Powered by Deep Web Technologies
Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NGV and FCV Light Duty Transportation Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

G G presentation slides: Natural Gas and Fuel Cell Vehicle Light-Duty transportation perspectives Matt Fronk, Matt Fronk & Associates, LLC 1 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 2 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 3 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 4 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 5 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 6 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G 7 OctOber 2011 | ArgOnne nAtiOnAl lAbOrAtOry NG Workshop summary report - appeNDIX G

2

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector  

Science Conference Proceedings (OSTI)

Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Vyas, A. D.; Patel, D. M.; Bertram, K. M.

2013-03-01T23:59:59.000Z

3

Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehilce Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

COMMERCIAL TRUCKS COMMERCIAL TRUCKS AVIATION MARINE MODES RAILROADS PIPELINES OFF-ROAD EQUIPMENT Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector TRANSPORTATION ENERGY FUTURES SERIES: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy February 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, IL 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

4

Light Duty Vehicle Pathways  

NLE Websites -- All DOE Office Websites (Extended Search)

in 2030 0 5 10 15 20 25 30 Million BarrelsDay IMPORTS DOMESTIC OIL SUPPLY OIL DEMAND ELECTRICITY RES. & COM. INDUSTRY MISC. TRANSPORT AIR TRUCKS LIGHT DUTY VEHICLES ETHANOL...

5

Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery  

SciTech Connect

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL

2010-01-01T23:59:59.000Z

6

Overview of Light-Duty Vehicle Studies  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Light-Duty Vehicle Studies Overview of Light-Duty Vehicle Studies Washington, DC Workshop Sponsored by EERE Transportation Cluster July 26, 2010 Energy Efficiency & Renewable Energy eere.energy.gov 2 * This workshop is intended to be a working meeting for analysts to discuss findings and assumptions because a number of key studies on light-duty vehicles (LDVs) and biofuels have been completed in the past 5 years and the insight gained from their findings would be valuable. * Outcomes: - common understanding of the effects of differing assumptions (today); - agreement on standard assumptions for future studies, where applicable (agreement on some assumptions today, follow-up discussions/meeting may be needed for others); - list of data/information gaps and needed research and studies (a

7

Experimental Investigation of Fuel-Reactivity Controlled Compression Ignition (RCCI) Combustion Mode in a Multi-Cylinder, Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

An experimental study was performed to provide the combustion and emission characteristics resulting from fuel-reactivity controlled compression ignition (RCCI) combustion mode utilizing dual-fuel approach in a light-duty, multi-cylinder diesel engine. In-cylinder fuel blending using port fuel injection of gasoline before intake valve opening (IVO) and early-cycle, direct injection of diesel fuel was used as the charge preparation and fuel blending strategy. In order to achieve the desired auto-ignition quality through the stratification of the fuel-air equivalence ratio ( ), blends of commercially available gasoline and diesel fuel were used. Engine experiments were performed at an engine speed of 2300rpm and an engine load of 4.3bar brake mean effective pressure (BMEP). It was found that significant reduction in both nitrogen oxide (NOx) and particulate matter (PM) was realized successfully through the RCCI combustion mode even without applying exhaust gas recirculation (EGR). However, high carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. The low combustion gas temperature during the expansion and exhaust processes seemed to be the dominant source of high CO emissions in the RCCI combustion mode. The high HC emissions during the RCCI combustion mode could be due to the increased combustion quenching layer thickness as well as the -stratification at the periphery of the combustion chamber. The slightly higher brake thermal efficiency (BTE) of the RCCI combustion mode was observed than the other combustion modes, such as the conventional diesel combustion (CDC) mode, and single-fuel, premixed charge compression ignition (PCCI) combustion mode. The parametric study of the RCCI combustion mode revealed that the combustion phasing and/or the peak cylinder pressure rise rate of the RCCI combustion mode could be controlled by several physical parameters premixed ratio (rp), intake swirl intensity, and start of injection (SOI) timing of directly injected fuel unlike other low temperature combustion (LTC) strategies.

Cho, Kukwon [ORNL; Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Sluder, Scott [ORNL; Parks, II, James E [ORNL; Wagner, Robert M [ORNL

2011-01-01T23:59:59.000Z

8

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

9

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

10

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

11

Light Duty Efficient, Clean Combustion  

DOE Green Energy (OSTI)

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy's Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: (1) Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today's state-of-the-art diesel engine on the FTP city drive cycle; (2) Develop and design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements; (3) Maintain power density comparable to that of current conventional engines for the applicable vehicle class; and (4) Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: (1) A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target; (2) An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system; (3) Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system; (4) Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle - Additional technical barriers exist for the no NOx aftertreatment engine; (5) Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated; (6) The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing; (7) The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment; (8) The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment; (9) Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines); and (10) Key subsystems developed include - sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system. An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD) started in 2010.

Donald Stanton

2010-12-31T23:59:59.000Z

12

Light Duty Efficient, Clean Combustion  

SciTech Connect

Cummins has successfully completed the Light Duty Efficient Clean Combustion (LDECC) cooperative program with DoE. This program was established in 2007 in support of the Department of Energy’s Vehicles Technologies Advanced Combustion and Emissions Control initiative to remove critical barriers to the commercialization of advanced, high efficiency, emissions compliant internal combustion (IC) engines for light duty vehicles. Work in this area expanded the fundamental knowledge of engine combustion to new regimes and advanced the knowledge of fuel requirements for these diesel engines to realize their full potential. All of the following objectives were met with fuel efficiency improvement targets exceeded: 1. Improve light duty vehicle (5000 lb. test weight) fuel efficiency by 10.5% over today’s state-ofthe- art diesel engine on the FTP city drive cycle 2. Develop & design an advanced combustion system plus aftertreatment system that synergistically meets Tier 2 Bin 5 NOx and PM emissions standards while demonstrating the efficiency improvements. 3. Maintain power density comparable to that of current conventional engines for the applicable vehicle class. 4. Evaluate different fuel components and ensure combustion system compatibility with commercially available biofuels. Key accomplishments include: ? A 25% improvement in fuel efficiency was achieved with the advanced LDECC engine equipped with a novel SCR aftertreatment system compared to the 10.5% target ? An 11% improvement in fuel efficiency was achieved with the advanced LDECC engine and no NOx aftertreamtent system ? Tier 2 Bin 5 and SFTP II emissions regulations were met with the advanced LDECC engine equipped with a novel SCR aftertreatment system ? Tier 2 Bin 5 emissions regulations were met with the advanced LDECC engine and no NOx aftertreatment, but SFTP II emissions regulations were not met for the US06 test cycle – Additional technical barriers exist for the no NOx aftertreatment engine ? Emissions and efficiency targets were reached with the use of biodiesel. A variety of biofuel feedstocks (soy, rapeseed, etc.) was investigated. ? The advanced LDECC engine with low temperature combustion was compatible with commercially available biofuels as evaluated by engine performance testing and not durability testing. ? The advanced LDECC engine equipped with a novel SCR aftertreatment system is the engine system architecture that is being further developed by the Cummins product development organization. Cost reduction and system robustness activities have been identified for future deployment. ? The new engine and aftertreatment component technologies are being developed by the Cummins Component Business units (e.g. fuel system, turbomachinery, aftertreatment, electronics, etc.) to ensure commercial viability and deployment ? Cummins has demonstrated that the technologies developed for this program are scalable across the complete light duty engine product offerings (2.8L to 6.7L engines) ? Key subsystems developed include – sequential two stage turbo, combustions system for low temperature combustion, novel SCR aftertreatment system with feedback control, and high pressure common rail fuel system An important element of the success of this project was leveraging Cummins engine component technologies. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 40% improvement in thermal efficiency for the engine plus aftertreatment system. The 40% improvement is in-line with the current light duty vehicle efficiency targets set by the 2010 DoE Vehicle Technologies MYPP and supported through co-operative projects such as the Cummins Advanced Technology Powertrains for Light- Duty Vehicles (ATP-LD) started in 2010.

Stanton, Donald W

2011-06-03T23:59:59.000Z

13

light-duty | OpenEI  

Open Energy Info (EERE)

Login | Sign Up Wiki Apps Datasets Browse Upload data GDR Community Linked Data Search Share this page on Facebook icon Twitter icon light-duty Dataset Summary Description...

14

Light Duty Truck Aftertreatment - Experience and Challenges  

DOE Green Energy (OSTI)

Detroit Diesel's test experience on light duty truck PM aftertreatment technology development will be presented. The Tier-II extremely low emissions standards combined with the light-duty test cycle impose a significant challenge for the development of production-viable emissions technologies. A robust general path to achieve these emissions targets will be outlined.

Redon, Fabien

2000-08-20T23:59:59.000Z

15

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

16

Table 37. Light-Duty Vehicle Energy Consumption by Technology ...  

U.S. Energy Information Administration (EIA)

Table 37. Light-Duty Vehicle Energy Consumption by Technology Type and Fuel Type (trillion Btu) Light-Duty Consumption by Technology Type Conventional Vehicles 1/

17

alternative fuel light-duty vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Light-Duty Vehicles Fuel Light-Duty Vehicles T O F E N E R G Y D E P A R T M E N U E N I T E D S T A T S O F A E R I C A M SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS Alternative Fuel Light-Duty Vehicles SUMMARY OF RESULTS FROM THE NATIONAL RENEWABLE ENERGY LABORATORY'S VEHICLE EVALUATION DATA COLLECTION EFFORTS PEG WHALEN KENNETH KELLY ROB MOTTA JOHN BRODERICK MAY 1996 N T Y A U E O F E N E R G D E P A R T M E N I T E D S T A T S O F A E R I C M Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Light-Duty Vehicles in the Program . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

18

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Search to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Search on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Search on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Search on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Search on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Search on AddThis.com... Light-Duty Vehicle Search Search our light-duty alternative fuel vehicle database to find and compare alternative fuel vehicles and generate printable reports to aid in decision-making. These vehicles might not qualify for vehicle-acquisition

19

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

Miller, G. Multi-Path Transportation Futures Study: ResultsMiller, G. Multi-Path Transportation Futures Study. Phase 2in comparison to a transportation future without any efforts

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

20

Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

LIGHT-DUTY VEHICLES LIGHT-DUTY VEHICLES Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies TRANSPORTATION ENERGY FUTURES SERIES: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by ARGONNE NATIONAL LABORATORY Argonne, Illinois 60439 managed by U Chicago Argonne, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC02-06CH11357 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Vehicle Testing Activity: Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-Duty Light-Duty Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Light-Duty Vehicles on Facebook Tweet about Advanced Vehicle Testing Activity: Light-Duty Vehicles on Twitter Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Google Bookmark Advanced Vehicle Testing Activity: Light-Duty Vehicles on Delicious Rank Advanced Vehicle Testing Activity: Light-Duty Vehicles on Digg Find More places to share Advanced Vehicle Testing Activity: Light-Duty Vehicles on AddThis.com... Home Overview Light-Duty Vehicles Alternative Fuel Vehicles Plug-in Hybrid Electric Vehicles Hybrid Electric Vehicles Micro Hybrid Vehicles ARRA Vehicle and Infrastructure Projects EVSE Testing Energy Storage Testing Hydrogen Internal Combustion Engine Vehicles Other ICE

22

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

+ transportation cap without biofuel mandate after 2015 30%transportation cap without biofuel mandate after 2015 and noassumptions and improved biofuel characterization (see

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

23

Hybrid options for light-duty vehicles.  

DOE Green Energy (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

24

Light duty utility arm startup plan  

SciTech Connect

This plan details the methods and procedures necessary to ensure a safe transition in the operation of the Light Duty Utility Arm (LDUA) System. The steps identified here outline the work scope and identify responsibilities to complete startup, and turnover of the LDUA to Characterization Project Operations (CPO).

Barnes, G.A.

1998-09-01T23:59:59.000Z

25

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

2007 with Projections to 2030. Report #DOE/EIA-0383(2007);2006 with Projections to 2030. Report #: DOE/EIA-0383(2006);from petroleum products. By 2030, the transportation sector’

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

26

ORNL light-duty vehicles PC system  

Science Conference Proceedings (OSTI)

This data system, designed by the Oak Ridge National Laboratory (ORNL) and funded by the US Department of Energy (DOE), monitors information on every light-duty vehicle (automobiles and light-duty trucks) sold in the United States since model year 1976. The data are specified in two days. One way is on a model basis (i.e, engine and transmission combinations) and includes data on city, highway, and combined fuel economies; engine size; drive-train; fuel type (gasoline or diesel); interior volume; body type; and other vehicle attributes. The other way is on a make basis (e.g., Ford Escort, Oldsmobile 98) and includes data on sales; Environmental Protection Agency (EPA) size class; the sales-weighted fuel economy; sales-weighted interior volume; sales-weighted engine displacement (cid); curb weight; and other attributes. A unique identification number is assigned to a specific vehicle category. This identification number contains information on the manufacturer, the location of the manufacturer (domestic or import), and the sponsorship of the vehicle (domestic or import). Fuel economies, model year sales and various vehicle characteristics for every make of the 164 million light-duty vehicles sold in the US since model year 1976 can be obtained from this data system. 2 figs., 4 tabs.

Hu, P.S.; Patterson, P.D. (Oak Ridge National Lab., TN (USA))

1989-01-01T23:59:59.000Z

27

TTRDC - Light Duty E-Drive Vehicles Monthly Sales Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Electric Drive Vehicles Monthly Sales Updates Currently available electric-drive vehicles (EDV) in the U.S market include hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and all electric vehicles (AEV). Plug-in Vehicles (PEV) include both PHEV and AEV. HEVs debuted in the U.S. market in December 1999 with 17 sales of the first-generation Honda Insight, while the first PHEV (Chevrolet Volt) and AEV (Nissan Leaf) most recently debuted in December 2010. Electric drive vehicles are offered in several car and SUV models, and a few pickup and van models. Historical sales of HEV, PHEV, and AEV are compiled by Argonne's Center for Transportation Research and reported to the U.S. Department of Energy's Vehicle Technology Program Office each month. These sales are shown in Figures 1, 2 and 3. Figure 1 shows monthly new PHEV and AEV sales by model. Figure 2 shows yearly new HEV sales by model. Figure 3 shows electric drive vehicles sales share of total light-duty vehicle (LDV) sales since 1999. Figure 4 shows HEV and PEV sales change with gasoline price..

28

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing What's New Chevrolet Volt Vehicle Demonstration: Project to...

29

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act (ARRA) Light-Duty Electric Drive Vehicle and Charging Infrastructure Testing What's New EV Project Overview Report: Project to date...

30

The Road Ahead for Light Duty Vehicle Fuel Demand  

U.S. Energy Information Administration (EIA)

The Road Ahead for Light Duty Vehicle Fuel Demand Joanne Shore Energy Information Administration July 7, 2005 Refining Capacity Surplus Shrank As Demand Grew ...

31

Detroit Diesel Engine Technology for Light Duty Truck Applications - DELTA Engine Update  

DOE Green Energy (OSTI)

The early generation of the DELTA engine has been thoroughly tested and characterized in the virtual lab, during engine dynamometer testing, and on light duty trucks for personal transportation. This paper provides an up-to-date account of program findings. Further, the next generation engine design and future program plans will be briefly presented.

Freese, Charlie

2000-08-20T23:59:59.000Z

32

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

DOE Green Energy (OSTI)

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

33

The Road Ahead for Light Duty Vehicle Fuel Demand  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration Logo. If you need assistance viewing this page, please call (202) 586-8800 The Road Ahead for Light Duty Vehicle Fuel Demand Click here to start...

34

DOE Hydrogen Analysis Repository: Biofuels in Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels in Light-Duty Vehicles Biofuels in Light-Duty Vehicles Project Summary Full Title: Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles Fueled with Biofuels: Application of the GREET Model to the Role of Biomass in America's Energy Future (RBAEF) Project Project ID: 82 Principal Investigator: Michael Wang Brief Description: The mobility chains analysis estimated the energy consumption and emissions associated with the use of various biofuels in light-duty vehicles. Keywords: Well-to-wheels (WTW); ethanol; biofuels; Fischer Tropsch diesel; hybrid electric vehicles (HEV) Purpose The project was a multi-organization, multi-sponsor project to examine the potential of biofuels in the U.S. Argonne was responsible for the well-to-wheels analysis of biofuel production and use.

35

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

36

Light-Duty Vehicle Energy Consumption by Technology Type from...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Technology Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T15:57:46Z...

37

Light duty utility arm walkdown report  

Science Conference Proceedings (OSTI)

This document is a report of the Light Duty Utility Arm (LDUA) drawing walkdown. The purpose of this walkdown was to validate the essential configuration of the LDUA in preparation of deploying the equipment in a Hanford waste tank. The LDUA system has, over the course of its development, caused the generation of a considerable number of design drawings. The number of drawings is estimated to be well over 1,000. A large number consist of vendor type drawings, furnished by both Pacific Northwest National Laboratory (PNNL) and SPAR Aerospace Limited (SPAR). A smaller number, approximately 200, are H-6 type drawing sheets in the Project Hanford Management Contract (PHMC) document control system. A preliminary inspection of the drawings showed that the physical configuration of the LDUA did not match the documented configuration. As a result of these findings, a scoping walkdown of 20 critical drawing sheets was performed to determine if a problem existed in configuration management of the LDUA system. The results of this activity showed that 18 of the 20 drawing sheets were found to contain errors or omissions of varying concern. Given this, Characterization Engineering determined that a walkdown of the drawings necessary and sufficient to enable safe operation and maintenance of the LDUA should be performed. A review team was assembled to perform a review of all of the drawings and determine the set which would need to be verified through an engineering walkdown. The team determined that approximately 150 H-6 type drawing sheets would need to be verified, 12 SPAR/PNNL drawing sheets would need to be verified and converted to H-6 drawings, and three to six new drawings would be created (see Appendix A). This report documents the results of that walkdown.

Smalley, J.L.

1998-09-25T23:59:59.000Z

38

Light-duty diesel engine development status and engine needs  

DOE Green Energy (OSTI)

This report reviews, assesses, and summarizes the research and development status of diesel engine technology applicable to light-duty vehicles. In addition, it identifies specific basic and applied research and development needs in light-duty diesel technology and related health areas where initial or increased participation by the US Government would be desirable. The material presented in this report updates information provided in the first diesel engine status report prepared by the Aerospace Corporation for the Department of Energy in September, 1978.

Not Available

1980-08-01T23:59:59.000Z

39

Road Ahead for Light Duty Vehicle Fuel Demand, The  

Reports and Publications (EIA)

Explores some potential variations in light-duty vehicle demand to illustrate both the magnitude of demand changes and the length of time that it can take to affect demand when different levels of new-vehicle efficiencies and penetrations are assumed

Information Center

2005-07-11T23:59:59.000Z

40

Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Collection Methods to someone by E-mail Data Collection Methods to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Data Collection Methods on AddThis.com... Light-Duty Vehicle Data Collection Methods To maintain the Light-Duty Vehicle Search tool, the National Renewable Energy Laboratory (NREL) gathers vehicle specifications, photos, and

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Light-Duty Vehicle Light-Duty Vehicle Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on Digg Find More places to share Alternative Fuels Data Center: Light-Duty Vehicle Idle Reduction Strategies on AddThis.com... More in this section... Idle Reduction Benefits & Considerations Heavy-Duty Vehicles Medium-Duty Vehicles

42

Selection of Light Duty Truck Engine Air Systems Using Virtual Lab Tests  

DOE Green Energy (OSTI)

An integrated development approach using seasoned engine technology methodologies, virtual lab parametric investigations, and selected hardware verification tests reflects today's state-of-the-art R&D trends. This presentation will outline such a strategy. The use of this ''Wired'' approach results in substantial reduction in the development cycle time and hardware iterations. An example showing the virtual lab application for a viable design of the air-exhaust-turbocharger system of a light duty truck engine for personal transportation will be presented.

Zhang, Houshun

2000-08-20T23:59:59.000Z

43

DOE/VTP Light-Duty Diesel Engine Commercialization  

NLE Websites -- All DOE Office Websites (Extended Search)

VTP Light-Duty Diesel Engine Commercialization VTP Light-Duty Diesel Engine Commercialization Vehicle Technologies Program (VTP) spearheaded the development of clean diesel engine technologies for passenger vehicles in the 1990s, spurring the current reintroduction of highly efficient diesel vehicles into the passenger market. Cummins partnered with VTP to develop a diesel engine that meets the 50-state 2010 emissions standards while boosting vehicle fuel economy by 30% over comparable gasoline-powered vehicles. The Cummins engine is scheduled to debut in 2010 Chrysler sport utility vehicles and pickup trucks. VTP-sponsored research demonstrated the ability of diesel passenger vehicles with advanced aftertreatment to meet EPA's stringent Tier II Bin 5 standards, representing an 83% reduction in NOx and more than 87% reduction in

44

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

45

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

46

Desulfurization Effects on a Light-Duty Diesel Vehicle NOx Adsorber Exhaust Emission Control System  

DOE Green Energy (OSTI)

Analyzes the effects on gaseous emissions, before and after desulfurization, on a light-duty diesel vehicle with a NOx adsorber catalyst.

Tatur, M.; Tomazic, D.; Tyrer, H.; Thornton, M.; Kubsh, J.

2006-05-01T23:59:59.000Z

47

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty ...  

U.S. Energy Information Administration (EIA)

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles? ... the automobile manufacturers probably face the largest diesel-vehicle challenges in the ...

48

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Linked Data Search Share this page on Facebook icon Twitter icon Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Dataset Summary...

49

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

37 Energy Usage Realisticfor reducing transportation energy usage and resulting GHGtotal light-duty fuel energy usage is approximately 49%

Yang, Christopher

2011-01-01T23:59:59.000Z

50

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

51

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

52

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

53

Figure 71. Average fuel economy of new light-duty vehicles, 1980 ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 71. Average fuel economy of new light-duty vehicles, 1980-2040 (miles per gallon, CAFE compliance values) History Reference case

54

Increasing the Fuel Economy and Safety of New Light-Duty Vehicles  

E-Print Network (OSTI)

Automotive Technology and Fuel Economy Trends: 1975 Through2004. “The effect of fuel economy on automobile safety: aM. , 2002. “Near-term fuel economy potential for light-duty

Wenzel, Tom; Ross, Marc

2006-01-01T23:59:59.000Z

55

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty Vehicles?  

Reports and Publications (EIA)

The presentation explores if diesel-fueled light-duty vehicle growth in the U.S. might be large enough to create refinery constraints that would hinder that growth.

Information Center

2005-10-12T23:59:59.000Z

56

Can U.S. Supply Accommodate Shifts to Diesel-Fueled Light-Duty ...  

U.S. Energy Information Administration (EIA)

The presentation explores if diesel-fueled light-duty vehicle growth in the U.S. might be large enough to create refinery constraints that would hinder that growth.

57

Investigating potential light-duty efficiency improvements through simulation of turbo-compounding and waste-heat recovery systems  

Science Conference Proceedings (OSTI)

Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to combustion irreversibility and heat loss to the coolant, through the exhaust, and by direct convection and radiation to the environment. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, achieving similar benefits for light-duty applications is complicated by transient, low-load operation at typical driving conditions and competition with the turbocharger and aftertreatment system for the limited thermal resources. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. The model is used to examine the effects of efficiency-improvement strategies such as cylinder deactivation, use of advanced materials and improved insulation to limit ambient heat loss, and turbo-compounding on the steady-state performance of the ORC system and the availability of thermal energy for downstream aftertreatment systems. Results from transient drive-cycle simulations are also presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and balancing the thermal requirements of waste-heat recovery, turbocharging or turbo-compounding, and exhaust aftertreatment.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Briggs, Thomas E [ORNL

2010-01-01T23:59:59.000Z

58

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

59

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

60

Diesel Exhaust Emissions Control for Light-Duty Vehicles  

SciTech Connect

The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C. (Cummins, Inc.); Anderson, J.A. (Argonne National Laboratory); Howden, Kenneth C. (U.S. Department of Energy)

2003-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

62

An Emission Saved is an Emission Earned: An Empirical Study of Emission Banking for Light-Duty Vehicle Manufacturers  

E-Print Network (OSTI)

costs across vehicles and manufacturers are equal. In thefor individual vehicles and manufacturers differ from thefor Light-Duty Vehicle Manufacturers Jonathan D. Rubin

Rubin, Jonathan D.; Kling, Catherine

1993-01-01T23:59:59.000Z

63

Advanced Technologies for Light-Duty Vehicles (released in AEO2006)  

Reports and Publications (EIA)

A fundamental concern in projecting the future attributes of light-duty vehiclespassenger cars, sport utility vehicles, pickup trucks, and minivans is how to represent technological change and the market forces that drive it. There is always considerable uncertainty about the evolution of existing technologies, what new technologies might emerge, and how consumer preferences might influence the direction of change. Most of the new and emerging technologies expected to affect the performance and fuel use of light-duty vehicles over the next 25 years are represented in NEMS; however, the potential emergence of new, unforeseen technologies makes it impossible to address all the technology options that could come into play. The previous section of Issues in Focus discussed several potential technologies that currently are not represented in NEMS. This section discusses some of the key technologies represented in NEMS that are expected to be implemented in light-duty vehicles over the next 25 years.

Information Center

2006-02-01T23:59:59.000Z

64

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1  

Science Conference Proceedings (OSTI)

This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

NONE

1998-01-01T23:59:59.000Z

65

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the CAFE standards set by NHTSA. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

Information Center

2005-02-01T23:59:59.000Z

66

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The State of California was given authority under CAAA90 to set emissions standards for light-duty vehicles that exceed Federal standards. In addition, other States that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the EPA under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the Nation in developing stricter vehicle emissions standards, and other States have adopted the California standards.

Information Center

2006-02-01T23:59:59.000Z

67

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

68

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

69

Procedures for Passenger Cars, Light-Duty Trucks and Medium-Duty  

E-Print Network (OSTI)

2001 and subsequent model-year passenger cars, light-duty trucks, and medium-duty trucks for which non-methane organic gas (NMOG) exhaust emission reduction credit is requested as a result of the use of a DOR technology on a motor vehicle radiator, air conditioning assembly, or other appropriate substrate. REFERENCES:

unknown authors

1999-01-01T23:59:59.000Z

70

Figure 73. Sales of light-duty vehicles using non-gasoline ...  

U.S. Energy Information Administration (EIA)

Sales of light-duty vehicles using non-gasoline technologies by type, 2011, 2025, ... Hybrid electric Flex-fuel Micro Total 2011.00 0.06 5.38E-03 0.54 0.25 1.61 0.01 2.49

71

Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles  

E-Print Network (OSTI)

is to be determined. e Onboard efficiency is the energy efficiency for delivering hydrogen from the storage systemTechnical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles a Storage to the powerplant divided by the total mass/volume of the complete storage system, including all stored hydrogen

72

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO...  

Open Energy Info (EERE)

Light-Duty Vehicle Energy Consumption by Fuel Type from EIA AEO 2011 Early Release Supplemental Table 47 of EIA AEO 2011 Early Release
2011-02-23T16:04:28Z 2011-03-31T19:33:44Z...

73

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

74

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

DOE Green Energy (OSTI)

On behalf of the Department of Energy's Office of FreedomCAR and Vehicle Technologies, we are pleased to introduce the Fiscal Year (FY) 2004 Annual Progress Report for the Advanced Combustion Engine R&D Sub-Program. The mission of the FreedomCAR and Vehicle Technologies Program is to develop more energy efficient and environmentally friendly highway transportation technologies that enable Americans to use less petroleum for their vehicles. The Advanced Combustion Engine R&D Sub-Program supports this mission by removing the critical technical barriers to commercialization of advanced internal combustion engines for light-, medium-, and heavy-duty highway vehicles that meet future Federal and state emissions regulations. The primary objective of the Advanced Combustion Engine R&D Sub-Program is to improve the brake thermal efficiency of internal combustion engines from 30 to 45 percent for light-duty applications by 2010; and 40 to 55 percent for heavy-duty applications by 2012; while meeting cost, durability, and emissions constraints. R&D activities include work on combustion technologies that increase efficiency and minimize in-cylinder formation of emissions, as well as aftertreatment technologies that further reduce exhaust emissions. Work is also being conducted on ways to reduce parasitic and heat transfer losses through the development and application of thermoelectrics and turbochargers that include electricity generating capability, and conversion of mechanically driven engine components to be driven via electric motors. This introduction serves to outline the nature, current progress, and future directions of the Advanced Combustion Engine R&D Sub-Program. The research activities of this Sub-Program are planned in conjunction with the FreedomCAR Partnership and the 21st Century Truck Partnership and are carried out in collaboration with industry, national laboratories, and universities. Because of the importance of clean fuels in achieving low emissions, R&D activities are closely coordinated with the relevant activities of the Fuel Technologies Sub-Program, also within the Office of FreedomCAR and Vehicle Technologies. Research is also being undertaken on hydrogen-fueled internal combustion engines to provide an interim hydrogen-based powertrain technology that promotes the longer-range FreedomCAR Partnership goal of transitioning to a hydrogen-fueled transportation system. Hydrogen engine technologies being developed have the potential to provide diesel-like engine efficiencies with near-zero emissions.

None

2005-12-15T23:59:59.000Z

75

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

76

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)  

Reports and Publications (EIA)

In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

Information Center

2005-02-01T23:59:59.000Z

77

Light-Duty Alternative Fuel Vehicles: Federal Test Procedure Emissions Results  

DOE Green Energy (OSTI)

In support of the U.S. Department of Energy's development and deployment of alternative fuels for environmental and national security reasons, NREL has managed a series of light-duty vehicle emissions tests on alternative fuel vehicles (AFVs). The purpose of this report is to give a detailed evaluation of the final emissions test results on vehicles tested on methanol, ethanol, and compressed natural gas.

Kelly, K.; Eudy, L.; Coburn, T.

1999-12-13T23:59:59.000Z

78

Reduced energy consumption by massive thermoelectric waste heat recovery in light duty trucks  

Science Conference Proceedings (OSTI)

The main objective of the EC funded HEATRECAR project is to reduce the energy consumption and curb CO2 emissions of vehicles by massively harvesting electrical energy from the exhaust system and re-use this energy to supply electrical components within the vehicle or to feed the power train of hybrid electrical vehicles. HEATRECAR is targeting light duty trucks and focuses on the development and the optimization of a Thermo Electric Generator (TEG) including heat exchanger

D. Magnetto; G. Vidiella

2012-01-01T23:59:59.000Z

79

Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet  

E-Print Network (OSTI)

Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

McAulay, Jeffrey L. (Jeffrey Lewis)

2009-01-01T23:59:59.000Z

80

Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet  

E-Print Network (OSTI)

The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

Bandivadekar, Anup P

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Light-Duty Drive Cycle Simulations of Diesel Engine-Out Exhaust Properties for an RCCI-Enabled Vehicle  

SciTech Connect

In-cylinder blending of gasoline and diesel fuels to achieve low-temperature reactivity controlled compression ignition (RCCI) can reduce NOx and PM emissions while maintaining or improving brake thermal efficiency compared to conventional diesel combustion (CDC). Moreover, the dual-fueling RCCI is able to achieve these benefits by tailoring combustion reactivity over a wider range of engine operation than is possible with a single fuel. However, the currently demonstrated range of stable RCCI combustion just covers a portion of the engine speed-load range required in several light-duty drive cycles. This means that engines must switch from RCCI to CDC when speed and load fall outside of the stable RCCI range. In this study we investigated the impact of RCCI as it has recently been demonstrated on practical engine-out exhaust temperature and emissions by simulating a multi-mode RCCI-enabled vehicle operating over two urban and two highway driving cycles. To implement our simulations, we employed experimental engine maps for a multi-mode RCCI/CDC engine combined with a standard mid-size, automatic transmission, passenger vehicle in the Autonomie vehicle simulation platform. Our results include both detailed transient and cycle-averaged engine exhaust temperature and emissions for each case, and we note the potential implications of the modified exhaust properties on catalytic emissions control and utilization of waste heat recovery on future RCCI-enabled vehicles.

Gao, Zhiming [ORNL; Curran, Scott [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2013-01-01T23:59:59.000Z

82

Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts  

Gasoline and Diesel Fuel Update (EIA)

2 2 Light-Duty Diesel Vehicles: Market Issues and Potential Energy and Emissions Impacts January 2009 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. Unless referenced otherwise, the information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requester.

83

Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank  

Science Conference Proceedings (OSTI)

The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

Bhatia, P.K.

1995-01-31T23:59:59.000Z

84

Tier 2 Useful Life (120,000 miles) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle  

DOE Green Energy (OSTI)

Investigates the emission control system performance and system desulfurization effects on regulated and unregulated emissions in a light-duty diesel engine.

Tatur, M.; Tomazic, D.; Thornton, M.; Orban, J.; Slone, E.

2006-05-01T23:59:59.000Z

85

An Analysis of the Relationship between Casualty Risk Per Crash and Vehicle Mass and Footprint for Model Year 2000-2007 Light-Duty Vehicles-Preliminary report  

E-Print Network (OSTI)

variables, on 13-state casualty risk per crash, lightvariables, on 13-state casualty risk per crash, lighton crashes with heavier light-duty trucks, by case vehicle

Wenzel, Tom

2013-01-01T23:59:59.000Z

86

Hydrocarbon and Electrical Requirements in the Plasma During Treatment of NOx in Light-Duty Diesel Engine Exhaust  

DOE Green Energy (OSTI)

This paper examines the hydrocarbon (C{sub 1}/NO{sub x} ratio) and electrical energy density (ratio of power to exhaust flow rate) requirements in the plasma during plasma-assisted catalytic reduction of NO{sub x}. The requirements for treatment of NO{sub x} in heavy-duty and light-duty diesel engines are compared. It is shown that, for light-duty applications, the plasma can significantly enhance the catalytic reduction of NO{sub x} with little fuel penalty incurred in the plasma process.

Penetrante, B.; Brusasco,R.M.; Merritt, B.T.; Vogtlin, G.E.

1999-10-28T23:59:59.000Z

87

Microsoft Word - EXT-12-27320_Idle-Stop_Light_Duty_Passenger_Vehicles.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

7320 7320 Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light- Duty Passenger Vehicles Jeffrey Wishart Matthew Shirk Contract No. DE-FC26-05NT42486 December 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise,

88

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

Science Conference Proceedings (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

89

Fuel savings and emissions reductions from light duty fuel cell vehicles  

DOE Green Energy (OSTI)

Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

Mark, J.; Ohi, J.M.; Hudson, D.V. Jr.

1994-04-01T23:59:59.000Z

90

Piston Bowl Optimization for RCCI Combustion in a Light-Duty Multi-Cylinder Engine  

Science Conference Proceedings (OSTI)

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that that produces low NO{sub x} and PM emissions with high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines. The current study investigates RCCI operation in a light-duty multi-cylinder engine at 3 operating points. These operating points were chosen to cover a range of conditions seen in the US EPA light-duty FTP test. The operating points were chosen by the Ad Hoc working group to simulate operation in the FTP test. The fueling strategy for the engine experiments consisted of in-cylinder fuel blending using port fuel-injection (PFI) of gasoline and early-cycle, direct-injection (DI) of diesel fuel. At these 3 points, the stock engine configuration is compared to operation with both the original equipment manufacturer (OEM) and custom machined pistons designed for RCCI operation. The pistons were designed with assistance from the KIVA 3V computational fluid dynamics (CFD) code. By using a genetic algorithm optimization, in conjunction with KIVA, the piston bowl profile was optimized for dedicated RCCI operation to reduce unburned fuel emissions and piston bowl surface area. By reducing these parameters, the thermal efficiency of the engine was improved while maintaining low NOx and PM emissions. Results show that with the new piston bowl profile and an optimized injection schedule, RCCI brake thermal efficiency was increased from 37%, with the stock EURO IV configuration, to 40% at the 2,600 rev/min, 6.9 bar BMEP condition, and NOx and PM emissions targets were met without the need for exhaust after-treatment.

Hanson, Reed M [ORNL; Curran, Scott [ORNL; Wagner, Robert M [ORNL; Reitz, Rolf [University of Wisconsin; Kokjohn, Sage [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

91

Electric Utilities Industrial Transportation  

E-Print Network (OSTI)

• 240 million vehicles on the road • Approximately 9M new cars & light trucks for 2009. Average is 15.7 M/yr 2002-2007 • 11.5 Million barrels of oil per day consumed by on-road vehicles • Light-duty vehicles consume 60 % of transportation fuel, and account for 42% of total US petroleum use. Vehicle Technologies Program eere.energy.gov For Light-duty Passenger Vehicles Where are the opportunities for reducing transportation petroleum demand?

Edwin Owens; Million Barrels Per Day

1994-01-01T23:59:59.000Z

92

Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992  

DOE Green Energy (OSTI)

This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

Not Available

1993-07-01T23:59:59.000Z

93

Reduce growth rate of light-duty vehicle travel to meet 2050 global climate goals This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

.iop.org/ERL/6/024018 Abstract Strong policies to constrain increasing global use of light-duty vehicles (cars reductions may be sought in sectors such as electricity generation and light-duty vehicle (LDV

Kammen, Daniel M.

94

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

95

Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

96

Electric Technologies for Light-duty Vehicles in the United States Abstract  

E-Print Network (OSTI)

This paper is concerned with the present status and future projections for emerging technologies that can be utilized in light-duty vehicles in the next five to ten years to significantly reduce their CO2 emissions. The emerging technologies considered are modern clean diesel engines and hybrid-electric powertrains using batteries and/or ultracapacitors for energy storage. Throughout the study, six classes of vehicles –compact passenger cars to large SUVs-were considered. For each vehicle class, computer simulations (Advisor 2002) and cost analyses were performed for conventional ICE and mild and full parallel hybrids using port-fuel injected and lean burn gasoline engines and direct-injection turbo-charged diesel engines to determine the fuel economy and differential costs for the various vehicle designs using the conventional gasoline PFI engine vehicle as the baseline. CO2 emissions (gmCO2/mi) for each driveline and vehicle case were calculated from the fuel economy values. On a percentage or ratio basis, the analyses indicated that the fuel economy gains, CO2 emissions reductions, and cost/price increases due to the use of the advanced engines and hybrid-electric drivelines were essentially independent of vehicle class. This means that a regulation specifying the same fractional

United States; Andrew Burke; Ethan Abeles; Andrew Burke; Ethan Abeles

2004-01-01T23:59:59.000Z

97

APBF-DEC NOx Adsorber/DPF Project: Light-Duty Passenger Car Platform  

DOE Green Energy (OSTI)

A 1.9L turbo direct injection (TDI) diesel engine was modified to achieve the upcoming Tier 2 Bin 5 emission standard in combination with a NOx adsorber catalyst (NAC) and a diesel particulate filter (DPF). The primary objective for developing this test bed is to investigating the effects of different fuel sulfur contents on the performance of an advanced emission control system (ECS) in a light-duty application. During the development process, the engine-out emissions were minimized by applying a state-of-the-art combustion system in combination with cooled exhaust gas recirculation (EGR). The subsequent calibration effort resulted in emission levels requiring 80-90 percent nitrogen-oxide (NOx) and particulate matter (PM) conversion rates by the corresponding ECS. The strategy development included ean/rich modulation for NAC regeneration, as well as, the desulfurization of the NAC and the regeneration of the DPF. Two slightly different ECS were investigated and calibrated. The initial vehicle results in an Audi A4 station wagon over the federal test procedure (FTP), US 06, and the highway fuel economy test (HFET) cycle indicate the potential of these configuration to meet the future Tier 2 emission standard.

Tomazic, D; Tatur, M; Thornton, M

2003-08-24T23:59:59.000Z

98

Comparative urban drive cycle simulations of light-duty hybrid vehicles with gasoline or diesel engines and emissions controls  

SciTech Connect

Electric hybridization is a very effective approach for reducing fuel consumption in light-duty vehicles. Lean combustion engines (including diesels) have also been shown to be significantly more fuel efficient than stoichiometric gasoline engines. Ideally, the combination of these two technologies would result in even more fuel efficient vehicles. However, one major barrier to achieving this goal is the implementation of lean-exhaust aftertreatment that can meet increasingly stringent emissions regulations without heavily penalizing fuel efficiency. We summarize results from comparative simulations of hybrid electric vehicles with either stoichiometric gasoline or diesel engines that include state-of-the-art aftertreatment emissions controls for both stoichiometric and lean exhaust. Fuel consumption and emissions for comparable gasoline and diesel light-duty hybrid electric vehicles were compared over a standard urban drive cycle and potential benefits for utilizing diesel hybrids were identified. Technical barriers and opportunities for improving the efficiency of diesel hybrids were identified.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

99

Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-duty Vehicle Market  

Science Conference Proceedings (OSTI)

Diesel and hybrid technologies each have the potential to increase light-duty vehicle fuel economy by a third or more without loss of performance, yet these technologies have typically been excluded from technical assessments of fuel economy potential on the grounds that hybrids are too expensive and diesels cannot meet Tier 2 emissions standards. Recently, hybrid costs have come down and the few hybrid makes available are selling well. Diesels have made great strides in reducing particulate and nitrogen oxide emissions, and are likely though not certain to meet future standards. In light of these developments, this study takes a detailed look at the market potential of these two powertrain technologies and their possible impacts on light-duty vehicle fuel economy. A nested multinomial logit model of vehicle choice was calibrated to 2002 model year sales of 930 makes, models and engine-transmission configurations. Based on an assessment of the status and outlook for the two technologies, market shares were predicted for 2008, 2012 and beyond, assuming no additional increase in fuel economy standards or other new policy initiatives. Current tax incentives for hybrids are assumed to be phased out by 2008. Given announced and likely introductions by 2008, hybrids could capture 4-7% and diesels 2-4% of the light-duty market. Based on our best guesses for further introductions, these shares could increase to 10-15% for hybrids and 4-7% for diesels by 2012. The resulting impacts on fleet average fuel economy would be about +2% in 2008 and +4% in 2012. If diesels and hybrids were widely available across vehicle classes, makes, and models, they could capture 40% or more of the light-duty vehicle market.

Greene, D.L.

2004-08-23T23:59:59.000Z

100

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

an analysis of the social cost of transportation modes. ForThe full social cost of a transportation mode consists ofof the social cost of alternative transportation modes.

Delucchi, Mark

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Putting policy in drive : coordinating measures to reduce fuel use and greenhouse gas emissions from U.S. light-duty vehicles  

E-Print Network (OSTI)

The challenges of energy security and climate change have prompted efforts to reduce fuel use and greenhouse gas emissions in light-duty vehicles within the United States. Failures in the market for lower rates of fuel ...

Evans, Christopher W. (Christopher William)

2008-01-01T23:59:59.000Z

102

Plasma Catalysis for NOx Reduction from Light-Duty Diesel Vehicles  

SciTech Connect

The control of NOx (NO and NO2) emissions from so-called ‘lean-burn’ vehicle engines remains a challenge. In this program, we have been developing a novel plasma/catalyst technology for the remediation of NOx under lean (excess oxygen) conditions, specifically for compression ignition direct injection (CIDI) diesel engines that have significant fuel economy benefits over conventional stoichiometric gasoline engines. Program efforts included: (1) improving the catalyst and plasma reactor efficiencies for NOx reduction; (2) studies to reveal important details of the reaction mechanism(s) that can then guide our catalyst and reactor development efforts; (3) evaluating the performance of prototype systems on real engine exhaust; and (4) studies of the effects of the plasma on particulate matter (PM) in real diesel engine exhaust. Figure 1 is a conceptual schematic of a plasma/catalyst device, which also shows our current best understanding of the role of the various components of the overall device for reducing NOx from the exhaust of a CIDI engine. When this program was initiated, it was not at all clear what the plasma was doing and, as such, what class of catalyst materials might be expected to produce good results. With the understanding of the role of the plasma (as depicted in Figure 1) obtained in this program, faujasite zeolite-based catalysts were developed and shown to produce high activity for NOx reduction of plasma-treated exhaust in a temperature range expected for light-duty diesel engines. These materials are the subject of a pending patent application, and were recognized with a prestigious R&D100 Award in 2002. In addition, PNNL staff were awarded a Federal Laboratory Consortium (FLC) Award in 2003 “For Excellence in Technology Transfer”. The program also received the DOE’s 2001 CIDI Combustion and Emission Control Program Special Recognition Award and 2004 Advanced Combustion Engine R&D Special Recognition Award.

Barlow, Stephan E.; Kwak, Ja Hun; Peden, Charles HF; Szanyi, Janos; Tonkyn, Russell G.; Howden, Ken; Hoard, John W.; Cho, Byong; Schmieg, Steven J.; Brooks, David J.; Nunn, Steven; Davis, Patrick

2004-12-31T23:59:59.000Z

103

Soft Modes, Resonances and Quantum Transport  

E-Print Network (OSTI)

Effects of the propagation of particles, which have a finite life-time and an according width in their mass spectrum, are discussed in the context of transport description. First, the importance of coherence effects (Landau-Pomeranchuk-Migdal effect) on production and absorption of field quanta in non-equilibrium dense matter is considered. It is shown that classical diffusion and Langevin results correspond to re-summation of certain field-theory diagrams formulated in terms of full non-equilibrium Green's functions. Then the general properties of broad resonances in dense and hot systems are discussed in the framework of a self-consistent and conserving Phi-derivable method of Baym at the examples of the rho-meson in hadronic matter and the pion in dilute nuclear matter. Further we address the problem of a transport description that properly accounts for the damping width of the particles. The Phi-derivable method generalized to the real-time contour provides a self-consistent and conserving kinetic scheme. We derive a generalized expression for the non-equilibrium kinetic entropy flow, which includes corrections from fluctuations and mass-width effects. In special cases an H-theorem is proved. Memory effects in collision terms give contributions to the kinetic entropy flow that in the Fermi-liquid case recover the famous bosonic type T^3 ln T correction to the specific heat of liquid Helium-3. At the example of the pion-condensate phase transition in dense nuclear matter we demonstrate important part played by the width effects within the quantum transport.

Yu. B. Ivanov; J. Knoll; H. van Hees; D. N. Voskresensky

2000-05-31T23:59:59.000Z

104

Experimental Investigation of the Effects of Fuel Characteristics on High Efficiency Clean Combustion (HECC) in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

An experimental study was performed to understand fuel property effects on low temperature combustion (LTC) processes in a light-duty diesel engine. These types of combustion modes are often collectively referred to as high efficiency clean combustion (HECC). A statistically designed set of research fuels, the Fuels for Advanced Combustion Engines (FACE), were used for this study. Engine conditions consistent with low speed cruise (1500 rpm, 2.6 bar BMEP) were chosen for investigating fuel property effects on HECC operation in a GM 1.9-L common rail diesel engine. The FACE fuel matrix includes nine combinations of fuel properties including cetane number (30 to 55), aromatic contents (20 to 45 %), and 90 % distillation temperature (270 to 340 C). HECC operation was achieved with high levels of EGR and adjusting injection parameters, e.g. higher fuel rail pressure and single injection event, which is also known as Premixed Charge Compression Ignition (PCCI) combustion. Engine performance, pollutant emissions, and details of the combustion process are discussed in this paper. Cetane number was found to significantly affect the combustion process with variations in the start of injection (SOI) timing, which revealed that the ranges of SOI timing for HECC operation and the PM emission levels were distinctively different between high cetane number (55) and low cetane number fuels (30). Low cetane number fuels showed comparable levels of regulated gas emissions with high cetane number fuels and had an advantage in PM emissions.

Cho, Kukwon [ORNL; Han, Manbae [ORNL; Wagner, Robert M [ORNL; Sluder, Scott [ORNL

2009-01-01T23:59:59.000Z

105

Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles: A Benefit and Cost Assessment  

DOE Green Energy (OSTI)

This report presents the methodologies and results of a study conducted by Argonne National Laboratory (Argonne) to assess the benefits and costs of several membrane-based technologies. The technologies evaluated will be used in automotive emissions-control and performance-enhancement systems incorporated into light-duty diesel vehicle engines. Such engines are among the technologies that are being considered to power vehicles developed under the government-industry Partnership for a New Generation of Vehicles (PNGV). Emissions of nitrogen oxides (NO{sub x}) from diesel engines have long been considered a barrier to use of diesels in urban areas. Recently, particulate matter (PM) emissions have also become an area of increased concern because of new regulations regarding emissions of particulate matter measuring 2.5 micrometers or less (PM{sub 2.5}). Particulates are of special concern for diesel engines in the PNGV program; the program has a research goal of 0.01 gram per mile (g/mi) of particulate matter emissions under the Federal Test Procedure (FTP) cycle. This extremely low level (one-fourth the level of the Tier II standard) could threaten the viability of using diesel engines as stand-alone powerplants or in hybrid-electric vehicles. The techniques analyzed in this study can reduce NO{sub x} and particulate emissions and even increase the power density of the diesel engines used in light-duty diesel vehicles.

K. Stork; R. Poola

1998-10-01T23:59:59.000Z

106

Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

1982-12-01T23:59:59.000Z

107

Electric powertrains : opportunities and challenges in the US light-duty vehicle fleet  

E-Print Network (OSTI)

Managing impending environmental and energy challenges in the transport sector requires a dramatic reduction in both the petroleum consumption and greenhouse gas (GHG) emissions of in-use vehicles. This study quantifies ...

Kromer, Matthew A

2007-01-01T23:59:59.000Z

108

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

Battelle

1998-10-01T23:59:59.000Z

109

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

Battelle

1998-10-01T23:59:59.000Z

110

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend transportation fuel in flexible-fuel vehicles. This report presents the data collection and analysis from this project, with particular focus on vehicle performance, cost of operation and limited emissions testing.

Whalen, P.; Poole, L.; Howard, R.

1998-12-31T23:59:59.000Z

111

Resource Assessment and Land Use Change Light Duty Vehicles/Fuels  

E-Print Network (OSTI)

to farmgate or forest roadside (not transportation or conversion) · Exogenous targets for biofuel production emissions related to biofuels ­ Emissions can be reduced by including a broad set of incentives targeting · Resource assessment and indirect land use change 2 #12;Increasing Feedstock Production for Biofuels

112

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend transportation fuel in flexible-fuel vehicles. This report presents the data collection and analysis from this project, with particular focus on vehicle performance, cost of operation and limited emissions testing.

Whalen, P.; Poole, L.; Howard, R.

1998-12-31T23:59:59.000Z

113

Assessing the fuel Use and greenhouse gas emissions of future light-duty vehicles in Japan  

E-Print Network (OSTI)

Reducing greenhouse gas (GHG) emissions is of great concern in Japan, as well as elsewhere, such as in the U.S. and EU. More than 20% of GHG emissions in Japan come from the transportation sector, and a more than 70% ...

Nishimura, Eriko

2011-01-01T23:59:59.000Z

114

Soybean and Coconut Biodiesel Fuel Effects on Combustion Characteristics in a Light-Duty Diesel Engine  

Science Conference Proceedings (OSTI)

This study investigated the effects of soybean- and coconut-derived biodiesel fuels on combustion characteristics in a 1.7-liter direct injection, common rail diesel engine. Five sets of fuels were studied: 2007 ultra-low sulfur diesel (ULSD), 5% and 20% volumetric blends of soybean biodiesel with ULSD (soybean B5 and B20), and 5% and 20% volumetric blends of coconut biodiesel with ULSD (coconut B5 and B20). In conventional diesel combustion mode, particulate matter (PM) and nitrogen oxides (NO/dx) emissions were similar for all fuels studied except soybean B20. Soybean B20 produced the lowest PM but the highest NO/dx emissions. Compared with conventional diesel combustion mode, high efficiency clean combustion (HECC) mode, achieved by increased EGR and combustion phasing, significantly reduced both PM and NO/dx emissions for all fuels studied at the expense of higher hydrocarbon (HC) and carbon monoxide (CO) emissions and an increase in fuel consumption (less than 4%). ULSD, soybean B5, and coconut B5 showed no difference in exhaust emissions. However, PM emissions increased slightly for soybean B20 and coconut B20. NO/dx emissions increased significantly for soybean B20, while those for coconut B20 were comparable to ULSD. Differences in the chemical and physical properties of soybean and coconut biodiesel fuels compared with ULSD, such as higher fuel-borne oxygen, greater viscosity, and higher boiling temperatures, play a key role in combustion processes and, therefore, exhaust emissions. Furthermore, the highly unsaturated ester composition in soybean biodiesel can be another factor in the increase of NO/dx emissions.

Han, Manbae [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Wagner, Robert M [ORNL

2008-01-01T23:59:59.000Z

115

Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

Greene, David L [ORNL

2011-01-01T23:59:59.000Z

116

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

DOE Green Energy (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

117

Probabilistic evaluation of mobile source air pollution: Volume 1 -- Probabilistic modeling of exhaust emissions from light duty gasoline vehicles. Final report, 1 August 1994--31 May 1997  

Science Conference Proceedings (OSTI)

Emission factors for light duty gasoline vehicles (LDGV) are typically developed based upon laboratory testing of vehicles for prescribed driving cycles. In this project, selected LDGV data sets and modeling assumptions used to develop Mobile5a were revisited. Probabilistic estimates of the inter-vehicle variability in emissions and the uncertainty in fleet average emissions for selected vehicle types and driving cycles were made. Case studies focused upon probabilistic analysis of base emission rate and speed correction estimates used in Mobile5a for throttle body and port fuel injected vehicles. Based upon inter-vehicle variability in the data sets and a probabilistic model in which the standard error terms of regression models employed in Mobile5a are also considered, the uncertainty was estimated for average emission factors for the selected fleets of light duty gasoline vehicles. The 90 percent confidence interval for the average emission factor varied in range with pollutant and driving cycle.

Frey, H.C.; Kini, M.D.

1997-12-01T23:59:59.000Z

118

Assessing the viability of compressed natural gas as a transportation fuel for light-duty vehicles in the United States.  

E-Print Network (OSTI)

??Recent optimistic revisions to projections for recoverable natural gas resources in the United States have generated renewed interest in the possibility of greater utilization of… (more)

Kennedy, Castlen Moore

2011-01-01T23:59:59.000Z

119

Demonstration of oxygen-enriched combustion system on a light-duty vehicle to reduce cold-start emissions  

DOE Green Energy (OSTI)

The oxygen content in the ambient air drawn by combustion engines can be increased by polymer membranes. The authors have previously demonstrated that 23 to 25% (concentration by volume) oxygen-enriched intake air can reduce hydrocarbons (HC), carbon monoxide (CO), air toxics, and ozone-forming potential (OFP) from flexible-fueled vehicles (FFVs) that use gasoline or M85. When oxygen-enriched air was used only during the initial start-up and warm-up periods, the emission levels of all three regulated pollutants [CO, nonmethane hydrocarbons (NMHC), and NO{sub x}] were lower than the U.S. EPA Tier II (year 2004) standards (without adjusting for catalyst deterioration factors). In the present work, an air separation membrane module was installed on the intake of a 2.5-L FFV and tested at idle and free acceleration to demonstrate the oxygen-enrichment concept for initial start-up and warm-up periods. A bench-scale, test set-up was developed to evaluate the air separation membrane characteristics for engine applications. On the basis of prototype bench tests and from vehicle tests, the additional power requirements and module size for operation of the membrane during the initial period of the cold-phase, FTP-75 cycle were evaluated. A prototype membrane module (27 in. long, 3 in. in diameter) supplying about 23% oxygen-enriched air in the engine intake only during the initial start-up and warm-up periods of a 2.5-L FFV requires additional power (blower) of less than one horsepower. With advances in air separation membranes to develop compact modules, oxygen enrichment of combustion air has the potential of becoming a more practical technique for controlling exhaust emissions from light-duty vehicles.

Sekar, R.; Poola, R.B.

1997-08-01T23:59:59.000Z

120

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

DOE Green Energy (OSTI)

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

122

Digital breadcrumbs: Detecting urban mobility patterns and transport mode choices from cellphone networks  

E-Print Network (OSTI)

Many modern and growing cities are facing declines in public transport usage, with few efficient methods to explain why. In this article, we show that urban mobility patterns and transport mode choices can be derived from cellphone call detail records coupled with public transport data recorded from smart cards. Specifically, we present new data mining approaches to determine the spatial and temporal variability of public and private transportation usage and transport mode preferences across Singapore. Our results, which were validated by Singapore's quadriennial Household Interview Travel Survey (HITS), revealed that there are 3.5 (HITS: 3.5 million) million and 4.3 (HITS: 4.4 million) million inter-district passengers by public and private transport, respectively. Along with classifying which transportation connections are weak or underserved, the analysis shows that the mode share of public transport use increases from 38 percent in the morning to 44 percent around mid-day and 52 percent in the evening.

Holleczek, Thomas; Lee, Joseph K; Senn, Oliver; Kloeckl, Kristian; Ratti, Carlo; Jaillet, Patrick

2013-01-01T23:59:59.000Z

123

Alternative Transportation Technologies: Hydrogen, Biofuels,  

E-Print Network (OSTI)

-in Hybrid Electric Vehicles Results of two Reports from the National Research Council Joan Ogden and Mike11 Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug Ramage DOE Light-Duty Vehicle Workshop July 26, 2010 #12;22 COMMITTEE ON ASSESSMENT OF RESOURCE NEEDS

124

Transportation Energy Futures: Project Overview and Findings (Presentation)  

SciTech Connect

The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

Not Available

2013-03-01T23:59:59.000Z

125

Transportation Sector Energy Use by Fuel Type Within a Mode from...  

Open Energy Info (EERE)

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Supplemental Table 46 of EIA AEO 2011 Early Release
2011-02-23T15:55:10Z...

126

Wind-Driven Transport Fluctuations through Drake Passage: A Southern Mode  

Science Conference Proceedings (OSTI)

It is proposed that, for periods between about 10 and 220 days, the variability in Antarctic circumpolar transport is dominated by a barotropic mode that follows f/H contours almost everywhere. Theoretical arguments are given that suggest the ...

Chris W. Hughes; Mike P. Meredith; Karen J. Heywood

1999-08-01T23:59:59.000Z

127

Energy transport by acoustic modes of harmonic lattices  

E-Print Network (OSTI)

We study the large scale evolution of a scalar lattice excitation which satisfies a discrete wave-equation in three dimensions. We assume that the dispersion relation associated to the elastic coupling constants of the wave-equation is acoustic, i.e., it has a singularity of the type |k| near the vanishing wave vector, k=0. To derive equations that describe the macroscopic energy transport we introduce the Wigner transform and change variables so that the spatial and temporal scales are of the order of epsilon. In the continuum limit, which is achieved by sending the parameter epsilon to 0, the Wigner transform disintegrates into three different limit objects: the transform of the weak limit, the H-measure and the Wigner-measure. We demonstrate that these three limit objects satisfy a set of decoupled transport equations: a wave-equation for the weak limit of the rescaled initial data, a dispersive transport equation for the regular limiting Wigner measure, and a geometric optics transport equation for the H-measure limit of the initial data concentrating to k=0. A simple consequence of our result is the complete characterization of energy transport in harmonic lattices with acoustic dispersion relations.

Lisa Harris; Jani Lukkarinen; Stefan Teufel; Florian Theil

2006-11-21T23:59:59.000Z

128

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

129

Impacts of urban transportation mode split on CO{sub 2} emissions in Jinan, China.  

Science Conference Proceedings (OSTI)

As the world's largest developing country, China currently is undergoing rapid urbanization and motorization, which will result in far-reaching impacts on energy and the environment. According to estimates, energy use and carbon emissions in the transportation sector will comprise roughly 30% of total emissions by 2030. Since the late 1990s, transportation-related issues such as energy, consumption, and carbon emissions have become a policy focus in China. To date, most research and policies have centered on vehicle technologies that promote vehicle efficiency and reduced emissions. Limited research exists on the control of greenhouse gases through mode shifts in urban transportation - in particular, through the promotion of public transit. The purpose of this study is to establish a methodology to analyze carbon emissions from the urban transportation sector at the Chinese city level. By using Jinan, the capital of China's Shandong Province, as an example, we have developed an analytical model to simulate energy consumption and carbon emissions based on the number of trips, the transportation mode split, and the trip distance. This model has enabled us to assess the impacts of the transportation mode split on energy consumption and carbon emissions. Furthermore, this paper reviews a set of methods for data collection, estimation, and processing for situations where statistical data are scarce in China. This paper also describes the simulation of three transportation system development scenarios. The results of this study illustrate that if no policy intervention is implemented for the transportation mode split (the business-as-usual (BAU) case), then emissions from Chinese urban transportation systems will quadruple by 2030. However, a dense, mixed land-use pattern, as well as transportation policies that encourage public transportation, would result in the elimination of 1.93 million tons of carbon emissions - approximately 50% of the BAU scenario emissions.

He, D.; Meng, F.; Wang, M.; He, K. (Energy Systems); (Energy Foundation); (Tsinghua Univ.)

2011-04-01T23:59:59.000Z

130

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

131

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine - SAE World Congress  

SciTech Connect

This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI). The effect of E85 on the Ad-hoc federal test procedure (FTP) modal points is explored along with the effect of load expansion through the light-duty diesel speed operating range. The Ad-hoc FTP modal points of 1500 rpm, 1.0bar brake mean effective pressure (BMEP); 1500rpm, 2.6bar BMEP; 2000rpm, 2.0bar BMEP; 2300rpm, 4.2bar BMEP; and 2600rpm, 8.8bar BMEP were explored. Previous results with 96 RON unleaded test gasoline (UTG-96) and ultra-low sulfur diesel (ULSD) showed that with stock hardware, the 2600rpm, 8.8bar BMEP modal point was not obtainable due to excessive cylinder pressure rise rate and unstable combustion both with and without the use of EGR. Brake thermal efficiency and emissions performance of RCCI operation with E85 and ULSD is explored and compared against conventional diesel combustion (CDC) and RCCI operation with UTG 96 and ULSD.

Curran, Scott [ORNL; Hanson, Reed M [ORNL; Wagner, Robert M [ORNL

2012-01-01T23:59:59.000Z

132

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment  

NLE Websites -- All DOE Office Websites (Extended Search)

Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment Dual-Mode Hybrid/Two-Mode Hybrid Accomplishment DOE-funded research, in collaboration with Allison Buses and General Motors Corporation has led to the commercialization of a dramatically different hybrid transmission system for heavy-duty and light-duty applications. The Dual-Mode or Two-Mode hybrid system is an infinitely variable speed hybrid transmission that works with the engine and battery system and automatically chooses to operate in a parallel or series hybrid path to maximize efficiency and minimize emissions, fuel consumption and noise. Parallel and Series hybrid configurations are found on most hybrid vehicles today, both with their own pluses and minuses. The Dual- Mode/Two-Mode systems uses the positive characteristics from both systems to maximize fuel

133

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

DOE Green Energy (OSTI)

This report describes the data gathering and analysis procedures that support the US Department of Energy's implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

Not Available

1992-07-01T23:59:59.000Z

134

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

DOE Green Energy (OSTI)

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

Not Available

1992-07-01T23:59:59.000Z

135

Multi-Mode Transportable Battery Energy System for Salt River Project: Volume 1: Design and Installation  

Science Conference Proceedings (OSTI)

Energy storage technologies are likely to find new roles in a restructured electric utility environment. This project designed and deployed a commercial prototype of an innovative multi-mode transportable battery system capable of a broad functional role in the new business environment.

1999-06-29T23:59:59.000Z

136

Freight mode choice : air transport versus ocean transport in the 1990's  

E-Print Network (OSTI)

Value density is often considered when considering the choice whether to ship cargo by air or by water. However, although cargo value is directly linked to the overall cost of shipment, it is the deciding factor in mode ...

Lewis, Dale B.

1994-01-01T23:59:59.000Z

137

Global Assessment of Hydrogen Technologies - Task 2 Report Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles  

Science Conference Proceedings (OSTI)

An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasoline in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ng, Henry K.; Waller, Thomas

2007-12-01T23:59:59.000Z

138

Fabrication and testing of an enhanced ignition system to reduce cold-start emissions in an ethanol (E85) light-duty truck engine  

DOE Green Energy (OSTI)

This report describes an experimental investigation of the potential for an enhanced ignition system to lower the cold-start emissions of a light-duty vehicle engine using fuel ethanol (commonly referred to as E85). Plasma jet ignition and conventional inductive ignition were compared for a General Motors 4-cylinder, alcohol-compatible engine. Emission and combustion stability measurements were made over a range of air/fuel ratios and spark timing settings using a steady-state, cold-idle experimental technique in which the engine coolant was maintained at 25 C to simulate cold-running conditions. These tests were aimed at identifying the degree to which calibration strategies such as mixture enleanment and retarded spark timing could lower engine-out hydrocarbon emissions and raise exhaust temperatures, as well as determining how such calibration changes would affect the combustion stability of the engine (as quantified by the coefficient of variation, or COV, of indicated mean effective pressure calculated from successive cylinder pressure measurements). 44 refs., 39 figs.

Gardiner, D.; Mallory, R.; Todesco, M. [Nexum Research Corp., Kingston, Ontario (Canada). Thermotech Engineering Div.

1997-09-01T23:59:59.000Z

139

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

140

Radial transport of energetic ions in the presence of trapped electron mode turbulence  

Science Conference Proceedings (OSTI)

The nature of transport of hot ions is studied in the presence of microturbulence generated by the trapped electron mode in a Tokamak using massively parallel, first principle based global nonlinear gyrokinetic simulation, and with the help of a passive tracer method. Passing and trapped hot ions are observed to exhibit inverse and inverse square scaling with energy, while those with isotropic pitch distribution are found to exhibit inverse dependence on energy. For all types of hot ions, namely, isotropic, passing, and trapped, the radial transport appears to be subdiffusive for the parameters considered.

Chowdhury, J.; Wang, W.; Ethier, S.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Ganesh, R. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2011-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

SciTech Connect

I appreciate the opportunity to provide comments on the joint rulemaking to establish greenhouse gas emission and fuel economy standards for light-duty vehicles. My comments are directed at the choice of vehicle footprint as the attribute by which to vary fuel economy and greenhouse gas emission standards, in the interest of protecting vehicle occupants from death or serious injury. I have made several of these points before when commenting on previous NHTSA rulemakings regarding CAFE standards and safety. The comments today are mine alone, and do not necessarily represent the views of the US Department of Energy, Lawrence Berkeley National Laboratory, or the University of California. My comments can be summarized as follows: (1) My updated analysis of casualty risk finds that, after accounting for drivers and crash location, there is a wide range in casualty risk for vehicles with the same weight or footprint. This suggests that reducing vehicle weight or footprint will not necessarily result in increased fatalities or serious injuries. (2) Indeed, the recent safety record of crossover SUVs indicates that weight reduction in this class of vehicles resulted in a reduction in fatality risks. (3) Computer crash simulations can pinpoint the effect of specific design changes on vehicle safety; these analyses are preferable to regression analyses, which rely on historical vehicle designs, and cannot fully isolate the effect of specific design changes, such as weight reduction, on crash outcomes. (4) There is evidence that automakers planned to build more large light trucks in response to the footprint-based light truck CAFE standards. Such an increase in the number of large light trucks on the road may decrease, rather than increase, overall safety.

Wenzel, Thomas P

2009-10-27T23:59:59.000Z

142

Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles  

SciTech Connect

The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

2012-03-30T23:59:59.000Z

143

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine  

DOE Green Energy (OSTI)

In-cylinder fuel blending of gasoline/diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a potential strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances, heat rejection, and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 4.2 bar brake mean effective pressure (BMEP). Gasoline was introduced with a port-fuel-injection system. Parameter sweeps included gasoline-to-diesel fuel ratio, intake air mixture temperature, in-cylinder swirl number, and diesel start-of-injection phasing. In addition, engine parameters were trimmed for each cylinder to balance the combustion process for maximum efficiency and lowest emissions. An important observation was the strong influence of intake charge temperature on cylinder pressure rise rate. Experiments were able to show increased thermal efficiency along with dramatic decreases in oxides of nitrogen (NOX) and particulate matter (PM). However, indicated thermal efficiency for the multi-cylinder experiments were less than expected based on modeling and single-cylinder results. The lower indicated thermal efficiency is believed to be due increased heat transfer as compared to the model predictions and suggest a need for improved cylinder-to-cylinder control and increased heat transfer control.

Curran, Scott [ORNL; Prikhodko, Vitaly Y [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL; Cho, Kukwon [ORNL; Sluder, Scott [ORNL; Kokjohn, Sage [University of Wisconsin, Madison; Reitz, Rolf [University of Wisconsin

2010-01-01T23:59:59.000Z

144

Kinetic Alfven Waves at the Magnetopause--Mode Conversion, Transport and Formation of LLBL  

DOE Green Energy (OSTI)

At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 109m2/s) can occur. Moreover, if the wave amplitude is sufficiently large (Bwave/B0 > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.At the magnetopause, large amplitude, low-frequency (ULF), transverse MHD waves are nearly always observed. These waves likely result from mode conversion of compressional MHD waves observed in the magnetosheath to kinetic Alfven waves at the magnetopause where there is a steep gradient in the Alfven velocity [Johnson and Cheng, Geophys. Res. Lett. 24 (1997) 1423]. The mode-conversion process can explain the following wave observations typically found during satellite crossings of the magnetopause: (1) a dramatic change in wave polarization from compressional in the magnetosheath to transverse at the magnetopause, (2) an amplification of wave amplitude at the magnetopause, (3) a change in Poynting flux from cross-field in the magnetosheath to field-aligned at the magnetopause, and (4) a steepening in the wave power spectrum at the magnetopause. We examine magnetic field data from a set of ISEE1, ISEE2, and WIND magnetopause crossings and compare with the predictions of theoretical wave solutions based on the kinetic-fluid model with particular attention to the role of magnetic field rotation across the magnetopause. The results of the study suggest a good qualitative agreement between the observations and the theory of mode conversion to kinetic Alfven waves. Because mode-converted kinetic Alfven waves readily decouple particles from the magnetic field lines, efficient quasilinear transport (D {approx} 10{sup 9}m{sup 2}/s) can occur. Moreover, if the wave amplitude is sufficiently large (B{sub wave}/B{sub 0} > 0.2) stochastic particle transport also occurs. This wave-induced transport can lead to significant heating and particle entry into the low latitude boundary layer across closed field lines.

Jay R. Johnson; C.Z. Cheng

2002-05-31T23:59:59.000Z

145

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

long-term. Biomass and Bioenergy 2005, 9. Wu, M. ; Wu, Y. ,industry. Biomass and Bioenergy 2005, 28, (6), 565-571. 18.the direct GHG effects of bioenergy crop production. Though

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

146

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

Energy Market and Economic Impacts of S.280, the Climate Stewardship and Innovation Act of 2007; Energy InformationEnergy Market and Economic Impacts of S. 2191, the Lieberman-Warner Climate Security Act of 2007; Energy Information

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

147

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

Compact Compact Compact Compact Full Size Type Adv GSL CNGCNG Flex Fuel DSL HEV DSL Ethanol Flex Fuel AbbreviationMinivan Minivan Minivan CNG CNG Flex Fuel DSL HEV DSL

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

148

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

U.S. Department of Energy: Washington, DC, 2006; http://U.S. Department of Energy: Washington, DC, April, 2008. 19.U.S. Department of Energy: Washington, DC, 2007; http://

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

149

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

R. C. , Comparative economics of biorefineries based on theBioprocessing, and Biorefineries 2007, 7. Shapouri, H. ;

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

150

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

and Renewable Energy (EERE), U.S. Department of Energy:and Renewable Energy (EERE), U.S. Department of Energy:

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

151

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

EISA) (we assume biofuel production must reach 36 billionspeci? c mandate for biofuel production, cellulosic ethanolethanol. Many biofuel production pathways, especially from

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

152

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

and thermochemical platforms. Biofuels, Bioprocessing, andTyner, W. E. ; Birur, D. K. Biofuels for all? Understandingof renewable fuels (biofuels in particular). For example,

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

153

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

GHG fuels such as compressed natural gas, low-GHG ethanol,LPG) Methane Compressed natural gas (CNG) Ethanol production

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

154

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

fuel switching (increasing use of natural gas, nuclear after 2040, and renewables), adopting more ef?cient electricity-generating

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

155

Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model  

E-Print Network (OSTI)

types of ethanol: corn ethanol and cellulosic ethanol. ManyInput assumptions for corn ethanol and cellulosic ethanolMost of the values for corn ethanol are extracted from GREET

Yeh, Sonia; Farrell, Alexander E.; Plevin, Richard J; Sanstad, Alan; Weyant, John

2008-01-01T23:59:59.000Z

156

The modeling of mode choices of intercity freight transportation with the artificial neural networks and adaptive neuro-fuzzy inference system  

Science Conference Proceedings (OSTI)

Mode choice modeling is probably the most important element of transportation planning. It affects the general efficiency of travel and the allocation of resources. The development of mode choice models has recently witnessed significant advances in ... Keywords: Freight transportation, Fuzzy logic, Hybrid algorithm, Inference system, Mode choices, Neural networks, Neuro-fuzzy

Ahmet Tortum; Nadir Yayla; Mahir Gökda?

2009-04-01T23:59:59.000Z

157

Sustainable Transport  

E-Print Network (OSTI)

THOUGHT PIECE Sustainable Transport by Melvin M. Webberwant to sustain any mode of transport only if we judge it todraconian in rejecting transport modes that have failed in

Webber, Melvin

2006-01-01T23:59:59.000Z

158

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

Not Available

2013-03-01T23:59:59.000Z

159

Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)  

SciTech Connect

This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

2013-03-01T23:59:59.000Z

160

The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX  

SciTech Connect

Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma

S.M.. Kaye, S. Gerhardt, W. Guttenfelder, R. Maingi, R.E. Bell, A. Diallo, B.P. LeBlanc and M. Podesta

2012-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Dependence of H-mode Energy Confinement and Transport on Collisionality in NSTX  

SciTech Connect

Understanding the dependence of confi nement on collisionality in tokamaks is important for the design of next-step devices, which will operate at collisionalities at least one order of magnitude lower than in present generation. A wide range of collisionality has been obtained in the National Spherical Torus Experiment (NSTX) by employing two different wall conditioning techniques, one with boronization and between-shot helium glow discharge conditioning (HeGDC+B), and one using lithium evaporation (Li EVAP). Previous studies of HeGDC+B plasmas indicated a strong and favorable dependence of normalized con nement on collisionality. Discharges with lithium conditioning discussed in the present study gen- erally achieved lower collisionality, extending the accessible range of collisionality by almost an order of unity. While the confinement dependences on dimensional, engineering variables of the HeGDC+B and Li EVAP datasets differed, collisionality was found to unify the trends, with the lower collisionality lithium conditioned discharges extending the trend of increasing normalized confi nement time with decreasing collisionality when other dimension less variables were held as fi xed as possible. This increase of confi nement with decreasing collisionality was driven by a large reduction in electron transport in the outer region of the plasma. This result is consistent with gyrokinetic calculations that show microtearing and Electron Temperature Gradient modes to be more stable for the lower collisionality discharges. Ion transport, near neoclassical at high collisionality, became more anomalous at lower collisionality, possibly due to the growth of hybrid TEM/KBM modes in the outer regions of the plasma.

S.M.. Kaye, S. Gerhardt, W. Guttenfelder, R. Maingi, R.E. Bell, A. Diallo, B.P. LeBlanc and M. Podesta

2012-11-27T23:59:59.000Z

162

Transportation Sector Model of the National Energy Modeling System. Volume 1  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

NONE

1998-01-01T23:59:59.000Z

163

Alternative and innovative transport modes for moving US steam-coal exports to the Asian Pacific Basin  

Science Conference Proceedings (OSTI)

The United States is well positioned to play an expanding role in meeting the energy demands of the Asian Pacific Basin (APB). US coal reserves, among the world's largest, contain vast amounts of surface-mineable coal in the West in addition to significant volumes in the Midwest and East. However, high inland-transportation costs and the relatively low calorific value of some Western coals have recently resulted in delivered prices exceeding those of the world market -- maintaining the United States as a marginal supplier in a market that now receives one-third of worldwide steam-coal exports. This study describes alternatives that might reduce these delivered costs, emphasizing transport modes for four regions and mentioning blending for a fifth: (1) subbituminous coals of the Powder River Basin (Wyoming and Montana), (2) bituminous coals of central Utah and Colorado, (3) bituminous and subbituminous coals of the Four Corners Region (where Utah, Colorado, New Mexico, and Arizona meet), (4) bituminous and subbituminous coals of Alaska, and (5) bituminous coals of the Illinois Basin (Illinois, Indiana, and western Kentucky). It investigates innovative rail and ocean transport modes, coal-slurry pipelines, coal blends, and unconventional transport modes like overland conveyors and intermodal containers. It compares delivered prices under various scenarios, combining different transportation alternatives. 142 refs., 28 figs., 38 tabs.

Szpunar, C.B.; Kenkeremath, L.D.; Traczyk, P.A.; Brolick, H.J.; Heller, J.N.; Uttmark, G.F.

1989-11-01T23:59:59.000Z

164

Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention  

SciTech Connect

Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

2009-06-01T23:59:59.000Z

165

Transport in JET H-mode Plasmas with Beam and Ion Cyclotron Heating  

Science Conference Proceedings (OSTI)

Ion Cyclotron (IC) Range of Frequency waves and neutral beam (NB) injection are planned for heating in ITER and other future tokamaks. It is important to understand transport in plasmas with NB and IC to plan, predict, and improve transport and confinement. Transport predictions require simulations of the heating profiles, and for this, accurate modeling of the IC and NB heating is needed.

R.V. Budny, et. al.

2012-07-13T23:59:59.000Z

166

DOE Hydrogen Analysis Repository: Transition to Hydrogen Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transition to Hydrogen Transportation Fuel Transition to Hydrogen Transportation Fuel Project Summary Full Title: A Smooth Transition to Hydrogen Transportation Fuel Project ID: 87 Principal Investigator: Gene Berry Brief Description: This project contrasts the options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Keywords: Infrastructure; costs; hydrogen production Purpose The case for hydrogen-powered transportation requires an assessment of present and prospective methods for producing, storing, and delivering hydrogen. This project examines one potential pathway: on-site production of hydrogen to fuel light-duty vehicles. Performer Principal Investigator: Gene Berry Organization: Lawrence Livermore National Laboratory (LLNL)

167

Update Sustainable Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Transportation Sustainable Transportation Vol.4, No.3 * October 2013 ORNL Achieves Breakthrough in Energy-Saving Lubricants Research A team of ORNL and General Motors (GM) researchers has developed a new group of ionic liquids as lubricant additives that could help improve the energy efficiency of light-duty cars and trucks. The ionic liquid, when added to prototype low viscosity engine oil, boosted fuel economy by more than 2% compared to a commercially available synthetic 5W-30 oil, as demonstrated by an industrial standard fuel efficiency engine test. Results from these tests, performed by an independent firm, Intertek Automotive Research, with oversight by GM, show a promising path for ORNL to achieve DOE's goal of a 2% efficiency gain through lubricants. "There are more

168

Singapore's public and private transport modes : an economic comparison and policy implications  

E-Print Network (OSTI)

Frequently, public decisions on transportation are based on cost benefit analyses that do not take into account the costs that private individuals are eventually led to spend in order to use these systems, even though these ...

Ho, Chin Ning

2008-01-01T23:59:59.000Z

169

Transport mode and network architecture : carbon footprint as a new decision metric  

E-Print Network (OSTI)

This thesis examines the tradeoffs between carbon footprint, cost, time and risk across three case studies of United States' perishable or consumer packaged goods firms and their transportation partners. Building upon ...

Andrieu, Nelly

2008-01-01T23:59:59.000Z

170

ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. II. MAGNETOHYDRODYNAMIC SIMULATIONS  

SciTech Connect

We perform global unstratified three-dimensional magnetohydrodynamic simulations of an astrophysical boundary layer (BL)-an interface region between an accretion disk and a weakly magnetized accreting object such as a white dwarf-with the goal of understanding the effects of magnetic field on the BL. We use cylindrical coordinates with an isothermal equation of state and investigate a number of initial field geometries including toroidal, vertical, and vertical with zero net flux. Our initial setup consists of a Keplerian disk attached to a non-rotating star. In a previous work, we found that in hydrodynamical simulations, sound waves excited by shear in the BL were able to efficiently transport angular momentum and drive mass accretion onto the star. Here we confirm that in MHD simulations, waves serve as an efficient means of angular momentum transport in the vicinity of the BL, despite the magnetorotational instability (MRI) operating in the disk. In particular, the angular momentum current due to waves is at times larger than the angular momentum current due to MRI. Our results suggest that angular momentum transport in the BL and its vicinity is a global phenomenon occurring through dissipation of waves and shocks. This point of view is quite different from the standard picture of transport by a local anomalous turbulent viscosity. In addition to angular momentum transport, we also study magnetic field amplification within the BL. We find that the field is indeed amplified in the BL, but only by a factor of a few, and remains subthermal.

Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Ivy Lane, Princeton, NJ 08540 (United States)

2013-06-10T23:59:59.000Z

171

Measurements of Electron Thermal Transport due to Electron Temperature Gradient Modes in a Basic Experiment  

Science Conference Proceedings (OSTI)

Production and identification of electron temperature gradient modes have already been reported [X. Wei, V. Sokolov, and A. K. Sen, Phys. Plasmas 17, 042108 (2010)]. Now a measurement of electron thermal conductivity via a unique high frequency triple probe yielded a value of {chi}{sub perpendiculare} ranging between 2 and 10 m{sup 2}/s, which is of the order of a several gyrobohm diffusion coefficient. This experimental result appears to agree with a value of nonlocal thermal conductivity obtained from a rough theoretical estimation and not inconsistent with gyrokinetic simulation results for tokamaks. The first experimental scaling of the thermal conductivity versus the amplitude of the electron temperature gradient fluctuation is also obtained. It is approximately linear, indicating a strong turbulence signature.

Sokolov, V.; Sen, A. K. [Plasma Research Laboratory, Columbia University, New York, New York 10027 (United States)

2011-10-07T23:59:59.000Z

172

Light Duty Vehicle Pathways July 26, 2010  

E-Print Network (OSTI)

) Association for the Study of Peak Oil; (Figure 3) David Greene, ORNL. 0 100 200 300 400 500 1900 1910 1920 Efficiency and Renewable Energy U.S. Department of Energy #12;2 Conventional Oil International Energy Agency, 2008 · Across 798 of world's largest oil fields, average production decline of 6.7%/year. · Of 798

173

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

Commuter Rail," Transportation Research Record 1520: 53-62 (and Rail Transit, Transportation Research Department,Rail as an Environmental Solution: Setting the Agenda,” Transportation Research-

Delucchi, Mark

1996-01-01T23:59:59.000Z

174

Investigation of the feasibility of a dual mode electric transportation system  

DOE Green Energy (OSTI)

A study is reported which explores the feasibility of a highway transportation system that electromagnetically transfers energy to vehicles from powered roadways for high-speed or long-range travel, and uses energy stored in the vehicles for other travel. The energy coupling between roadway and vehicle is functionally similar to a transformer. The roadway energy source is imbedded flush with the roadway surface. When vehicle's energy pickups are suspended over the source, energy is magnetically coupled through the clearance gap between source and pickup. Analyses and modeling indicated that adequate power can be efficiently coupled by the system. The economics of the system appear to be favorable, and no implementational problems were identified that would make the system impractical. In addition to the engineering development of the power system, including performance verification with prototype hardware, continuing efforts should further address the effects of stray magnetic fields, the compatibility of the system with existing automobiles, electrical safety, and the process of transition from the use of existing automobiles.

Bolger, J.G.; Kirsten, F.A.

1977-05-01T23:59:59.000Z

175

First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak  

Science Conference Proceedings (OSTI)

A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1 MHz) turbulence was observed in the steep-gradient region leading to intermittent transport events across the edge transport barrier. Good confinement (H{sub 98y,2} {approx} 1) has been achieved in this state, even with input heating power near the L-H transition threshold. A novel model based on predator-prey interaction between turbulence and zonal flows reproduced this state well.

Xu, G. S.; Wang, H. Q.; Wan, B. N.; Guo, H. Y.; Zhang, W.; Chang, J. F.; Wang, L.; Chen, R.; Liu, S. C.; Ding, S. Y.; Shao, L. M.; Xiong, H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Naulin, V. [Association Euratom-Riso DTU, DK-4000 Roskilde (Denmark); Diamond, P. H.; Tynan, G. R.; Xu, M. [University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093 (United States); Yan, N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Association Euratom-Riso DTU, DK-4000 Roskilde (Denmark); Zhao, H. L. [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

2012-12-15T23:59:59.000Z

176

EIA - Household Transportation report: Household Vehicles Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4 4 Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1994 August 1997 Release Next Update: EIA has discontinued this series. Based on the 1994 Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration (EIA) - survey series has been discontinued Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses. Household Vehicles Energy Consumption 1994 reports on the results of the 1994 Residential Transportation Energy Consumption Survey (RTECS). The RTECS is a national sample survey that has been conducted every 3 years since 1985. For the 1994 survey, more than 3,000 households that own or use

177

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive...

178

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Print banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive...

179

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Transportation and Air Quality Transportation Energy Policy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Appliance Energy...

180

Fuel cells for transportation R and D at Argonne National Laboratory  

DOE Green Energy (OSTI)

This paper describes the transportation fuel cell systems research at Argonne National Laboratory (ANL). Two areas of research are discussed: the development of a catalytic partial-oxidation reformer for conventional and alternative transportation fuels, and a novel approach for the removal of carbon monoxide from reformate for use in polymer electrolyte fuel cells. The objective of the first study is to develop reformers for converting liquid fuels (gasoline, ethanol, or methanol) to hydrogen gas for use with fuel cell systems in light-duty vehicles. The second study is investigating the use of acidic cuprous chloride (or other suitable sorbent) to chemically bind and thus remove the CO from the reformate.

Kumar, R.; Ahmed, S.; Bloom, I.; Carter, J.D.; Doshi, R.; Kramarz, K.; Lee, S.H.D.; Krumpelt, M.; Myles, K.M.

1997-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

182

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

183

TO: ALL PASSENGER CAR MANUFACTURERS ALL LIGHT-DUTY TRUCK MANUFACTURERS ALL MEDIUM-DUTY VEHICLE MANUFACTURERS ALL DIRECT IMPORTERS ALL OTHER INTERESTED PARTIES SUBJECT: Submission of Certification Data Demonstrating  

E-Print Network (OSTI)

This letter transmits the attached Manufacturers Advisory Correspondence (MAC) which informs vehicle manufacturers of the need to submit demonstrations of compliance with the Inspection and Maintenance (I/M) idle mode and Acceleration Simulation Mode (ASM) loaded mode emission standards, for all 2000 and subsequent model-year emission-data vehicles (EDVs) at the time of certification. If you have any questions or comments, please contact

John D. Dunlap; Pete Wilson; R. B. Summerfield

1998-01-01T23:59:59.000Z

184

OpenEI - mode  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm3930 en Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release http:en.openei.orgdatasetsnode...

185

Transportation  

Science Conference Proceedings (OSTI)

Transportation systems are an often overlooked critical infrastructure component. These systems comprise a widely diverse elements whose operation impact all aspects of society today. This chapter introduces the key transportation sectors and illustrates ...

Mark Hartong; Rajn Goel; Duminda Wijesekera

2012-01-01T23:59:59.000Z

186

Transportation and Stationary Power Integration Workshop Session...  

NLE Websites -- All DOE Office Websites (Extended Search)

What is the light duty vehicle OEM strategy? * Are there viable renewable pathways? * biogas (WWTP) landfill gas ? * utility scale solarwind power? * Do we have the...

187

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Meier AKMeier@lbl.gov (510) 486-4740 Links Transportation and Air Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

188

GREET 1.5 - transportation fuel-cycle model - Vol. 1 : methodology, development, use, and results.  

DOE Green Energy (OSTI)

This report documents the development and use of the most recent version (Version 1.5) of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy associated with various transportation fuels and advanced vehicle technologies for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with diameters of 10 micrometers or less, and sulfur oxides) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates total energy consumption, fossil fuel consumption, and petroleum consumption when various transportation fuels are used. The GREET model includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, dimethyl ether, and Fischer-Tropsch diesel; and landfill gases to methanol. This report also presents the results of the analysis of fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies to be applied to passenger cars and light-duty trucks.

Wang, M. Q.

1999-10-06T23:59:59.000Z

189

Edge energy transport barrier and turbulence in the I-mode regime on Alcator C-Mod  

E-Print Network (OSTI)

We report extended studies of the I-mode regime [Whyte et al., Nucl. Fusion 50, 105005 (2010)] obtained in the Alcator C-Mod tokamak [Marmar et al., Fusion Sci. Technol. 51(3), 3261 (2007)]. This regime, usually accessed ...

Hubbard, Amanda E.

190

EIA - Household Transportation report: Household Vehicles Energy Use:  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Use: Latest Data & Trends November 2005 Release (Next Update: Discontinued) Based on the 2001 National Household Travel Survey conducted by the U.S. Department of Transportation and augmented by EIA Only light-duty vehicles and recreational vehicles are included in this report. EIA has excluded motorcycles, mopeds, large trucks, and buses in an effort to maintain consistency with its past residential transportation series, which was discontinued after 1994. This report, Household Vehicles Energy Use: Latest Data & Trends, provides details on the nation's energy use for household passenger travel. A primary purpose of this report is to release the latest consumer-based data

191

Transportation Fuel Basics - Propane | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

192

EIA - 2010 International Energy Outlook - Transportation  

Gasoline and Diesel Fuel Update (EIA)

Transportation Transportation International Energy Outlook 2010 Transportation Sector Energy Consumption In the IEO2010 Reference case, transportation energy use in non-OECD countries increases by an average of 2.6 percent per year from 2007 to 2035, as compared with an average of 0.3 percent per year for OECD countries. Overview Energy use in the transportation sector includes the energy consumed in moving people and goods by road, rail, air, water, and pipeline. The road transport component includes light-duty vehicles, such as automobiles, sport utility vehicles, minivans, small trucks, and motorbikes, as well as heavy-duty vehicles, such as large trucks used for moving freight and buses used for passenger travel. Consequently, transportation sector energy demand hinges on growth rates for both economic activity and the driving-age population. Economic growth spurs increases in industrial output, which requires the movement of raw materials to manufacturing sites, as well as the movement of manufactured goods to end users.

193

Contacting the Authors: Dr. Christopher Yang (ccyang@ucdavis.edu), David McCollum (dlmccollum@ucdavis.edu),  

E-Print Network (OSTI)

transportation modes. California's Historical Greenhouse Gas Emissions & Future Goals: Introduction and Research the state could meet the 80% target in the transportation sector by 2050. The goal of this study in the transportation sector, including light-duty, heavy- duty, rail, aircraft, agriculture, marine, and off

California at Davis, University of

194

Consumption of alternative transportation fuels held steady in ...  

U.S. Energy Information Administration (EIA)

The consumption of propane in heavy duty vehicles has ... Many fleets have replaced their light duty vehicles with flexible fueled and gasoline hybrid vehicles ...

195

EPAct Transportation Regulatory Activities: EPAct State and Alternativ...  

NLE Websites -- All DOE Office Websites (Extended Search)

for light-duty alternative fuel vehicles on the Alternative Fuels Data Center (AFDC). Fleets Meet Requirements by Purchasing and Using Biodiesel Under Standard Compliance,...

196

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

197

An interpretive summary of the 1997 conference on policies for fostering sustainable transportation technologies  

DOE Green Energy (OSTI)

T.R. Lakshmanan, director of the Bureau of Transportation Statistics, offered the following definition from the Bruntland Commission: ``Sustainable development is development that meets the needs of the present generations without compromising the ability of future generations.`` The technologies and policies that received the most attention would provide per-unit-of-service reduction of three kinds of social costs (external costs, in economist`s terminology) with respect to light duty transportation. The main factors to be reduced were oil use, greenhouse gases, and air pollution. Undesirable side effects of continually expanding transportation activity, including congestion and habitat loss, were also discussed. The conference included debate about priorities among these five categories of social cost, about which organizations should take action to achieve the reductions needed in each, and about what specific actions these organizations should take.

Santini, D.J.

1997-12-31T23:59:59.000Z

198

mode | OpenEI  

Open Energy Info (EERE)

mode mode Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (4 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote

199

TRANSPORTATION TRANSPORTATION  

E-Print Network (OSTI)

TEXASTRANS TEXAS TRANSPORTATION HALL HONOR OF HALL HONOR OF TEXASTRAN HALL HONOR OF TEXASTRAN HALL HONOR OF Inductees #12;2 TEXAS TRANSPORTATION HALL HONOR OF L NOR OF Texas is recognized as having one of the finest multimodal transportation systems in the world. The existence of this system has been key

200

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GTC (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 20...

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Type Fuel Type All Bi-Fuel Natural Gas (16) Bi-Fuel Propane (12) Biodiesel (B20) (11) Electric (13) Flex Fuel (E85) (91) Hybrid Electric (36) Hydrogen (3) Methanol (0) Natural Gas (4) Plug-in Hybrid Electric (10) Propane (2) Manufacturer All Acura (2) Audi (6) BMW (6) Bentley Motors (4) Buick (2) Cadillac (4) Chevrolet (25) Chrysler (3) Coda Automotive (0) Dodge (7) Fiat (1) Fisker Automotive (0) Ford (48) GMC (19) General Motors EV (0) HUMMER (0) Honda (8) Hyundai (2) Infiniti (4) Jaguar (6) Jeep (1) Kia (2) Land Rover (4) Lexus (5) Lincoln (2) Mazda (0) Mazda (0) McLaren (1) Mercedes-Benz (8) Mercury (0) Mitsubishi (1) Nissan (4) Plymouth (0) Porsche (2) QUANTUM-PROCON (0) Ram (5) Saab (0) Saturn (0) Scion (1) Smart (1) Solectria (0) Subaru (1) Tesla (1) Tesla Motors (0) Toyota (10) Vehicle

202

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The All American Utility Vehicle is built on a rust-proof, all-aluminum chassis. Sunray Solar Tops supplied by Eco Trans Alliance, LLC, allows the vehicle to convert solar energy...

203

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The All American Cruise Car is built on a rust-proof, all-aluminum chassis. Sunray Solar Tops supplied by Eco Trans Alliance, LLC, allows the vehicle to convert solar energy...

204

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jeep - Grand Cherokee 2WD AWD (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 17 mpg city, 24 mpg highway Fuel Economy (Flex...

205

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flying Spur (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 21 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg...

206

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mercedes-Benz - E350 (2014) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 21 mpg city, 31 mpg highway Fuel Economy (Flex Fuel (E85)): 16 mpg...

207

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

(Gasoline): 12 mpg city, 20 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg highway Emission Certification: California LEV II, Tier 2 Bin 5 Engine: 12-cyl, 6.0L...

208

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

(Gasoline): 12 mpg city, 20 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg highway Emission Certification: California LEV II, Tier 2 Bin 5 Engine: 12-cyl, 6.0 L...

209

Light-Duty Vehicle Program Emissions Results (Interim Results...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedure (FTP) emissions testing of flexible- fuel methanol, ethanol, and dedicated CNG vehicles from the U. S. Federal Fleet was completed in 1995. The vehicles tested in the...

210

Advanced Vehicle Testing Activity: Light-Duty Vehicle Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 B Baker EV100 Electric Pickup (1994) - EVAmerica Performance Results Barwood CNG Cab Fleet Study Final Results, May 1999 Summary: Case Study, May 1999 BAT International...

211

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

212

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

mpg city, 29 mpg highway Fuel Economy (Flex Fuel (E85)): 15 mpg city, 21 mpg highway Emission Certification: California LEV II, Tier 2 Bin 5 Engine: 6-cyl, 3.5L Transmission: Auto...

213

American Recovery and Reinvestment Act (ARRA) - Light-Duty Electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

by the U.S. Department of Energys (DOE) Vehicle Technology Program (VTP) to collect electric drive vehicle and charging infrastructure data for several deployment projects...

214

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acura - ILX (2014) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 39 mpg city, 38 mpg highway Emission Certification: California PZEV, Tier 2...

215

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Honda - Accord Plug-in Hybrid (2014) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 36 mpg city, 39 mpg highway Engine: 4-cyl, 2.0L...

216

Light-Duty Fuel Cell Vehicles State of Development  

E-Print Network (OSTI)

delivered by Honda and Toyota within hours of each other on December 23, 2002. The current inventory includes concept vehicles like the General Motors HyWire and comparable visions from Toyota and Daimler, such as generating electricity in an emergency or power failure. It is telling that Toyota, which is regarded

217

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flying Spur (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 21 mpg highway Fuel Economy (Flex Fuel (E85)): 9 mpg city, 15 mpg...

218

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Regal (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 19 mpg city, 31 mpg highway Fuel Economy (Flex Fuel (E85)): 15 mpg city, 22...

219

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GT (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 14 mpg highway...

220

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Verano (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 21 mpg city, 32 mpg highway Fuel Economy (Flex Fuel (E85)): 15 mpg city, 23...

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Allroad Quatro (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 20 mpg city, 27 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg city, 18...

222

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 20 mpg city, 28 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg city, 19...

223

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Super Sport (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 12 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 14...

224

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

GTC (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 11 mpg city, 19 mpg highway Fuel Economy (Flex Fuel (E85)): 8 mpg city, 13...

225

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Regal (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 18 mpg city, 29 mpg highway Fuel Economy (Flex Fuel (E85)): 13 mpg city, 20 mpg...

226

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cadillac - ATS RWD AWD (2013) Fuel: Flex Fuel (E85) (Flexible Fuel) Class: SedanWagon Fuel Economy (Gasoline): 19 mpg city, 28 mpg highway Fuel Economy (Flex Fuel (E85)): 14 mpg...

227

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 Hybrid (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 24 mpg city, 30...

228

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 25 mpg city, 33...

229

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acura - ILX (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: SedanWagon Fuel Economy (Gasoline): 39 mpg city, 38 mpg highway Emission Certification: LEV II PZEV, Tier 2 Bin 3...

230

WORKSHOP REPORT:Light-Duty Vehicles Technical Requirements and...  

NLE Websites -- All DOE Office Websites (Extended Search)

the OEMs have improved the fuel efficiency and rate of acceleration. Now, however, the demand to reduce greenhouse gases and use of oil require additional solutions for...

231

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 35 city Battery: 6 12-volt flooded electrolyte Dealer: Locate a dealer Description: The GEM e2 is a...

232

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 30 city Battery: absorbed glass mat lead-acid (6 12-volt batteries) Engine: Brushless 3 phase...

233

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Close Detail Chevrolet - Spark (2014) Fuel: Electric (Dedicated) Class: SedanWagon Battery: 20 kWh Emission Certification: California ZEV, Tier 2 Bin 1 Engine: 100 kW e-motor...

234

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Passenger Van (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 6 12-volt lead acid (72) Dealer: Locate a dealer Description: The Greentruck EVP1000...

235

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 40 city Battery: Absorbed glass mat lead-acid (6 12-volt batteries) Dealer: Locate a dealer...

236

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Crew Cab (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 6 12-volt lead-acid (72) Dealer: Locate a dealer Description: The Greentruck EVX1000...

237

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 40 city Battery: 9 8-volt gel batteries Engine: 7.0 hp motor Dealer: Locate a dealer Description: The...

238

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 35 city Battery: 6 12-volt flooded electrolyte Dealer: Locate a dealer Description: The GEM eS is a...

239

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 40 city Battery: 6 12-volt lead-acid Dealer: Locate a dealer Description: The Greentruck EVC1000 is a...

240

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 30 city Battery: 6 12-volt gel batteries Dealer: Locate a dealer Description: The GEM e6 has seating...

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 30 city Battery: 6 12-volt flooded electrolyte Dealer: Locate a dealer Description: The GEM eS is a...

242

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric (Dedicated) Class: Neighborhood Electric Vehicle Estimated Range: 30 city Battery: 6 12-volt flooded electrolyte Dealer: Locate a dealer Description: The GEM e4 has...

243

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Extended Cab (2011) Fuel: Electric (Dedicated) Class: Neighborhood Electric Vehicle Battery: 12 6-volt lead-acid (72 volts) Dealer: Locate a dealer Description: The Greentruck...

244

Light duty utility arm equipment qualification test procedure  

SciTech Connect

The Equipment Qualification Test described in this test procedure document is the acceptance test procedure (ATP) for the LDUA Baseline System. It verifies that the equipment is complete and in working order, and demonstrates its readiness for being deployed into an actual underground storage tank.

Kiebel, G.R., Westinghouse Hanford

1996-07-22T23:59:59.000Z

245

Fire hazards evaluation for light duty utility arm system  

Science Conference Proceedings (OSTI)

In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

HUCKFELDT, R.A.

1999-02-24T23:59:59.000Z

246

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

ILX (2014) Fuel: Hybrid Electric Class: SedanWagon Fuel Economy: 39 mpg city, 38 mpg highway Emission Certification: LEV II PZEV, Tier 2 Bin 2 Engine: 1.5L I4 Transmission: ECVT...

247

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

LaCrosse, FWDAWD (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 18 mpg city, 28 mpg highway Fuel Economy (E85): 14 mpg city, 20 mpg highway Emission...

248

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 AWD (2014) Fuel: Flex Fuel (E85) Class: Sport Utility Vehicle Fuel Economy (gasoline): 20 mpg city, 28 mpg highway Fuel Economy (E85): 14 mpg city, 19...

249

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Supersports (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 12 mpg city, 20...

250

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Allroad quattro (2014) Fuel: Flex Fuel (E85) Class: SedanWagon Fuel Economy (gasoline): 20 mpg city, 27 mpg highway Fuel Economy (E85): 14 mpg city, 18...

251

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Audi - Q5 Hybrid, AWD (2014) Fuel: Hybrid Electric Class: Sport Utility Vehicle Fuel Economy: 24 mpg city, 30 mpg highway Emission Certification: LEV II ULEV, Tier 2 Bin 5 Engine:...

252

Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors  

DOE Green Energy (OSTI)

Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

2013-03-01T23:59:59.000Z

253

Vehicle Technologies Office: Fact #287: September 29, 2003 Modes...  

NLE Websites -- All DOE Office Websites (Extended Search)

7: September 29, 2003 Modes of Transport, May 2003 to someone by E-mail Share Vehicle Technologies Office: Fact 287: September 29, 2003 Modes of Transport, May 2003 on Facebook...

254

Studies of turbulence and transport in Alcator C-Mod H-mode plasmas with phase contrast imaging and comparisons with GYRO  

E-Print Network (OSTI)

Recent advances in gyrokinetic simulation of core turbulence and associated transport requires an intensified experimental effort to validate these codes using state of the art synthetic diagnostics to compare simulations ...

Lin, Liang

255

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2  

Science Conference Proceedings (OSTI)

The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

NONE

1998-01-01T23:59:59.000Z

256

Assumptions to the Annual Energy Outlook  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

257

Energy Information Administration (EIA) - Assumptions to the Annual Energy  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2006 The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

258

Hydrogen fuel dispensing station for transportation vehicles  

DOE Green Energy (OSTI)

A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on a hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.

Singh, S.P.N.; Richmond, A.A. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1995-07-01T23:59:59.000Z

259

Vehicle Manufacturing Futures in Transportation Life-cycle Assessment  

E-Print Network (OSTI)

GHG emissions of future transportation modes. These resultsVehicle Manufacturing Futures in Transportation Life-cycleVehicle Manufacturing Futures in Transportation Life-cycle

Chester, Mikhail; Horvath, Arpad

2011-01-01T23:59:59.000Z

260

California’s Energy Future: Transportation Energy Use in California  

E-Print Network (OSTI)

2050 target. Thus, total heavy truck energy usage even with9 shows total light-duty fuel energy usage is approximatelyof fuel usage (PEV: 87% combined: 77%). Total energy use for

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Transportation risk assessment for ethanol transport  

E-Print Network (OSTI)

This research is aimed at assessing the quantitative risks involved with an ethanol pipeline. Pipelines that run from the Midwest, where the vast majority of ethanol is produced, to the target areas where reformulated gasoline is required (California, Texas Gulf Coast, New England Atlantic Coast) will be of particular interest. The goal is to conduct a quantitative risk assessment on the pipeline, truck, and rail transportation modes to these areas. As a result of the quantitative risk assessment, we are able to compare the risk associated with the different modes of transportation for ethanol. In order to perform and compare the quantitative risk assessment, the following challenges are addressed: 1) Identify target areas requiring reformulated gasoline 2) Map detailed route for each transportation mode to all three target areas 3) Perform a quantitative risk assessment for each transportation mode 4) Compare quantitative risk assessment results for each route and transportation mode The focus is on California, Texas Gulf Coast, and New England Atlantic Coast because of the large volume. It is beneficial to look at these areas as opposed to the smaller areas because pipeline transportation requires very large volumes. In order to find a meaningful comparison between all three transportation modes, only the areas with the three large volumes were evaluated. Since the risk assessment is completed using historical data, each route is segmented in a way that is consistent with the data that is available. All of the curves support the hypothesis that pipeline transportation poses the least societal risk when transporting ethanol from the Midwest to target areas. Rail transportation poses the largest amount of societal risk. While overall rail incidents are not as frequent as road incidents, the frequency of a fatality is much higher when an incident does occur.

Shelton Davis, Anecia Delaine

2007-12-01T23:59:59.000Z

262

Transportation risk assessment for ethanol transport  

E-Print Network (OSTI)

This research is aimed at assessing the quantitative risks involved with an ethanol pipeline. Pipelines that run from the Midwest, where the vast majority of ethanol is produced, to the target areas where reformulated gasoline is required (California, Texas Gulf Coast, New England Atlantic Coast) will be of particular interest. The goal is to conduct a quantitative risk assessment on the pipeline, truck, and rail transportation modes to these areas. As a result of the quantitative risk assessment, we are able to compare the risk associated with the different modes of transportation for ethanol. In order to perform and compare the quantitative risk assessment, the following challenges are addressed: • Identify target areas requiring reformulated gasoline • Map detailed route for each transportation mode to all three target areas • Perform a quantitative risk assessment for each transportation mode • Compare quantitative risk assessment results for each route and transportation mode The focus is on California, Texas Gulf Coast, and New England Atlantic Coast because of the large volume. It is beneficial to look at these areas as opposed to the smaller areas because pipeline transportation requires very large volumes. In order to find a meaningful comparison between all three transportation modes, only the areas with the three large volumes were evaluated. Since the risk assessment is completed using historical data, each route is segmented in a way that is consistent with the data that is available. All of the curves support the hypothesis that pipeline transportation poses the least societal risk when transporting ethanol from the Midwest to target areas. Rail transportation poses the largest amount of societal risk. While overall rail incidents are not as frequent as road incidents, the frequency of a fatality is much higher when an incident does occur.

Shelton Davis, Anecia Delaine

2007-12-01T23:59:59.000Z

263

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

of New Light-Duty Vehicle Size Class Attributes XLS Table 44. Transportation Fleet Car and Truck Fuel Consumption by Type and Technology XLS Table 45. Transportation Fleet...

264

Mode trap  

DOE Patents (OSTI)

This report discusses a mode trap to trap and absorb transverse modes formed by a beam in a linear accelerator includes a waveguide having a multiplicity of electrically conductive (preferably copper) irises and rings, each iris and ring including an aperture, and the irises and rings being stacked in a side-by-side, alternating fashion such that the apertures of the irises and rings are concentrically aligned. An absorbing material layer such as a dielectric is embedded in each iris and ring, and this absorbing material layer encircles, but is circumferentially spaced from its respective aperture. Each iris and ring includes a plurality of circumferentially spaced slots around it`s aperture and extending radially out toward it`s absorbing material layer.

Chojnacki, E.P.

1992-12-31T23:59:59.000Z

265

Vehicle Technologies Office: Fact #636: August 16, 2010 Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Use by Mode, 2008 Bar graph showing the transportation energy use by mode (buses, rail, pipeline, water, air, mediumheavy trucks, and light vehicles) for 2008. For more...

266

GREET 1.0 -- Transportation fuel cycles model: Methodology and use  

DOE Green Energy (OSTI)

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-06-01T23:59:59.000Z

267

Rail-transportation modeling  

Science Conference Proceedings (OSTI)

Many different types of transportation models are used to model coal transportation by rail. To obtain realistic results, it is usually necessary to consider other modes in addition to rail and other commodities in addition to coal. For example, to know the potential bottlenecks on the rail system it is necessary to predict the total level of freight movement on the rail system. This requires modeling the movements of other commodities in addition to coal. To predict the levels of flows of both coal and non-coal commodities on the rail system, it is necessary to predict the share of total flows carried by rail. This requires accurate modeling of competing modes. To develop accurate rate models it is also necessary to have information on competing modes. This paper presents a collection of transportation models used to model the various aspects of coal transportation by rail and shows how they interact.

Tobin, R.L.

1982-01-01T23:59:59.000Z

268

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

DOE Green Energy (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

269

Jobs in Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation applications, including light-duty vehicles, will also create many more job opportunities over the next 10 to 20 years. National energy security, environmental...

270

Direct methanol fuel cells for transportation applications. Quarterly technical report, April--June 1997  

DOE Green Energy (OSTI)

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in Phase 2 of the program. Progress in these areas is described.

Fuller, T.F. [International Fuel Cells Corp., South Windsor, CT (United States); Kunz, H.R. [Univ. of Connecticut, Storrs, CT (United States); Moore, R. [Univ. of Southern Mississippi, Hattiesburg, MS (United States)

1997-11-01T23:59:59.000Z

271

Direct methanol fuel cells for transportation applications. Quarterly technical report, June 1996--September 1996  

DOE Green Energy (OSTI)

The purpose of this research and development effort is to advance the performance and viability of direct methanol fuel cell technology for light-duty transportation applications. For fuel cells to be an attractive alternative to conventional automotive power plants, the fuel cell stack combined with the fuel processor and ancillary systems must be competitive in terms of both performance and costs. A major advantage for the direct methanol fuel cell is that a fuel processor is not required. A direct methanol fuel cell has the potential of satisfying the demanding requirements for transportation applications, such as rapid start-up and rapid refueling. The preliminary goals of this effort are: (1) 310 W/l, (2) 445 W/kg, and (3) potential manufacturing costs of $48/kW. In the twelve month period for phase 1, the following critical areas will be investigated: (1) an improved proton-exchange membrane that is more impermeable to methanol, (2) improved cathode catalysts, and (3) advanced anode catalysts. In addition, these components will be combined to form membrane-electrode assemblies (MEA`s) and evaluated in subscale tests. Finally a conceptual design and program plan will be developed for the construction of a 5 kW direct methanol stack in phase II of the program.

Fuller, T.F.; Kunz, H.R.; Moore, R.

1996-11-01T23:59:59.000Z

272

Figure 70. Delivered energy consumption for transportation ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 70. Delivered energy consumption for transportation by mode, 2011 and 2040 (quadrillion Btu) Total Rail Pipeline Marine ...

273

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network (OSTI)

Performance of Light-Duty CNG and Dual-Fuel Vehicles, EPA/and Driving Cycle Effects on CNG Emissions," Society offrom tests of nine 1992 CNG vans from three manufacturers.

Delucchi, Mark

1997-01-01T23:59:59.000Z

274

Cluster Compatibility Mode  

NLE Websites -- All DOE Office Websites (Extended Search)

Cluster Compatibility Mode Cluster Compatibility Mode Edison compute nodes run a stripped down Linux operating system called Compute Node Linux (CNL). Some standard Linux services,...

275

NREL: Energy Storage - A Vision of Our Transportation Future - The Next 30  

NLE Websites -- All DOE Office Websites (Extended Search)

A Vision of Our Transportation Future - The Next 30 Years A Vision of Our Transportation Future - The Next 30 Years In the next 30 years, the future of light-duty vehicle transportation includes several powertrains and several fuel choices, but advanced vehicle batteries will play the most significant role. This diagram shows how various powertrain and fuel choices evolve in the next 30 years. The chart/illustration is titled, 'Vision of Future Transportation.' The byline lists concept by Ahmad Pesaran and illustration by Dean Armstrong. The NREL publication number is NREL/GR-540-40698. It presents a roadmap of how the advancement of batteries and fuels can propel our transportation future. Paved roads are used to illustrate the history and impact of battery advancement on vehicle technologies. The road begins with the following in order: electric vehicles; HEVs: early adopters of HEVs; and consumers asking for plug for plug-in HEV capabilities. The road then splits. The road to the right lists the following in order: HEVs major consumer adoption, and then this road splits with fuel cell vehicles on one road and hybrid electric vehicles on the other. The road to the left lists the following in order: plug-in HEV early adopters; PHEVs: major consumer adoption; and then this road splits with battery electric vehicles heading left, and plug-in hybrid vehicles heading right. Internal combustion engines has its own straight road appearing below these roads. For fuel advancement, the following fuels are listed in a bar chart, with the bars becoming shorter as the list proceeds (shorter shows increased time for advancement): gasoline, natural gas, ethanol blends; diesel, biodiesel blends; B20, biodiesel; E85, cellulosic ethanol; electricity; and hydrogen.

276

The Geography of Transport Systems-Maritime Transportation | Open Energy  

Open Energy Info (EERE)

The Geography of Transport Systems-Maritime Transportation The Geography of Transport Systems-Maritime Transportation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Geography of Transport Systems-Maritime Transportation Agency/Company /Organization: Hofstra University Sector: Energy Focus Area: Transportation Topics: Technology characterizations Resource Type: Publications, Technical report Website: people.hofstra.edu/geotrans/eng/ch3en/conc3en/ch3c4en.html Cost: Free Language: English References: Maritime Transportation[1] "Maritime transportation, similar to land and air modes, operates on its own space, which is at the same time geographical by its physical attributes, strategic by its control and commercial by its usage. While geographical considerations tend to be constant in time, strategic and

277

Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels  

SciTech Connect

This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

Wang, M.Q.

1996-03-01T23:59:59.000Z

278

Transportation Energy Databook: Edition 17  

SciTech Connect

The Transportation Energy Data Book: Edition 17 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C.

1997-08-01T23:59:59.000Z

279

Scenarios for a Clean Energy Future Transportation 6.1  

E-Print Network (OSTI)

automotive manufacturers have announced commercial introductions of hybrid vehicles five to ten years sooner turnover of fleets, gasoline's dominance of light-duty vehicle fueling infrastructure, and low energy vehicles are included, as in the case here. Recent studies limited to a 10-year time horizon suggest

280

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

variable displacement compressors. Conventional MAC systems have fixed speed compressors with a constant refrigerant flow

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

variable displacement compressors. Conventional MAC systems have fixed speed compressors with a constant refrigerant flow

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

282

Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles  

SciTech Connect

Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL; Norman, Kevin M [ORNL

2012-01-01T23:59:59.000Z

283

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Tasks Across Engine and Aftertreatment Systems. ” Society ofaftertreatment catalyst systems together with engineengine control and design as well as improved aftertreatment

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

284

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Tasks Across Engine and Aftertreatment Systems. ” Society ofaftertreatment catalyst systems together with engineengine control and design as well as improved aftertreatment

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

285

INL Update: The EV Project and Other Light-Duty Electric Drive...  

NLE Websites -- All DOE Office Websites (Extended Search)

summary and future * Other ARRA and TADA data collection activities * DC Fast Charge battery impacts g y p * EVSE, DC FC and wireless activities * Vehicle Mass impacts on fuel...

286

Evaluation of aftermarket CNG conversion kits in light-duty vehicle applications. Final report  

DOE Green Energy (OSTI)

The Institute of Gas Technology (IGT) was contracted by the National Renewable Energy Laboratory (NREL) to evaluate three compressed natural gas (CNG) conversion systems using a 1993 Chevrolet Lumina baseline vehicle. A fourth conversion system was added to the test matrix through funding support from Brooklyn Union. The objective of this project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of the different conversion systems, and to compare the performance to gasoline-fueled operation and each other. Different natural gas compositions were selected to represent the 10th percentile, mean, and 90th percentile compositions distributed in the Continental United States. Testing with these different compositions demonstrated the systems` ability to accommodate the spectrum of gas found in the United States. Each compressed natural gas conversion system was installed and adjusted according to the manufacturer`s instructions. In addition to the FTP testing, an evaluation of the comparative installation times and derivability tests (based on AGA and CRC guidelines) were conducted on each system.

Blazek, C.F.; Rowley, P.F.; Grimes, J.W. [Institute of Gas Technology, Chicago, IL (United States)

1995-07-01T23:59:59.000Z

287

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

concern was the notion that CNG tanks would explode ifCA) did not have concerns about CNG tank integrity, and were

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

288

How Much Could You Save by Idling Your Light-Duty Vehicle Less...  

NLE Websites -- All DOE Office Websites (Extended Search)

Idling Fuel Costs How much does How many miles Preventive an oil change cost? between oil changes? "Miles of Idling" Maintenance Costs How much does How many miles a new...

289

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

unlikely). For electric vehicles the primary safety concernsand safety issues of nickel metal-hydride batteries for electric vehicles.

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

290

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

unlikely). For electric vehicles the primary safety concernsand safety issues of mckel C M metal-hydride batteries for electric vehicles

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

291

Effect of E85 on Tailpipe Emissions from Light-Duty Vehicles  

Science Conference Proceedings (OSTI)

E85, which consists of nominally 85% fuel grade ethanol and 15% gasoline, must be used in flexible-fuel (or 'flexfuel') vehicles (FFVs) that can operate on fuel with an ethanol content of 0-85%. Published studies include measurements of the effect of E85 on tailpipe emissions for Tier 1 and older vehicles. Car manufacturers have also supplied a large body of FFV certification data to the U.S. Environmental Protection Agency, primarily on Tier 2 vehicles. These studies and certification data reveal wide variability in the effects of E85 on emissions from different vehicles. Comparing Tier 1 FFVs running on E85 to similar non-FFVs running on gasoline showed, on average, significant reductions in emissions of oxides of nitrogen (NOx; 54%), non-methane hydrocarbons (NMHCs; 27%), and carbon monoxide (CO; 18%) for E85. Comparing Tier 2 FFVs running on E85 and comparable non-FFVs running on gasoline shows, for E85 on average, a significant reduction in emissions of CO (20%), and no significant effect on emissions of non-methane organic gases (NMOGs). NOx emissions from Tier 2 FFVs averaged approximately 28% less than comparable non-FFVs. However, perhaps because of the wide range of Tier 2 NOx standards, the absolute difference in NOx emissions between Tier 2 FFVs and non-FFVs is not significant (P 0.28). It is interesting that Tier 2 FFVs operating on gasoline produced approximately 13% less NMOGs than non-FFVs operating on gasoline. The data for Tier 1 vehicles show that E85 will cause significant reductions in emissions of benzene and butadiene, and significant increases in emissions of formaldehyde and acetaldehyde, in comparison to emissions from gasoline in both FFVs and non-FFVs. The compound that makes up the largest proportion of organic emissions from E85-fueled FFVs is ethanol.

Yanowitz, J.; McCormick, R. L.

2009-02-01T23:59:59.000Z

292

DOE AVTA: The EV Project and Other Light-Duty Electric Drive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Committee on Overcoming Barriers to Electric Vehicle Deployment The National Academies, Washington, DC , g , October 29, 2012 This presentation does not contain any proprietary...

293

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

294

Light-Duty Vehicle Exhaust Emission Control Cost Estimates Using a Part-Pricing Approach  

E-Print Network (OSTI)

9. D. Jones, "Development Cost Estimates for Fuel Economy ofExhaust Emission Control Cost Estimates Using a Part-PricingExhaust Emission Control Cost Estimates Using a Part-Pricing

Wang, Quanlu; Kling, Catherine; Sperling, Daniel

1993-01-01T23:59:59.000Z

295

Lightweight materials in the light-duty passenger vehicle market: Their market penetration potential and impacts  

DOE Green Energy (OSTI)

This paper summarizes the results of a lightweight materials study. Various lightweight materials are examined and the most cost effective are selected for further analysis. Aluminum and high-performance polymer matrix composites (PMCS) are found to have the highest potential for reducing the weight of automobiles and passenger-oriented light trucks. Weight reduction potential for aluminum and carbon fiber-based PMCs are computed based on a set of component-specific replacement criteria (such as stiffness and strength), and the consequent incremental cost scenarios are developed. The authors assume that a materials R and D program successfully reduces the cost of manufacturing aluminum and carbon fiber PMC-intensive vehicles. A vehicle choice model is used to project market shares for the lightweight vehicles. A vehicle survival and age-related usage model is employed to compute energy consumption over time for the vehicle stock. After a review of projected costs, the following two sets of vehicles are characterized to compete with the conventional materials vehicles: (1) aluminum vehicles with limited replacement providing 19% weight reduction (AIV-Mid), and (2) aluminum vehicles with the maximum replacement providing 31% weight reduction (AIV-Max). Assuming mass-market introduction in 2005, the authors project a national petroleum energy savings of 3% for AIV-Mid and 5% for AIV-Max in 2030.

Stodolsky, F. [Argonne National Lab., IL (United States). Center for Transportation Research]|[Argonne National Lab., Washington, DC (United States); Vyas, A.; Cuenca, R. [Argonne National Lab., IL (United States). Center for Transportation Research

1995-06-01T23:59:59.000Z

296

Increasing the Fuel Economy and Safety of New Light-Duty Vehicles  

E-Print Network (OSTI)

drivers. They let the vehicle manufacturers off the hook. Weon their website. Vehicle manufacturers have striven toand manufacturers to see them incorporated in new vehicles.

Wenzel, Tom; Ross, Marc

2006-01-01T23:59:59.000Z

297

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

April 5. Canadian Vehicle Manufacturers Association (CVMA),equivalent Canadian Vehicle Manufacturers’ Associationof the Canadian Vehicle Manufacturers’ Association, Joe

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

298

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

April 5. Canadian Vehicle Manufacturers Association (CVMA),equivalent Canadian Vehicle Manufacturers’ Associationof the Canadian Vehicle Manufacturers’ Association, Joe

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

299

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

of the Effects of Air Conditioning Operation and AssociatedSystem for Mobile Air Conditioning. ” Society of Automotiveof R-134a Automotive Air Conditioning System. ” Society of

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

300

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

of the Effects of Air Conditioning Operation and AssociatedSystem for Mobile Air Conditioning. ” Society of Automotiveof R-134a Automotive Air Conditioning System. ” Society of

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ohio's First Ethanol-Fueled Light-Duty Fleet: Summary of Final...  

NLE Websites -- All DOE Office Websites (Extended Search)

using study vehicles Council of Great Lakes Governors Public Utilities Commission of Ohio, Biomass Energy Program U.S. Department of Energy Battelle (under contract to NREL...

302

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

in a hydrogen-fueled Prius by Texaco Ovonic (References 10-rates permitting the Prius to be tested on the Federal Urbanof the hydrogen-fueled Prius was about 150 miles. Higher

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

303

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

and 70 MPa (10 kpsi) in carbon fiber-composite tanks, liquidloss of strength. The carbon fiber is the highest cost

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

304

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

New Methods for the Storage of Hydrogen in Microspheres,15 th World Hydrogen Energy Conference, Yokohama, Japan,Uhlemann, M. , etals. , Hydrogen Storage in Different Carbon

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

305

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

B. , and Ovshinsky, S.R. , A Hydrogen ICE Vehicle Powered byM. , and Stetson, N. , Solid Hydrogen Storage Systems forpaper from Texaco Ovonic Hydrogen Systems, Rochester Hills,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

306

Sulfur Management of NOx Adsorber Technology for Diesel Light-Duty Vehicle and Truck Applications  

DOE Green Energy (OSTI)

Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure. With the use of a disposable SOx trap to remove large portion of the sulfur poisons from the exhaust, the NOx adsorber catalyst can be protected and the numbers of de-sulfation events can be greatly reduced. Spectroscopic techniques, such as DRIFTS and Raman, have been used to monitor the underlying chemical reactions during NOx trapping/ regeneration and de-sulfation periods, and provide a fundamental understanding of NOx storage capacity and catalyst degradation mechanism using model catalysts. This paper examines the sulfur effect on two model NOx adsorber catalysts. The chemistry of SOx/base metal oxides and the sulfation product pathways and their corresponding spectroscopic data are discussed. SAE Paper SAE-2003-01-3245 {copyright} 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

Fang, Howard L.; Wang, Jerry C.; Yu, Robert C. (Cummins, Inc.); Wan, C. Z. (Engelhard Corp.); Howden, Ken (U.S. Dept. of Energy)

2003-10-01T23:59:59.000Z

307

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

Storage of Hydrogen in Microspheres, 15 th World Hydrogen Energyhydrogen in storage varies between the various energy storagethe energy storage characteristics of the various hydrogen

Burke, Andy; Gardiner, Monterey

2005-01-01T23:59:59.000Z

308

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

hydrogen in storage varies between the various energy storagethe energy storage characteristics of the various hydrogenthat the energy densities of hydrogen storage technologies

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

309

Rebound 2007: Analysis of U.S. Light-Duty Vehicle Travel Statistics  

SciTech Connect

U.S. national time series data on vehicle travel by passenger cars and light trucks covering the period 1966 2007 are used to test for the existence, size and stability of the rebound effect for motor vehicle fuel efficiency on vehicle travel. The data show a statistically significant effect of gasoline price on vehicle travel but do not support the existence of a direct impact of fuel efficiency on vehicle travel. Additional tests indicate that fuel price effects have not been constant over time, although the hypothesis of symmetry with respect to price increases and decreases is not rejected. Small and Van Dender (2007) model of a declining rebound effect with income is tested and similar results are obtained.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

310

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

respondents beheve compressed natural gas vehicles are asbelieved that compressed natural gas vehlcles (CNGVs) werethat he converts compressed natural gas vehicles back to

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

311

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network (OSTI)

respondents believe compressed natural gas vehicles are asrespondents believe compressed natural gas vehicles are lessbelieved that compressed natural gas vehicles (CNGVs) were

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

312

Evaluation of aftermarket LPG conversion kits in light-duty vehicle applications. Final report  

DOE Green Energy (OSTI)

SwRI was contracted by NREL to evaluate three LPG conversion kits on a Chevrolet Lumina. The objective of the project was to measure the Federal Test Procedure (FTP) emissions and fuel economy of these kits, and compare their performance to gasoline-fueled operation and to each other. Varying LPG fuel blends allowed a preliminary look at the potential for fuel system disturbance. The project required kit installation and adjustment according to manufacturer`s instructions. A limited amount of trouble diagnosis was also performed on the fuel systems. A simultaneous contract from the Texas Railroad Commission, in cooperation with NREL, provided funds for additional testing with market fuels (HD5 propane and industry average gasoline) and hydrocarbon (HC) emissions speciation to determine the ozone-forming potential of LPG HC emissions. This report documents the procurement, installation, and testing of these LPG conversion kits.

Bass, E.A. [Southwest Research Inst., San Antonio, TX (US)] [Southwest Research Inst., San Antonio, TX (US)

1993-06-01T23:59:59.000Z

313

Mobility Chains Analysis of Technologies for Passenger Cars and Light-Duty Vehicles  

E-Print Network (OSTI)

biological processes, thermochemical processes, and steam and electricity generation. The Role of Biomass BOUNDARY Fuel pathways simulated in this study are divided into five stages: biomass farming; biomass it undergoes anaerobic and aerobic fermentation. In the thermochemical plant (TCP), biomass feedstock undergoes

Argonne National Laboratory

314

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

of grain-based corn ethanol and cellulosic ethanol intohas made today’s corn-derived ethanol a net GHG benefit. Onethat present corn-based ethanol production technology

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

315

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

of grain-based corn ethanol and cellulosic ethanol intohas made today’s corn-derived ethanol a net GHG benefit. Onethat present corn-based ethanol production technology

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

316

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Technologies for Reducing Greenhouse Gas Emissions form RoadConsiders Copying California’s Greenhouse Gas Law. ” http://Regulations to Control Greenhouse Gas Emissions from Motor

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

317

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

Technologies for Reducing Greenhouse Gas Emissions form RoadConsiders Copying California’s Greenhouse Gas Law. ” http://Regulations to Control Greenhouse Gas Emissions from Motor

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

318

Impact of Canada’s Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

and Canada. ANL/ESD/02-5, Argonne National Laboratory, U.S.Department of Energy. Argonne, Illinois. Schwarz, W. and J.and Greenhouse Gas Emissions. ” Argonne National Laboratory,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

319

Impact of Canada's Voluntary Agreement on Greenhouse Gas Emissions from Light Duty Vehicles  

E-Print Network (OSTI)

and Canada. ANL/ESD/02-5, Argonne National Laboratory, U.S.Department of Energy. Argonne, Illinois. Schwarz, W. and J.and Greenhouse Gas Emissions. ” Argonne National Laboratory,

Lutsey, Nicholas P.

2006-01-01T23:59:59.000Z

320

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

compared with the DOE goals in order to assess the presentcompared with the DOE goals in order to assess the present

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Drive cycle analysis of butanol/diesel blends in a light-duty vehicle.  

Science Conference Proceedings (OSTI)

The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests.

Miers, S. A.; Carlson, R. W.; McConnell, S. S.; Ng, H. K.; Wallner, T.; LeFeber, J.; Energy Systems; Esper Images Video & Multimedia

2008-10-01T23:59:59.000Z

322

Impacts of Oxygenated Gasoline Use on California Light-Duty Vehicle Emissions  

E-Print Network (OSTI)

Air Resources Board, Sacramento, CA, 1993. Received forAir Resources Board, Sacramento, CA. Personal communiciat/Resources Board, Sacramento, CA. Personal communiciation,

Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

1996-01-01T23:59:59.000Z

323

Comparing Paleoclassical-Based Pedestal Model Predictions of Electron Quantities to Measured DIII-D H-mode Profiles (A27160)  

E-Print Network (OSTI)

Proc. Of 13th International Workshop On H-mode Physics And Transport, Oxford, United Kingdom, 2011; To Be Published In Nucl. Fusion13th International Workshop on H-mode Physics and Transport Barriers Oxford, UK, 2011999619117

Smith, S.P.

2011-12-15T23:59:59.000Z

324

Transport in gyrokinetic tokamaks  

Science Conference Proceedings (OSTI)

A comprehensive study of transport in full-volume gyrokinetic (gk) simulations of ion temperature gradient driven turbulence in core tokamak plasmas is presented. Though this ``gyrokinetic tokamak`` is much simpler than experimental tokamaks, such simplicity is an asset, because a dependable nonlinear transport theory for such systems should be more attainable. Toward this end, we pursue two related lines of inquiry. (1) We study the scalings of gk tokamaks with respect to important system parameters. In contrast to real machines, the scalings of larger gk systems (a/{rho}{sub s} {approx_gt} 64) with minor radius, with current, and with a/{rho}{sub s} are roughly consistent with the approximate theoretical expectations for electrostatic turbulent transport which exist as yet. Smaller systems manifest quite different scalings, which aids in interpreting differing mass-scaling results in other work. (2) With the goal of developing a first-principles theory of gk transport, we use the gk data to infer the underlying transport physics. The data indicate that, of the many modes k present in the simulation, only a modest number (N{sub k} {approximately} 10) of k dominate the transport, and for each, only a handful (N{sub p} {approximately} 5) of couplings to other modes p appear to be significant, implying that the essential transport physics may be described by a far simpler system than would have been expected on the basis of earlier nonlinear theory alone. Part of this analysis is the inference of the coupling coefficients M{sub kpq} governing the nonlinear mode interactions, whose measurement from tokamak simulation data is presented here for the first time.

Mynick, H.E.; Parker, S.E.

1995-01-01T23:59:59.000Z

325

R modes of slowly pulsating B stars  

E-Print Network (OSTI)

We examine pulsational stability of low $m$ $r$ modes in SPB stars by calculating fully nonadiabatic oscillations of uniformly rotating stars, where $m$ is an integer representing the azimuthal wave number around the rotation axis. $R$ modes are rotationally induced, non-axisymmetric, oscillation modes, whose oscillation frequency strongly depends on the rotation frequency $\\Omega$ of the star. They are conveniently classified by using two integer indices $m$ and $l^\\prime\\ge |m|$ that define the asymptotic oscillation frequency $2m\\Omega/[l^\\prime(l^\\prime+1)]$ in the limit of $\\Omega\\to 0$. We find low $m$, high radial order, odd $r$ modes with $l^\\prime=m$ in SPB stars are excited by the same iron opacity bump mechanism that excites low frequency $g$ modes of the variables, when the rotation frequency $\\Omega$ is sufficiently high. No even $r$ modes with low $m$ are found to be pulsationally unstable. Since the surface pattern of the temperature perturbation of odd modes is antisymmetric about the equator of the star, observed photometric amplitudes caused by the unstable odd $r$ modes with $l^\\prime=m$ are strongly dependent on the inclination angle between the axis of rotation and the line of sight. Applying the wave-meanflow interaction formalism to nonadiabatic $r$ modes in rapidly rotating SPB models, we find that because of the $r\\phi$ component of the Reynolds stress and the radial transport of the eddy fluctuation of density in the rotating star, the surface rotation is accelerated by the forcing due to the low $l^\\prime=m$ unstable $r$ modes.

Umin Lee

2005-09-12T23:59:59.000Z

326

Final DUF6 PEIS: Volume 2: Appendix J; Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Depleted UF 6 PEIS J-i APPENDIX J: ENVIRONMENTAL IMPACTS OF TRANSPORTATION OF UF 6 CYLINDERS, URANIUM OXIDE, URANIUM METAL, AND ASSOCIATED MATERIALS Transportation Depleted UF 6 PEIS J-ii Transportation Depleted UF 6 PEIS J-iii CONTENTS (APPENDIX J) NOTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-vi J.1 SUMMARY OF TRANSPORTATION OPTION IMPACTS . . . . . . . . . . . . . . . . . . J-3 J.2 TRANSPORTATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-8 J.2.1 Truck Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-8 J.2.2 Rail Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-9 J.2.3 Transportation Options Considered But Not Analyzed in Detail . . . . . . . . . . J-9 J.3 IMPACTS OF OPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J-10 J.3.1

327

Documents: Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Documents: Search PDF Documents View a list of all documents Transportation PDF Icon Transportation Impact Assessment for Shipment of Uranium Hexafluoride (UF6) Cylinders...

328

UpStream: Motivating Water Conservation with Low-Cost Water Flow Sensing and Persuasive Displays  

E-Print Network (OSTI)

of usage of hydrogen as alternative fuel into NETPLAN Abstract: Hydrogen has been promoted as an alternative carrier for use in fuel cell driven light-duty vehicles (LDV) in the transportation sector in terms of overall economics and carbon dioxide emissions associated with both the light-duty vehicle

Paulos, Eric

329

Disordered Optical Modes for Photon Management  

E-Print Network (OSTI)

Wave transport in disordered systems is a vast research topic, ranging from electrons in semiconductors, to light in random dielectrics, to cold atoms in laser speckles. In optics, light transport is conveyed by random electromagnetic modes and the wave can be localized about a point or extended throughout the system, depending on disorder strength, structural correlations and dimensionality of the system. Light localization phenomena are more dominantly present in two-dimensional systems than in three-dimensional ones and their optical modes can be tailored to a greater extent. Here, we show that it is possible to make use of the properties of lower-dimensional disordered structures to obtain photon management in three-dimensional space. More particularly, we argue that two-dimensional disorder and wave interferences can be exploited to improve the performance of light absorbers or emitters. Our findings have direct applications for enhancing the absorption efficiency of third-generation solar cells in a rel...

Vynck, Kevin; Riboli, Francesco; Wiersma, Diederik S

2012-01-01T23:59:59.000Z

330

The taxicab as public transportation in Boston  

E-Print Network (OSTI)

This thesis investigates the taxicab and its role as a form of public transportation, using Boston's taxicab system as an opportunity to study the mode's function in the city as well as its relationship to other forms of ...

Austin, Andrew Blair, Jr

2011-01-01T23:59:59.000Z

331

Investigation of ELM [edge localized mode] Dynamics with the Resonant Magnetic Perturbation Effects  

SciTech Connect

Topics covered are: anomalous transport and E Ă? B flow shear effects in the H-mode pedestal; RMP (resonant magnetic perturbation) effects in NSTX discharges; development of a scaling of H-mode pedestal in tokamak plasmas with type I ELMs (edge localized modes); and divertor heat load studies.

Alexei Y. Pankin; Arnold H. Kritz

2011-07-19T23:59:59.000Z

332

Gear Tooth Failure Modes  

Science Conference Proceedings (OSTI)

Table 1   Basic failure modes of gear teeth...Rolling Bruising Peening Brinelling Rippling (fish scaling) Ridging Bending (yielding) Tip-to-root interference Bending fatigue Low-cycle

333

The electron geodesic acoustic mode  

Science Conference Proceedings (OSTI)

In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Guzdar, P. N. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Kaw, P. K. [Institute for Plasma Research Bhat, Gandhinagar 382428 (India)

2012-09-15T23:59:59.000Z

334

Socially Optimal Transport . . .  

E-Print Network (OSTI)

This paper investigates the amount and type of mobility (physical travel) that is optimal for society overall. It asks, “How much and what type of travel would people choose in a transportation system that reflects efficient market principles, including diverse consumer options, cost-based pricing, and neutral public policies.” It discusses these principles, identifies existing transport market distortions and reforms, estimates how such reforms would affect mobility, and investigates resulting economic impacts. This analysis indicates that in a more optimal market consumers would choose to drive less, use alternative modes more, choose more accessible locations, and be better off overall as a result. Although previous studies have evaluated these transport market reforms individually, few have considered their cumulative impacts.

Todd Litman

2011-01-01T23:59:59.000Z

335

EIA-Annual Energy Outlook 2010 - High Oil PriceTables  

Gasoline and Diesel Fuel Update (EIA)

of New Light-Duty Vehicle Size Class Attributes Excel Gif Table 62. Transportation Fleet Car and Truck Fuel Consumption by Type and Technology Excel Gif Table 63. Transportation...

336

Engineering transport by concatenated maps  

E-Print Network (OSTI)

We present a generalized kick rotor model in which the phase of the kick can vary from kick to kick. This additional freedom allows one to control the transport in phase space. For a specific choice of kick-to-kick phases, we predict novel forms of accelerator modes which are potentially of high relevance for future experimental studies.

T. Schell; M. Sadgrove; K. Nakagawa; S. Wimberger

2013-10-22T23:59:59.000Z

337

Storage Ring Operation Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

338

Model documentation report: Transportation sector model of the National Energy Modeling System  

DOE Green Energy (OSTI)

Over the past year, several modifications have been made to the NEMS Transportation Model, incorporating greater levels of detail and analysis in modules previously represented in the aggregate or under a profusion of simplifying assumptions. This document is intended to amend those sections of the Model Documentation Report (MDR) which describe these superseded modules. Significant changes have been implemented in the LDV Fuel Economy Model, the Alternative Fuel Vehicle Model, the LDV Fleet Module, and the Highway Freight Model. The relevant sections of the MDR have been extracted from the original document, amended, and are presented in the following pages. A brief summary of the modifications follows: In the Fuel Economy Model, modifications have been made which permit the user to employ more optimistic assumptions about the commercial viability and impact of selected technological improvements. This model also explicitly calculates the fuel economy of an array of alternative fuel vehicles (AFV`s) which are subsequently used in the estimation of vehicle sales. In the Alternative Fuel Vehicle Model, the results of the Fuel Economy Model have been incorporated, and the program flows have been modified to reflect that fact. In the Light Duty Vehicle Fleet Module, the sales of vehicles to fleets of various size are endogenously calculated in order to provide a more detailed estimate of the impacts of EPACT legislation on the sales of AFV`s to fleets. In the Highway Freight Model, the previous aggregate estimation has been replaced by a detailed Freight Truck Stock Model, where travel patterns, efficiencies, and energy intensities are estimated by industrial grouping. Several appendices are provided at the end of this document, containing data tables and supplementary descriptions of the model development process which are not integral to an understanding of the overall model structure.

NONE

1997-02-01T23:59:59.000Z

339

Transportation energy data book: edition 16  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 16 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares U.S. transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high- occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data on environmental issues relating to transportation.

Davis, S.C. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); McFarlin, D.N. [Tennessee Univ., Knoxville, TN (United States)

1996-07-01T23:59:59.000Z

340

submitted to Transportation Quarterly corresponding author:  

E-Print Network (OSTI)

This study evaluates the full cost of three modes of intercity transportation: air, highway, and high speed rail for the California Corridor, connecting the Los Angeles Basin and the San Francisco Bay Area in order to compare the economic implications of investment in, or expansion of, any of these three modes. In this study we include estimates of four types of external, social costs: accidents, congestion, noise, and air pollution. Based on the results, we find that the full cost of air transportation for the California Corridor ($0.1315 per passenger-kilometer traveled (pkt)) is significantly less costly than the other two modes. High speed rail and highway transportation have approximately the same full cost; rail costs $0.2350/pkt and highway costs $0.2302/pkt. However, the modes have a different distribution of internal and external costs, automobiles have the highest external costs while high speed rail has the highest internal costs.

David Levinson; Adib Kanafani; David Gillen; David Levinson

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Transportation Sector Module 1995 - Model Developer's Report, Model Documentation  

Reports and Publications (EIA)

As the description in Section 4 and Appendix B shows, the NEMS Transportation Model is made up of seven semi-independent submodules which address different vehicular modes of the transportation sector. Each submodule also contains methods to deal with the impacts of policyinitiatives and legislative mandates which affect individual modes of travel. The transportation sector energy consumption is the sum of the energy consumption forecasts generated through the separate submodules.

John Maples

1995-03-01T23:59:59.000Z

342

Transportation energy data book: Edition 13  

SciTech Connect

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes -- highway, air, water, rail, pipeline -- is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

343

Transportation energy data book: Edition 12  

SciTech Connect

The Transportation Energy Data Book: Edition 12 is a statistical compendium prepared and published by Oak Ridge National Laboratory under contract with the Office of Transportation Technologies in the Department of Energy. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes--highway, air, water, rail, pipeline--is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Morris, M.D.

1992-03-01T23:59:59.000Z

344

Transportation energy data book: Edition 15  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 15 is a statistical compendium. Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. Purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter I compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternative fuel vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1995-05-01T23:59:59.000Z

345

Transportation energy data book: Edition 13  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 13 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes - highway, air, water, rail, pipeline - is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from seven other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet automobiles, federal standards, fuel economies, and vehicle emission data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. The last chapter, Chapter 6, covers each of the nonhighway modes: air, water, pipeline, and rail, respectively.

Davis, S.C.; Strang, S.G.

1993-03-01T23:59:59.000Z

346

Final Report - Plasma Transport at the Magnetospheric Flank Boundary  

SciTech Connect

Progress is highlighted in these areas: 1. Model of magnetic reconnection induced by three-dimensional Kelvin Helmholtz (KH) modes at the magnetospheric flank boundary. 2. Quantitative evaluation of mass transport from the magnetosheath onto closed geomagnetic field for northward IMF. 3. Comparison of mass transfer by cusp reconnection and Flank Kelvin Helmholtz modes. 4. Entropy constraint and plasma transport in the magnetotail - a new mechanism for current sheet thinning. 5. Test particle model for mass transport onto closed geomagnetic field for northward IMF . 6. Influence of density asymmetry and magnetic shear on (a) the linear and nonlinear growth of 3D Kelvin Helmholtz (KH) modes, and (b) three-dimensional KH mediated mass transport. 7. Examination of entropy and plasma transport in the magnetotail. 8. Entropy change and plasma transport by KH mediated reconnection - mixing and heating of plasma. 9. Entropy and plasma transport in the magnetotail - tail reconnection. 10. Wave coupling at the magnetospheric boundary and generation of kinetic Alfven waves.

Otto, Antonius

2012-04-23T23:59:59.000Z

347

Road Transportation.  

E-Print Network (OSTI)

?? The recession of the early 1990’s marked the starting point for a transformation of the Swedish transportation industry. Cost oriented production techniques by the… (more)

Gudmundsson, Erik

2008-01-01T23:59:59.000Z

348

Transportation Revolution  

NLE Websites -- All DOE Office Websites (Extended Search)

To transform the vehicle sector, the U.S. auto manufacturing industry is actively developing new technologies and products. This transportation revolution will also affect...

349

Transportation Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work Plan, dated 8206,...

350

WIPP Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transuranic Waste Transportation Container Documents Documents related to transuranic waste containers and packages. CBFO Tribal Program Information about WIPP shipments across...

351

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

Trends, 2001 - 2010 Trends, 2001 - 2010 Transportation infrastructure overview In 2010, railroads transported over 70 percent of coal delivered to electric power plants which are generally concentrated east of the Mississippi River and in Texas. The U.S. railroad market is dominated by four major rail companies that account for 99 percent of U.S. coal rail shipments by volume. Deliveries from major coal basins to power plants by mode Rail Barge Truck Figure 2. Deliveries from major coal basins to power plants by rail, 2010 figure data Figure 3. Deliveries from major coal basins to power plants by barge, 2010 figure data Figure 4. Deliveries from major coal basins to power plants by truck, 2010 figure data The Powder River Basin of Wyoming and Montana, where coal is extracted in

352

Edge transport barrier studies on the Alcator C-Mod tokamak  

E-Print Network (OSTI)

Edge transport barriers (ETBs) in tokamak plasmas accompany transitions from low confinement (L-mode) to high confinement (H-mode) and exhibit large density and temperature gradients in a narrow pedestal region near the ...

Hughes, Jerry W. (Jerry Wayne), 1975-

2005-01-01T23:59:59.000Z

353

ORNL/TM-2012/196  

NLE Websites -- All DOE Office Websites (Extended Search)

coverage of engine speed and load compared with CDC (gray), with light-duty (LD) city drive cycle operating points overlaid. A multi-mode strategy switching from RCCI to CDC...

354

The impact of fuel price volatility on transportation mode choice  

E-Print Network (OSTI)

In recent years, the price of oil has driven large fluctuations in the price of diesel fuel, which is an important cost component in freight logistics. This thesis explores the impact of fuel price volatility on supply ...

Kim, Eun Hie

2009-01-01T23:59:59.000Z

355

Transportation Market Distortions  

E-Print Network (OSTI)

of Highways, Volpe National Transportation Systems Center (Evaluating Criticism of Transportation Costing, VictoriaFrom Here: Evaluating Transportation Diversity, Victoria

Litman, Todd

2006-01-01T23:59:59.000Z

356

The World Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

The World Bank - Transport The World Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The World Bank - Transport Agency/Company /Organization: The World Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: go.worldbank.org/0SYYVJWB40 This website provides relevant information about transport, focusing on The World Bank Transport Strategy - Safe, Clean and Affordable - Transport for Development. The website includes international publications and toolkits classified by type of transport and/or region/country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

357

Transport Research Laboratory | Open Energy Information  

Open Energy Info (EERE)

Transport Research Laboratory Transport Research Laboratory Jump to: navigation, search Tool Summary Name: Transport Research Laboratory Agency/Company /Organization: Transport Research Laboratory Focus Area: Governance - Planning - Decision-Making Structure Topics: Potentials & Scenarios Resource Type: Website Website: www.trl.co.uk/ The UK's Transport Research Laboratory is an internationally recognised centre of excellence providing world-class research, consultancy, testing and certification for all aspects of transport. The website provides publications, news, software and many other products and services related to transport How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

358

Asian Development Bank - Transport | Open Energy Information  

Open Energy Info (EERE)

Asian Development Bank - Transport Asian Development Bank - Transport Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Asian Development Bank - Transport Agency/Company /Organization: Asian Development Bank Focus Area: Governance - Planning - Decision-Making Structure Topics: Analysis Tools Resource Type: Website Website: www.adb.org/sectors/transport/main This website provides relevant information about transport, focusing on the Sustainable Transport Initiative-Operational Plan (STI-OP). The website includes publications, current approved projects in Asia and toolkits classified by type of transport and/or country. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

359

Manpower analysis in transportation safety. Final report  

DOE Green Energy (OSTI)

The project described provides a manpower review of national, state and local needs for safety skills, and projects future manning levels for transportation safety personnel in both the public and private sectors. Survey information revealed that there are currently approximately 121,000 persons employed directly in transportation safety occupations within the air carrier, highway and traffic safety, motor carrier, pipeline, rail carrier, and marine carrier transportation industry groups. The projected need for 1980 is over 145,000 of which over 80 percent will be in highway safety. An analysis of transportation tasks is included, and shows ten general categories about which the majority of safety activities are focused. A skills analysis shows a generally high level of educational background and several years of experience are required for most transportation safety jobs. An overall review of safety programs in the transportation industry is included, together with chapters on the individual transportation modes.

Bauer, C.S.; Bowden, H.M.; Colford, C.A.; DeFilipps, P.J.; Dennis, J.D.; Ehlert, A.K.; Popkin, H.A.; Schrader, G.F.; Smith, Q.N.

1977-05-01T23:59:59.000Z

360

Transportation Energy Data Book: Edition 14  

Science Conference Proceedings (OSTI)

Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. Each of the major transportation modes is treated in separate chapters or sections. Chapter 1 compares US transportation data with data from other countries. Aggregate energy use and energy supply data for all modes are presented in Chapter 2. The highway mode, which accounts for over three-fourths of total transportation energy consumption, is dealt with in Chapter 3. Topics in this chapter include automobiles, trucks, buses, fleet vehicles, federal standards, fuel economies, and high-occupancy vehicle lane data. Household travel behavior characteristics are displayed in Chapter 4. Chapter 5 contains information on alternative fuels and alternatively-fueled vehicles. Chapter 6 covers the major nonhighway modes: air, water, and rail. The last chapter, Chapter 7, presents data environmental issues relating to transportation.

Davis, S.C.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Defense Transportation - Center for Transportation Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Defense Transportation The Center for Transportation Analysis provides analytical, planning, and operational support to defense transportation related projects. This includes the...

362

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64 percent of total domestic coal shipments in 2004. Trucks transported approximately 12 percent of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12 percent) and water transport on inland waterways, the Great Lakes, and tidewater areas (9 percent).

Information Center

2007-02-22T23:59:59.000Z

363

ECUT energy data reference series: Otto cycle engines in transportation  

SciTech Connect

Information that describes the use of the Otto cycle engines in transportation is summarized. The transportation modes discussed in this report include the following: automobiles, light trucks, heavy trucks, marine, recreational vehicles, motorcycles, buses, aircraft, and snowmobiles. These modes account for nearly 100% of the gasoline and LPG consumed in transportation engines. The information provided on each of these modes includes descriptions of the average energy conversion efficiency of the engine, the capital stock, the amount of energy used, and the activity level as measured in ton-miles. Estimates are provided for the years 1980 and 2000.

Hane, G.J.; Johnson, D.R.

1984-07-01T23:59:59.000Z

364

Defining, Measuring, and Evaluating Path Walkability, and Testing Its Impacts on Transit Users’ Mode Choice and Walking Distance to the Station  

E-Print Network (OSTI)

Light-Rail Transit Stations” Transportation Research Record,Rail Station Consolidation on Pedestrian Access. ” Transportation ResearchResearch on Transit Access Mode Choice With the growing importance of urban rail

Park, Sungjin

2008-01-01T23:59:59.000Z

365

Sustainable Transportation  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Energy Efficiency and Renewable Energy (EERE) leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive...

366

electrifyingthefuture transportation  

E-Print Network (OSTI)

programme of electrification and the potential introduction of diesel hybrids. The Department for Transport vehicles Wind turbine systems Industrial equipment The lab has full ethernet capability which will enable

Birmingham, University of

367

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Mar 21, 2011 ... TMS Social Network and Site Tools .... Development of low-cost, novel hydrogen storage vessels and/or low-cost fibers for composite ... storage technologies for both stationary and light-duty vehicle transportation applications.

368

Transportation Network Modeling in Passenger Transportation  

E-Print Network (OSTI)

. Summary & Future work 2 #12;NETPLAN Energy and Transportation Integration model A modeling frameworkTransportation Network Modeling in NETPLAN Passenger Transportation Venkat Krishnan Eirini;Outline 1. Introduction to NETPLAN 2. Transportation modeling- A review Freight Passenger 3. Developed

Daniels, Thomas E.

369

Electron geodesic acoustic modes in electron temperature gradient mode turbulence  

Science Conference Proceedings (OSTI)

In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG turbulence saturation level compared to the mixing length estimate.

Anderson, Johan; Nordman, Hans [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Singh, Raghvendra; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

2012-08-15T23:59:59.000Z

370

Alternative Fuels Data Center: Multi-Modal Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Multi-Modal Multi-Modal Transportation to someone by E-mail Share Alternative Fuels Data Center: Multi-Modal Transportation on Facebook Tweet about Alternative Fuels Data Center: Multi-Modal Transportation on Twitter Bookmark Alternative Fuels Data Center: Multi-Modal Transportation on Google Bookmark Alternative Fuels Data Center: Multi-Modal Transportation on Delicious Rank Alternative Fuels Data Center: Multi-Modal Transportation on Digg Find More places to share Alternative Fuels Data Center: Multi-Modal Transportation on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Multi-Modal Transportation Using multiple modes of transportation is the best approach for some

371

Transportation Energy Data Book, Edition 18  

Science Conference Proceedings (OSTI)

The Transportation Energy Data Book: Edition 18 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. This edition of the Data Book has 11 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 - energy Chapter 3 - emissions; Chapter 4 - transportation and the economy; Chapter 5 - highway vehicles; Chapter 6 - Light vehicles; Chapter 7 - heavy vehicles; Chapter 8 - alternative fuel vehicles; Chapter 9 - fleet vehicles; Chapter 10 - household vehicles; and Chapter 11 - nonhighway modes. The sources used represent the latest available data.

Davis, Stacy C.

1998-09-01T23:59:59.000Z

372

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Table 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycleelectricity rates on a cost per kWh basis only with some

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

373

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

to produce clean, quiet electrical power for purposes otherHEVWG), led by the Electrical Power Research Institute (section), as well as if electrical power, flowing along the

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

374

Ohio's first ethanol-fueled light-duty fleet: Clean cities alternative fuel information series case study  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the effectiveness of ethanol as an alternative to gasoline in its fleet operations. All vehicles in the study were 1996 model year Ford Tauruses: ten were flexible-fuel vehicles (FFVs) and three were standard gasoline models. Overall, the State of Ohio's staff has been pleased with the Taurus FFVs. The vehicles perform well and meet the operators' needs.

Whalen, P.

1999-05-21T23:59:59.000Z

375

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

376

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

and vehicular-distributed-generation model to estimate zero-power, Vehicular distributed generation, Household marketdistributed generation .25

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

377

Ohio's first ethanol-fueled light-duty fleet: Clean cities alternative fuel information series case study  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the effectiveness of ethanol as an alternative to gasoline in its fleet operations. All vehicles in the study were 1996 model year Ford Tauruses: ten were flexible-fuel vehicles (FFVs) and three were standard gasoline models. Overall, the State of Ohio's staff has been pleased with the Taurus FFVs. The vehicles perform well and meet the operators' needs.

Whalen, P.

1999-05-21T23:59:59.000Z

378

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

status, gender, and age), vehicle type (energy storage andstatus, gender, and age), vehicle type (energy storage and

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

379

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

power, and heat generation), and grid-side benefits (peakpre-) heat/cool, etc. ); home recharging using off-peak grid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

380

Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions  

Science Conference Proceedings (OSTI)

Spark ignition (SI) engines with direct injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle emissions such that SI exhaust may be subject to future particle emissions regulations. Challenges in controlling particle emissions arise as engines encounter varied fuel composition such as intermediate ethanol blends. Furthermore, modern engines are operated using unconventional breathing strategies with advanced cam-based variable valve actuation systems. In this study, we investigate particle emissions from a multi-cylinder DI engine operated with three different breathing strategies, fueling strategies and fuels. The breathing strategies are conventional throttled operation, early intake valve closing (EIVC) and late intake valve closing (LIVC); the fueling strategies are single injection DI (sDI), multi-injection DI (mDI), and PFI; and the fuels are emissions certification gasoline, E20 and E85. The results indicate the dominant factor influencing particle number concentration emissions for the sDI and mDI strategies is the fuel injection timing. Overly advanced injection timing results in particle formation due to fuel spray impingement on the piston, and overly retarded injection timing results in particle formation due to poor fuel and air mixing. In addition, fuel type has a significant effect on particle emissions for the DI fueling strategies. Gasoline and E20 fuels generate comparable levels of particle emissions, but E85 produces dramatically lower particle number concentration. The particle emissions for E85 are near the detection limit for the FSN instrument, and particle number emissions are one to two orders of magnitude lower for E85 relative to gasoline and E20. We found PFI fueling produces very low levels of particle emissions under all conditions and is much less sensitive to engine breathing strategy and fuel type than the DI fueling strategies. The particle number-size distributions for PFI fueling are of the same order for all of the breathing strategies and fuel types and are one to two orders lower than for the sDI fuel injection strategy with gasoline and E20. Remarkably, the particle emissions for E85 under the sDI fueling strategy are similar to particle emissions with a PFI fueling strategy. Thus by using E85, the efficiency and power advantages of DI fueling can be gained without generating high particle emissions.

Szybist, James P [ORNL; Youngquist, Adam D [ORNL; Barone, Teresa L [ORNL; Storey, John Morse [ORNL; Moore, Wayne [Delphi; Foster, Matthew [Delphi; Confer, Keith [Delphi

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Toyota and Ford Hybrids," in Green Car Congress, 21 Februaryplant using idle hybrid airport-rental cars to provide localengine (ICE) hybrids in airport-rental-car and other

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

382

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

learned from natural gas for vehicles," Energy Policy, vol.learned from natural gas for vehicles." Energy Policy 30(7):Policy, Flynn, the former president of Canadian firm CNG Fuel Systems discusses lessons from compressed-natural-gas-

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

383

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Economic Implications of Net Metering for Stationary andEconomic Implications of Net Metering for Stationary andEconomic Implications of Net Metering for Stationary and

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

384

Exploring the use of a higher octane gasoline for the U.S. light-duty vehicle fleet  

E-Print Network (OSTI)

This thesis explores the possible benefits that can be achieved if U.S. oil companies produced and offered a grade of higher-octane gasoline to the consumer market. The octane number of a fuel represents how resistant the ...

Chow, Eric W

2013-01-01T23:59:59.000Z

385

Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles  

SciTech Connect

Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

Jeff Wishart; Matthew Shirk

2012-12-01T23:59:59.000Z

386

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

387

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

H 2 FCVs, plug- in hybrids, and vehicle-to-grid (V2G) power.markets using primarily hybrid vehicles in fleet and otherin hybrid, Plug-out hybrid, Vehicle-to-grid power, Vehicular

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

388

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Plug-in Hybrid Kits for Toyota and Ford Hybrids," in Greenfactsheet.pdf, 2006. J. Rosebro, "Toyota Ratchets Up Plug-InCongress, 23 April ed, 2006. "Toyota to Unveil Prius with

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

389

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Toyota Ratchets Up Plug-In Prius Talk," in Green Cared, 2006. "Toyota to Unveil Prius with Large Auxiliary Powerfive, including several Prius conversions in various stages

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

390

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

includes “car-company” battery cost estimates, scaled toas the desire to keep battery cost, and thus size, down isjustify current marginal battery costs. So, too, might there

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

391

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

device to compressed-natural-gas-vehicle consumers. ) TheZealand’s use of compressed-natural-gas (CNG) and liquefied-discusses lessons from compressed-natural-gas-vehicle (NGV)

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

392

Effect of Biodiesel Blending on the Speciation of Soluble Organic Fraction from a Light Duty Diesel Engine  

DOE Green Energy (OSTI)

Soy methyl ester (SME) biodiesel was volumetrically blended with 2007 certification ultra low sulfur diesel (ULSD) fuel and run in a 1.7L direct-injection common rail diesel engine at one speed-load point (1500rpm, 2.6bar BMEP). Engine fueling rate and injection timing were adjusted to maintain a constant load, while particulate samples were collected in a diesel particulate filter (DPF) and with a dilution tunnel sampling train. The samples collected at these two locations were found to contain different levels of soluble organic fraction (SOF) and the different hydrocarbon species in the SOF. This observation indicates that traditional SOF measurements, in light of the specific sampling procedure used, may not be appropriate to DPF applications.

Strzelec, Andrea [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Daw, C Stuart [ORNL; Foster, Prof. Dave [University of Wisconsin; Rutland, Prof. Christopher J. [University of Wisconsin

2010-01-01T23:59:59.000Z

393

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

Early Markets for Hybrid Electric Vehicles," University ofof Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

394

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

395

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Strategies/Avoid LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Avoid) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg Avoid trips taken and reduce travel demand by integrating land use planning, transport infrastructure planning, and transport demand

396

Transportation and its Infrastructure  

E-Print Network (OSTI)

Transport and its infrastructure Coordinating Lead Authors:5 Transport and its infrastructure Chandler, K. , E. Eberts,5 Transport and its infrastructure Sausen, R. , I. Isaksen,

2007-01-01T23:59:59.000Z

397

Intelligent Transport Systems  

E-Print Network (OSTI)

in Sustainable Urban Transport: City Interview Synthesis (of Leeds, Institute for Transport Studies, forthcoming.I NTELLIGENT TRANSPORT SYSTEMS LINKING TECHNOLOGY AND

Deakin, Elizabeth; Frick, Karen Trapenberg; Skabardonis, Alexander

2009-01-01T23:59:59.000Z

398

Preface: Nonclassical Transport  

E-Print Network (OSTI)

models of solute transport in highly heterogeneous geologicSemenov. 2008b. Nonclassical transport processes in geologicand L. Matveev. 2008. Transport regimes and concentration

Bolshov, L.

2010-01-01T23:59:59.000Z

399

Sustainability and Transport  

E-Print Network (OSTI)

Gilbert is a Toronto-based transport and energy consultantof the forthcoming book Transport Revolutions: Making theand substantial transition to transport systems based on

Gilbert, Richard

2006-01-01T23:59:59.000Z

400

Transportation Energy Futures  

E-Print Network (OSTI)

A Comparative Analysis of Future Transportation Fuels. ucB-prominentlyin our transportation future, powering electricTransportation Energy Futures Daniel Sperling Mark A.

DeLuchi, Mark A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Achieving Sustainable Transportation  

E-Print Network (OSTI)

a serious concern for future transportation planning, but itplanning for the future. Transportation should be at the topsustainable transportation look like? Again, the future will

Mason, Jonathan

2006-01-01T23:59:59.000Z

402

Transportation Issues  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Issues and Resolutions - Compilation of Laboratory Transportation Work Package Reports Prepared for U.S. Department of Energy Used Fuel Disposition Campaign Compiled by Paul McConnell Sandia National Laboratories September 30, 2012 FCRD-UFD-2012-000342 Transportation Issues and Resolutions ii September 2012 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any

403

Transportation Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

For Review Only 1 Transportation Security Draft Annotated Bibliography Review July 2007 Preliminary Draft - For Review Only 2 Work Plan Task * TEC STG Work Plan, dated 8/2/06, Product #16, stated: "Develop an annotated bibliography of publicly-available documents related to security of radioactive material transportation." * Earlier this year, a preliminary draft annotated bibliography on this topic was developed by T-REX , UNM, to initially address this STG Work Plan Task. Preliminary Draft - For Review Only 3 Considerations in Determining Release of Information * Some "Publicly-available" documents could potentially contain inappropriate information according to standards set by DOE information security policy and DOE Guides. - Such documents would not be freely

404

LNG transportation  

Science Conference Proceedings (OSTI)

In the beginning of 1965, the participants to the starting up of first French LNG transportation system between ARZEW and LE HAVRE were indeed pioneers when they started the cool-down of the three tanks of LE HAVRE, with a LNG freight delivered by old liberty-ship ''BEAUVAIS''. Could they forecast the development of LNG industry in FRANCE and in the world and imagine that modest 'JULES VERNE' and his two english brothers would have, 25 years later, 80 successors - more than five times as big, for the main part of them, that 12 liquefaction plants would be running in the world, supplying about twenty LNG terminals. For the first time, a country - FRANCE - can draw the lessons from the exploitation of the 3 LNG transportation systems during a long period. That is the subject of the present paper.

Picard, J.

1988-01-01T23:59:59.000Z

405

Mode Competition in Dual-Mode Quantum Dots Semiconductor Microlaser  

E-Print Network (OSTI)

This paper describes the modeling of quantum dots lasers with the aim of assessing the conditions for stable cw dual-mode operation when the mode separation lies in the THz range. Several possible models suited for InAs quantum dots in InP barriers are analytically evaluated, in particular quantum dots electrically coupled through a direct exchange of excitation by the wetting layer or quantum dots optically coupled through the homogeneous broadening of their optical gain. A stable dual-mode regime is shown possible in all cases when quantum dots are used as active layer whereas a gain medium of quantum well or bulk type inevitably leads to bistable behavior. The choice of a quantum dots gain medium perfectly matched the production of dual-mode lasers devoted to THz generation by photomixing.

Chusseau, Laurent; Viktorovitch, P; Letartre, Xavier

2013-01-01T23:59:59.000Z

406

Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future  

SciTech Connect

Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

2013-03-01T23:59:59.000Z

407

Hydrodynamic modes in a confined granular fluid  

E-Print Network (OSTI)

Confined granular fluids, placed in a shallow box that is vibrated vertically, can achieve homogeneous stationary states thanks to energy injection mechanisms that take place throughout the system. These states can be stable even at high densities and inelasticities allowing for a detailed analysis of the hydrodynamic modes that govern the dynamics of granular fluids. Analyzing the decay of the time correlation functions it is shown that there is a crossover between a quasielastic regime in which energy evolves as a slow mode, to a inelastic regime, with energy slaved to the other conserved fields. The two regimes have well differentiated transport properties and, in the inelastic regime, the dynamics can be described by a reduced hydrodynamics with modified longitudinal viscosity and sound speed. The crossover between the two regimes takes place at a wavevector that is proportional to the inelasticity. A two dimensional granular model, with collisions that mimic the energy transfers that take place in a confined system is studied by means of microscopic simulations. The results show excellent agreement with the theoretical framework and allows the validation of hydrodynamic-like models.

Ricardo Brito; Dino Risso; Rodrigo Soto

2013-01-17T23:59:59.000Z

408

Transportation Planning & Decision Science Group Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Poster Presentations: Stacy Davis - "Transportation Data Programs: Transportation Energy Data Book, Vehicle Technologies Market Report, and the Vehicle Technologies Fact of...

409

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

410

LEDSGP/Transportation Toolkit/Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies < LEDSGP‎ | Transportation Toolkit(Redirected from Transportation Toolkit/Strategies) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low emissions transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand

411

LEDSGP/Transportation Toolkit/Strategies/Improve | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » LEDSGP/Transportation Toolkit/Strategies/Improve < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Improve) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and

412

Transportation Research Internship Program  

E-Print Network (OSTI)

Transportation Research Internship Program Civil & Coastal Engineering Overview The Transportation Research Internship Program (TRIP) is conducted by the Transportation Research Center (TRC) and the Center is to provide undergraduates an exciting opportunity to learn about transportation engineering

Slatton, Clint

413

Spent Fuel Transportation Applications: Longitudinal Tearing Resulting from Transportation Accidents--A Probabilistic Treatment  

Science Conference Proceedings (OSTI)

This report presents a probabilistic treatment of longitudinal tearing of spent fuel rods subjected to dynamic forces that could result from hypothetical spent fuel transportation accidents. Longitudinal tearing represents the failure configuration with the highest potential for occurring during transport because of the effects of radial hydrides on cladding resistance to fracture. Accurate assessment of this failure mode constitutes an important part of a general failure analysis methodology to quantify...

2006-12-19T23:59:59.000Z

414

Location Analysis Model for Belgian Intermodal Terminals: Importance of the value of time in the intermodal transport chain  

Science Conference Proceedings (OSTI)

Intermodal transport, the combination and integration of several transport modes, with the use of loading units, is in most cases more environmentally friendly than unimodal road transport for the carriage of goods. The LAMBIT-model (Location Analysis ... Keywords: Empty returns, GIS network model, Intermodal transport, Value of time

Ethem Pekin; Cathy Macharis; Dries Meers; Piet Rietveld

2013-02-01T23:59:59.000Z

415

TRANSPORTATION SYSTEMS Transportation systems are the building  

E-Print Network (OSTI)

TRANSPORTATION SYSTEMS Transportation systems are the building blocks of modern society. Efficient mobility improves the quality of life. However, transportation systems by their very nature also affect quality. The transportation systems graduate pro- gram provides in-depth knowledge on the design

Wang, Yuhang

416

Microsoft Word - APS10_Highlight_I-mode  

NLE Websites -- All DOE Office Websites (Extended Search)

Turbulent transport of heat and particles decoupled in a new operating Turbulent transport of heat and particles decoupled in a new operating regime observed on the Alcator-C tokamak Amanda E. Hubbard, hubbard@psfc.mit.edu MIT Plasma Science and Fusion Center, Cambridge MA 02139 USA Changes in edge turbulence result in increased heat confinement, advantageous for fusion, without unwanted confinement of particles. A key challenge in fusion energy is to confine the input heat long enough for the hot ionized hydrogen, fuel, or plasma, to fuse and produce net energy. Over 25 years ago, the spontaneous formation of an edge transport barrier was discovered, which roughly doubles the energy confinement [1]. This "high confinement", or H-mode, regime, is relied on in most 'tokamaks', a type of toroidal 'magnetic bottle', and foreseen for the international ITER project. However,

417

Intelligent Transportation Systems - Center for Transportation Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Intelligent Transportation Systems Intelligent Transportation Systems The Center for Transportation Analysis does specialty research and development in intelligent transportation systems. Intelligent Transportation Systems (ITS) are part of the national strategy for improving the operational safety, efficiency, and security of our nation's highways. Since the early 1990s, ITS has been the umbrella under which significant efforts have been conducted in research, development, testing, deployment and integration of advanced technologies to improve the measures of effectiveness of our national highway network. These measures include level of congestion, the number of accidents and fatalities, delay, throughput, access to transportation, and fuel efficiency. A transportation future that includes ITS will involve a significant improvement in these

418

Vapor phase heat transport systems  

DOE Green Energy (OSTI)

Vapor phase heat-transport systems are being tested in two of the passive test cells at Los Alamos. The systems consist of an active fin-and-tube solar collector and a condenser inside a water storage tank. The refrigerant, R-11, can be returned to the collector by a pump or by a self-pumping scheme. In one of the test cells the liquid was self-pumped to the roof-mounted collector 17 ft above the condenser. A mechanical valve was designed and tested that showed that the system could operate in a completely passive mode. Performance comparisons have been made with a passive water wall test cell.

Hedstrom, J.C.

1984-01-01T23:59:59.000Z

419

Occupant satisfaction in mixed-mode buildings  

E-Print Network (OSTI)

Environmental Quality in Green Buildings”. Indoor Air; 14 (Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.

Brager, Gail; Baker, Lindsay

2009-01-01T23:59:59.000Z

420

Occupant satisfaction in mixed-mode buildings.  

E-Print Network (OSTI)

Strategies for Mixed-Mode Buildings, Summary Report, CenterCBE). 2006. Website: Mixed-Mode Building Case Studies.Department of Environmental Building Research Establishment

Brager, Gail; Baker, Lindsay

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Mixed-Mode Ventilation and Building Retrofits  

E-Print Network (OSTI)

November 1994, ENTPE, Lyon. [CIBSE] Chartered Institution ofMixed-mode ventilation. CIBSE Applications Manual AM13.incorporated by the design. CIBSE, 2000 Mixed-mode

Brager, Gail; Ackerly, Katie

2010-01-01T23:59:59.000Z

422

Mode conversion studies in TFTR  

SciTech Connect

Mode converted Ion Bernstein Waves (IBW) have important potential applications in tokamak reactors. These applications include on or off axis electron heating and current drive and the channeling of alpha particle power for both current drive and increased reactivity. Efficient mode conversion electron heating with a low field side antenna, with both on and off axis power deposition, has been demonstrated for the first time in TFTR in D{sup 3}He-{sup 4}He plasmas. Up to 80% of the Ion Cyclotron Range of Frequency (ICRF) power is coupled to electrons at the mode conversion surface. Experiments during deuterium and tritium neutral beam injection (NBI) indicate that good mode conversion efficiency can be maintained during NBI if sufficient {sup 3}He is present. No evidence of strong alpha particle heating by the IBW is seen. Recent modeling indicates that if the mode converted IBW is preferentially excited off the horizontal midplane then the resultant high poloidal mode number wave may channel alpha particle power to either electrons or ions. In TFTR both the propagation of the IBW and its effect on the alpha particle population is being investigated. Experiments with 2 MW of ICRF power launched with {+-} 90{degree} antenna phasing for current drive show that electron heating and sawtooth activity depend strongly on the direction of the launched wave. The noninductively driven current could not be experimentally determined in these relatively high plasma current, short pulse discharges. Experiments at higher RF power and lower plasma current are planned to determine on and off axis current drive efficiency.

Majeski, R.; Fisch, N.J.; Adler, H.

1995-03-01T23:59:59.000Z

423

Reducing Turbulent Transport in Toroidal Configurations via Shaping  

Science Conference Proceedings (OSTI)

Recent progress in reducing turbulent transport in stellarators and tokamaks by 3D shaping using a stellarator optimization code in conjunction with a gyrokinetic code is presented. The original applications of the method focussed on ion temperature gradient transport in a quasi-axisymmetric stellarator design. Here, an examination of both other turbulence channels and other starting configurations is initiated. It is found that the designs evolved for transport from ion temperature gradient turbulence also display reduced transport from other transport channels whose modes are also stabilized by improved curvature, such as electron temperature gradient and ballooning modes. The optimizer is also applied to evolving from a tokamak, finding appreciable turbulence reduction for these devices as well. From these studies, improved understanding is obtained of why the deformations found by the optimizer are beneficial, and these deformations are related to earlier theoretical work in both stellarators and tokamaks.

H.E. Mynick, N. Pomphrey and P. Xanthopoulos

2011-04-20T23:59:59.000Z

424

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

6. Differences in transportation demand assumptions across three cases 6. Differences in transportation demand assumptions across three cases Transportation mode Reference Low/No Net Imports High Net Imports Light-duty vehicles Vehicle miles traveled (compound annual growth rate, 2011-2040) 1.2% 0.2% 11% Vehicle technology efficiency in 2040 Baseline Baseline + 10% Baseline - 10% Vehicle technology cost in 2040 Baseline Baseline - 10% Baseline + 10% CAFE standard compliance value in 2040 (miles per gallon) 49.0 57.7 39.9 Flex-fuel vehicle stock in 2040 (millions) 20.9 44.3 20.0 Batter-electric vehicle costs Baseline Baseline - 14% Baseline Heavy-duty vehicles Vehicle technology efficiency in 2040 Baseline Baseline + 10% Baseline - 10% vehicle technology cost in 2040 Baseline Baseline - 10% Baseline + 10%

425

U.S. Energy Information Administration (EIA) - Sector  

Gasoline and Diesel Fuel Update (EIA)

6. Differences in transportation demand assumptions across three cases 6. Differences in transportation demand assumptions across three cases Transportation mode Reference Low/No Net Imports High Net Imports Light-duty vehicles Vehicle miles traveled (compound annual growth rate, 2011-2040) 1.2% 0.2% 11% Vehicle technology efficiency in 2040 Baseline Baseline + 10% Baseline - 10% Vehicle technology cost in 2040 Baseline Baseline - 10% Baseline + 10% CAFE standard compliance value in 2040 (miles per gallon) 49.0 57.7 39.9 Flex-fuel vehicle stock in 2040 (millions) 20.9 44.3 20.0 Batter-electric vehicle costs Baseline Baseline - 14% Baseline Heavy-duty vehicles Vehicle technology efficiency in 2040 Baseline Baseline + 10% Baseline - 10% vehicle technology cost in 2040 Baseline Baseline - 10% Baseline + 10%

426

Decay of the Diocotron Rotation and Transport in a New Low-Density Asymmetry-Dominated Regime  

E-Print Network (OSTI)

. The asymmetry-dominated transport was also studied, and found to depend linearly on the line density (and the trap axis. Usually the diocotron is a long-lived mode, typically taking 104 ­105 rotations to damp mode. In this work we describe a new regime of damping and transport for which most of the predictions

California at Berkeley, University of

427

The Full Cost of Intercity Highway Transportation  

E-Print Network (OSTI)

Introduction There has been a great deal of recent interest in identifying and measuring the full costs of transportation, particularly highways (see for instance: Keeler et al. 1974, Fuller et al. 1983, Quinet 1990, Mackenzie et al. 1992, INRETS 1993, Miller and Moffet 1993, IWW/INFRAS 1995, IBI 1995, Levinson et al. 1996, Delucchi 1996). This debate questions whether various modes of transportation are implicitly subsidized and to what extent this biases investment and usage decisions. While environmental impacts are used to stop new infrastructure, the full costs to society of transportation are not generally calculated for financing projects or charging for their use. In this paper we review the theoretical and empirical literature on the cost structure of the provision of intercity highway transportation and specify and estimate our own cost functions . In defining this framework we distinguish between internal (private) and external (social) costs, long and short run cos

David Gillen; David Levinson; David M. Levinson

1998-01-01T23:59:59.000Z

428

Fluctuations and transport in an inhomogeneous plasma  

SciTech Connect

A formalism is developed for calculating the equilibrium fluctuation level in an inhomogeneous plasma. This formalism is applied to the collisionless drift wave in a sheared magnetic field. The fluctuation level is found to be anomalously large due to both the presence of weakly damped normal modes and convective amplification. As the magnetic shear is reduced, the steady-state fluctuation spectrum is found to increase both in coherence and in amplitude. The transport associated with this mode is evaluated. The diffusion coefficient is found to scale as D is proportional to B/sup 2//nT/sup 1/2/.

Nevins, W.M.; Chen, L.

1979-11-01T23:59:59.000Z

429

Transportation Applications  

DOE Green Energy (OSTI)

The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

2010-06-01T23:59:59.000Z

430

Transportation Security | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Security SHARE Global Threat Reduction Initiative Transportation Security Cooperation Secure Transport Operations (STOP) Box Security of radioactive material while...

431

Angular neutron transport investigation in the HZETRN free-space ion and nucleon transport and shielding computer program  

SciTech Connect

Extension of the high charge and energy (HZE) transport computer program HZETRN for angular transport of neutrons is considered. For this paper, only light ion transport, He{sup 4} and lighter, will be analyzed using a pure solar proton source. The angular transport calculator is the ANISN/PC program which is being controlled by the HZETRN program. The neutron flux values are compared for straight-ahead transport and angular transport in one dimension. The shield material is aluminum and the target material is water. The thickness of these materials is varied; however, only the largest model calculated is reported which is 50 gm/cm{sup 2} of aluminum and 100 gm/cm{sup 2} of water. The flux from the ANISN/PC calculation is about two orders of magnitude lower than the flux from HZETRN for very low energy neutrons. It is only a magnitude lower for the neutrons in the 10 to 20 MeV range in the aluminum and two orders lower in the water. The major reason for this difference is in the transport modes: straight-ahead versus angular. The angular treatment allows a longer path length than the straight-ahead approximation. Another reason is the different cross section sets used by the ANISN/PC-BUGLE-80 mode and the HZETRN mode. The next step is to investigate further the differences between the two codes and isolate the differences to just the angular versus straight-ahead transport mode. Then, create a better coupling between the angular neutron transport and the charged particle transport.

Singleterry, R.C. Jr. [Argonne National Lab. - West, Idaho Falls, ID (United States); Wilson, J.W. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

1997-05-01T23:59:59.000Z

432

Erosion and Optimal Transport  

E-Print Network (OSTI)

383 pp. EROSION AND OPTIMAL TRANSPORT [23] I. Ekeland and T.and D. Simons, Sediment transport capacity of overland ?ow,measure spaces via optimal transport, Ann. of Math. (2),

Birnir, Bjorn; Rowlett, Julie

2010-01-01T23:59:59.000Z

433

Transportation Market Distortions  

E-Print Network (OSTI)

Transport Prices and Markets, Victoria Transport PolicySurvey: Survey Suggests Market-Based Vision of Smart Growth,G. 1996. Roads in a Market Economy, Avebury (Aldershot).

Litman, Todd

2006-01-01T23:59:59.000Z

434

Sustainability and Transport  

E-Print Network (OSTI)

2005. Integrating Sustainability into the Trans- portationTHOUGHT PIECE Sustainability and Transport by Richardof the concept of sustainability to transport planning. In

Gilbert, Richard

2006-01-01T23:59:59.000Z

435

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

436

Transportation / Field Trips  

Science Conference Proceedings (OSTI)

... In the event that a child misses the transportation, parents may choose the ... their child's class on an outing and possibly transport themselves or their ...

2010-10-05T23:59:59.000Z

437

PBA Transportation Websites  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Websites for Transportation from PBA From: Patterson, Philip (DOE HQ) Subject: Useful Websites for Transportation from PBA Here are some websites you might want to check...

438

International Energy Outlook 2000 - Transportation Energy Use  

Gasoline and Diesel Fuel Update (EIA)

Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. Oil is expected to remain the primary fuel source for transportation throughout the world, and transportation fuels are projected to account for more than one-half of total world oil consumption from 2005 through 2020. With little competition from alternative fuels, at least at the present time, oil is expected to remain the primary energy source for fueling transportation around the globe in the International Energy Outlook 2000 (IEO2000) projections. In the reference case, the share of total world oil consumption that goes to the transportation sector increases from 49 percent in 1997 to 55 percent in 2020 (Figure 84). The IEO2000 projections group transportation energy use into three travel modes—road, air, and other (mostly rail but also including pipelines, inland waterways, and

439

Gravity modes and mixed modes as probes of stellar cores in main-sequence stars: from solar-like to beta Cep stars  

E-Print Network (OSTI)

We investigate how the frequencies of gravity modes depend on the detailed properties of the chemical composition gradient that develops near the core of main-sequence stars and, therefore, on the transport processes that are able to modify the \\mu profile in the central regions. We show that in main-sequence models, similarly to the case of white dwarfs, the periods of high-order gravity modes are accurately described by a uniform period spacing superposed to an oscillatory component. The periodicity and amplitude of such component are related, respectively, to the location and sharpness of the \\mu gradient. We briefly discuss and interpret, by means of this simple approximation, the effect of turbulent mixing near the core on the periods of both high-order and low-order g modes, as well as of modes of mixed pressure-gravity character.

A. Miglio; J. Montalban; P. Eggenberger; A. Noels

2007-12-20T23:59:59.000Z

440

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

system-efficiency Go system-efficiency Go Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-1fnxsdr Average Per-Passenger Fuel Economy of Various Travel Modes Generated_thumb20130810-31804-1fnxsdr Comparison of per-passenger fuel economy for various modes of transportation. Last update April 2013 View Graph Graph Download Data Average Annual Fuel Use of Major Vehicle Categories Class 8 Truck Transit Bus Refuse Truck Para. Shuttle Taxi Delivery Truck School Bus Police Light Truck Light-Duty Vehicle Car Motorcycle Annual Fuel Use (GGE) 11500 10063 9876.738 2695 3392 1814 1896.33375 1423.474 853.56725 528.8785 459.4805 33

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Graduate Certificate in Transportation  

E-Print Network (OSTI)

Graduate Certificate in Transportation Nohad A. Toulan School of Urban Studies and Planning of Engineering and Computer Science integrated transportation systems. The Graduate Certificate in Transportation their capabilities. Students in the program can choose among a wide range of relevant courses in transportation

Bertini, Robert L.

442

TRANSPORTATION Annual Report  

E-Print Network (OSTI)

and educate the future transportation workforce. An example of what we can accomplish is shown2003 CENTER FOR TRANSPORTATION STUDIES Annual Report #12;Center for Transportation Studies University of Minnesota 200 Transportation and Safety Building 511 Washington Avenue S.E. Minneapolis, MN

Minnesota, University of

443

Transportation Organization and Functions  

Energy.gov (U.S. Department of Energy (DOE))

Office of Packaging and Transportation list of organizations and functions, with a list of acronyms.

444

Experimental studies of the beam-breakup mode on ETA: comparison with theory  

SciTech Connect

The beam breakup mode has been observed and measured on ETA. Comparison between the measurements and the results of a computer code indicate that the beam breakup instability will be the most important limitation on current transport thru ATA. ETA Experiments that will enable a more accurate determination of the magnitude of the instability on ATA are discussed.

Caporaso, G.J.; Struve, K.W.

1982-01-29T23:59:59.000Z

445

Modes of energy transfer from the solar wind to the inner magnetosphere D. Vassiliadisa)  

E-Print Network (OSTI)

Modes of energy transfer from the solar wind to the inner magnetosphere D. Vassiliadisa 7 November 2002 Energy transport from the interplanetary plasma to Earth's inner magnetosphere-based modeling which indicates that the coupling of magnetospheric relativistic electron fluxes to solar wind

446

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedes  

E-Print Network (OSTI)

Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation > Airport planning and development > Airport maintenance > Bicycle and pedestrian > Ports and waterways >>> Transportation operat

447

Filtering of Gravity Modes in Atmospheric Models  

Science Conference Proceedings (OSTI)

The impact of gravity modes in atmospheric model predictions is assessed quantitatively by comparing integrations with a normal mode initialized primitive equation model and its corresponding pseudogeostrophic form to document some generally ...

F. Baer; J. J. Tribbia

1984-05-01T23:59:59.000Z

448

Waveguide mode converter and method using same  

DOE Patents (OSTI)

A waveguide mode converter converts electromagnetic power being transmitted in a TE.sub.0n or a TM.sub.0n mode, where n is an integer, to an HE.sub.11 mode. The conversion process occurs in a single stage without requiring the power to pass through any intermediate modes. The converter comprises a length of circular corrugated waveguide formed in a multiperiod periodic curve. The period of the curve is selected to couple the desired modes and decouple undesired modes. The corrugation depth is selected to control the phase propagation constant, or wavenumbers, of the input and output modes, thereby preventing coherent coupling to competing modes. In one embodiment, both the period and amplitude of the curve may be selectively adjusted, thereby allowing the converter to be tuned to maximize the conversion efficiency.

Moeller, Charles P. (Del Mar, CA)

1990-01-01T23:59:59.000Z

449

Design and Validation of an Offline Oceanic Tracer Transport Model for a Carbon Cycle Study  

Science Conference Proceedings (OSTI)

An offline passive tracer transport model with self-operating diagnostic-mode vertical mixing and horizontal diffusion parameterizations is used with assimilated ocean currents to find the chlorofluorocarbon (CFC-11) cycle in oceans. This model ...

Vinu Valsala; Shamil Maksyutov; Ikeda Motoyoshi

2008-06-01T23:59:59.000Z

450

New Modes of Nuclear Excitations  

E-Print Network (OSTI)

We present a theoretical approach based on density functional theory supplemented by a microscopic multi-phonon model which is applied for investigations of pygmy resonances and other excitations of different multipolarities in stable and exotic nuclei. The possible relation of low-energy modes to the properties of neutron or proton skins is systematically studied in isotonic and isotopic chains. The fine structure of nuclear electric and magnetic response functions is analyzed and compared to experimental data. Their relevance to nuclear astrophysics is discussed.

Nadia Tsoneva; Horst Lenske

2013-09-30T23:59:59.000Z

451

Baseline descriptions for LWR spent fuel storage, handling, and transportation  

SciTech Connect

Baseline descriptions for the storage, handling, and transportation of reactor spent fuel are provided. The storage modes described include light water reactor (LWR) pools, away-from-reactor basins, dry surface storage, reprocessing-facility interim storage pools, and deep geologic storage. Land and water transportation are also discussed. This work was sponsored by the Department of Energy/Office of Safeguards and Security as part of the Sandia Laboratories Fixed Facility Physical Protection Program. 45 figs, 4 tables.

Moyer, J.W.; Sonnier, C.S.

1978-04-01T23:59:59.000Z

452

ADVANCED CUTTINGS TRANSPORT STUDY  

DOE Green Energy (OSTI)

We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cups and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test section was put into liquid holdup mode. Readings indicated 2.5 to 2.7 inches of sand. The corresponding nuclear densitometers readings were between 2.5 and 3.1 inches. Lab tests were conducted to check an on-line viewing system. Sharp images were obtained through a CCD camera with the use of a ring light or fiber light. A prototype device for measuring the average bubble size for the foam generator-viscometer was constructed from a 1/2 inch fitting. The new windowed cell has been received and installed on the ACTF Bubble Characterization Cart.

Stefan Miska; Nicholas Takach; Kaveh Ashenayi

2004-07-31T23:59:59.000Z

453

Transportation Planning & Decision Science Group Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Award on January 16, 2013, during the Chairman's Luncheon at the 92nd Annual Transportation Research Board (TRB) Meeting in Washington, DC. Dr. Greene was honored for his...

454

Transportation Energy Data Book: Edition 21  

Science Conference Proceedings (OSTI)

The ''Transportation Energy Data Book: Edition 21'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2001-09-13T23:59:59.000Z

455

Transportation Energy Data Book (Edition 20)  

SciTech Connect

The ''Transportation Energy Data Book: Edition 20'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Transportation Technologies in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data/tedb.htm). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--greenhouse gas emissions; Chapter 4--criteria pollutant emissions; Chapter 5--transportation and the economy; Chapter 6--highway vehicles; Chapter 7--light vehicles; Chapter 8--heavy vehicles; Chapter 9--alternative fuel vehicles; Chapter 10--fleet vehicles; Chapter 11--household vehicles; and Chapter 12--nonhighway modes. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2000-10-09T23:59:59.000Z

456

Alternative Transportation ExpoAlternative Transportation ExpoAlternative Transportation Expo SPONSORED BY  

E-Print Network (OSTI)

Alternative Transportation ExpoAlternative Transportation ExpoAlternative Transportation Expo providers,Exhibits and vehicles from auto manufacturers, energy providers, entrepreneurs, transportation providers, and an art contest.entrepreneurs, transportation providers, and an art contest

de Lijser, Peter

457

Transportation | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Power Electronics and Electric Machinery Fuels, Engines, Emissions Transportation Analysis Vehicle Systems Energy Storage Propulsion Materials Lightweight Materials Bioenergy Fuel Cell Technologies Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Transportation SHARE Transportation Research ORNL researcher Jim Szybist uses a variable valve-train engine to evaluate different types of fuels, including ethanol blends, and their effects on the combustion process in an internal combustion engine. Oak Ridge National Laboratory brings together science and technology experts from across scientific disciplines to partner with government and industry in addressing transportation challenges. Research objectives are

458

Local Transportation Sales Taxes: California's Experiment in Transportation Finance  

E-Print Network (OSTI)

Section 131051, “County Transportation Expenditure Plans. ”Fresno County Transportation Authority, Annual Report (1994-D.A. Niemeier, “Comparing Transportation Project Development

Crabbe, Amber E.; Hiatt, Rachel; Poliwka, Susan D.; Wachs, Martin

2005-01-01T23:59:59.000Z

459

Transportation in the Balance: A Comparative Analysis of Costs, User Revenues, and Subsidies for Highway, Air, and High Speed Rail Systems  

E-Print Network (OSTI)

transportation than air or HSR, but the opportunities to recover some of these social coststransportation modes in dollar cost per passenger kilometer traveled, some public subsidy is justified on the basis of lower social costs,transportation modes in dollar cost per passenger kilometer traveled, some public subsidy is justified on the basis of lower social costs,

Chan, Evelyn; Kanafani, Adib; Canetti, Thomas

1997-01-01T23:59:59.000Z

460

Mirror Modes in the Heliosheath  

SciTech Connect

Mirror mode (MM) structures are identified in the Voyager 1 heliosheath magnetic field data. Their characteristics are: (1) quasiperiodic structures with a typical scale size of {approx}57 {rho}{sub p}(proton gyroradii), (2) little or no angular changes across the structures ({approx}3 deg. longitude and {approx}3 deg. latitude), and (3) a lack of sharp boundaries at the magnetic dip edges. It is proposed that the pickup of interstellar neutrals in the upstream region of the termination shock (TS) is the likely cause of MM instability during intervals when the IMF is nearly orthogonal to the solar wind flow direction. Concomitant (quasiperpendicular) shock compression of the MM structures at the TS and additional injection of pickup ions (PUIs) throughout the heliosheath will enhance MM growth.

Tsurutani, B. T. [Jet Propulsion Lab., Calif. Inst. Tech., Pasadena, CA (United States); Guarnieri, F. L. [UNIVAP, Sao Jose dos Campos, SP (Brazil); Echer, E. E. [INPE, Sao Jose dos Campos, SP (Brazil); Lakhina, G. S. [Indian Institute of Geomagnetism, Navi Mumbai (India); Verkhoglyadova, O. P. [CSPAR, Univ. Alabama, Huntsville, AL (United States)

2011-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Representation of Ideal Magnetohydrodynamic Modes  

SciTech Connect

One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through ? ? = ? X (xi X B) ensures that ? B • ? ? = 0 at a resonance, with ? labelling an equilibrium flux surface. Also useful for the analysis of guiding center orbits in a perturbed field is the representation ? ? = ? X ?B. These two representations are equivalent, but the vanishing of ? B • ?? at a resonance is necessary but not sufficient for the preservation of field line topology, and a indiscriminate use of either perturbation in fact destroys the original equilibrium flux topology. It is necessary to find the perturbed field to all orders in xi to conserve the original topology. The effect of using linearized perturbations on stability and growth rate calculations is discussed

Roscoe B. White

2013-01-15T23:59:59.000Z

462

transportation | OpenEI  

Open Energy Info (EERE)

transportation transportation Dataset Summary Description The 2009 National Household Travel Survey (NHTS) provides information to assist transportation planners and policy makers who need comprehensive data on travel and transportation patterns in the United States. The 2009 NHTS updates information gathered in the 2001 NHTS and in prior Nationwide Personal Transportation Surveys (NPTS) conducted in 1969, 1977, 1983, 1990, and 1995. Source U.S. Department of Transportation, Federal Highway Administration Date Released February 28th, 2011 (3 years ago) Date Updated Unknown Keywords NHTS TEF transportation Transportation Energy Futures travel trip Data application/zip icon Travel Day Trip File (zip, 42.6 MiB) application/zip icon Household File (zip, 5 MiB) application/zip icon Person File (zip, 17.4 MiB)

463

Linear Motor Powered Transportation  

E-Print Network (OSTI)

This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

Thornton, Richard D.

464

Transportation Management Workshop: Proceedings  

Science Conference Proceedings (OSTI)

This report is a compilation of discussions presented at the Transportation Management Workshop held in Gaithersburg, Maryland. Topics include waste packaging, personnel training, robotics, transportation routing, certification, containers, and waste classification.

Not Available

1993-10-01T23:59:59.000Z

465

Cross-Gyre Transports  

Science Conference Proceedings (OSTI)

What is the fate of surface Ekman transport entering a subtropical gyre through its zonal boundaries? This question is investigated by resolving interior transport of a deep surface layer into nonvortical (potential flow) and nondivergent (...

G. T. Csanady

1986-10-01T23:59:59.000Z

466

WIPP Transportation (FINAL)  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP TRANSPORTATION SYSTEM Waste Isolation Pilot Plant U.S. Department Of Energy The U.S. Department of Energy (DOE) has established an elaborate system for safely transporting...

467

Transportation and its Infrastructure  

E-Print Network (OSTI)

prices and alternative transport fuels; • R&D outcomes in several areas, especially biomassprices and the economic viability of alternative transport fuels; • R&D outcomes in several areas, especially biomass

2007-01-01T23:59:59.000Z

468

Anomalous radial transport in tokamak edge plasma  

E-Print Network (OSTI)

1.2 Transport in tokamakAnomalous radial transport model for edge plasma . . . . . .Anomalous transport . . . . . . . . . . . . . . . . . . . .

Bodi, Vasudeva Raghavendra Kowsik

2010-01-01T23:59:59.000Z

469

Midwestern Radioactive Materials Transportation Committee Agenda...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation Committee Agenda Midwestern Radioactive Materials Transportation...

470

Progress in Simulating Turbulent Electron Thermal Transport in NSTX  

SciTech Connect

Nonlinear simulations based on multiple NSTX discharge scenarios have progressed to help differentiate unique instability mechanisms and to validate with experimental turbulence and transport data. First nonlinear gyrokinetic simulations of microtearing (MT) turbulence in a high-beta NSTX H-mode discharge predict experimental levels of electron thermal transport that are dominated by magnetic flutter and increase with collisionality, roughly consistent with energy confinement times in dimensionless collisionality scaling experiments. Electron temperature gradient (ETG) simulations predict significant electron thermal transport in some low and high beta discharges when ion scales are suppressed by E x B shear. Although the predicted transport in H-modes is insensitive to variation in collisionality (inconsistent with confinement scaling), it is sensitive to variations in other parameters, particularly density gradient stabilization. In reversed shear (RS) Lmode discharges that exhibit electron internal transport barriers, ETG transport has also been shown to be suppressed nonlinearly by strong negative magnetic shear, s<<0. In many high beta plasmas, instabilities which exhibit a stiff beta dependence characteristic of kinetic ballooning modes (KBM) are sometimes found in the core region. However, they do not have a distinct finite beta threshold, instead transitioning gradually to a trapped electron mode (TEM) as beta is reduced to zero. Nonlinear simulations of this "hybrid" TEM/KBM predict significant transport in all channels, with substantial contributions from compressional magnetic perturbations. As multiple instabilities are often unstable simultaneously in the same plasma discharge, even on the same flux surface, unique parametric dependencies are discussed which may be useful for distinguishing the different mechanisms experimentally.

Guttenfelder, Walter

2013-07-17T23:59:59.000Z

471

CAN PUBLIC TRANSPORT COMPETE WITH THE PRIVATE CAR?  

E-Print Network (OSTI)

Public transport is often perceived to be a poor alternative for car use. This paper describes who may be open to use public transport more often, and how people might be persuaded to use it. A computerised questionnaire study was conducted among 1,803 Dutch respondents in May 2001. Results revealed that especially fervent car users disliked public transport. For them, the car outperformed public transport not only because of its instrumental function, but also because the car represents cultural and psychological values, e.g. the car is a symbol of freedom and independence, a status symbol and driving is pleasurable. So, for fervent car users, car use is connected with various important values in modern society. Infrequent car users judged less positively about the car and less negatively about public transport. Consequently, they may be open to use public transport more regularly. In contrast, many efforts are needed to stimulate fervent car users to travel by public transport, because in their view, public transport cannot compete with their private car. In this case, policies should be aimed at reducing the functional, psychological and cultural values of private cars, as well as increasing the performance of public transport and other (more) environmentally sound modes of transport on these aspects.

L. Steg; Linda Steg

2003-01-01T23:59:59.000Z

472

Low-level radioactive waste transportation safety history  

SciTech Connect

The Radioactive Materials Incident Report (RMIR) database was developed fin 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US department of Energy (DOE). This database contains information about radioactive material (RAM) transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the US DOE National Transportation Program (NTP). Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident/incident events involving low-level waste (LLW) that have occurred in the US for the period 1971 through 1996. Among the areas to be examined are: transportation accidents by mode, package response during accidents, and an examination of accidents where release of contents has occurred. Where information is available, accident and incident history and package response for LLW packages in transportation accidents will be described.

McClure, J.D. [Sandia National Labs., Albuquerque, NM (United States). Transportation Systems Analysis Dept.

1997-08-01T23:59:59.000Z

473

Argonne Transportation Current News  

NLE Websites -- All DOE Office Websites (Extended Search)

materials (pdf) clean cities logo Clean Cities Transportation Workshop for Almaty, Kazakhstan Jeff Chamberlain Jeff Chamberlain discusses Argonne's breakthrough cathode...

474

NIST Transportation to NIST  

Science Conference Proceedings (OSTI)

Transportation to NIST. The National Institute of Standards and Technology is located approximately 25 miles north of Washington ...

2012-09-24T23:59:59.000Z

475

Transportation and its Infrastructure  

E-Print Network (OSTI)

Energy. OECD, 2004b: Current international shipping market trends -trends continue. In contrast, transport energy use in the mature market

2007-01-01T23:59:59.000Z

476

Transportation Security Update  

Science Conference Proceedings (OSTI)

The U.S. Department of Transportation (DOT) final rules issued in 2003 required persons who offer for transportation or transport certain hazardous materials to develop and implement security plans. The Electric Power Research Institute (EPRI) formed a Transportation Security Implementation Working Group, which included representation from the Nuclear Energy Institute (NEI), to identify key projects, which were documented in the original report in 2005. This report updates information in the original rep...

2011-07-27T23:59:59.000Z

477

Transport Properties for Combustion Modeling  

E-Print Network (OSTI)

PRACTICE FOR CALCULATING TRANSPORT PROPERTIES V. 1. T HEcases; (4) performing more transport property measurementsFOR THE CALCULATION OF TRANSPORT PROPERTIES: III. EVALUATION

Brown, N.J.

2010-01-01T23:59:59.000Z

478

Transportation Infrastructure and Sustainable Development  

E-Print Network (OSTI)

A Better Forecasting Tool for Transportation Decision-making,” Mineta Transportation Institute, San Jose Stateat the 2008 meeting of the Transportation Research Board and

Boarnet, Marlon G.

2008-01-01T23:59:59.000Z

479

Transportation Analysis | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

480

FCT Technology Validation: Transportation Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Projects to someone by E-mail Share FCT Technology Validation: Transportation Projects on Facebook Tweet about FCT Technology Validation: Transportation Projects on...

Note: This page contains sample records for the topic "transport modes light-duty" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Transportation Research and  

E-Print Network (OSTI)

Transportation Research and Analysis Computing Center Transportation Research and Analysis to supercomputers, we can simulate how individual bridges interact with sediment transport, local topography the bridge. Computer-based research at this highly detailed level promises to prevent future bridge disasters

Kemner, Ken

482

Nevada University Transportation  

E-Print Network (OSTI)

illnesses and disabilities · Development of professionals and future leaders in the area of transportationNUTC Nevada University Transportation Center University of Nevada, Las Vegas Sustainable Transporation in Arid Regions 2007-2009 Biennial Report 5 #12;2007-2009 Nevada University Transportation Center

Ahmad, Sajjad

483

PalladianDigest Transportation  

E-Print Network (OSTI)

PalladianDigest CONNECT. EMPOWER. GROW. Tackling Transportation Challenges Nebraska has been a vital link in the nation's transportation system since the days when carts, wagons to University of Nebraska­Lincoln research. That's fine with UNL transportation researchers, said Larry Rilett

Farritor, Shane

484

Northwestern University Transportation Center  

E-Print Network (OSTI)

Northwestern University Transportation Center 2011 Business Advisory Committee NUTC #12;#12;I have the pleasure of presenting our Business Advisory Committee members--a distinguished group of transportation industry lead- ers who have partnered with the Transportation Center in advancing the state of knowledge

Bustamante, Fabián E.

485

Introduction to Transportation Planning  

E-Print Network (OSTI)

Introduction to Transportation Planning CMP 4710/6710 Fall 2012 3 Credit Hours Room: ARCH 229 on a Saturday night, transportation is not an objective in and of itself, but a means to carry out the functions of daily living (i.e., it's a "derived good"). As a consequence, the transportation systems we build

Tipple, Brett

486

Louisiana Transportation Research Center  

E-Print Network (OSTI)

Louisiana Transportation Research Center LTRC www.ltrc.lsu.edu 2012-13 ANNUALREPORT #12;The Louisiana Transportation Research Center (LTRC) is a research, technology transfer, and training center administered jointly by the Louisiana Department of Transportation and Development (DOTD) and Louisiana State

Harms, Kyle E.

487

TRANSPORTATION: THE POTENTIAL  

E-Print Network (OSTI)

INTERMODAL TRANSPORTATION: THE POTENTIAL AND THE CHALLENGE A Summary Report 2003 #12;June 2003 To the Reader This report summarizes the second James L. Oberstar Forum on Transportation Policy and Technology. Over two days, we explored the chal- lenges and opportunities in intermodal transportation, addressing

Minnesota, University of

488

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

489

Alternative energy sources for non-highway transportation: technical section  

DOE Green Energy (OSTI)

Eighteen different alternative fuels were considered in the preliminary screening, from three basic resource bases. Coal can be used to provide 13 of the fuels; oil shale was the source for three of the fuels; and biomass provided the resource base for two fuels not provided from coal. In the case of biomass, six different fuels were considered. Nuclear power and direct solar radiation were also considered. The eight prime movers that were considered in the preliminary screening are boiler/steam turbine; open and closed cycle gas turbines; low and medium speed diesels; spark ignited and stratified charge Otto cycles; electric motor; Stirling engine; free piston; and fuel cell/electric motor. Modes of transport considered are pipeline, marine, railroad, and aircraft. Section 2 gives the overall summary and conclusions, the future outlook for each mode of transportation, and the R and D suggestions by mode of transportation. Section 3 covers the preliminary screening phase and includes a summary of the data base used. Section 4 presents the methodology used to select the fuels and prime movers for the detailed study. Sections 5 through 8 cover the detailed evaluation of the pipeline, marine, railroad, and aircraft modes of transportation. Section 9 covers the demand related issues.

Not Available

1980-06-01T23:59:59.000Z

490

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

491

Spin Transport in Semiconductor heterostructures  

SciTech Connect

The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

Domnita Catalina Marinescu

2011-02-22T23:59:59.000Z

492

Argonne Transportation - Clean Cities Area of Interest 4: Alternative Fuel,  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Area of Interest 4: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Download Clean Cities Area of Interest 4 Emissions Benefit Tool (Excel 57 KB) This tool has been created for the Clean Cities Funding Opportunity Announcement for Area of Interest 4: Alternative Fuel and Advanced Technology Vehicles Pilot Program. The tool is based off the AirCRED model's methodology using EPA's MOBILE6 model and light duty vehicle and heavy duty engine certification data to generate criteria air pollutant emission credits. However, for this tool, the GREET model is also used to generate data for vehicles not certified and well-to-wheel greenhouse gas emissions. This tool requires the user to input: The number of vehicles planned to be purchased

493

Collective Modes of Quantum Hall Stripes  

E-Print Network (OSTI)

The collective modes of striped phases in a quantum Hall system are computed using the time-dependent Hartree-Fock approximation. Uniform stripe phases are shown to be unstable to the formation of modulations along the stripes, so that within the Hartree-Fock approximation the groundstate is a stripe crystal. Such crystalline states are generically gapped at any finite wavevector; however, in the quantum Hall system the interactions of modulations among different stripes is found to be remarkably weak, leading to an infinite collection of collective modes with immeasurably small gaps. The resulting long wavelength behavior is derivable from an elastic theory for smectic liquid crystals. Collective modes for the phonon branch are computed throughout the Brillouin zone, as are spin wave and magnetoplasmon modes. A soft mode in the phonon spectrum is identified for partial filling factors sufficiently far from 1/2, indicating a second order phase transition. The modes contain several other signatures that should be experimentally

R. Côté; H. A. Fertig

2008-01-01T23:59:59.000Z

494

Transportation Business Plan  

SciTech Connect

The Transportation Business Plan is a step in the process of procuring the transportation system. It sets the context for business strategy decisions by providing pertinent background information, describing the legislation and policies governing transportation under the NWPA, and describing requirements of the transportation system. Included in the document are strategies for procuring shipping casks and transportation support services. In the spirit of the NWPA directive to utilize the private sector to the maximum extent possible, opportunities for business ventures are obvious throughout the system development cycle.

1986-01-01T23:59:59.000Z

495

Transportation Energy Data Book: Edition 29  

SciTech Connect

The Transportation Energy Data Book: Edition 29 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Program. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL; Boundy, Robert Gary [ORNL

2010-07-01T23:59:59.000Z

496

Transportation Energy Data Book: Edition 32  

SciTech Connect

The Transportation Energy Data Book: Edition 32 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2 energy; Chapter 3 highway vehicles; Chapter 4 light vehicles; Chapter 5 heavy vehicles; Chapter 6 alternative fuel vehicles; Chapter 7 fleet vehicles; Chapter 8 household vehicles; Chapter 9 nonhighway modes; Chapter 10 transportation and the economy; Chapter 11 greenhouse gas emissions; and Chapter 12 criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the reader s convenience.

Davis, Stacy Cagle [ORNL] [ORNL; Diegel, Susan W [ORNL] [ORNL; Boundy, Robert Gary [ORNL] [ORNL

2013-08-01T23:59:59.000Z

497

Transportation Energy Data Book: Edition 24  

SciTech Connect

The ''Transportation Energy Data Book: Edition 24'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.

2005-03-08T23:59:59.000Z

498

Transportation Energy Data Book: Edition 23  

SciTech Connect

The ''Transportation Energy Data Book: Edition 23'' is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Office of Planning, Budget Formulation, and Analysis, under the Energy Efficiency and Renewable Energy (EERE) program in the Department of Energy (DOE). Designed for use as a desk-top reference, the data book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest editions of the Data Book are available to a larger audience via the Internet (www-cta.ornl.gov/data). This edition of the Data Book has 12 chapters which focus on various aspects of the transportation industry. Chapter 1 focuses on petroleum; Chapter 2--energy; Chapter 3--highway vehicles; Chapter 4--light vehicles; Chapter 5--heavy vehicles; Chapter 6--alternative fuel vehicles; Chapter 7--fleet vehicles; Chapter 8--household vehicles; and Chapter 9--nonhighway modes; Chapter 10--transportation and the economy; Chapter 11--greenhouse gas emissions; and Chapter 12--criteria pollutant emissions. The sources used represent the latest available data. There are also three appendices which include detailed source information for some tables, measures of conversion, and the definition of Census divisions and regions. A glossary of terms and a title index are also included for the readers convenience.

Davis, S.C.