport schemes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lauritzen, P. H.; Conley, A. J.; Lamarque, J. -F.; Vitt, F.; Taylor, M. A.

    2015-05-04

    This test extends the evaluation of transport schemes from prescribed advection of inert scalars to reactive species. The test consists of transporting two interacting chemical species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these two species are given by a simple, but non-linear, "toy" chemistry that represents combination (X+X → X2) and dissociation (X2 → X+X). This chemistry mimics photolysis-driven conditions near the solar terminator, where strong gradients in the spatial distribution of the species develop near its edge. Despite the large spatial variations in each species, the weighted sum XT = X+2X2more » should always be preserved at spatial scales at which molecular diffusion is excluded. The terminator test demonstrates how well the advection–transport scheme preserves linear correlations. Chemistry–transport (physics–dynamics) coupling can also be studied with this test. Examples of the consequences of this test are shown for illustration.« less

  6. The terminator "toy" chemistry test: A simple tool to assess errors in transport schemes

    SciTech Connect (OSTI)

    Lauritzen, P. H.; Conley, A. J.; Lamarque, J. -F.; Vitt, F.; Taylor, M. A.

    2015-05-04

    This test extends the evaluation of transport schemes from prescribed advection of inert scalars to reactive species. The test consists of transporting two interacting chemical species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these two species are given by a simple, but non-linear, "toy" chemistry that represents combination (X+X → X2) and dissociation (X2 → X+X). This chemistry mimics photolysis-driven conditions near the solar terminator, where strong gradients in the spatial distribution of the species develop near its edge. Despite the large spatial variations in each species, the weighted sum XT = X+2X2 should always be preserved at spatial scales at which molecular diffusion is excluded. The terminator test demonstrates how well the advection–transport scheme preserves linear correlations. Chemistry–transport (physics–dynamics) coupling can also be studied with this test. Examples of the consequences of this test are shown for illustration.

  7. Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings

    SciTech Connect (OSTI)

    DiSabatino, A; Biswas, D; DeMicco, M; Fisher, L E; Hafner, R; Haslam, J; Mok, G; Patel, C; Russell, E

    2007-04-12

    This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE Order 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his or her review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. This PRG is generally organized at the section level in a format similar to that recommended in Regulatory Guide 7.9 (RG 7.9). One notable exception is the addition of Section 9 (Quality Assurance), which is not included as a separate chapter in RG 7.9. Within each section, this PRG addresses the technical and regulatory bases for the review, the manner in which the review is accomplished, and findings that are generally applicable for a package that meets the approval standards. This Packaging Review Guide (PRG) provides guidance for DOE review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE O 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. The primary objectives of this PRG are to: (1) Summarize the regulatory requirements for package approval; (2) Describe the technical review procedures by which DOE determines that these requirements have been satisfied; (3) Establish and maintain the quality and uniformity of reviews; (4) Define the base from which to evaluate proposed changes in scope and requirements of reviews; and (5) Provide the above information to DOE organizations, contractors, other government agencies, and interested members of the general public. This PRG was originally published in September 1987. Revision 1, issued in October 1988, added new review sections on quality assurance and penetrations through the containment boundary, along with a few other items. Revision 2 was published October 1999. Revision 3 of this PRG is a complete update, and supersedes Revision 2 in its entirety.

  8. WASTE PACKAGE REMEDIATION SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    N.D. Sudan

    2000-06-22

    The Waste Package Remediation System remediates waste packages (WPs) and disposal containers (DCs) in one of two ways: preparation of rejected DC closure welds for repair or opening of the DC/WP. DCs are brought to the Waste Package Remediation System for preparation of rejected closure welds if testing of the closure weld by the Disposal Container Handling System indicates an unacceptable, but repairable, welding flaw. DC preparation of rejected closure welds will require removal of the weld in such a way that the Disposal Container Handling System may resume and complete the closure welding process. DCs/WPs are brought to the Waste Package Remediation System for opening if the Disposal Container Handling System testing of the DC closure weld indicates an unrepairable welding flaw, or if a WP is recovered from the subsurface repository because suspected damage to the WP or failure of the WP has occurred. DC/WP opening will require cutting of the DC/WP such that a temporary seal may be installed and the waste inside the DC/WP removed by another system. The system operates in a Waste Package Remediation System hot cell located in the Waste Handling Building that has direct access to the Disposal Container Handling System. One DC/WP at a time can be handled in the hot cell. The DC/WP arrives on a transfer cart, is positioned within the cell for system operations, and exits the cell without being removed from the cart. The system includes a wide variety of remotely operated components including a manipulator with hoist and/or jib crane, viewing systems, machine tools for opening WPs, and equipment used to perform pressure and gas composition sampling. Remotely operated equipment is designed to facilitate DC/WP decontamination and hot cell equipment maintenance, and interchangeable components are provided where appropriate. The Waste Package Remediation System interfaces with the Disposal Container Handling System for the receipt and transport of WPs and DCs. The Waste Handling Building System houses the system, and provides the facility, safety, and auxiliary systems required to support operations. The system receives power from the Waste Handling Building Electrical System. The system also interfaces with the various DC systems.

  9. Determing Degradation Of Fiberboard In The 9975 Shipping Package By Measuring Axial Gap

    SciTech Connect (OSTI)

    Hackney, E. R.; Dougherty, W. L.; Dunn, K. A.; Stefek, T. M

    2013-08-01

    Currently, thousands of model 9975 transportation packages are in use by the US Department of Energy (DOE); the design of which has been certified by DOE for shipment of Type B radioactive and fissile materials in accordance with Part 71, Title 10 Code of Federal Regulations (CFR), or 10 CFR 71, Packaging and Transportation of Radioactive Material. These transportation packages are also approved for the storage of DOE-STD-3013 containers at the Savannah River Site (SRS). As such, the 9975 has been continuously exposed to the service environment for a period of time greater than the approved transportation service life. In order to ensure the material integrity as specified in the safety basis, an extensive surveillance program is in place in K-Area Complex (KAC) to monitor the structural and thermal properties of the fiberboard of the 9975 shipping packages. The surveillance approach uses a combination of Non-Destructive Examination (NDE) field surveillance and Destructive Examination (DE) lab testing to validate the 9975 performance assumptions. The fiberboard in the 9975 is credited with thermal insulation, criticality control and resistance to crushing. During surveillance monitoring in KAC, an increased axial gap of the fiberboard was discovered on selected items packaged at Rocky Flats Environmental Technology Site (RFETS). Many of these packages were later found to contain excess moisture. Savannah River National Laboratory (SRNL) testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the fiberboard under storage conditions and during transport. In laboratory testing, the higher moisture content has been shown to correspond to higher total compaction of fiberboard material and compaction rate. The fiberboard height is reduced by compression of the layers. This change is observed directly in the axial gap between the flange and the air shield. The axial gap measurement is made during the pre-use inspection or during the annual recertification process and is a screening measurement for changes in the fiberboard.

  10. Vehicle Technologies Office: Transportation System Analytical Tools |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Modeling, Testing, Data & Results » Vehicle Technologies Office: Transportation System Analytical Tools Vehicle Technologies Office: Transportation System Analytical Tools The Vehicle Technologies Office (VTO) has supported the development of a number of software packages and online tools to model individual vehicles and the overall transportation system. Most of these tools are available for free or a nominal charge. Modeling tools that simulate entire vehicles and

  11. packagings -- Historical review Smith, J.A.; Salzbrenner, D....

    Office of Scientific and Technical Information (OSTI)

    based design for radioactive material transport packagings -- Historical review Smith, J.A.; Salzbrenner, D.; Sorenson, K.; McConnell, P. 42 ENGINEERING NOT INCLUDED IN...

  12. Human Portable Radiation Detection System Communications Package Evaluation

    SciTech Connect (OSTI)

    Morgen, Gerald P.; Peterson, William W.

    2009-06-11

    Testing and valuation of the Human Portable Radiation Detection System Communications Package for the US Coast Guard.

  13. Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report

    SciTech Connect (OSTI)

    Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

    1998-07-01

    Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

  14. Cost Estimation Package

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    This chapter focuses on the components (or elements) of the cost estimation package and their documentation.

  15. Transportation Issues and Resolutions Compilation of Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Work Package Reports | Department of Energy Transportation Issues and Resolutions Compilation of Laboratory Transportation Work Package Reports Transportation Issues and Resolutions Compilation of Laboratory Transportation Work Package Reports The Transportation Team identified the retrievability and subcriticality safety functions to be of primary importance to the transportation of UNF after extended storage and to transportation of high burnup fuel. The tasks performed and

  16. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  17. WIPP transportation exercise to test emergency response capablities for Midland-Odessa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Exercise to Test Emergency Response Capabilities for Midland-Odessa CARLSBAD, N.M., January 10, 2000 - Emergency response agencies from Midland and Odessa, Texas, will take part in a 1 p.m. (CST) training exercise Jan. 12 at the Ector County Coliseum. The graded exercise will help agencies determine whether emergency personnel are prepared to respond to a possible accident involving a shipment of transuranic radioactive waste headed for the U.S. Department of Energy's (DOE) Waste

  18. ASSESSING EXPOSURE TO THE PUBLIC FROM LOW LEVEL RADIOACTIVE WASTE (LLW) TRANSPORTATION TO THE NEVADA TEST SITE.

    SciTech Connect (OSTI)

    Miller, J.J.; Campbell, S.; Church, B.W.; Shafer, D. S.; Gillespie, D.; Sedano, S.; Cebe, J.J.

    2003-02-27

    The United States (U.S.) Department of Energy (DOE) Nevada Test Site (NTS) is one of two regional sites where low-level radioactive waste (LLW) from approved DOE and U.S. DOD generators across the United States is disposed. In federal fiscal year (FY) 2002, over 57,000 cubic meters of waste was transported to and disposed at the NTS. DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is perceived risk from members of the public about incremental exposure from LLW trucks, especially when ''Main Street'' and the LLW transportation route are the same. To better quantify the exposure to gamma radiation, a stationary monitoring array of four pressurized ion chambers (PICs) have been set up in a pullout just before LLW trucks reach the entrance to the NTS. The PICs are positioned at a distance of one meter from the sides of the truck trailer and at a height appropriate for the design of the trucks that will be used in FY2003 to haul LLW to the NTS. The use of four PICs (two on each side of the truck) is to minimize and to correct for non-uniformity where radiation levels from waste packages vary from side to side, and from front to back in the truck trailer. The PIC array is being calibrated by collecting readings from each PIC exposed to a known 137Cs source that was positioned at different locations on a flatbed stationed in the PIC array, along with taking secondary readings from other known sources. Continuous data collection using the PICs, with and without a truck in the array, is being used to develop background readings. In addition, acoustic sensors are positioned on each side of the PIC array to record when a large object (presumably a truck) enters the array. In FY2003, PIC surveys from as many incoming LLW trucks as possible will be made and survey data recorded automatically by dataloggers that will be periodically downloaded. Solar panels provide power for the batteries to run both the dataloggers and PICs. Truck drivers have been asked to park their truck within the PIC array for only the time it takes to complete an information log before moving on to one of two Radioactive Waste Management Sites (RWMS) on the NTS. On the log, the truck drivers record their shipment identification number, the time of day, where the waste originated, and information on the route they used to reach the NTS. This data will facilitate comparison of PIC readings with waste manifests and other waste disposal operations data collected at the RWMSs. Gamma radiation measurements collected from the PICs will be analyzed using standard health physics and statistical methods for comparison to DOT standards, but with the added benefit of obtaining an improved understanding of the variability of readings that can occur in the near vicinity of a LLW truck. The data collected will be combined with measurements of street width and other information about transportation routes through towns to develop realistic dose scenarios for citizens in Nevada and Utah towns.

  19. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Estimation of radiation dose to man resulting from biotic transport: the BIOPORT/MAXI1 software package. Volume 5

    SciTech Connect (OSTI)

    McKenzie, D.H.; Cadwell, L.L.; Gano, K.A.; Kennedy, W.E. Jr.; Napier, B.A.; Peloquin, R.A.; Prohammer, L.A.; Simmons, M.A.

    1985-10-01

    BIOPORT/MAXI1 is a collection of five computer codes designed to estimate the potential magnitude of the radiation dose to man resulting from biotic transport processes. Dose to man is calculated for ingestion of agricultural crops grown in contaminated soil, inhalation of resuspended radionuclides, and direct exposure to penetrating radiation resulting from the radionuclide concentrations established in the available soil surface by the biotic transport model. This document is designed as both an instructional and reference document for the BIOPORT/MAXI1 computer software package and has been written for two major audiences. The first audience includes persons concerned with the mathematical models of biological transport of commercial low-level radioactive wastes and the computer algorithms used to implement those models. The second audience includes persons concerned with exercising the computer program and exposure scenarios to obtain results for specific applications. The report contains sections describing the mathematical models, user operation of the computer programs, and program structure. Input and output for five sample problems are included. In addition, listings of the computer programs, data libraries, and dose conversion factors are provided in appendices.

  20. Safety analysis report for packaging a DOT 7A specification container for tritiated liquid wastes

    SciTech Connect (OSTI)

    Alford, E.

    1980-08-01

    This Safety Analysis Report for Packaging (SARP) was prepared in accordance with ERDA (DOE) Appendix 5201 for DOE/ALO review and approval of packaging of tritiated liquid wastes to be shipped from Sandia National Laboratories, Livermore, (SNLL) California. This report presents information pertinent to the construction of tritiated liquid waste shipping containers. It contains design and development considerations, explains tests and evaluations required to prove the container can withstand normal transportation conditions, and demonstrates that the Sandia container-and-radioactive-material shipment package is in compliance with DOE and Department of Transportation (DOT) safety requirements. An internal review of this SARP has been performed in compliance with the ERDA (DOE) Manual, 5201 Appendix V.

  1. transportation

    National Nuclear Security Administration (NNSA)

    security missions undertaken by the U.S. government.

    Pantex Plant's Calvin Nelson honored as Analyst of the Year for Transportation Security http:nnsa.energy.gov...

  2. Waste Package Lifting Calculation

    SciTech Connect (OSTI)

    H. Marr

    2000-05-11

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation.

  3. The reduction of packaging waste

    SciTech Connect (OSTI)

    Raney, E.A.; Hogan, J.J.; McCollom, M.L.; Meyer, R.J.

    1994-04-01

    Nationwide, packaging waste comprises approximately one-third of the waste disposed in sanitary landfills. the US Department of Energy (DOE) generated close to 90,000 metric tons of sanitary waste. With roughly one-third of that being packaging waste, approximately 30,000 metric tons are generated per year. The purpose of the Reduction of Packaging Waste project was to investigate opportunities to reduce this packaging waste through source reduction and recycling. The project was divided into three areas: procurement, onsite packaging and distribution, and recycling. Waste minimization opportunities were identified and investigated within each area, several of which were chosen for further study and small-scale testing at the Hanford Site. Test results, were compiled into five ``how-to`` recipes for implementation at other sites. The subject of the recipes are as follows: (1) Vendor Participation Program; (2) Reusable Containers System; (3) Shrink-wrap System -- Plastic and Corrugated Cardboard Waste Reduction; (4) Cardboard Recycling ; and (5) Wood Recycling.

  4. Final evaluation report for Lockheed Idaho Technologies Company, ARROW-PAK packaging, Docket 95-40-7A, Type A container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1995-11-01

    The report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the ARROW-PAK packaging. The ARROW-PAK packaging system consists of Marlex M-8000 Driscopipe (Series 8000 [gas] or Series 8600 [industrial]) resin pipe, manufactured by Phillips-Driscopipe, Inc., and is sealed with two dome-shaped end caps manufactured from the same materials. The patented sealing process involves the use of electrical energy to heat opposing faces of the pipe and end caps, and hydraulic rams to press the heated surfaces together. This fusion process produces a homogeneous bonding of the end cap to the pipe. The packaging may be used with or without the two internal plywood spacers. This packaging was evaluated and tested in October 1995. The packaging configuration described in this report is designed to ship Type A quantities of solid radioactive materials, Form No. 1, Form No. 2, and Form No. 3.

  5. Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico

    SciTech Connect (OSTI)

    Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

  6. ALTERNATE MATERIALS IN DESIGN OF RADIOACTIVE MATERIAL PACKAGES

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of design and testing of material and composites for use in radioactive material packages. These materials provide thermal protection and provide structural integrity and energy absorption to the package during normal and hypothetical accident condition events as required by Title 10 Part 71 of the Code of Federal Regulations. Testing of packages comprising these materials is summarized.

  7. CAIRS Training Package

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Direct Data Entry Training Package Version 7.0 June 2014 CAIRS Training Package (draft June 27, 2014) TABLE OF CONTENTS Introduction ..................................................................................................................................... 1 Business Rules for CAIRS Direct Data Entry ................................................................................ 2 CAIRS Case Input: Workspace vs. Production Space

  8. Didasko Tutorial Package

    Energy Science and Technology Software Center (OSTI)

    2005-06-09

    Didasko is the tutorial package of Trilinos. It contains several examples to explain the usage of the basic packages (in particular) Epetra, AztecOO, IFPACK, ML, Amesos, Teuchos, Triutils) and a PDF guide that details each example. No new algorithms are included in Didasko. This package is meant to be an introductory, self-contained reference for Trilinos users.

  9. The radioactive materials packaging handbook: Design, operations, and maintenance

    SciTech Connect (OSTI)

    Shappert, L.B.; Bowman, S.M.; Arnold, E.D.

    1998-08-01

    As part of its required activities in 1994, the US Department of Energy (DOE) made over 500,000 shipments. Of these shipments, approximately 4% were hazardous, and of these, slightly over 1% (over 6,400 shipments) were radioactive. Because of DOE`s cleanup activities, the total quantities and percentages of radioactive material (RAM) that must be moved from one site to another is expected to increase in the coming years, and these materials are likely to be different than those shipped in the past. Irradiated fuel will certainly be part of the mix as will RAM samples and waste. However, in many cases these materials will be of different shape and size and require a transport packaging having different shielding, thermal, and criticality avoidance characteristics than are currently available. This Handbook provides guidance on the design, testing, certification, and operation of packages for these materials.

  10. Safety evaluation for packaging CPC metal boxes

    SciTech Connect (OSTI)

    Romano, T.

    1995-05-15

    This Safety Evaluation for Packaging (SEP) provides authorization for the use of Container Products Corporation (CPC) metal boxes, as described in this document, for the interarea shipment of radioactive contaminated equipment and debris for storage in the Central Waste Complex (CWC) or T Plant located in the 200 West Area. Authorization is granted until November 30, 1995. The CPC boxes included in this SEP were originally procured as US Department of Transportation (DOT) Specification 7A Type A boxes. A review of the documentation provided by the manufacturer revealed the documentation did not adequately demonstrate compliance to the 4 ft drop test requirement of 49 CFR 173.465(c). Preparation of a SEP is necessary to document the equivalent safety of the onsite shipment in lieu of meeting DOT packaging requirements until adequate documentation is received. The equivalent safety of the shipment is based on the fact that the radioactive contents consist of contaminated equipment and debris which are not dispersible. Each piece is wrapped in two layers of no less than 4 mil plastic prior to being placed in the box which has an additional 10 mil liner. Pointed objects and sharp edges are padded to prevent puncture of the plastic liner and wrapping.

  11. Transportation Management Workshop: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

  12. Extending the utility of a radioactive material package

    SciTech Connect (OSTI)

    Abramczyk, G.; Nathan, S.; Loftin, B.; Bellamy, S.

    2015-06-04

    Once a package has been certified for the transportation of DOT Hazard Class 7 – Radioactive Material in compliance with the requirements of 10 CFR 71, it is often most economical to extend its utility through the addition of content-specific configuration control features or the addition of shielding materials. The SRNL Model 9977 Package’s authorization was expanded from its original single to twenty contents in this manner; and most recently, the 9977 was evaluated for a high-gamma source content. This paper discusses the need for and the proposed shielding modifications to the package for extending the utility of the package for this purpose.

  13. Hot-Gas Filter Testing with a Transport Reactor Development Unit

    SciTech Connect (OSTI)

    Swanson, M.L.; Ness, R.O., Jr.

    1996-12-31

    The objective of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Environmental Research Center is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot- gas filter elements as a function of particulate collection efficiency, filter pressure differential, filter cleanability, and durability during relatively short-term operation (100-200 hours). A filter vessel will be used in combination with the TRDU to evaluate the performance of selected hot- gas filter elements under gasification operating conditions. This work will directly support the Power Systems Development Facility utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and indirectly the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville and the Clean Coal IV Pinon Pine IGCC Power Project. This program has a phased approach involving modification and upgrades to the TRDU and the fabrication, assembly, and operation of a hot-gas filter vessel (HGFV) capable of operating at the outlet design conditions of the TRDU. Phase 1 upgraded the TRDU based upon past operating experiences. Additions included a nitrogen supply system upgrade, upgraded LASH auger and 1807 coal feed lines, the addition of a second pressurized coal feed hopper and a dipleg ash hopper, and modifications to spoil the performance of the primary cyclone. Phase 2 included the HGFV design, procurement, and installation. Phases 3 through 5 consist of 200-hour hot-gas filter tests under gasification conditions using the TRDU at temperatures of 540-650{degrees}C (1000-1200{degrees}F), 9.3 bar, and face velocities of 1.4, 2. and 3.8 cm/s, respectively. The increased face velocities are achieved by removing candles between each test.

  14. Thyra Abstract Interface Package

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    Thrya primarily defines a set of abstract C++ class interfaces needed for the development of abstract numerical atgorithms (ANAs) such as iterative linear solvers, transient solvers all the way up to optimization. At the foundation of these interfaces are abstract C++ classes for vectors, vector spaces, linear operators and multi-vectors. Also included in the Thyra package is C++ code for creating concrete vector, vector space, linear operator, and multi-vector subclasses as well as other utilitiesmore » to aid in the development of ANAs. Currently, very general and efficient concrete subclass implementations exist for serial and SPMD in-core vectors and multi-vectors. Code also currently exists for testing objects and providing composite objects such as product vectors.« less

  15. HYDROGEL TRACER BEADS: THE DEVELOPMENT, MODIFICATION, AND TESTING OF AN INNOVATIVE TRACER FOR BETTER UNDERSTANDING LNAPL TRANSPORT IN KARST AQUIFERS

    SciTech Connect (OSTI)

    Amanda Laskoskie, Harry M. Edenborn, and Dorothy J. Vesper

    2012-01-01

    The goal of this specific research task is to develop proxy tracers that mimic contaminant movement to better understand and predict contaminant fate and transport in karst aquifers. Hydrogel tracer beads are transported as a separate phase than water and can used as a proxy tracer to mimic the transport of non-aqueous phase liquids (NAPL). They can be constructed with different densities, sizes & chemical attributes. This poster describes the creation and optimization of the beads and the field testing of buoyant beads, including sampling, tracer analysis, and quantitative analysis. The buoyant beads are transported ahead of the dissolved solutes, suggesting that light NAPL (LNAPL) transport in karst may occur faster than predicted from traditional tracing techniques. The hydrogel beads were successful in illustrating this enhanced transport.

  16. WIPP Documents - Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation

  17. Enforcement Letter, Packaging Specialties, Inc. - April 6, 2015 |

    Energy Savers [EERE]

    Department of Energy Packaging Specialties, Inc. - April 6, 2015 Enforcement Letter, Packaging Specialties, Inc. - April 6, 2015 April 6, 2015 Nuclear Safety Enforcement Letter issued to Packaging Specialties, Inc., regarding deficiencies in testing, inspection, and certification of shipping containers used at DOE's Pantex Plant. On April 6, 2015, the U.S. Department of Energy's (DOE) Office of Enforcement issued an Enforcement Letter (NEL-2015-02) to Packaging Specialties, Inc. (PSI) for

  18. CH Packaging Operations Manual

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2003-06-26

    Introduction - This procedure provides instructions for assembling the following CH packaging payload: -Drum payload assembly -Standard Waste Box (SWB) assembly -Ten-Drum Overpack (TDOP).

  19. Safety Analysis Report for Packaging (SARP): Model AL-M1 nuclear packaging (DOE C of C No. USA/9507/BLF)

    SciTech Connect (OSTI)

    Coleman, H.L.; Whitney, M.A.; Williams, M.A.; Alexander, B.M.; Shapiro, A.

    1987-11-24

    This Safety Analysis Report for Packaging (SARP) satisfies the request of the US Department of Energy for a formal safety analysis of the shipping container identified as USA/9507/BLF, also called AL-M1, configuration 5. This report makes available to all potential users the technical information and the limits pertinent to the construction and use of the shipping containers. It includes discussions of structural integrity, thermal resistance, radiation shielding and radiological safety, nuclear criticality safety, and quality control. A complete physical and technical description of the package is presented. The package consists of an inner container centered within an insulated steel drum. The configuration-5 package contains tritiated water held on sorbent material. There are two other AL-M1 packages, designated configurations 1 and 3. These use the same insulated outer drum, but licensing of these containers will not be addressed in this SARP. Design and development considerations, the tests and evaluations required to prove the ability of the container to withstand normal transportation conditions, and the sequence of four hypothetical accident conditions (free drop, puncture, thermal, and water immersion) are discussed. Tables, graphs, dimensional sketches, photographs, technical references, loading and shipping procedures, Monsanto Research Corporation-Mound experience in using the containers, and a copy of the DOE/OSD/ALO Certificate of Compliance are included.

  20. CRAD, Packaging and Transfer of Hazardous Materials and Materials of

    Office of Environmental Management (EM)

    National Security Interest Assessment Plan | Department of Energy Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan Performance Objective: Verify that packaging and transportation safety requirements of hazardous materials and materials of national security interest have been established and are in compliance with DOE Orders

  1. Re-evaluation of a subsurface injection experiment for testing flow and transport models

    SciTech Connect (OSTI)

    Fayer, M.J.; Lewis, R.E.; Engelman, R.E.; Pearson, A.L.; Murray, C.J.; Smoot, J.L. Lu, A.H.; Randall, P.R.; Wegener, W.H.

    1995-12-01

    The current preferred method for disposal of low-level radioactive waste (LLW) at the Hanford Site is to vitrify the wastes so they can be stored in a near-surface, shallow-land burial facility (Shord 1995). Pacific Northwest Laboratory (PNL) managed the PNL Vitrification Technology Development (PVTD) Project to assist Westinghouse Hanford Company (WHC) in designing and assessing the performance of a disposal facility for the vitrified LLW. Vadose zone flow and transport models are recognized as necessary tools for baseline risk assessments of stored waste forms. The objective of the Controlled Field Testing task of the PVTD Project is to perform and analyze field experiments to demonstrate the appropriateness of conceptual models for the performance assessment. The most convincing way to demonstrate appropriateness is to show that the model can reproduce the movement of water and contaminants in the field. Before expensive new experiments are initiated, an injection experiment conducted at the Hanford Site in 1980 (designated the ``Sisson and the Lu experiment``) should be completely analyzed and understood. Briefly, in that test, a solution containing multiple tracers was injected at a single point into the subsurface sediments. The resulting spread of the water and tracers was monitored in wells surrounding the injection point. Given the advances in knowledge, computational capabilities, and models over the last 15 years, it is important to re-analyze the data before proceeding to other experiments and history-matching exercises.

  2. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    The Model 9977 Packaging is a single containment drum style radioactive material (RAM) shipping container designed, tested and analyzed to meet the performance requirements of ...

  3. Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container

    SciTech Connect (OSTI)

    Bronowski, D.R.; Madsen, M.M.

    1991-09-01

    The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

  4. Operational guidance for using DOT-6M/2R packaging

    SciTech Connect (OSTI)

    Kelly, D.L.; Hummer, J.H.

    1994-03-01

    The purpose of this paper is to describe a new US Department of Energy (DOE), Transportation Management Division task to create a US Department of Transportation (DOT) Specification 6M/2R packaging configuration user`s guide. The need for a user`s guide was identified because the DOT-6M/2R packaging configuration is widely used by DOE site contractors, and DOE receives many questions about the approved packaging configurations. Currently, two DOE organizations have the authority to approve new DOT-6M/2R configurations. For Defense Programs, the Transportation and Packaging Safety Division (EH-332) administers the program. For Environmental Restoration and Waste Management, the Transportation Management Division (EM-261) administers the program.

  5. Seawater Chemistry Package

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    SeaChem Seawater Chemistry package provides routines to calculate pH, carbonate chemistry, density, and other quantities for seawater, based on the latest community standards. The chemistry is adapted from fortran routines provided by the OCMIP3/NOCES project, details of which are available at http://www.ipsl.jussieu.fr/OCMIP/. The SeaChem package can generate Fortran subroutines as well as Python wrappers for those routines. Thus the same code can be used by Python or Fortran analysis packages and Fortran ocean models alike.

  6. Safety evaluation for packaging (onsite) SERF cask

    SciTech Connect (OSTI)

    Edwards, W.S.

    1997-10-24

    This safety evaluation for packaging (SEP) documents the ability of the Special Environmental Radiometallurgy Facility (SERF) Cask to meet the requirements of WHC-CM-2-14, Hazardous Material Packaging and Shipping, for transfer of Type B quantities (up to highway route controlled quantities) of radioactive material within the 300 Area of the Hanford Site. This document shall be used to ensure that loading, tie down, transport, and unloading of the SERF Cask are performed in accordance with WHC-CM-2-14. This SEP is valid until October 1, 1999. After this date, an update or upgrade to this document is required.

  7. Nuclear Material Packaging Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-03-07

    The manual provides detailed packaging requirements for protecting workers from exposure to nuclear materials stored outside of an approved engineered contamination barrier. Does not cancel/supersede other directives. Certified 11-18-10.

  8. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect (OSTI)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

  9. PACKAGE IMPACT MODELS AS A PRECURSOR TO CLADDING ANALYSIS

    SciTech Connect (OSTI)

    Klymyshyn, Nicholas A.; Adkins, Harold E.; Bajwa, Christopher S.; Piotter, Jason

    2013-02-01

    The evaluation of spent nuclear fuel storage casks and transportation packages under impact loading is an important safety topic that is reviewed as part of cask and package certification by the United States Nuclear Regulatory Commission. Explicit dynamic finite element models of full systems are increasingly common in industry for determining structural integrity during hypothetical drop accidents. Full cask and package model results are also used as the loading basis for single fuel pin impact models, which evaluate the response of fuel cladding under drop conditions. In this paper, a simplified package system is evaluated to illustrate several important structural dynamic phenomena, including the effect of gaps between components, the difference in local response at various points on a package during impact, and the effect of modeling various simplified representations of the basket and fuel assemblies. This paper focuses on the package impact analysis, and how loading conditions for a subsequent fuel assembly or fuel cladding analysis can be extracted.

  10. Test and evaluation report for Westinghouse Hanford Company`s 1-L liquid shipper, docket 95-41-7A, Type A container

    SciTech Connect (OSTI)

    Kelly, D.L.

    1996-03-13

    This report incorporates the U.S. Department of Energy, Office of Facility Safety Analysis (DOE/EH-32) approval letter for packaging use. This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the 1-L Liquid Shipper packaging. The approved packaging system is designed to ship Type A quantities of radioactive materials, normal form. Contents may be liquid or solid form. Liquid contents must have a specific gravity {lt}2. Solid materials are limited in weight, to include packaging, to the gross weight of the as-tested liquids and bottles.

  11. Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Gregg Ruskuaff

    2010-01-01

    This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

  12. Detecting small holes in packages

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC); Cadieux, James R. (Aiken, SC)

    1996-01-01

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package.

  13. Detecting small holes in packages

    DOE Patents [OSTI]

    Kronberg, J.W.; Cadieux, J.R.

    1996-03-19

    A package containing a tracer gas, and a method for determining the presence of a hole in the package by sensing the presence of the gas outside the package are disclosed. The preferred tracer gas, especially for food packaging, is sulfur hexafluoride. A quantity of the gas is added to the package and the package is closed. The concentration of the gas in the atmosphere outside the package is measured and compared to a predetermined value of the concentration of the gas in the absence of the package. A measured concentration greater than the predetermined value indicates the presence of a hole in the package. Measuring may be done in a chamber having a lower pressure than that in the package. 3 figs.

  14. 9975 SHIPPING PACKAGE PERFORMANCE OF ALTERNATE MATERIALS FOR LONG-TERM STORAGE APPLICATION

    SciTech Connect (OSTI)

    Skidmore, E.; Hoffman, E.; Daugherty, W.

    2010-02-24

    The Model 9975 shipping package specifies the materials of construction for its various components. With the loss of availability of material for two components (cane fiberboard overpack and Viton{reg_sign} GLT O-rings), alternate materials of construction were identified and approved for use for transport (softwood fiberboard and Viton{reg_sign} GLT-S O-rings). As these shipping packages are part of a long-term storage configuration at the Savannah River Site, additional testing is in progress to verify satisfactory long-term performance of the alternate materials under storage conditions. The test results to date can be compared to comparable results on the original materials of construction to draw preliminary conclusions on the performance of the replacement materials.

  15. FINAL REPORT FOR MOISTURE EFFECTS ON COMPACTION OF FIBERBOARD IN A 9975 SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Stefek, T.; Daugherty, W.; Estochen, E.

    2013-09-17

    Compaction of lower layers in the fiberboard assembly has been observed in 9975 packages that contain elevated moisture. Lab testing has resulted in a better understanding of the relationship between the fiberboard moisture level and compaction of the lower fiberboard assembly, and the behavior of the fiberboard during transport. In laboratory tests of cane fiberboard, higher moisture content has been shown to correspond to higher total compaction, greater rate of compaction, and continued compaction over a longer period of time. In addition, laboratory tests have shown that the application of a dynamic load results in higher fiberboard compaction compared to a static load. The test conditions and sample geometric/loading configurations were chosen to simulate the regulatory requirements for 9975 package input dynamic loading. Dynamic testing was conducted to acquire immediate and cumulative changes in geometric data for various moisture levels. Two sample sets have undergone a complete dynamic test regimen, one set for 27 weeks, and the second set for 47 weeks. The dynamic input, data acquisition, test effects on sample dynamic parameters, and results from this test program are summarized and compared to regulatory specifications for dynamic loading. Compaction of the bottom fiberboard layers due to the accumulation of moisture is one possible cause of an increase in the axial gap at the top of the package. The net compaction of the bottom layers will directly add to the axial gap. The moisture which caused this compaction migrated from the middle region of the fiberboard assembly (which is typically the hottest). This will cause the middle region to shrink axially, which will also contribute directly to the axial gap. Measurement of the axial gap provides a screening tool for identifying significant change in the fiberboard condition. The data in this report provide a basis to evaluate the impact of moisture and fiberboard compaction on 9975 package performance during storage at the Savannah River Site (SRS).

  16. TSF Interface Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    A collection of packages of classes for interfacing to sparse and dense matrices, vectors and graphs, and to linear operators. TSF (via TSFCore, TSFCoreUtils and TSFExtended) provides the application programmer interface to any number of solvers, linear algebra libraries and preconditioner packages, providing also a sophisticated technique for combining multiple packages to solve a single problem. TSF provides a collection of abstract base classes that define the interfaces to abstract vector, matrix and linear soeratormore » objects. By using abstract interfaces, users of TSF are not limiting themselves to any one concrete library and can in fact easily combine multiple libraries to solve a single problem.« less

  17. Department of Energy Office of Science Transportation Overview...

    Office of Environmental Management (EM)

    Applying Risk Communication to the Transportation of Radioactive Materials Status and Future of TRANSCOM Communication Is Key to Packaging and Transportation Safety and Compliance...

  18. Packaging design criteria for the MCO cask

    SciTech Connect (OSTI)

    Edwards, W.S.

    1996-04-29

    Approximately 2,100 metric tons of unprocessed, irradiated nuclear fuel elements are presently stored in the K Basins (including possibly 700 additional elements from PUREX, N Reactor, and 327 Laboratory). The basin water, particularly in the K East Basin, contains significant quantities of dissolved nuclear isotopes and radioactive fuel corrosion particles. To permit cleanup of the K Basins and fuel conditioning, the fuel will be transported from the 100 K Area to a Canister Storage Building (CSB) in the 200 East area. In order to initiate K Basin cleanup on schedule, the two-year fuel-shipping campaign must begin by December 1997. The purpose of this packaging design criteria is to provide criteria for the design, fabrication, and use of a packaging system to transport the large quantities of irradiated nuclear fuel elements positioned within Multiple Canister Overpacks.

  19. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect (OSTI)

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  20. Waste disposal package

    DOE Patents [OSTI]

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  1. Jpetra Kernel Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    A package of classes for constructing and using distributed sparse and dense matrices, vectors and graphs, written in Java. Jpetra is intended to provide the foundation for basic matrix and vector operations for Java developers. Jpetra provides distributed memory operations via an abstract parallel machine interface. The most common implementation of this interface will be Java sockets.

  2. Radioactive waste disposal package

    DOE Patents [OSTI]

    Lampe, Robert F. (Bethel Park, PA)

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  3. Using on-package memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on-package memory Using on-package memory Introduction The NERSC-8 system will include a novel feature on its node architecture: 16 GB of high-bandwidth 3D stacked memory...

  4. River Data Package for the 2004 Composite Analysis

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

    2004-08-01

    Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

  5. Packaging and Transfer of Materials of National Security Interest Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-09-29

    This Technical Manual establishes requirements for operational safety controls for onsite operations and provides Department of Energy (DOE) technical safety requirements and policy objectives for development of an Onsite Packaging and Transfer Program, pursuant to DOE O 461.1A, Packaging and Transfer or Transportation of Materials of National Security Interest. The DOE contractor must document this program in its Onsite Packaging and Transfer Manual/Procedures. Admin Chg 1, 7-26-05. Certified 2-2-07. Canceled by DOE O 461.2.

  6. A Discussion of Conductivity Testing in High Temperature Membranes (lessons learned in assessing transport)

    Broader source: Energy.gov [DOE]

    Presentation on conductivity testing in high temperature membranes given by Jim Boncella of Los Alamos National Laboratory at the High Temperature Membrane Working Group meeting in October 2005.

  7. HVAC Packages for SMSCB

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HVAC Packages for SMSCB* 2015 Building Technologies Office Peer Review * Small and Medium Sized Commercial Buildings Russell D. Taylor, TaylorRD@utrc.utc.com CBEI - United Technologies Research Center This page contains no technical data subject to the EAR or the ITAR. Project Summary Timeline: Start date: 5/1/2014 Planned end date: 4/30/2016 Key Milestones 1. Identify target SMSCB building types and climate zones; June 2014 2. Define integrated retrofit option; Sep 2014 3. Finish evaluation of

  8. Comments - Change package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Card comments on the Change packages: 1)Overriding assumptions that the amount of work is finite - such as: - Finite # of dollars available - Finite # of highly trained contract workers - Finite amount of contaminated groundwater - Permits with finite terms -Secondary assumption that work can be characterized and prioritized - What appears to be infinite is the time available to mitigate the problem. No way to realistically estimate how long mitigation will take. The decision making process

  9. EM Waste and Materials Disposition & Transportation | Department...

    Office of Environmental Management (EM)

    & Publications TEC Meeting Summaries - February 2008 Presentations Radioactive Waste Management Complex Wide Review Communication Is Key to Packaging and Transportation Safety...

  10. MODELING ASSUMPTIONS FOR THE ADVANCED TEST REACTOR FRESH FUEL SHIPPING CONTAINER

    SciTech Connect (OSTI)

    Rick J. Migliore

    2009-09-01

    The Advanced Test Reactor Fresh Fuel Shipping Container (ATR FFSC) is currently licensed per 10 CFR 71 to transport a fresh fuel element for either the Advanced Test Reactor, the University of Missouri Research Reactor (MURR), or the Massachusetts Institute of Technology Research Reactor (MITR-II). During the licensing process, the Nuclear Regulatory Commission (NRC) raised a number of issues relating to the criticality analysis, namely (1) lack of a tolerance study on the fuel and packaging, (2) moderation conditions during normal conditions of transport (NCT), (3) treatment of minor hydrogenous packaging materials, and (4) treatment of potential fuel damage under hypothetical accident conditions (HAC). These concerns were adequately addressed by modifying the criticality analysis. A tolerance study was added for both the packaging and fuel elements, full-moderation was included in the NCT models, minor hydrogenous packaging materials were included, and fuel element damage was considered for the MURR and MITR-II fuel types.

  11. Plutonium stabilization and packaging system

    SciTech Connect (OSTI)

    1996-05-01

    This document describes the functional design of the Plutonium Stabilization and Packaging System (Pu SPS). The objective of this system is to stabilize and package plutonium metals and oxides of greater than 50% wt, as well as other selected isotopes, in accordance with the requirements of the DOE standard for safe storage of these materials for 50 years. This system will support completion of stabilization and packaging campaigns of the inventory at a number of affected sites before the year 2002. The package will be standard for all sites and will provide a minimum of two uncontaminated, organics free confinement barriers for the packaged material.

  12. Optimal segmentation and packaging process

    DOE Patents [OSTI]

    Kostelnik, Kevin M. (Idaho Falls, ID); Meservey, Richard H. (Idaho Falls, ID); Landon, Mark D. (Idaho Falls, ID)

    1999-01-01

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.

  13. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

  14. PORFLOW TESTING AND VERIFICATION DOCUMENT

    SciTech Connect (OSTI)

    Aleman, S

    2007-06-18

    The PORFLOW software package is a comprehensive mathematical model for simulation of multi-phase fluid flow, heat transfer and mass transport in variably saturated porous and fractured media. PORFLOW can simulate transient or steady-state problems in Cartesian or cylindrical geometry. The porous medium may be anisotropic and heterogeneous and may contain discrete fractures or boreholes with the porous matrix. The theoretical models within the code provide a unified treatment of concepts relevant to fluid flow and transport. The main features of PORFLOW that are relevant to Performance Assessment modeling at the Savannah River National Laboratory (SRNL) include variably saturated flow and transport of parent and progeny radionuclides. This document involves testing a relevant sample of problems in PORFLOW and comparing the outcome of the simulations to analytical solutions or other commercial codes. The testing consists of the following four groups. Group 1: Groundwater Flow; Group 2: Contaminant Transport; Group 3: Numerical Dispersion; and Group 4: Keyword Commands.

  15. Packaging - Materials review

    SciTech Connect (OSTI)

    Herrmann, Matthias

    2014-06-16

    Nowadays, a large number of different electrochemical energy storage systems are known. In the last two decades the development was strongly driven by a continuously growing market of portable electronic devices (e.g. cellular phones, lap top computers, camcorders, cameras, tools). Current intensive efforts are under way to develop systems for automotive industry within the framework of electrically propelled mobility (e.g. hybrid electric vehicles, plug-in hybrid electric vehicles, full electric vehicles) and also for the energy storage market (e.g. electrical grid stability, renewable energies). Besides the different systems (cell chemistries), electrochemical cells and batteries were developed and are offered in many shapes, sizes and designs, in order to meet performance and design requirements of the widespread applications. Proper packaging is thereby one important technological step for designing optimum, reliable and safe batteries for operation. In this contribution, current packaging approaches of cells and batteries together with the corresponding materials are discussed. The focus is laid on rechargeable systems for industrial applications (i.e. alkaline systems, lithium-ion, lead-acid). In principle, four different cell types (shapes) can be identified - button, cylindrical, prismatic and pouch. Cell size can be either in accordance with international (e.g. International Electrotechnical Commission, IEC) or other standards or can meet application-specific dimensions. Since cell housing or container, terminals and, if necessary, safety installations as inactive (non-reactive) materials reduce energy density of the battery, the development of low-weight packages is a challenging task. In addition to that, other requirements have to be fulfilled: mechanical stability and durability, sealing (e.g. high permeation barrier against humidity for lithium-ion technology), high packing efficiency, possible installation of safety devices (current interrupt device, valve, etc.), chemical inertness, cost issues, and others. Finally, proper cell design has to be considered for effective thermal management (i.e. cooling and heating) of battery packs.

  16. Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2010-02-01

    In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

  17. Safety Analysis Report for packaging (onsite) steel waste package

    SciTech Connect (OSTI)

    BOEHNKE, W.M.

    2000-07-13

    The steel waste package is used primarily for the shipment of remote-handled radioactive waste from the 324 Building to the 200 Area for interim storage. The steel waste package is authorized for shipment of transuranic isotopes. The maximum allowable radioactive material that is authorized is 500,000 Ci. This exceeds the highway route controlled quantity (3,000 A{sub 2}s) and is a type B packaging.

  18. Aqueous Corrosion Rates for Waste Package Materials

    SciTech Connect (OSTI)

    S. Arthur

    2004-10-08

    The purpose of this analysis, as directed by ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]), is to compile applicable corrosion data from the literature (journal articles, engineering documents, materials handbooks, or standards, and national laboratory reports), evaluate the quality of these data, and use these to perform statistical analyses and distributions for aqueous corrosion rates of waste package materials. The purpose of this report is not to describe the performance of engineered barriers for the TSPA-LA. Instead, the analysis provides simple statistics on aqueous corrosion rates of steels and alloys. These rates are limited by various aqueous parameters such as temperature (up to 100 C), water type (i.e., fresh versus saline), and pH. Corrosion data of materials at pH extremes (below 4 and above 9) are not included in this analysis, as materials commonly display different corrosion behaviors under these conditions. The exception is highly corrosion-resistant materials (Inconel Alloys) for which rate data from corrosion tests at a pH of approximately 3 were included. The waste package materials investigated are those from the long and short 5-DHLW waste packages, 2-MCO/2-DHLW waste package, and the 21-PWR commercial waste package. This analysis also contains rate data for some of the materials present inside the fuel canisters for the following fuel types: U-Mo (Fermi U-10%Mo), MOX (FFTF), Thorium Carbide and Th/U Carbide (Fort Saint Vrain [FSVR]), Th/U Oxide (Shippingport LWBR), U-metal (N Reactor), Intact U-Oxide (Shippingport PWR, Commercial), aluminum-based, and U-Zr-H (TRIGA). Analysis of corrosion rates for Alloy 22, spent nuclear fuel, defense high level waste (DHLW) glass, and Titanium Grade 7 can be found in other analysis or model reports.

  19. Technical Review Report for the Model 9975-96 Package Safety Analysis Report for Packaging (S-SARP-G-00003, Revision 0, January 2008)

    SciTech Connect (OSTI)

    West, M

    2009-05-22

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) Staff, at the request of the U.S. Department of Energy (DOE), on the Safety Analysis Report for Packaging, Model 9975, Revision 0, dated January 2008 (S-SARP-G-00003, the SARP). The review includes an evaluation of the SARP, with respect to the requirements specified in 10 CFR 71, and in International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1. The Model 9975-96 Package is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. Earlier package designs, i.e., the Model 9965, the Model 9966, the Model 9967, and the Model 9968 Packagings, were originally designed and certified in the early 1980s. In the 1990s, updated package designs that incorporated design features consistent with the then newer safety requirements were proposed. The updated package designs at the time were the Model 9972, the Model 9973, the Model 9974, and the Model 9975 Packagings, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under the Office of Safety Management and Operations. The safety analysis of the Model 9975-85 Packaging is documented in the Safety Analysis Report for Packaging, Model 9975, B(M)F-85, Revision 0, dated December 2003. The Model 9975-85 Package is certified by DOE Certificate of Compliance (CoC) package identification number, USA/9975/B(M)F-85, for the transportation of Type B quantities of uranium metal/oxide, {sup 238}Pu heat sources, plutonium/uranium metals, plutonium/uranium oxides, plutonium composites, plutonium/tantalum composites, {sup 238}Pu oxide/beryllium metal.

  20. IN-PACKAGE CHEMISTRY ABSTRACTION

    SciTech Connect (OSTI)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  1. Modeling of Groundwater Flow and Radionuclide Transport at the Climax Mine sub-CAU, Nevada Test Site

    SciTech Connect (OSTI)

    K. Pohlmann; M. Ye; D. Reeves; M. Zavarin; D. Decker; J. Chapman

    2007-09-28

    The Yucca Flat-Climax Mine Corrective Action Unit (CAU) on the Nevada Test Site comprises 747 underground nuclear detonations, all but three of which were conducted in alluvial, volcanic, and carbonate rocks in Yucca Flat. The remaining three tests were conducted in the very different hydrogeologic setting of the Climax Mine granite stock located in Area 15 at the northern end of Yucca Flat. As part of the Corrective Action Investigation (CAI) for the Yucca Flat-Climax Mine CAU, models of groundwater flow and radionuclide transport will be developed for Yucca Flat. However, two aspects of these CAU-scale models require focused modeling at the northern end of Yucca Flat beyond the capability of these large models. First, boundary conditions and boundary flows along the northern reaches of the Yucca Flat-Climax Mine CAU require evaluation to a higher level of detail than the CAU-scale Yucca Flat model can efficiently provide. Second, radionuclide fluxes from the Climax tests require analysis of flow and transport in fractured granite, a unique hydrologic environment as compared to Yucca Flat proper. This report describes the Climax Mine sub-CAU modeling studies conducted to address these issues, with the results providing a direct feed into the CAI for the Yucca Flat-Climax Mine CAU. Three underground nuclear detonations were conducted for weapons effects testing in the Climax stock between 1962 and 1966: Hard Hat, Pile Driver, and Tiny Tot. Though there is uncertainty regarding the position of the water table in the stock, it is likely that all three tests were conducted in the unsaturated zone. In the early 1980s, the Spent Fuel Test-Climax (SFT-C) was constructed to evaluate the feasibility of retrievable, deep geologic storage of commercial nuclear reactor wastes. Detailed mapping of fractures and faults carried out for the SFT-C studies greatly expanded earlier data sets collected in association with the nuclear tests and provided invaluable information for subsequent modeling studies at Climax. The objectives of the Climax Mine sub-CAU work are to (1) provide simulated heads and groundwater flows for the northern boundaries of the Yucca Flat-Climax Mine CAU model, while incorporating alternative conceptualizations of the hydrogeologic system with their associated uncertainty, and (2) provide radionuclide fluxes from the three tests in the Climax stock using modeling techniques that account for groundwater flow in fractured granite. Meeting these two objectives required two different model scales. The northern boundary groundwater fluxes were addressed using the Death Valley Regional Flow System (DVRFS) model (Belcher, 2004) developed by the U.S. Geological Survey as a modeling framework, with refined hydrostratigraphy in a zone north of Yucca Flat and including Climax stock. Radionuclide transport was simulated using a separate model confined to the granite stock itself, but linked to regional groundwater flow through boundary conditions and calibration targets.

  2. Naval Waste Package Design Report

    SciTech Connect (OSTI)

    M.M. Lewis

    2004-03-15

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.

  3. Destructive Testing of an ES-3100 Shipping Container at the Savannah River National Laboratory

    SciTech Connect (OSTI)

    Loftin, B.; Abramczyk, G.

    2015-06-09

    Destructive testing of an ES-3100 Shipping Container was completed by the Packaging Technology and Pressurized Systems organization within the Savannah River National Laboratory in order to qualify the ES-3100 as a candidate storage and transport package for applications at various facilities at the Savannah River Site. The testing consisted of the detonation of three explosive charges at separate locations on a single ES-3100. The locations for the placement were chosen based the design of the ES-3100 as well as the most likely places for the package to incur damage as a result of the detonation. The testing was completed at an offsite location, which raised challenges as well as allowed for development of new partnerships for this testing and for potential future testing. The results of the testing, the methods used to complete the testing, and similar, potential future work will be discussed.

  4. DOT Specification 7A Type A packaging certification study: getting ready for July 1, 1985

    SciTech Connect (OSTI)

    Edling, D.A.

    1985-01-01

    The Department of Energy has funded Mound to revise the Type A Packaging Certification Study originally issued in June 1975. An updated document is necessary because, effective July 1, 1985, 49 CFR 173.412(b) requires that any Spec. 7A packaging designed, manufactured, or certified after that date must be certified according to the Type A packaging test given in 173.465. As a result, shippers of Spec. 7A packagings must test and analyze their packaging and prepare a certification document before July 1985 in order to continue uninterrupted operation. (It should be noted that existing Spec. 7A packages manufactured and certified prior to July 1, 1985, may be used as long as the packagings continue to meet the Spec. 7A requirements. However, a Type A packaging designed, manufactured, or certified after July 1, 1985, must meet the requirements of 49 CFR effective on July 1, 1985.) Mound will identify those Type A packagings commonly used by DOE contractors and will begin a testing and analysis program to determine which packagings meet the new Type A requirement. Those packagings certified as DOE Spec. 7A Type A packagings will be featured in a document for all of DOE to use. 5 tabs.

  5. Tpetra Kernel Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    A package of classes for constructing and using distributed sparse and dense matrices, vectors and graphs. Templated on the scalar and ordinal types so that any valid floating-point type, as well as any valid integer type can be used with these classes. Other non-standard types, such as 3-by-3 matrices for the scalar type and mod-based integers for ordinal types, can also be used. Tpetra is intended to provide the foundation for basic matrix and vectormore » operations for the next generation of Trilinos preconditioners and solvers, It can be considered as the follow-on to Epetra. Tpetra provides distributed memory operations via an abstract parallel machine interface, The most common implementation of this interface will be MPI.« less

  6. Anasazi Block Eigensolvers Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    ANASAZI is an extensible and interoperable framework for large-scale eigenvalue algorithms. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale eigenvalue problems. ANASAZI is interoperable because both the matrix and vectors (defining the eigenspace) are considered to be opaque objects---only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Anasazi is accomplished via the use of interfaces. One of themore » goals of ANASAZI is to allow the user the flexibility to specify the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based and preconditioned eigensolvers.« less

  7. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, R.; Ciebiera, L.; Tulipano, F.J.; Vinson, S.; Walters, R.T.

    1995-11-07

    A containment and waste package system for processing and shipping tritium oxide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within the outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen and oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB. 1 fig.

  8. Meros Preconditioner Package

    Energy Science and Technology Software Center (OSTI)

    2004-04-01

    Meros uses the compositional, aggregation, and overload operator capabilities of TSF to provide an object-oriented package providing segregated/block preconditioners for linear systems related to fully-coupled Navier-Stokes problems. This class of preconditioners exploits the special properties of these problems to segregate the equations and use multi-level preconditioners (through ML) on the matrix sub-blocks. Several preconditioners are provided, including the Fp and BFB preconditioners of Kay & Loghin and Silvester, Elman, Kay & Wathen. The overall performancemore »and scalability of these preconditioners approaches that of multigrid for certain types of problems. Meros also provides more traditional pressure projection methods including SIMPLE and SIMPLEC.« less

  9. Tritium waste package

    DOE Patents [OSTI]

    Rossmassler, Rich (Cranbury, NJ); Ciebiera, Lloyd (Titusville, NJ); Tulipano, Francis J. (Teaneck, NJ); Vinson, Sylvester (Ewing, NJ); Walters, R. Thomas (Lawrenceville, NJ)

    1995-01-01

    A containment and waste package system for processing and shipping tritium xide waste received from a process gas includes an outer drum and an inner drum containing a disposable molecular sieve bed (DMSB) seated within outer drum. The DMSB includes an inlet diffuser assembly, an outlet diffuser assembly, and a hydrogen catalytic recombiner. The DMSB absorbs tritium oxide from the process gas and converts it to a solid form so that the tritium is contained during shipment to a disposal site. The DMSB is filled with type 4A molecular sieve pellets capable of adsorbing up to 1000 curies of tritium. The recombiner contains a sufficient amount of catalyst to cause any hydrogen add oxygen present in the process gas to recombine to form water vapor, which is then adsorbed onto the DMSB.

  10. Piecewise Cubic Interpolation Package

    Energy Science and Technology Software Center (OSTI)

    1982-04-23

    PCHIP (Piecewise Cubic Interpolation Package) is a set of subroutines for piecewise cubic Hermite interpolation of data. It features software to produce a monotone and "visually pleasing" interpolant to monotone data. Such an interpolant may be more reasonable than a cubic spline if the data contain both 'steep' and 'flat' sections. Interpolation of cumulative probability distribution functions is another application. In PCHIP, all piecewise cubic functions are represented in cubic Hermite form; that is, f(x)more » is determined by its values f(i) and derivatives d(i) at the breakpoints x(i), i=1(1)N. PCHIP contains three routines - PCHIM, PCHIC, and PCHSP to determine derivative values, six routines - CHFEV, PCHFE, CHFDV, PCHFD, PCHID, and PCHIA to evaluate, differentiate, or integrate the resulting cubic Hermite function, and one routine to check for monotonicity. A FORTRAN 77 version and SLATEC version of PCHIP are included.« less

  11. Electro-Microfluidic Packaging

    SciTech Connect (OSTI)

    BENAVIDES, GILBERT L.; GALAMBOS, PAUL C.

    2002-06-01

    Electro-microfluidics is experiencing explosive growth in new product developments. There are many commercial applications for electro-microfluidic devices such as chemical sensors, biological sensors, and drop ejectors for both printing and chemical analysis. The number of silicon surface micromachined electro-microfluidic products is likely to increase. Manufacturing efficiency and integration of microfluidics with electronics will become important. Surface micromachined microfluidic devices are manufactured with the same tools as IC's (integrated circuits) and their fabrication can be incorporated into the IC fabrication process. In order to realize applications for devices must be developed. An Electro-Microfluidic Dual In-line Package (EMDIP{trademark}) was developed surface micromachined electro-microfluidic devices, a practical method for getting fluid into these to be a standard solution that allows for both the electrical and the fluidic connections needed to operate a great variety of electro-microfluidic devices. The EMDIP{trademark} includes a fan-out manifold that, on one side, mates directly with the 200 micron diameter Bosch etched holes found on the device, and, on the other side, mates to lager 1 mm diameter holes. To minimize cost the EMDIP{trademark} can be injection molded in a great variety of thermoplastics which also serve to optimize fluid compatibility. The EMDIP{trademark} plugs directly into a fluidic printed wiring board using a standard dual in-line package pattern for the electrical connections and having a grid of multiple 1 mm diameter fluidic connections to mate to the underside of the EMDIP{trademark}.

  12. DESTRUCTIVE EXAMINATION OF SHIPPING PACKAGE 9975-06100

    SciTech Connect (OSTI)

    Daugherty, W.

    2014-11-07

    Destructive and non-destructive examinations have been performed on specified components of shipping package 9975-06100. This package was selected for examination based on several characteristics: - This was the first destructively examined package in which the fiberboard assembly was fabricated from softwood fiberboard. - The package contained a relatively high heat load to contribute to internal temperature, which is a key environmental factor for fiberboard degradation. - The package has been stored in the middle or top of a storage array since its receipt in K- Area, positions that would contribute to increased service temperatures. No significant changes were observed for attributes that were measured during both field surveillance and destructive examination. Except for the axial gap, all observations and test results met identified criteria, or were collected for information and trending purposes. The axial gap met the 1 inch maximum criterion during field surveillance, but was just over the criterion during SRNL measurements. When re-measured at a later date, it again met the criterion. The bottom of the lower fiberboard assembly and the drum interior had two small stains at matching locations, suggestive of water intrusion. However, the fiberboard assembly did not contain any current evidence of excess moisture. No evidence of a degraded condition was found in this package. Despite exposure to the elevated temperatures of this higher-then-average wattage package, properties of the fiberboard and O-rings are consistent with those of new packages.

  13. A groundwater flow and transport model of long-term radionuclide migration in central Frenchman flat, Nevada test site

    SciTech Connect (OSTI)

    Kwicklis, Edward Michael [Los Alamos National Laboratory; Becker, Naomi M [Los Alamos National Laboratory; Ruskauff, Gregory [NAVARRO-INTERA, LLC.; De Novio, Nicole [GOLDER AND ASSOC.; Wilborn, Bill [US DOE NNSA NSO

    2010-11-10

    A set of groundwater flow and transport models were created for the Central Testing Area of Frenchman Flat at the former Nevada Test Site to investigate the long-term consequences of a radionuclide migration experiment that was done between 1975 and 1990. In this experiment, radionuclide migration was induced from a small nuclear test conducted below the water table by pumping a well 91 m away. After radionuclides arrived at the pumping well, the contaminated effluent was discharged to an unlined ditch leading to a playa where it was expected to evaporate. However, recent data from a well near the ditch and results from detailed models of the experiment by LLNL personnel have convincingly demonstrated that radionuclides from the ditch eventually reached the water table some 220 m below land surface. The models presented in this paper combine aspects of these detailed models with concepts of basin-scale flow to estimate the likely extent of contamination resulting from this experiment over the next 1,000 years. The models demonstrate that because regulatory limits for radionuclide concentrations are exceeded only by tritium and the half-life of tritium is relatively short (12.3 years), the maximum extent of contaminated groundwater has or will soon be reached, after which time the contaminated plume will begin to shrink because of radioactive decay. The models also show that past and future groundwater pumping from water supply wells within Frenchman Flat basin will have negligible effects on the extent of the plume.

  14. Estimating the releasable source term for Type B packages

    SciTech Connect (OSTI)

    Anderson, B.L.; Carlson, R.W.; Osgood, N.

    1995-11-01

    The release rate criteria for Type B packages designed to transport radioactive materials is given in Title 10 of the Code of Federal Regulations (10 CFR 71). Before the maximum allowable volumetric leakage rate that corresponds to the regulatory release rate can be calculated, estimation of the releasable source term activity density (concentration of releasable radioactive material) is required. This work provides methods for estimating the releasable source term for packages holding various contents types. The contents types considered include: (1) radioactive liquids; (2) radioactive gases; (3) radioactive powders and dispersible solids; (4) non-dispersible radioactive solids and (5) irradiated nuclear fuel rods. The numbers given, especially as related to the source term for packages transporting irradiated fuel rods, are preliminary and are subject to change upon development of improved methods and/or upon review of additional experimental data.

  15. PACKAGING CERTIFICATION PROGRAM METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect (OSTI)

    Nathan, S.; Loftin, B.; Abramczyk, G.; Bellamy, S.

    2012-05-09

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials (RAM), are significantly less hazardous than large amounts of the same materials. This paper describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials, under both normal and accident conditions, to perform the essential functions of material containment, subcriticality, and maintain external radiation levels within the specified limits. By placing the contents in a helium leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large dose rate outside the package. Quantifying the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings provides bounding shielding calculations that define mass limits compliant with 10 CFR 71.47 for a set of proposed SGQ isotopes. The approach is based on energy superposition with dose response calculated for a set of spectral groups for a baseline physical packaging configuration. The methodology includes using the MCNP radiation transport code to evaluate a family of neutron and photon spectral groups using the 9977 shipping package and its associated shielded containers as the base case. This results in a set of multipliers for 'dose per particle' for each spectral group. For a given isotope, the source spectrum is folded with the response for each group. The summed contribution from all isotopes determines the total dose from the RAM in the container.

  16. DOE TMD transportation training module 14 transportation of explosives

    SciTech Connect (OSTI)

    Griffith, R.L. Jr.

    1994-07-01

    The Department of Energy Transportation Management Division has developed training module 14, entitled {open_quotes}Transportation of Explosives{close_quotes} to compliment the basic {open_quotes}core ten{close_quotes} training modules of the Hazardous Materials Modular Training Program. The purpose of this training module is to increase awareness of the Department of Transportation (DOT) requirements concerning the packaging and transportation of explosives. Topics covered in module 14 include the classification of explosives, approval and registration of explosives, packaging requirements, hazard communication requirements, separation and segregation compatibility requirements, loading and unloading operations, as well as safety measures required in the event of a vehicle accident involving explosives.

  17. Single Packaged Vertical Units

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance with current DOE test procedures. Templates may be used by third-party laboratories under contract with DOE that conduct testing in support of ENERGY STAR® verification, DOE rulemakings, and enforcement of the federal energy conservation standards.

  18. Documentation and analysis for packaging for surface moisture measurement system 7A containers

    SciTech Connect (OSTI)

    Clem, D.K.

    1996-06-17

    This documentation and analysis for packaging documents that two, procured, carbon steel 5-gal drums meet all applicable U.S.Department of Transportation-7A requirements. One container will be used to transport a 0.009 Ci 252 Cf source and the other to transport a 1.7 Ci Am-Be source to and from various 200 Area tank farms.

  19. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  20. A COMPARISON OF TWO THERMAL INSULATION AND STRUCTURAL MATERIALS FOR USE IN TYPE B PACKAGINGS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-16

    This paper presents the summary of design features and test results of two Type B Shipping Package prototype configurations comprising different insulating materials developed by the Savannah River National Laboratory (SRNL) for the Department of Energy. The materials evaluated, a closed-cell polyurethane foam and a vacuformed ceramic fiber material, were selected to provide adequate structural protection to the package containment vessel during Normal Conditions of Transport (NCT) and Hypothetical Accident Condition (HAC) events and to provide thermal protection during the HAC fire. Polyurethane foam has been used in shipping package designs for many years because of the stiffness it provides to the structure and because of the thermal protection it provides during fire scenarios. This comparison describes how ceramic fiber material offers an alternative to the polyurethane foam in a specific overpack design. Because of the high operating temperature ({approx}2,300 F) of the ceramic material, it allows for contents with higher heat loads to be shipped than is possible with polyurethane foam. Methods of manufacturing and design considerations using the two materials will be addressed.

  1. Amesos Solver Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    Amesos is the Direct Sparse Solver Package in Trilinos. The goal of Amesos is to make AX=S as easy as it sounds, at least for direct methods. Amesos provides interfaces to a number of third party sparse direct solvers, including SuperLU, SuperLU MPI, DSCPACK, UMFPACK and KLU. Amesos provides a common object oriented interface to the best sparse direct solvers in the world. A sparse direct solver solves for x in Ax = b. wheremore » A is a matrix and x and b are vectors (or multi-vectors). A sparse direct solver flrst factors A into trinagular matrices L and U such that A = LU via gaussian elimination and then solves LU x = b. Switching amongst solvers in Amesos roquires a change to a single parameter. Yet, no solver needs to be linked it, unless it is used. All conversions between the matrices provided by the user and the format required by the underlying solver is performed by Amesos. As new sparse direct solvers are created, they will be incorporated into Amesos, allowing the user to simpty link with the new solver, change a single parameter in the calling sequence, and use the new solver. Amesos allows users to specify whether the matrix has changed. Amesos can be used anywhere that any sparse direct solver is needed.« less

  2. Glass Ceramic Formulation Data Package

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-06-17

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the waste form.

  3. Part IV: Section D - Packaging and Marking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PART I SECTION D PACKAGING AND MARKING DE-AC36-08GO28308 Modification M901 Section D - Page ii PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 Packaging 1 D.2 Marking...

  4. Optimal segmentation and packaging process

    DOE Patents [OSTI]

    Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.

    1999-08-10

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.

  5. Safety evaluation for packaging (onsite) concrete-lined waste packaging

    SciTech Connect (OSTI)

    Romano, T.

    1997-09-25

    The Pacific Northwest National Laboratory developed a package to ship Type A, non-transuranic, fissile excepted quantities of liquid or solid radioactive material and radioactive mixed waste to the Central Waste Complex for storage on the Hanford Site.

  6. Onsite transportation of radioactive materials at the Savannah River Site

    SciTech Connect (OSTI)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  7. Using on-package memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on-package memory Using on-package memory Introduction The NERSC-8 system will include a novel feature on its node architecture: 16 GB of high-bandwidth 3D stacked memory interposed between the KNL chip and the slower off-package DDR memory. Compared to the on-node DDR4 memory, the high-bandwidth memory (HBM) has approximately 5x the bandwidth but has similar latency. This new feature has the potential to accelerate those applications which are particularly sensitive to memory bandwidth limits.

  8. Packaging of solid state devices

    DOE Patents [OSTI]

    Glidden, Steven C.; Sanders, Howard D.

    2006-01-03

    A package for one or more solid state devices in a single module that allows for operation at high voltage, high current, or both high voltage and high current. Low thermal resistance between the solid state devices and an exterior of the package and matched coefficient of thermal expansion between the solid state devices and the materials used in packaging enables high power operation. The solid state devices are soldered between two layers of ceramic with metal traces that interconnect the devices and external contacts. This approach provides a simple method for assembling and encapsulating high power solid state devices.

  9. Power Device Packaging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation PDF icon ape023liang2011p.pdf More Documents & Publications Power Device Packaging Power Device Packaging Benchmarking of Competitive Technologies

  10. Handling and Packaging a Potentially Radiologically Contaminated...

    Office of Environmental Management (EM)

    Handling and Packaging a Potentially Radiologically Contaminated Patient Handling and Packaging a Potentially Radiologically Contaminated Patient The purpose of this procedure is...

  11. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    J. Miller; D. Shafer; K. Gray; B. Church; S. Campbell; B. Holz

    2005-08-01

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour (R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

  12. Assessing Potential Exposure from Truck Transport of Low-level Radioactive Waste to the Nevada Test Site

    SciTech Connect (OSTI)

    Miller, J; Shafer, D; Gray, K; Church, B; Campbell, S; Holtz, B.

    2005-08-15

    Since 1980, over 651,558 m{sup 3} (23,000,000 ft{sup 3}) of low-level radioactive waste (LLW) have been disposed of at the Nevada Test Site (NTS) by shallow land burial. Since 1988, the majority of this waste has been generated at other United States (U.S.) Department of Energy (DOE) and Department of Defense (DoD) sites and facilities in the U.S. Between fiscal year (FY) 2002 and the publication date, the volumes of LLW being shipped by truck to the NTS increased sharply with the accelerated closure of DOE Environmental Management (EM) Program sites (DOE, 2002). The NTS is located 105 km (65 mi) northwest of Las Vegas, Nevada, in the U.S. There continue to be public concerns over the safety of LLW shipments to the NTS. They can be broadly divided into two categories: (1) the risk of accidents involving trucks traveling on public highways; and (2) whether residents along transportation routes receive cumulative exposure from individual LLW shipments that pose a long-term health risk. The DOE and U.S. Department of Transportation (DOT) regulations ensure that radiation exposure from truck shipments to members of the public is negligible. Nevertheless, particularly in rural communities along transportation routes in Utah and Nevada, there is a perceived risk from members of the public about cumulative exposure, particularly when ''Main Street'' and the routes being used by LLW trucks are one in the same. To provide an objective assessment of gamma radiation exposure to members of the public from LLW transport by truck, the Desert Research Institute (DRI) and the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) established a stationary and automated array of four pressurized ion chambers (PICs) in a vehicle pullout for LLW trucks to pass through just outside the entrance to the NTS. The PICs were positioned at a distance of 1.0 m (3.3 ft) from the sides of the truck trailer and at a height of 1.5 m (5.0 ft) to simulate conditions that a member of the public (Turner, 1995) might experience if a truck were to pass while the person was on the side of the road, or if a truck were to come to a stop at a stoplight in one of the smaller towns along the transportation routes. The 1.0-m (3.3-ft) distance also allowed for comparison with gamma readings of trucks taken with portable, hand-held instruments at the two LLW disposal sites at the NTS: the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS). The purpose in automating the system was to provide the most objective and consistent measurement and calculation of radiation exposure from the trucks possible. The array was set up in November 2002 and equipment was tested and calibrated over the next two months. Data collection on trucks began on February 13, 2003, and continued to the end of December 2003. In all, external gamma readings were collected from 1,012 of the 2,260 trucks that delivered LLW to the NTS during this period. Because DOE could not contractually require waste generators to participate in the study, the database is biased toward voluntary participants; however, data were collected from the 10 generators that represented 92 percent of the LLW shipments to the NTS during the study period, with another eight generators accounting for the balance of the shipments. Because of the voluntary nature of the participation, the identity of the waste generators is not used in the report. Previous studies on potential exposure to the public from transporting LLW to the NTS either relied on calculated exposures (Davis et al., 2002) or was based on a small population of trucks (e.g., 88) where a relatively high-background value of 50 microRoentgens per hour ({micro}R/h) (background value measured at the LLW disposal sites) were subtracted from the gross reading of the truck trailer as measured by portable, handheld instruments (Gertz, 2001). The dataset that resulted from the DRI study is the largest collection of measurements of LLW trucks in transit of which the authors are aware.

  13. Spack: the Supercomputing Package Manager

    Energy Science and Technology Software Center (OSTI)

    2013-11-09

    The HPC software ecosystem is growing larger and more complex, but software distribution mechanisms have not kept up with this trend. Tools, Libraries, and applications need to run on multiple platforms and build with multiple compliers. Increasingly, packages leverage common software components, and building any one component requires building all of its dependencies. In HPC environments, ABI-incompatible interfaces (likeMPI), binary-incompatible compilers, and cross-compiled environments converge to make the build process a combinatoric nightmare. This obstaclemore »deters many users from adopting useful tools, and others waste countless hours building and rebuilding tools. Many package managers exist to solve these problems for typical desktop environments, but none suits the unique needs of supercomputing facilities or users. To address these problems, we have Spack, a package manager that eases the task of managing software for end-users, across multiple platforms, package versions, compilers, and ABI incompatibilities.« less

  14. Predictions of tracer transport in interwell tracer tests at the C-Hole complex. Yucca Mountain site characterization project report milestone 4077

    SciTech Connect (OSTI)

    Reimus, P.W.

    1996-09-01

    This report presents predictions of tracer transport in interwell tracer tests that are to be conducted at the C-Hole complex at the Nevada Test Site on behalf of the Yucca Mountain Site Characterization Project. The predictions are used to make specific recommendations about the manner in which the tracer test should be conducted to best satisfy the needs of the Project. The objective of he tracer tests is to study flow and species transport under saturated conditions in the fractured tuffs near Yucca Mountain, Nevada, the site of a potential high-level nuclear waste repository. The potential repository will be located in the unsaturated zone within Yucca Mountain. The saturated zone beneath and around the mountain represents the final barrier to transport to the accessible environment that radionuclides will encounter if they breach the engineered barriers within the repository and the barriers to flow and transport provided by the unsaturated zone. Background information on the C-Holes is provided in Section 1.1, and the planned tracer testing program is discussed in Section 1.2.

  15. TRUPACT-I Unit 0 test data analysis. [Puncture bar impacts; free fall of package 12 inches onto unyielding surface; 30-foot free fall drop onto unyielding target; 40-inch drops onto 6-inch diagmeter puncture bar; engulfment in jet fuel fire for 35 minutes

    SciTech Connect (OSTI)

    Romesberg, L.E.; Hudson, M.L.; Osborne, D.M.

    1985-09-01

    TRUPACT-I was tested to evaluate the response of the design to the normal and hypothetical accident conditions specified in applicable regulations. The governing regulations are contained in DOE Order No. 5480.1, Chapter 3 and 10 CFR, Part 71, Refs. 1 and 2. Tests were conducted at Oak Ridge National Laboratory, Oak Ridge, TN, and at Sandia National Laboratories, Albuquerque, NM. Normal condition tests included three 13-pound (1.25 in. diameter) puncture bar impacts onto the exterior surface and free fall of the package 12 inches onto an essentially unyielding surface. Hypothetical accident conditions included in the test sequence were two 30-foot free fall drops of the package onto an essentially unyielding target, four 40-inch drops onto a 6-inch-diameter puncture bar, and engulfment in a JP-4 jet fuel fire for 35 minutes. Instrumentation data traces will be published in Ref. 3 and are not reproduced herein. This report presents an analysis of the available data and an interpretation of the results. The results of the tests are compared to results from numerical analyses and scale model tests which are incorporated in the TRUPACT-I SARP, Ref. 4. 9 refs., 43 figs., 3 tabs.

  16. Development of a container for the transportation and storage of plutonium bearing materials

    SciTech Connect (OSTI)

    Ammerman, D.; Geinitz, R.; Thorp, D.; Rivera, M.

    1998-03-01

    There is a large backlog of plutonium contaminated materials at the Rocky Flats Environmental Technology Site near Denver, Colorado, USA. The clean-up of this site requires this material to be packaged in such a way as to allow for efficient transportation to other sites or to a permanent geologic repository. Prior to off-site shipment of the material, it may be stored on-site for a period of time. For this reason, it is desirable to have a container capable of meeting the requirements for storage as well as the requirements for transportation. Most of the off-site transportation is envisioned to take place using the TRUPACT-II Type B package, with the Waste Isolation Pilot Plant (WIPP) as the destination. Prior to the development of this new container, the TRUPACT-II had a limit of 325 FGE (fissile gram equivalents) of plutonium due to criticality control concerns. Because of the relatively high plutonium content in the material to be transported, transporting 325 FGE per TRUPACT-II is uneconomical. Thus, the purpose of the new containers is to provide criticality control to increase the allowed TRUPACT-II payload and to provide a safe method for on-site storage prior to transport. This paper will describe the analysis and testing used to demonstrate that the Pipe Overpack Container provides safe on-site storage of plutonium bearing materials in unhardened buildings and provides criticality control during transportation within the TRUPACT-II. Analyses included worst-case criticality analyses, analyses of fork-lift time impacts, and analyses of roof structure collapse onto the container. Testing included dynamic crush tests, bare pipe impact tests, a 30-minute totally engulfing pool-fire test, and multiple package impact tests in end-on and side-on orientations.

  17. AGING PERFORMANCE OF MODEL 9975 PACKAGE FLUOROELASTOMER O-RINGS

    SciTech Connect (OSTI)

    Hoffman, E.; Daugherty, W.; Skidmore, E.; Dunn, K.; Fisher, D.

    2011-05-31

    The influence of temperature and radiation on Viton{reg_sign} GLT and GLT-S fluoroelastomer O-rings is an ongoing research focus at the Savannah River National Laboratory. The O-rings are credited for leaktight containment in the Model 9975 shipping package used for transportation of plutonium-bearing materials. At the Savannah River Site, the Model 9975 packages are being used for interim storage. Primary research efforts have focused on surveillance of O-rings from actual packages, leak testing of seals at bounding aging conditions and the effect of aging temperature on compression stress relaxation behavior, with the goal of service life prediction for long-term storage conditions. Recently, an additional effort to evaluate the effect of aging temperature on the oxidation of the materials has begun. Degradation in the mechanical properties of elastomers is directly related to the oxidation of the polymer. Sensitive measurements of the oxidation rate can be performed in a more timely manner than waiting for a measurable change in mechanical properties, especially at service temperatures. Measuring the oxidation rate therefore provides a means to validate the assumption that the degradation mechanisms(s) do not change from the elevated temperatures used for accelerated aging and the lower service temperatures. Monitoring the amount of oxygen uptake by the material over time at various temperatures can provide increased confidence in lifetime predictions. Preliminary oxygen consumption analysis of a Viton GLT-based fluoroelastomer compound (Parker V0835-75) using an Oxzilla II differential oxygen analyzer in the temperature range of 40-120 C was performed. Early data suggests oxygen consumption rates may level off within the first 100,000 hours (10-12 years) at 40 C and that sharp changes in the degradation mechanism (stress-relaxation) are not expected over the temperature range examined. This is consistent with the known long-term heat aging resistance of fluoroelastomers relative to hydrocarbon-based elastomers, and in absence of antioxidants that may be consumed over time. Additional experimental effort will be undertaken in the short term range within the first 100 hours of thermal aging to capture further details of the oxygen consumption rate.

  18. Fluorochemicals used in food packaging inhibit male sex hormone synthesis

    SciTech Connect (OSTI)

    Rosenmai, A.K.; Nielsen, F.K.; Pedersen, M.; Hadrup, N.; Trier, X.; Christensen, J.H.; Vinggaard, A.M.

    2013-01-01

    Polyfluoroalkyl phosphate surfactants (PAPS) are widely used in food contact materials (FCMs) of paper and board and have recently been detected in 57% of investigated materials. Human exposure occurs as PAPS have been measured in blood; however knowledge is lacking on the toxicology of PAPS. The aim of this study was to elucidate the effects of six fluorochemicals on sex hormone synthesis and androgen receptor (AR) activation in vitro. Four PAPS and two metabolites, perfluorooctanoic acid (PFOA) and 8:2 fluorotelomer alcohol (8:2 FTOH) were tested. Hormone profiles, including eight steroid hormones, generally showed that 8:2 diPAPS, 8:2 monoPAPS and 8:2 FTOH led to decreases in androgens (testosterone, dehydroepiandrosterone, and androstenedione) in the H295R steroidogenesis assay. Decreases were observed for progesterone and 17-OH-progesterone as well. These observations indicated that a step prior to progestagen and androgen synthesis had been affected. Gene expression analysis of StAR, Bzrp, CYP11A, CYP17, CYP21 and CYP19 mRNA showed a decrease in Bzrp mRNA levels for 8:2 monoPAPS and 8:2 FTOH indicating interference with cholesterol transport to the inner mitochondria. Cortisol, estrone and 17?-estradiol levels were in several cases increased with exposure. In accordance with these data CYP19 gene expression increased with 8:2 diPAPS, 8:2 monoPAPS and 8:2 FTOH exposures indicating that this is a contributing factor to the decreased androgen and the increased estrogen levels. Overall, these results demonstrate that fluorochemicals present in food packaging materials and their metabolites can affect steroidogenesis through decreased Bzrp and increased CYP19 gene expression leading to lower androgen and higher estrogen levels. -- Highlights: ? Fluorochemicals found in 57% of paper and board food packaging were tested. ? Collectively six fluorochemicals were tested for antiandrogenic potential in vitro. ? Three out of six tested fluorochemicals inhibited synthesis of male sex hormones. ? Generally, levels of estrogens and cortisol stayed unaffected or increased. ? The effect on steroid synthesis was specific on gene expression of Bzrp and CYP19.

  19. NCCS Regression Test Harness

    Energy Science and Technology Software Center (OSTI)

    2015-09-09

    The NCCS Regression Test Harness is a software package that provides a framework to perform regression and acceptance testing on NCCS High Performance Computers. The package is written in Python and has only the dependency of a Subversion repository to store the regression tests.

  20. Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly under Surrogate Normal Conditions of Truck Transport R0.1

    Broader source: Energy.gov [DOE]

    Results of testing employing surrogate instrumented rods (non-high-burnup, 17 x 17 PWR fuel assembly) to capture the response to the loadings experienced during normal conditions of transport indicate that strain- or stress-based failure of fuel rods seems unlikely; performance of high-burnup fuels continues to be assessed.

  1. Expanded Content Envelope For The Model 9977 Packaging

    SciTech Connect (OSTI)

    Abramczyk, G. A.; Loftin, B. M.; Nathan, S. J.; Bellamy, J. S.

    2013-07-30

    An Addendum was written to the Model 9977 Safety Analysis Report for Packaging adding a new content consisting of DOE-STD-3013 stabilized plutonium dioxide materials to the authorized Model 9977 contents. The new Plutonium Oxide Content (PuO{sub 2}) Envelope will support the Department of Energy shipment of materials between Los Alamos National Laboratory and Savannah River Site facilities. The new content extended the current content envelope boundaries for radioactive material mass and for decay heat load and required a revision to the 9977 Certificate of Compliance prior to shipment. The Addendum documented how the new contents/configurations do not compromise the safety basis presented in the 9977 SARP Revision 2. The changes from the certified package baseline and the changes to the package required to safely transport this material is discussed.

  2. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    SciTech Connect (OSTI)

    Becker, N.M.; Vanta, E.B.

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  3. HPCCG Solver Package

    Energy Science and Technology Software Center (OSTI)

    2007-03-01

    HPCCG is a simple PDE application and preconditioned conjugate gradient solver that solves a linear system on a beam-shaped domain. Although it does not address many performance issues present in real engineering applications, such as load imbalance and preconditioner scalability, it can serve as a first "sanity test" of new processor design choices, inter-connect network design choices and the scalability of a new computer system. Because it is self-contained, easy to compile and easily scaledmore » to 100s or 1000s of porcessors, it can be an attractive study code for computer system designers.« less

  4. Livermore Interpolation Package

    Energy Science and Technology Software Center (OSTI)

    2011-12-01

    LIP is a library of openly published mathematical algorithms used to assist in 1D and 2D interpolation of discrete tabular data. Example usage includes Equation of State analysis, boundary condition inputs for applications, mesh generation, image manipulation, and host of other applications where discrete data needs to be sampled as a continuous function. The distribution contains a facility for building and testing a library, liblip.a, from which applications may access the various functions that makemore » up LIP.« less

  5. An Arbitrary Precision Computation Package

    Energy Science and Technology Software Center (OSTI)

    2003-06-14

    This package permits a scientist to perform computations using an arbitrarily high level of numeric precision (the equivalent of hundreds or even thousands of digits), by making only minor changes to conventional C++ or Fortran-90 soruce code. This software takes advantage of certain properties of IEEE floating-point arithmetic, together with advanced numeric algorithms, custom data types and operator overloading. Also included in this package is the "Experimental Mathematician's Toolkit", which incorporates many of these facilitiesmore » into an easy-to-use interactive program.« less

  6. Microelectronics plastic molded packaging

    SciTech Connect (OSTI)

    Johnson, D.R.; Palmer, D.W.; Peterson, D.W.

    1997-02-01

    The use of commercial off-the-shelf (COTS) microelectronics for nuclear weapon applications will soon be reality rather than hearsay. The use of COTS for new technologies for uniquely military applications is being driven by the so-called Perry Initiative that requires the U.S. Department of Defense (DoD) to accept and utilize commercial standards for procurement of military systems. Based on this philosophy, coupled with several practical considerations, new weapons systems as well as future upgrades will contain plastic encapsulated microelectronics. However, a conservative Department of Energy (DOE) approach requires lifetime predictive models. Thus, the focus of the current project is on accelerated testing to advance current aging models as well as on the development of the methodology to be used during WR qualification of plastic encapsulated microelectronics. An additional focal point involves achieving awareness of commercial capabilities, materials, and processes. One of the major outcomes of the project has been the definition of proper techniques for handling and evaluation of modern surface mount parts which might be used in future systems. This program is also raising the familiarity level of plastic within the weapons complex, allowing subsystem design rules accommodating COTS to evolve. A two year program plan is presented along with test results and commercial interactions during this first year.

  7. Safety evaluation for packaging (onsite) product removal can containers

    SciTech Connect (OSTI)

    Burnside, M.E.

    1998-04-15

    Six Product Removal (PR) Cans and Containers are located within the Plutonium Finishing Plant. Each can is expected to contain a maximum of 3 g of residual radioactive material, consisting mainly of plutonium isotopes. The PR Can Containers were previously authorized by HNF-SD-TP-SEP-064, Rev. 0 (Boettger 1997), for the interarea transport of up to 3 g of plutonium. The purpose of this safety evaluation for packaging is to allow the transport of six PR Cans with their Containers from the Plutonium Finishing Plant to the 233 S Evaporator Facility. This safety evaluation for packaging is authorized for use until April 29, 1999, or until the shipment is made, whichever happens first.

  8. Fuel removal, transport, and storage

    SciTech Connect (OSTI)

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  9. Package for integrated optic circuit and method

    DOE Patents [OSTI]

    Kravitz, Stanley H. (26 Aspen Rd., Placitas, NM 87043); Hadley, G. Ronald (6012 Annapolis NE., Albuquerque, NM 87111); Warren, Mial E. (3825 Mary Ellen NE., Albuquerque, NM 87111); Carson, Richard F. (1036 Jewel Pl. NE., Albuquerque, NM 87123); Armendariz, Marcelino G. (1023 Oro Real NE., Albuquerque, NM 87123)

    1998-01-01

    A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.

  10. Package for integrated optic circuit and method

    DOE Patents [OSTI]

    Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.

    1998-08-04

    A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.

  11. Contact-Handled and Remote-Handled Transuranic Waste Packaging

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-08-09

    Provides specific instructions for packaging and/or repackaging contact-handled transuranic (CH-TRU) and remote-handled transuranic (RH-TRU) waste in a manner consistent with DOE O 435.1, Radioactive Waste Management, DOE M 435.1-1 Chg 1, Radioactive Waste Management Manual, CH-TRU and RH-TRU waste transportation requirements, and Waste Isolation Pilot Plant (WIPP) programmatic requirements. Does not cancel/supersede other directives.

  12. The DT-19 container design, impact testing and analysis

    SciTech Connect (OSTI)

    Aramayo, G.A.; Goins, M.L.

    1995-12-01

    Containers used by the Department of Energy (DOE) for the transport of radioactive material components, including components and special assemblies, are required to meet certain impact and thermal requirements that are demonstrated by performance or compliance testing, analytical procedures or a combination of both. The Code of Federal Regulations (CFR) Part 49, Section 173.7(d) stipulates that, {prime}Packages (containers) made by or under direction of the US DOE may be used for the transportation of radioactive materials when evaluated, approved, and certified by the DOE against packaging standards equivalent to those specified in 10 CFR Part 71. This paper describes the details of the design, analysis and testing efforts undertaken to improve the overall structural and thermal integrity of the DC-19 shipping container.

  13. Examples of Cost Estimation Packages

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Estimates can be performed in a variety of ways. Some of these are for projects for an undefined scope, a conventional construction project, or where there is a level of effort required to complete the work. Examples of cost estimation packages for these types of projects are described in this appendix.

  14. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  15. Part IV: Section D - Packaging and Marking

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PART I SECTION D PACKAGING AND MARKING DE-AC36-08GO28308 Modification M901 Section D - Page ii PART I SECTION D PACKAGING AND MARKING TABLE OF CONTENTS D.1 Packaging 1 D.2 Marking 1 DE-AC36-08GO28308 Modification M901 Section D - Page 1 of 1 PART I SECTION D PACKAGING AND MARKING D.1 Packaging Preservation, packaging, and packing for shipment or mailing of all work delivered hereunder shall be in accordance with good commercial practice and adequate to insure acceptance by common carrier and

  16. Materials and Transportation Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Transportation Services General Information: Materials and Transportation Services provides Ames Laboratory employees with a wide array of services and support activities. Select a service listed below to learn more about contacts, schedules and regulatory information. Shipping and Receiving Hazardous Materials Transportation Storeroom Services Storeroom Catalog Mail Services Express Package Shipping Service Precious Metals Fleet Vehicles

  17. Radioactive Material Transportation Considerations with Respect to DOE 3013 Storage Containers

    SciTech Connect (OSTI)

    HENSEL, SJ

    2004-04-15

    This paper evaluates sealed hardware that meets the requirements of DOE-STD-3013, ''Criteria for Preparing and packaging Plutonium Metals and Oxides for Long-Term Storage'' with respect to radioactive material (Type B quantity) transportation requirements. The Standard provides criteria for packaging of the plutonium materials for storage periods of at least 50 years. The standard requires the hardware to maintain integrity under both normal storage conditions and under anticipated handling conditions. To accomplish this, the standard requires that the plutonium be loaded in a minimum of two nested stainless steel sealed containers that are both tested for leak-tightness per ANSI N14.5. As such the 3013 hardware is robust. While the 3013 STD may provide appropriate storage criteria, it is not intended to provide criteria for transporting the material under the requirements of the Department of Transportation (DOT). In this evaluation, it is assumed that the activity of plutonium exceeds A1 and/or A2 curies as defined in DOT 49 CFR 173.431 and therefore must be shipped as a Type B package meeting the Nuclear Regulatory Commission (NRC) requirements of 10 CFR 71. The evaluation considers Type B shipment of plutonium in the 3013 hardware within a certified package for such contents.

  18. Product Life-Cycle Management: The future of product and packaging design

    SciTech Connect (OSTI)

    Jung, L.B. )

    1993-01-01

    Product Life-Cycle Management (PLCM) is the control of environmental impacts associated with all the life phases of a product, from design through manufacture, packaging and disposal. PLCM dictates that products be manufactured using less harmful chemicals and fewer resources. Product packaging must be minimal and made of renewable and recyclable resources. Both the product and the package must contain recycled material. Packaging and products must also be collected for recycle at the end of their intended use, requiring infrastructure to collect, transport and process these materials. European legislation now requires the return and recycle of packaging materials by the end of 1993. Requirements are also being imposed on manufacturers of automobile related products; automotive batteries, tires and even automobiles themselves must now be accepted back and recycled. Increasing public concerns and awareness of environmental impacts plus the decreasing availability of natural resources will continue to push product life-cycle legislation forward.

  19. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  20. ORISE Contract, PART 1 ? THE SCHEDULE, Section D Packaging and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SECTION D PACKAGING AND MARKING D.1 PACKAGING (NOV 2004) Preservation, packaging, and packing for shipment or mailing of all work delivered hereunder shall be in accordance with...

  1. YUCCA MOUNTAIN WASTE PACKAGE CLOSURE SYSTEM

    SciTech Connect (OSTI)

    G. Housley; C. Shelton-davis; K. Skinner

    2005-08-26

    The method selected for dealing with spent nuclear fuel in the US is to seal the fuel in waste packages and then to place them in an underground repository at the Yucca Mountain Site in Nevada. This article describes the Waste Package Closure System (WPCS) currently being designed for sealing the waste packages.

  2. Power Device Packaging | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape023_wang_2010_p.pdf More Documents & Publications Power Device Packaging Power Device Packaging Direct Water-Cooled Power Electronics Substrate Packaging

  3. Microwave thawing package and method

    DOE Patents [OSTI]

    Fathi, Zakaryae; Lauf, Robert J.

    2004-03-16

    A package for containing frozen liquids during an electromagnetic thawing process includes: a first section adapted for containing a frozen material and exposing the frozen material to electromagnetic energy; a second section adapted for receiving thawed liquid material and shielding the thawed liquid material from further exposure to electromagnetic energy; and a fluid communication means for allowing fluid flow between the first section and the second section.

  4. Notices 7004, Alternate Preservation, Packaging,

    Energy Savers [EERE]

    577 Federal Register / Vol. 79, No. 14 / Wednesday, January 22, 2014 / Notices 7004, Alternate Preservation, Packaging, and Packing and 252.211-7005, Substitutions for Military or Federal Specifications and Standards; OMB Control Number 0704-0398. Type of Request: Extension. Number of Respondents: 385. Responses Per Respondent: 1.4. Annual Responses: 573. Average Burden Per Response: Approximately 2 hours. Annual Burden Hours: 1,136. Needs and Uses: This information collection permits offers to-

  5. Waste Package Design Methodology Report

    SciTech Connect (OSTI)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  6. Vadose Zone Hydrogeology Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Last, George V.; Freeman, Eugene J.; Cantrell, Kirk J.; Fayer, Michael J.; Gee, Glendon W.; Nichols, William E.; Bjornstad, Bruce N.; Horton, Duane G.

    2006-06-01

    This data package documents the technical basis for selecting physical and geochemical parameters and input values that will be used in vadose zone modeling for Hanford assessments. This work was originally conducted as part of the Characterization of Systems Task of the Groundwater Remediation Project managed by Fluor Hanford, Inc., Richland, Washington, and revised as part of the Characterization of Systems Project managed by the Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy, Richland Operations Office (DOE-RL). This data package describes the geologic framework, the physical, hydrologic, and contaminant transport properties of the geologic materials, and deep drainage (i.e., recharge) estimates, and builds on the general framework developed for the initial assessment conducted using the System Assessment Capability (SAC) (Bryce et al. 2002). The general approach for this work was to update and provide incremental improvements over the previous SAC data package completed in 2001. As with the previous SAC data package, much of the data and interpreted information were extracted from existing documents and databases. Every attempt was made to provide traceability to the original source(s) of the data or interpretations.

  7. Harsh-Environment Packaging for Downhole Gas and Oil Exploration

    SciTech Connect (OSTI)

    Shubhra Bansal; Junghyun Cho; Kevin Durocher; Chris Kapusta; Aaron Knobloch; David Shaddock; Harry Schoeller; Hua Xia

    2007-08-31

    This research into new packaging materials and methods for elevated temperatures and harsh environment electronics focused on gaining a basic understanding of current state-of-the-art in electronics packaging used in industry today, formulating the thermal-mechanical models of the material interactions and developing test structures to confirm these models. Discussions were initiated with the major General Electric (GE) businesses that currently sell into markets requiring high temperature electronics and packaging. They related the major modes of failure they encounter routinely and the hurdles needed to be overcome in order to improve the temperature specifications of these products. We consulted with our GE business partners about the reliability specifications and investigated specifications and guidelines that from IPC and the SAE body that is currently developing guidelines for electronics package reliability. Following this, a risk analysis was conducted for the program to identify the critical risks which need to be mitigated in order to demonstrate a flex-based packaging approach under these conditions. This process identified metal/polyimide adhesion, via reliability for flex substrates and high temperature interconnect as important technical areas for reliability improvement.

  8. DOE nuclear material packaging manual: storage container requirements for plutonium oxide materials

    SciTech Connect (OSTI)

    Veirs, D Kirk

    2009-01-01

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). In response, DOE has recently issued DOE M 441.1 'Nuclear Material Packaging Manual' with encouragement from the Defense Nuclear Facilities Safety Board. A unique feature compared to transportation containers is the allowance of filters to vent flammable gases during storage. Defining commonly used concepts such as maximum allowable working pressure and He leak rate criteria become problematic when considering vented containers. Los Alamos has developed a set of container requirements that are in compliance with 441.1 based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide. The pre and post drop-test He leak rates depend upon container size as well as the material contents. For containers that are routinely handled, ease of handling and weight are a major consideration. Relatively thin-walled containers with flat bottoms are desired yet they cannot be He leak tested at a differential pressure of one atmosphere due to the potential for plastic deformation of the flat bottom during testing. The He leak rates and He leak testing configuration for containers designed for plutonium bearing materials will be presented. The approach to meeting the other manual requirements such as corrosion and thermal degradation resistance will be addressed. The information presented can be used by other sites to evaluate if their conditions are bounded by LANL requirements when considering procurement of 441.1 compliant containers.

  9. Challenges in the Packaging of MEMS

    SciTech Connect (OSTI)

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O'Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a gross lack of understanding between the package materials, induced stress, and the device performance. The material properties of these packaging materials are not well defined or understood. Modeling of these materials and processes is far from maturity. Current post-package yields are too low for commercial feasibility, and consumer operating environment reliability and compatibility are often difficult to simulate. With further understanding of the materials properties and behavior of the packaging materials, MEMS applications can be fully realized and integrated into countless commercial and military applications.

  10. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect (OSTI)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A.

    1995-01-20

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  11. UWV (Unmanned Water Vehicle) - Umbra Package v. 1.0

    Energy Science and Technology Software Center (OSTI)

    2012-09-13

    This package contains modules that model the mobility of systems moving in the water. This package currently models first order physics -basically a velocity integrator. This package depends on interface classes (typically base classes) that reside in the Mobility package.

  12. SHIPMENT OF TWO DOE-STD-3013 CONTAINERS IN A 9977 TYPE B PACKAGE

    SciTech Connect (OSTI)

    Abramczyk, G.; Bellamy, S.; Loftin, B.; Nathan, S.

    2011-06-06

    The 9977 is a certified Type B Packaging authorized to ship uranium and plutonium in metal and oxide forms. Historically, the standard container for these materials has been the DOE-STD-3013 which was specifically designed for the long term storage of plutonium bearing materials. The Department of Energy has used the 9975 Packaging containing a single 3013 container for the transportation and storage of these materials. In order to reduce container, shipping, and storage costs, the 9977 Packaging is being certified for transportation and storage of two 3013 containers. The challenges and risks of this content and the 9977s ability to meet the Code of Federal Regulations for the transport of these materials are presented.

  13. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    SciTech Connect (OSTI)

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  14. The Underground Test Area Project of the Nevada Test Site: Building Confidence in Groundwater Flow and Transport Models at Pahute Mesa Through Focused Characterization Studies

    SciTech Connect (OSTI)

    Pawloski, G A; Wurtz, J; Drellack, S L

    2009-12-29

    Pahute Mesa at the Nevada Test Site contains about 8.0E+07 curies of radioactivity caused by underground nuclear testing. The Underground Test Area Subproject has entered Phase II of data acquisition, analysis, and modeling to determine the risk to receptors from radioactivity in the groundwater, establish a groundwater monitoring network, and provide regulatory closure. Evaluation of radionuclide contamination at Pahute Mesa is particularly difficult due to the complex stratigraphy and structure caused by multiple calderas in the Southwestern Nevada Volcanic Field and overprinting of Basin and Range faulting. Included in overall Phase II goals is the need to reduce the uncertainty and improve confidence in modeling results. New characterization efforts are underway, and results from the first year of a three-year well drilling plan are presented.

  15. FAA Smoke Transport Code

    Energy Science and Technology Software Center (OSTI)

    2006-10-27

    FAA Smoke Transport Code, a physics-based Computational Fluid Dynamics tool, which couples heat, mass, and momentum transfer, has been developed to provide information on smoke transport in cargo compartments with various geometries and flight conditions. The software package contains a graphical user interface for specification of geometry and boundary conditions, analysis module for solving the governing equations, and a post-processing tool. The current code was produced by making substantial improvements and additions to a codemore » obtained from a university. The original code was able to compute steady, uniform, isothermal turbulent pressurization. In addition, a preprocessor and postprocessor were added to arrive at the current software package.« less

  16. Next-Generation LED Package Architectures Enabled by Thermally...

    Energy Savers [EERE]

    LED Package Architectures Enabled by Thermally Conductive Transparent Encapsulants Next-Generation LED Package Architectures Enabled by Thermally Conductive Transparent ...

  17. Hazardous Materials Packaging and Transportation Safety (For Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-10-23

    This draft has been scheduled for final review before the Directives Review Board on 11-4-15. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 11-2-15.

  18. Block LancZos PACKage

    Energy Science and Technology Software Center (OSTI)

    2005-05-01

    BLZPACK (for Block LancZos PACKage) is a standard Fortran 77 implementation of the block Lanczos algorithm intended for the solution of the standard eigenvalue problem Ax=ux or the generalized eigenvalue problem Ax=uBx, where A and B are real, sparse symmetric matrices, u and eigenvalue and x and eigenvector. The development of this eigensolver was motivated by the need to solve large, sparse, generalized problems from free vibration analyses in structural engineering. Several upgrades were performedmore »afterwards aiming at the solution of eigenvalues problems from a wider range of applications.« less

  19. Trends in packaged steam generators

    SciTech Connect (OSTI)

    Ganapathy, V. [ABCO Industries, Abilene, TX (United States)

    1996-09-01

    Oil and gas-fired packaged steam generators are used in many industrial plants. They generate saturated or superheated steam up to 250,000 lb/hr, 1000 psig, and 950 F. They may be used for continuous steam generation or as standby boilers in cogeneration systems. Numerous variables affect the design of this equipment. A few important considerations should be addressed at an early point by the plant engineer specifying or evaluating equipment options. These considerations include trends such as customized designs that minimize operating costs and ensure emissions regulations are met. The paper discusses efficiency considerations first.

  20. Challenges in the Packaging of MEMS

    SciTech Connect (OSTI)

    BROWN, WILLIAM D.; EATON, WILLIAM P.; MALSHE, AJAY P.; MILLER, WILLIAM M.; O'NEAL, CHAD; SINGH, SUSHILA B.

    1999-09-24

    Microelectromechanical Systems (MEMS) packaging is much different from conventional integrated circuit (IC) packaging. Many MEMS devices must interface to the environment in order to perform their intended function, and the package must be able to facilitate access with the environment while protecting the device. The package must also not interfere with or impede the operation of the MEMS device. The die attachment material should be low stress, and low outgassing, while also minimizing stress relaxation overtime which can lead to scale factor shifts in sensor devices. The fabrication processes used in creating the devices must be compatible with each other, and not result in damage to the devices. Many devices are application specific requiring custom packages that are not commercially available. Devices may also need media compatible packages that can protect the devices from harsh environments in which the MEMS device may operate. Techniques are being developed to handle, process, and package the devices such that high yields of functional packaged parts will result. Currently, many of the processing steps are potentially harmful to MEMS devices and negatively affect yield. It is the objective of this paper to review and discuss packaging challenges that exist for MEMS systems and to expose these issues to new audiences from the integrated circuit packaging community.

  1. 9975 SHIPPING PACKAGE LIFE EXTENSION SURVEILLANCE PROGRAM RESULTS SUMMARY

    SciTech Connect (OSTI)

    Daugherty, W.; Dunn, K.; Hackney, B.; Hoffman, E.; Skidmore, E.

    2011-01-06

    Results from the 9975 Surveillance Program at the Savannah River Site (SRS) are summarized for justification to extend the life of the 9975 packages currently stored in the K-Area Materials Storage (KAMS) facility from 10 years to 15 years. This justification is established with the stipulation that surveillance activities will continue throughout this extended time to ensure the continued integrity of the 9975 materials of construction and to further understand the currently identified degradation mechanisms. The current 10 year storage life was developed prior to storage. A subsequent report was later used to extend the qualification of the 9975 shipping packages for 2 years for shipping plus 10 years for storage. However the qualification for the storage period was provided by the monitoring requirements of the Storage and Surveillance Program. This report summarizes efforts to determine a new safe storage limit for the 9975 shipping package based on the surveillance data collected since 2005 when the surveillance program began. KAMS is a zero-release facility that depends upon containment by the 9975 to meet design basis storage requirements. Therefore, to confirm the continued integrity of the 9975 packages while stored in KAMS, a 9975 Storage and Surveillance Program was implemented alongside the DOE required Integrated Surveillance Program (ISP) for 3013 plutonium-bearing containers. The 9975 Storage and Surveillance Program performs field surveillance as well as accelerated aging tests to ensure any degradation due to aging, to the extent that could affect packaging performance, is detected in advance of such degradation occurring in the field. The Program has demonstrated that the 9975 package has a robust design that can perform under a variety of conditions. As such the primary emphasis of the on-going 9975 Surveillance Program is an aging study of the 9975 Viton(reg.sign) GLT containment vessel O-rings and the Celotex(reg.sign) fiberboard thermal insulation at bounding conditions of radiation and elevated temperatures. Other materials of construction, however, are also discussed.

  2. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect (OSTI)

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  3. Packaging of electro-microfluidic devices

    DOE Patents [OSTI]

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2003-04-15

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  4. Packaging of electro-microfluidic devices

    DOE Patents [OSTI]

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Watson, Robert D.

    2002-01-01

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  5. NFR TRIGA package design review report

    SciTech Connect (OSTI)

    Clements, M.D.

    1994-08-26

    The purpose of this document is to compile, present and document the formal design review of the NRF TRIGA packaging. The contents of this document include: the briefing meeting presentations, package description, design calculations, package review drawings, meeting minutes, action item lists, review comment records, final resolutions, and released drawings. This design review required more than two meeting to resolve comments. Therefore, there are three meeting minutes and two action item lists.

  6. Final evaluation report for Westinghouse Hanford Company, WRAP-1,208 liter waste drum, docket 94-35-7A, type A packaging

    SciTech Connect (OSTI)

    Kelly, D.L., Westinghouse Hanford

    1996-06-12

    This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Westinghouse Hanford Company, Waste Receiving and Processing Facility, Module 1 (WRAP-1) Drum. The WRAP-1 Drum was tested for DOE-HQ in August 1994, by Los Alamos National Laboratory, under docket number 94-35-7A. Additionally, comparison and evaluation of the approved, as-tested packaging configuration was performed by WHC in September 1995. The WRAP-1 Drum was evaluated against the performance of the DOT-17C, 208 1 (55-gal) steel drums tested and evaluated under dockets 89-13-7A/90-18-7A and 94-37-7A.

  7. Pre-Packaged Commercial PACE Financing Solutions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    simple, pre-packaged technologies (e.g., lighting and heating, ventilation and air ... buildings due to disproportionate impact of deal complexity & transaction costs. ...

  8. Single Packaged Vertical Units | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards. File Single Packaged Vertical Units -- v2.0 More Documents & Publications Room Air Conditioners Commercial Refrigeration Equipment Commercial Refrigeration Equipment

  9. Microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  10. PRIDE Surveillance Projects Data Packaging Project Information Package Specification Version 1.1

    SciTech Connect (OSTI)

    Kelleher, D. M.; Shipp, R. L.; Mason, J. D.

    2010-08-31

    Information Package Specification version 1.1 describes an XML document format called an information package that can be used to store information in information management systems and other information archives. An information package consists of package information, the context required to understand and use that information, package metadata that describes the information, and XML signatures that protect the information. The information package described in this specification was designed to store Department of Energy (DOE) and National Nuclear Security Administration (NNSA) information and includes the metadata required for that information: a unique package identifier, information marking that conforms to DOE and NNSA requirements, and access control metadata. It is an implementation of the Open Archival Information System (OAIS) Reference Model archival information package tailored to meet NNSA information storage requirements and designed to be used in the computing environments at the Y-12 National Security Complex and at other NNSA sites.

  11. TECHNICAL EVALUATION OF THE SAFE TRANSPORTATION OF WASTE CONTAINERS COATED WITH POLYUREA

    SciTech Connect (OSTI)

    VAIL, T.S.

    2007-03-30

    This technical report is to evaluate and establish that the transportation of waste containers (e.g. drums, wooden boxes, fiberglass-reinforced plywood (FRP) or metal boxes, tanks, casks, or other containers) that have an external application of polyurea coating between facilities on the Hanford Site can be achieved with a level of onsite safety equivalent to that achieved offsite. Utilizing the parameters, requirements, limitations, and controls described in the DOE/RL-2001-36, ''Hanford Sitewide Transportation Safety Document'' (TSD) and the Department of Energy Richland Operations (DOE-RL) approved package specific authorizations (e.g. Package Specific Safety Documents (PSSDs), One-Time Requests for Shipment (OTRSs), and Special Packaging Authorizations (SPAS)), this evaluation concludes that polyurea coatings on packages does not impose an undue hazard for normal and accident conditions. The transportation of all packages on the Hanford Site must comply with the transportation safety basis documents for that packaging system. Compliance with the requirements, limitations, or controls described in the safety basis for a package system will not be relaxed or modified because of the application of polyurea. The inspection criteria described in facility/projects procedures and work packages that ensure compliance with Container Management Programs and transportation safety basis documentation dictate the need to overpack a package without consideration for polyurea. This technical report reviews the transportation of waste packages coated with polyurea and does not credit the polyurea with enhancing the structural, thermal, containment, shielding, criticality, or gas generating posture of a package. Facilities/Projects Container Management Programs must determine if a container requires an overpack prior to the polyurea application recognizing that circumstances newly discovered surface contamination or loss of integrity may require a previously un-overpacked package to subsequently require overpacking. Therefore, the polyurea coating can not be credited to avoid the need to overpack a package or enhance the transportation safety of a structurally sound package that has polyurea on the exterior.

  12. Belos Block Linear Solvers Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    Belos is an extensible and interoperable framework for large-scale, iterative methods for solving systems of linear equations with multiple right-hand sides. The motivation for this framework is to provide a generic interface to a collection of algorithms for solving large-scale linear systems. Belos is interoperable because both the matrix and vectors are considered to be opaque objects--only knowledge of the matrix and vectors via elementary operations is necessary. An implementation of Balos is accomplished viamore » the use of interfaces. One of the goals of Belos is to allow the user flexibility in specifying the data representation for the matrix and vectors and so leverage any existing software investment. The algorithms that will be included in package are Krylov-based linear solvers, like Block GMRES (Generalized Minimal RESidual) and Block CG (Conjugate-Gradient).« less

  13. Safety evaluation for packaging 222-S laboratory cargo tank for onetime type B material shipment

    SciTech Connect (OSTI)

    Nguyen, P.M.

    1994-08-19

    The purpose of this Safety Evaluation for Packaging (SEP) is to evaluate and document the safety of the onetime shipment of bulk radioactive liquids in the 222-S Laboratory cargo tank (222-S cargo tank). The 222-S cargo tank is a US Department of Transportation (DOT) MC-312 specification (DOT 1989) cargo tank, vehicle registration number HO-64-04275, approved for low specific activity (LSA) shipments in accordance with the DOT Title 49, Code of Federal Regulations (CFR). In accordance with the US Department of Energy, Richland Operations Office (RL) Order 5480.1A, Chapter III (RL 1988), an equivalent degree of safety shall be provided for onsite shipments as would be afforded by the DOT shipping regulations for a radioactive material package. This document demonstrates that this packaging system meets the onsite transportation safety criteria for a onetime shipment of Type B contents.

  14. Electrochemical Corrosion Testing of Borated Stainless Steel Alloys

    SciTech Connect (OSTI)

    lister, tedd e; Mizia, Ronald E

    2007-05-01

    The Department of Energy Office of Civilian Radioactive Waste Management has specified borated stainless steel manufactured to the requirements of ASTM A 887-89, Grade A, UNS S30464, to be the material used for the fabrication of the fuel basket internals of the preliminary transportation, aging, and disposal canister system preliminary design. The long-term corrosion resistance performance of this class of borated materials must be verified when exposed to expected YMP repository conditions after a waste package breach. Electrochemical corrosion tests were performed on crevice corrosion coupons of Type 304 B4 and Type 304 B5 borated stainless steels exposed to single postulated in-package chemistry at 60°C. The results show low corrosion rates for the test period

  15. PyTrilinos Rapid Prototyping Package

    Energy Science and Technology Software Center (OSTI)

    2005-03-01

    PyTrilinos provides access to selected Trilinos packages from the python scripting language. This allows interactive and dynamic creation of Trilinos objects, rapid prototyping that does not require compilation, and "gluing" Trilinos scripts to other python modules, such as plotting, etc. The currently supported packages are Epetra, EpetraExt, and NOX.

  16. FAST - A Framework for Agile Software Testing v. 2.0

    Energy Science and Technology Software Center (OSTI)

    2009-03-25

    The FAST software package contains a variety of Python packages for applying and managing software tests. In version 2.0, FAST includes (1) the EXACT package, which supports the definition and execution of computational experiments, (2) the FAST package, which manages the distributed execution of software builds, and (3) general tools related to the PyUnit testing framework.

  17. Reflux pool-boiler as a heat-transport device for Stirling engines: On-sun test program results

    SciTech Connect (OSTI)

    Andraka, C.E.; Moreno, J.B.; Diver, R.B.; Ginn, W.C.; Dudley, V.; Rawlinson, K.S.

    1990-01-01

    The efficient operation of a Stirling engine requires the application of a high heat flux to the relatively small area occupied by the heater head tubes. Previous attempts to couple solar energy to Stirling engines generally involved directly illuminating the heater head tubes with concentrated sunlight. In this study, operation of 75-kW, sodium reflux pool-boiler solar receiver has been demonstrated and its performance characterized on Sandia's nominal 75-kW parabolic-dish concentrator, using a cold-water gas-gap calorimeter to simulate Stirling engine operation. The pool boiler (and more generally liquid-metal reflux receivers) supplies heat to the engine in the form of latent heat released from condensation of the metal vapor on the heater head tubes. The advantages of the pool boiler include uniform tube temperature, leading to longer life and higher temperature available to the engine, and decoupling of the design of the solar absorber from the engine heater head. The two-phase system allows high input thermal flux, reducing the receiver size and losses, therefore improving system efficiency. The receiver design is reported here along with test results including transient operations, steady-state performance evaluation, operation at various temperatures, and x-ray studies of the boiling behavior. Also reported are a fist-order cost analysis, plans for future studies, and the integration of the receiver with a Stirling Thermal Motors STM4-120 Stirling engine. 19 refs., 11 figs.

  18. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less

  19. Testing in support of on-site storage of residues in the Pipe Overpack Container

    SciTech Connect (OSTI)

    Ammerman, D.J.; Bobbe, J.G.; Arviso, M.

    1997-02-01

    The disposition of the large back-log of plutonium residues at the Rocky Flats Environmental Technology Site (Rocky Flats) will require interim storage and subsequent shipment to a waste repository. Current plans call for disposal at the Waste Isolation Pilot Plant (WIPP) and the transportation to WIPP in the TRUPACT-II. The transportation phase will require the residues to be packaged in a container that is more robust than a standard 55-gallon waste drum. Rocky Flats has designed the Pipe Overpack Container to meet this need. It is desirable to use this same waste packaging for interim on-site storage in non-hardened buildings. To meet the safety concerns for this storage the Pipe Overpack Container has been subjected to a series of tests at Sandia National Laboratories in Albuquerque, New Mexico. In addition to the tests required to qualify the Pipe Overpack Container as a waste container for shipment in the TRUPACT-II several tests were performed solely for the purpose of qualifying the container for interim storage. This report will describe these tests and the packages response to the tests. 12 figs., 3 tabs.

  20. A review of the safety features of 6M packagings for DOE programs

    SciTech Connect (OSTI)

    Not Available

    1988-12-01

    This report, prepared by a US Department of Energy (DOE) Task Force and organized for clarity into two-page modules, argues that the US Department of Transportation (DOT) Specification-6M packagings (hereafter referred to as 6M packaging, or simply 6M) merit continued DOE use and, if necessary, DOE certification. This report is designed to address the specific requirements of a Safety Analysis Report for Packaging (SARP). While not a SARP, this report constitutes a compilation of all available documentation on 6M packagings. The authors individually, and the Task Force collectively, believe their investigation provides justification for the continued use of 6M packagings because they meet criteria for quality assurance and for safety under normal and accident conditions as defined by the US Nuclear Regulatory Commission (NRC) regulations. This report may be used by DOE managers to assist in deliberations on future requirements for 6M packagings as they are required to support DOE programs. For the purpose of ready evaluation, this report includes categorical topics found in Nuclear Regulatory Guide 7.9, the topical guideline for SARPs. The format, however, will (it is hoped) pleasantly surprise customary reader expectations. For, while maintaining categorical headings and subheadings found in SARPs as a skeleton, the Task Force chose to adopt the document design principles developed by Hughes Aircraft in the 1960s, ''Sequential Thematic Organization of Publications'' (STOP). 37 figs.

  1. National Transportation Stakeholders Forum (NTSF) Charter | Department of

    Energy Savers [EERE]

    Energy Services » Waste Management » Packaging and Transportation » National Transportation Stakeholders Forum » National Transportation Stakeholders Forum (NTSF) Charter National Transportation Stakeholders Forum (NTSF) Charter The U.S. Department of Energy (DOE) National Transportation Stakeholders Forum (NTSF) is the mechanism through which DOE engages at a national level with states, tribes, federal agencies and other interested stakeholders about the Department's shipments of

  2. Automated Transportation Logistics and Analysis System (ATLAS) | Department

    Energy Savers [EERE]

    of Energy Services » Waste Management » Packaging and Transportation » Automated Transportation Logistics and Analysis System (ATLAS) Automated Transportation Logistics and Analysis System (ATLAS) The Department of Energy's (DOE's) Automated Transportation Logistics and Analysis System is an integrated web-based logistics management system allowing users to manage inbound and outbound freight shipments by highway, rail, and air. PDF icon Automated Transportation Logistics and Analysis

  3. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    SciTech Connect (OSTI)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  4. Training package 1 for slitting data analysis

    SciTech Connect (OSTI)

    Prime, Michael Bruce

    2015-03-23

    This document and accompanying files are intended as a first training package on how to analyze slitting data. The end goal is to have Idaho National Laboratory (INL) personnel trained to analyze future slitting data taken in the INL Hot Cell on clad, Low-Enriched Uranium (LEU) fuel plates. This first data package will cover data analysis for a monolithic material (as compared to a layered material like the clad fuel plates). The additional issues for layered specimens will be covered in a future training package.

  5. Advanced Ceramic Materials and Packaging Technologies for Realizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ceramic Materials and Packaging Technologies for Realizing Sensors for Concentrating Solar Power Systems Advanced Ceramic Materials and Packaging Technologies for Realizing Sensors ...

  6. Low-Cost Packaged CHP System with Reduced Emissions - Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged CHP System with Reduced Emissions - Presentation by Cummins Power Generation, June 2011 Low-Cost Packaged CHP System with Reduced Emissions - Presentation by ...

  7. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  8. The Model 9977 Radioactive Material Packaging Primer (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Model 9977 Radioactive Material Packaging Primer Citation Details In-Document Search Title: The Model 9977 Radioactive Material Packaging Primer The Model...

  9. Simplification of Diesel Emission Control System Packaging Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Simplification of Diesel Emission Control System Packaging Using SCR Coated on DPF Study...

  10. Energy Management Systems Package for Small Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Package for Small Commercial Buildings Energy Management Systems Package for Small Commercial Buildings Commercial Buildings Integration Project for the 2013 Building...

  11. CERAMIC WASTE FORM DATA PACKAGE

    SciTech Connect (OSTI)

    Amoroso, J.; Marra, J.

    2014-06-13

    The purpose of this data package is to provide information about simulated crystalline waste forms that can be used to select an appropriate composition for a Cold Crucible Induction Melter (CCIM) proof of principle demonstration. Melt processing, viscosity, electrical conductivity, and thermal analysis information was collected to assess the ability of two potential candidate ceramic compositions to be processed in the Idaho National Laboratory (INL) CCIM and to guide processing parameters for the CCIM operation. Given uncertainties in the CCIM capabilities to reach certain temperatures throughout the system, one waste form designated 'Fe-MP' was designed towards enabling processing and another, designated 'CAF-5%TM-MP' was designed towards optimized microstructure. Melt processing studies confirmed both compositions could be poured from a crucible at 1600{degrees}C although the CAF-5%TM-MP composition froze before pouring was complete due to rapid crystallization (upon cooling). X-ray diffraction measurements confirmed the crystalline nature and phase assemblages of the compositions. The kinetics of melting and crystallization appeared to vary significantly between the compositions. Impedance spectroscopy results indicated the electrical conductivity is acceptable with respect to processing in the CCIM. The success of processing either ceramic composition will depend on the thermal profiles throughout the CCIM. In particular, the working temperature of the pour spout relative to the bulk melter which can approach 1700{degrees}C. The Fe-MP composition is recommended to demonstrate proof of principle for crystalline simulated waste forms considering the current configuration of INL's CCIM. If proposed modifications to the CCIM can maintain a nominal temperature of 1600{degrees}C throughout the melter, drain, and pour spout, then the CAF-5%TM-MP composition should be considered for a proof of principle demonstration.

  12. Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository

    SciTech Connect (OSTI)

    Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

    2001-02-01

    The U.S.Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, “EM shall design and fabricate … DOE SNF canisters for shipment to RW.” (1) It also states, “EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71.” (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

  13. White LED with High Package Extraction Efficiency

    Office of Scientific and Technical Information (OSTI)

    ... Lumiramic is a trade name for a product provided by Philips Lighting Philips Solid State Lighting. in Golden Dragon Plus package is 0.02. For CLC phosphor-silicone ...

  14. Pump packages for Colombian crude oil pipeline

    SciTech Connect (OSTI)

    1994-05-01

    The Caterpillar Large Engine Center recently packaged ten engine-driven centrifugal pump packages for British Petroleum Exploration`s crude oil pipeline in South America. The ten sets, which use Ingersoll-Dresser centrifugal pumps, are designed to increase significantly the output of BP`s Central LLanos pipeline located in a remote region near Bogota, Colombia. BP anticipates that the addition of the new pump packages will increase daily volume from the current 100000 barrels to approximately 210000 barrels when the upgrade of the pipeline is completed in September. The ten sets are installed at three separate pumping stations. The stations are designed to operate continuously while unmanned, with only periodic maintenance required. The pump packages are powered by Caterpillar 3612 engines rated 3040 kW at 1000 r/min. The 12-cylinder engines are turbocharged and charge-air cooled and use the pipeline oil as both fuel and a cooling medium for the fuel injectors.

  15. Waste Package Component Design Methodology Report

    SciTech Connect (OSTI)

    D.C. Mecham

    2004-07-12

    This Executive Summary provides an overview of the methodology being used by the Yucca Mountain Project (YMP) to design waste packages and ancillary components. This summary information is intended for readers with general interest, but also provides technical readers a general framework surrounding a variety of technical details provided in the main body of the report. The purpose of this report is to document and ensure appropriate design methods are used in the design of waste packages and ancillary components (the drip shields and emplacement pallets). The methodology includes identification of necessary design inputs, justification of design assumptions, and use of appropriate analysis methods, and computational tools. This design work is subject to ''Quality Assurance Requirements and Description''. The document is primarily intended for internal use and technical guidance for a variety of design activities. It is recognized that a wide audience including project management, the U.S. Department of Energy (DOE), the U.S. Nuclear Regulatory Commission, and others are interested to various levels of detail in the design methods and therefore covers a wide range of topics at varying levels of detail. Due to the preliminary nature of the design, readers can expect to encounter varied levels of detail in the body of the report. It is expected that technical information used as input to design documents will be verified and taken from the latest versions of reference sources given herein. This revision of the methodology report has evolved with changes in the waste package, drip shield, and emplacement pallet designs over many years and may be further revised as the design is finalized. Different components and analyses are at different stages of development. Some parts of the report are detailed, while other less detailed parts are likely to undergo further refinement. The design methodology is intended to provide designs that satisfy the safety and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.

  16. Waste Package Materials Performance Peer Review

    Broader source: Energy.gov [DOE]

    A consensus peer review of the current technical basis and the planned experimental and modeling program for the prediction of the long-term performance of waste package materials being considered...

  17. HOPSPACK: Hybrid Optimization Parallel Search Package.

    SciTech Connect (OSTI)

    Gray, Genetha A.; Kolda, Tamara G.; Griffin, Joshua; Taddy, Matt; Martinez-Canales, Monica

    2008-12-01

    In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel SearchPackage), a new software platform which facilitates combining multiple optimization routines into asingle, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The frameworkis designed such that existing optimization source code can be easily incorporated with minimalcode modification. By maintaining the integrity of each individual solver, the strengths and codesophistication of the original optimization package are retained and exploited.4

  18. Packaging material for thin film lithium batteries

    DOE Patents [OSTI]

    Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  19. Isorropia Partitioning and Load Balancing Package

    Energy Science and Technology Software Center (OSTI)

    2006-09-01

    Isorropia is a partitioning and load balancing package which interfaces with the Zoltan library. Isorropia can accept input objects such as matrices and matrix-graphs, and repartition/redistribute them into a better data distribution on parallel computers. Isorropia is primarily an interface package, utilizing graph and hypergraph partitioning algorithms that are in the Zoltan library which is a third-party library to Tilinos.

  20. FAQS Qualification Card - NNSA Package Certification Engineer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NNSA Package Certification Engineer FAQS Qualification Card - NNSA Package Certification Engineer A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety

  1. Steam Systems, Retrofit Measure Packages, Hydronic Systems

    Energy Savers [EERE]

    Program www.buildingamerica.gov Decker Homes Buildings Technologies Program Steam Systems, Retrofit Measure Packages, Hydronic Systems Russell Ruch Elevate Energy Peter Ludwig Elevate Energy July 16, 2014 Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings Contents * Retrofit Measure Packages for steam and hydronic MF buildings that save 25-30% * System Balancing * Steam * Hydronic 2 | Building America Program www.buildingamerica.gov Background

  2. Practical Thermal Evaluation Methods For HAC Fire Analysis In Type B Radiaoactive Material (RAM) Packages

    SciTech Connect (OSTI)

    Abramczyk, Glenn; Hensel, Stephen J; Gupta, Narendra K.

    2013-03-28

    Title 10 of the United States Code of Federal Regulations Part 71 for the Nuclear Regulatory Commission (10 CFR Part 71.73) requires that Type B radioactive material (RAM) packages satisfy certain Hypothetical Accident Conditions (HAC) thermal design requirements to ensure package safety during accidental fire conditions. Compliance with thermal design requirements can be met by prototype tests, analyses only or a combination of tests and analyses. Normally, it is impractical to meet all the HAC using tests only and the analytical methods are too complex due to the multi-physics non-linear nature of the fire event. Therefore, a combination of tests and thermal analyses methods using commercial heat transfer software are used to meet the necessary design requirements. The authors, along with his other colleagues at Savannah River National Laboratory in Aiken, SC, USA, have successfully used this 'tests and analyses' approach in the design and certification of several United States' DOE/NNSA certified packages, e.g. 9975, 9977, 9978, 9979, H1700, and Bulk Tritium Shipping Package (BTSP). This paper will describe these methods and it is hoped that the RAM Type B package designers and analysts can use them for their applications.

  3. Radiological and Environmental Monitoring at the Clean Slate I and III Sites, Tonopah Test Range, Nevada, With Emphasis on the Implications for Off-site Transport

    SciTech Connect (OSTI)

    Mizell, Steve A; Etyemezian, Vic; McCurdy, Greg; Nikolich, George; Shadel, Craig; Miller, Julianne J

    2014-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]) implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range [NAFR]). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in the dispersal of plutonium over the ground surface downwind of the test ground zero (GZ). Three tests—Clean Slate I, II, and III—were conducted on the TTR in Cactus Flat. The fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. The Desert Research Institute (DRI) installed two monitoring stations in 2008, Station 400 at the Sandia National Laboratories (SNL) Range Operations Center (ROC) and Station 401 at Clean Slate III. Station 402 was installed at Clean Slate I in 2011 to measure radiological, meteorological, and dust conditions. The monitoring activity was implemented to determine if radionuclide contamination in the soil at the Clean Slate sites was being transported beyond the contamination area boundaries. Some of the data collected also permits comparison of radiological exposure at the TTR monitoring stations to conditions observed at Community Environmental Monitoring Program (CEMP) stations around the NTTR. Annual average gross alpha values from the TTR monitoring stations are higher than values from the surrounding CEMP stations. Annual average gross beta values from the TTR monitoring stations are generally lower than values observed for the surrounding CEMP stations. This may be due to use of sample filters with larger pore space because when glass-fiber filters began to be used at TTR Station 400, gross beta values increased. Gamma spectroscopy typically identified only naturally occurring radionuclides. The radionuclides cesium-134 and -137 were identified in only two samples at each station collected in the weeks following the destruction of the nuclear power reactor in Fukushima, Japan, on March 11, 2011. Observed gamma energy values never exceeded the local background by more than 4 μR/h. The higher observed gamma values were coincident with wind from any of the cardinal directions, which suggests that there is no significant transport from the Clean Slate contamination areas. Annual average daily gamma values at the TTR stations are higher than at the surrounding CEMP stations, but they are equivalent to or just slightly higher than the background estimates made at locations at equivalent elevations, such as Denver, Colorado. Winds in excess of approximately 15 mph begin to resuspend soil particles and create dust, but dust generation is also affected by soil temperature, relative humidity, and soil water content. Power curves provide good predictive equations for dust concentration as a function of wind speed. However, winds in the highest wind speed category occur infrequently. iii

  4. Protection of microelectronic devices during packaging

    DOE Patents [OSTI]

    Peterson, Kenneth A. (Albuquerque, NM); Conley, William R. (Tijeras, NM)

    2002-01-01

    The present invention relates to a method of protecting a microelectronic device during device packaging, including the steps of applying a water-insoluble, protective coating to a sensitive area on the device; performing at least one packaging step; and then substantially removing the protective coating, preferably by dry plasma etching. The sensitive area can include a released MEMS element. The microelectronic device can be disposed on a wafer. The protective coating can be a vacuum vapor-deposited parylene polymer, silicon nitride, metal (e.g. aluminum or tungsten), a vapor deposited organic material, cynoacrylate, a carbon film, a self-assembled monolayered material, perfluoropolyether, hexamethyldisilazane, or perfluorodecanoic carboxylic acid, silicon dioxide, silicate glass, or combinations thereof. The present invention also relates to a method of packaging a microelectronic device, including: providing a microelectronic device having a sensitive area; applying a water-insoluble, protective coating to the sensitive area; providing a package; attaching the device to the package; electrically interconnecting the device to the package; and substantially removing the protective coating from the sensitive area.

  5. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Nathan Bryant

    2008-05-01

    This document presents a summary and framework of available transport data and other information directly relevant to the development of the Rainier Mesa/Shoshone Mountain (RMSM) Corrective Action Unit (CAU) 99 groundwater transport model. Where appropriate, data and information documented elsewhere are briefly summarized with reference to the complete documentation.

  6. Phase I Contaminant Transport Parameters for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    John McCord

    2007-09-01

    This report documents transport data and data analyses for Yucca Flat/Climax Mine CAU 97. The purpose of the data compilation and related analyses is to provide the primary reference to support parameterization of the Yucca Flat/Climax Mine CAU transport model. Specific task objectives were as follows: • Identify and compile currently available transport parameter data and supporting information that may be relevant to the Yucca Flat/Climax Mine CAU. • Assess the level of quality of the data and associated documentation. • Analyze the data to derive expected values and estimates of the associated uncertainty and variability. The scope of this document includes the compilation and assessment of data and information relevant to transport parameters for the Yucca Flat/Climax Mine CAU subsurface within the context of unclassified source-term contamination. Data types of interest include mineralogy, aqueous chemistry, matrix and effective porosity, dispersivity, matrix diffusion, matrix and fracture sorption, and colloid-facilitated transport parameters.

  7. CHP Integrated with Burners for Packaged Boilers

    SciTech Connect (OSTI)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a division of Sempra Energy. These match funds were provided via concurrent contracts and investments available via CMCE, Altex, and Leva Energy The project attained all its objectives and is considered a success. CMCE secured the support of GI&E from Italy to supply 100 kW Turbec T-100 microturbines for the project. One was purchased by the project’s subcontractor, Altex, and a second spare was purchased by CMCE under this project. The microturbines were then modified to convert from their original recuperated design to a simple cycle configuration. Replacement low-NOx silo combustors were designed and bench tested in order to achieve compliance with the California Air Resources Board (CARB) 2007 emission limits for NOx and CO when in CHP operation. The converted microturbine was then mated with a low NOx burner provided by Altex via an integration section that allowed flow control and heat recovery to minimize combustion blower requirements; manage burner turndown; and recover waste heat. A new fully integrated control system was designed and developed that allowed one-touch system operation in all three available modes of operation: (1) CHP with both microturbine and burner firing for boiler heat input greater than 2 MMBtu/hr; (2) burner head only (BHO) when the microturbine is under service; and (3) microturbine only when boiler heat input requirements fall below 2 MMBtu/hr. This capability resulted in a burner turndown performance of nearly 10/1, a key advantage for this technology over conventional low NOx burners. Key components were then assembled into a cabinet with additional support systems for generator cooling and fuel supply. System checkout and performance tests were performed in the laboratory. The assembled system and its support equipment were then shipped and installed at a host facility where final performance tests were conducted following efforts to secure fabrication, air, and operating permits. The installed power burner is now in commercial operation and has achieved all the performance goals.

  8. White LED with High Package Extraction Efficiency

    SciTech Connect (OSTI)

    Yi Zheng; Matthew Stough

    2008-09-30

    The goal of this project is to develop a high efficiency phosphor converting (white) Light Emitting Diode (pcLED) 1-Watt package through an increase in package extraction efficiency. A transparent/translucent monolithic phosphor is proposed to replace the powdered phosphor to reduce the scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is proposed between blue LED die and phosphor layer to recover inward yellow emission. At the end of the project we expect to recycle approximately 50% of the unrecovered backward light in current package construction, and develop a pcLED device with 80 lm/W{sub e} using our technology improvements and commercially available chip/package source. The success of the project will benefit luminous efficacy of white LEDs by increasing package extraction efficiency. In most phosphor-converting white LEDs, the white color is obtained by combining a blue LED die (or chip) with a powdered phosphor layer. The phosphor partially absorbs the blue light from the LED die and converts it into a broad green-yellow emission. The mixture of the transmitted blue light and green-yellow light emerging gives white light. There are two major drawbacks for current pcLEDs in terms of package extraction efficiency. The first is light scattering caused by phosphor particles. When the blue photons from the chip strike the phosphor particles, some blue light will be scattered by phosphor particles. Converted yellow emission photons are also scattered. A portion of scattered light is in the backward direction toward the die. The amount of this backward light varies and depends in part on the particle size of phosphors. The other drawback is that yellow emission from phosphor powders is isotropic. Although some backward light can be recovered by the reflector in current LED packages, there is still a portion of backward light that will be absorbed inside the package and further converted to heat. Heat generated in the package may cause a deterioration of encapsulant materials, affecting the performance of both the LED die and phosphor, leading to a decrease in the luminous efficacy over lifetime. Recent studies from research groups at Rensselaer Polytechnic Institute found that, under the condition to obtain a white light, about 40% of the light is transmitted outward of the phosphor layer and 60% of the light is reflected inward.1,2 It is claimed that using scattered photon extraction (SPE) technique, luminous efficacy is increased by 60%. In this project, a transparent/translucent monolithic phosphor was used to replace the powdered phosphor layer. In the normal pcLED package, the powdered phosphor is mixed with silicone either to be deposited on the top of LED die forming a chip level conversion (CLC) white LED or to be casted in the package forming a volume conversion white LED. In the monolithic phosphors there are no phosphor powder/silicone interfaces so it can reduce the light scattering caused by phosphor particles. Additionally, a multi-layer thin film selectively reflecting filter is inserted in the white LED package between the blue LED die and phosphor layer. It will selectively transmit the blue light from the LED die and reflect the phosphor's yellow inward emission outward. The two technologies try to recover backward light to the outward direction in the pcLED package thereby improving the package extraction efficiency.

  9. Hanford 222-S Laboratory Analysis and Testing Services DE-EM0003722

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D-1 PART I - THE SCHEDULE SECTION D - PACKAGING AND MARKING D.01 PACKAGING .................................................................................................................................. D-2 D.02 MARKING....................................................................................................................................... D-2 Hanford 222-S Laboratory Analysis and Testing Services DE-EM0003722 D-2 SECTION D - PACKAGING AND MARKING D.01 PACKAGING Preservation and

  10. Example Performance Targets and Efficiency Packages Greensburg, Kansas (Presentation)

    SciTech Connect (OSTI)

    Anderson, R.

    2008-01-01

    This presentation shows the energy performance targets and efficiency packages for residential buildings in Greensburg, Kansas.

  11. KJRR-FAI Hydraulic Flow Testing Input Package

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

    2013-12-01

    The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATR’s Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.

  12. AT-400A compliance test report

    SciTech Connect (OSTI)

    Glass, R.E.

    1998-06-01

    In 1993 Sandia was directed to design containers for the long-term storage and transport of nuclear weapons origin fissile material. This program was undertaken at the direction of the US Department of Energy and in cooperation with Lawrence Livermore National Laboratory and Los Alamos National Laboratory. Lawrence Livermore National Laboratory and Los Alamos National Laboratory were tasked with developing the internal fixturing for the contents. The hardware is being supplied by AlliedSignal Federal Manufacturing and Technologies, and the packaging process has been developed at Mason and Hanger Corporation`s Pantex Plant. The unique challenge was to design a container that could be sealed with the fissile material contents; and, anytime during the next 50 years, the container could be transported with only the need for the pre-shipment leak test. This required a rigorous design capable of meeting the long-term storage and transportation requirements. This report addresses the final testing that was undertaken to demonstrate compliance with US radioactive materials transport regulations.

  13. Transportation Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transportation-research TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Transportation Research Current Research Overview The U.S. Department of Transportation (USDOT) has established its only high-performance computing and engineering analysis research facility at Argonne National Laboratory to provide applications support in key areas of applied research and development for the USDOT community. The Transportation Research and

  14. Directory of certificiates of compliance for radioactive materials packages: Report of NRC approved packages. Revision 19, Volume 1

    SciTech Connect (OSTI)

    1996-10-01

    This directory provides information on packagings approved by the U.S. Nuclear Regulatory Commission.

  15. Ex Parte Communication re Energy Conservation Standards for Single Package

    Energy Savers [EERE]

    Vertical Air Conditioners and Single Package Vertical Heat Pumps, 79 Fed. Reg. 78,614 (Dec. 30, 2014) (Docket No. EERE-2012-BT-STD-0041) | Department of Energy Communication re Energy Conservation Standards for Single Package Vertical Air Conditioners and Single Package Vertical Heat Pumps, 79 Fed. Reg. 78,614 (Dec. 30, 2014) (Docket No. EERE-2012-BT-STD-0041) Ex Parte Communication re Energy Conservation Standards for Single Package Vertical Air Conditioners and Single Package Vertical Heat

  16. Temperature-package power correlations for open-mode geologic disposal concepts.

    SciTech Connect (OSTI)

    Hardin, Ernest L.

    2013-02-01

    Logistical simulation of spent nuclear fuel (SNF) management in the U.S. combines storage, transportation and disposal elements to evaluate schedule, cost and other resources needed for all major operations leading to final geologic disposal. Geologic repository reference options are associated with limits on waste package thermal power output at emplacement, in order to meet limits on peak temperature for certain key engineered and natural barriers. These package power limits are used in logistical simulation software such as CALVIN, as threshold requirements that must be met by means of decay storage or SNF blending in waste packages, before emplacement in a repository. Geologic repository reference options include enclosed modes developed for crystalline rock, clay or shale, and salt. In addition, a further need has been addressed for open modes in which SNF can be emplaced in a repository, then ventilated for decades or longer to remove heat, prior to permanent repository closure. For each open mode disposal concept there are specified durations for surface decay storage (prior to emplacement), repository ventilation, and repository closure operations. This study simulates those steps for several timing cases, and for SNF with three fuel-burnup characteristics, to develop package power limits at which waste packages can be emplaced without exceeding specified temperature limits many years later after permanent closure. The results are presented in the form of correlations that span a range of package power and peak postclosure temperature, for each open-mode disposal concept, and for each timing case. Given a particular temperature limit value, the corresponding package power limit for each case can be selected for use in CALVIN and similar tools.

  17. Conceptual design of an RTG Facility Transportation System

    SciTech Connect (OSTI)

    Black, S.J.; Gentzlinger, R.C.; Lujan, R.E.

    1994-06-03

    The conceptual design of an Radioisotope Thermoelectric Generator (RTG) Facility Transportation System which is part of the overall RTG Transportation System has been completed and is described in detail. The Facility Transportation System serves to provide locomotion, cooling, shock protection and data acquisition for the RTG package during loading and unloading sequences. The RTG Facility Transportation System consists of a Transporter Subsystem, a Package Cooling Subsystem, and a Shock Limiting Transit Device Subsystem. The Transporter Subsystem is a uniquely designed welded steel cart combined with a pneumatically-driven hand tug for locomotion. The Package Cooling Subsystem provides five kilowatts of active liquid cooling via an on-board refrigeration system. The Shock limiting Transit Device Subsystem consists of a consumable honeycomb transit frame which provides shock protection for the 3855 kg (8500 LB) RTG package. These subsystems have been combined into an integrated system which will facilitate the unloading and loading of the RTG , of the Transport Trailer as well as meet ALARA radiation Package into and out exposure guidelines.

  18. AUTHORIZING THE DOT SPECIFICATION 6M PACKAGING FOR CONTINUED USE AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Watkins, R.; Loftin, B.; Hoang, D.

    2010-03-04

    The U.S. Department of Transportation (DOT) Specification 6M packaging was in extensive use for more than 40 years for in-commerce shipments of Type B quantities of fissile and radioactive material (RAM) across the USA, among the Department of Energy (DOE) laboratories, and between facilities in the DOE production complex. In January 2004, the DOT Research and Special Programs Administration (RSPA) Agency issued a final rule in the Federal Register to ammend requirements in the Hazardous Materials Regulations (HMR) pertaining to the transportation of radioactive materials. The final rule became effective on October 1, 2004. One of those changes discontinued the use of the DOT specification 6M, along with other DOT specification packagings, on October 1, 2008. A main driver for the change was due to the fact that 6M specification packagings were not supported by a Safety Analysis Report for Packagings (SARP) that was compliant with Title 10 of the Code of Federal Regulations (CFR) Part 71 (10 CFR 71). The regulatory rules for the discontinued use have been edited in Title 49 of the CFR Parts 100-185, 2004 edition and thereafter. Prior to October 1, 2008, the use of the 6M within the boundaries of the Savannah River Site (SRS), called an onsite transfer, was governed by an onsite transportation document that referenced 49 CFR Parts 100-185. SRS had to develop an Onsite Safety Assessment (OSA) which was independent of 49 CFR in order to justify the continued use of the DOT Specification 6M for the transfer of radioactive material (RAM) at the SRS after October 1, 2008. This paper will discuss the methodology for and difficulties associated with authorizing the DOT Specification 6M Packaging for continued use at the Savannah River Site.

  19. Conceptual designs for the AT-400MO package

    SciTech Connect (OSTI)

    Fischer, L.E.; Hafner, R.F.; Hovingh, J.; Keeton, S.C.; Russell, E.W.; Lemmings, J.

    1997-01-01

    Currently, Pantex handles and stores weapons pits in AT-400A packages. The Department of Energy currently plans to oversee the conversion of weapon pits into plutonium metal or oxide. These products will then be stored, and perhaps transported at a later time, to other DOE sites. If DOE assigns the pit conversion process to Pantex, it makes sense to store the resulting Pu metal or oxide at Pantex, utilizing existing facilities, equipment, processes, and personnel. The four conceptual designs presented herein substitute the current AT-400A containment vessel, designed for weapon pits, with a vessel designed to store and/or ship Pu metal or oxides. These new designs utilize the existing AT-400A overpack system consisting of the drum assembly and radial impact limiters and likewise employ existing AT-400A production operations.

  20. DEPLOYMENT OF THE BULK TRITIUM SHIPPING PACKAGE

    SciTech Connect (OSTI)

    Blanton, P.

    2013-10-10

    A new Bulk Tritium Shipping Package (BTSP) was designed by the Savannah River National Laboratory to be a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The BTSP was certified by the National Nuclear Safety Administration in 2011 for shipments of up to 150 grams of Tritium. Thirty packages were procured and are being delivered to various DOE sites for operational use. This paper summarizes the design features of the BTSP, as well as associated engineered material improvements. Fabrication challenges encountered during production are discussed as well as fielding requirements. Current approved tritium content forms (gas and tritium hydrides), are reviewed, as well as, a new content, tritium contaminated water on molecular sieves. Issues associated with gas generation will also be discussed.

  1. MEMS Packaging - Current Issues and Approaches

    SciTech Connect (OSTI)

    DRESSENDORFER,PAUL V.; PETERSON,DAVID W.; REBER,CATHLEEN ANN

    2000-01-19

    The assembly and packaging of MEMS (Microelectromechanical Systems) devices raise a number of issues over and above those normally associated with the assembly of standard microelectronic circuits. MEMS components include a variety of sensors, microengines, optical components, and other devices. They often have exposed mechanical structures which during assembly require particulate control, space in the package, non-contact handling procedures, low-stress die attach, precision die placement, unique process schedules, hermetic sealing in controlled environments (including vacuum), and other special constraints. These constraints force changes in the techniques used to separate die on a wafer, in the types of packages which can be used in the assembly processes and materials, and in the sealing environment and process. This paper discusses a number of these issues and provides information on approaches being taken or proposed to address them.

  2. Geometric Modeling, Radiation Simulation, Rendering, Analysis Package

    Energy Science and Technology Software Center (OSTI)

    1995-01-17

    RADIANCE is intended to aid lighting designers and architects by predicting the light levels and appearance of a space prior to construction. The package includes programs for modeling and translating scene geometry, luminaire data and material properties, all of which are needed as input to the simulation. The lighting simulation itself uses ray tracing techniques to compute radiance values (ie. the quantity of light passing through a specific point in a specific direction), which aremore » typically arranged to form a photographic quality image. The resulting image may be analyzed, displayed and manipulated within the package, and converted to other popular image file formats for export to other packages, facilitating the production of hard copy output.« less

  3. Spring 2011 National Transportation Stakeholder Forum Meetings, Colorado |

    Energy Savers [EERE]

    Department of Energy 1 National Transportation Stakeholder Forum Meetings, Colorado Spring 2011 National Transportation Stakeholder Forum Meetings, Colorado NTSF Spring 2011 Agenda Final Agenda NTSF Presentations Activities and Accomplishments Developing a Regulatory Framework for Extended Storage and Transportation DOE Railcar Fleet Asset Planning & Lessons Learned DOE Shipment Activities: What We Accomplished and a Look Forward DOE-Idaho's Packaging and Transportation Perspective

  4. RADIATION HEAT TRANSFER ENVIRONMENT IN FIRE AND FURNACE TESTS OF RADIOACTIVE MATERIALS PAKCAGES

    SciTech Connect (OSTI)

    Smith, A

    2008-12-31

    The Hypothetical Accident Conditions (HAC) sequential test of radioactive materials packages includes a thermal test to confirm the ability of the package to withstand a transportation fire event. The test specified by the regulations (10 CFR 71) consists of a 30 minute, all engulfing, hydrocarbon fuel fire, with an average flame temperature of at least 800 C. The requirements specify an average emissivity for the fire of at least 0.9, which implies an essentially black radiation environment. Alternate test which provide equivalent total heat input at the 800 C time averaged environmental temperature may also be employed. When alternate tests methods are employed, such as furnace or gaseous fuel fires, the equivalence of the radiation environment may require justification. The effects of furnace and open confinement fire environments are compared with the regulatory fire environment, including the effects of gases resulting from decomposition of package overpack materials. The results indicate that furnace tests can produce the required radiation heat transfer environment, i.e., equivalent to the postulated pool fire. An open enclosure, with transparent (low emissivity) fire does not produce an equivalent radiation environment.

  5. Experimental investigation on hydrogen cryogenic distillation equipped with package made by ICIT

    SciTech Connect (OSTI)

    Bornea, A.; Zamfirache, M.; Stefan, L.; Stefanescu, I.; Preda, A.

    2015-03-15

    ICIT (Institute for Cryogenics and Isotopic Technologies) has used its experience in cryogenic water distillation process to propose a similar process for hydrogen distillation that can be used in detritiation technologies. This process relies on the same packages but a stainless filling is tested instead of the phosphorous bronze filling used for water distillation. This paper presents two types of packages developed for hydrogen distillation, both have a stainless filling but it differs in terms of density, exchange surface and specific volume. Performance data have been obtained on laboratory scale. In order to determine the characteristics of the package, the installation was operated in the total reflux mode, for different flow rate for the liquid. There were made several experiments considering different operating conditions. Samples extracted at the top and bottom of cryogenic distillation column allowed mathematical processing to determine the separation performance. The experiments show a better efficiency for the package whose exchange surface was higher and there were no relevant differences between both packages as the operating pressure of the cryogenic column was increasing. For a complete characterization of the packages, future experiments will be considered to determine performance at various velocities in the column and their correlation with the pressure in the column. We plan further experiments to separate tritium from the mixture of isotopes DT, having in view that our goal is to apply this results to a detritiation plant.

  6. Radiation Transport

    SciTech Connect (OSTI)

    Urbatsch, Todd James

    2015-06-15

    We present an overview of radiation transport, covering terminology, blackbody raditation, opacities, Boltzmann transport theory, approximations to the transport equation. Next we introduce several transport methods. We present a section on Caseology, observing transport boundary layers. We briefly broach topics of software development, including verification and validation, and we close with a section on high energy-density experiments that highlight and support radiation transport.

  7. Value Engineering Study for Closing Waste Packages Containing TAD Canisters

    SciTech Connect (OSTI)

    Colleen Shelton-Davis

    2005-11-01

    The Office of Civilian Radioactive Waste Management announced their intention to have the commercial utilities package spent nuclear fuel in shielded, transportable, ageable, and disposable containers prior to shipment to the Yucca Mountain repository. This will change the conditions used as a basis for the design of the waste package closure system. The environment is now expected to be a low radiation, low contamination area. A value engineering study was completed to evaluate possible modifications to the existing closure system using the revised requirements. Four alternatives were identified and evaluated against a set of weighted criteria. The alternatives are (1) a radiation-hardened, remote automated system (the current baseline design); (2) a nonradiation-hardened, remote automated system (with personnel intervention if necessary); (3) a nonradiation-hardened, semi-automated system with personnel access for routine manual operations; and (4) a nonradiation-hardened, fully manual system with full-time personnel access. Based on the study, the recommended design is Alternative 2, a nonradiation-hardened, remote automated system. It is less expensive and less complex than the current baseline system, because nonradiation-hardened equipment can be used and some contamination control equipment is no longer needed. In addition, the inclusion of remote automation ensures throughput requirements are met, provides a more reliable process, and provides greater protection for employees from industrial accidents and radiation exposure than the semi-automated or manual systems. Other items addressed during the value engineering study as requested by OCRWM include a comparison to industry canister closure systems and corresponding lessons learned; consideration of closing a transportable, ageable, and disposable canister; and an estimate of the time required to perform a demonstration of the recommended closure system.

  8. Energy Savings Measure Packages: Existing Homes

    SciTech Connect (OSTI)

    Casey, S.; Booten, C.

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

  9. 1 and 2-Dimensional Line Transfer Package

    Energy Science and Technology Software Center (OSTI)

    1990-07-01

    LXF1D is a one dimensional steady-state line transfer package designed to handle: overlapping and or interacting lines, planar, cylindrical, spherical (and special) geometries, doppler shifts, complete redistribution (CRD), partial redistribution (PRD). PRD requires the use of REDIST or some other package to produce emission profiles. LXF2D is a two dimensional version of LXF1D for xy and rz geometries. Both LXF1D and LXF2D are designed to be added to existing non-local thermodynamic equilibrium (NLTE) codes withmore » a minimum of effort.« less

  10. MEMS packaging efforts at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Custer, Jonathan Sloane

    2003-02-01

    Sandia National Laboratories has programs covering a broad range of MEMS technologies from LIGA to bulk to surface micromachining. These MEMS technologies are being considered for an equally broad range of applications, including sensors, actuators, optics, and microfluidics. As these technologies have moved from the research to the prototype product stage, packaging has been required to develop new capabilities to integrated MEMS and other technologies into functional microsystems. This paper discusses several of Sandia's MEMS packaging efforts, focusing mainly on inserting Sandia's SUMMIT V (5-level polysilicon) surface micromachining technology into fieldable microsystems.

  11. Energy Savings Measure Packages. Existing Homes

    SciTech Connect (OSTI)

    Casey, Sean; Booten, Chuck

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  12. Express Package Shipping Services | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Express Package Shipping Services General Information: The materials handling office's express package shipping service offers overnight domestic letter and parcel service for official business only. Express international shipments are also offered. Many hazardous and non-hazardous materials may be shipped by express. This service is provided to Ames Laboratory personnel. Hours: Monday through Friday - 7:30 a.m. to 11:50 a.m. - 12:30 p.m. through 4:00 p.m. Cutoff: for 10:30 a.m. next day

  13. A commentary on the 1995 DOT/NRC amendments to the U.S. nuclear transportation regulations

    SciTech Connect (OSTI)

    Grella, A.

    1996-07-01

    This article discusses the major revisions (1995 DOT/NRC ammendments) to the US Nuclear Transportation regulations and their probable impacts on transportation. Areas covered include the following: the LSA and SCO definitions and packaging; radiation protection programs; mandatory use of SI units; changes an additions to the table of A1/A2 radionuclide values; and additional type B package hypothetical accident parameters.

  14. Safety evaluation for packaging (onsite) for the Pacific Northwest National Laboratory HEPA filter box

    SciTech Connect (OSTI)

    McCoy, J.C.

    1998-07-15

    This safety evaluation for packaging (SEP) evaluates and documents the safe onsite transport of eight high-efficiency particulate air (HEPA) filters in the Pacific Northwest National Laboratory HEPA Filter Box from the 300 Area of the Hanford Site to the Central Waste Complex and on to burial in the 200 West Area. Use of this SEP is authorized for 1 year from the date of release.

  15. Gas Generation Test Support for Transportation and Storage of Plutonium Residue Materials - Part 1: Rocky Flats Sand, Slag, and Crucible Residues

    SciTech Connect (OSTI)

    Livingston, R.R.

    1999-08-24

    The purpose of this report is to present experimental results that can be used to establish one segment of the safety basis for transportation and storage of plutonium residue materials.

  16. Drift emplaced waste package thermal response

    SciTech Connect (OSTI)

    Ruffner, D.J.; Johnson, G.L.; Platt, E.A.; Blink, J.A.; Doering, T.W.

    1993-01-01

    Thermal calculations of the effects of radioactive waste decay heat on the I repository at Yucca Mountain, Nevada have been conducted by the Yucca Mountain Site Characterization Project (YMP) at Lawrence Livermore National Laboratory (LLNL) in conjunction with the B&W Fuel Company. For a number of waste package spacings, these 3D transient calculations use the TOPAZ3D code to predict drift wall temperatures to 10,000 years following emplacement. Systematic tcniperature variation occurs as a function of fuel age at emplacement and Areal Mass Loading (AML) during the first few centuries after emplacement. After about 1000 years, emplacement age is not a strong driver on rock temperature; AML has a larger impact. High AMLs occur when large waste packages are emplaced end-tocnd in drifts. Drift emplacement of equivalent packages results in lower rock teniperatures than borehole emplacement. For an emplacement scheme with 50% of the drift length occupied by packages, an AML of 138 MTU/acre is about three times higher than the Site Characterization Plan-Conceptual Design (SCP-CD) value. With this higher AML (requiring only 1/3 of the SCP-CD repository footprint), peak drift wall temperatures do not exceed 160*C, but rock temperatures excetd the boiling point of water for about 3000 years. These TOPAZ3D results Iiive been compared with reasonable agreement with two other computer codes.

  17. ISSUANCE 2015-06-30: Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Energy Conservation Standards for Packaged Terminal Air Conditioners and Packaged Terminal Heat Pumps, Final Rule

  18. Test plan/procedure for the SPM-1 shipping container system. Revision 0

    SciTech Connect (OSTI)

    Flanagan, B.D.

    1995-07-01

    The 49 CFR 173.465 Type A packaging tests will verify that SPM-1 will provide adequate protection and pass as a Type A package. Test will determine that the handle of the Pig will not penetrate through the plywood spacer and rupture the shipping container. Test plan/procedure provides planning, pre-test, setup, testing, and post-testing guidelines and procedures for conducting the {open_quotes}Free Drop Test{close_quotes} procedure for the SPM-1 package.

  19. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect (OSTI)

    Adkins, H.E.; Bearden, T.E.

    1990-10-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  20. Surface Micromachine Microfluidics: Design, Fabrication, Packaging, and Characterization

    SciTech Connect (OSTI)

    Galambos, Paul; Eaton, William P.; Shul, Randy; Willison, Christi Gober; Sniegowski, Jeffrey J.; Miller, Samuel L.; Guttierez, Daniel

    1999-06-30

    The field of microfluidics is undergoing rapid growth in terms of new device and system development. Among the many methods of fabricating microfluidic devices and systems, surface micromachining is relatively underrepresented due to difficulties in the introduction of fluids into the very small channels produced, packaging problems, and difficulties in device and system characterization. The potential advantages of using surface micromachining including compatibility with the existing integrated circuit tool set, integration of electronic sensing and actuation with microfluidics, and fluid volume minimization. In order to explore these potential advantages we have developed first generation surface micromachined microfluidic devices (channels) using an adapted pressure sensor fabrication process to produce silicon nitride channels, and the SUMMiT process to produce polysilicon channels. The channels were characterized by leak testing and flow rate vs. pressure measurements. The fabrication processes used and results of these tests are reported in this paper.

  1. Going the Distance? NRC's Response to the National Academy of Science's Transportation Study

    SciTech Connect (OSTI)

    Easton, E.P.; Bajwa, C.S.

    2008-07-01

    In February 2006, the National Academy of Sciences (NAS) published the results of a 3 1/2-year study, titled Going the Distance, that examined the safety of transporting spent nuclear fuel (SNF) and high level waste (HLW) in the United States. NAS initiated this study to address what it perceived to be a national need for an independent, objective, and authoritative analysis of SNF and HLW transport in the United States. The study was co-sponsored by the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), the U.S. Department of Transportation (DOT), the Electric Power Research Institute and the National Cooperative Highway Research Program. This paper addresses some of the recommendations made in the NAS study related to the performance of SNF transportation casks in long duration fires, the use of full-scale package testing, and the need for an independent review of transportation security prior to the commencement of large scale shipping campaigns to an interim storage site or geologic repository. In conclusion: The NRC believes that the current regulations in 10 CFR Part 71 for the design of SNF and HLW transportation packages provide a very high level of protection to the public for very severe accidents and credible threat scenarios. As recommended by the NAS study, additional studies of accidents involving severe fires have been completed. These studies have confirmed that spent fuel casks would be expected to withstand very severe fires without the release of any fission products from the spent fuel. Additionally, changes in rail operating procedures such as the use of dedicated trains and prohibition on the co-location of SNF and flammable liquids in rail tunnels can further reduce the already low probability of severe rail accident fires involving SNF and HLW. (authors)

  2. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, B.K.

    1997-01-01

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG{close_quote}s performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS. {copyright} {ital 1997 American Institute of Physics.}

  3. Real-time monitoring during transportation of a radioisotope thermoelectric generator (RTG) using the radioisotope thermoelectric generator transportation system (RTGTS)

    SciTech Connect (OSTI)

    Pugh, Barry K.

    1997-01-10

    The Radioisotopic Thermoelectric Generators (RTGs) that will be used to support the Cassini mission will be transported in the Radioisotope Thermoelectric Generator Transportation System (RTGTS). To ensure that the RTGs will not be affected during transportation, all parameters that could adversely affect RTG's performance must be monitored. The Instrumentation and Data Acquisition System (IDAS) for the RTGTS displays, monitors, and records all critical packaging and trailer system parameters. The IDAS also monitors the package temperature control system, RTG package shock and vibration data, and diesel fuel levels for the diesel fuel tanks. The IDAS alarms if any of these parameters reach an out-of-limit condition. This paper discusses the real-time monitoring during transportation of the Cassini RTGs using the RTGTS IDAS.

  4. Work Packages for Site Support Service at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Work Packages for Site Support Service at Los Alamos National Laboratory-IG-0746 Work Packages for Site Support Service at Los Alamos National Laboratory-IG-0746 The Department of ...

  5. Hawaii Information Package for Chemical Inventory Form (HCIF...

    Open Energy Info (EERE)

    Information Package for Chemical Inventory Form (HCIF)Tier II Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Hawaii Information Package for Chemical...

  6. [PATCHED] python/2.7.4 gzip package fails

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PATCHED python2.7.4 gzip package fails PATCHED python2.7.4 gzip package fails September 24, 2013 by Doug Jacobsen The modules version of python (python2.7.4) had a bug in...

  7. Bi-level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  8. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Packaging with Consideration of Electromagnetic and Material Characteristics Alnico and Ferrite Hybrid Excitation Electric Machines Wireless ...

  9. USDA Section 502 Direct Loan Application Packaging Training

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture (USDA) is providing Section 502 direct loan application packaging training.

  10. CD Label and Package Templates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications, Exhibits, & Logos » Templates » CD Label and Package Templates CD Label and Package Templates The Office of Energy Efficiency and Renewable Energy (EERE) has developed templates for CD labels and CD packages. These can be used for all EERE products. Both templates are available as EPS files, which can be downloaded and edited in a graphics package like Adobe Illustrator. You are not required to use these templates for your EERE products. These templates were designed to allow

  11. CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 | Department of Energy Integrated with Packaged Boilers - Presentation by CMCE, Inc., June 2011 CHP Integrated with Packaged Boilers - Presentation by CMCE, Inc., June 2011 Presentation on CHP Integrated with Packaged Boilers, given by Carlo Castaldini of CMCE, Inc., at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon packaged_boilers_castaldini.pdf More Documents & Publications CHP Integrated with Burners for

  12. Beam Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Transport Beam Transport A simplified drawing of the beam transport system from the linac to Target-1 (Lujan Center), Target-2 (Blue Room) and Target-4 is shown below. In usual operation beam is transported from the linac through the pulsed Ring Injection Kicker (RIKI) magnet. When RIKI is switched on, the beam is injected into the storage ring with the time structure shown here. The beam is accumulated in the PSR and then transported to Target-1. beam_transport1 Simplified drawing of the

  13. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    SciTech Connect (OSTI)

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  14. HICEV America Test Sequence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HICEV America TEST SEQUENCE Revision 0 November 1, 2004 Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: __________ Garrett Beauregard Approved by: _______________________________________________ Date: _______________ Donald B. Karner HICEV America Test Sequence Page 1 2004 Electric Transportation Applications All Rights Reserved HICEV PERFORMANCE TEST PROCEDURE SEQUENCE The following test sequence shall be used for conduct of HICEV America

  15. NEV America Test Sequence

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEVAmerica TEST SEQUENCE Revision 2 Effective February 1, 2008 Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: __________ Nick Fengler Approved by: _________ ________________________________ Date: _______________ ______ Donald B. Karner ©2008 Electric Transportation Applications All Rights Reserved NEVAmerica Test Sequence Rev 2 Page 1 NEV PERFORMANCE TEST PROCEDURE SEQUENCE The following test sequence shall be used for conduct of NEVAmerica

  16. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF[sub 6]). Uranium hexafluoride enriched greater than 1.0 wt percent [sup 235]U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF[sub 6] cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF[sub 6] packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  17. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    Becker, D.L.; Lindquist, M.R.

    1993-03-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of enriched uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched greater than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks (Reference 3). Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a tram of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the review is documented in Reference 4.

  18. Uranium hexafluoride packaging tiedown systems overview at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio. Revision 1

    SciTech Connect (OSTI)

    Becker, D.L.; Green, D.J.; Lindquist, M.R.

    1993-07-01

    The Portsmouth Gaseous Diffusion Plant (PORTS) in Piketon, Ohio, is operated by Martin Marietta Energy Systems, Inc., through the US Department of Energy-Oak Ridge Operations Office (DOE-ORO) for the US Department of Energy-Headquarters, Office of Nuclear Energy. The PORTS conducts those operations that are necessary for the production, packaging, and shipment of uranium hexafluoride (UF{sub 6}). Uranium hexafluoride enriched uranium than 1.0 wt percent {sup 235}U shall be packaged in accordance with the US Department of Transportation (DOT) regulations of Title 49 CFR Parts 173 (Reference 1) and 178 (Reference 2), or in US Nuclear Regulatory Commission (NRC) or US Department of Energy (DOE) certified package designs. Concerns have been expressed regarding the various tiedown methods and condition of the trailers being used by some shippers/carriers for international transport of the UF{sub 6} cylinders/overpacks. Because of the concerns about international shipments, the US Department of Energy-Headquarters (DOE-HQ) Office of Nuclear Energy, through DOE-HQ Transportation Management Division, requested Westinghouse Hanford Company (Westinghouse Hanford) to review UF{sub 6} packaging tiedown and shipping practices used by PORTS, and where possible and appropriate, provide recommendations for enhancing these practices. Consequently, a team of two individuals from Westinghouse Hanford visited PORTS on March 5 and 6, 1990, for the purpose of conducting this review. The paper provides a brief discussion of the review activities and a summary of the resulting findings and recommendations. A detailed reporting of the is documented in Reference 4.

  19. MAVTgsa: An R Package for Gene Set (Enrichment) Analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chien, Chih-Yi; Chang, Ching-Wei; Tsai, Chen-An; Chen, James J.

    2014-01-01

    Gene semore » t analysis methods aim to determine whether an a priori defined set of genes shows statistically significant difference in expression on either categorical or continuous outcomes. Although many methods for gene set analysis have been proposed, a systematic analysis tool for identification of different types of gene set significance modules has not been developed previously. This work presents an R package, called MAVTgsa, which includes three different methods for integrated gene set enrichment analysis. (1) The one-sided OLS (ordinary least squares) test detects coordinated changes of genes in gene set in one direction, either up- or downregulation. (2) The two-sided MANOVA (multivariate analysis variance) detects changes both up- and downregulation for studying two or more experimental conditions. (3) A random forests-based procedure is to identify gene sets that can accurately predict samples from different experimental conditions or are associated with the continuous phenotypes. MAVTgsa computes the P values and FDR (false discovery rate) q -value for all gene sets in the study. Furthermore, MAVTgsa provides several visualization outputs to support and interpret the enrichment results. This package is available online.« less

  20. Safety analysis report for packaging upgrade plan

    SciTech Connect (OSTI)

    Kelly, D.L., Westinghouse Hanford

    1996-12-09

    This Safety Analysis Report for Packaging (SARP) Upgrade Plan reflects a SARP upgrade schedule based on the most current program needs. A performance agreement has been assigned, beginning in FY 1997, to update, revise, and/or cancel 20 percent of the existing onsite SARPS, so that 100 percent are reviewed and within current standards by the completion of the Project Hanford Management Contract (five-year period).

  1. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, Terry W. (Tracy, CA); Ault, Earl R. (Dublin, CA); Moses, Edward I. (Castro Valley, CA)

    1992-01-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment.

  2. Copper vapor laser modular packaging assembly

    DOE Patents [OSTI]

    Alger, T.W.; Ault, E.R.; Moses, E.I.

    1992-12-01

    A modularized packaging arrangement for one or more copper vapor lasers and associated equipment is disclosed herein. This arrangement includes a single housing which contains the laser or lasers and all their associated equipment except power, water and neon, and means for bringing power, water, and neon which are necessary to the operation of the lasers into the container for use by the laser or lasers and their associated equipment. 2 figs.

  3. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Hail Impact Testing on Crystalline Si Modules with Flexible Packaging Delamination Failures ...

  4. Determination of Fire Enviroment in Stacked Cargo Containers with Radioactive Materials Packages

    SciTech Connect (OSTI)

    Arviso, M.; Bobbe, J.G.; Dukart, R.D.; Koski, J.A.

    1999-05-01

    Results from a Fire Test with a three-by-three stack of standard 6 m long International Standards Organization shipping containers containing combustible fuels and empty radioactive materials packages are reported and discussed. The stack is intended to simulate fire conditions that could occur during on-deck stowage on container cargo ships. The fire is initated by locating the container stack adjacent to a 9.8 x 6 m pool fire. Temperatures of both cargoes (empty and simulated radioactive materials packages) and containers are recorded and reported. Observations on the duration, intensity and spread of the fire are discussed. Based on the results, models for simulation of fire exposure of radioactive materials packages in such fires are suggested.

  5. USING A CONTAINMENT VESSEL LIFTING APPARATUS FOR REMOTE OPERATIONS OF SHIPPING PACKAGES

    SciTech Connect (OSTI)

    Loftin, Bradley; Koenig, Richard

    2013-08-08

    The 9977 and the 9975 shipping packages are used in various nuclear facilities within the Department of Energy. These shipping packages are often loaded in designated areas with designs using overhead cranes or A-frames with lifting winches. However, there are cases where loading operations must be performed in remote locations where these facility infrastructures do not exist. For these locations, a lifting apparatus has been designed to lift the containment vessels partially out of the package for unloading operations to take place. Additionally, the apparatus allows for loading and closure of the containment vessel and subsequent pre-shipment testing. This paper will address the design of the apparatus and the challenges associated with the design, and it will describe the use of the apparatus.

  6. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsTransportation Fuel Supply content top Transportation Fuel Supply

  7. Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota |

    Energy Savers [EERE]

    Department of Energy 4 National Transportation Stakeholder Forum Meeting, Minnesota Spring 2014 National Transportation Stakeholder Forum Meeting, Minnesota NTSF 2014 Meeting Agenda PRESENTATIONS - MAY 13, 2014 Program and Stakeholder Briefings EM Office of Packaging and Transportation DOE Office of Nuclear Energy TRANSCOM National Nuclear Security Administration Nuclear Regulatory Commission Commercial Vehicle Safety Alliance NTSF Tribal Caucus Section 180(c) Ad Hoc Working Group

  8. PCP METHODOLOGY FOR DETERMINING DOSE RATES FOR SMALL GRAM QUANTITIES IN SHIPPING PACKAGINGS

    SciTech Connect (OSTI)

    Nathan, S.

    2011-08-23

    The Small Gram Quantity (SGQ) concept is based on the understanding that small amounts of hazardous materials, in this case radioactive materials, are significantly less hazardous than large amounts of the same materials. This study describes a methodology designed to estimate an SGQ for several neutron and gamma emitting isotopes that can be shipped in a package compliant with 10 CFR Part 71 external radiation level limits regulations. These regulations require packaging for the shipment of radioactive materials perform, under both normal and accident conditions, the essential functions of material containment, subcriticality, and maintain external radiation levels within regulatory limits. 10 CFR 71.33(b)(1)(2)&(3) state radioactive and fissile materials must be identified and their maximum quantity, chemical and physical forms be included in an application. Furthermore, the U.S. Federal Regulations require application contain an evaluation demonstrating the package (i.e., the packaging and its contents) satisfies the external radiation standards for all packages (10 CFR 71.31(2), 71.35(a), & 71.47). By placing the contents in a He leak-tight containment vessel, and limiting the mass to ensure subcriticality, the first two essential functions are readily met. Some isotopes emit sufficiently strong photon radiation that small amounts of material can yield a large external dose rate. Quantifying of the dose rate for a proposed content is a challenging issue for the SGQ approach. It is essential to quantify external radiation levels from several common gamma and neutron sources that can be safely placed in a specific packaging, to ensure compliance with federal regulations. The Packaging Certification Program (PCP) Methodology for Determining Dose Rate for Small Gram Quantities in Shipping Packagings described in this report provides bounding mass limits for a set of proposed SGQ isotopes. Methodology calculations were performed to estimate external radiation levels for the 9977 shipping package using the MCNP radiation transport code to develop a set of response multipliers (Green's functions) for 'dose per particle' for each neutron and photon spectral group. The source spectrum for each isotope generated using the ORIGEN-S and RASTA computer codes was folded with the response multipliers to generate the dose rate per gram of each isotope in the 9977 shipping package and its associated shielded containers. The maximum amount of a single isotope that could be shipped within the regulatory limits contained in 10 CFR 71.47 for dose rate at the surface of the package is determined. If a package contains a mixture of isotopes, the acceptability for shipment can be determined by a sum of fractions approach. Furthermore, the results of this analysis can be easily extended to additional radioisotopes by simply evaluating the neutron and/or photon spectra of those isotopes and folding the spectral data with the Green's functions provided.

  9. EQ6 Calculations for Chemical Degradation of Navy Waste Packages

    SciTech Connect (OSTI)

    S. LeStrange

    1999-11-15

    The Monitored Geologic Repository Waste Package Operations of the Civilian Radioactive Waste Management System Management & Operating Contractor (CRWMS M&O) performed calculations to provide input for disposal of spent nuclear fuel (SNF) from the Navy (Refs. 1 and 2). The Navy SNF has been considered for disposal at the potential Yucca Mountain site. For some waste packages, the containment may breach (Ref. 3), allowing the influx of water. Water in the waste package may moderate neutrons, increasing the likelihood of a criticality event within the waste package. The water may gradually leach the fissile components and neutron absorbers out of the waste package. In addition, the accumulation of silica (SiO{sub 2}) in the waste package over time may further affect the neutronics of the system. This study presents calculations of the long-term geochemical behavior of waste packages containing the Enhanced Design Alternative (EDA) II inner shell, Navy canister, and basket components. The calculations do not include the Navy SNF in the waste package. The specific study objectives were to determine the chemical composition of the water and the quantity of silicon (Si) and other solid corrosion products in the waste package during the first million years after the waste package is breached. The results of this calculation will be used to ensure that the type and amount of criticality control material used in the waste package design will prevent criticality.

  10. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    SciTech Connect (OSTI)

    Valerio-Lizarraga, Cristhian A.; Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard; Leon-Monzon, Ildefonso; Midttun, Řystein; University of Oslo, Oslo

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup ?} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  11. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; Davidson, Gregory G.; Hamilton, Steven P.; Godfrey, Andrew T.

    2015-12-21

    This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000® problems. These benchmark and scaling studies show promising results.« less

  12. Capabilities, Implementation, and Benchmarking of Shift, a Massively Parallel Monte Carlo Radiation Transport Code

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pandya, Tara M; Johnson, Seth R; Evans, Thomas M; Davidson, Gregory G; Hamilton, Steven P; Godfrey, Andrew T

    2016-01-01

    This work discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore »specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 R problems. These benchmark and scaling studies show promising results.« less

  13. Plasmids and packaging cell lines for use in phage display

    DOE Patents [OSTI]

    Bradbury, Andrew M.

    2012-07-24

    The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, in fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.

  14. Single level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  15. User Data Package (UDP) for Packaged Cogeneration Systems (PCS). Final report, December 1988-May 1990

    SciTech Connect (OSTI)

    Lee, T.Y.

    1990-05-01

    The User Data Package (UDP) for the Packaged Cogeneration System (PCS) has been developed to facilitate the transition of small decentralized cogeneration technology into the Naval shore establishment. The purpose of this UDP is to assist in the planning, design, procurement, operation, and maintenance phases for packaged cogeneration systems at Naval facilities. Several sources of information were used in the development of the UDP, including Navy documents, cogeneration industry reports, cogeneration literature, data from cogeneration installations, and electric and gas utility reports. The information provided in this UDP will enable Navy engineers to consider cogeneration options for facility installations, assist in the evaluation of PCS options, and aid in the selection of the most cost-effective and practical system. The information in the UDP will also assist in the procurement and operation of the PCS. Data to improve the management of contracts for the installation, operation, or maintenance of the cogeneration unit are also provided.

  16. APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.; Abramczyk, G.

    2012-07-11

    This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

  17. Safety analysis report for packaging (onsite) decontaminated equipment self-container

    SciTech Connect (OSTI)

    Boehnke, W.M.

    1998-09-29

    The purpose of this Safety Analysis Report for Packaging (SARP) is to demonstrate that specific decontaminated equipment can be safely used as its own self-container. As a Decontaminated Equipment Self-Container (also referred to as a self-container), no other packaging, such as a burial box, would be required to transport the equipment onsite. The self-container will consist of a piece of equipment or apparatus which has all readily removable interior contamination removed, all of its external openings sealed, and all external surfaces decontaminated to less than 2000 dpm/100 cm for gamma-emitting radionuclides and less than 220 dpm/100 CM2 for alpha-emitting radionuclides.

  18. Groundwater Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

    2006-01-31

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

  19. Safety analysis report for packaging upgrade plan

    SciTech Connect (OSTI)

    KELLY, D.L.

    1998-11-18

    This Safety Analysis Report for Packaging (SARP) Upgrade Plan reflects a revised SARP upgrade schedule based on the most current program needs. A Project Hanford Management Contract (PHMC) Performance Expectation exists to update, revise, and/or cancel seven onsite SARPS during FY 1999. It is the U.S. Department of Energy's desire that 100% of the SARPs (which existed at the beginning of the PHMC Contract) be upgraded, revised, and/or canceled by the end of the five year contract. This plan is a ''living'' document and is used as a management tool.

  20. Multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  1. Greening Transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Goal 2: Greening Transportation LANL supports and encourages employees to reduce their personal greenhouse gas emissions by offering various commuting and work schedule options. Our goal is to reduce emissions related to employee travel and commuting to and from work by 13 percent. Energy Conservation» Efficient Water Use & Management» High Performance Sustainable Buildings» Greening Transportation» Green Purchasing & Green Technology» Pollution Prevention» Science

  2. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Transportation Energyadmin2015-05-14T22:34:50+00:00 Transportation Energy The national-level objective for the future is to create a carbon-neutral fleet that is powered by low-carbon US sources. Sandia delivers advanced technologies and design tools to the broad transportation sector in the following areas: Predictive Simulation of Engines Fuel sprays and their transition from the liquid to gas phase and computationally tractable models that capture the physics of combustion. Convergence of

  3. Sustainable Transportation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  4. Cell Simulation Package for Reactions and Diffusion

    Energy Science and Technology Software Center (OSTI)

    2005-04-01

    ChemCell is a simulation package designed for modeling signalling, regulatory, and metabolic pathways in biological cells. It reads input flies that describe the geomeby of the cell and positions of particles that represent proteins, protein complexes, and other bio-molecules. It also reads in lists of reactions and associated rates and other boundary condition information. ChemCell then models the reaction and diffusion of these particles within the cellular geometry as they interact overtime. It produces statisticalmore » information about the state of the cell, as well as snapshots of the reaction network. We anticipate ChemCell will be useful to researchers who wish to perform spatio-temporal modeling of cellular processes and who wish to develop new models or algorithms to add to the code. Thus ChemCell is also designed to be easy to modify and extend. The ChemCell package includes auxiliary codes for setting up problems and analyzing output.« less

  5. Nuclear waste package fabricated from concrete

    SciTech Connect (OSTI)

    Pfeiffer, P.A.; Kennedy, J.M.

    1987-03-01

    After the United States enacted the Nuclear Waste Policy Act in 1983, the Department of Energy must design, site, build and operate permanent geologic repositories for high-level nuclear waste. The Department of Energy has recently selected three sites, one being the Hanford Site in the state of Washington. At this particular site, the repository will be located in basalt at a depth of approximately 3000 feet deep. The main concern of this site, is contamination of the groundwater by release of radionuclides from the waste package. The waste package basically has three components: the containment barrier (metal or concrete container, in this study concrete will be considered), the waste form, and other materials (such as packing material, emplacement hole liners, etc.). The containment barriers are the primary waste container structural materials and are intended to provide containment of the nuclear waste up to a thousand years after emplacement. After the containment barriers are breached by groundwater, the packing material (expanding sodium bentonite clay) is expected to provide the primary control of release of radionuclide into the immediate repository environment. The loading conditions on the concrete container (from emplacement to approximately 1000 years), will be twofold; (1) internal heat of the high-level waste which could be up to 400/sup 0/C; (2) external hydrostatic pressure up to 1300 psi after the seepage of groundwater has occurred in the emplacement tunnel. A suggested container is a hollow plain concrete cylinder with both ends capped. 7 refs.

  6. Evaluation of impact limiter performance during end-on and slapdown drop tests of a one-third scale model storage/transport cask system

    SciTech Connect (OSTI)

    Yoshimura, H.R.; Bronowski, D.R.; Uncapher, W.L.; Attaway, S.W.; Bateman, V.I.; Carne, T.G.; Gregory, D.L. ); Huerta, M. )

    1990-12-01

    This report describes drop testing of a one-third scale model shipping cask system. Two casks were designed and fabricated by Transnuclear, Inc., to ship spent fuel from the former Nuclear Fuel Services West Valley reprocessing facility in New York to the Idaho National Engineering Laboratory for a long-term spent fuel dry storage demonstration project. As part of the NRC's regulatory certification process, one-third scale model tests were performed to obtain experimental data on impact limiter performance during impact testing. The objectives of the testing program were to (1) obtain deceleration and displacement information for the cask and impact limiter system, (2) obtain dynamic force-displacement data for the impact limiters, (3) verify the integrity of the impact limiter retention system, and (4) examine the crush behavior of the limiters. Two 30-ft (9-m) drop tests were conducted on a mass model of the cask body and scaled balsa and redwood-filled impact limiters. This report describes the results of both tests in terms of measured decelerations, posttest deformation measurements, and the general structural response of the system. 3 refs., 32 figs.

  7. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  8. Method Of Packaging And Assembling Electro-Microfluidic Devices

    DOE Patents [OSTI]

    Benavides, Gilbert L.; Galambos, Paul C.; Emerson, John A.; Peterson, Kenneth A.; Giunta, Rachel K.; Zamora, David Lee; Watson, Robert D.

    2004-11-23

    A new architecture for packaging surface micromachined electro-microfluidic devices is presented. This architecture relies on two scales of packaging to bring fluid to the device scale (picoliters) from the macro-scale (microliters). The architecture emulates and utilizes electronics packaging technology. The larger package consists of a circuit board with embedded fluidic channels and standard fluidic connectors (e.g. Fluidic Printed Wiring Board). The embedded channels connect to the smaller package, an Electro-Microfluidic Dual-Inline-Package (EMDIP) that takes fluid to the microfluidic integrated circuit (MIC). The fluidic connection is made to the back of the MIC through Bosch-etched holes that take fluid to surface micromachined channels on the front of the MIC. Electrical connection is made to bond pads on the front of the MIC.

  9. Depleted uranium as a backfill for nuclear fuel waste package

    DOE Patents [OSTI]

    Forsberg, Charles W.

    1998-01-01

    A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.

  10. Depleted uranium as a backfill for nuclear fuel waste package

    DOE Patents [OSTI]

    Forsberg, C.W.

    1998-11-03

    A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.

  11. Harmonization - Two Years' of Transportation Regulation Lessons Learned

    SciTech Connect (OSTI)

    Colborn, K.

    2007-07-01

    The U.S. Department of Transportation issued modifications to the Hazardous Materials Regulations in October, 2004 as part of an ongoing effort to 'harmonize' U.S. regulations with those of the International Atomic Energy Agency. The harmonization effort had several predictable effects on low level radioactive materials shipment that were anticipated even prior to their implementation. However, after two years' experience with the new regulations, transporters have identified several effects on transportation which were not entirely apparent when the regulations were first implemented. This paper presents several case studies in the transportation of low level radioactive materials since the harmonization rules took effect. In each case, an analysis of the challenge posed by the regulatory revision is provided. In some cases, more than one strategy for compliance was considered, and the advantages and disadvantages of each are discussed. In several cases, regulatory interpretations were sought and obtained, and these are presented to clarify the legitimacy of the compliance approach. The presentation of interpretations will be accompanied by reports of clarifying discussions with the U.S. DOT about the interpretation and scope of the regulatory change. Specific transportation issues raised by the revised hazardous materials regulations are reviewed, including: The new definition of radioactive material in accordance with isotope-specific concentration and total activity limits. The new hazardous materials regulations (HMR) created a new definition for radioactive material. A case study is presented for soils contaminated with low levels of Th-230. These soils had been being shipped for years as exempt material under the old 2,000 pCi/g concentration limit. Under the new HMR, these same soils were radioactive material. Further, in rail-car quantities their activity exceeded an A2 value, so shipment of the material in gondolas appeared to require an IP-2 package. Interpretations, discussions, and an exemption were obtained to secure the continued shipment of this material. A provision to allow 'natural' radioactive materials to be exempt from the requirements of the HMR at up to 10x the listed isotopic concentrations. The revised HMR exempts certain natural materials and ores from regulation as radioactive material at concentrations up to 10x that allowed if the materials are not natural. The term 'natural' is not well defined, and initial attempts to qualify for this exemption were thwarted by concerns over what degree of material processing, if any, materials could experience and still be considered 'natural'. The presentation includes an example from a project involving post-processed tungsten ore, and includes interpretations from the US DOT as well as clarifying language from current and drafted IAEA regulation and guidance. New packaging descriptions allowing the use of cargo containers as IP-2 and IP-3 packages in some applications. The revised HMR provides an alternate certification procedure under which standard cargo containers can be used as IP-2 and IP-3 containers. There has been some confusion about how this high level of certification can apply to standard cargo containers when other sections of the regulations make this certification available only to considerably more stout containers after rigorous testing. The discussion includes interpretive guidance from the US DOT, and from the UK Department of Transport clarifying the same provision in IAEA regulations. A new definition of contamination with apparently broad impact on the shipment of empty containers and conveyances. The revised HMR presented a definition of contamination not referenced by any other part of the HMR. The preamble to the revised HMR provides confusing guidance on the application of the definition to shipment of empty containers, and subsequent interpretive guidance letters appear to conflict with the preamble as well as with each other. The definition also has the effect of regulating materials for transport as radioactive even when US

  12. Novel Packaging to Reduce Stray Inductance in Power Electronics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Packaging to Reduce Stray Inductance in Power Electronics Novel Packaging to Reduce Stray Inductance in Power Electronics 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape022_tolbert_2010_p.pdf More Documents & Publications High Power Density Integrated Traction Machine Drive Power Device Packaging High Power Density Integrated Traction Machine Drive

  13. Building America Webinar: Standardized Retrofit Packages - What Works to

    Energy Savers [EERE]

    Meet Consistent Levels of Performance? | Department of Energy Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance? Building America Webinar: Standardized Retrofit Packages - What Works to Meet Consistent Levels of Performance? This webinar focused on specific Building America projects that have examined methods to consistently meet high levels of energy performance in existing homes, with a focus on retrofit packages that can be replicated across many homes.

  14. Advanced Framing Systems and Packages - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    See case studies of Building America projects across the country that demonstrate advanced framing systems and packages. View other Top Innovations in the Advanced Technologies and ...

  15. smartApps Package v 4.8

    Energy Science and Technology Software Center (OSTI)

    2009-12-04

    The smartApps package provides high-speed communication links between multiple Umbra sessions and/or SMART sessions. Modules within Packages/smartApps: Packages/smartApps/smartBlackboard: The original Broadcast module connected Umbra connectors to the SMART (Sandia's Modular Architecture for Robotics and Teleoperation) blackboard using UDP and TCP connections. Connectors are added to the module for each connection. Originally written by Scott Gladwell and maintained and updated by Robert J. Anderson. Packages/smartApps/smartBroadcast: A highly efficient version of packet based communication for connecting distributedmore » SMART and Umbra systems together using UDP broadcasts.« less

  16. CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI: HVAC Packages for Small and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Russell Taylor, United Technologies Research Center View the Presentation PDF icon ...

  17. Motor Packaging with Consideration of Electromagnetic and Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Alnico and Ferrite Hybrid Excitation Electric Machines Motor Packaging with Consideration of Electromagnetic and Material Characteristics Novel Flux ...

  18. FAQS Reference Guide – NNSA Package Certification Engineer

    Broader source: Energy.gov [DOE]

    This reference guide addresses the competency statements in the February 2009 edition of DOE-STD-1026-2009, NNSA Package Certification Engineer Functional Area Qualification Standard.

  19. WPN 98-3- Revised Weatherization Assistance Program Application Package

    Broader source: Energy.gov [DOE]

    To issue the revised application package and reporting requirements for the low-income Weatherization Assistance Program for use by the states.

  20. CBEI: Packaged Masonry Wall Retrofit Solution for Small and Medium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Medium Sized Commercial Buildings - 2015 Peer Review Presenter: Mugdha Mokashi, Bayer Materials View the Presentation PDF icon CBEI: Packaged Masonry Wall Retrofit Solution...